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Abstract

Hypercontractive inequalities for real-valued functions over the Boolean cube play an impor-
tant role in theoretical computer science. In this work, we prove a hypercontractive inequality
for matrix-valued functions defined over large alphabets, generalizing the result of Ben-Aroya,
Regev, de Wolf (FOCS’08) for the Boolean alphabet. To obtain our result we prove a general-
ization of the powerful 2-uniform convexity inequality for trace norms of Ball, Carlen, Lieb (In-
ventiones Mathematicae’94). We give two applications of this hypercontractive inequality.

Locally decodable codes. We present a lower bound for locally decodable codes (LDC)
over large alphabets. An LDC C : Zn

r → ZN
r is an encoding of x ∈ Zn

r into a codeword C(x)
in such a way that one can recover an arbitrary xi ∈ Zr (with probability at least 1/r + ε)
by making only a few queries to a corrupted codeword. The main question in LDCs is the
trade-off between N and n. By using hypercontractivity, we give an exponential lower bound
N = 2Ω(ε4n/r4) for 2-query (possibly non-linear) LDCs over Zr. Previously exponential lower
bounds were known for r = 2 (Kerenidis and de Wolf (JCSS’04)) and for linear codes (Dvir and
Shpilka (SICOMP’07)).

Streaming algorithms. We present upper and lower bounds for the communication com-
plexity of the Hidden Hypermatching problem when defined over large alphabets, which general-
izes the well-known Boolean Hidden Matching problem. We then consider streaming algorithms
for approximating the value of Unique Games on a t-hyperedge hypergraph: in this direction
a simple edge-counting argument gives an r-approximation with O(log n) space. On the other
hand, we use our communication lower bound to show that every streaming algorithm in the
adversarial model achieving a (r − ε)-approximation of this value requires Ω(n1−1/t) classical
space or Ω(n1−2/t) quantum space. In this setting, these results simplify and generalize the sem-
inal work of Kapralov, Khanna and Sudan (SODA’15) and Kapravol and Krachun (STOC’19)
for the case r = 2.

1 Introduction

In this paper we prove new results in two areas of theoretical computer science that have received
a lot of attention recently: streaming algorithms and locally decodable codes.

Streaming algorithms is a model of computation introduced by Alon, Matias and Szegedy [AMS99]
(for which they won the Gödel Prize in 2005) in order to understand the space complexity of ap-

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 130 (2021)



proximation algorithms to solve problems. In the last decade, there have been several results in
the direction of proving upper and lower bounds for streaming algorithms for combinatorial opti-
mization problems [VY11, GKK12, KKS14, GVV17, KKSV17, KK19, GT19, CGV20, CGSV21a,
CGSV21b, AD21, CKP+21]. The goal here is to obtain a 1/γ approximation (for some γ ≤ 1)
of the optimum value of the combinatorial optimization problem with as little space as possible.
One favourite problem considered by many works is the well-known Max-Cut, or its generalization
over large alphabets Zr, Unique Games. Here, giving a 2-approximation algorithm for Max-Cut on
n vertices can be done in logarithmic space, while a sequence of works [KKS14, KKSV17, KK19]
showed that getting a (2 − ε)-approximation requires linear space, matching the upper bound
by [AGM12]. A similar, but less optimized, scenario was observed for Unique Games, i.e., there is a
threshold behaviour in complexity going from r to (r− ε)-approximation. Curiously, many of these
lower bounds were proven via variants of a problem called Boolean Hidden Matching (BHM) and
it is well known that BHM can be solved using logarithmic quantum space, so a natural question
is, could quantum space help solving these combinatorial optimization problems? One corollary
from [KKS14, SWY12] is that obtaining the strong (1 + ε)-approximation factor for Max-Cut and
Unique Games streaming algorithms is quantum-hard. However, understanding the space com-
plexity of streaming in the widely-studied, weaker regime of (2 − ε)-approximation (for Maxcut)
or (r − ε)-approximation (for Unique games over Zr) algorithms, it is still unclear whether there
could be any savings in the quantum regime.

Locally decodable codes (LDCs) are error correcting codes C : Σn → ΓN (for alphabets Σ,Γ)
that allow transmission of information over noisy channels. By querying a few locations of a noisy
codeword C̃(x), one needs to reconstruct an arbitrary coordinate of x ∈ Σn with probability at
least 1/|Σ| + ε. The main goal in this field is to understand trade-offs between N and n. LDCs
have found several applications in pseudorandom generators, hardness amplification, private infor-
mation retrieval schemes, cryptography, complexity theory (refer to [Yek12, Gop18] for a detailed
exposition). Despite their ubiquity, LDCs are not well understood, even with the simplest of case
of 2-query LDCs. For the case when Σ = Γ = {0, 1}, exponential lower bounds of N = 2Ω(n) were
established over two decades back [GKST02, KW04, DS07]. In contrast, a breakthrough result of
Dvir and Gopi [DG16] in 2015 showed how to construct 2-query LDCs with subexponential length
in the regime when Σ = {0, 1} and Γ is a finite field FN . Despite these results, our knowledge of
such N and n trade-offs for 2-query LDCs is still lacking, specially for the not very well studied
case when Σ = Γ = Zr.

Prior works that handled simpler versions of the questions above used one technical tool suc-
cessfully: hypercontractivity for real-valued functions over the Boolean cube. Since we are concerned
with proving quantum lower bounds for streaming algorithms and establishing lower bounds for
LDCs when the input alphabet is over Zr, it leads us to the following main question: Is there a
version of hypercontractivity for matrix-valued functions over Zr?

1.1 Our results

Summarizing our main contributions, we first prove a version of hypercontractivity for matrix-
valued functions f : Znr → Cm×m. The proof of this crucially relies on proving uniform convexity for
trace norms of r matrices, which in turn generalizes the powerful 2-uniform convexity by Ball, Carlen
and Lieb [BCL94]. Using this new hypercontractivity theorem, we prove our two applications.

First, we prove a quantum space lower bound for streaming algorithms. It is easy to see that
obtaining a 2-approximation algorithm for Max-k-Cut on n vertices in the classical streaming model
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can be done in O(log n) space, and we show that obtaining a 1.99-approximation algorithm in the
adversarial model requires Ω(n1−2/t) quantum space or Ω(n1−1/t) classical space. As far as we are
aware, this is the first quantum space lower bound for an optimization problem. Although our lower
bounds apply to the adversarial model, while prior works of Kapralov, Khanna and Sudan [KKS14]
and the mathematical tour-de-force result of Kapralov and Krachun [KK19] obtained an Ω(n) clas-
sical space lower bound for (2−ε)-approximation in the random model, our proofs are significantly
simpler. We further generalize our results to the case of t-hyperedge hypergraphs with vertices
taking values over Zr. These hypergraphs can naturally be viewed as instances of Unique Games
wherein the constraints are over Zr. Here again, we prove that obtaining an r-approximation al-
gorithm requires O(log n) classical space and obtaining a (r− ε)-approximation algorithm requires
Ω(n1−1/t) classical space or Ω(n1−2/t) quantum space.

Second, we show an N = 2Ω(n/r4) lower bound for (even non-linear) LDCs over Zr. In particular,
for all r smaller than n1/4, we prove an exponential in n lower bound for LDCs over Zr. Previous
main results in this direction were by Goldreich et al. [GKST02] for r = 2 and linear LDCs, Kerenidis
and de Wolf [KW04] for r = 2 and non-linear LDCs, Wehner and de Wolf [WdeW05] for non-linear
LDCs from {0, 1}n → ZNr and finally by Dvir and Shpilka [DS07] for r > 2 but linear LDCs. Apart
from the result of [DS07], we are not aware of any lower bounds for non-linear LDCs from Znr → ZNr ,
even though it is a very natural question with connections to other fundamental problems, such
as polynomial identity testing [DS07], private information retrieval [KT00, GKST02], additive
combinatorics [BDG16] and quantum complexity theory [Aar18], to cite a few. Furthermore, we
are not aware of a formal reduction between LDCs with Σ = {0, 1} and Σ = Zr, specially with
recovery probability 1/|Σ|+ ε. Moreover, some past works define LDCs over general Σ with success
probability ≥ Pr[wrong output] + ε [Gop18], ≥ 1/2 + ε [GKST02] or ≥ 1 − ε [Dvi11]. These
alternative definitions are encompassed by ours by considering ε a constant large enough. In the
remaining part of the introduction, we describe these contributions in more detail.

1.2 Matrix hypercontractive inequality (over large alphabets)

Fourier analysis on the Boolean cube. We first discuss the basics of Fourier analysis before
stating our result. Let f : {0, 1}n → R be a function, then the Fourier decomposition of f is

f(x) =
∑

S∈{0,1}n
f̂(S)(−1)S·x,

where S ·x =
∑n

i=1 Sixi (where the sum is over {0, 1}) and the Fourier coefficients of f are defined

as f̂(S) = Ex[f(x)(−1)S·x], the expectation taken over uniformly random x ∈ {0, 1}n. One of the
technical tools in the area of theoretical computer science is the hypercontractivity theorem proven
by Bonami and Beckner [Bon70, Bec75]. In order to understand the hypercontractivity theorem,
we first need to define the noise operator: for a noise parameter ρ ∈ [−1, 1], let Tρ be an operator
on the space of functions f : {0, 1}n → R defined as

(Tρf)(x) = E
y∼Nρ(x)

[f(y)],

where y ∼ Nρ(x) denotes that the random string y ∈ {0, 1}n is drawn as yi = xi with probability
1
2 + 1

2ρ and as yi = xi ⊕ 1 with probability 1
2 −

1
2ρ for each i ∈ [n] independently. One can show

that the Fourier expansion of Tρf can be written as

(Tρf)(x) =
∑

S∈{0,1}n
ρ|S|f̂(S)(−1)S·x.
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One way to intuitively view this expression is that “large-weight” Fourier coefficients are re-
duced by an exponential factor while “small-weight” Fourier coefficients remain approximately
the same. Consequently, it is not hard to see that ‖Tρf‖p ≤ ‖f‖p for every p ≥ 1, where

‖f‖p :=
(
Ex[|f(x)|p]

)1/p
is the standard normalized p-norm of the function f . The main hypercon-

tractivity theorem states that the previous inequality holds true even if we increase the left-hand
size by a larger norm (meaning that norms under the noise operator are not just contractive, but
hypercontractive), i.e., for every p ∈ [1, 2] and ρ ≤

√
p− 1, we have that ‖Tρf‖2 ≤ ‖f‖p,1 which

can alternatively be written as ∑
S∈{0,1}n

ρ2|S|f̂(S)2

1/2

≤

 1

2n

∑
x∈{0,1}n

|f(x)|p
1/p

. (1)

This inequality has found several applications in approximation theory [KKMO07, DS05], ex-
pander graphs [HLW06], circuit complexity [LMN93], coding theory [CL93], quantum comput-
ing [GKK+07, Mon11] (for more applications we refer the reader to [deW08, O’D14, Mon12]).
All these applications deal with understanding the effect of noise on real-valued functions on the
Boolean cube.

Generalizations of hypercontractivity. There are two natural generalizations of hypercon-
tractivity: (i) a hypercontractivity statement for arbitrary product probability spaces. In this
direction, it is possible to prove a similar hypercontractive inequality: for every p ∈ [1, 2] and
f ∈ L2(Ω1 × · · · × Ωn, π1 ⊗ · · · ⊗ πn), we have

‖Tρf‖2 ≤ ‖f‖p for ρ ≤
√
p− 1 · λ1/p−1/2, (2)

where λ is the smallest probability in any of the finite probability spaces (Ωi, πi) (see [O’D14,
Chapter 10]). As a corollary, one gets a hypercontractive inequality for f : Znr → R; (ii) a
hypercontractivity statement for matrix-valued functions f : {0, 1}n → Cm×m, where the Fourier
coefficients f̂(S) = Ex[f(x)(−1)S·x] are now m × m complex matrices. This was considered by
Ben-Aroya, Regev and de Wolf [BRdeW08], who proved a hypercontractivity statement by using
the powerful inequality of Ball, Carlen and Lieb [BCL94].

However, is there a generalization of hypercontractivity in both directions, i.e., a matrix-valued
hypercontractivity for functions over Zr? This is open as far as we are aware and is our first main
technical result.

Result 1. For any f : Znr → Cm×m, p ∈ [1, 2] and ρ ≤
√

(p−1)(1−(p−1)r−1)
(r−1)(2−p) ,

∑
S∈Znr

ρ2|S|‖f̂(S)‖2p

1/2

≤

 1

rn

∑
x∈Znr

‖f(x)‖pp

1/p

, (3)

where ‖M‖p :=
(∑

i σi(M)p
)1/p

is the Schatten p-norm defined from the singular values {σi(M)}i
of the matrix M and |S| := |{i ∈ [n] : Si 6= 0}| is the Hamming weight of S ∈ Znr .

The above result can be seen as an analogue of Eq. (1) where the absolute values are replaced
with Schatten norms. We now make a couple of remarks. First, when m = 1 our result compares

1The hypercontractivity theorem can be stated for arbitrary 1 ≤ p ≤ q and ρ ≤
√

(p− 1)/(q − 1), here we state
it for q = 2 since we will be concerned with this setting.
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to the one in Eq. (2) for f : Znr → R, but with a slightly worse ρ parameter compared to the
(1/r)1/p−1/2 factor. Second, for r = 2 we recover the same inequality from [BRdeW08]. The
proof of this result is rather mathematical and not-so-intuitive. To this end, as in the proof
of hypercontractive inequalities [O’D14, BRdeW08], our result follows by induction on n. It so
happens that the base case is the most non-trivial step in the proof. So for now, let us assume
n = 1, i.e., our goal is to prove Eq. (3) for n = 1. We now consider two special simple cases of
the inequality.

(i) r = 2 and Cm×m is replaced with real numbers: in this case, this is the well-known two-point
inequality by Gross [Gro75] used for understanding the Logarithmic Sobolev inequalities. A proof
of this inequality can also be easily viewed from a geometric perspective. As far as we are aware,
there is no generalized r-point inequality for r > 2.

(ii) r = 2 and Cm×m are arbitrary matrices: in this case, we only need to deal with two
matrices f(0), f(1) and Eq. (3) is exactly a powerful inequality in functional analysis, called the
2-uniform convexity of trace norms,(

‖X + Y ‖pp + ‖X − Y ‖pp
2

)2/p

≥ ‖X‖2p + (p− 1)‖Y ‖2p.

This inequality was first proven for certain values of p by Tomczak-Jaegermann [TJ74] before being
extended for all p ∈ [1, 2] by Ball, Carlen and Lieb [BCL94] in 1994. Since then it has found several
applications, e.g. an optimal hypercontractivity inequality for Fermi fields [CL93], regularized con-
vex optimization [DSSST10] and metric embedding [LN04, Nao16]. 2-uniform convexity can also be
used to prove a variety of other inequalities, for example, Khintchine inequality [TJ74, DGTJ84],
Hoeffding and Bennett-style bounds [Pin94, HRMS20]. Moreover, the above result could be seen as
a corollary of Hanner’s inequality for matrices (originally proven for Lebesgue spaces Lp [Han56]),
but, unfortunately, Hanner’s inequality for Schatten trace ideals are only proven for p ≤ 4/3 (see
more in [BCL94]). As far as we are aware, a generalization of the above inequality when considering
r matrices was unknown.

One contribution in our work is the following generalization of a result from Ball, Carlen and
Lieb [BCL94] (note it also implies a generalization of the two-point inequality), which we believe
may be of independent interest.

Result 2. Let r ∈ Z, r ≥ 2. Let ωr := e2iπ/r, A0, . . . , Ar−1 ∈ Cn×n and p ∈ [1, 2], then1

r

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
p

p

2/p

≥ ‖A0‖2p +
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
k=1

‖Ak‖2p . (4)

Now that we have established Result 2, the proof of Result 1 is a simple induction argument
on n: for the base case n = 1, Result 1 is exactly Result 2, and proving the induction step requires
an application of Minkowski inequality. Since this proof is very similar to the one in [BRdeW08],
we omit the details here.

1.3 Application 1: Streaming algorithms

Approximation algorithms for combinatorial optimization problems have been a rich area of study
in theoretical computer science. One of the most famous approximation algorithms is by Goemans
and Williamson [GW95] who proved that one can obtain a 1/0.878-approximation algorithm in

5



polynomial time for Max-Cut using semi-definite programming and this is believed to be optimal
assuming the Unique Games conjecture is true [KKMO07]. In the past few years there has been
a sequence of works [KKS14, GVV17, GT19, KK19, CGV20, CGSV21a, CGSV21b] that tried to
prove unconditional hardness of combinatorial optimization (e.g. the Max-Cut problem) in the
well-known streaming model of computation by Alon, Matias and Szegedy [AMS99].

In the streaming model, the goal is to optimize the amount of space needed to solve a problem
rather than time, and output a value which is at least a fraction 1/γ of the optimum value with high
probability. Many recent works referenced above have shown interesting threshold theorems, for
example, for the Max-Cut problem, getting a 2-approximation algorithm using O(log n) classical
space is easy: one simply counts the number of edges in the graph (which requires only a counter of
size 2 log n) and outputs half this count. Moreover, one can obtain a graph sparsifier using O(n/ε2)
space [AGM12] and, from it, a (1 + ε)-approximation for the Max-Cut value. On the other hand,
Kapralov et al. [KKS14] initiated the study of proving streaming lower bounds for Max-Cut in the
random-edge model (where inputs arrive randomly, and not necessarily adversarially), and in this
work they showed that one requires Ω(

√
n) space for (2− ε)-approximations in an n-vertex graph,

together with a classical lower bound Ω(n1−ε) for (1 + ε)-approximations in the adversarial model
(their proof, together with Result 4 below, immediately implies a similar quantum lower bound for
(1 + ε)-approximation). After a sequence of works, Kapralov and Krachun [KK19] finally obtained
an Ω(n) space lower bound for (2− ε)-approximations even in the random-edge model.

A common technique to prove streaming lower bounds is via communication complexity. To
see this, suppose a problem P has inputs (X,Y ) and the goal is to find space-efficient streaming
algorithms to compute P (X,Y ), when X,Y are presented in a stream (i.e., presented bit-by-bit).
Then, one way to lower bound the space complexity is to prove lower bounds on the following
problem: consider the one-way communication problem where Alice gets the input X, Bob gets the
input Y , their goal is to compute P (X,Y ) and only Alice is allowed to communicate to Bob. Then
one can show that any lower bound for randomized one-way communication implies an equivalent
lower bound for streaming algorithms. This technique has been used by a sequence of papers to
prove lower bounds on space complexity of Max-Cut [KKS14, KK19, GT19], matching [GKK12],
Max-CSP [GVV17, CGV20, CGSV21a, CGSV21b] and counting cycles [VY11, AD21]. One problem
that is used often in this direction is a variant of the Boolean Hidden Matching.

1.3.1 Hidden Matching and its variants

The Boolean Hidden Matching (BHM) problem was introduced by Bar-Yossef et al. [BYJK04]
(which was in turn inspired by Kerenidis and de Wolf [KW04] for proving LDC lower bounds) in
order to prove exponential separations between quantum and classical one-way communication com-
plexities. Below we described the generalized Hidden Matching problem over larger alphabets and
hypermatching. The r-ary Hidden Hypermatching (r-HH(α, t, n)) problem is a two-party commu-

nication problem between Alice and Bob: Alice is given x ∈ Znr and Bob is given a string w ∈ Zαn/tr

and αn/t-many disjoint t-tuples (for α ∈ (0, 1]), i.e., hyperedges of an α-partial hypermatching,
which can also be viewed as an incident matrix M ∈ {0, 1}αn/t×n (each row corresponding to a
hyperedge). In the YES instance it is promised that w = Mx (over Zr), while in the NO instance it
is promised that w is uniformly random, and the goal is to decide which is the case using a message
sent from Alice to Bob.

There have been a few lines of work in understanding the problem of Hidden Hypermatching:
(i) the seminal work of Bar-Yossef et al. [BYJK04] and Gavinsky et al. [GKK+07] showed that,
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for r = t = 2, BHM can be solved using O(log n) qubits but requires Ω(
√
n) classical bits of

communication; (ii) Verbin and Yu [VY11] considered the problem where r = 2 and t ≥ 2 (which
in fact inspired many follow-up works on using hypermatching for classical streaming lower bounds)
and showed a classical lowed bound of Ω(n1−1/t), which was subsequently generalized to a Ω(n1−2/t)
quantum lower bound by Shi, Wu and Yu [SWY12]; (iii) Guruswami and Tao [GT19] studied the
problem for when t = 2 and r ≥ 2, proving a classical Ω(

√
n) lower bound. A natural question is

then, what is the quantum and classical communication complexities for r, t ≥ 2? In this paper,
we give both upper and lower bounds for the Hidden Hypermatching problem for every r and t.

Upper bounds on Hidden Hypermatching. For a given t ≥ 2, the same classical communi-
cation protocol for r = 2 can be used for general r > 2. The idea is that Alice picks O((n/α)1−1/t)
entries of x uniformly at random to send to Bob. By the Birthday Paradox, with high proba-
bility Bob will obtain all the values from one of his hyperedges i, and thus can compare (Mx)i
with the corresponding wi. If they are equal, he outputs YES, otherwise he outputs NO, which
leads to an one-side error of O(1/r). The total amount of communication is O(log (rn)(n/α)1−1/t)
bits.2 The situation is more interesting in the quantum setting. For t = 2, we prove that Hidden
Hypermatching can be solved using only a logarithmic amount of qubits for every r = poly(n).

Result 3. There is a protocol for r-HH(α, 2, n) with one-sided error 1/3 using O(log (nr)/α) qubits.

The above bound uses a non-trivial procedure that allows to learn the sum of two numbers
modulo r by using just one “query” and crucially uses the knowledge of the string w: given a
suitable superposition of two numbers, one can obtain their sum with one-sided error by using one
measurement. As far as we are aware, such a statement was not known prior to our work. However,
the knowledge of w is vital, which means that the protocol does not work for more general settings
where there is no promise on the inputs (e.g. a relational version of the r-ary Hidden Hypermatching
problem where Bob must output one hyperedge i and its corresponding value (Mx)i), and it also
cannot be used as a building block for the general case t, r > 2. The current upper bound on the
quantum communication complexity of the r-HH(α, t, n) problem with t, r > 2 thus matches the
classical one. In view of the lower bounds stated below, we hence make the following conjecture.

Conjecture 1. If t, r > 2, there is a protocol for r-HH(α, t, n) using O(log (rn)(n/α)1−1/dt/2e) qubits.

Lower bounds on Hidden Hypermatching. The standard approach for proving a lower bound
on the amount of communication required to solve the Hidden Hypermatching problem is via Fourier
analysis. In the classical proofs of Gavinsky et al. [GKK+07], Verbin and Yu [VY11] and Guruswami
and Tao [GT19], the total variation distance between the probability distributions arising from the
YES and NO instances is bounded using the inequality of Kahn, Kalai and Linial [KKL89] (which
can be seen as a corollary of the hypercontractivity inequality). On the other hand, Shi, Wu
and Yu [SWY12] obtained a quantum lower bound by bounding the Schatten 1-norm between the
possible density matrices received by Bob in both YES and NO instances via the matrix-valued
hypercontractivity from Ben-Aroya, Regev and de Wolf [BRdeW08]. We follow a similar approach
by using our generalized matrix-valued hypercontractive inequality from Result 1 in order to obtain
the following lower bound (note that, for r = 2, our lower bound is exponential better in α compared
to [SWY12]).

Result 4. Every constant-bias protocol for the r-HH(α, t, n) problem with t, r ≥ 2 requires at least
Ω((n/t)1−2/t/α2/t) qubits of communication or Ω((n/t)1−1/t/α1/t) bits of communication.

2One can further improve this complexity to O(log (n log r) + (log r) · (n/α)1−1/t) by Newman’s theorem [New91].
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1.3.2 Relation to streaming lower bounds

As mentioned at the start of this section, using one-way communication complexity lower bounds
has been a common technique used by several recent works [VY11, KKS14, GVV17, GT19, CGV20]
to prove streaming lower bounds. Using our classical and quantum communication lower bound we
present two lower bounds for streaming problems.

There are a few natural generalizations to Max-Cut. One is Max-k-Cut, i.e., finding the
maximum cut value on a hypergraph with k-sized hyperedges. Clearly, the lower bound of [KK19]
holds true for Max-k-Cut, but could one prove better lower bound depending on k? Another is
the Unique Games problem, a constraint satisfaction problem defined on a graph, where a linear
constraint (a permutation) over Zr is specified on each edge and the goal is to find a vertex
assignment over Zr that maximizes the number of satisfied constraints. When r = 2, Unique
Games reduces to Max-Cut. Guruswami and Tao [GT19] studied the streaming complexity of the
Unique Games problem and proved a lower bound of Ω(

√
n) in the adversarial model by using a

reduction to Hidden Matching over Zr and the same bound was obtained in [CGSV21b] for a larger
set of problems including Unique Games.

Here we join both directions, i.e., Max-k-Cut and the standard Unique Games problem, into a
generalized version of Unique Games defined on a hypergraph and obtain streaming classical and
quantum lower bounds in the adversarial model for any value k, r ≥ 2.

Result 5. Every streaming algorithm giving a (r − ε)-approximation for Unique Games on k-
hyperedge n-vertex hypergraphs over Zr uses Ω(n1−2/k) quantum space or Ω(n1−1/k) classical space.

The above result clearly generalizes the work of Guruswami and Tao [GT19]. Compared to
Kapralov and Krachun [KK19], on the one hand our results are for the weaker adversarial model,
and they obtained a stronger linear lower bound, but on the other hand, their result does not
immediately generalize for Zr and is a purely classical proof (in fact we remark that our classical
lower bound is significantly simpler than their work). As far as we are aware, these are the first
quantum lower bounds for Unique Games and Max-k-Cut in the streaming model.

1.4 Application 2: Locally decodable codes

A locally decodable code (LDC) is an error correcting code that allows to retrieve a single bit of
the original message (with high probability) by only examining a few bits in a corrupted codeword.
More formally, a (q, ε, δ)-LDC was defined by Katz and Trevisan [KT00] as a function C : Znr → ZNr
that satisfies the following: for all x ∈ Znr , i ∈ [n] and y ∈ ZNr that satisfies d(C(x), y) ≤ δ (i.e., a δ-
fraction of the elements of C(x) are corrupted), there exists an algorithmA that makes q queries to y
non-adaptively and outputs Ay(i) ∈ Zr such that Pr[Ay(i) = xi] ≥ 1/r+ε (where the probability is
over the randomness of A). Over {0, 1}, LDCs have found several applications in private information
retrieval [CGKS95], multiparty computation [IK04], data structures [CGdeW09] and average-case
complexity theory [Tre04].

The natural question in constructing LDCs is the trade-off between N and n. A well-known
2-query LDC is the Hadamard encoding that maps x ∈ Znr into the string C(x) = (〈x, y〉)y∈{0,1}n :
on input i ∈ [n], a decoding algorithm queries C(x) at a uniformly random y and y + ei and
retrieves C(x) = 〈x, y ⊕ ei〉 − 〈x, y〉, where ei = 0i−110n−i. Here the encoding length is N = 2n,
and an important question is, are there 2-query LDCs with N � 2n? For the case r = 2, Goldreich
et al. [GKST02] showed a lower bound N = 2Ω(n) for linear codes, which was later improved by
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Obata [Oba02]. Later, Kerenidis and de Wolf [KW04] proved an exponential lower bound for
non-linear codes using a quantum argument!3

This left open the setting where r > 2. Following these works, for 2-query non-linear LDCs
C : {0, 1}n → ZNr (note the inputs are over {0, 1} and not Zr), Wehner and de Wolf [WdeW05]
proved the lower bound N = 2Ω(n/r2). On the other hand, Dvir and Shpilka [DS07] showed a lower
bound of N = 2Ω(n) for every 2-query linear LDC C : Znr → ZNr , even independent of the field size.
To prove their result, they crucially observed that, given a linear LDC over Zr, one can construct a
linear LDC over {0, 1} (with almost the same parameters) and then invoked the result of Goldreich
et al. [GKST02]. This reduction, however, fails for non-linear codes and motivates if there are
non-linear LDCs C : Znr → ZNr with N � 2n?

The main contribution here is a lower bound for non-linear LDCs over Zr that scale as 2Ω(n/r4),
and which gives a super-polynomial lower bound for r = o(n1/4). Our lower bound comes from
using our hypercontractive inequality in Result 1. The idea is similar to the one from [BRdeW08],
but more technical as a result of optimizing the dependence on r. A large r2N × r2N matrix with
rank 1 is constructed from a given 2-query LDC. By considering its Fourier transform over Zr, there

exist various entries of the form Ex
[
ω
k1C(x)j1+k2C(x)j2−xi
r

]
, whose absolute values are bounded by

a technical result generalizing a few different ideas from [KT00, KW04, BRdeW08]. It is possible
then to lower bound the Schatten norm of the Fourier transformed matrix. On the other hand, its
rank 1 implies a simple expression for the original matrix’s Schatten norm. The hypercontractive
inequality connects both quantities and leads to the following final result.

Result 6. If C : Znr → ZNr is a (2, δ, ε)-LDC, then N = 2Ω(δ2ε4n/r4).

We briefly mention that, if one requires the success probability to be larger than, for example,
1/2 + ε instead of 1/r+ ε, so that plurality vote can be used and the success probability amplified,
then ε becomes a constant bounded away from 1/r (if r > 2) and our lower bound is no longer
dependent on ε.

Further applications (Private information retrieval) Katz and Trevisan [KT00], and Gol-
dreich et al. [GKST02] established a nice connection between LDCs and private information retrieval
(PIR) protocols. We do not define these PIR schemes here and refer the reader to Section 6. Almost
as a black-box, using Result 6, we get the following lower bound for PIR schemes over Zr.

Result 7. A classical 2-server PIR scheme with query size t, answer size a and recovery probability
1/r + ε, satisfies t = Ω

(
δ2ε4n/r4 − a).

After completion of this work. After completing this work, Chou et al. [CGS+21] put up an
online preprint in which they improve our classical streaming lower bound to Ω(n) for a broad
class of problems, including Unique Games. As far as we are aware, our quantum streaming lower
bound is the first for hypergraphs over Zr. Additionally, after completion, Jop Briët (private
communication) gave an alternate proof of N = 2Ω(n/r2) for 2-query LDCs over Zr using the
non-commutative Khintchine inequality.

1.5 Future work

Our work open up a few directions of research.

3For simplicity in exposition, we omit the dependence on δ, ε in these lower bounds.
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1. Proving LDC lower bounds. The first natural open question is, can we prove a lower bound
of N = 2Ω(n/r) for LDCs over Zr, or, more ambitiously, prove that N = 2Ω(n)? As far as we are
aware, there are no super-polynomial lower bounds for N even for r = ω(

√
n). Similarly, can one

also prove a lower bound of N = 2Ω(n log r) for non-linear locally-correctable codes over Zr (thereby
matching a similar lower bound for linear case [BDSS11]).

2. Communication complexity of r-ary Hidden Hypermatching. Our communication protocol

behind Result 3 relies on the promise on the inputs, i.e., on the string w ∈ Zαn/tr that either satisfies
w = Mx or is uniformly random. Is there a protocol with the same complexity which does not
explicitly use w? More generally, what is the communication complexity of a relational version of
the r-HH(α, 2, n) problem in which Bob outputs a hyperedge and the corresponding entry of Mx?
Moreover, is it possible to match the quantum lower bounds from Result 4?

3. Better bounds on streaming algorithms. What is the quantum space complexity of approxi-
mating Max-Cut or Unique Games? Is it possible to obtain some saving in space complexity, e.g.
an upper bound of O(n1−2/t) that matches our lower bound, or is the quantum space complexity
Ω(n)? The former would be interesting because advantage in quantum space complexity are only
handful (for contrived problems) and the latter would require proving new quantum lower bounds
for the communication problems introduced in [KKSV17, KK19, CGSV21a, CGSV21b, CGS+21].

4. Generalized hypercontractivity. Another open question is regarding our main Result 1,
which shows a form of (2, q)-hypercontractivity, since the result works for all Schatten p-norms
with p ∈ [1, 2]. Can we prove a general (q, p)-hypercontractive statement for matrices, firstly for
matrix-valued functions over {0, 1}, and then further generalize that to functions over Zr? Proving
this might also require a generalization of the powerful inequality of Ball, Carlen and Lieb [BCL94]
in a different direction.

Acknowledgements. SA firstly thanks T.S. Jayram for introducing him to this problem (and
several discussions thereafter) on proving quantum bounds for streaming algorithms while partic-
ipating in the program “Quantum Wave in Computing” held at Simons Institute for the Theory
for Computing. We thank Jop Briët and Ronald de Wolf for many clarifications and discussions
regarding hypercontractivity and LDCs, and Mario Szegedy for discussions during the initial stages
of this project. We are also very thankful to Keith Ball and Eric Carlen for the help in under-
standing their proof of uniform convexity for trace ideals. JFD was supported by the Singapore
National Research Foundation, the Prime Minister’s Office, Singapore and the Ministry of Edu-
cation, Singapore under the Research Centres of Excellence programme under research grant R
710-000-012-135.

2 Preliminaries

Let [n] := {1, . . . , n}. For r ∈ Z, r ≥ 2, we let Zr := {0, . . . , r − 1} be the ring with addition and
multiplication modulo r, and let ωr := e2πi/r. Given S ∈ Znr , we write |S| := |{i ∈ [n] : Si 6= 0}| for
its Hamming weight. Let D(Cm) be the set of all quantum states over Cm, i.e., the set of positive
semi-definite matrices with trace 1. For a matrix M ∈ Cm×m, the (unnormalized) Schatten p-norm

is defined as ‖M‖p := (Tr |M |p)1/p =
(∑

i σi(M)p
)1/p

, where {σi(M)}i are the singular values

of M , i.e., the eigenvalues of the positive semi-definite operator |M | :=
√
M †M . We also define

the normalized Schatten p-norm as ‖M‖p :=
(

1
m Tr |M |p

)1/p
=
(

1
m

∑
i σi(M)p

)1/p
. Throughout

the paper we shall use the unnormalized Schatten norm, unless stated otherwise. Given a vector

10



v ∈ Cm, its p-norm is ‖v‖p :=
(∑m

i=1 |vi|p
)1/p

. Given two probability distributions P and Q on
the same finite set, their total variation distance is ‖P − Q‖tvd :=

∑
i |P (i) − Q(i)| (we might

abuse notation and use random variables instead of their probability distributions in ‖ · ‖tvd). For
a probability p = 1/r + ε with fixed r ∈ Z, we refer to ε as its advantage, and to 2ε as its bias.

The Fourier transform of a matrix-valued function f : Znr → Cm×m is a function f̂ : Znr →
Cm×m defined by

f̂(S) =
1

rn

∑
x∈Znr

f(x)ω−S·xr ,

where S · x =
∑n

i=1 Sixi is a sum over Zr. Here the Fourier coefficients f̂(S) are m ×m complex
matrices and we can write f : Znr → Cm×m as

f(x) =
∑
S∈Znr

f̂(S)ωS·xr .

We will need the Holevo-Helstrom theorem [Hel76] which characterizes the optimal success
probability of distinguishing between two quantum states.

Fact 2 ([Wat18, Theorem 3.4]). Let ρ0, ρ1 be two quantum states that appear with probability p and
1− p, respectively. The optimal success probability of predicting which state it is by a POVM is

1

2
+

1

2
‖pρ0 − (1− p)ρ1‖1.

3 Hypercontractive Inequality

In this section we prove our main result, a hypercontractive inequality for matrix-valued functions
over Zr, generalizing a result from [BRdeW08]. The proof is by induction on n and the base
case n = 1 is proven in Section 3.1, which is a generalization of Ball, Carlen and Lieb [BCL94]
when considering r matrices. After this, the induction is fairly straightforward and is described in
Section 3.2.

3.1 Generalizing Ball, Carlen and Lieb

We first state the powerful inequality of Ball, Carlen and Lieb [BCL94, Theorem 1].

Theorem 3 (Optimal 2-uniform convexity). Let A,B ∈ Cn×n, and p ∈ [1, 2]. Then(
‖A+B‖pp + ‖A−B‖pp

2

)2/p

≥ ‖A‖2p + (p− 1)‖B‖2p.

As previously mentioned in the introduction, this inequality was first proven by Tomczak-
Jaegermann [TJ74] for p ≤ 4/3, before being generalized by Ball, Carlen and Lieb [BCL94] for all
p ∈ [1, 2] in 1994. Since then it has found several applications [CL93, DSSST10, LN04, Nao16].
The above result can be recast in a slightly different way.

Theorem 4. Let p ∈ [1, 2] and Z,W ∈ Cn×n such that Tr[|Z|p−1ZW †] = Tr[|Z|p−1WZ†] = 0
(where |Z|p−1 = (ZZ†)(p−1)/2). Then

‖Z +W‖2p ≥ ‖Z‖2p + (p− 1)‖W‖2p.
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Theorem 4 is implicit in the proof of [BCL94, Theorem 1], and it is where most of the difficulty
lies, while the reduction from Theorem 3 to Theorem 4 is done by defining

Z =

[
A 0
0 A

]
, W =

[
B 0
0 −B

]
.

Nonetheless, Theorem 4 holds more generally for any Z,W ∈ Cn×n that satisfy Tr[|Z|p−1ZW †] =
Tr[|Z|p−1WZ†] = 0. By using this result, we can prove the following generalization of Theorem 3.

Theorem 5 (A generalization of [BCL94]). Let r ∈ Z, r ≥ 2. Let ωr = e2iπ/r, A0, . . . , Ar−1 ∈ Cn×n
and p ∈ [1, 2], then1

r

r−1∑
j=0

‖Aj‖pp

2/p

≥

∥∥∥∥∥∥1

r

r−1∑
j=0

Aj

∥∥∥∥∥∥
2

p

+
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
k=1

∥∥∥∥∥∥1

r

r−1∑
j=0

ω−jkr Aj

∥∥∥∥∥∥
2

p

, (5a)

1

r

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
p

p

2/p

≥ ‖A0‖2p +
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
k=1

‖Ak‖2p . (5b)

Notice that for r = 2 we recover Theorem 3, since (p−1)(1−(p−1)r−1)
(r−1)(2−p) = p− 1.

Proof. In order to prove this theorem, first note that both inequalities are equivalent: just define
A′k = 1

r

∑r−1
j=0 ω

−jk
r Aj ⇐⇒ Ak =

∑r−1
j=0 ω

jk
r A′j . Therefore we shall focus on Eq. (5b). In order to

prove it, let us first define the rn× rn matrices

Zj := diag({ωjkr Aj}r−1
k=0) =


Aj 0 0 . . . 0

0 ωjrAj 0 . . . 0

0 0 ω2j
r Aj . . . 0

...
...

...
. . .

...

0 0 0 . . . ω
(r−1)j
r Aj

 (6)

for j ∈ {0, . . . , r − 1}. Now, since the trace is additive for block matrices, we have

Tr

∣∣∣∣∣∣
r−1∑
j=0

Zj

∣∣∣∣∣∣
p

=

r−1∑
k=0

Tr

∣∣∣∣∣∣
r−1∑
j=0

ωjkr Aj

∣∣∣∣∣∣
p

. (7)

Moreover, observe that

‖Zj‖2p =

(
r−1∑
k=0

Tr |ωjkr Aj |p
)2/p

= (rTr |Aj |p)2/p = r2/p‖Aj‖2p.

Therefore we can rewrite Eq. (5b) as∥∥∥∥∥∥
r−1∑
j=0

Zj

∥∥∥∥∥∥
2

p

≥ ‖Z0‖2p +
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
j=1

‖Zj‖2p.
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The above can be proven by repeated applications of Theorem 4 as follows: consider a permutation
of [r− 1] given by (k1, . . . , kr−1). Since Tr[|Zj |p−1ZjZ

†
k] = Tr[|Zj |p−1ZkZ

†
j ] = 0 for any j 6= k, then

(define k0 := 0)

Tr

|Zkj |p−1Zkj

 r−1∑
l=j+1

Zkl

†
 = Tr

|Zkj |p−1

 r−1∑
l=j+1

Zkl

Z†kj

 = 0

for every j ∈ {0, 1, . . . , r − 2}, meaning that Theorem 4 can be applied, which implies∥∥∥∥∥∥
r−1∑
j=0

Zj

∥∥∥∥∥∥
2

p

≥ ‖Z0‖2p + (p− 1)

∥∥∥∥∥∥
r−1∑
j=1

Zj

∥∥∥∥∥∥
2

p

≥ ‖Z0‖2p + (p− 1)‖Zk1‖2p + (p− 1)2

∥∥∥∥∥∥
r−1∑
j=2

Zkj

∥∥∥∥∥∥
2

p

≥ ‖Z0‖2p +
r−1∑
j=1

(p− 1)j‖Zkj‖
2
p.

Averaging the above inequality over all the (r − 1)! permutations of the set [r − 1], we obtain∥∥∥∥∥∥
r−1∑
j=0

Zj

∥∥∥∥∥∥
2

p

≥ ‖Z0‖2p +
1

(r − 1)!

r−1∑
j=1

‖Zj‖2p
r−1∑
k=1

(r − 2)!(p− 1)k

= ‖Z0‖2p +
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
j=1

‖Zj‖2p,

proving our theorem statement.

Remark 1. It is not hard to see that (p−1)(1−(p−1)r−1)
(r−1)(2−p) ≥ p−1

r−1 and limp→2
(p−1)(1−(p−1)r−1)

(r−1)(2−p) = 1.

Observe that t 7→ tp/2 is concave for p ∈ [1, 2], hence Theorem 5 implies the seemingly weaker

1

r

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
2

p

≥ ‖A0‖2p +
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)

r−1∑
k=1

‖Ak‖2p (8)

for p ∈ [1, 2]. Nonetheless, the above inequality also implies Theorem 5 (this fact was already
pointed out for r = 2 by [BCL94]). Indeed, consider again the rn × rn matrices Zj from Eq. (6).
Then, similar to Eq. (7) (which only considered the ` = 0 case below), for any ` ∈ Zr we have

Tr

∣∣∣∣∣∣
r−1∑
j=0

ωj`r Zj

∣∣∣∣∣∣
p

=
r−1∑
k=0

Tr

∣∣∣∣∣∣
r−1∑
j=0

ωjkr Aj

∣∣∣∣∣∣
p

=⇒

∥∥∥∥∥∥
r−1∑
j=0

ωj`r Zj

∥∥∥∥∥∥
2

p

=

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
p

p

2/p

.

Since ‖Zj‖2p = r2/p‖Aj‖2p for j ∈ Zr, Eq. (8) implies (define ζ := (p−1)(1−(p−1)r−1)
(r−1)(2−p) for simplicity)

‖A0‖2p + ζ
r−1∑
k=1

‖Ak‖2p =
‖Z0‖2p
r2/p

+ ζ
r−1∑
k=1

‖Zk‖2p
r2/p

≤ r−2/p

r

r−1∑
`=0

∥∥∥∥∥∥
r−1∑
j=0

ωj`r Zj

∥∥∥∥∥∥
2

p

=

1

r

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
p

p

2/p

,

which is exactly Theorem 5.
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3.2 Proving (2, p)-hypercontractive inequality over Zr

Having proven the base case of our main theorem statement, we are now ready to prove our
hypercontractivity theorem for matrix-valued functions over Zr.

Theorem 6. Let p ∈ [1, 2]. For every f : Znr → Cm×m and

ρ ≤

√
(p− 1)(1− (p− 1)r−1)

(r − 1)(2− p)
,

we have ∑
S∈Znr

ρ2|S|‖f̂(S)‖2p

1/2

≤

 1

rn

∑
x∈Znr

‖f(x)‖pp

1/p

,

where |S| := |{i ∈ [n] : Si 6= 0}|.

Proof. For ease of notation, define ζ := (p−1)(1−(p−1)r−1)
(r−1)(2−p) . It suffices to prove the inequality for

ρ =
√
ζ. Our proof closely follows the one in [BRdeW08] and is by induction on n. For n = 1, the

desired statement is

∑
S∈Zr

ζ |S|‖f̂(S)‖2p ≤

(
1

r

∑
x∈Zr

‖f(x)‖pp

)2/p

. (9)

Consider the matrices A0, . . . , Ar−1 such that f(k) =
∑r−1

j=0 ω
jk
r Aj for all k ∈ Zr, so that Eq. (9)

can be written as

‖A0‖2p + ζ
r−1∑
k=1

‖Ak‖2p ≤

1

r

r−1∑
k=0

∥∥∥∥∥∥
r−1∑
j=0

ωjkr Aj

∥∥∥∥∥∥
p

p

2/p

,

using the fact that f̂(j) = 1
r

∑r−1
k=0 f(k)ω−jkr = Aj , which is precisely Theorem 5.

We now assume the inequality holds for n and prove it for n + 1. Let f : Zn+1
r → Cm×m and

gi = f |xn+1=i for i ∈ {0, . . . , r − 1} be the function obtained by fixing the last bit of f(·) to i. By
the induction hypothesis we have that, for every i ∈ {0, . . . , r − 1} and p ∈ [1, 2],

∑
S∈Znr

ζ |S|‖ĝi(S)‖2p ≤

 1

rn

∑
x∈Znr

‖gi(x)‖pp

2/p

.

We now take the `p average of each of these r inequalities to obtain1

r

r−1∑
i=0

∑
S∈Znr

ζ |S|‖ĝi(S)‖2p

p/2


2/p

≤

1

r

r−1∑
i=0

1

rn

∑
x∈Znr

‖gi(x)‖pp

2/p

=

 1

rn+1

∑
x∈Zn+1

r

‖f(x)‖pp

2/p

.

(10)

The right-hand side of the inequality above is exactly the right-hand side of the conjectured hy-
percontractive inequality. Below, we show how to lower bound the left-hand side of the inequality
above by the desired left-hand side of the conjectured statement. To do so, we will need the
following Minkowski’s inequality.
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Lemma 7 (Minkowski’s inequality, [HLP52, Theorem 26]). For any r1× r2 matrix whose rows are
given by u1, . . . , ur1 and whose columns are given by v1, . . . , vr2, and any 1 ≤ q1 ≤ q2 ≤ ∞,

‖(‖v1‖q2 , . . . , ‖vr2‖q2)‖q1 ≤ ‖(‖u1‖q1 , . . . , ‖ur2‖q1)‖q2 .

Now, consider the rn × r matrix whose entries are given by cS,i = rn/2
∥∥ζ |S|/2ĝi(S)

∥∥
p

for every

i ∈ {0, . . . , r − 1} and S ∈ Znr . Then the left-hand side of Eq. (10) can be written as1

r

r−1∑
i=0

∑
S∈Znr

ζ |S|‖ĝi(S)‖2p

p/2


1/p

=

1

r

r−1∑
i=0

 1

rn

∑
S∈Znr

c2
S,i

p/2


1/p

≥

 1

rn

∑
S∈Znr

(
1

r

r−1∑
i=0

cpS,i

)2/p
1/2

=

∑
S∈Znr

ζ |S|

(
1

r

r−1∑
i=0

‖ĝi(S)
∥∥p
p

)2/p
1/2

, (11)

where the first inequality follows from Lemma 7 with q1 = p and q2 = 2.

Now, for a fixed S ∈ Znr , we use the base case n = 1, i.e., Eq. (9), on the functions h(i) = ĝi(S)
in order to get(

1

r

r−1∑
i=0

‖ĝi(S)‖pp

)2/p

≥
r−1∑
i=0

ζ |i|

∥∥∥∥∥∥1

r

r−1∑
j=0

h(j)ω−ijr

∥∥∥∥∥∥
2

p

=
r−1∑
i=0

ζ |i|

∥∥∥∥∥∥1

r

r−1∑
j=0

ĝj(S)ω−ijr

∥∥∥∥∥∥
2

p

.

Plugging this back into Eq. (11), we have∑
S∈Znr

ζ |S|

(
1

r

r−1∑
i=0

‖ĝi(S)‖pp

)2/p
1/2

≥

∑
S∈Znr

r−1∑
i=0

ζ |S|+|i|

∥∥∥∥∥∥1

r

r−1∑
j=0

ĝj(S)ω−ijr

∥∥∥∥∥∥
2

p

1/2

=

 ∑
S∈Zn+1

r

ζ |S|‖f̂(S)‖2p

1/2

,

where we used the fact that gj = f |xn+1=j , so, for every i ∈ Zr and S ∈ Znr , we have that

f̂(S, i) = 1
r

∑r−1
j=0 ĝj(S)ω−ijr . The lower bound we obtained above is exactly the left-hand side of

the conjectured hypercontractive inequality, which proves the theorem statement.

Remark 2 (Comparison with hypercontractivity for real numbers). For real functions f : Znr → R,
it is known that [LO00, Wol07] (see also [O’D14, Theorem 10.18])∑

S∈Znr

ρ2|S||f̂(S)|2
1/2

≤

 1

rn

∑
x∈Znr

|f(x)|p
1/p

,

where ρ ≤
√

(r−1)1−1/p−(r−1)−(1−1/p)

(r−1)1/p−(r−1)−1/p . Moreover, this bound on ρ is perfectly sharp, meaning that

our bound ρ ≤
√

(p−1)(1−(p−1)r−1)
(r−1)(2−p) in Theorem 6 can possibly be improved.
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4 Hidden Hypermatching Problem

The Boolean Hidden Matching (BHM) problem is a canonical problem in one-way communication
complexity. Here, Alice is given a string x ∈ {0, 1}n, while Bob is given a string w ∈ {0, 1}αn/2
and a sequence of αn/2 disjoint pairs (i1, j1), . . . , (iαn/2, jαn/2) ∈ [n]2 (called α-partial matching),

where α ∈ (0, 1]. Let z ∈ {0, 1}αn/2 be the string defined as z` = xi` ⊕ xj` for ` ∈ [αn/2]. It is
promised that z ⊕ w = bαn/2 for some b ∈ {0, 1}. By sending a single message from Alice to Bob,
their task is to output b, i.e., to decide whether z ⊕ w equals the all 0 string or the all 1 string.

The BHM problem was proposed by Bar-Yossef et al. [BYJK04], where they showed a simple
quantum protocol using only O(log n) qubits of communication. Later, Gavinsky et al. [GKK+07],
by using Fourier techniques, specially the inequality of Kahn, Kalai and Linial [KKL89], proved that
any classical protocol needs to communicate Ω(

√
n) bits in order to solve the problem. Since then,

many generalizations of the BHM problem were proposed. Verbin and Yu [VY11] extended the αn/2
disjoint pairs received by Bob to αn/t disjoint t-tuples (M1,1, . . . ,M1,t), . . . , (Mαn/t,1, . . . ,Mαn/t,t)

(called “hypermatching”). The main task now is to compute the parity z` =
⊕t

k=1 xM`,k
of

a “hyperedge”. Verbin and Yu named the resulting problem Boolean Hidden Hypermatching
(2-HH(α, t, n)),4 proved a lower bound Ω(n1−1/t) on any classical communication protocol and
used this to bound the amount of space required in streaming algorithms. A quantum lower bound
Ω(n1−2/t) on the 2-HH(α, t, n) problem was later proven by Shi, Wu and Yu [SWY12].

Subsequently, Kapralov, Khanna and Sudan [KKS14] proposed the Boolean Hidden Partition,
where Bob does not receive a matching anymore, but the edges of any graph G. It is promised that
either Mx = w, where M is the edge incidence matrix of G, or w is taken uniformly at random
independently on x, and Alice and Bob’s task is to decide which is the correct case. In another line,
Guruswami and Tao [GT19] introduced the r-ary Hidden Matching (r-HH(α, 2, n)) problem, where
now x and w are over Zr instead of {0, 1}, Bob receives a matching M (and not a general graph),
and either Mx = w or w is drawn uniformly at random. Finally, Doriguello and Montanaro [DM20]
expanded the 2-HH(α, t, n) problem to computing a fixed Boolean function on the hyperedges of
Bob’s hypermatching instead of the Parity function. Here we shall consider the standard Hidden
Hypermatching problem over a larger alphabet.

In the following, an α-partial t-hypermatching M ∈Mα
t,n on n vertices is defined as a sequence

of αn/t disjoint hyperedges (M1,1, . . . ,M1,t), . . . , (Mαn/t,1, . . . ,Mαn/t,t) ∈ [n]t with t vertices each,
where Mα

t,n is the set of all such hypermatchings. If α = 1, we shall write Mt,n.

Definition 8. Let n, t ∈ N be such that t|n and α ∈ (0, 1]. In the r-ary Hidden Hypermatching
(r-HH(α, t, n)) problem, Alice gets x ∈ Znr , Bob gets an α-partial t-hypermatching M ∈ Mα

t,n and

a string w ∈ Zαn/tr . The hyperedges of M are (M1,1, . . . ,M1,t), . . . , (Mαn/t,1, . . . ,Mαn/t,t). Let

M ∈ {0, 1}αn/t×n also be the incident matrix of Bob’s hypermatching. Consider the distributions:

1. YES distribution DYES, let w = Mx (where the matrix product Mx is over Zr);

2. NO distribution DNO, w is uniformly random in Zαn/tr .

In the r-ary Hidden Hypermatching problem, Alice sends a message to Bob who needs to decide
with high probability if w is drawn from DYES or DNO.

4We use the notation r-HH(α, t, n) for simplicity in exposition throughout.
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4.1 Quantum protocol for r-ary Hidden Hypermatching

For t = 2, we obtain a efficient quantum communication protocol to solve the r-ary Hidden Hyper-
matching problem.

Theorem 9. Given ε > 0, there is a protocol for the r-HH(α, 2, n) problem with one-sided error ε
and O( 1

α log (nr) log(1/ε)) qubits of communication from Alice to Bob.

Proof. Let M ∈ Mα
2,n be Bob’s matching with edges (M1,1,M1,2), . . . , (Mαn/2,1,Mαn/2,2). Alice

sends the following state to Bob,

1√
n

n∑
i=1

|xi, i〉,

who measures it with the POVM {E1, . . . , Eαn/2, I−
∑αn/2

i=1 Ei}, where

Ei := |Mi,1〉〈Mi,1|+ |Mi,2〉〈Mi,2|

for i ∈ {1, . . . , αn/2}. With probability 1 − α the POVM outputs the final outcome, and with
probability α he will obtain a measurement outcome Ei with i ∈ [αn/2] and get the state

|ψ〉 :=
1√
2

(|xMi,1 ,Mi,1〉+ |xMi,2 ,Mi,2〉).

By repeating the procedure O(1/α) times, Bob obtains an outcome i ∈ [αn/2] with high probability.

For the ease of notation, we can write Mi,1 = 0 and Mi,2 = 1 (note that Bob knows the values
of both Mi,1,Mi,2 explicitly). Bob now attaches a dlog2 re-qubit register in the state |0〉 to |ψ〉 and
applies a Fourier transform Qr over Zr to it to obtain

|0〉|ψ〉 → 1√
r

r−1∑
k=0

|k〉|ψ〉.

From now on we shall consider a parameter ` ∈ Zr to be determined later. Let X be the usual
Pauli operator and let S` and P be the shift and phase operators over Zr defined as S`|k〉 = |`− k〉
and P |k〉 = ωkr |k〉 for k ∈ Zr. Let C` := PS`P ⊗X. Bob applies the controlled unitary U` defined

as U`|k〉|ψ〉 = |k〉Ck` |ψ〉 on his state, followed by an inverse Fourier transform Q†r on his first register
to get

1√
r

r−1∑
k=0

U`|k〉|ψ〉 =
1√
r

r−1∑
k=0

|k〉Ck` |ψ〉
Q†r⊗I−→ 1

r

r−1∑
j=0

r−1∑
k=0

ω−jkr |j〉Ck` |ψ〉.

Let us calculate C`|ψ〉 and C2
` |ψ〉. We have

C`|ψ〉 =
1√
2

(PS`P ⊗X)(|x0, 0〉+ |x1, 1〉)

=
1√
2

(PS` ⊗ I)(ωx0r |x0, 1〉+ ωx1r |x1, 0〉)

=
1√
2

(P ⊗ I)(ωx0r |`− x0, 1〉+ ωx1r |`− x1, 0〉)

=
ω`r√

2
(|`− x1, 0〉+ |`− x0, 1〉) (12)
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and

C2
` |ψ〉 =

ω`r√
2

(PS`P ⊗X)(|`− x1, 0〉+ |`− x0, 1〉)

=
ω`r√

2
(PS` ⊗ I)(ω`−x1r |`− x1, 1〉+ ω`−x0r |`− x0, 0〉)

=
ω`r√

2
(P ⊗ I)(ω`−x1r |x1, 1〉+ ω`−x0r |x0, 0〉)

= ω2`
r |ψ〉.

We can see from the above that C2k
` |ψ〉 = ω2k`

r |ψ〉. By defining ∆` := `− (x0 + x1) and δk = 1 if k
is odd and 0 otherwise, Bob’s final state is

1

r

r−1∑
j=0

r−1∑
k=0

ωk(`−j)
r |j〉 1√

2
(|x0 + ∆`δk, 0〉+ |x1 + ∆`δk, 1〉). (13)

Now observe that, if ` = x0 + x1, then C`|ψ〉 = ω`r|ψ〉 in Eq. (12). This means that Bob’s state
in Eq. (13) becomes |x0 + x1〉|ψ〉, and if he measures his first register, he obtains x0 + x1 (mod r)
with certainty.

On the other hand, if ` 6= x0 + x1, then the probability of measuring the first register and
obtaining the outcome m ∈ Zr is

Pr[m] =
1

2r2

r−1∑
k1,k2=0

ω(`−m)(k1−k2)
r (〈x0 + ∆`δk2 |x0 + ∆`δk1〉+ 〈x1 + ∆`δk2 |x1 + ∆`δk1〉)

=
1

r2

r−1∑
k1,k2 even

ω(`−m)(k1−k2)
r +

1

r2

r−1∑
k1,k2 odd

ω(`−m)(k1−k2)
r

=

∣∣∣∣∣1r
r−1∑
k even

ωk(`−m)
r

∣∣∣∣∣
2

+

∣∣∣∣∣1r
r−1∑
k odd

ωk(`−m)
r

∣∣∣∣∣
2

.

It is not hard to see that the above probability is maximum for when m = `, in which case

Pr[m = `] =
1

r2

⌊
r + 1

2

⌋2

+
1

r2

⌊r
2

⌋2
=

{
1
2 r even,
1
2 + 1

2r2
r odd.

Given the considerations above, Bob uses the following strategy: he picks ` as the corresponding

entry wi from w ∈ Zαn/2r given the measured hyperedge (Mi,1,Mi,2). If the outcome m from
measuring his final state in Eq. (13) equals wi, then he outputs YES, otherwise he outputs NO.
Indeed, in the YES instance, wi = xMi,1 +xMi,2 and so m equals wi with probability 1, while in the
NO instance, m equals wi with probability at most 1

2 + 1
2r2

. Thus the communication protocol has
one-sided error at most 1

2 + 1
2r2

, i.e., Pr[error|YES] = 0 and Pr[error|NO] ≤ 1
2 + 1

2r2
. By repeating

the whole protocol O(log(1/ε)) more times, the one-sided error probability can be decreased to ε:
if in any of the repetitions the final measurement outcome is different from wi, then Bob knows
that NO is the correct answer.
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4.2 Quantum lower bound on r-ary Hidden Hypermatching

In this section we shall turn our attention to proving quantum and classical lower bounds on the
amount of communication required by the r-HH(α, t, n) problem, but first we need the follow-
ing lemma.

Lemma 10. Let f : Znr → D(C2m) be any mapping from an n-bit alphabet to m-qubit density
matrices. Then for any δ ∈ [0, 1/(r − 1)], we have∑

S∈Znr

δ|S|‖f̂(S)‖21 ≤ 22(r−1)δm.

Proof. Let p := 1 + (r − 1)δ. First note that, given the eigenvalues σ1, . . . , σ2m from f(x), which
are non-negative reals that sum to 1, we have

‖f(x)‖pp =

2m∑
i=1

σpi ≤
2m∑
i=1

σi = 1.

Using Theorem 6 and Remark 1, we now get

∑
S∈Znr

(
p− 1

r − 1

)|S|
‖f̂(S)‖2p ≤

 1

rn

∑
x∈Znr

‖f(x)‖pp

2/p

≤
(

1

rn
· rn
)2/p

= 1.

On the other hand, the normalized Schatten norm 2−m/p‖f̂(S)‖p is non-decreasing with p, since

p ≤ q =⇒
(

1
2m
∑2m

i=1 σ
p
i

)1/p
≤
(

1
2m
∑2m

i=1 σ
q
i

)1/q
by Hölder’s inequality, hence

∑
S∈Znr

(
p− 1

r − 1

)|S|
2−2m/p‖f̂(S)‖2p ≥

∑
S∈Znr

(
p− 1

r − 1

)|S|
2−2m‖f̂(S)‖21.

Rearranging the inequalities leads to

∑
S∈Znr

(
p− 1

r − 1

)|S|
‖f̂(S)‖21 ≤ 22m(1−1/p) ≤ 22m(p−1).

We are now ready to state and prove our main quantum communication complexity lower
bound for the r-ary Hidden Hypermatching problem.

Theorem 11. Any quantum protocol that achieves advantage ε > 0 for the r-HH(α, t, n) problem
with t ≥ 3 and α ≤ min(1/2, (r − 1)−1/2) requires at least m = Ω(r−(1+1/t)(ε2/α)2/t(n/t)1−2/t)
qubits of communication from Alice to Bob.

Notice that for r = 2 our lower bound reads Ω(α−2/t(n/t)1−2/t), which has a better dependence
on α compared to the lower bound Ω(log(1/α)(n/t)1−2/t) from [SWY12]. Also, see Remark 3 at
the end of the section for an improvement on the requirement α ≤ min(1/2, (r − 1)−1/2).

Proof. Consider an m-qubit communication protocol. An arbitrary m-qubit protocol can be viewed
as Alice sending an encoding of her input x ∈ Znr into a quantum state so that Bob can distinguish
if his w was drawn from DYES or DNO. Let ρ : Znr → D(C2m) be Alice’s encoding function. For
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our ‘hard’ distribution, Alice and Bob receive x ∈ Znr and M ∈ Mα
t,n, respectively, uniformly at

random, while Bob’s input w ∈ Zαn/tr is drawn from the distribution D := 1
2D

YES+ 1
2D

NO, i.e., with
probability 1/2 is comes from DYES, and with probability 1/2 it comes from DNO. Let px := r−n,
pM := |Mα

t,n|−1 and pw := r−αn/t, then our hard distribution P is

Pr[x,YES,M,w] =
1

2
px · pM · [Mx = w], Pr[x,NO,M,w] =

1

2
px · pM · pw. (14)

Conditioning on Bob’s input (M,w), from his perspective, Alice sends the message ρx with
probability Pr[x|M,w]. Therefore, conditioned on an instance of the problem (YES or NO), Bob
receives one of the following two quantum states ρM,w

YES and ρM,w
NO , each appearing with probability

Pr[YES|M,w] and Pr[NO|M,w], respectively,

ρM,w
YES =

∑
x∈Znr

Pr[x|YES,M,w] · ρx =
1

Pr[YES,M,w]

∑
x∈Znr

Pr[x,YES,M,w] · ρx,

ρM,w
NO =

∑
x∈Znr

Pr[x|NO,M,w] · ρx =
1

Pr[NO,M,w]

∑
x∈Znr

Pr[x,NO,M,w] · ρx.
(15)

Bob’s best strategy to determine the distribution of w conditioning on his input (M,w) is no more
than the chance to distinguish between these two quantum states ρM,w

YES and ρM,w
NO .

Now let εbias be the bias of the protocol that distinguishes between ρM,w
YES and ρM,w

NO . According
to Lemma 2, the bias εbias of any quantum protocol for a fixed M and w can be upper bounded as

εbias ≤
∥∥Pr[YES|M,w] · ρM,w

YES − Pr[NO|M,w] · ρM,w
NO

∥∥
1
.

We prove in Theorem 12 below that, if m ≤ γ
r1+1/t (

ε2

α )2/t(n/t)1−2/t for a universal constant γ, then

the average bias over M and w is at most ε2, i.e.,

E
(M,w)∼PM,w

[εbias] ≤ ε2,

where PM,w is the marginal distribution of P. Therefore, by Markov’s inequality, for at least a

(1−ε)-fraction of M and w, the bias in distinguishing between ρM,w
YES and ρM,w

NO is ε small. Therefore,
Bob’s advantage over randomly guessing the right distribution will be at most ε (for the event that
M and w are such that the distance between ρM,w

YES and ρM,w
NO is more than ε) plus ε/2 (for the

advantage over random guessing when εbias ≤ ε), and so m = Ω(r−(1+1/t)(ε2/α)2/t(n/t)1−2/t).

Theorem 12. For x ∈ Znr , M ∈ Mα
t,n, w ∈ Zαn/tr and b ∈ {YES,NO}, consider the probability

distribution P defined in Eq. (14). Given an encoding function ρ : Znr → D(C2m), consider the quan-
tum states ρM,w

YES and ρM,w
NO from Eq. (15). If α ≤ min(1/2, (r−1)−1/2), there is a universal constant

γ > 0 (independent of n, t, r and α), such that, for all ε > 0, if m ≤ γ
r1+1/t (

ε2

α )2/t(n/t)1−2/t, then

E
(M,w)∼PM,w

[∥∥Pr[YES|M,w] · ρM,w
YES − Pr[NO|M,w] · ρM,w

NO

∥∥
1

]
≤ ε2.

Proof. For the ease of notation, we shall write

εbias := E
(M,w)∼PM,w

[∥∥Pr[YES|M,w] · ρM,w
YES − Pr[NO|M,w] · ρM,w

NO

∥∥
1

]
.
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Therefore, we have that

εbias =
∑

M∈Mα
t,n

∑
w∈Zαn/tr

Pr[M,w] ·
∥∥Pr[YES|M,w] · ρM,w

YES − Pr[NO|M,w] · ρM,w
NO

∥∥
1

=
∑

M∈Mα
t,n

∑
w∈Zαn/tr

∥∥∥ ∑
x∈Znr

(
Pr[x,YES,M,w] · ρx − Pr[x,NO,M,w] · ρx

)∥∥∥
1

=
∑

M∈Mα
t,n

∑
w∈Zαn/tr

∥∥∥ ∑
x∈Znr

1

2
px · pM

([
Mx = w

]
− pw

)
ρx

∥∥∥
1

(By Eqs. (14), (15))

=
∑

M∈Mα
t,n

∑
w∈Zαn/tr

∥∥∥ ∑
x∈Znr

1

2
px · pM

([
Mx = w

]
− pw

)
·
∑
S∈Znr

ρ̂(S)ωS·xr

∥∥∥
1

(Fourier decomposition of ρ)

=
∑

M∈Mα
t,n

∑
w∈Zαn/tr

∥∥∥ ∑
S∈Znr

u(M,w, S)ρ̂(S)
∥∥∥

1

≤
∑
S∈Znr

∑
M∈Mα

t,n

∑
w∈Zαn/tr

|u(M,w, S)| · ‖ρ̂(S)‖1,

where we defined

u(M,w, S) :=
1

2

∑
x∈Znr

px · pM · ωS·xr

([
Mx = w

]
− pw

)
. (16)

Next, we upper bound the quantity u(M,w, S) using the lemma below. In the following lemma,
given an α-partial hypermatching M ∈Mα

t,n, we can, without lost of generality, complete M with
(1 − α)n/t remaining hyperedges and turn it into a perfect hypermatching, i.e., we can assume
that M ∈ Mt,n. Moreover, we shall write S|Mi = SMi,1SMi,2 . . . SMi,t ∈ Ztr to denote the string S
restricted to the hyperedge Mi = (Mi,1, . . . ,Mi,t), where SMi,j is the Mi,j-th entry of S. The same
applies to x ∈ Znr .

Lemma 13. Let M ∈Mt,n, w ∈ Zαn/tr and S ∈ Znr . Define the set

∆(M) = {S ∈ Znr \ {0n} | SMi,1 = SMi,2 = · · · = SMi,t for every i ∈ [αn/t]

and S|Mi = 0t for every i > αn/t}.

Given u(M,w, S) as defined in Eq. (16), we have u(M,w, S) = 1
2 · r

−αn/t · pM if S ∈ ∆(M) and 0
if S /∈ ∆(M).

Proof. Recall the definition of u:

u(M,w, S) =
1

2

∑
x∈Znr

px · pM · ωS·xr

([
Mx = w

]
− pw

)
.

In order to understand this expression, we start with the following:

∑
x∈Znr

ωS·xr

[
Mx = w

]
=
∑
x∈Znr

ωS·xr

αn/t∏
i=1

[(Mx)i = wi]
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=
∑
x∈Znr

ωS·xr

αn/t∏
i=1

 t∑
j=1

xMi,j ≡ wi (mod r)


=
∑
x∈Znr

ω

∑n/t
i=1

∑t
j=1 SMi,jxMi,j

r

αn/t∏
i=1

 t∑
j=1

xMi,j ≡ wi (mod r)


=
∑
x∈Znr

ω

∑n/t
i=1

∑t
j=1 SMi,jx(i−1)t+j

r

αn/t∏
i=1

 t∑
j=1

x(i−1)t+j ≡ wi (mod r)

 ,
where we reordered x ∈ Znr in the last step. Therefore

∑
x∈Znr

ωS·xr

[
Mx = w

]
=

αn/t∏
i=1

∑
x∈Ztr

ω

∑t
j=1 SMi,jxj

r

 t∑
j=1

xj ≡ wi (mod r)

 n/t∏
i>αn/t

∑
x∈Ztr

ω

∑t
j=1 SMi,jxj

r


= rn(1−α)

αn/t∏
i=1

∑
x∈Ztr

ω
S|Mi ·x
r

 t∑
j=1

xj ≡ wi (mod r)

 ,
where S|Mi = 0t for all i > αn/t, otherwise the expression above is 0. Now we use that

t∑
j=1

xj ≡ wi (mod r) =⇒ xt ≡ wi −
t−1∑
j=1

xj (mod r),

and so

S|Mi · x =

t∑
j=1

SMi,jxi =

t−1∑
j=1

SMi,jxj + SMi,t

wi − t−1∑
j=1

xj

 = SMi,twi +

t−1∑
j=1

(SMi,j − SMi,t)xj

modulo r. This leads to∑
x∈Znr

ωS·xr

[
Mx = w

]
= rn(1−α)

αn/t∏
i=1

ω
SMi,twi
r

∑
x∈Zt−1

r

ω

∑t−1
j=1(SMi,j−SMi,t )xj

r =
rn

rαn/t

αn/t∏
i=1

ω
SMi,twi
r (17)

if, for all i ∈ [αn/t], SMi,j is constant for all j ∈ [t], i.e., if SMi,1 = SMi,2 = · · · = SMi,t for any
i ∈ [αn/t]. Otherwise the above expression is 0. Thus, if SMi,1 = SMi,2 = · · · = SMi,t for any
i ∈ [αn/t] and S|Mi = 0t for i > αn/t, then we can use Eq. (17) to get (remember that px := r−n

and pw := r−αn/t)

|u(M,w, S)| = 1

2

∣∣∣∣∣∣
∑
x∈Znr

pxpMω
S·x
r

([
Mx = w

]
− pw

)∣∣∣∣∣∣ =
1

2

1

rαn/t
pM

∣∣∣∣∣∣
αn/t∏
i=1

ω
SMi,twi
r − [S = 0n]

∣∣∣∣∣∣
=

{
0 if S = 0n,
1
2r
−αn/tpM if S 6= 0n.

Hence, we have

|u(M,w, S)| =


0 if S = 0n,
1
2r
−αn/tpM if SMi,1 = SM1,2 = · · · = SMi,t ∀i ∈ [αn/t] and S|Mi = 0t ∀i > αn/t,

0 otherwise,

proving the lemma statement
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We now proceed to upper bound εbias using the expression for |u(M,w, S)| from Lemma 13.
For S ∈ Znr , let |S| := |{i ∈ [n] : Si 6= 0}|. Notice that, if S ∈ ∆(M), then |S| = kt for some
k ∈ [αn/t]. Hence, we have that

εbias ≤
1

2

∑
S∈Znr

∑
M∈Mα

t,n

S∈∆(M)

pM
∑

w∈Zαn/tr

1

rαn/t
‖ρ̂(S)‖1 =

1

2

αn/t∑
k=1

∑
S∈Znr
|S|=kt

∑
M∈Mα

t,n

S∈∆(M)

pM‖ρ̂(S)‖1

=
1

2

αn/t∑
k=1

∑
S∈Znr
|S|=kt

Pr
M∼Mα

t,n

[S ∈ ∆(M)] · ‖ρ̂(S)‖1,

using that ∑
M∈Mα

t,n

S∈∆(M)

pM = Pr
M∼Mα

t,n

[S ∈ ∆(M)].

We now upper bound this probability using the following lemma.

Lemma 14. Let t ∈ Z. Let S ∈ Znr with kj := 1
t · |{i ∈ [n] : Si = j}| ∈ Z for j ∈ {1, . . . , r − 1}.

Let k :=
∑r−1

j=1 kj. For any M ∈Mα
t,n, let ∆(M) be the set from Lemma 13. Then

Pr
M∼Mα

t,n

[S ∈ ∆(M)] =

(αn/t
k

)(
n
kt

) k!

(kt)!

r−1∏
j=1

(kjt)!

kj !
.

Proof. We can assume without lost of generality that S = 1k1t2k2t . . . (r − 1)kr−1t0n−kt. First note
that the total number |Mα

t,n| of α-partial hypermatchings is n!/
(
(t!)αn/t(αn/t)!(n − αn)!

)
. This

can be seen as follows: pick a permutation of n, view the first αn/t tuples of length t as αn/t
hyperedges, and ignore the ordering within each hyperedge, the ordering of the αn/t hyperedges
and the ordering of the last n − αn vertices. Now, given our particular S, notice that S ∈ ∆(M)
if, for j ∈ [r − 1], M has exactly kj hyperedges in{

1 + t

j−1∑
i=1

ki, 2 + t

j−1∑
i=1

ki, 3 + t

j−1∑
i=1

ki, . . . , (kj − 1) + t

j−1∑
i=1

ki, t

j∑
i=1

ki

}
,

i.e., k1 hyperedges in {1, . . . , k1t}, k2 hyperedges in {k1t+1, . . . , (k2 +k1)t}, etc., and also αn/t−k
hyperedges in [n]\ [kt]. The number of ways to pick kj hyperedges in

{
1 + t

∑j−1
i=1 ki, . . . , t

∑j
i=1 ki

}
is (kjt)!/((t!)

kjkj !). The number of ways to pick the remaining αn/t− k hyperedges in [n] \ [kt] is
(n− kt)!/((t!)αn/t−k(αn/t− k)!(n− αn)!). Hence PrM∼Mα

t,n
[S ∈ ∆(M)] equals

(n−kt)!
(t!)αn/t−k(αn/t−k)!(n−αn)!

n!
(t!)αn/t(αn/t)!(n−αn)!

r−1∏
j=1

(kjt)!

(t!)kjkj !
=

(n− kt)!(αn/t)!
n!(αn/t− k)!

r−1∏
j=1

(kjt)!

kj !
=

(αn/t
k

)(
n
kt

) k!

(kt)!

r−1∏
j=1

(kjt)!

kj !
.

By using Lemma 14 and the notation |S|i := |{j ∈ [n] : Sj = i}|, we continue upper bounding
εbias as follows

εbias ≤
1

2

αn/t∑
k=1

(αn/t
k

)(
n
kt

) ∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

∑
S∈Znr

|S|i=kit, i∈[r−1]

k!

(kt)!

r−1∏
j=1

(kjt)!

kj !

 ‖ρ̂(S)‖1
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≤ 1

2

αn/t∑
k=1

(αn/t
k

)(
n
kt

)
√√√√√√ ∑

k1,...,kr−1≥0∑r−1
j=1 kj=k

∑
S∈Znr

|S|i=kit, i∈[r−1]

k!2

(kt)!2

r−1∏
j=1

(kjt)!2

kj !2

√√√√√
∑

k1,...,kr−1≥0∑r−1
j=1 kj=k

∑
S∈Znr

|S|i=kit, i∈[r−1]

‖ρ̂(S)‖21

(18)

≤ 1

2

αn/t∑
k=1

(αn/t
k

)(
n
kt

)
√√√√√√ ∑

k1,...,kr−1≥0∑r−1
j=1 kj=k

∑
S∈Znr

|S|i=kit, i∈[r−1]

k!2

(kt)!2

r−1∏
j=1

(kjt)!2

kj !2

√√√√ ∑
S∈Znr
|S|=kt

‖ρ̂(S)‖21

=
1

2

αn/t∑
k=1

(αn/t
k

)√(
n
kt

)
√√√√√√ ∑

k1,...,kr−1≥0∑r−1
j=1 kj=k

k!2

(kt)!

r−1∏
j=1

(kjt)!

kj !2

√√√√ ∑
S∈Znr
|S|=kt

‖ρ̂(S)‖21, (19)

where Eqs. (18) and (19) used Cauchy-Schwarz inequality and
∑

S∈Znr
|S|i=kit

1 =
(
n
kt

)
(kt)!

∏r−1
j=1

1
(kjt)!

,

respectively. We now use the multinomial theorem in

∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

k!2

(kt)!

r−1∏
j=1

(kjt)!

kj !2
=

∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

(
k

k1,...,kr−1

)2(
kt

k1t,...,kr−1t

) ≤ ∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

(
k

k1, . . . , kr−1

)
= (r − 1)k, (20)

which leads to

εbias ≤
1

2

αn/t∑
k=1

αk
(n/t
k

)√(
n
kt

)(r − 1)k/2
√√√√ ∑

S∈Znr
|S|=kt

‖ρ̂(S)‖21,

where we also used that
(αn/t

k

)
≤ αk

(n/t
k

)
for α ∈ [0, 1]. In order to compute the above sum, we shall

split it into two parts: one in the range 1 ≤ k < 4rm, and the other in the range 4rm ≤ k ≤ αn/t.
Sum I (1 ≤ k < 4rm): in order to upper bound each term, pick δ = k/(4rm) in Lemma 10, so

∑
S∈Znr
|S|=kt

‖ρ̂(S)‖21 ≤
1

δkt

∑
S∈Znr

δ|S|‖f̂(S)‖21 ≤
1

δkt
22rδm =

(
21/(2t)4rm

k

)kt
.

Therefore, and by using that m ≤ γ
r1+1/t (

ε2

α )2/t(n/t)1−2/t and
(
q
s

)2(`q
`s

)−1 ≤ ( sq )(`−2)s (see [SWY12,
Appendix A.5]) for q = n/t, s = k, ` = t, we have

1

2

4rm−1∑
k=1

αk
(n/t
k

)√(
n
kt

)(r − 1)k/2
√√√√ ∑

S∈Znr
|S|=kt

‖ρ̂(S)‖21 ≤
1

2

4rm−1∑
k=1

αk(r − 1)k/2
(
kt

n

)(1−2/t)kt/2
(

21/(2t)4rm

k

)kt/2

≤ 1

2

4rm−1∑
k=1

αk(r − 1)k/2

(
21/(2t)4γε4/t

α2/tr1/tk2/t

)kt/2

≤ 1

2

4rm−1∑
k=1

(
21/4(4γ)t/2ε2

k

)k
≤ ε2

2
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for sufficiently small γ.

Sum II (4rm ≤ k ≤ αn/t): first we note that the function g(k) := αk(r − 1)k/2
(n/t
k

)
/
√(

n
kt

)
is

non-increasing in the interval 1 ≤ k ≤ αn/t ≤ n/(2t). That is because α
√
r − 1 ≤ 1, and so

g(k − 1)

g(k)
≥

(n/t
k−1

)√(
n

kt−t
)
√(

n
kt

)
(n/t
k

) =

√√√√ kt

n− kt+ t

t−1∏
j=1

n− kt+ j

kt− j
≥

√√√√ kt

n− kt+ t

t−1∏
j=1

n− kt+ j + 1

kt− j + 1

=

√√√√t−2∏
j=1

n− kt+ j + 1

kt− j
≥ 1,

where we used that a
b ≥

a+s
b+s for all a, b, s > 0 with a ≥ b. Hence, and with the aid once more of

Lemma 10 with δ = 1 and the inequality
(
q
s

)2(`q
`s

)−1 ≤ ( sq )(`−2)s (for q = n/t, s = 2m, ` = t) in order
to bound g(4rm),

1

2

αn/t∑
k=4rm

αk
(n/t
k

)√(
n
kt

)(r − 1)k/2
√√√√ ∑

S∈Znr
|S|=kt

‖ρ̂(S)‖21 ≤
1

2
g(4rm)

αn/t∑
k=4rm

√√√√ ∑
S∈Znr
|S|=kt

‖ρ̂(S)‖21

≤ 1

2
g(4rm)

√
αn

t

√∑
S∈Znr

‖ρ̂(S)‖21 (21)

≤ 1

2

(
α
√
r − 1

)4rm(4rm

n/t

)2(t−2)rm√αn

t
2(r−1)m

≤ 1

2

(
21/4α

√
r − 1

)4rm
(

(4γ)t/2ε2

α
√
r(n/t)

)4(1−2/t)rm√
αn

t

≤ ε2

2
,

where Eq. (21) comes from Cauchy-Schwarz, and in the last step we used that m ≥ 1 =⇒
4(1− 2/t)m ≥ 1 (so n is in the denominator and ε4(1−2/t)m ≤ ε) and picked γ sufficiently small.

Finally, merging both results, we get that, if m ≤ γ
r1+1/t (

ε2

α )2/t(n/t)1−2/t, then εbias ≤ ε2.

A very similar classical communication lower bound for the r-HH(α, t, n) problem can be proven.

Theorem 15. Any one-way classical protocol that achieves advantage ε > 0 for the r-HH(α, t, n)
problem with t ≥ 2 and α ≤ 1/2 requires at least Ω(r−1(ε4/α)1/t(n/t)1−1/t) bits of communication.

The proof is very similar to that of past works [GKK+07, VY11, GT19] and we include it in
Appendix A for completeness. We now conclude this section with a remark that improves the r
dependence of the α parameter.

Remark 3. The dependence of α on r can be improved. For example, we can improve the bound

in Eq. (20) by observing that
(

k
k1,...,kr−1

)2( kt
k1t,...,kr−1t

)−1 ≤ 1, which can be seen from the identity
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(
k

k1,...,kr−1

)
=
(
k1
k1

)(
k1+k2
k2

)
· · ·
(k1+k2+···+kr−1

kr−1

)
and the inequality

(
q
s

)2(`q
`s

)−1 ≤ ( sq )(`−2)s ≤ 1. Hence

∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

k!2

(kt)!

r−1∏
j=1

(kjt)!

kj !2
=

∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

(
k

k1,...,kr−1

)2(
kt

k1t,...,kr−1t

) ≤ ∑
k1,...,kr−1≥0∑r−1

j=1 kj=k

1 =

(
k + r − 2

k

)
,

which is better than (r − 1)k. By bounding(
k + r − 2

k

)
≤ ek

(
1 +

r − 2

k

)k
,

the new function g(k) := αk
√(

k+r−2
k

)(n/t
k

)
/
√(

n
kt

)
is still non-increasing in the interval 4rm ≤ k ≤

αn/t ≤ n/(2t) if now

α ≤ e−1/2 min
4rm≤k≤αn/t

√
k

k + r − 2
= e−1/2

√
4rm

4rm+ r − 2
.

For m� 1, α is essentially independent of r, and hence α ≤ min(1/2, e−1/2) = 1/2.

4.3 Quantum streaming lower bound for Unique Games on hypergraphs

The Unique Games problem is a generalization of the classical Max-Cut and can in fact be viewed
as constraint satisfaction problems on a graph but over a larger alphabet. Consider a graph on n
vertices x1, . . . , xn and edges in E. The constraint on an arbitrary edge (i, j) ∈ E is specified by a
permutation πi,j : Zr → Zr and the goal is to find an assignment of x1, . . . , xn ∈ Zr that maximizes∑

(i,j)∈E

[πi,j(xi) = xj ].

In this section, we consider a generalization of Unique Games to hypergraphs.

Definition 16 (Unique Games instance on hypergraphs). A hypergraph H = (V,E) is defined
on a vertex set V of size n with t-sized hyperedges E (i.e., t-sized subsets of V ). Given a linear
constraint on a hyperedge e ∈ E, i.e., a linear function πe : Ztr → {0, 1}, the goal is to compute

max
x∈Znr

∑
e∈E

πe(xe),

where xe corresponds to the set of vertex-assignment in the hyperedge e ∈ E.

Definition 17. Let H = (V,E) be a hypergraph and let OPT be the optimal value of the Unique
Games on H. A randomized algorithm gives a γ-approximation to a Unique Games instance with
failure probability δ ∈ [0, 1/2) if, on any input hypergraph H, it outputs a value in the interval
[OPT /γ,OPT] with probability at least 1− δ.

A uniformly random assignment of x ∈ Znr to the vertex set V will satisfy a 1/r-fraction of the
hyperedges, since each linear constraint πe(xe) is satisfied with probability 1/r. This gives a trivial
r-approximation algorithm for the problem above. Below we show that any better than trivial
approximation requires space that scales as nβ for constant β > 0.
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Theorem 18. Let r, t ≥ 2 be integers. Every quantum streaming algorithm giving a (r − ε)-
approximation for Unique Games on hypergraphs (as in Definition 16) with at most t-sized hyper-
edges with alphabet size r and success probability at least 2/3 over its internal randomness, needs
Ω((n/t)1−2/t) space (which hides dependence on r, ε).

The proof of this theorem combines techniques used by Guruswami and Tao [GT19] and
Kapralov, Khanna and Sudan [KKS14]. Akin to these works, based on the Hidden Matching
problem, we will construct instances of the hypergraph for which a Unique Games instance is hard
to solve space-efficiently in the streaming model.

Input distributions. To this end, we construct two distributions Y and N such that Y is
supported on satisfiable Unique Games instances and N is supported on instances for which at
most an O(1/r)-fraction of the constraints is satisfied. We now define these instances in a multi-
stage way (using k stages). First, sample k independent α-partial t-hypermatchings on n vertices
and then construct a hypergraph G by putting together all the hyperedges from these k stages.
Note that G still has n vertices, while the number of hyperedges is k · αn/t (since each stage has
αn/t many hyperedges and we allow multiple hyperedges should they be sampled). Now we specify
the constraints πe in Definition 16 for the Y,N distributions:

• Y distribution: sample z ∈ Znr and for each e ∈ E, let πe(xe) =
[∑

i∈e xi =
∑

i∈e zi
]

(where
by i ∈ e we mean all the vertices in the hyperedge e).

• N distribution: for each e ∈ E, pick a uniform q ∈ Zr and let πe(xe) =
[∑

i∈e xi = q
]
.

It is clear that, in the Y distribution, the optimal solution is when all the x1, . . . , xn are just set to
z1, . . . , zn. Below we show that for the N distribution, the value of the optimal solution is at most
(1 + ε)/r with high probability.

Lemma 19. Let ε ∈ (0, 1). If k = O(r(log r)t/(αε2)), then for the Unique Games instance sampled
from N distribution above, the optimal fraction of satisfiable constraints (i.e., number of hyperedges
e ∈ E for which πe(·) evaluates to 1) over all possible vertex labelling is at most (1 + ε)/r with high
probability.

Proof. The proof of this lemma is similar to the proof in [GT19, Lemma 4.1]. Fix an assignment
x ∈ Znr . Let X`

e be the random variable that indicates that the hyperedge e ∈ E appears in `-th
stage and is satisfied by x. Let S =

∑
`,eX

`
e. The expectation of S is kαn/t · 1/r, since the

total number of hyperedges is αn/t for each of the k stages and the probability that a uniform
x satisfies a t-hyperedge (i.e., probability that

∑
e∈E xe = q for some fixed q) is 1/r. Using the

same analysis in [GT19], we can show that the variables X`
e are negatively correlated. Indeed,

first note that hyperedges from different stages are independent. Now suppose we know that the
random variables X`

e1 , . . . , X
`
es have value 1, and we also know a hyperedge e ∈ E. If e ∩ eu 6= ∅

for some u ∈ [s], then X`
e = 0, since the hyperedges of a given stage form a matching. Otherwise,

the conditional expectation of X`
e (conditioned on e ∩ eu = ∅ for all u ∈ [s]) is αn/t−s

r

(
n−ts
t

)−1
,

which is less than its unconditional expectation of αn/t
r

(
n
t

)−1
. Therefore, in all cases one has

E[X`
e|X`

e1 = · · · = X`
es = 1] ≤ E[X`

e], which means negative correlation.

Hence, using a Chernoff bound for negative-correlated variables leads to

Pr[S ≥ (1 + ε)(kαn/t)/r] ≤ exp(−ε2kαn/(3rt)) = exp(−O(n log r)),
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where the inequality used the choice of k. Applying a union bound over the set of x ∈ Znr concludes
the proof of the lemma.

Reduction to Hypermatching. The reduction to r-ary Hidden Hypermatching is similar to
the analysis used by Guruswami and Tao [GT19], but now it is from quantum streaming algorithms
to one-way quantum communication complexity. The main lemma that we need is the following.

Lemma 20. Let ε > 0. If there is a streaming algorithm using at most c qubits of space that
distinguishes between the Y and N distributions on Unique Games instances (with k stages) with
bias 1/3, then there is a c-qubit protocol that distinguish between the YES and NO distributions of
r-HH(α, t, n) with bias Ω(1/k).

In order to prove this lemma we need a few definitions and facts. First, towards proving the
lemma above, let us assume there is a c-qubit streaming A for Lemma 20. During the execution
of the streaming protocol on instances from the Y and N distributions, let the memory content
after receiving the ith stage constraints be given by the c-qubit quantum states |φYi 〉 and |φNi 〉,
respectively.5 Assume that |φY0 〉 = |φN0 〉 = 0. Using the notion of informative index from [KKS14,
Definition 6.2], we say an index j ∈ {0, . . . , k − 1} is δ-informative if∥∥|φYj+1〉 − |φ

N
j+1〉

∥∥
1
≥
∥∥|φYj 〉 − |φNj 〉∥∥1

+ δ.

With this definition it is not hard to see the following fact, which follows from a simple triangle
inequality.

Fact 21. Suppose there exists a streaming protocol for distinguishing the Y,N distributions with
advantage ≥ 1/3, then there exists a Ω(1/k)-informative index.

Suppose j∗ is an Ω(1/k)-informative index for the streaming protocol A. Using this we devise
a communication protocol for r-HH(α, t, n) with bias Ω(1/k) as follows: suppose Alice has a string

x ∈ Znr and Bob has w ∈ Zαn/tr and a hypermatching M ∈Mα
t,n.

1. Alice samples j∗ many α-partial t-hypermatchings and runs the streaming algorithm A on
Unique Games constraints for the first j∗ stages that follow the Y distribution with z = x.
She then sends the memory contents after these j∗ stages to Bob.

2. Bob assigns the constraints
∑

i∈e xi = we, where e ∈ M , according to his inputs w,M . He
then continues running A on these constraints as the (j∗ + 1)th stage.

Let |s〉 be the quantum state that Bob gets after running A.

3. Let |φYES〉 and |φNO〉 be the resulting quantum states under the two cases, depending on w’s
distribution (these can be computed by Bob since A is known). Bob can distinguish between
|φYES〉 and |φNO〉 with bias 1

2

∥∥|φYES〉 − |φNO〉∥∥
1

by measuring the state |s〉 with a suitable
POVM, according to Lemma 2.

We are now ready to prove Lemma 20.

5Without loss of generality, we assume they are pure states– this only affects the cost of the protocol by a constant
factor (since one can always purify mixed quantum states by doubling the dimension).
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Proof of Lemma 20. We argue that the above protocol achieves a Ω(1/k) bias in distinguishing
between the YES and NO distributions from r-HH(α, t, n). To this end, let U be the unitary that
maps the quantum state after stage j∗ and constraints of stage j∗ + 1 (which is classical) to the
quantum state after j∗ + 1. Thus we have |φYES〉 = |φYj∗+1〉 = U |φYj∗ , CY〉 and |φNO〉 = U |φYj∗ , CN 〉,
where CY and CN are the constraints corresponding to the YES and NO distributions, respectively,
and, similarly, we have |φNj∗+1〉 = U |φNj∗ , CN 〉. Then, we have∥∥|φYES〉 − |φNO〉∥∥

1
≥
∥∥|φYj∗+1〉 − |φ

N
j∗+1〉

∥∥
1
−
∥∥|φNO〉 − |φNj∗+1〉

∥∥
1

≥
∥∥|φYj∗+1〉 − |φ

N
j∗+1〉

∥∥
1
−
∥∥|φYj∗〉 − |φNj∗〉∥∥1

= Ω(1/k),

where the second inequality used that
∥∥|φNO〉−|φNj∗+1〉

∥∥
1

=
∥∥U |φYj∗ , CN 〉−U |φNj∗ , CN 〉∥∥1

≤ ‖|φYj∗〉−
|φNj∗〉‖1 (since unitaries preserve norms) and the third inequality is because j∗ is an informative
index. Hence in Step (3) of the procedure above, the bias of Bob in obtaining the right outcome
is Ω(1/k).

Proof of Theorem 18. Finally, by picking k = O(r(log r)t/(αε2)) in order to invoke Lemma 19 and
using our lower bound in Theorem 11 with α = O(1), we get our desired lower bound of

Ω(r−(1+1/t)(k2α)−2/t(n/t)1−2/t) = Ω((n/t)1−2/t).

It is possible to prove a classical version of Theorem 18.

Theorem 22. Let r, t ≥ 2 be integers. Every classical streaming algorithm giving an (r − ε)-
approximation for Unique Games on hypergraphs (as in Definition 16) with at most t-sized hyper-
edges with alphabet size r and success probability at least 2/3 over its internal randomness, needs
Ω((n/t)1−1/t) space (which hides dependence on r, ε).

Proof. Since the proof is very similar to the one of Theorem 18, we shall just point out the few
required modifications. The main idea is still to reduce a streaming algorithm for Unique Games
to a communication protocol for r-HH(α, t, n). The distributions Y and N on the Unique Games
inputs are the same. Let SYi and SNi be the memory after receiving the ith stage constraints. The
notion of information index is similarly defined for SYi and SNi , i.e., an index j ∈ {0, . . . , k − 1} is
δ-informative if ∥∥SYj+1 − S

N
j+1

∥∥
tvd
≥
∥∥SYj − SYj ∥∥tvd

+ δ.

The communication protocol for r-HH(α, t, n) is basically the same as in the quantum case,
using an Ω(1/k)-informative index j∗. At the end of Step (2), Bob gets the memory s. Let SYES

and SNO be the resulting memory distributions under the two cases depending on w’s distribution.
Bob outputs 1 if Pr[SYES = s] ≥ Pr[SNO = s], and 0 otherwise. The bias of distinguishing between
SYES and SNO is 1

2‖S
YES − SNO‖tvd, which can be shown to be at least Ω(1/k), similarly to the

quantum case. Indeed, let f be the function that maps the memory after stage j∗ and constraints
CY or CN of stage (j∗ + 1) to the memory after stage (j∗ + 1). Then SYES = SYj∗+1 = f(SYj∗ , C

Y)

and SNO = f(SYj∗ , C
N ). By using Lemma 23 below, we can show that∥∥SYES − SNO

∥∥
tvd
≥
∥∥SYj∗+1 − S

N
j∗+1

∥∥
tvd
−
∥∥SNO − SNj∗+1

∥∥
tvd

=
∥∥SYj∗+1 − S

N
j∗+1

∥∥
tvd
−
∥∥f(SYj∗ , C

Y)− f(SNj∗ , C
N )
∥∥

tvd

≥
∥∥SYj∗+1 − S

N
j∗+1

∥∥
tvd
−
∥∥SYj∗ − SNj∗∥∥tvd

≥ Ω(1/k).
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Lemma 23 ([KKS14, Claim 6.5]). Let X,Y be two random variables and W be independent of
(X,Y ). Then, for any function f ,

‖f(X,W )− f(Y,W )‖tvd ≤ ‖X − Y ‖tvd.

Therefore Bob can distinguish between SYES and SNO with bias at least Ω(1/k), meaning that
there is a c-bit protocol that distinguish between the YES and NO distributions of r-HH(α, t, n)
with bias Ω(1/k). By picking k = O(r(log r)t/(αε2)) in order to invoke Lemma 19 and using the
classical lower bound on r-HH(α, t, n), we get our desired lower bound of

Ω(r−1(k4α)−1/t(n/t)1−1/t) = Ω((n/t)1−1/t).

5 Locally Decodable Codes

In this section we prove our lower bound on locally decodable codes over Zr. Before that, let us
first formally define an LDC.

Definition 24 (Locally decodable code). A (q, δ, ε)-locally decodable code over Zr is a function
C : Znr → ZNr that satisfies the following: for every x ∈ Znr and i ∈ [n], there exists a (randomized)
algorithm A that, on any input y ∈ ZNr that satisfies d(y, C(x)) ≤ δN , makes q queries to y non-
adaptively and outputs a number Ay(i) ∈ Zr that satisfies Pr[Ay(i) = xi] ≥ 1/r + ε (where the
probability is only taken over the randomness of A).

As is often the case when proving LDC lower bounds, we use the useful fact proven by Katz
and Trevisan [KT00] that, without loss of generality, one can assume that an LDC is smooth, i.e.,
the queries made by A have “reasonable” probability over all indices, and that A makes queries to
a codeword (and not a corrupted codeword). We first formally define a smooth code below.

Definition 25 (Smooth code). We say C : Znr → ZNr is a (q, c, ε)-smooth code if there exists a
decoding algorithm A that satisfies the following: for every x ∈ Znr and i ∈ [n], A makes at most
q non-adaptive queries to C(x) and outputs AC(x)(i) ∈ Zr such that Pr[AC(x)(i) = xi] ≥ 1/r + ε
(where the probability is only taken over the randomness of A). Moreover, for every x ∈ Znr , i ∈ [n]
and j ∈ [N ], on input i, the probability that A queries the index j in C(x) ∈ ZNr is at most c/N .

Crucially note that smooth codes only require a decoder to recover xi when given access to an
actual codeword, unlike the standard definition of LDC where a decoder is given a noisy codeword.
With this definition in hand, we state a theorem of Katz and Trevisan.

Theorem 26 ([KT00]). A (q, δ, ε)-LDC C : Znr → ZNr is a (q, q/δ, ε)-smooth code.

We remark that a converse to this theorem holds: a (q, c, ε)-smooth code is a (q, δ, ε−cδ)-LDC, since
the probability that the decoder queries one of δN corrupted positions is at most (c/N)(δN) = cδ.

5.1 Smooth codes over large alphabets

Katz and Trevisan [KT00] observed that a (q, c, ε)-smooth code over {0, 1} is a (q, q, ε2/2c)-smooth
code that is good on average, i.e., that there is a decoder A such that, for all i ∈ [n],

1

2n

∑
x∈{0,1}n

Pr[AC(x)(i) = xi] ≥
1

2
+
ε2

2c
.
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This comes from the observation that a q-decoder can partition the set [N ] into q-tuples, pick one
of such tuples uniformly at random and continue as the original decoder by querying the elements
of the picked tuple at the cost of a slightly worse success probability. These ideas are formally
explained in the result below, where we already generalize them to large alphabets Zr (the overall
presentation is inspired in [BRdeW08, Theorem 15]).

Theorem 27. Suppose C : Znr → ZNr is a (q, c, ε)-smooth code. Then for every i ∈ [n], there exists
a set Mi consisting of at least εN/(2cq) disjoint sets of at most q elements of [N ] each such that,

for every Q ∈Mi, there exists a function fQ : Z|Q|r → Zr with the property

r−1∑
k=1

E
x∼Znr

[
ω
k(fQ(C(x)Q)−xi)
r

]
≥ r

2
ε.

Here C(x)Q is the restriction of C(x) to the bits in Q.

Proof. Fix some i ∈ [n]. In order to decode xi, we can assume, without lost of generality, that
the decoder A picks some set Q ⊆ [N ] (of at most q indices) with probability p(Q), queries those
bits, and then outputs a random variable (not yet a function) fQ(C(x)Q) ∈ Zr that depends on the
query-outputs. Call such a Q “good” if

1

r
+
ε

2
≤ Pr

x∼Znr
[fQ(C(x)Q) = xi] = E

x∼Znr
k∼Zr

[
ω
k(fQ(C(x)Q)−xi)
r

]
⇐⇒ r

2
ε ≤

r−1∑
k=1

E
x∼Znr

[
ω
k(fQ(C(x)Q)−xi)
r

]
.

Now construct the hypergraph Hi = (V,Ei) with V = [N ] and edge-set Ei consisting of all good
sets Q. The probability that the decoder queries any Q ∈ Ei is p(Ei) :=

∑
Q∈Ei p(Q). If it queries

some Q ∈ Ei, then

Pr
x∼Znr

[fQ(C(x)Q) = xi] ≤ 1 ⇐⇒
r−1∑
k=1

E
x∼Znr

[
ω
k(fQ(C(x)Q)−xi)
r

]
≤ r − 1,

and if it queries some Q /∈ Ei, then
∑r−1

k=1 Ex∼Znr
[
ω
k(fQ(C(x)Q)−xi)
r

]
< r

2ε. Given the smooth code
property of outputting xi with probability at least 1

r + ε for every x, we have

rε ≤
r−1∑
k=1

E
x,Q

[
ω
k(fQ(C(x)Q)−xi)
r

]
< p(Ei)(r − 1) + (1− p(Ei))

r

2
ε =

r

2
ε+ p(Ei)

(
r − 1− r

2
ε
)
,

hence

p(Ei) >
ε

2− 2/r − ε
≥ ε

2
.

Since C is also smooth, for every j ∈ [N ] we have∑
Q∈Ei:j∈Q

p(Q) ≤
∑
Q:j∈Q

p(Q) = Pr[A queries j] ≤ c

N
.

Let Mi be a matching in Hi of maximal size. We want to show that |Mi| ≥ εN/(2cq). To do so,
define T :=

⋃
Q∈Mi

Q. Observe that the set T has at most q|Mi| elements, and intersects each
Q ∈ Ei (otherwise Mi would not be maximal). The size of Mi can be lower bounded as follows:

ε

2
< p(Ei) =

∑
Q:Q∈Ei

p(Q)
(a)

≤
∑
j∈T

∑
Q∈Ei:j∈Q

p(Q) ≤ c|T |
N
≤ cq|Mi|

N
,
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where (a) holds because each Q ∈ Ei is counted exactly once on the left and at least once on the
right (since T intersects each Q ∈ Ei). Hence |Mi| ≥ εN/(2cq). Finally, the random variables
fQ(C(x)Q) can be fixed in Zr without reducing the probability Prx∼Znr [fQ(C(x)Q) = xi].

As previously mentioned, the above result tells us that a decoder can focus its queries on one
of the q-tuples Q. We can go one step further and show that the decoder can restrict itself to
computing a linear function of the queried bits while still maintaining a good correlation with the
target bit xi at the cost of decreasing the average success probability.

Theorem 28. Suppose C : Znr → ZNr is a (q, c, ε)-smooth code. Then for every i ∈ [n], there exists
a set Mi consisting of at least εN/(2cq) disjoint sets of at most q elements of [N ] each such that,
for every Q ∈Mi,

r−1∑
k=1

∑
S∈Z|Q|r

∣∣∣∣ E
x∼Znr

[
ω
S·C(x)Q−kxi
r

]∣∣∣∣ ≥ εr

2
.

Here C(x)Q is the restriction of C(x) to the bits in Q.

Proof. Fix i ∈ [n] and take the set Mi produced by Theorem 27. For every Q ∈Mi we have

r−1∑
k=1

E
x∼Znr

[
ω
k(fQ(C(x)Q)−xi)
r

]
≥ εr

2
.

For k ∈ {1, . . . , r − 1}, define the function hQ,k : Z|Q|r → C by hQ,k(x) = ω
kfQ(x)
r . Consider its

Fourier transform ĥQ,k : Z|Q|r → C. Hence we can write

hQ,k(x) =
∑

S∈Z|Q|r

ĥQ,k(S)ωS·xr .

Finally, using that |ĥQ,k(S)| ∈ [0, 1] for all S ∈ Z|Q|r , we can upper bound εr/2 by

r−1∑
k=1

E
x

[
ω
k(fQ(C(x)Q)−xi)
r

]
=

∑
S∈Z|Q|r

r−1∑
k=1

ĥQ,k(S)E
x

[
ω
S·C(x)Q−kxi
r

]
≤

∑
S∈Z|Q|r

r−1∑
k=1

∣∣∣E
x

[
ω
S·C(x)Q−kxi
r

]∣∣∣ .
5.2 An exponential lower bound for LDCs

In this section, we use our results from matrix-valued hypercontractivity to obtain our lower bound
for LDCs over Zr.

Theorem 29. If C : Znr → ZNr is a (2, δ, ε)-LDC, then N = 2Ω(δ2ε4n/r4).

Proof. In this proof we shall use the normalized Schatten norm. Fix x ∈ Znr . Define the vector
vx ∈ Cr2N

vx =
(
1, . . . , 1, ωC(x)1

r , . . . , ωC(x)N
r , ω2C(x)1

r , . . . , ω2C(x)N
r , . . . , ω(r−1)C(x)1

r , . . . , ω(r−1)C(x)N
r

)
,

where each sequence ω
jC(x)1
r , . . . , ω

jC(x)N
r is repeated r times consecutively. Let R := r2N and

define the R×R symmetric matrix f(x) := vT
x ·vx whose (N(rj1 +m1)+`1, N(rj2 +m2)+`2)-entry
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is ω
j1C(x)`1+j2C(x)`2
r , where j1, j2,m1,m2 ∈ Zr and `1, `2 ∈ [N ] (note that there are r repeated

entries ω
j1C(x)`1+j2C(x)`2
r in each row and column). Since f(x) has rank 1 and its R2 entries have

absolute value 1, its only non-zero singular value is R. Hence ‖f(x)‖pp = Rp−1 for every x ∈ Znr .

Fix i ∈ [n]. For every k ∈ {1, . . . , r− 1} consider the R×R matrices f̂(0i−1k0n−i) that are the
Fourier transform of f at the strings in Znr which are zero in all but the ith coordinate:

f̂(0i−1k0n−i) =
1

rn

∑
x∈Znr

f(x)ω−kxir .

We shall lower bound
∑r−1

k=1

∥∥f̂(0i−1k0n−i)
∥∥p
p
.

By Theorem 28, there is a set Mi consisting of at least δεN/8 disjoint sets of indices in [N ], each

with cardinality at most 2,6 such that
∑r−1

k=1

∑
S∈Z|Q|r

∣∣Ex∼Znr [ωS·C(x)Q−kxi
r

]∣∣ ∈ [εr/2, r|Q|(r − 1)].

Given S = (S1, S2), consider Q = (Q1, Q2) ∈Mi
7 and the following 2× 2 submatrix in f(x)(

ω
2S1C(x)Q1
r ω

S1C(x)Q1
+S2C(x)Q2

r

ω
S1C(x)Q1

+S2C(x)Q2
r ω

2S2C(x)Q2
r

)
.

Observe that this submatrix clearly exists in f(x), and comes from the rows and columns N(rS1 +
m1) + Q1 and N(rS2 + m2) + Q2 for any m1,m2 ∈ Zr. In particular, we can take m1 = S2

and m2 = S1, so that such submatrix does not have overlapping rows or columns with any other
submatrix similarly defined from different S′ or Q′. Hence the corresponding 2 × 2 submatrix of
f̂(0i−1k0n−i) is (

α Ex∼Znr
[
ω
S·C(x)Q−kxi
r

]
Ex∼Znr

[
ω
S·C(x)Q−kxi
r

]
β

)
,

for some α, β ∈ C (in this proof we will not be concerned with the value of α, β). Let P be the R×R
permutation matrix that, for every Q = (Q1, Q2) and S = (S1, S2), swaps rows N(rS1 + S2) +Q1

and N(rS2 + S1) + Q2. We define the matrices Fi(k) := P f̂(0i−1k0n−i) for k ∈ {1, . . . , r − 1}.
Because we previously chose m1 = S2 and m2 = S1, for each of the at least δεN/8 sets Q ∈ Mi,

Fi(k) has diagonal entries Ex∼Znr
[
ω
S·C(x)Q−kxi
r

]
for all S ∈ Z|Q|r (each entry is repeated twice). In

other words, Fi(k) has at least δεNr2/4 entries Ex∼Znr
[
ω
S·C(x)Q−kxi
r

]
for Q ∈Mi and S ∈ Z|Q|r .

The Schatten norm ‖ · ‖p is unitarily invariant : ‖UAV ‖p = ‖A‖p for every matrix A and
unitaries U, V . We shall use the following lemma. Its proof is left to the end of the section.

Lemma 30 ([Bha13, Eq. (IV.52)]). Let ‖·‖ be a unitarily-invariant norm on Cd×d. If A ∈ Cd×d and
diag(A) is the matrix obtained from A by setting its off-diagonal entries to 0, then ‖diag(A)‖ ≤ ‖A‖.

Using this lemma, we obtain

r−1∑
k=1

∥∥∥f̂(0i−1k0n−i)
∥∥∥p
p

=
r−1∑
k=1

‖Fi(k)‖pp ≥
r−1∑
k=1

‖diag(Fi(k))‖pp ≥
2

R

r−1∑
k=1

∑
Q∈Mi

∑
S∈Z|Q|r

∣∣∣∣ E
x∼Znr

[
ω
SQ·C(x)Q−kxi
r

]∣∣∣∣p ,
6Here we used Theorem 26 in order to invoke Theorem 28 with c = q/δ.
7If Q is a singleton, take Q = (Q1, Q1) and S = (S1, 0).
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but, by Hölder’s inequality,

r−1∑
k=1

∑
S∈Z|Q|r

∣∣∣∣ E
x∼Znr

[
ω
SQ·C(x)Q−kxi
r

]∣∣∣∣p ≥ 1

r3(p−1)

r−1∑
k=1

∑
S∈Z|Q|r

∣∣∣∣ E
x∼Znr

[
ω
SQ·C(x)Q−kxi
r

]∣∣∣∣
p

≥ 1

r3(p−1)

(εr
2

)p
,

hence

r−1∑
k=1

∥∥∥f̂(0i−1k0n−i)
∥∥∥p
p
≥ 2

R

δεN

8

1

r3(p−1)

(εr
2

)p
=

δε

4r2p−1

(ε
2

)p
,

which implies

r−1∑
k=1

∥∥∥f̂(0i−1k0n−i)
∥∥∥2

p
≥ 1

r2/p−1

(
r−1∑
k=1

∥∥∥f̂(0i−1k0n−i)
∥∥∥p
p

)2/p

≥ 1

r3

(
δε

4

)2/p (ε
2

)2
,

where we used Hölder’s inequality again. Now, using the hypercontractive inequality, we have for
any p ∈ [1, 2] that

n(p− 1)
1

r4

(
δε

4

)2/p (ε
2

)2
≤

n∑
i=1

r−1∑
k=1

p− 1

r − 1

∥∥∥f̂(0i−1k0n−i)
∥∥∥2

p
≤

 1

rn

∑
x∈Znr

‖f(x)‖pp

2/p

= R2(p−1)/p.

Choosing p = 1 + 1/ logR gives us

n

logR

1

r4

(
δε

4

)2 (ε
2

)2
≤ R2/(1+logR) = 4logR/(1+logR) =⇒ R ≥ 2δ

2ε4n/(26r4)

24logR/(1+logR)
= 2Ω(δ2ε4n/r4).

Since R = r2N , we have the desired lower bound by adjusting the constant in the Ω(·) in the
exponent.

Proof of Lemma 30. The proof sets the off-diagonal entries of A to 0 recursively without
increasing its norm. Start with the off-diagonal entries in the dth row and column. Define Dd

be the diagonal matrix by Dd,d = −1 and Di,i = 1 for i < d. Note that DdADd is the same as
A, except that the off-diagonal entries of the dth row and column are multiplied by −1. Hence
Ad−1 := (A+DdADd)/2 is the matrix obtained from A by setting those entries to 0 (this does not
affect the diagonal). Since Dd is unitary, by the triangle inequality

‖Ad−1‖ = ‖(A+DdADd)/2‖ ≤
1

2
(‖A‖+ ‖DdADd‖) = ‖A‖.

Continuing in this manner for i = 1, . . . , d− 1, we can set the off-diagonal entries in the (d− i)th
row and column of Ad−i to 0 by using the diagonal matrix Dd−i which has a −1 only on its (d− i)th
position and without increasing its norm. �

6 2-server private information retrieval

As mentioned in the introduction, the connection between LDCs and PIR is well known since the
results of [KT00, GKST02]. In general, upper bounds on LDCs are derived via PIR schemes, which
in turn means that our LDC lower bounds translate to PIR lower bounds, which we illustrate below.
We first define the notion of private information retrieval.

34



Definition 31. A one-round, (1 − δ)-secure, k-server private information retrieval (PIR) scheme
with recovery probability 1/r+ ε, query size t and answer size a, consists of a randomized user and
k deterministic algorithms S1, . . . , Sk (the servers) that satisfy the following:

1. On input i ∈ [n], the user produces k queries q1, . . . , qk ∈ Ztr and sends them to the k servers
respectively. The servers reply back with a string aj = Sj(x, qj) ∈ Zar , and based on a1, . . . , ak
and i, the user outputs b ∈ Zr.

2. For every x ∈ Znr and i ∈ [n], the output b of the user satisfies Pr[b = xi] ≥ 1/r + ε.

3. For every x ∈ Znr and j ∈ [k], the distributions over qj (over the user’s randomness) are
δ-close for different i ∈ [n].

We crucially remark that for the lower bounds that we present below, the function Sj could be an
arbitrary (not necessarily linear) function over x1, . . . , xn ∈ Zr.

Our PIR lower bound follows almost immediately from the following immediate consequence of
Goldreich et al. [GKST02, Lemma 5.1]. In the following we shall assume δ = 0.

Lemma 32 ([GKST02]). If there is a classical 2-server PIR scheme with query size t, answer size a
and recovery probability 1/r+ε, then there is a (2, 3, ε)-smooth code C : Znr → (Zar)m with m ≤ 6rt.

We remark that Goldreich et al. [GKST02] state the lemma above only for r = 2, but the exact
same analysis carries over to the large alphabet case. We now get the following main theorem.

Theorem 33. A classical 2-server PIR scheme with query size t, answer size a and recovery
probability 1/r + ε satisfies t ≥ Ω

(
(δ2ε4n/r4 − a)/ log r

)
.

Proof. By using Lemma 32, there is a (2, 3, ε)-smooth code C : Znr → (Zar)m with m ≤ 6rt. In order
to apply Theorem 29, we form a new code C ′ by transforming each old string C(x)j ∈ Far using
the Hadamard code into C ′(x)j ∈ {0, 1}2

a ⊆ Z2a
r . The total length of C ′ is m′ = m2a. By using

Theorem 29 on C ′ (note that the theorem can be applied directly to a smooth code), this gives us

m′a ≥ 2Ω(δ2ε4n/r4),

and since m = O(rt), we get the desired lower bound in the theorem statement.
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A Classical Hidden Hypermatching lower bound

The general idea behind the proof of Theorem 15 is already well established and is a simple gener-
alization of results from [GKK+07, VY11, GT19, DM20]. We shall need the following well-known
fact and a generalization of the KKL inequality [KKL89].

Fact 34. Given just one sample, the best success probability in distinguishing between two probability
distributions p and q is 1

2 + 1
4‖p− q‖tvd.

Lemma 35 (Generalized KKL inequality). Let A ⊆ Znr and let f : Znr → {0, 1} be its indicator
function (f(x) = 1 iff x ∈ A). Then, for every δ ∈ [0, 1/r],

∑
S∈Znr

δ|S||f̂(S)|2 ≤
(
|A|
rn

)2/(1+rδ)

.

Proof. Apply the hypercontractive inequality to real-valued functions with p = 1 + rδ.

Theorem 36. Any classical protocol that achieves advantage ε > 0 for the r-HH(α, t, n) problem
with t ≥ 2 and α ≤ 1/2 requires at least c = Ω(r−1(ε4/α)1/t(n/t)1−1/t) bits of communication from
Alice to Bob.

Proof. By the minimax principle, it suffices to analyse deterministic protocols under some ‘hard’
input distribution. For our input distribution, Alice and Bob receive x ∈ Znr and M ∈ Mα

t,n,

respectively, uniformly at random, while Bob’s input w ∈ Zαn/tr is drawn from the distribution
D := 1

2D
YES + 1

2D
NO, i.e., with probability 1/2 is comes from DYES, and with probability 1/2 it

comes from DNO.

Fix a small constant ε > 0 and let c = γr−1(ε4/α)1/t(n/t)1−1/t for some universal constant γ.
Consider any classical deterministic protocol that communicates at most C := c − log(1/ε) bits.
Such protocol partitions the set of all rn x’s into 2C sets. These sets have size rn/2C on average,
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and by a counting argument, with probability 1 − ε, the set A corresponding to Alice’s message
has size at least εrn/2C = rn/2c. Given Alice’s message, Bob knows that the random variable X
corresponding to her input was drawn uniformly at random from A, and he also knows his input
M . Therefore his knowledge of the random variable MX is described by the distribution

pM (z) := Pr[MX = z|M,A] =
|{x ∈ A|Mx = z}|

|A|
.

Given one sample of w ∈ Zαn/tr , Bob must decide whether it came from DYES (the distribution
MX) or from DNO (the uniform distribution U). According to Fact 34, the advantage of any
classical protocol in distinguishing between pM and U is upper bounded by 1

4‖pM − U‖tvd. We

prove in Theorem 37 below that, if α ≤ 1/2 and c ≤ γ
r ( ε

4

α )1/t(n/t)1−1/t, then the average advantage
over all hypermatchings M is at most ε2/4, i.e.,

E
M∼Mα

t,n

[‖pM − U‖tvd] ≤ ε2.

Therefore, by Markov’s inequality, for at least a (1−ε)-fraction ofM , the advantage in distinguishing
between pM and U is ε/4 small. Hence, Bob’s total advantage over randomly guessing the right
distribution will be at most ε (for the event that A is too small) plus ε (for the event that M is such
that the distance between MX and U is more than ε) plus ε/4 (for the advantage over random
guessing when ‖pM − U‖tvd ≤ ε), and so c = Ω(r−1(ε4/α)1/t(n/t)1−1/t).

Theorem 37. Let x ∈ Znr be uniformly distributed over a set A ⊆ Znr of size |A| ≥ rn/2c for some
c ≥ 1. If α ≤ 1/2, there is a universal constant γ > 0 (independent of n, t, r and α), such that,

for all ε > 0, if c ≤ γ
r ( ε

4

α )1/t(n/t)1−1/t, then

E
M∼Mα

t,n

[‖pM − U‖tvd] ≤ ε2.

Proof. Let f : Znr → {0, 1} be the characteristic function of A, i.e., f(x) = 1 iff x ∈ A. We shall
bound the Fourier coefficients of pM , which are related to the Fourier coefficients of f as follows:

p̂M (V ) =
1

rαn/t

∑
z∈Znr

pM (z)ω−V ·zr =
1

|A|rαn/t
∑
z∈Znr

|{x ∈ A|Mx = z}| · ω−V ·zr

=
1

|A|rαn/t
r−1∑
k=0

|{x ∈ A|(Mx) · V = k}| · ω−kr

=
1

|A|rαn/t
r−1∑
k=0

|{x ∈ A|x · (MTV ) = k}| · ω−kr

=
1

|A|rαn/t
∑
x∈A

ω−x·(M
TV )

r

=
rn

|A|rαn/t
f̂(MTV ).

We now start bounding the expected squared total variation distance,

E
M∼Mα

t,n

[‖pM − U‖2tvd] ≤ r2αn/t E
M∼Mα

t,n

[‖pM − U‖22]
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= r2αn/t E
M∼Mα

t,n

 ∑
V ∈Zαn/tr \{0αn/t}

|p̂M (V )|2


=

r2n

|A|2
E

M∼Mα
t,n

 ∑
V ∈Zαn/tr \{0αn/t}

|f̂(MTV )|2

 ,
where we used Cauchy-Schwarz followed by Parseval’s identity. Note that there is at most one

V ∈ Zαn/tr such that S = MTV for a given S ∈ Znr (and that the only V that makes MTV = 0n is
V = 0αn/t). This allows us to transform the expectation over hypermatchings into a probability,

E
M∼Mα

t,n

[‖pM − U‖2tvd] ≤ r2n

|A|2
E

M∼Mα
t,n

 ∑
S∈Znr \{0n}

|{V ∈ Zαn/tr |MTV = S}| · |f̂(S)|2


=
r2n

|A|2
∑

S∈Znr \{0n}

Pr
M∼Mα

t,n

[∃V ∈ Zαn/tr : MTV = S] · |f̂(S)|2.

Now observe that PrM∼Mα
t,n

[∃V ∈ Zαn/tr : MTV = S] is exactly the probability from Lemma 14,

i.e., given S ∈ Znr with kj := 1
t · |{i ∈ [n] : Si = j}| ∈ Z for j ∈ [r − 1] (the number of entries from

S equal to j 6= 0 must be a multiple of t), and defining k :=
∑r−1

j=1 kj , then

Pr
M∼Mα

t,n

[∃V ∈ Zαn/tr : MTV = S] =

(αn/t
k

)(
n
kt

) k!

(kt)!

r−1∏
j=1

(kjt)!

kj !
≤
(αn/t

k

)(
n
kt

) ,

and so

E
M∼Mα

t,n

[‖pM − U‖2tvd] ≤ r2n

|A|2

αn/t∑
k=1

(αn/t
k

)(
n
kt

) ∑
S∈Znr
|S|=kt

|f̂(S)|2.

Similarly to the quantum proof, we shall split the above sum into two parts: one in the range
1 ≤ k < 2rc, and the other in the range 2rc ≤ k ≤ αn/t.

Sum I (1 ≤ k < 2rc): in order to upper bound each term, pick δ = k/(2rc) in Lemma 35, thus

r2n

|A|2
∑
S∈Znr
|S|=kt

|f̂(S)|2 ≤ r2n

|A|2
1

δkt

∑
S∈Znr

δ|S||f̂(S)|2 ≤ 1

δkt

(
rn

|A|

)2rδ/(1+rδ)

≤ 1

δkt

(
rn

|A|

)2rδ

≤

(
21/t2rc

k

)kt
.

By using that c ≤ γ
r ( ε

4

α )1/t(n/t)1−1/t and
(
q
s

)(
`q
`s

)−1 ≤ ( sq )(`−1)s (see [SWY12, Appendix A.5]) for
q = n/t, s = k, ` = t, we therefore have

r2n

|A|2
2rc−1∑
k=1

αk
(n/t
k

)(
n
kt

) ∑
S∈Znr
|S|=kt

|f̂(S)|2 ≤
2rc−1∑
k=1

αk
(
kt

n

)(1−1/t)kt
(

21/t2rc

k

)kt
≤

2rc−1∑
k=1

(
21/t2γε4/t

k1/t

)kt
≤ ε4

2
,

where we used that
(αn/t

k

)
≤ αk

(n/t
k

)
for α ∈ [0, 1] at the beginning and picked γ sufficiently small.
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Sum II (2rc ≤ k ≤ αn/t): first note that the function g(k) :=
(αn/t

k

)
/
(
n
kt

)
is decreasing in the

interval 1 ≤ k ≤ αn/t (since α ≤ 1/2). Hence, by using Parseval’s identity
∑

S∈Znr |f̂(S)|2 = |A|/rn

and the inequality
(
q
s

)(
`q
`s

)−1 ≤ ( sq )(`−1)s (for q = n/t, s = 2m, ` = t) in order to bound g(2rc),

r2n

|A|2

αn/t∑
k=2rc

(αn/t
k

)(
n
kt

) ∑
S∈Znr
|S|=kt

|f̂(S)|2 ≤ 2cg(2rc) ≤ 2cα2rc

(
2rc

n/t

)2(t−1)rc

= 2cα2rc/t

(
2γε4/t

(n/t)1/t

)2(t−1)rc

≤ ε4

2
,

where in the last step we used that c ≥ 1 =⇒ 2(1 − 1/t)c ≥ 1 (so ε2(1−1/t)c ≤ ε) and picked γ
sufficiently small.

Summing both results, if c ≤ γ
r ( ε

4

α )1/t(n/t)1−1/t, then EM∼Mα
t,n

[‖pM−U‖2tvd] ≤ ε4. By Jensen’s

inequality, we finally get EM∼Mα
t,n

[‖pM − U‖tvd] ≤
√
EM∼Mα

t,n
[‖pM − U‖2tvd] ≤ ε2.
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