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Matrix hypercontractivity, streaming algorithms and LDCs:
the large alphabet case
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JOAO F. DORIGUELLO, HUN-REN Alfréd Rényi Institute of Mathematics, Hungary and Centre for

Quantum Technologies, National University of Singapore, Singapore

We prove a hypercontractive inequality for matrix-valued functions defined over large alphabets. In order

to do so, we prove a generalization of the powerful 2-uniform convexity inequality for trace norms of Ball,

Carlen, Lieb (InventionesMathematicae’94). Using our hypercontractive inequality, we present upper and lower

bounds for the communication complexity of the Hidden Hypermatching problem defined over large alphabets.

We then consider streaming algorithms for approximating the value of Unique Games on a hypergraph with

𝑡-size hyperedges. By using our communication lower bound, we show that every streaming algorithm in the

adversarial model achieving an (𝑟 − 𝜀)-approximation of this value requires Ω(𝑛1−2/𝑡 ) quantum space, where

𝑟 is the alphabet size. We next present a lower bound for locally decodable codes (LDC) Z𝑛𝑟 → Z𝑁𝑟 over large

alphabets with recoverability probability at least 1/𝑟 + 𝜀. Using hypercontractivity, we give an exponential

lower bound 𝑁 = 2
Ω (𝜀4𝑛/𝑟 4)

for 2-query (possibly non-linear) LDCs over Z𝑟 and using the non-commutative

Khintchine inequality we prove an improved lower bound of 𝑁 = 2
Ω (𝜀2𝑛/𝑟 2)

.
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1 INTRODUCTION
In this paper we prove new results in two areas of theoretical computer science that have received

a lot of attention recently: streaming algorithms and locally decodable codes.
Streaming algorithms is a model of computation introduced by Alon, Matias, and Szegedy [3]

(for which they won the Gödel Prize in 2005) in order to understand the space complexity of

approximation algorithms to solve problems. In the last decade, there have been several results

in the direction of proving upper and lower bounds for streaming algorithms for combinatorial

optimization problems [4, 16, 20, 21, 31, 36, 46–48, 68]. The goal here is to obtain a 1/𝛾-approximation
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(for some 𝛾 ≤ 1) of the optimum value of the combinatorial optimization problem with as little space
as possible. One favourite problem considered by many works is the well-known Max-Cut problem,

or its generalization over large alphabets Z𝑟 , Unique Games. There is a 2-approximation algorithm

for Max-Cut on 𝑛 vertices using logarithmic space: one simply counts the number of edges in

the graph (which requires only a counter of size 2 log𝑛) and outputs half this count. Moreover,

one can obtain a graph sparsifier using 𝑂 (𝑛/𝜀2) space [2] and, from it, a (1 + 𝜀)-approximation

for the Max-Cut value. On the other hand, a sequence of works [19, 46–48] showed that getting

a (2 − 𝜀)-approximation requires linear space. A similar, but less optimized, phenomenon was

observed for Unique Games, i.e., there is a threshold behaviour in complexity going from 𝑟 to

(𝑟 − 𝜀)-approximation, where 𝑟 is the alphabet size. Curiously, many of these lower bounds were

proven via variants of a problem called Boolean Hidden Matching (BHM) and it is well known that

BHM can be solved using logarithmic quantum space, so a natural question is, could quantum space

help solve these combinatorial optimization problems? One corollary from [46, 64] is that obtaining

the strong (1 + 𝜀)-approximation factor for Max-Cut and Unique Games streaming algorithms is

quantum-hard. However, understanding the space complexity of streaming in the widely-studied,

weaker regime of (2− 𝜀)-approximation (for Max-Cut) or (𝑟 − 𝜀)-approximation (for Unique Games

over Z𝑟 ), it is still unclear whether there could be any savings in the quantum regime.

Locally decodable codes (LDCs) are error correcting codes 𝐶 : Σ𝑛 → Γ𝑁 (for alphabets Σ, Γ) that
allow transmission of information over noisy channels. By querying a few locations of a noisy

codeword 𝐶 (𝑥), one needs to reconstruct an arbitrary coordinate of 𝑥 ∈ Σ𝑛 with probability at

least 1/|Σ| + 𝜀. The main goal in this field is to understand trade-offs between 𝑁 and 𝑛. LDCs have
found several applications in pseudorandom generators, hardness amplification, private information

retrieval schemes, cryptography, and complexity theory (we refer to [34, 73] for detailed expositions).

Despite their ubiquity, LDCs are not well understood, even with the simplest case of 2-query LDCs.
For the case when Σ = Γ = {0, 1}, exponential lower bounds of 𝑁 = 2

Ω (𝑛)
were established over

two decades back [28, 32, 50]. In contrast, a breakthrough result of Dvir and Gopi [27] in 2015

showed how to construct 2-query LDCs with subexponential length in the regime when Σ = {0, 1}
and Γ is a finite field of size 2

𝑛𝑜 (1)
. Despite these results, our knowledge of such 𝑁 and 𝑛 trade-offs

for 2-query LDCs is still lacking, specially for the not very well studied case when Σ = Γ = Z𝑟 .
1

What is the relation between 𝑛 and 𝑁 in this case?

Prior works that handled simpler versions of the questions above used one technical tool success-

fully: hypercontractivity for real-valued functions over the Boolean cube. Since we are concerned

with proving quantum lower bounds for streaming algorithms and LDCs when the input alpha-

bet is Z𝑟 , it leads us to the following main question: Is there a version of hypercontractivity for
matrix-valued functions over Z𝑟 ?

1.1 Our results
Summarizing our main contributions, we first prove a version of hypercontractivity for matrix-

valued functions 𝑓 : Z𝑛𝑟 → C𝑚×𝑚
. The proof of this crucially relies on proving a generalization of

the powerful 2-uniform convexity by Ball, Carlen, and Lieb [5]. Using this new hypercontractivity

theorem, we prove a quantum space lower bound for streaming algorithms. It is easy to see that

obtaining a 2-approximation algorithm for Max-𝑡-Cut on 𝑛 vertices and 𝑡-sized hyperedges in

the classical streaming model can be done in 𝑂 (log𝑛) space, and we show that obtaining a 1.99-

approximation algorithm in the adversarial model requires Ω(𝑛1−2/𝑡 ) quantum space or Ω(𝑛1−1/𝑡 )
classical space. As far aswe are aware, this is the first quantum space lower bound for an optimization

problem. Compared to the prior works of Kapralov, Khanna, and Sudan [46] and of Kapralov and

1
We shall think of an 𝑟 -size alphabet set as the ring Z𝑟 since its structure will be extensively used in our analyses.
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Krachun [48], who obtained an Ω(
√
𝑛) and Ω(𝑛) classical space lower bounds in the random and

adversarial models, respectively, for (2 − 𝜀)-approximation algorithms, our lower bounds apply to

the adversarial model and are derived through significantly simpler proofs. We further generalize

our results to the case of hypergraphs with 𝑡-size hyperedges and vertices taking values over Z𝑟 .
These hypergraphs can naturally be viewed as instances of Unique Games wherein the constraints

are over Z𝑟 . Here again, we prove that obtaining an 𝑟 -approximation algorithm requires 𝑂 (log𝑛)
classical space while a (𝑟 − 𝜀)-approximation algorithm requires Ω(𝑛1−2/𝑡 ) quantum space (hiding

the dependence on 𝑟 and 𝜀).

We next show an 𝑁 = 2
Ω (𝑛/𝑟 2)

lower bound for (even non-linear) LDCs over Z𝑟 . In particular,

for all 𝑟 smaller than

√
𝑛, we prove an exponential in 𝑛 lower bound for LDCs over Z𝑟 . Previous

main results in this direction were by Goldreich et al. [32] for 𝑟 = 2 and linear LDCs, Kerenidis and
de Wolf [50] for 𝑟 = 2 and non-linear LDCs, Wehner and de Wolf [70] for non-linear LDCs from
{0, 1}𝑛 → Z𝑁𝑟 and finally by Dvir and Shpilka [28] for 𝑟 > 2 but linear LDCs. Apart from the result

of [28], we are not aware of any lower bounds for non-linear LDCs from Z𝑛𝑟 → Z𝑁𝑟 , even though

it is a very natural question with connections to other fundamental problems, such as private

information retrieval [32, 49], additive combinatorics [13], and quantum complexity theory [1], to

cite a few. Moreover, the setting of equal alphabets Σ = Γ = Z𝑟 is particularly relevant and natural in
the context of polynomial identity testing and ΣΠΣ circuits, which has been previously considered

by Dvir and Shpilka [28] for linear LDCs. Furthermore, we are not aware of a formal reduction

between LDCs with Σ = {0, 1} and Σ = Z𝑟 , specially with recovery probability 1/|Σ| + 𝜀. Finally,

some past works define LDCs over general Σ with success probability ≥ Pr[wrong output] + 𝜀 [34],
≥ 1/2+ 𝜀 [32] or ≥ 1− 𝜀 [26]. These alternative definitions are encompassed by ours by considering

𝜀 a constant large enough. In the remaining part of the introduction, we describe these contributions

in more detail.

1.2 Matrix hypercontractive inequality (over large alphabets)
Fourier analysis on the Boolean cube. We first discuss the basics of Fourier analysis before stating

our result. Let 𝑓 : {0, 1}𝑛 → R be a function, then the Fourier decomposition of 𝑓 is

𝑓 (𝑥) =
∑

𝑆 ∈{0,1}𝑛
𝑓 (𝑆) (−1)𝑆 ·𝑥 ,

where 𝑆 · 𝑥 =
∑𝑛

𝑖=1 𝑆𝑖𝑥𝑖 ∈ {0, 1} and the Fourier coefficients 𝑓 (𝑆) of 𝑓 are 𝑓 (𝑆) = E𝑥 [𝑓 (𝑥) (−1)𝑆 ·𝑥 ],
the expectation taken over uniformly random 𝑥 ∈ {0, 1}𝑛 . One of the technical tools in the

area of theoretical computer science is the hypercontractivity theorem proven by Bonami and

Beckner [8, 12]. In order to understand the hypercontractivity theorem, we first need to define the

noise operator: for a noise parameter 𝜌 ∈ [−1, 1], let T𝜌 be the operator on the space of functions

𝑓 : {0, 1}𝑛 → R defined as

(T𝜌 𝑓 ) (𝑥) = E
𝑦∼N𝜌 (𝑥)

[𝑓 (𝑦)],

where 𝑦 ∼ N𝜌 (𝑥) denotes that the random string 𝑦 ∈ {0, 1}𝑛 is drawn as 𝑦𝑖 = 𝑥𝑖 with probability

1

2
+ 1

2
𝜌 and as 𝑦𝑖 = 𝑥𝑖 ⊕ 1 with probability

1

2
− 1

2
𝜌 for each 𝑖 ∈ [𝑛] independently. One can show

that the Fourier expansion of T𝜌 𝑓 can be written as (see, e.g., [60, Proposition 2.47])

(T𝜌 𝑓 ) (𝑥) =
∑

𝑆 ∈{0,1}𝑛
𝜌 |𝑆 | 𝑓 (𝑆) (−1)𝑆 ·𝑥 .

One way to intuitively view this expression is that “large-weight” Fourier coefficients are reduced

by an exponential factor while “small-weight” Fourier coefficients remain approximately the same.

Another property of the noise operator is that it is a contraction, i.e., ∥T𝜌 𝑓 ∥𝑝 ≤ ∥ 𝑓 ∥𝑝 for every
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𝑝 ≥ 1, where ∥ 𝑓 ∥𝑝 ≜
(
E𝑥 [|𝑓 (𝑥) |𝑝 ]

)
1/𝑝

is the standard normalized 𝑝-norm of the function 𝑓 . The

main hypercontractivity theorem states that this inequality holds true even if we increase the left-

hand size by a larger norm (meaning that norms under the noise operator are not just contractive,

but hypercontractive), i.e., for every 𝑝 ∈ [1, 2] and 𝜌 ≤ √
𝑝 − 1, we have that ∥T𝜌 𝑓 ∥2 ≤ ∥ 𝑓 ∥𝑝 ,2

which can alternatively be written as

©«
∑

𝑆 ∈{0,1}𝑛
𝜌2 |𝑆 | 𝑓 (𝑆)2ª®¬

1/2

≤ ©« 1

2
𝑛

∑
𝑥 ∈{0,1}𝑛

|𝑓 (𝑥) |𝑝ª®¬
1/𝑝

. (1)

This inequality has found several applications in approximation theory [23, 51], expander graphs [41,

Section 11.5], circuit complexity [54], coding theory [14], quantum computing [30, 55] (for more

applications we refer the reader to [56, 60, 71]). All these applications deal with understanding the

effect of noise on real-valued functions on the Boolean cube.

Generalizations of hypercontractivity. There are two natural generalizations of hypercon-

tractivity: (𝑖) a hypercontractivity statement for arbitrary product probability spaces. In this

direction, it is possible to prove a similar hypercontractive inequality: for every 𝑝 ∈ [1, 2] and
𝑓 ∈ 𝐿2 (Ω1 × · · · × Ω𝑛, 𝜋1 ⊗ · · · ⊗ 𝜋𝑛), we have

∥T𝜌 𝑓 ∥2 ≤ ∥ 𝑓 ∥𝑝 for 𝜌 ≤
√
𝑝 − 1 · 𝜆1/𝑝−1/2, (2)

where 𝜆 is the smallest probability in any of the finite probability spaces (Ω𝑖 , 𝜋𝑖 ) (see [60, Chap-
ter 10]). As a corollary, one gets a hypercontractive inequality for 𝑓 : Z𝑛𝑟 → R; (𝑖𝑖) a hypercontrac-
tivity statement for matrix-valued functions 𝑓 : {0, 1}𝑛 → C𝑚×𝑚

, where the Fourier coefficients

𝑓 (𝑆) = E𝑥 [𝑓 (𝑥) (−1)𝑆 ·𝑥 ] are now𝑚×𝑚 complexmatrices. This was considered by Ben-Aroya, Regev,

and de Wolf [10], who proved a hypercontractivity statement by using the powerful inequality of

Ball, Carlen, and Lieb [5].

However, is there a generalization of hypercontractivity in both directions, i.e., a matrix-valued

hypercontractivity for functions over Z𝑟 ? This is open as far as we are aware and is our first main

technical result.

Result 1 (Theorem 8). For any 𝑓 : Z𝑛𝑟 → C𝑚×𝑚 , 𝑝 ∈ [1, 2], and 𝜌 ≤
√

(𝑝−1) (1−(𝑝−1)𝑟−1)
(𝑟−1) (2−𝑝) ,

©«
∑
𝑆 ∈Z𝑛𝑟

𝜌2 |𝑆 | ∥ 𝑓 (𝑆)∥2𝑝
ª®¬
1/2

≤ ©« 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

∥ 𝑓 (𝑥)∥𝑝𝑝
ª®¬
1/𝑝

, (3)

where ∥𝑀 ∥𝑝 ≜
( ∑

𝑖 𝜎𝑖 (𝑀)𝑝
)
1/𝑝 is the Schatten 𝑝-norm defined from the singular values {𝜎𝑖 (𝑀)}𝑖 of

the matrix𝑀 and |𝑆 | ≜ |{𝑖 ∈ [𝑛] : 𝑆𝑖 ≠ 0}| is the Hamming weight of 𝑆 ∈ Z𝑛𝑟 .

The above result can be seen as an analogue of Equation (1) where the absolute values are

replaced with Schatten norms. We now make a couple of remarks. First, when𝑚 = 1 our result

compares to the one in Equation (2) for 𝑓 : Z𝑛𝑟 → R, but with a slightly worse 𝜌 parameter compared

to the (1/𝑟 )1/𝑝−1/2 factor. Second, for 𝑟 = 2 we recover the same inequality from [10]. To this end,

as in the proof of hypercontractive inequalities [10, 60], our result follows by induction on 𝑛. It

so happens that the base case is the most non-trivial step in the proof. So for now, let us assume

𝑛 = 1, i.e., our goal is to prove Equation (3) for 𝑛 = 1. We now consider two special simple cases of
the inequality.

2
The hypercontractivity theorem can be stated for arbitrary 1 ≤ 𝑝 ≤ 𝑞 and 𝜌 ≤

√
(𝑝 − 1)/(𝑞 − 1) , here we state it for

𝑞 = 2 since we will be concerned with this setting.
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(i) 𝑟 = 2 and C𝑚×𝑚
is replaced with real numbers: in this case, this is the well-known two-point

inequality by Gross [35] used for understanding the Logarithmic Sobolev inequalities. A proof of

this inequality can also be easily viewed from a geometric perspective. As far as we are aware,

there is no generalized 𝑟 -point inequality for 𝑟 > 2.

(ii) 𝑟 = 2 and C𝑚×𝑚
are arbitrary matrices: in this case, we only need to deal with two matrices

𝑓 (0), 𝑓 (1) and Equation (3) is exactly a powerful inequality in functional analysis, called the

2-uniform convexity of trace norms,
3(

∥𝑋 + 𝑌 ∥𝑝𝑝 + ∥𝑋 − 𝑌 ∥𝑝𝑝
2

)
2/𝑝

≥ ∥𝑋 ∥2𝑝 + (𝑝 − 1)∥𝑌 ∥2𝑝 . (4)

This inequality was first proven for certain values of 𝑝 by Tomczak-Jaegermann [65] before being

extended for all 𝑝 ∈ [1, 2] by Ball, Carlen, and Lieb [5] in 1994. Since then it has found several

applications, e.g., an optimal hypercontractivity inequality for Fermi fields [14], regularized convex

optimization [25], and metric embedding [53, 57]. 2-uniform convexity can also be used to prove a

variety of other inequalities, e.g., Khintchine’s inequality [22, 65] and Hoeffding and Bennett-style

bounds [42, 62]. Moreover, the above result could be seen as a corollary of Hanner’s inequality for

matrices [5]

∥𝑋 + 𝑌 ∥𝑝𝑝 + ∥𝑋 − 𝑌 ∥𝑝𝑝 ≥ |∥𝑋 ∥𝑝 + ∥𝑌 ∥𝑝 |𝑝 + |∥𝑋 ∥𝑝 − ∥𝑌 ∥𝑝 |𝑝

(originally proven for Lebesgue spaces 𝐿𝑝 [38]), but, unfortunately, Hanner’s inequality for Schatten

trace ideals is only proven for 1 ≤ 𝑝 ≤ 4/3 and 𝑝 ≥ 4 [5] (see [15] for recent progress on Hanner’s

inequality for matrices). As far as we are aware, a generalization of Equation (4) involving 𝑟 matrices

was unknown.

One contribution in our work is the following generalization of a result from Ball, Carlen, and

Lieb [5] (note it also implies a generalization of the two-point inequality), which we believe may be

of independent interest.

Result 2 (Theorem 6). Let 𝑟 ∈ Z, 𝑟 ≥ 2, 𝜔𝑟 ≜ 𝑒2𝑖𝜋/𝑟 , 𝐴0, . . . , 𝐴𝑟−1 ∈ C𝑛×𝑛 , and 𝑝 ∈ [1, 2], then

©«1𝑟
𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

𝑝
𝑝

ª®¬
2/𝑝

≥ ∥𝐴0∥2𝑝 +
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑘=1

∥𝐴𝑘 ∥2𝑝 .

Once Result 2 is established, the proof of Result 1 is a simple induction argument on 𝑛: for the

base case 𝑛 = 1, Result 1 is exactly Result 2, and proving the induction step requires an application

of Minkowski’s inequality. Since this proof is similar to the one in [10], we omit the details here.

1.3 Application: communication complexity and streaming algorithms
1.3.1 Communication complexity: Hidden Matching and its variants. The Boolean Hidden Matching

(BHM) problem was introduced by Bar-Yossef et al. [6] (which was in turn inspired by Kerenidis

and de Wolf [50] for proving LDC lower bounds) in order to prove exponential separations between

quantum and classical one-way communication complexities. We describe below the generalized

Hidden Matching problem over larger alphabets and hypermatching. Here a hypermatching is a set

of hyperedges without common vertices. The 𝑟 -ary Hidden Hypermatching (𝑟 -HH(𝛼, 𝑡, 𝑛)) problem
is a two-party communication problem between Alice and Bob: Alice is given 𝑥 ∈ Z𝑛𝑟 and Bob is

given a string𝑤 ∈ Z𝛼𝑛/𝑡𝑟 and 𝛼𝑛/𝑡-many disjoint 𝑡-tuples from [𝑛] (where 𝛼 ∈ (0, 1]). The disjoint
𝑡-tuples from [𝑛] can be viewed as hyperedges of size 𝑡 , which, in turn, can also be viewed as an

3
The 2 in 2-uniform convexity comes from a lower bound on the modulus of convexity of the normed space 𝐿𝑝 with

𝑝 ∈ (1, 2] (see [5] for more details) and not from our parameter 𝑟 in Result 1 being equal to 2.

ACM Trans. Comput. Theory, Vol. 16, No. 4, Article 21. Publication date: November 2024.



21:6 Srinivasan Arunachalam and Joao F. Doriguello

incidence matrix𝑀 ∈ {0, 1}𝛼𝑛/𝑡×𝑛 (each row corresponding to a hyperedge). In the YES instance it

is promised that 𝑤 = 𝑀𝑥 (over Z𝑟 ), while in the NO instance it is promised that 𝑤 is uniformly

random, and the goal is to decide which is the case using a message sent from Alice to Bob.

There have been a few lines of work on understanding the problem of Hidden Hypermatching:

(𝑖) the seminal work of Bar-Yossef et al. [6] and Gavinsky et al. [30] showed that, for 𝑟 = 𝑡 = 2,

BHM can be solved using 𝑂 (log𝑛) qubits but requires Ω(
√
𝑛) classical bits of communication; (𝑖𝑖)

Verbin and Yu [68] considered the problem where 𝑟 = 2 and 𝑡 ≥ 2 (which in fact inspired many

follow-up works on using hypermatching for classical streaming lower bounds) and showed a

classical lowed bound of Ω(𝑛1−1/𝑡 ), which was subsequently generalized to a Ω(𝑛1−2/𝑡 ) quantum
lower bound by Shi, Wu, and Yu [64]; (𝑖𝑖𝑖) Guruswami and Tao [36] studied the problem for when

𝑡 = 2 and 𝑟 ≥ 2, proving a classical Ω(
√
𝑛) lower bound; (𝑖𝑣) apart from these, there have been

more exotic generalizations of the Hidden Hypermatching problem, e.g., Kapralov, Khanna, and

Sudan [46] proposed the Boolean Hidden Partition, where Bob does not receive a matching anymore

(a graph made up of pair-wise disjoint edges), but the edges of any graph 𝐺 , and Doriguello and

Montanaro [24] expanded the 2-HH(𝛼, 𝑡, 𝑛) problem to computing a fixed Boolean function on

the hyperedges of Bob’s hypermatching instead of the Parity function. Here we shall consider the

standard Hidden Hypermatching problem over a larger alphabet and give both upper and lower

bounds for its quantum and classical communication complexities for every 𝑡, 𝑟 ≥ 2.

Upper bounds on Hidden Hypermatching. For a given 𝑡 ≥ 2, the same classical communication

protocol for 𝑟 = 2 can be used for general 𝑟 > 2. The idea is that Alice picks 𝑂 ((𝑛/𝛼)1−1/𝑡 ) entries
of 𝑥 uniformly at random to send to Bob. By the Birthday Paradox, with high probability Bob

will obtain all the values from one of his hyperedges 𝑖 , and thus can compare (𝑀𝑥)𝑖 with the

corresponding𝑤𝑖 . If they are equal, he outputs YES, otherwise he outputs NO, which leads to an

one-side error of 𝑂 (1/𝑟 ). The total amount of communication is 𝑂 (log (𝑟𝑛) (𝑛/𝛼)1−1/𝑡 ) bits.4 The
situation is more interesting in the quantum setting. For 𝑡 = 2, we prove that Hidden Hypermatching

can be solved using only a logarithmic amount of qubits for every 𝑟 = poly(𝑛).

Result 3 (Theorem 12). There is a one-way protocol for 𝑟 -HH(𝛼, 2, 𝑛) with one-sided error 1/3
using 𝑂 (log (𝑛𝑟 )/𝛼) qubits.

The above bound uses a non-trivial procedure that allows one to learn the sum of two numbers

modulo 𝑟 by using just one “query” and crucially uses the knowledge of the string 𝑤 : given a

suitable superposition of two numbers, one can obtain their sum with one-sided error by using

one measurement. As far as we are aware, such a statement was not known prior to our work.

However, the knowledge of 𝑤 is vital, which means that the protocol does not work for more

general settings where there is no promise on the inputs (e.g., a relational version of the 𝑟 -ary

Hidden Hypermatching problem where Bob must output one hyperedge 𝑖 and its corresponding

value (𝑀𝑥)𝑖 ), and it also cannot be used as a building block for the general case 𝑡, 𝑟 > 2. The current

upper bound on the quantum communication complexity of the 𝑟 -HH(𝛼, 𝑡, 𝑛) problem with 𝑡, 𝑟 > 2

thus matches the classical one. In view of the lower bounds stated below and the known upper

bound𝑂 (𝑛1−1/⌈𝑡/2⌉ log𝑛) for 𝑟 = 2 [50] (note that ⌈𝑡/2⌉ is the number of quantum queries required

to learn the parity of 𝑡 bits [7, 29]), we make the following conjecture.

Conjecture 1. If 𝑡, 𝑟 > 2, there is a protocol for 𝑟 -HH(𝛼, 𝑡, 𝑛) using𝑂 (log (𝑟𝑛) (𝑛/𝛼)1−1/⌈𝑡/2⌉) qubits.

Lower bounds on Hidden Hypermatching. The standard approach for proving a lower bound on

the amount of communication required to solve the Hidden Hypermatching problem is via Fourier

analysis. In the classical proofs of Gavinsky et al. [30], Verbin and Yu [68], and Guruswami and

4
One can further improve this complexity to𝑂 (log (𝑛 log 𝑟 ) + (log 𝑟 ) · (𝑛/𝛼)1−1/𝑡 ) by Newman’s theorem [58].
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Tao [36], the total variation distance between the probability distributions arising from the YES
and NO instances is bounded using the inequality of Kahn, Kalai, and Linial [44] (which can be

seen as a corollary of the hypercontractivity inequality). On the other hand, Shi, Wu, and Yu [64]

obtained a quantum lower bound by bounding the Schatten 1-norm between the possible density

matrices received by Bob in both YES and NO instances via the matrix-valued hypercontractivity

from Ben-Aroya, Regev, and de Wolf [10]. We follow a similar approach by using our generalized
matrix-valued hypercontractive inequality from Result 1 in order to obtain the following lower

bound (for 𝑟 = 2 our lower bound is exponentially better in 𝛼 than [64]).

Result 4 (Theorem 14, Theorem 39). Every constant-bias protocol for 𝑟 -HH(𝛼, 𝑡, 𝑛) with 𝑡, 𝑟 ≥ 2

requires Ω((𝑛/𝑡)1−2/𝑡/𝛼2/𝑡 ) qubits of communication or Ω((𝑛/𝑡)1−1/𝑡/𝛼1/𝑡 ) bits of communication.

The phase transition from 𝑡 = 2 to 𝑡 > 2 in the quantum communication complexity of 𝑟 -

HH(𝛼, 𝑡, 𝑛) is reminiscent of the well-known fact that parity of 𝑛 bits can be computed exactly

using ⌈𝑛/2⌉ quantum queries [7, 29]: a function requiring more than one query within the same

hyperedge will lead to a large communication complexity since, by design of the Hidden Matching

problem, it is hard to extract information from the same hyperedge more than once.

1.3.2 Streaming lower bounds. One-way communication complexity lower bounds has been used

by several recent works to prove streaming lower bounds [21, 36, 37, 46, 68]. To see this, suppose a

problem 𝑃 has inputs (𝑋,𝑌 ) and the goal is to find space-efficient streaming algorithms to compute

𝑃 (𝑋,𝑌 ), when 𝑋,𝑌 are presented in a stream (i.e., presented bit-by-bit). Then, one way to lower

bound the space complexity is to prove lower bounds on the following problem: consider the

one-way communication problem where Alice gets the input 𝑋 , Bob gets the input 𝑌 , their goal

is to compute 𝑃 (𝑋,𝑌 ) and only Alice is allowed to communicate to Bob. Then one can show that

any lower bound for randomized one-way communication implies an equivalent lower bound

for streaming algorithms. This technique has been used by a sequence of papers to prove lower

bounds on space complexity of Max-Cut [36, 46, 48], matching [31], Max-CSP [20, 21, 37] and

counting cycles [4, 68]. One problem that is used often in this direction is the aforementioned

Boolean Hidden Matching and related variants. Using our classical and quantum communication

lower bounds (Result 4) we present two lower bounds for streaming problems on generalizations

to Max-Cut.

There are a few natural generalizations to Max-Cut. One is Max-𝑡-Cut, i.e., finding the maximum

cut value on a hypergraph with 𝑡-sized hyperedges, to which the Ω(𝑛) classical lower bound
from [48] already applies. Another is the Unique Games problem, a constraint satisfaction problem

defined on a graph, where a linear constraint (a permutation) over Z𝑟 is specified on each edge and

the goal is to find a vertex assignment over Z𝑟 that maximizes the number of satisfied constraints.

When 𝑟 = 2, Unique Games reduces to Max-Cut. Guruswami and Tao [36] studied the streaming

complexity of the Unique Games problem and proved a lower bound of Ω(
√
𝑛) in the adversarial

model by using a reduction from Hidden Matching over Z𝑟 . This bound was improved to Ω(𝑛) by
Chou et al. [19] for a larger set of problems including Unique Games.

Here we join both directions, i.e., Max-𝑡-Cut and the standard Unique Games problem, into a

generalized version of Unique Games defined on a hypergraph and obtain a streaming quantum
lower bound in the adversarial model for any value 𝑡, 𝑟 ≥ 2.

5

Result 5 (Theorem 22). Every streaming algorithm giving a (𝑟 − 𝜀)-approximation for Unique
Games on 𝑡-hyperedge 𝑛-vertex hypergraphs over Z𝑟 uses Ω(𝑛1−2/𝑡 ) quantum space.

5
We note that Kapralov et al. [46] proved a classical lower bound Ω (𝑛1−𝜀 ) for (1 + 𝜀)-approximations of Max-Cut in the

adversarial model and their proof, together with Result 4, readily implies a similar quantum lower bound.
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The above result follows from generalizing the proof of Guruswami and Tao [36]. As far as we

are aware, these are the first quantum lower bounds for Unique Games in the streaming model.

1.4 Locally decodable codes
A locally decodable code (LDC) is an error correcting code that allows to retrieve a single bit of the

original message (with high probability) by only examining a few bits in a corrupted codeword.

More formally, a (𝑞, 𝜀, 𝛿)-LDC was defined by Katz and Trevisan [49] as a function 𝐶 : Z𝑛𝑟 → Z𝑁𝑟
that satisfies the following: for all 𝑥 ∈ Z𝑛𝑟 , 𝑖 ∈ [𝑛] and 𝑦 ∈ Z𝑁𝑟 that satisfies 𝑑 (𝐶 (𝑥), 𝑦) ≤ 𝛿 (i.e.,

a 𝛿-fraction of the elements of 𝐶 (𝑥) are corrupted), there exists an algorithm A that makes 𝑞

queries to 𝑦 non-adaptively and outputs A𝑦 (𝑖) ∈ Z𝑟 such that Pr[A𝑦 (𝑖) = 𝑥𝑖 ] ≥ 1/𝑟 + 𝜀 (where

the probability is over the randomness of A). Over {0, 1}, LDCs have found several applications in

private information retrieval [18], multiparty computation [43], data structures [17], and average-

case complexity theory [66].

The natural question in constructing LDCs is the trade-off between 𝑁 and 𝑛. A well-known

2-query LDC is the Hadamard encoding that maps 𝑥 ∈ Z𝑛𝑟 into the string 𝐶 (𝑥) = (⟨𝑥,𝑦⟩)𝑦∈{0,1}𝑛 :
on input 𝑖 ∈ [𝑛], a decoding algorithm queries 𝐶 (𝑥) at a uniformly random 𝑦 and 𝑦 ⊕ 𝑒𝑖 and

retrieves 𝐶 (𝑥) = ⟨𝑥,𝑦 ⊕ 𝑒𝑖⟩ − ⟨𝑥,𝑦⟩, where 𝑒𝑖 = 0
𝑖−1

10
𝑛−𝑖

. Here the encoding length is 𝑁 = 2
𝑛
, and

an important question is, are there 2-query LDCs with 𝑁 ≪ 2
𝑛
? For the case 𝑟 = 2, Goldreich et

al. [32] showed a lower bound 𝑁 = 2
Ω (𝑛)

for linear codes, which was later improved by Obata [59].

Later, Kerenidis and de Wolf [50] proved an exponential lower bound for non-linear codes using a

quantum argument!
6

This left open the setting where 𝑟 > 2. Following these works, for 2-query non-linear LDCs
𝐶 : {0, 1}𝑛 → Z𝑁𝑟 (note the inputs are over {0, 1} and not Z𝑟 ), Wehner and de Wolf [70] proved

the lower bound 𝑁 = 2
Ω (𝑛/𝑟 2)

. On the other hand, Dvir and Shpilka [28] showed a lower bound of

𝑁 = 2
Ω (𝑛)

for every 2-query linear LDC 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 , even independent of the field size. To prove

their result, they crucially observed that, given a linear LDC over Z𝑟 , one can construct a linear

LDC over {0, 1} (with almost the same parameters) and then invoked the result of Goldreich et

al. [32]. This reduction, however, fails for non-linear codes and motivates the question of whether

there are non-linear LDCs 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 with 𝑁 ≪ 2
𝑛
.

The main contribution here is a lower bound for non-linear LDCs over Z𝑟 that scale as 2Ω (𝑛/𝑟 2)
,

and which gives a super-polynomial lower bound for 𝑟 = 𝑜 (𝑛1/2). Our lower bound comes from

using the non-commutative Khintchine’s inequality [67].
7

Result 6 (Theorem 31). If 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 is a (2, 𝛿, 𝜀)-LDC, then 𝑁 = 2
Ω (𝛿2𝜀2𝑛/𝑟 2) .

We briefly mention that, if one requires the success probability to be larger than, for example,

1/2 + 𝜀 instead of 1/𝑟 + 𝜀, so that plurality vote can be used and the success probability amplified,

then 𝜀 becomes a constant bounded away from 1/𝑟 (if 𝑟 > 2) and our lower bound is no longer

dependent on 𝜀. Moreover, we stress that the success probability is bounded by 1/𝑟 +𝜀, meaning that

the lower bound of Wehner and de Wolf [70] is not directly applicable by restricting the messages to

binary strings. Finally, we remark that in an earlier version of the paper, we proved a similar lower

bound using our matrix-valued hypercontractivity via the proof technique in [10, Theorem 11].

This leads, however, to a weaker bound, 𝑁 = 2
Ω (𝛿2𝜀4𝑛/𝑟 4)

. After our preprint appeared online, we

were made aware of the non-commutative Khintchine’s inequality which leads us to the improved

lower bound of 2
Ω (𝛿2𝜀2𝑛/𝑟 2)

.

6
For simplicity in exposition, we omit the dependence on 𝛿, 𝜀 in these lower bounds.

7
We thank Jop Brië for helping us prove this theorem.
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Further applications (Private information retrieval). Katz and Trevisan [49] and Goldreich et al. [32]
established a nice connection between LDCs and private information retrieval (PIR) protocols. We

do not define these PIR schemes here and refer the reader to Section 6. Using Result 6 and other

auxiliary results, we get the following lower bound for PIR schemes over Z𝑟 when 𝑟 ≥ 2 is prime.

Result 7 (Theorem 36). Let 𝑟 ≥ 2 be prime. A classical 2-server PIR scheme with alphabet Z𝑟 ,
query size 𝑡 , answer size 𝑎, and recovery probability 1/𝑟 + 𝜀 satisfies 𝑡 = Ω

(
𝜀2𝑛/𝑟 4𝑎+6 − 𝑎).

Previous lower bounds on 2-server PIR protocols with alphabet size 𝑟 = 2 include, among

others, 𝑡 = Ω(𝑛𝜀2/25𝑎) [50], 𝑡 = Ω(𝑛𝜀2/22𝑎) [70], and (for a restricted model of 2-server PIR)
𝑡 +𝑎 = Ω(𝑛1/3) [63]. Other bounds in various settings include [9, 33, 74]. We note that Result 7 does

not contradict Dvir andGopi’s [27] 2-server PIR schemewith query size 𝑡 = 𝑛𝑂 (
√
log log𝑛/log𝑛) = 𝑛𝑜 (1)

since it uses answer size 𝑎 = 𝑂 (𝑡), in which case our bound becomes trivial.

After completion of this work. Kallaugher and Parekh [45] recently put out an online preprint

in which they improve our quantum streaming lower bound for Max-𝑡-Cut to Ω(𝑛). As far as we
know, our quantum streaming lower bound for Z𝑟 when 𝑟 > 2 was not known before.

1.5 Future work
1. Proving LDC lower bounds. The first natural open question is, can we prove a lower bound of

𝑁 = 2
Ω (𝑛/𝑟 )

for LDCs over Z𝑟 , or, more ambitiously, prove that 𝑁 = 2
Ω (𝑛)

? As far as we are aware,

there are no super-polynomial lower bounds for 𝑁 even for 𝑟 = 𝜔 (
√
𝑛). Similarly, can one also

prove a lower bound of 𝑁 = 2
Ω (𝑛 log 𝑟 )

for non-linear locally-correctable codes over Z𝑟 (thereby
matching a similar lower bound for linear case [11])?

2. Communication complexity of 𝑟 -ary Hidden Hypermatching. Our communication protocol

behind Result 3 relies on the promise on the inputs, i.e., on the string𝑤 ∈ Z𝛼𝑛/𝑡𝑟 that either satisfies

𝑤 = 𝑀𝑥 or is uniformly random. Is there a protocol with the same complexity which does not

explicitly use𝑤? More generally, what is the communication complexity of a relational version of

the 𝑟 -HH(𝛼, 2, 𝑛) problem in which Bob outputs a hyperedge and the corresponding entry of𝑀𝑥?

Moreover, is it possible to match the quantum lower bounds from Result 4?

3. Better bounds on streaming algorithms.What is the quantum space complexity of approximating

Unique Games? Given the recent work of Kallaugher and Parekh [45], who proved a Ω(𝑛) streaming

lower bound for Max-𝑡-Cut, we conjecture that the same bound applies to Unique Games. A proof

might require obtaining new quantum lower bounds for the communication problems introduced

in [19, 20, 47, 48].

4. Generalized hypercontractivity. Another open question is regarding our main Result 1, which

shows a form of (2, 𝑝)-hypercontractivity, since the result works for all Schatten 𝑝-norms with

𝑝 ∈ [1, 2]. Can we prove a general (𝑞, 𝑝)-hypercontractive statement for matrices, firstly for matrix-

valued functions over {0, 1}, and then further generalize that to functions over Z𝑟 ? Proving this
might also require a different generalization of the inequality of Ball, Carlen, and Lieb [5].

2 PRELIMINARIES
Let [𝑛] ≜ {1, . . . , 𝑛}. For 𝑟 ∈ Z, 𝑟 ≥ 2, we let Z𝑟 ≜ {0, . . . , 𝑟 − 1} be the ring with addition and

multiplication modulo 𝑟 , and let 𝜔𝑟 ≜ 𝑒2𝜋𝑖/𝑟 . Given 𝑆 ∈ Z𝑛𝑟 , we write |𝑆 | ≜ |{𝑖 ∈ [𝑛] : 𝑆𝑖 ≠ 0}|
for its Hamming weight. Let D(C𝑚) be the set of all quantum states over C𝑚 , i.e., the set of

positive semi-definite matrices with trace 1. For a matrix𝑀 ∈ C𝑚×𝑚
, its (unnormalized) Schatten

𝑝-norm is defined as ∥𝑀 ∥𝑝 ≜ (Tr |𝑀 |𝑝 )1/𝑝 =
( ∑𝑚

𝑖=1 𝜎𝑖 (𝑀)𝑝
)
1/𝑝

, where {𝜎𝑖 (𝑀)}𝑖 are the singular
values of 𝑀 , i.e., the eigenvalues of the positive semi-definite operator |𝑀 | ≜

√
𝑀†𝑀 . Moreover,
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let ∥𝑀 ∥ ≜ max𝑖∈[𝑚] 𝜎𝑖 (𝑀) and ∥𝑀 ∥𝐹 ≜
√∑𝑚

𝑖,𝑗=1 |𝑀𝑖 𝑗 |2 be its spectral and Frobenious norms,

respectively (notice that ∥𝑀 ∥ = ∥𝑀 ∥∞). Given a vector 𝑣 ∈ C𝑚 , its 𝑝-norm is ∥𝑣 ∥𝑝 ≜
( ∑𝑚

𝑖=1 |𝑣𝑖 |𝑝
)
1/𝑝

.

Given two probability distributions 𝑃 and 𝑄 on the same finite set, their total variation distance is

∥𝑃 −𝑄 ∥tvd ≜
∑

𝑖 |𝑃 (𝑖) −𝑄 (𝑖) | (we might abuse notation and use random variables instead of their

probability distributions in ∥ · ∥tvd). For a probability 𝑝 = 1/𝑟 + 𝜀 with fixed 𝑟 ∈ Z, we refer to 𝜀 as
its advantage, and to 𝜀𝑟/(𝑟 − 1) as its bias.

The Fourier transform of a matrix-valued function 𝑓 : Z𝑛𝑟 → C𝑚×𝑚
is a function 𝑓 : Z𝑛𝑟 → C𝑚×𝑚

defined by

𝑓 (𝑆) = 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

𝑓 (𝑥)𝜔−𝑆 ·𝑥
𝑟 ,

where 𝑆 · 𝑥 =
∑𝑛

𝑖=1 𝑆𝑖𝑥𝑖 is a sum over Z𝑟 . Here the Fourier coefficients 𝑓 (𝑆) are𝑚 ×𝑚 complex

matrices and we can write 𝑓 : Z𝑛𝑟 → C𝑚×𝑚
as

𝑓 (𝑥) =
∑
𝑆 ∈Z𝑛𝑟

𝑓 (𝑆)𝜔𝑆 ·𝑥
𝑟 .

We shall need the Holevo-Helstrom theorem [40] which characterizes the optimal success

probability of distinguishing between two quantum states.

Fact 2 ([69, Theorem 3.4]). Let 𝜌0, 𝜌1 be two quantum states that appear with probability 𝑝 and
1 − 𝑝 , respectively. The optimal success probability of predicting which state it is by a POVM is

1

2

+ 1

2

∥𝑝𝜌0 − (1 − 𝑝)𝜌1∥1.

We will need the following result derived from the non-commutative Khintchine’s inequality.

Lemma 3. Given 𝐴1, . . . , 𝐴𝑛 ∈ C𝑁×𝑁 , then

E
𝑘∼Z𝑛𝑟

 𝑛∑
𝑖=1

𝜔𝑘𝑖
𝑟 𝐴𝑖

 ≤ 2

√
2 log(2𝑁 )

√√
𝑛∑
𝑖=1

∥𝐴𝑖 ∥2.

Proof. E
𝑘∼Z𝑛𝑟

 𝑛∑
𝑖=1

𝜔𝑘𝑖
𝑟 𝐴𝑖

 = E
𝑘∼Z𝑛𝑟

 𝑛∑
𝑖=1

(
𝜔𝑘𝑖
𝑟 𝐴𝑖 − E

𝑘′∼Z𝑛𝑟

[
𝜔
𝑘′𝑖
𝑟 𝐴𝑖

] )
≤ E

𝑘,𝑘′∼Z𝑛𝑟

 𝑛∑
𝑖=1

(𝜔𝑘𝑖
𝑟 − 𝜔

𝑘′𝑖
𝑟 )𝐴𝑖


= E

𝑘,𝑘′∼Z𝑛𝑟
E

𝜀∼{±1}𝑛

 𝑛∑
𝑖=1

𝜀𝑖 (𝜔𝑘𝑖
𝑟 − 𝜔

𝑘′𝑖
𝑟 )𝐴𝑖


≤ 2 E

𝑘∼Z𝑛𝑟
E

𝜀∼{±1}𝑛

 𝑛∑
𝑖=1

𝜀𝑖𝜔
𝑘𝑖
𝑟 𝐴𝑖


≤ 2

√
2 log(2𝑁 )

√√
𝑛∑
𝑖=1

∥𝐴𝑖 ∥2,

using the non-commutative Khintchine’s inequality [67, Theorem 4.1.1] in the last step. □
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3 HYPERCONTRACTIVE INEQUALITY
In this section we prove our main result, a hypercontractive inequality for matrix-valued functions

over Z𝑟 , generalizing a result from [10]. The proof is by induction on 𝑛 and the base case 𝑛 = 1 is

proven in Section 3.1, which is a generalization of Ball, Carlen, and Lieb [5] when considering 𝑟

matrices. After this, the induction is fairly straightforward and is described in Section 3.2.

3.1 Generalizing Ball, Carlen, and Lieb
We first state the powerful inequality of Ball, Carlen, and Lieb [5, Theorem 1].

Theorem 4 (Optimal 2-uniform convexity). Let 𝐴, 𝐵 ∈ C𝑛×𝑛 , and 𝑝 ∈ [1, 2]. Then(
∥𝐴 + 𝐵∥𝑝𝑝 + ∥𝐴 − 𝐵∥𝑝𝑝

2

)
2/𝑝

≥ ∥𝐴∥2𝑝 + (𝑝 − 1)∥𝐵∥2𝑝 .

As previously mentioned in the introduction, this inequality was first proven by Tomczak-

Jaegermann [65] for 𝑝 ≤ 4/3, before being generalized by Ball, Carlen, and Lieb [5] for all 𝑝 ∈ [1, 2]
in 1994. Since then it has found several applications [14, 25, 53, 57]. The above result can be recast

in a slightly different way.

Theorem 5. Let 𝑝 ∈ [1, 2] and 𝑍,𝑊 ∈ C𝑛×𝑛 such that Tr[|𝑍 |𝑝−2𝑍𝑊 †] = Tr[|𝑍 |𝑝−2𝑊𝑍 †] = 0

(where |𝑍 |𝑝−2 = (𝑍𝑍 †)𝑝/2−1). Then

∥𝑍 +𝑊 ∥2𝑝 ≥ ∥𝑍 ∥2𝑝 + (𝑝 − 1)∥𝑊 ∥2𝑝 .

Theorem 5 is implicit in the proof of [5, Theorem 1], and it is where most of the difficulty lies,

while the reduction from Theorem 4 to Theorem 5 is done by defining

𝑍 =

[
𝐴 0

0 𝐴

]
, 𝑊 =

[
𝐵 0

0 −𝐵

]
.

Nonetheless, Theorem 5 holds more generally for any 𝑍,𝑊 ∈ C𝑛×𝑛 that satisfy Tr[|𝑍 |𝑝−2𝑍𝑊 †] =
Tr[|𝑍 |𝑝−2𝑊𝑍 †] = 0. By using this result, we can prove the following generalization of Theorem 4.

Theorem 6 (A generalization of [5]). Let 𝑟 ∈ Z, 𝑟 ≥ 2. Let 𝜔𝑟 ≜ 𝑒2𝑖𝜋/𝑟 , 𝐴0, . . . , 𝐴𝑟−1 ∈ C𝑛×𝑛 ,
and 𝑝 ∈ [1, 2], then(

1

𝑟

𝑟−1∑
𝑗=0

∥𝐴 𝑗 ∥𝑝𝑝

)
2/𝑝

≥
1𝑟 𝑟−1∑

𝑗=0

𝐴 𝑗

2
𝑝

+ (𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)
(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑘=1

1𝑟 𝑟−1∑
𝑗=0

𝜔
−𝑗𝑘
𝑟 𝐴 𝑗

2
𝑝

, (5a)

©«1𝑟
𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

𝑝
𝑝

ª®¬
2/𝑝

≥ ∥𝐴0∥2𝑝 +
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑘=1

∥𝐴𝑘 ∥2𝑝 . (5b)

Notice that for 𝑟 = 2 we recover Theorem 4, since
(𝑝−1) (1−(𝑝−1)𝑟−1)

(𝑟−1) (2−𝑝) = 𝑝 − 1.

Proof. In order to prove this theorem, first note that both inequalities are equivalent: just define

𝐴′
𝑘
= 1

𝑟

∑𝑟−1
𝑗=0 𝜔

−𝑗𝑘
𝑟 𝐴 𝑗 ⇐⇒ 𝐴𝑘 =

∑𝑟−1
𝑗=0 𝜔

𝑗𝑘
𝑟 𝐴′

𝑗 . Therefore we shall focus on Equation (5b). In order
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to prove it, let us first define the 𝑟𝑛 × 𝑟𝑛 matrices

𝑍 𝑗 ≜ diag({𝜔 𝑗𝑘
𝑟 𝐴 𝑗 }𝑟−1𝑘=0

) =



𝐴 𝑗 0 0 . . . 0

0 𝜔
𝑗
𝑟𝐴 𝑗 0 . . . 0

0 0 𝜔
2𝑗
𝑟 𝐴 𝑗 . . . 0

...
...

...
. . .

...

0 0 0 . . . 𝜔
(𝑟−1) 𝑗
𝑟 𝐴 𝑗


(6)

for 𝑗 ∈ {0, . . . , 𝑟 − 1}. Now, since the trace is additive for block matrices, we have

Tr

�����𝑟−1∑
𝑗=0

𝑍 𝑗

�����𝑝 =

𝑟−1∑
𝑘=0

Tr

�����𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

�����𝑝 . (7)

Moreover, observe that

∥𝑍 𝑗 ∥2𝑝 =

(
𝑟−1∑
𝑘=0

Tr |𝜔 𝑗𝑘
𝑟 𝐴 𝑗 |𝑝

)
2/𝑝

= (𝑟 Tr |𝐴 𝑗 |𝑝 )2/𝑝 = 𝑟 2/𝑝 ∥𝐴 𝑗 ∥2𝑝 .

Therefore we can rewrite Equation (5b) as𝑟−1∑
𝑗=0

𝑍 𝑗

2
𝑝

≥ ∥𝑍0∥2𝑝 +
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑗=1

∥𝑍 𝑗 ∥2𝑝 .

The above can be proven by repeated applications of Theorem 5 as follows: consider a permutation

of [𝑟 − 1] given by (𝑘1, . . . , 𝑘𝑟−1). Since

Tr[|𝑍 𝑗 |𝑝−2𝑍 𝑗𝑍
†
𝑘
] = Tr


|𝐴 𝑗 |𝑝−2𝐴 𝑗𝐴

†
𝑘

0 . . . 0

0 𝜔
𝑗−𝑘
𝑟 |𝐴 𝑗 |𝑝−2𝐴 𝑗𝐴

†
𝑘

. . . 0

...
...

. . .
...

0 0 . . . 𝜔
(𝑟−1) ( 𝑗−𝑘)
𝑟 |𝐴 𝑗 |𝑝−2𝐴 𝑗𝐴

†
𝑘


= Tr[|𝐴 𝑗 |𝑝−2𝐴 𝑗𝐴

†
𝑘
]
𝑟−1∑
ℓ=0

𝜔
ℓ ( 𝑗−𝑘)
𝑟 = 0

for any 𝑗 ≠ 𝑘 (and similarly Tr[|𝑍 𝑗 |𝑝−2𝑍𝑘𝑍
†
𝑗
] = 0), then (define 𝑘0 ≜ 0)

Tr

|𝑍𝑘 𝑗
|𝑝−2𝑍𝑘 𝑗

©«
𝑟−1∑
𝑙=𝑗+1

𝑍𝑘𝑙

ª®¬
† = Tr

|𝑍𝑘 𝑗
|𝑝−2 ©«

𝑟−1∑
𝑙=𝑗+1

𝑍𝑘𝑙

ª®¬𝑍 †
𝑘 𝑗

 = 0

for every 𝑗 ∈ {0, 1, . . . , 𝑟 − 2}, meaning that Theorem 5 can be applied, which implies𝑟−1∑
𝑗=0

𝑍 𝑗

2
𝑝

≥ ∥𝑍0∥2𝑝 + (𝑝 − 1)
𝑟−1∑
𝑗=1

𝑍 𝑗

2
𝑝

≥ ∥𝑍0∥2𝑝 + (𝑝 − 1)∥𝑍𝑘1 ∥2𝑝 + (𝑝 − 1)2
𝑟−1∑
𝑗=2

𝑍𝑘 𝑗

2
𝑝

≥ ∥𝑍0∥2𝑝 +
𝑟−1∑
𝑗=1

(𝑝 − 1) 𝑗 ∥𝑍𝑘 𝑗
∥2𝑝 .
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Averaging the above inequality over all the (𝑟 − 1)! permutations of the set [𝑟 − 1], we obtain𝑟−1∑
𝑗=0

𝑍 𝑗

2
𝑝

≥ ∥𝑍0∥2𝑝 +
1

(𝑟 − 1)!

𝑟−1∑
𝑗=1

∥𝑍 𝑗 ∥2𝑝
𝑟−1∑
𝑘=1

(𝑟 − 2)!(𝑝 − 1)𝑘

= ∥𝑍0∥2𝑝 +
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑗=1

∥𝑍 𝑗 ∥2𝑝 ,

proving our theorem statement. □

Remark 7. It is not hard to see that (𝑝−1) (1−(𝑝−1)𝑟−1)
(𝑟−1) (2−𝑝) ≥ 𝑝−1

𝑟−1 and lim𝑝→2

(𝑝−1) (1−(𝑝−1)𝑟−1)
(𝑟−1) (2−𝑝) = 1.

Observe that 𝑡 ↦→ 𝑡𝑝/2 is concave for 𝑝 ∈ [1, 2], hence Theorem 6 implies the seemingly weaker

1

𝑟

𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

2
𝑝

≥ ∥𝐴0∥2𝑝 +
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝)

𝑟−1∑
𝑘=1

∥𝐴𝑘 ∥2𝑝 (8)

for 𝑝 ∈ [1, 2]. Nonetheless, the above inequality also implies Theorem 6 (this fact was already

pointed out for 𝑟 = 2 by [5]). Indeed, consider again the 𝑟𝑛 × 𝑟𝑛 matrices 𝑍 𝑗 from Equation (6).

Then, similar to Equation (7) (which only considered the ℓ = 0 case below), for any ℓ ∈ Z𝑟 we have

Tr

�����𝑟−1∑
𝑗=0

𝜔
𝑗 ℓ
𝑟 𝑍 𝑗

�����𝑝 =

𝑟−1∑
𝑘=0

Tr

�����𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

�����𝑝 =⇒
𝑟−1∑
𝑗=0

𝜔
𝑗 ℓ
𝑟 𝑍 𝑗

2
𝑝

=
©«
𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

𝑝
𝑝

ª®¬
2/𝑝

.

Since ∥𝑍 𝑗 ∥2𝑝 = 𝑟 2/𝑝 ∥𝐴 𝑗 ∥2𝑝 for 𝑗 ∈ Z𝑟 , Equation (8) implies (define 𝜁 ≜
(𝑝−1) (1−(𝑝−1)𝑟−1)

(𝑟−1) (2−𝑝) for simplicity)

∥𝐴0∥2𝑝 + 𝜁

𝑟−1∑
𝑘=1

∥𝐴𝑘 ∥2𝑝 =
∥𝑍0∥2𝑝
𝑟 2/𝑝

+ 𝜁

𝑟−1∑
𝑘=1

∥𝑍𝑘 ∥2𝑝
𝑟 2/𝑝

≤ 𝑟−2/𝑝

𝑟

𝑟−1∑
ℓ=0

𝑟−1∑
𝑗=0

𝜔
𝑗 ℓ
𝑟 𝑍 𝑗

2
𝑝

=
©«1𝑟

𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝐴 𝑗

𝑝
𝑝

ª®¬
2/𝑝

,

which is exactly Theorem 6.

3.2 Proving (2, 𝑝)-hypercontractive inequality over Z𝑟
Having proven the base case of our main theorem statement, we are now ready to prove our

hypercontractivity theorem for matrix-valued functions over Z𝑟 .

Theorem 8. Let 𝑝 ∈ [1, 2]. For every 𝑓 : Z𝑛𝑟 → C𝑚×𝑚 and

𝜌 ≤

√
(𝑝 − 1) (1 − (𝑝 − 1)𝑟−1)

(𝑟 − 1) (2 − 𝑝) ,

we have ©«
∑
𝑆 ∈Z𝑛𝑟

𝜌2 |𝑆 | ∥ 𝑓 (𝑆)∥2𝑝
ª®¬
1/2

≤ ©« 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

∥ 𝑓 (𝑥)∥𝑝𝑝
ª®¬
1/𝑝

,

where |𝑆 | ≜ |{𝑖 ∈ [𝑛] : 𝑆𝑖 ≠ 0}|.

Proof. For ease of notation, define 𝜁 ≜
(𝑝−1) (1−(𝑝−1)𝑟−1)

(𝑟−1) (2−𝑝) . It suffices to prove the inequality for

𝜌 =
√
𝜁 . Our proof closely follows the one in [10] and is by induction on 𝑛. For 𝑛 = 1, the desired
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statement is ∑
𝑆 ∈Z𝑟

𝜁 |𝑆 | ∥ 𝑓 (𝑆)∥2𝑝 ≤
(
1

𝑟

∑
𝑥 ∈Z𝑟

∥ 𝑓 (𝑥)∥𝑝𝑝

)
2/𝑝

(9)

⇕

∥ 𝑓 (0)∥2𝑝 + 𝜁

𝑟−1∑
𝑘=1

∥ 𝑓 (𝑘)∥2𝑝 ≤ ©«1𝑟
𝑟−1∑
𝑘=0

𝑟−1∑
𝑗=0

𝜔
𝑗𝑘
𝑟 𝑓 ( 𝑗)

𝑝
𝑝

ª®¬
2/𝑝

,

where we used that 𝑓 (𝑘) = ∑𝑟−1
𝑗=0 𝜔

𝑗𝑘
𝑟 𝑓 ( 𝑗). But this is precisely Theorem 6 with 𝐴𝑘 = 𝑓 (𝑘), 𝑘 ∈ Z𝑟 .

We now assume the inequality holds for 𝑛 and prove it for 𝑛 + 1. Let 𝑓 : Z𝑛+1𝑟 → C𝑚×𝑚
and

𝑔𝑖 = 𝑓 |𝑥𝑛+1=𝑖 for 𝑖 ∈ {0, . . . , 𝑟 − 1} be the function obtained by fixing the last coordinate of 𝑓 (·) to 𝑖 .
By the induction hypothesis we have that, for every 𝑖 ∈ {0, . . . , 𝑟 − 1} and 𝑝 ∈ [1, 2],∑

𝑆 ∈Z𝑛𝑟

𝜁 |𝑆 | ∥𝑔𝑖 (𝑆)∥2𝑝 ≤ ©« 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

∥𝑔𝑖 (𝑥)∥𝑝𝑝
ª®¬
2/𝑝

.

We now take the ℓ𝑝 average of each of these 𝑟 inequalities to obtain

©«
1

𝑟

𝑟−1∑
𝑖=0

©«
∑
𝑆 ∈Z𝑛𝑟

𝜁 |𝑆 | ∥𝑔𝑖 (𝑆)∥2𝑝
ª®¬
𝑝/2ª®®¬

2/𝑝

≤ ©«1𝑟
𝑟−1∑
𝑖=0

1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

∥𝑔𝑖 (𝑥)∥𝑝𝑝
ª®¬
2/𝑝

=
©« 1

𝑟𝑛+1

∑
𝑥 ∈Z𝑛+1𝑟

∥ 𝑓 (𝑥)∥𝑝𝑝
ª®¬
2/𝑝

.

(10)

The right-hand side of the inequality above is exactly the right-hand side of the conjectured

hypercontractive inequality. Below, we show how to lower bound the left-hand side of the above

inequality by the desired left-hand side of the conjectured statement. To do so, we will need the

following Minkowski’s inequality.

Lemma 9 (Minkowski’s ineqality, [39, Theorem 26]). For any 𝑟1 × 𝑟2 matrix whose rows are
given by 𝑢1, . . . , 𝑢𝑟1 and whose columns are given by 𝑣1, . . . , 𝑣𝑟2 , and any 1 ≤ 𝑞1 ≤ 𝑞2 ≤ ∞,(∥𝑣1∥𝑞2 , . . . , ∥𝑣𝑟2 ∥𝑞2 )𝑞1 ≥ (∥𝑢1∥𝑞1 , . . . , ∥𝑢𝑟1 ∥𝑞1 )𝑞2 .
Now, consider the 𝑟𝑛 × 𝑟 matrix whose entries are given by 𝑐𝑆,𝑖 = 𝑟𝑛/2

𝜁 |𝑆 |/2𝑔𝑖 (𝑆)

𝑝
for every

𝑖 ∈ {0, . . . , 𝑟 − 1} and 𝑆 ∈ Z𝑛𝑟 . Then the left-hand side of Equation (10) can be written as

©«
1

𝑟

𝑟−1∑
𝑖=0

©«
∑
𝑆 ∈Z𝑛𝑟

𝜁 |𝑆 | ∥𝑔𝑖 (𝑆)∥2𝑝
ª®¬
𝑝/2ª®®¬

1/𝑝

=
©«
1

𝑟

𝑟−1∑
𝑖=0

©« 1

𝑟𝑛

∑
𝑆 ∈Z𝑛𝑟

𝑐2𝑆,𝑖
ª®¬
𝑝/2ª®®¬

1/𝑝

≥ ©« 1

𝑟𝑛

∑
𝑆 ∈Z𝑛𝑟

(
1

𝑟

𝑟−1∑
𝑖=0

𝑐
𝑝

𝑆,𝑖

)
2/𝑝ª®¬

1/2

(Lemma 9 with 𝑞1 = 𝑝 and 𝑞2 = 2)

=
©«
∑
𝑆 ∈Z𝑛𝑟

𝜁 |𝑆 |

(
1

𝑟

𝑟−1∑
𝑖=0

∥𝑔𝑖 (𝑆)
𝑝
𝑝

)
2/𝑝ª®¬

1/2

. (11)
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Now, for a fixed 𝑆 ∈ Z𝑛𝑟 , we use the base case 𝑛 = 1, Equation (9), on the functions ℎ(𝑖) = 𝑔𝑖 (𝑆) in
order to get(

1

𝑟

𝑟−1∑
𝑖=0

∥𝑔𝑖 (𝑆)∥𝑝𝑝

)
2/𝑝

≥
𝑟−1∑
𝑖=0

𝜁 |𝑖 |

1𝑟 𝑟−1∑
𝑗=0

ℎ( 𝑗)𝜔−𝑖 𝑗
𝑟

2
𝑝

=

𝑟−1∑
𝑖=0

𝜁 |𝑖 |

1𝑟 𝑟−1∑
𝑗=0

𝑔 𝑗 (𝑆)𝜔−𝑖 𝑗
𝑟

2
𝑝

.

Plugging this back into Equation (11), we have

©«
∑
𝑆 ∈Z𝑛𝑟

𝜁 |𝑆 |

(
1

𝑟

𝑟−1∑
𝑖=0

∥𝑔𝑖 (𝑆)∥𝑝𝑝

)
2/𝑝ª®¬

1/2

≥ ©«
∑
𝑆 ∈Z𝑛𝑟

𝑟−1∑
𝑖=0

𝜁 |𝑆 |+ |𝑖 |

1𝑟 𝑟−1∑
𝑗=0

𝑔 𝑗 (𝑆)𝜔−𝑖 𝑗
𝑟

2
𝑝

ª®¬
1/2

=
©«

∑
𝑆 ∈Z𝑛+1𝑟

𝜁 |𝑆 | ∥ 𝑓 (𝑆)∥2𝑝
ª®¬
1/2

,

where we used the fact that 𝑔 𝑗 = 𝑓 |𝑥𝑛+1=𝑗 , so, for every 𝑖 ∈ Z𝑟 and 𝑆 ∈ Z𝑛𝑟 , we have that 𝑓 (𝑆, 𝑖) =
1

𝑟

∑𝑟−1
𝑗=0 𝑔 𝑗 (𝑆)𝜔

−𝑖 𝑗
𝑟 . The lower boundwe obtained above is exactly the left-hand side of the conjectured

hypercontractive inequality, which proves the theorem statement. □

Remark 10 (Comparison with hypercontractivity for real numbers). For real functions
𝑓 : Z𝑛𝑟 → R, it is known that [52, 72] (see also [60, Theorem 10.18])

©«
∑
𝑆 ∈Z𝑛𝑟

𝜌2 |𝑆 | |𝑓 (𝑆) |2ª®¬
1/2

≤ ©« 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

|𝑓 (𝑥) |𝑝ª®¬
1/𝑝

,

where 𝜌 ≤
√

(𝑟−1)1−1/𝑝−(𝑟−1)−(1−1/𝑝 )
(𝑟−1)1/𝑝−(𝑟−1)−1/𝑝 . Moreover, this bound on 𝜌 is perfectly sharp, meaning that our

bound 𝜌 ≤
√

(𝑝−1) (1−(𝑝−1)𝑟−1)
(𝑟−1) (2−𝑝) in Theorem 8 can possibly be improved. We note that, for 𝑟 = 2, both

bounds become 𝜌 ≤ √
𝑝 − 1.

4 HIDDEN HYPERMATCHING PROBLEM
In the following, an 𝛼-partial 𝑡-hypermatching 𝑀 ∈ M𝛼

𝑡,𝑛 on 𝑛 vertices is defined as a sequence

of 𝛼𝑛/𝑡 disjoint hyperedges (𝑀1,1, . . . , 𝑀1,𝑡 ), . . . , (𝑀𝛼𝑛/𝑡,1, . . . , 𝑀𝛼𝑛/𝑡,𝑡 ) ∈ [𝑛]𝑡 with 𝑡 vertices each,

whereM𝛼
𝑡,𝑛 is the set of all such hypermatchings. If 𝛼 = 1, we shall write M𝑡,𝑛 .

Definition 11. Let 𝑛, 𝑡 ∈ N be such that 𝑡 |𝑛 and 𝛼 ∈ (0, 1]. In the 𝑟 -ary Hidden Hypermatching
(𝑟 -HH(𝛼, 𝑡, 𝑛)) problem, Alice gets 𝑥 ∈ Z𝑛𝑟 , Bob gets an 𝛼-partial 𝑡-hypermatching 𝑀 ∈ M𝛼

𝑡,𝑛

and a string 𝑤 ∈ Z𝛼𝑛/𝑡𝑟 . The hyperedges of 𝑀 are (𝑀1,1, . . . , 𝑀1,𝑡 ), . . . , (𝑀𝛼𝑛/𝑡,1, . . . , 𝑀𝛼𝑛/𝑡,𝑡 ). Let
𝑀 ∈ {0, 1}𝛼𝑛/𝑡×𝑛 also be the incidence matrix of Bob’s hypermatching. Consider the distributions:

(1) YES distribution DYES, let𝑤 = 𝑀𝑥 (where the matrix product𝑀𝑥 is over Z𝑟 );
(2) NO distribution DNO,𝑤 is uniformly random in Z𝛼𝑛/𝑡𝑟 .

In the 𝑟 -ary Hidden Hypermatching problem, Alice sends a message to Bob who needs to decide with
high probability if𝑤 is drawn from DYES or DNO.

4.1 Quantum protocol for 𝑟 -ary Hidden Hypermatching
For 𝑡 = 2, we obtain a efficient quantum communication protocol to solve the 𝑟 -ary Hidden

Hypermatching problem.
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Theorem 12. Given 𝜀 > 0, there is a protocol for the 𝑟 -HH(𝛼, 2, 𝑛) problem with one-sided error 𝜀
and 𝑂 ( 1

𝛼
log (𝑛𝑟 ) log(1/𝜀)) qubits of communication from Alice to Bob.

Proof. Let𝑀 ∈ M𝛼
2,𝑛

be Bob’s matching with disjoint edges (𝑀1,1, 𝑀1,2), . . . , (𝑀𝛼𝑛/2,1, 𝑀𝛼𝑛/2,2) ∈
[𝑛]2. Alice first sends the following state in C𝑟 ⊗ C𝑛 to Bob,

1

√
𝑛

𝑛∑
𝑖=1

|𝑥𝑖 , 𝑖⟩.

Bob then measures the state with the POVM {𝐸1, . . . , 𝐸𝛼𝑛/2, I −
∑𝛼𝑛/2

𝑖=1
𝐸𝑖 }, where

𝐸𝑖 ≜ |𝑀𝑖,1⟩⟨𝑀𝑖,1 | + |𝑀𝑖,2⟩⟨𝑀𝑖,2 |, ∀𝑖 ∈ [𝛼𝑛/2]

(note that |𝑀𝑖, 𝑗 ⟩ ∈ C𝑛 for 𝑖 ∈ [𝛼𝑛/2], 𝑗 ∈ [2]). With probability 1 − 𝛼 the POVM outputs the final

outcome, and with probability 𝛼 he will obtain a measurement outcome 𝐸𝑖 with 𝑖 ∈ [𝛼𝑛/2] and get

the state

|𝜓 ⟩ ≜ 1

√
2

( |𝑥𝑀𝑖,1
, 𝑀𝑖,1⟩ + |𝑥𝑀𝑖,2

, 𝑀𝑖,2⟩).

By repeating the procedure𝑂 (1/𝛼) times, Bob obtains an outcome 𝑖 ∈ [𝛼𝑛/2] with high probability.

For the ease of notation, we can write 𝑀𝑖,1 = 0 and 𝑀𝑖,2 = 1 (note that Bob knows the values

of both𝑀𝑖,1, 𝑀𝑖,2 explicitly). Bob now attaches a ⌈log
2
𝑟⌉-qubit register in the state |0⟩ to |𝜓 ⟩ and

applies a quantum Fourier transform 𝑄𝑟 over Z𝑟 to it to obtain

|0⟩|𝜓 ⟩ → 1

√
𝑟

𝑟−1∑
𝑘=0

|𝑘⟩|𝜓 ⟩.

From now on we shall consider a parameter ℓ ∈ Z𝑟 to be determined later. Let 𝑋 be the usual

Pauli operator and let 𝑆ℓ and 𝑃 be the shift and phase operators over Z𝑟 defined as 𝑆ℓ |𝑘⟩ = |ℓ − 𝑘⟩
and 𝑃 |𝑘⟩ = 𝜔𝑘

𝑟 |𝑘⟩ for 𝑘 ∈ Z𝑟 . Let 𝐶ℓ ≜ 𝑃𝑆ℓ𝑃 ⊗ 𝑋 . Bob applies the controlled unitary𝑈ℓ defined as

𝑈ℓ |𝑘⟩|𝜓 ⟩ = |𝑘⟩𝐶𝑘
ℓ |𝜓 ⟩ on his state, followed by an inverse quantum Fourier transform𝑄

†
𝑟 on his first

register to get

1

√
𝑟

𝑟−1∑
𝑘=0

𝑈ℓ |𝑘⟩|𝜓 ⟩ =
1

√
𝑟

𝑟−1∑
𝑘=0

|𝑘⟩𝐶𝑘
ℓ |𝜓 ⟩

𝑄
†
𝑟 ⊗I−→ 1

𝑟

𝑟−1∑
𝑗=0

𝑟−1∑
𝑘=0

𝜔
−𝑗𝑘
𝑟 | 𝑗⟩𝐶𝑘

ℓ |𝜓 ⟩.

Let us calculate 𝐶ℓ |𝜓 ⟩ and 𝐶2

ℓ |𝜓 ⟩. We have

𝐶ℓ |𝜓 ⟩ =
1

√
2

(𝑃𝑆ℓ𝑃 ⊗ 𝑋 ) ( |𝑥0, 0⟩ + |𝑥1, 1⟩)

=
1

√
2

(𝑃𝑆ℓ ⊗ I) (𝜔𝑥0
𝑟 |𝑥0, 1⟩ + 𝜔𝑥1

𝑟 |𝑥1, 0⟩)

=
1

√
2

(𝑃 ⊗ I) (𝜔𝑥0
𝑟 |ℓ − 𝑥0, 1⟩ + 𝜔𝑥1

𝑟 |ℓ − 𝑥1, 0⟩)

=
𝜔 ℓ
𝑟√
2

( |ℓ − 𝑥1, 0⟩ + |ℓ − 𝑥0, 1⟩) (12)
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and

𝐶2

ℓ |𝜓 ⟩ =
𝜔 ℓ
𝑟√
2

(𝑃𝑆ℓ𝑃 ⊗ 𝑋 ) ( |ℓ − 𝑥1, 0⟩ + |ℓ − 𝑥0, 1⟩)

=
𝜔 ℓ
𝑟√
2

(𝑃𝑆ℓ ⊗ I) (𝜔 ℓ−𝑥1
𝑟 |ℓ − 𝑥1, 1⟩ + 𝜔 ℓ−𝑥0

𝑟 |ℓ − 𝑥0, 0⟩)

=
𝜔 ℓ
𝑟√
2

(𝑃 ⊗ I) (𝜔 ℓ−𝑥1
𝑟 |𝑥1, 1⟩ + 𝜔 ℓ−𝑥0

𝑟 |𝑥0, 0⟩)

= 𝜔2ℓ
𝑟 |𝜓 ⟩.

We can see from the above that 𝐶2𝑘
ℓ |𝜓 ⟩ = 𝜔2𝑘ℓ

𝑟 |𝜓 ⟩. By defining Δℓ ≜ ℓ − (𝑥0 + 𝑥1) and 𝛿𝑘 = 1 if 𝑘 is

odd and 0 otherwise, Bob’s final state is

1

𝑟

𝑟−1∑
𝑗=0

𝑟−1∑
𝑘=0

𝜔
𝑘 (ℓ−𝑗)
𝑟 | 𝑗⟩ 1

√
2

( |𝑥0 + Δℓ𝛿𝑘 , 0⟩ + |𝑥1 + Δℓ𝛿𝑘 , 1⟩). (13)

Now observe that, if ℓ = 𝑥0 +𝑥1, then𝐶ℓ |𝜓 ⟩ = 𝜔 ℓ
𝑟 |𝜓 ⟩ in Equation (12). This means that Bob’s state in

Equation (13) becomes |𝑥0 + 𝑥1⟩|𝜓 ⟩, and if he measures his first register, he obtains 𝑥0 + 𝑥1 (mod 𝑟 )
with certainty.

On the other hand, if ℓ ≠ 𝑥0+𝑥1, then the probability of measuring the first register and obtaining

the outcome𝑚 ∈ Z𝑟 is

Pr[𝑚] = 1

2𝑟 2

𝑟−1∑
𝑘1,𝑘2=0

𝜔
(ℓ−𝑚) (𝑘1−𝑘2)
𝑟 (⟨𝑥0 + Δℓ𝛿𝑘2 |𝑥0 + Δℓ𝛿𝑘1⟩ + ⟨𝑥1 + Δℓ𝛿𝑘2 |𝑥1 + Δℓ𝛿𝑘1⟩)

=
1

𝑟 2

𝑟−1∑
𝑘1,𝑘2 even

𝜔
(ℓ−𝑚) (𝑘1−𝑘2)
𝑟 + 1

𝑟 2

𝑟−1∑
𝑘1,𝑘2 odd

𝜔
(ℓ−𝑚) (𝑘1−𝑘2)
𝑟

=

�����1𝑟 𝑟−1∑
𝑘 even

𝜔
𝑘 (ℓ−𝑚)
𝑟

�����2 +
�����1𝑟 𝑟−1∑

𝑘 odd

𝜔
𝑘 (ℓ−𝑚)
𝑟

�����2 .
It is not hard to see that the above probability is maximal when𝑚 = ℓ , in which case

Pr[𝑚 = ℓ] = 1

𝑟 2

⌊
𝑟 + 1

2

⌋
2

+ 1

𝑟 2

⌊ 𝑟
2

⌋
2

=

{
1

2
𝑟 even,

1

2
+ 1

2𝑟 2
𝑟 odd.

Given the considerations above, Bob uses the following strategy: he picks ℓ as the corresponding

entry 𝑤𝑖 from 𝑤 ∈ Z𝛼𝑛/2𝑟 given the measured hyperedge (𝑀𝑖,1, 𝑀𝑖,2). If the outcome 𝑚 from

measuring his final state in Equation (13) equals𝑤𝑖 , then he outputs YES, otherwise he outputs NO.

Indeed, in the YES instance,𝑤𝑖 = 𝑥𝑀𝑖,1
+ 𝑥𝑀𝑖,2

and so𝑚 equals𝑤𝑖 with probability 1, while in the

NO instance,𝑚 equals𝑤𝑖 with probability at most
1

2
+ 1

2𝑟 2
. Thus the communication protocol has

one-sided error at most
1

2
+ 1

2𝑟 2
, i.e., Pr[error|YES] = 0 and Pr[error|NO] ≤ 1

2
+ 1

2𝑟 2
. By repeating

the whole protocol 𝑂 (log(1/𝜀)) more times, the one-sided error probability can be decreased to 𝜀:

if in any of the repetitions the final measurement outcome is different from𝑤𝑖 , then Bob knows

that NO is the correct answer. □

4.2 Quantum lower bound on 𝑟 -ary Hidden Hypermatching
In this section we shall turn our attention to proving quantum and classical lower bounds on the

amount of communication required by the 𝑟 -HH(𝛼, 𝑡, 𝑛) problem, but first we need the follow-

ing lemma.
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Lemma 13. Let 𝑓 : Z𝑛𝑟 → D(C2𝑚 ) be any mapping from an 𝑛-bit alphabet to 𝑚-qubit density
matrices. Then for any 𝛿 ∈ [0, 1/(𝑟 − 1)], we have∑

𝑆 ∈Z𝑛𝑟

𝛿 |𝑆 | ∥ 𝑓 (𝑆)∥2
1
≤ 2

2(𝑟−1)𝛿𝑚 .

Proof. Let 𝑝 ≜ 1 + (𝑟 − 1)𝛿 . First note that, given the eigenvalues 𝜎1, . . . , 𝜎2𝑚 from 𝑓 (𝑥), which
are non-negative reals that sum to 1, we have

∥ 𝑓 (𝑥)∥𝑝𝑝 =

2
𝑚∑

𝑖=1

𝜎
𝑝

𝑖
≤

2
𝑚∑

𝑖=1

𝜎𝑖 = 1.

Using Theorem 8 and Remark 7, we now get∑
𝑆 ∈Z𝑛𝑟

(
𝑝 − 1

𝑟 − 1

) |𝑆 |
∥ 𝑓 (𝑆)∥2𝑝 ≤ ©« 1

𝑟𝑛

∑
𝑥 ∈Z𝑛𝑟

∥ 𝑓 (𝑥)∥𝑝𝑝
ª®¬
2/𝑝

≤
(
1

𝑟𝑛
· 𝑟𝑛

)
2/𝑝

= 1.

On the other hand, note 𝑝 ≤ 𝑞 =⇒
(
1

2
𝑚

∑
2
𝑚

𝑖=1 𝜎
𝑝

𝑖

)
1/𝑝 ≤

(
1

2
𝑚

∑
2
𝑚

𝑖=1 𝜎
𝑞

𝑖

)
1/𝑞

by Hölder’s inequality,

hence ∑
𝑆 ∈Z𝑛𝑟

(
𝑝 − 1

𝑟 − 1

) |𝑆 |
2
−2𝑚/𝑝 ∥ 𝑓 (𝑆)∥2𝑝 ≥

∑
𝑆 ∈Z𝑛𝑟

(
𝑝 − 1

𝑟 − 1

) |𝑆 |
2
−2𝑚 ∥ 𝑓 (𝑆)∥2

1
.

Rearranging the inequalities leads to∑
𝑆 ∈Z𝑛𝑟

(
𝑝 − 1

𝑟 − 1

) |𝑆 |
∥ 𝑓 (𝑆)∥2

1
≤ 2

2𝑚 (1−1/𝑝) ≤ 2
2𝑚 (𝑝−1) . □

We are now ready to state and prove our main quantum communication complexity lower bound

for the 𝑟 -ary Hidden Hypermatching problem.

Theorem 14. Any quantum protocol that achieves advantage 𝜀 > 0 for the 𝑟 -HH(𝛼, 𝑡, 𝑛) prob-
lem with 𝑡 ≥ 3 and 𝛼 ≤ min(1/2, (𝑟 − 1)−1/2) requires Ω(𝑟−(1+1/𝑡 ) (𝜀2/𝛼)2/𝑡 (𝑛/𝑡)1−2/𝑡 ) qubits of
communication from Alice to Bob.

Notice that for 𝑟 = 2 our lower bound reads Ω(𝛼−2/𝑡 (𝑛/𝑡)1−2/𝑡 ), which has a better dependence

on 𝛼 compared to the lower bound Ω(log(1/𝛼) (𝑛/𝑡)1−2/𝑡 ) from [64]. Also, see Remark 19 at the

end of the section for an improvement on the requirement 𝛼 ≤ min(1/2, (𝑟 − 1)−1/2).

Proof. Consider an𝑚-qubit communication protocol. An arbitrary𝑚-qubit protocol can be

viewed as Alice sending an encoding of her input 𝑥 ∈ Z𝑛𝑟 into a quantum state so that Bob can

distinguish if his 𝑤 was drawn from DYES
or DNO

. Let 𝜌 : Z𝑛𝑟 → D(C2𝑚 ) be Alice’s encoding
function. For our ‘hard’ distribution, Alice and Bob receive 𝑥 ∈ Z𝑛𝑟 and 𝑀 ∈ M𝛼

𝑡,𝑛 , respectively,

uniformly at random, while Bob’s input𝑤 ∈ Z𝛼𝑛/𝑡𝑟 is drawn from the distribution D ≜ 1

2
DYES +

1

2
DNO

, i.e., with probability 1/2 is comes from DYES
, and with probability 1/2 it comes from DNO

.

Let 𝑝𝑥 ≜ 𝑟−𝑛 , 𝑝𝑀 ≜ |M𝛼
𝑡,𝑛 |−1 and 𝑝𝑤 ≜ 𝑟−𝛼𝑛/𝑡 , then our hard distribution P is

Pr[𝑥, YES, 𝑀,𝑤] = 1

2

𝑝𝑥 · 𝑝𝑀 · [𝑀𝑥 = 𝑤], Pr[𝑥,NO, 𝑀,𝑤] = 1

2

𝑝𝑥 · 𝑝𝑀 · 𝑝𝑤 . (14)

Conditioning on Bob’s input (𝑀,𝑤), from his perspective, Alice sends the message 𝜌 (𝑥) with
probability Pr[𝑥 |𝑀,𝑤]. Therefore, conditioned on an instance of the problem (YES or NO), Bob
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receives one of the following two quantum states 𝜌
𝑀,𝑤

YES and 𝜌
𝑀,𝑤

NO , each appearing with probability

Pr[YES|𝑀,𝑤] and Pr[NO|𝑀,𝑤], respectively,

𝜌
𝑀,𝑤

YES =
∑
𝑥 ∈Z𝑛𝑟

Pr[𝑥 |YES, 𝑀,𝑤] · 𝜌 (𝑥) = 1

Pr[YES, 𝑀,𝑤]
∑
𝑥 ∈Z𝑛𝑟

Pr[𝑥, YES, 𝑀,𝑤] · 𝜌 (𝑥),

𝜌
𝑀,𝑤

NO =
∑
𝑥 ∈Z𝑛𝑟

Pr[𝑥 |NO, 𝑀,𝑤] · 𝜌 (𝑥) = 1

Pr[NO, 𝑀,𝑤]
∑
𝑥 ∈Z𝑛𝑟

Pr[𝑥,NO, 𝑀,𝑤] · 𝜌 (𝑥).
(15)

Bob’s best strategy to determine the distribution of𝑤 conditioning on his input (𝑀,𝑤) is no more

than the chance to distinguish between these two quantum states 𝜌
𝑀,𝑤

YES and 𝜌
𝑀,𝑤

NO .

Now let 𝜀bias be the bias of the protocol that distinguishes between 𝜌
𝑀,𝑤

YES and 𝜌
𝑀,𝑤

NO . According to

Fact 2, the bias 𝜀bias of any quantum protocol for a fixed𝑀 and𝑤 can be upper bounded as

𝜀bias ≤

Pr[YES|𝑀,𝑤] · 𝜌𝑀,𝑤

YES − Pr[NO|𝑀,𝑤] · 𝜌𝑀,𝑤

NO


1
.

We prove in Theorem 15 below that, if𝑚 ≤ 𝛾

𝑟 1+1/𝑡
( 𝜀2
𝛼
)2/𝑡 (𝑛/𝑡)1−2/𝑡 for a universal constant 𝛾 , then

the average bias over𝑀 and𝑤 is at most 𝜀2, i.e.,

E
(𝑀,𝑤)∼P𝑀,𝑤

[𝜀bias] ≤ 𝜀2,

where P𝑀,𝑤 is the marginal distribution of P. Therefore, by Markov’s inequality, for at least a

(1− 𝜀)-fraction of𝑀 and𝑤 , the bias in distinguishing between 𝜌
𝑀,𝑤

YES and 𝜌
𝑀,𝑤

NO is 𝜀-small. Therefore,

Bob’s advantage over randomly guessing the right distribution will be at most 𝜀 (for the event

that𝑀 and𝑤 are such that the distance between 𝜌
𝑀,𝑤

YES and 𝜌
𝑀,𝑤

NO is more than 𝜀) plus 𝜀/2 (for the
advantage over random guessing when 𝜀bias ≤ 𝜀), and so𝑚 = Ω(𝑟−(1+1/𝑡 ) (𝜀2/𝛼)2/𝑡 (𝑛/𝑡)1−2/𝑡 ). □

Theorem 15. For 𝑥 ∈ Z𝑛𝑟 , 𝑀 ∈ M𝛼
𝑡,𝑛 , 𝑤 ∈ Z𝛼𝑛/𝑡𝑟 and 𝑏 ∈ {YES,NO}, consider the probability

distribution P defined in Equation (14). Given an encoding function 𝜌 : Z𝑛𝑟 → D(C2𝑚 ), consider
the quantum states 𝜌𝑀,𝑤

YES and 𝜌𝑀,𝑤

NO from Equation (15). If 𝛼 ≤ min(1/2, (𝑟 − 1)−1/2), then there is a
universal constant 𝛾 > 0 (independent of 𝑛, 𝑡 , 𝑟 and 𝛼), such that, if𝑚 ≤ 𝛾

𝑟 1+1/𝑡
( 𝜀2
𝛼
)2/𝑡 (𝑛/𝑡)1−2/𝑡 for all

𝜀 > 0, then

E
(𝑀,𝑤)∼P𝑀,𝑤

[
Pr[YES|𝑀,𝑤] · 𝜌𝑀,𝑤

YES − Pr[NO|𝑀,𝑤] · 𝜌𝑀,𝑤

NO


1

]
≤ 𝜀2 .

Proof. For the ease of notation, we shall write

𝜀bias ≜ E
(𝑀,𝑤)∼P𝑀,𝑤

[
Pr[YES|𝑀,𝑤] · 𝜌𝑀,𝑤

YES − Pr[NO|𝑀,𝑤] · 𝜌𝑀,𝑤

NO


1

]
.

Therefore, we have that

𝜀bias =
∑

𝑀 ∈M𝛼
𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

Pr[𝑀,𝑤] ·

Pr[YES|𝑀,𝑤] · 𝜌𝑀,𝑤

YES − Pr[NO|𝑀,𝑤] · 𝜌𝑀,𝑤

NO


1

=
∑

𝑀 ∈M𝛼
𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

 ∑
𝑥 ∈Z𝑛𝑟

(
Pr[𝑥, YES, 𝑀,𝑤] · 𝜌 (𝑥) − Pr[𝑥,NO, 𝑀,𝑤] · 𝜌 (𝑥)

)
1

(Equation (15) and conditional probability)

=
∑

𝑀 ∈M𝛼
𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

 ∑
𝑥 ∈Z𝑛𝑟

1

2

𝑝𝑥 · 𝑝𝑀
( [
𝑀𝑥 = 𝑤

]
− 𝑝𝑤

)
𝜌 (𝑥)


1

(Equation (14))
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=
∑

𝑀 ∈M𝛼
𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

 ∑
𝑥 ∈Z𝑛𝑟

1

2

𝑝𝑥 · 𝑝𝑀
( [
𝑀𝑥 = 𝑤

]
− 𝑝𝑤

)
·
∑
𝑆 ∈Z𝑛𝑟

𝜌 (𝑆)𝜔𝑆 ·𝑥
𝑟


1

(Fourier decomposition of 𝜌)

=
∑

𝑀 ∈M𝛼
𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

 ∑
𝑆 ∈Z𝑛𝑟

𝑢 (𝑀,𝑤, 𝑆)𝜌 (𝑆)

1

≤
∑
𝑆 ∈Z𝑛𝑟

∑
𝑀 ∈M𝛼

𝑡,𝑛

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

|𝑢 (𝑀,𝑤, 𝑆) | · ∥𝜌 (𝑆)∥1,

where we defined

𝑢 (𝑀,𝑤, 𝑆) ≜ 1

2

∑
𝑥 ∈Z𝑛𝑟

𝑝𝑥 · 𝑝𝑀 · 𝜔𝑆 ·𝑥
𝑟

( [
𝑀𝑥 = 𝑤

]
− 𝑝𝑤

)
. (16)

Next, we upper bound the quantity 𝑢 (𝑀,𝑤, 𝑆) using the lemma below. In the following lemma,

let 𝐼 (𝑀) = ⋃
𝑖∈[𝛼𝑛/𝑡 ], 𝑗 ∈[𝑡 ]{𝑀𝑖, 𝑗 } be the set of indices of the 𝛼-partial matching𝑀 ∈ M𝛼

𝑛,𝑡 . Moreover,

we shall write 𝑆 |𝑀𝑖
= 𝑆𝑀𝑖,1

𝑆𝑀𝑖,2
. . . 𝑆𝑀𝑖,𝑡

∈ Z𝑡𝑟 to denote the string 𝑆 restricted to the hyperedge

𝑀𝑖 = (𝑀𝑖,1, . . . , 𝑀𝑖,𝑡 ), where 𝑆𝑀𝑖,𝑗
is the𝑀𝑖, 𝑗 -th entry of 𝑆 . The same applies to 𝑥 ∈ Z𝑛𝑟 .

Lemma 16. Let𝑀 ∈ M𝛼
𝑡,𝑛 and 𝐼 (𝑀) = ⋃

𝑖∈[𝛼𝑛/𝑡 ], 𝑗 ∈[𝑡 ]{𝑀𝑖, 𝑗 }. Define the set
Δ(𝑀) = {𝑆 ∈ Z𝑛𝑟 \ {0𝑛} | 𝑆𝑀𝑖,1

= 𝑆𝑀𝑖,2
= · · · = 𝑆𝑀𝑖,𝑡

∀𝑖 ∈ [𝛼𝑛/𝑡] and 𝑆 𝑗 = 0 ∀𝑗 ∉ 𝐼 (𝑀)}.

Given 𝑢 (𝑀,𝑤, 𝑆) as defined in Equation (16) for 𝑤 ∈ Z𝛼𝑛/𝑡𝑟 and 𝑆 ∈ Z𝑛𝑟 , we have 𝑢 (𝑀,𝑤, 𝑆) =
1

2
· 𝑟−𝛼𝑛/𝑡 · 𝑝𝑀 if 𝑆 ∈ Δ(𝑀) and 0 if 𝑆 ∉ Δ(𝑀).
Proof. Recall the definition of 𝑢:

𝑢 (𝑀,𝑤, 𝑆) = 1

2

∑
𝑥 ∈Z𝑛𝑟

𝑝𝑥 · 𝑝𝑀 · 𝜔𝑆 ·𝑥
𝑟

( [
𝑀𝑥 = 𝑤

]
− 𝑝𝑤

)
.

In order to understand this expression, we start with the following:∑
𝑥 ∈Z𝑛𝑟

𝜔𝑆 ·𝑥
𝑟

[
𝑀𝑥 = 𝑤

]
=

∑
𝑥 ∈Z𝑛𝑟

𝜔𝑆 ·𝑥
𝑟

𝛼𝑛/𝑡∏
𝑖=1

[(𝑀𝑥)𝑖 = 𝑤𝑖 ]

=
∑
𝑥 ∈Z𝑛𝑟

𝜔𝑆 ·𝑥
𝑟

𝛼𝑛/𝑡∏
𝑖=1

[
𝑡∑
𝑗=1

𝑥𝑀𝑖,𝑗
= 𝑤𝑖

]

=
∑
𝑥 ∈Z𝑛𝑟

©«
∏

𝑗∉𝐼 (𝑀)
𝜔
𝑆 𝑗𝑥 𝑗

𝑟
ª®¬
(
𝛼𝑛/𝑡∏
𝑖=1

𝜔
𝑆 |𝑀𝑖

·𝑥 |𝑀𝑖
𝑟

[
𝑡∑
𝑗=1

𝑥𝑀𝑖,𝑗
= 𝑤𝑖

])

=
©«

∏
𝑗∉𝐼 (𝑀)

∑
𝑥 ∈Z𝑟

𝜔
𝑆 𝑗𝑥
𝑟

ª®¬ ©«
𝛼𝑛/𝑡∏
𝑖=1

∑
𝑥 ∈Z𝑡𝑟

𝜔
𝑆 |𝑀𝑖

·𝑥
𝑟

[
𝑡∑
𝑗=1

𝑥 𝑗 = 𝑤𝑖

]ª®¬ (Relabelling 𝑥 ∈ Z𝑛𝑟 )

= 𝑟𝑛 (1−𝛼) [𝑆 𝑗 = 0 ∀𝑗 ∉ 𝐼 (𝑀)]
𝛼𝑛/𝑡∏
𝑖=1

∑
𝑥 ∈Z𝑡𝑟

𝜔
𝑆 |𝑀𝑖

·𝑥
𝑟

[
𝑡∑
𝑗=1

𝑥 𝑗 = 𝑤𝑖

]
.

Now we use that

∑𝑡
𝑗=1 𝑥 𝑗 = 𝑤𝑖 =⇒ 𝑥𝑡 = 𝑤𝑖 −

∑𝑡−1
𝑗=1 𝑥 𝑗 modulo 𝑟 , so that

𝑆 |𝑀𝑖
· 𝑥 =

𝑡∑
𝑗=1

𝑆𝑀𝑖,𝑗
𝑥 𝑗 =

𝑡−1∑
𝑗=1

𝑆𝑀𝑖,𝑗
𝑥 𝑗 + 𝑆𝑀𝑖,𝑡

(
𝑤𝑖 −

𝑡−1∑
𝑗=1

𝑥 𝑗

)
= 𝑆𝑀𝑖,𝑡

𝑤𝑖 +
𝑡−1∑
𝑗=1

(𝑆𝑀𝑖,𝑗
− 𝑆𝑀𝑖,𝑡

)𝑥 𝑗
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modulo 𝑟 . This leads to (assuming that 𝑆 𝑗 = 0 for all 𝑗 ∉ 𝐼 (𝑀))∑
𝑥 ∈Z𝑛𝑟

𝜔𝑆 ·𝑥
𝑟

[
𝑀𝑥 = 𝑤

]
= 𝑟𝑛 (1−𝛼)

𝛼𝑛/𝑡∏
𝑖=1

𝜔
𝑆𝑀𝑖,𝑡

𝑤𝑖

𝑟

∑
𝑥 ∈Z𝑡−1𝑟

𝜔

∑𝑡−1
𝑗=1 (𝑆𝑀𝑖,𝑗

−𝑆𝑀𝑖,𝑡
)𝑥 𝑗

𝑟 =
𝑟𝑛

𝑟𝛼𝑛/𝑡

𝛼𝑛/𝑡∏
𝑖=1

𝜔
𝑆𝑀𝑖,𝑡

𝑤𝑖

𝑟 (17)

if, for all 𝑖 ∈ [𝛼𝑛/𝑡], 𝑆𝑀𝑖,𝑗
is constant for all 𝑗 ∈ [𝑡], i.e., if 𝑆𝑀𝑖,1

= 𝑆𝑀𝑖,2
= · · · = 𝑆𝑀𝑖,𝑡

for all 𝑖 ∈ [𝛼𝑛/𝑡].
Otherwise the above expression is 0. Thus, if 𝑆𝑀𝑖,1

= 𝑆𝑀𝑖,2
= · · · = 𝑆𝑀𝑖,𝑡

for all 𝑖 ∈ [𝛼𝑛/𝑡] and 𝑆 𝑗 = 0

for 𝑗 ∉ 𝐼 (𝑀), then we can use Equation (17) to get (remember that 𝑝𝑥 ≜ 𝑟−𝑛 and 𝑝𝑤 ≜ 𝑟−𝛼𝑛/𝑡 )

|𝑢 (𝑀,𝑤, 𝑆) | = 1

2

������ ∑𝑥 ∈Z𝑛𝑟 𝑝𝑥𝑝𝑀𝜔𝑆 ·𝑥
𝑟

( [
𝑀𝑥 = 𝑤

]
− 𝑝𝑤

) ������ = 𝑝𝑀

2𝑟𝛼𝑛/𝑡

�����𝛼𝑛/𝑡∏
𝑖=1

𝜔
𝑆𝑀𝑖,𝑡

𝑤𝑖

𝑟 − [𝑆 = 0
𝑛]

�����
=

{
0 if 𝑆 = 0

𝑛,
1

2
𝑟−𝛼𝑛/𝑡𝑝𝑀 if 𝑆 ≠ 0

𝑛 .

Hence, we have

|𝑢 (𝑀,𝑤, 𝑆) | =


0 if 𝑆 = 0

𝑛,
1

2
𝑟−𝛼𝑛/𝑡𝑝𝑀 if 𝑆𝑀𝑖,1

= 𝑆𝑀1,2
= · · · = 𝑆𝑀𝑖,𝑡

∀𝑖 ∈ [𝛼𝑛/𝑡] and 𝑆 𝑗 = 0 ∀𝑗 ∉ 𝐼 (𝑀),
0 otherwise,

proving the lemma statement □

We now proceed to upper bound 𝜀bias using the expression for |𝑢 (𝑀,𝑤, 𝑆) | from Lemma 16. For

𝑆 ∈ Z𝑛𝑟 , let |𝑆 | ≜ |{𝑖 ∈ [𝑛] : 𝑆𝑖 ≠ 0}|. Notice that, if 𝑆 ∈ Δ(𝑀), then |𝑆 | = 𝑘𝑡 for some 𝑘 ∈ [𝛼𝑛/𝑡].
Hence, we have that

𝜀bias ≤
1

2

∑
𝑆 ∈Z𝑛𝑟

∑
𝑀 ∈M𝛼

𝑡,𝑛

𝑆 ∈Δ(𝑀)

𝑝𝑀

∑
𝑤∈Z𝛼𝑛/𝑡𝑟

1

𝑟𝛼𝑛/𝑡
∥𝜌 (𝑆)∥1 =

1

2

𝛼𝑛/𝑡∑
𝑘=1

∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

∑
𝑀 ∈M𝛼

𝑡,𝑛

𝑆 ∈Δ(𝑀)

𝑝𝑀 ∥𝜌 (𝑆)∥1

=
1

2

𝛼𝑛/𝑡∑
𝑘=1

∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

Pr

𝑀∼M𝛼
𝑡,𝑛

[𝑆 ∈ Δ(𝑀)] · ∥𝜌 (𝑆)∥1,

using that ∑
𝑀 ∈M𝛼

𝑡,𝑛 :𝑆 ∈Δ(𝑀)
𝑝𝑀 = Pr

𝑀∼M𝛼
𝑡,𝑛

[𝑆 ∈ Δ(𝑀)] .

We now upper bound this probability using the following lemma.

Lemma 17. Let 𝑡 ∈ Z. Let 𝑆 ∈ Z𝑛𝑟 with 𝑘 𝑗 ≜ 1

𝑡
· |{𝑖 ∈ [𝑛] : 𝑆𝑖 = 𝑗}| ∈ Z for 𝑗 ∈ {1, . . . , 𝑟 − 1}. Let

𝑘 ≜
∑𝑟−1

𝑗=1 𝑘 𝑗 . For any𝑀 ∈ M𝛼
𝑡,𝑛 , let Δ(𝑀) be the set from Lemma 16. Then

Pr

𝑀∼M𝛼
𝑡,𝑛

[𝑆 ∈ Δ(𝑀)] =
(𝛼𝑛/𝑡

𝑘

)(
𝑛
𝑘𝑡

) 𝑘!

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

.

Proof. We can assume without loss of generality that 𝑆 = 1
𝑘1𝑡

2
𝑘2𝑡 . . . (𝑟 − 1)𝑘𝑟−1𝑡0𝑛−𝑘𝑡 . First

note that the total number |M𝛼
𝑡,𝑛 | of 𝛼-partial hypermatchings is 𝑛!/

(
(𝑡 !)𝛼𝑛/𝑡 (𝛼𝑛/𝑡)!(𝑛 − 𝛼𝑛)!

)
.

This can be seen as follows: pick a permutation of 𝑛, view the first 𝛼𝑛/𝑡 tuples of length 𝑡 as 𝛼𝑛/𝑡
hyperedges, and ignore the ordering within each hyperedge, the ordering of the 𝛼𝑛/𝑡 hyperedges
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and the ordering of the last 𝑛 − 𝛼𝑛 vertices. Now, given our particular 𝑆 , notice that 𝑆 ∈ Δ(𝑀) if,
for 𝑗 ∈ [𝑟 − 1],𝑀 has exactly 𝑘 𝑗 hyperedges in{

1 + 𝑡

𝑗−1∑
𝑖=1

𝑘𝑖 , 2 + 𝑡

𝑗−1∑
𝑖=1

𝑘𝑖 , 3 + 𝑡

𝑗−1∑
𝑖=1

𝑘𝑖 , . . . , (𝑘 𝑗 − 1) + 𝑡

𝑗−1∑
𝑖=1

𝑘𝑖 , 𝑡

𝑗∑
𝑖=1

𝑘𝑖

}
,

i.e., 𝑘1 hyperedges in {1, . . . , 𝑘1𝑡}, 𝑘2 hyperedges in {𝑘1𝑡 + 1, . . . , (𝑘2 + 𝑘1)𝑡}, etc., and also 𝛼𝑛/𝑡 − 𝑘

hyperedges in [𝑛] \ [𝑘𝑡]. The number of ways to pick 𝑘 𝑗 hyperedges in

{
1 + 𝑡

∑𝑗−1
𝑖=1

𝑘𝑖 , . . . , 𝑡
∑𝑗

𝑖=1
𝑘𝑖

}
is (𝑘 𝑗𝑡)!/((𝑡 !)𝑘 𝑗𝑘 𝑗 !). The number of ways to pick the remaining 𝛼𝑛/𝑡 − 𝑘 hyperedges in [𝑛] \ [𝑘𝑡]
is (𝑛 − 𝑘𝑡)!/((𝑡 !)𝛼𝑛/𝑡−𝑘 (𝛼𝑛/𝑡 − 𝑘)!(𝑛 − 𝛼𝑛)!). Hence Pr𝑀∼M𝛼

𝑡,𝑛
[𝑆 ∈ Δ(𝑀)] equals

(𝑛−𝑘𝑡 )!
(𝑡 !)𝛼𝑛/𝑡−𝑘 (𝛼𝑛/𝑡−𝑘)!(𝑛−𝛼𝑛)!

𝑛!

(𝑡 !)𝛼𝑛/𝑡 (𝛼𝑛/𝑡 )!(𝑛−𝛼𝑛)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
(𝑡 !)𝑘 𝑗𝑘 𝑗 !

=
(𝑛 − 𝑘𝑡)!(𝛼𝑛/𝑡)!
𝑛!(𝛼𝑛/𝑡 − 𝑘)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

=

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) 𝑘!

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

. □

Using Lemma 17 and the notation |𝑆 |𝑖 ≜ |{ 𝑗 ∈ [𝑛] : 𝑆 𝑗 = 𝑖}|, we continue bounding 𝜀bias as

𝜀bias ≤
1

2

𝛼𝑛/𝑡∑
𝑘=1

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) ∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

∑
𝑆 ∈Z𝑛𝑟

|𝑆 |𝑖=𝑘𝑖𝑡, 𝑖∈[𝑟−1]

𝑘!

(𝑘𝑡)!

(
𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

)
∥𝜌 (𝑆)∥1

≤ 1

2

𝛼𝑛/𝑡∑
𝑘=1

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) √√√√√√√ ∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

∑
𝑆 ∈Z𝑛𝑟

|𝑆 |𝑖=𝑘𝑖𝑡, 𝑖∈[𝑟−1]

𝑘!2

(𝑘𝑡)!2
𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!2
𝑘 𝑗 !

2

√√√√ ∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

∑
𝑆 ∈Z𝑛𝑟

|𝑆 |𝑖=𝑘𝑖𝑡, 𝑖∈[𝑟−1]

∥𝜌 (𝑆)∥2
1

(Cauchy-Schwarz)

≤ 1

2

𝛼𝑛/𝑡∑
𝑘=1

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) √√√√√√√ ∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

∑
𝑆 ∈Z𝑛𝑟

|𝑆 |𝑖=𝑘𝑖𝑡, 𝑖∈[𝑟−1]

𝑘!2

(𝑘𝑡)!2
𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!2
𝑘 𝑗 !

2

√√√ ∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

∥𝜌 (𝑆)∥2
1

=
1

2

𝛼𝑛/𝑡∑
𝑘=1

(𝛼𝑛/𝑡
𝑘

)√(
𝑛
𝑘𝑡

)
√√√√√√√ ∑

𝑘1,...,𝑘𝑟−1≥0∑𝑟−1
𝑗=1 𝑘 𝑗=𝑘

𝑘!2

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

2

√√√ ∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

∥𝜌 (𝑆)∥2
1
,

where the last equality uses

∑
𝑆 ∈Z𝑛𝑟 : |𝑆 |𝑖=𝑘𝑖𝑡 1 =

(
𝑛
𝑘𝑡

)
(𝑘𝑡)!∏𝑟−1

𝑗=1
1

(𝑘 𝑗 𝑡 )! . Since∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

𝑘!2

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

2
=

∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

(
𝑘

𝑘1,...,𝑘𝑟−1

)2(
𝑘𝑡

𝑘1𝑡,...,𝑘𝑟−1𝑡

) ≤
∑

𝑘1,...,𝑘𝑟−1≥0∑𝑟−1
𝑗=1 𝑘 𝑗=𝑘

(
𝑘

𝑘1, . . . , 𝑘𝑟−1

)
= (𝑟 − 1)𝑘 , (18)

where the last equality follows from the the multinomial theorem, then

2𝜀bias ≤
𝛼𝑛/𝑡∑
𝑘=1

𝛼𝑘

(𝑛/𝑡
𝑘

)√(
𝑛
𝑘𝑡

) (𝑟 − 1)𝑘/2
√ ∑

𝑆 ∈Z𝑛𝑟 : |𝑆 |=𝑘𝑡
∥𝜌 (𝑆)∥2

1
,

where we also used that

(𝛼𝑛/𝑡
𝑘

)
≤ 𝛼𝑘

(𝑛/𝑡
𝑘

)
for 𝛼 ∈ [0, 1]. In order to compute the above sum, we shall

split it into two parts: one in the range 1 ≤ 𝑘 < 4𝑟𝑚, and the other in the range 4𝑟𝑚 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 .
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Sum I (1 ≤ 𝑘 < 4𝑟𝑚): in order to upper bound each term, pick 𝛿 = 𝑘/(4𝑟𝑚) in Lemma 13, so∑
𝑆 ∈Z𝑛𝑟 : |𝑆 |=𝑘𝑡

∥𝜌 (𝑆)∥2
1
≤ 1

𝛿𝑘𝑡

∑
𝑆 ∈Z𝑛𝑟

𝛿 |𝑆 | ∥ 𝑓 (𝑆)∥2
1
≤ 1

𝛿𝑘𝑡
2
2𝑟𝛿𝑚 =

(
2
1/(2𝑡 )

4𝑟𝑚

𝑘

)𝑘𝑡
.

By using that𝑚 ≤ 𝛾

𝑟 1+1/𝑡
( 𝜀2
𝛼
)2/𝑡 (𝑛/𝑡)1−2/𝑡 and

(
𝑞
𝑠

)
2
(
ℓ𝑞
ℓ𝑠

)−1 ≤ ( 𝑠
𝑞
) (ℓ−2)𝑠 (see [64, Appendix A.5]) for

𝑞 = 𝑛/𝑡, 𝑠 = 𝑘, ℓ = 𝑡 , we thus have

4𝑟𝑚−1∑
𝑘=1

𝛼𝑘

(𝑛/𝑡
𝑘

)√(
𝑛
𝑘𝑡

) (𝑟 − 1)𝑘/2
√ ∑

𝑆 ∈Z𝑛𝑟 : |𝑆 |=𝑘𝑡
∥𝜌 (𝑆)∥2

1
≤

4𝑟𝑚−1∑
𝑘=1

𝛼𝑘 (𝑟 − 1)𝑘/2
(
𝑘𝑡

𝑛

) (1−2/𝑡 )𝑘𝑡/2 (
2
1/(2𝑡 )

4𝑟𝑚

𝑘

)𝑘𝑡/2
≤

4𝑟𝑚−1∑
𝑘=1

𝛼𝑘 (𝑟 − 1)𝑘/2
(
2
1/(2𝑡 )

4𝛾𝜀4/𝑡

𝛼2/𝑡𝑟 1/𝑡𝑘2/𝑡

)𝑘𝑡/2
≤

4𝑟𝑚−1∑
𝑘=1

(
2
1/4 (4𝛾)𝑡/2𝜀2

𝑘

)𝑘
≤ 𝜀2

for sufficiently small 𝛾 .

Sum II (4𝑟𝑚 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 ): first we note that the function 𝑔(𝑘) ≜ 𝛼𝑘 (𝑟 − 1)𝑘/2
(𝑛/𝑡
𝑘

)
/
√(

𝑛
𝑘𝑡

)
is

non-increasing in the interval 1 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 ≤ 𝑛/(2𝑡). That is because 𝛼
√
𝑟 − 1 ≤ 1, and so

𝑔(𝑘 − 1)
𝑔(𝑘) ≥

(𝑛/𝑡
𝑘−1

)√(
𝑛

𝑘𝑡−𝑡
)
√(

𝑛
𝑘𝑡

)(𝑛/𝑡
𝑘

) =

√√√
𝑘𝑡

𝑛 − 𝑘𝑡 + 𝑡

𝑡−1∏
𝑗=1

𝑛 − 𝑘𝑡 + 𝑗

𝑘𝑡 − 𝑗
≥

√√√
𝑘𝑡

𝑛 − 𝑘𝑡 + 𝑡

𝑡−1∏
𝑗=1

𝑛 − 𝑘𝑡 + 𝑗 + 1

𝑘𝑡 − 𝑗 + 1

=

√√√ 𝑡−2∏
𝑗=1

𝑛 − 𝑘𝑡 + 𝑗 + 1

𝑘𝑡 − 𝑗
≥ 1,

where we used that
𝑎
𝑏
≥ 𝑎+𝑠

𝑏+𝑠 for all 𝑎, 𝑏, 𝑠 > 0 with 𝑎 ≥ 𝑏. Hence, and with the aid once more of

Lemma 13 with 𝛿 = 1 and the inequality

(
𝑞
𝑠

)
2
(
ℓ𝑞
ℓ𝑠

)−1 ≤ ( 𝑠
𝑞
) (ℓ−2)𝑠 (for 𝑞 = 𝑛/𝑡, 𝑠 = 2𝑚, ℓ = 𝑡 ) in order

to bound 𝑔(4𝑟𝑚),
𝛼𝑛/𝑡∑
𝑘=4𝑟𝑚

𝛼𝑘

(𝑛/𝑡
𝑘

)√(
𝑛
𝑘𝑡

) (𝑟 − 1)𝑘/2
√ ∑

𝑆 ∈Z𝑛𝑟 : |𝑆 |=𝑘𝑡
∥𝜌 (𝑆)∥2

1
≤ 𝑔(4𝑟𝑚)

𝛼𝑛/𝑡∑
𝑘=4𝑟𝑚

√ ∑
𝑆 ∈Z𝑛𝑟 : |𝑆 |=𝑘𝑡

∥𝜌 (𝑆)∥2
1

≤ 𝑔(4𝑟𝑚)
√

𝛼𝑛

𝑡

√ ∑
𝑆 ∈Z𝑛𝑟

∥𝜌 (𝑆)∥2
1

(Cauchy-Schwarz)

≤
(
𝛼
√
𝑟 − 1

)
4𝑟𝑚

(
4𝑟𝑚

𝑛/𝑡

)
2(𝑡−2)𝑟𝑚 √

𝛼𝑛

𝑡
2
(𝑟−1)𝑚

≤
(
2
1/4𝛼

√
𝑟 − 1

)
4𝑟𝑚

(
(4𝛾)𝑡/2𝜀2

𝛼
√
𝑟 (𝑛/𝑡)

)4(1−2/𝑡 )𝑟𝑚 √
𝛼𝑛

𝑡

≤ 𝜀2,

where in the last step we used that𝑚 ≥ 1 =⇒ 4(1 − 2/𝑡)𝑚 ≥ 1 (so 𝑛 is in the denominator and

𝜀4(1−2/𝑡 )𝑚 ≤ 𝜀) and picked 𝛾 sufficiently small.

Finally, merging both results, we get that, if𝑚 ≤ 𝛾

𝑟 1+1/𝑡
( 𝜀2
𝛼
)2/𝑡 (𝑛/𝑡)1−2/𝑡 , then 𝜀bias ≤ 𝜀2. □
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A very similar classical communication lower bound for the 𝑟 -HH(𝛼, 𝑡, 𝑛) problem can be proven.

Theorem 18. Any one-way classical protocol that achieves advantage 𝜀 > 0 for the 𝑟 -HH(𝛼, 𝑡, 𝑛)
problem with 𝑡 ≥ 2 and 𝛼 ≤ 1/2 requires Ω(𝑟−1 (𝜀4/𝛼)1/𝑡 (𝑛/𝑡)1−1/𝑡 ) bits of communication.

The proof is very similar to that of past works [30, 36, 68] and we include it in Appendix A for

completeness. We now conclude this section with a remark that improves the 𝑟 dependence of the

𝛼 parameter.

Remark 19. The dependence of 𝛼 on 𝑟 can be improved. For example, we can improve the bound
in Equation (18) by observing that

(
𝑘

𝑘1,...,𝑘𝑟−1

)2 ( 𝑘𝑡
𝑘1𝑡,...,𝑘𝑟−1𝑡

)−1 ≤ 1, which can be seen from the identity(
𝑘

𝑘1,...,𝑘𝑟−1

)
=

(𝑘1
𝑘1

) (𝑘1+𝑘2
𝑘2

)
· · ·

(𝑘1+𝑘2+···+𝑘𝑟−1
𝑘𝑟−1

)
and the inequality

(
𝑞
𝑠

)
2
(
ℓ𝑞
ℓ𝑠

)−1 ≤ ( 𝑠
𝑞
) (ℓ−2)𝑠 ≤ 1. Hence∑

𝑘1,...,𝑘𝑟−1≥0∑𝑟−1
𝑗=1 𝑘 𝑗=𝑘

𝑘!2

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

2
=

∑
𝑘1,...,𝑘𝑟−1≥0∑𝑟−1

𝑗=1 𝑘 𝑗=𝑘

(
𝑘

𝑘1,...,𝑘𝑟−1

)2(
𝑘𝑡

𝑘1𝑡,...,𝑘𝑟−1𝑡

) ≤
∑

𝑘1,...,𝑘𝑟−1≥0∑𝑟−1
𝑗=1 𝑘 𝑗=𝑘

1 =

(
𝑘 + 𝑟 − 2

𝑘

)
,

which is better than (𝑟 − 1)𝑘 . By bounding(
𝑘 + 𝑟 − 2

𝑘

)
≤ 𝑒𝑘

(
1 + 𝑟 − 2

𝑘

)𝑘
,

the new function 𝑔(𝑘) ≜ 𝛼𝑘
√(

𝑘+𝑟−2
𝑘

) (𝑛/𝑡
𝑘

)
/
√(

𝑛
𝑘𝑡

)
is still non-increasing in the interval 4𝑟𝑚 ≤ 𝑘 ≤

𝛼𝑛/𝑡 ≤ 𝑛/(2𝑡) if now

𝛼 ≤ 𝑒−1/2 min

4𝑟𝑚≤𝑘≤𝛼𝑛/𝑡

√
𝑘

𝑘 + 𝑟 − 2

= 𝑒−1/2
√

4𝑟𝑚

4𝑟𝑚 + 𝑟 − 2

.

For𝑚 ≫ 1, 𝛼 is essentially independent of 𝑟 , and hence 𝛼 ≤ min(1/2, 𝑒−1/2) = 1/2.

4.3 Quantum streaming lower bound for Unique Games on hypergraphs
The Unique Games problem is a generalization of the classical Max-Cut and can in fact be viewed

as constraint satisfaction problems on a graph but over a larger alphabet. Consider a graph on 𝑛

vertices 𝑥1, . . . , 𝑥𝑛 and edges in 𝐸. The constraint on an arbitrary edge (𝑖, 𝑗) ∈ 𝐸 is specified by a

permutation 𝜋𝑖, 𝑗 : Z𝑟 → Z𝑟 and the goal is to find an assignment of 𝑥1, . . . , 𝑥𝑛 ∈ Z𝑟 that maximizes∑
(𝑖, 𝑗) ∈𝐸

[𝜋𝑖, 𝑗 (𝑥𝑖 ) = 𝑥 𝑗 ] .

In this section, we consider a generalization of Unique Games to hypergraphs.

Definition 20 (Uniqe Games instance on hypergraphs). A hypergraph 𝐻 = (𝑉 , 𝐸) is defined
on a vertex set𝑉 of size 𝑛 with 𝑡-sized hyperedges 𝐸 (i.e., 𝑡-sized subsets of𝑉 ). Given a linear constraint
on a hyperedge 𝑒 ∈ 𝐸, i.e., a linear function 𝜋𝑒 : Z

𝑡
𝑟 → Z𝑟 , the goal is to compute

max

𝑥 ∈Z𝑛𝑟

∑
𝑒∈𝐸

[𝜋𝑒 (𝑥𝑒 ) = 0],

where 𝑥𝑒 corresponds to the set of vertex-assignment in the hyperedge 𝑒 ∈ 𝐸.

Definition 21. Let 𝐻 = (𝑉 , 𝐸) be a hypergraph and let OPT be the optimal value of the Unique
Games on 𝐻 . For 𝛾 ≥ 1, a randomized algorithm gives a 𝛾-approximation to a Unique Games instance
with failure probability 𝛿 ∈ [0, 1/2) if, on any input hypergraph 𝐻 , it outputs a value in the interval
[OPT/𝛾,OPT] with probability at least 1 − 𝛿 .
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A uniformly random assignment of 𝑥 ∈ Z𝑛𝑟 to the vertex set 𝑉 will satisfy a 1/𝑟 -fraction of the

hyperedges, since each linear constraint 𝜋𝑒 (𝑥𝑒 ) is satisfied with probability 1/𝑟 . This gives a trivial
𝑟 -approximation algorithm for the problem above. Below we show that any better than trivial

approximation requires space that scales as 𝑛𝛽 for constant 𝛽 > 0.

Theorem 22. Let 𝑟, 𝑡 ≥ 2 be integers. Every quantum streaming algorithm giving an (𝑟 − 𝜀)-
approximation for Unique Games on hypergraphs (as in Definition 20) with at most 𝑡-sized hyper-
edges with alphabet size 𝑟 and success probability at least 2/3 over its internal randomness, needs
Ω((𝑛/𝑡)1−2/𝑡 ) space (which hides dependence on 𝑟, 𝜀).

The proof of this theorem combines techniques used by Guruswami and Tao [36] and Kapralov,

Khanna, and Sudan [46]. Akin to these works, based on the Hidden Matching problem, we will

construct instances of the hypergraph for which a Unique Games instance is hard to solve space-

efficiently in the streaming model.

Input distributions. To this end, we construct two distributionsY andN such thatY is supported

on satisfiable Unique Games instances and N is supported on instances for which at most an

𝑂 (1/𝑟 )-fraction of the constraints is satisfied. We now define these instances in a multi-stage

way (using 𝑘 stages). First, sample 𝑘 independent 𝛼-partial 𝑡-hypermatchings on 𝑛 vertices and

then construct a hypergraph 𝐺 by putting together all the hyperedges from these 𝑘 stages. Note

that 𝐺 still has 𝑛 vertices, while the number of hyperedges is 𝑘 · 𝛼𝑛/𝑡 (since each stage has 𝛼𝑛/𝑡
many hyperedges and we allow multiple hyperedges should they be sampled). Now we specify the

constraints 𝜋𝑒 in Definition 20 for the Y,N distributions:

• Y distribution: sample 𝑧 ∈ Z𝑛𝑟 and for each 𝑒 ∈ 𝐸, let 𝜋𝑒 (𝑥𝑒 ) =
∑

𝑖∈𝑒 (𝑥𝑖 − 𝑧𝑖 ) (where by 𝑖 ∈ 𝑒

we mean all the vertices in the hyperedge 𝑒).

• N distribution: for each 𝑒 ∈ 𝐸, pick a uniform 𝑞 ∈ Z𝑟 and let 𝜋𝑒 (𝑥𝑒 ) = 𝑞 − ∑
𝑖∈𝑒 𝑥𝑖 .

It is clear that, in the Y distribution, the optimal solution is when all the 𝑥1, . . . , 𝑥𝑛 are just set to

𝑧1, . . . , 𝑧𝑛 . Below we show that for the N distribution, the value of the optimal solution is at most

(1 + 𝜀)/𝑟 with high probability.

Lemma 23. Let 𝜀 ∈ (0, 1). If 𝑘 = 𝑂 (𝑟𝑡 log(𝑟 )/(𝛼𝜀2)), then for the Unique Games instance sampled
from the distributionN above, the optimal fraction of satisfiable constraints (i.e., number of hyperedges
𝑒 ∈ 𝐸 for which 𝜋𝑒 (·) evaluates to 0) over all possible vertex labelling is at most (1 + 𝜀)/𝑟 with high
probability.

Proof. The proof of this lemma is similar to the proof in [36, Lemma 4.1]. Fix an assignment

𝑥 ∈ Z𝑛𝑟 . Let 𝑋 ℓ
𝑒 be the random variable that indicates that the hyperedge 𝑒 ∈ 𝐸 appears in the

ℓ-th stage and is satisfied by 𝑥 . Let 𝑆 =
∑

ℓ,𝑒 𝑋
ℓ
𝑒 . The expectation of 𝑆 is 𝑘𝛼𝑛/𝑡 · 1/𝑟 , since the

total number of hyperedges is 𝛼𝑛/𝑡 for each of the 𝑘 stages and the probability that a uniform

𝑥 satisfies a 𝑡-hyperedge (i.e., probability that

∑
𝑒∈𝐸 𝑥𝑒 = 𝑞 for some fixed 𝑞) is 1/𝑟 . Using the

same analysis as in [36], we can show that the variables 𝑋 ℓ
𝑒 are negatively correlated. Indeed,

first note that hyperedges from different stages are independent. Now suppose we know that the

random variables 𝑋 ℓ
𝑒1
, . . . , 𝑋 ℓ

𝑒𝑠
have value 1, and we also know a hyperedge 𝑒 ∈ 𝐸. If 𝑒 ∩ 𝑒𝑢 ≠ ∅

for some 𝑢 ∈ [𝑠], then 𝑋 ℓ
𝑒 = 0, since the hyperedges of a given stage form a matching. Otherwise,

the conditional expectation of 𝑋 ℓ
𝑒 (conditioned on 𝑒 ∩ 𝑒𝑢 = ∅ for all 𝑢 ∈ [𝑠]) is 𝛼𝑛/𝑡−𝑠

𝑟

(
𝑛−𝑡𝑠
𝑡

)−1
,

which is less than its unconditional expectation of
𝛼𝑛/𝑡
𝑟

(
𝑛
𝑡

)−1
. Therefore, in all cases one has

E[𝑋 ℓ
𝑒 |𝑋 ℓ

𝑒1
= · · · = 𝑋 ℓ

𝑒𝑠
= 1] ≤ E[𝑋 ℓ

𝑒 ], which means negative correlation.

Hence, a Chernoff bound for negative-correlated variables (see, e.g., [61, Theorem 3.2]) yields

Pr[𝑆 ≥ (1 + 𝜀) (𝑘𝛼𝑛/𝑡)/𝑟 ] ≤ exp(−𝜀2𝑘𝛼𝑛/(3𝑟𝑡)) = exp(−𝑂 (𝑛 log 𝑟 )),
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where the inequality used the choice of 𝑘 . Applying a union bound over the set of 𝑥 ∈ Z𝑛𝑟 concludes

the proof of the lemma. □

Reduction to Hypermatching. The reduction to 𝑟 -ary Hidden Hypermatching is similar to the

analysis used by Guruswami and Tao [36], but now it is from quantum streaming algorithms to

one-way quantum communication complexity. The main lemma that we need is the following.

Lemma 24. Let 𝜀 > 0. If there is a streaming algorithm using at most 𝑐 qubits of space that
distinguishes between the Y and N distributions on Unique Games instances (with 𝑘 stages) with
bias 1/3, then there is a 𝑐-qubit protocol that distinguish between the YES and NO distributions of
𝑟 -HH(𝛼, 𝑡, 𝑛) with bias Ω(1/𝑘).

In order to prove this lemma we need a few definitions and facts. First, towards proving the

lemma above, let us assume there is a 𝑐-qubit streaming A for Lemma 24. During the execution

of the streaming protocol on instances from the Y and N distributions, let the memory content

after receiving the 𝑖th stage constraints be given by the 𝑐-qubit quantum states |𝜙Y
𝑖
⟩ and |𝜙N

𝑖
⟩,

respectively.
8
Assume that |𝜙Y

0
⟩ = |𝜙N

0
⟩ = 0. Using the notion of informative index from [46,

Definition 6.2], we say an index 𝑗 ∈ {0, . . . , 𝑘 − 1} is 𝛿-informative if|𝜙Y
𝑗+1⟩ − |𝜙N

𝑗+1⟩

1
≥

|𝜙Y
𝑗 ⟩ − |𝜙N

𝑗 ⟩

1
+ 𝛿.

With this definition it is not hard to see the following fact, which follows from a simple triangle

inequality.

Fact 25. Suppose there exists a streaming protocol for distinguishing the Y,N distributions with
advantage ≥ 1/3, then there exists a Ω(1/𝑘)-informative index.

Suppose 𝑗∗ is an Ω(1/𝑘)-informative index for the streaming protocol A. Using this we devise a

communication protocol for 𝑟 -HH(𝛼, 𝑡, 𝑛) with bias Ω(1/𝑘) as follows: suppose Alice has a string
𝑥 ∈ Z𝑛𝑟 and Bob has𝑤 ∈ Z𝛼𝑛/𝑡𝑟 and a hypermatching𝑀 ∈ M𝛼

𝑡,𝑛 .

(1) Alice samples 𝑗∗ many 𝛼-partial 𝑡-hypermatchings and runs the streaming algorithm A on

Unique Games constraints for the first 𝑗∗ stages that follow the Y distribution with 𝑧 = 𝑥 .

She then sends the memory contents after these 𝑗∗ stages to Bob.

(2) Bob assigns the constraints

∑
𝑖∈𝑒 𝑥𝑖 = 𝑤𝑒 , where 𝑒 ∈ 𝑀 , according to his inputs𝑤,𝑀 . He then

continues running A on these constraints as the ( 𝑗∗ + 1)th stage.

Let |𝑠⟩ be the quantum state that Bob gets after running A.

(3) Let |𝜙YES⟩ and |𝜙NO⟩ be the resulting quantum states under the two cases, depending on𝑤 ’s

distribution (these can be computed by Bob since A is known). Bob can distinguish between

|𝜙YES⟩ and |𝜙NO⟩ with bias
1

2

|𝜙YES⟩ − |𝜙NO⟩

1
by measuring the state |𝑠⟩ with a suitable

POVM, according to Fact 2.

We are now ready to prove Lemma 24.

Proof of Lemma 24. We argue that the above protocol achieves a Ω(1/𝑘) bias in distinguishing

between the YES and NO distributions from 𝑟 -HH(𝛼, 𝑡, 𝑛). To this end, let 𝑈 be the unitary that

maps the quantum state after stage 𝑗∗ and constraints of stage 𝑗∗ + 1 (which is classical) to the

quantum state after 𝑗∗ + 1. Thus we have |𝜙YES⟩ = |𝜙Y
𝑗∗+1⟩ = 𝑈 |𝜙Y

𝑗∗ ,𝐶
Y⟩ and |𝜙NO⟩ = 𝑈 |𝜙Y

𝑗∗ ,𝐶
N⟩,

8
Without loss of generality, we assume they are pure states—this only affects the cost of the protocol by a constant factor

(since one can always purify mixed quantum states by doubling the dimension).
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where 𝐶Y
and 𝐶N

are the constraints corresponding to the YES and NO distributions, respectively,

and, similarly, we have |𝜙N
𝑗∗+1⟩ = 𝑈 |𝜙N

𝑗∗ ,𝐶
N⟩. Then, we have|𝜙YES⟩ − |𝜙NO⟩


1
≥

|𝜙Y
𝑗∗+1⟩ − |𝜙N

𝑗∗+1⟩

1
−

|𝜙NO⟩ − |𝜙N
𝑗∗+1⟩


1

≥
|𝜙Y

𝑗∗+1⟩ − |𝜙N
𝑗∗+1⟩


1
−

|𝜙Y
𝑗∗ ⟩ − |𝜙N

𝑗∗ ⟩

1
= Ω(1/𝑘),

where the second inequality used that

|𝜙NO⟩ − |𝜙N
𝑗∗+1⟩


1
=

𝑈 |𝜙Y
𝑗∗ ,𝐶

N⟩ −𝑈 |𝜙N
𝑗∗ ,𝐶

N⟩

1
≤ ∥|𝜙Y

𝑗∗ ⟩ −
|𝜙N

𝑗∗ ⟩∥1 (since unitaries preserve norms) and the third inequality is because 𝑗∗ is an informative

index. Hence in Step (3) of the procedure above, the bias of Bob in obtaining the right outcome

is Ω(1/𝑘). □

Proof of Theorem 22. Finally, by picking 𝑘 = 𝑂 (𝑟𝑡 log(𝑟 )/(𝛼𝜀2)) in order to invoke Lemma 23

and using our lower bound in Theorem 14 with 𝛼 = 𝑂 (1), we get our desired lower bound of

Ω(𝑟−(1+1/𝑡 ) (𝑘2𝛼)−2/𝑡 (𝑛/𝑡)1−2/𝑡 ) = Ω((𝑛/𝑡)1−2/𝑡 ). □

Remark 26. It is possible to prove a classical version of Theorem 22 by using the classical lower
bound on 𝑟 -HH(𝛼, 𝑡, 𝑛), which leads to Ω((𝑛/𝑡)1−1/𝑡 ) classical space (hiding dependence on 𝑟, 𝜀). Such
bound, though, is already subsumed by Ω(𝑛) from Chou et al. [19].

5 LOCALLY DECODABLE CODES
In this section we prove our lower bound on locally decodable codes over Z𝑟 . Before that, let us
first formally define an LDC.

Definition 27 (Locally decodable code). A (𝑞, 𝛿, 𝜀)-locally decodable code over Z𝑟 is a function
𝐶 : Z𝑛𝑟 → Z𝑁𝑟 that satisfies the following: for every 𝑥 ∈ Z𝑛𝑟 and 𝑖 ∈ [𝑛], there exists a (randomized)
algorithm A that, on any input 𝑦 ∈ Z𝑁𝑟 that satisfies 𝑑 (𝑦,𝐶 (𝑥)) ≤ 𝛿𝑁 , makes 𝑞 queries to 𝑦 non-
adaptively and outputs a number A𝑦 (𝑖) ∈ Z𝑟 that satisfies Pr[A𝑦 (𝑖) = 𝑥𝑖 ] ≥ 1/𝑟 + 𝜀 (where the
probability is only taken over the randomness of A).

As is often the case when proving LDC lower bounds, we use the useful fact proven by Katz

and Trevisan [49] that, without loss of generality, one can assume that an LDC is smooth, i.e., the

queries made by A have “reasonable" probability over all indices, and that A makes queries to a

codeword (and not a corrupted codeword). We first formally define a smooth code below.

Definition 28 (Smooth code). We say 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 is a (𝑞, 𝑐, 𝜀)-smooth code if there exists a
decoding algorithm A that satisfies the following: for every 𝑥 ∈ Z𝑛𝑟 and 𝑖 ∈ [𝑛], A makes at most
𝑞 non-adaptive queries to 𝐶 (𝑥) and outputs A𝐶 (𝑥) (𝑖) ∈ Z𝑟 such that Pr[A𝐶 (𝑥) (𝑖) = 𝑥𝑖 ] ≥ 1/𝑟 + 𝜀

(where the probability is only taken over the randomness of A). Moreover, for every 𝑥 ∈ Z𝑛𝑟 , 𝑖 ∈ [𝑛]
and 𝑗 ∈ [𝑁 ], on input 𝑖 , the probability that A queries the index 𝑗 in 𝐶 (𝑥) ∈ Z𝑁𝑟 is at most 𝑐/𝑁 .

Crucially note that smooth codes only require a decoder to recover 𝑥𝑖 when given access to an

actual codeword, unlike the standard definition of LDC where a decoder is given a noisy codeword.

With this definition in hand, we state a theorem of Katz and Trevisan.

Theorem 29 ([49]). A (𝑞, 𝛿, 𝜀)-LDC 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 is a (𝑞, 𝑞/𝛿, 𝜀)-smooth code.

We remark that a converse to this theorem holds: a (𝑞, 𝑐, 𝜀)-smooth code is a (𝑞, 𝛿, 𝜀−𝑐𝛿)-LDC, since
the probability that the decoder queries one of 𝛿𝑁 corrupted positions is at most (𝑐/𝑁 ) (𝛿𝑁 ) = 𝑐𝛿 .

We now present our lower bound for LDCs over Z𝑟 using the non-commutative Khintchine’s

inequality. We thank Jop Briët for the proof.

ACM Trans. Comput. Theory, Vol. 16, No. 4, Article 21. Publication date: November 2024.



21:28 Srinivasan Arunachalam and Joao F. Doriguello

Remark 30. It is possible to prove a weaker lower bound 𝑁 = 2
Ω (𝛿2𝜀4𝑛/𝑟 4) using our matrix-valued

hypercontractivity via the proof technique in [10, Theorem 11].

Theorem 31. If 𝐶 : Z𝑛𝑟 → Z𝑁𝑟 is a (2, 𝛿, 𝜀)-LDC, then 𝑁 = 2
Ω (𝛿2𝜀2𝑛/𝑟 2) .

Proof. We know that 𝐶 is also a (2, 2/𝛿, 𝜀)-smooth code. Fix some 𝑖 ∈ [𝑛]. In order to decode 𝑥𝑖 ,

we can assume, without loss of generality, that the decoderA picks some set {𝑢, 𝑣}, where𝑢, 𝑣 ∈ [𝑁 ],
with probability 𝑝 (𝑢, 𝑣), queries those bits, and then outputs 𝑓

𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢,𝐶 (𝑥)𝑣) ∈ Z𝑟 that depends
on the query-outputs. Given the smooth code property of outputting 𝑥𝑖 with probability at least

1

𝑟
+ 𝜀 for every 𝑥 , we have

1

𝑟
+ 𝜀 ≤ Pr

𝑢,𝑣∼[𝑁 ]
[𝑓 𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢,𝐶 (𝑥)𝑣) = 𝑥𝑖 ] =
1

𝑟

𝑟−1∑
𝑘=0

∑
𝑢,𝑣∈[𝑁 ]

𝑝 (𝑢, 𝑣)𝜔𝑘 (𝑓 𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢 ,𝐶 (𝑥)𝑣 )−𝑥𝑖 )
𝑟 ⇐⇒

𝑟𝜀 ≤
𝑟−1∑
𝑘=1

∑
𝑢,𝑣∈[𝑁 ]

𝑝 (𝑢, 𝑣)𝜔𝑘 (𝑓 𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢 ,𝐶 (𝑥)𝑣 )−𝑥𝑖 )
𝑟 ,

where the if and only if comes from separating the term 𝑘 = 0, which equals

∑
𝑢,𝑣∈[𝑁 ] 𝑝 (𝑢, 𝑣) = 1.

For 𝑘 ∈ [𝑟 − 1], define the function ℎ
𝑢,𝑣

𝑖;𝑘
: Z2𝑟 → C by ℎ

𝑢,𝑣

𝑖;𝑘
(𝑥) = 𝜔

𝑘𝑓
𝑢,𝑣
𝑖

(𝑥)
𝑟 . Consider its Fourier

transform, ℎ̂
𝑢,𝑣

𝑖;𝑘
: Z2𝑟 → C, defined by

ℎ̂
𝑢,𝑣

𝑖;𝑘
(𝑆) = 1

𝑟 2

∑
𝑥 ∈Z2𝑟

ℎ
𝑢,𝑣

𝑖;𝑘
(𝑥)𝜔−𝑆 ·𝑥

𝑟 .

Hence we can write

𝜔
𝑘 𝑓

𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢 ,𝐶 (𝑥)𝑣 )
𝑟 =

∑
𝑎,𝑏∈Z𝑟

ℎ̂
𝑢,𝑣

𝑖;𝑘
(𝑎, 𝑏)𝜔𝑎𝐶 (𝑥)𝑢+𝑏𝐶 (𝑥)𝑣

𝑟 .

Let 𝐹 𝑖
𝑘
∈ C𝑟𝑁×𝑟𝑁

be the matrix defined as (𝐹 𝑖
𝑘
) (𝑢,𝑎),(𝑣,𝑏) = 𝑝 (𝑢, 𝑣)ℎ̂𝑢,𝑣

𝑖;𝑘
(𝑎, 𝑏) and let 𝐶 (𝑥) ∈ C𝑟𝑁 be

the vector defined as 𝐶 (𝑥) (𝑢,𝑎) = 𝜔
𝑎𝐶 (𝑥)𝑢
𝑟 . Then∑

𝑢,𝑣∈[𝑁 ]
𝑝 (𝑢, 𝑣)𝜔𝑘 𝑓

𝑢,𝑣
𝑖

(𝐶 (𝑥)𝑢 ,𝐶 (𝑥)𝑣 )
𝑟 = 𝐶 (𝑥)⊤𝐹 𝑖

𝑘
𝐶 (𝑥),

which means that

𝑟−1∑
𝑘=1

E
𝑥∼Z𝑛𝑟

[
𝜔−𝑘𝑥𝑖
𝑟 𝐶 (𝑥)⊤𝐹 𝑖

𝑘
𝐶 (𝑥)

]
=

𝑟−1∑
𝑘=1

∑
𝑢,𝑣∈[𝑁 ]

𝑝 (𝑢, 𝑣) E
𝑥∼Z𝑛𝑟

[
𝜔
𝑘 (𝑓 𝑢,𝑣

𝑖
(𝐶 (𝑥)𝑢 ,𝐶 (𝑥)𝑣 )−𝑥𝑖 )

𝑟

]
≥ 𝑟𝜀.

By summing over all 𝑖 ∈ [𝑛], we finally get to

𝑟−1∑
𝑘=1

E
𝑥∼Z𝑛𝑟

[
𝐶 (𝑥)⊤

(
𝑛∑
𝑖=1

𝜔−𝑘𝑥𝑖
𝑟 𝐹 𝑖

𝑘

)
𝐶 (𝑥)

]
≥ 𝑟𝜀𝑛.
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The left-hand side can be upper bounded as follows:

𝑟−1∑
𝑘=1

E
𝑥∼Z𝑛𝑟

[
𝐶 (𝑥)⊤

(
𝑛∑
𝑖=1

𝜔−𝑘𝑥𝑖
𝑟 𝐹 𝑖

𝑘

)
𝐶 (𝑥)

]
≤

𝑟−1∑
𝑘=1

E
𝑥∼Z𝑛𝑟

[ 𝑛∑
𝑖=1

𝜔−𝑘𝑥𝑖
𝑟 𝐹 𝑖

𝑘

 ∥𝐶 (𝑥)∥22
]

= 𝑟𝑁

𝑟−1∑
𝑘=1

E
𝑥∼Z𝑛𝑟

[ 𝑛∑
𝑖=1

𝜔−𝑘𝑥𝑖
𝑟 𝐹 𝑖

𝑘


]

≤ 2𝑟𝑁
√
2 log(2𝑟𝑁 )

𝑟−1∑
𝑘=1

√√
𝑛∑
𝑖=1

∥𝐹 𝑖
𝑘
∥2,

where we used Lemma 3 in the last step. Consider the submatrix [𝑝 (𝑢, 𝑣)ℎ̂𝑢,𝑣
𝑖;𝑘

(𝑎, 𝑏)]𝑎,𝑏 of 𝐹 𝑖
𝑘
for

fixed 𝑢, 𝑣 ∈ [𝑁 ]. Since

∥ [𝑝 (𝑢, 𝑣)ℎ̂𝑢,𝑣
𝑖;𝑘

(𝑎, 𝑏)]𝑎,𝑏 ∥2 ≤ ∥[𝑝 (𝑢, 𝑣)ℎ̂𝑢,𝑣
𝑖;𝑘

(𝑎, 𝑏)]𝑎,𝑏 ∥2𝐹 =
∑

𝑎,𝑏∈Z𝑟

𝑝 (𝑢, 𝑣)2 |ℎ̂𝑢,𝑣
𝑖;𝑘

(𝑎, 𝑏) |2 = 𝑝 (𝑢, 𝑣)2 ≤ 4

𝛿2𝑁 2
,

where we used Parseval’s identity and 𝑝 (𝑢, 𝑣) ≤ 2/𝛿𝑁 for all 𝑢, 𝑣 ∈ [𝑁 ] by the definition of smooth

code, then ∥𝐹 𝑖
𝑘
∥2 ≤ 4

𝛿2𝑁 2
. This finally leads to

2𝑟𝑁
√
2 log(2𝑟𝑁 ) (𝑟 − 1) 2

√
𝑛

𝛿𝑁
≥ 𝑟𝜀𝑛 =⇒ log(2𝑟𝑁 ) ≥ 𝛿2𝜀2

8𝑟 2
𝑛 =⇒ 𝑁 ≥ 1

2𝑟
2
𝛿2𝜀2𝑛/8𝑟 2 . □

6 2-SERVER PRIVATE INFORMATION RETRIEVAL
As mentioned in the introduction, the connection between LDCs and PIR is well known since the

results of [32, 49]. In general, upper bounds on LDCs are derived via PIR schemes, which in turn

means that our LDC lower bounds translate to PIR lower bounds, which we illustrate below. We

first define the notion of private information retrieval.

Definition 32. A one-round, (1 − 𝛿)-secure, 𝑘-server private information retrieval (PIR) scheme
with alphabet Z𝑟 , recovery probability 1/𝑟 + 𝜀, query size 𝑡 and answer size 𝑎, consists of a randomized
user and 𝑘 deterministic algorithms 𝑆1, . . . , 𝑆𝑘 (the servers) that satisfy the following:
(1) On input 𝑖 ∈ [𝑛], the user produces 𝑘 queries 𝑞1, . . . , 𝑞𝑘 ∈ Z𝑡𝑟 and sends them to the 𝑘 servers

respectively. The servers reply back with a string 𝑎 𝑗 = 𝑆 𝑗 (𝑥, 𝑞 𝑗 ) ∈ Z𝑎𝑟 , and based on 𝑎1, . . . , 𝑎𝑘
and 𝑖 , the user outputs 𝑏 ∈ Z𝑟 .

(2) For every 𝑥 ∈ Z𝑛𝑟 and 𝑖 ∈ [𝑛], the output 𝑏 of the user satisfies Pr[𝑏 = 𝑥𝑖 ] ≥ 1/𝑟 + 𝜀.
(3) For every 𝑥 ∈ Z𝑛𝑟 and 𝑗 ∈ [𝑘], the distributions over 𝑞 𝑗 (over the user’s randomness) are 𝛿-close

for different 𝑖 ∈ [𝑛].
We crucially remark that for the lower bounds that we present below, the function 𝑆 𝑗 could be an
arbitrary (not necessarily linear) function over 𝑥1, . . . , 𝑥𝑛 ∈ Z𝑟 .

Our PIR lower bound follows from a result of Goldreich et al. [32] and from a generalization

of [50, Lemma 2]. We remark that Goldreich et al. state the lemma below only for 𝑟 = 2, but the

exact same analysis carries over to 𝑟 > 2. In the following we shall assume 𝛿 = 0.

Lemma 33 ([32, Lemma 5.1]). If there is a classical 2-server PIR scheme with alphabet Z𝑟 , query size
𝑡 , answer size 𝑎, and recovery probability 1/𝑟 + 𝜀, then there is a (2, 3, 𝜀)-smooth code𝐶 : Z𝑛𝑟 → (Z𝑎𝑟 )𝑚
with𝑚 ≤ 6𝑟 𝑡 .

Lemma 34. Let 𝑟 ≥ 2 be prime. Let 𝐶 : Z𝑛𝑟 → (Z𝑎𝑟 )𝑚 be a (2, 𝑐, 𝜀)-smooth code. Then there is a
(2, 𝑐𝑟𝑎, 2𝜀/𝑟𝑎+2)-smooth code 𝐶 ′

: Z𝑛𝑟 → Z𝑚𝑟𝑎

𝑟 that is good on average, i.e., there is a decoder A such
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that, for all 𝑖 ∈ [𝑛],

E
𝑥∼Z𝑎𝑟

[
Pr[A𝐶′ (𝑥) (𝑖) = 𝑥𝑖 ]

]
≥ 1

𝑟
+ 2𝜀

𝑟𝑎+2
.

Proof. We form a new code𝐶 ′
by transforming each old string𝐶 (𝑥) 𝑗 ∈ Z𝑎𝑟 using the Hadamard

code into 𝐶 ′(𝑥) 𝑗 ∈ Z𝑟
𝑎

𝑟 , 𝐶 ′(𝑥) = (⟨𝐶 (𝑥), 𝑦⟩)𝑦∈Z𝑎𝑟 . The total length of 𝐶 ′
is𝑚𝑟𝑎 . The new decoder

uses the same randomness as the old one. Let 𝑓 : (Z𝑎𝑟 )2 → Z𝑟 be the output function of the old

decoder. Fix the queries 𝑗, 𝑘 ∈ [𝑚]. We now describe the new decoding procedure.

First, if for 𝑗, 𝑘 the function 𝑓 is such that Pr𝑥∼Z𝑛𝑟 [𝑓 (𝐶 (𝑥) 𝑗 ,𝐶 (𝑥)𝑘 ) = 𝑥𝑖 ] ≤ 1

𝑟
, then the new

decoder outputs a random value in Z𝑟 , in which case it is as good as the old one for an average 𝑥 .

Consider now the case Pr𝑥∼Z𝑛𝑟 [𝑓 (𝐶 (𝑥) 𝑗 ,𝐶 (𝑥)𝑘 ) = 𝑥𝑖 ] = 1

𝑟
+ 𝜂 for some 𝜂 > 0. Then

Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝐶 (𝑥) 𝑗 ,𝐶 (𝑥)𝑘 ) = 𝑥𝑖 ] =

1

𝑟
+ 𝜂 ⇐⇒

𝑟−1∑
ℓ=1

E
𝑥∼Z𝑛𝑟

[
𝜔
ℓ (𝑓 (𝐶 (𝑥) 𝑗 ,𝐶 (𝑥)𝑘 )−𝑥𝑖 )
𝑟

]
= 𝑟𝜂.

For ℓ ∈ [𝑟 − 1], define the function ℎℓ : (Z𝑎𝑟 )2 → C by ℎℓ (𝑎, 𝑏) = 𝜔
ℓ 𝑓 (𝑎,𝑏)
𝑟 . Consider its Fourier

transform ℎ̂ℓ : (Z𝑎𝑟 )2 → C. Hence we can write

ℎℓ (𝑥) =
∑

𝑆,𝑇 ∈Z𝑎𝑟

ℎ̂ℓ (𝑆,𝑇 )𝜔𝑆 ·𝑎+𝑇 ·𝑏
𝑟

and then

𝑟𝜂 =

𝑟−1∑
ℓ=1

∑
𝑆,𝑇 ∈Z𝑎𝑟

ℎ̂ℓ (𝑆,𝑇 ) E
𝑥∼Z𝑛𝑟

[
𝜔
𝑆 ·𝐶 (𝑥) 𝑗+𝑇 ·𝐶 (𝑥)𝑘−ℓ𝑥𝑖
𝑟

]
≤

√√√𝑟−1∑
ℓ=1

∑
𝑆,𝑇 ∈Z𝑎𝑟

|ℎ̂ℓ (𝑆,𝑇 ) |2
√√√𝑟−1∑

ℓ=1

∑
𝑆,𝑇 ∈Z𝑎𝑟

���� E
𝑥∼Z𝑛𝑟

[
𝜔
𝑆 ·𝐶 (𝑥) 𝑗+𝑇 ·𝐶 (𝑥)𝑘−ℓ𝑥𝑖
𝑟

] ����2
=
√
𝑟 − 1

√√√𝑟−1∑
ℓ=1

∑
𝑆,𝑇 ∈Z𝑎𝑟

���� E
𝑥∼Z𝑛𝑟

[
𝜔
𝑆 ·𝐶 (𝑥) 𝑗+𝑇 ·𝐶 (𝑥)𝑘−ℓ𝑥𝑖
𝑟

] ����2,
where we used Parseval’s identity

∑
𝑆,𝑇 ∈Z𝑎𝑟 |ℎ̂ℓ (𝑆,𝑇 ) |

2 = 1 for all ℓ ∈ [𝑟 − 1]. It then follows that

there are 𝑆0,𝑇0 ∈ Z𝑎𝑟 and ℓ0 ∈ [𝑟 − 1] such that���� E
𝑥∼Z𝑛𝑟

[
𝜔
𝑆0 ·𝐶 (𝑥) 𝑗+𝑇0 ·𝐶 (𝑥)𝑘−ℓ0𝑥𝑖
𝑟

] ���� ≥ 𝜂

𝑟𝑎
.

We now use the following useful lemma whose proof is left to the end of the section.

Lemma 35. Let 𝑓 : Z𝑛𝑟 → Z𝑟 and 𝛼 ∈ [0, 1]. Suppose that
���E𝑥∼Z𝑛𝑟 [

𝜔
𝑓 (𝑥)
𝑟

] ��� ≥ 𝛼 . Then

max

𝑦∈Z𝑟
Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑦] ≥ 1

𝑟
+ 2𝛼

𝑟 2
.

According to the above lemma, there is 𝑦 ∈ Z𝑟 such that

Pr

𝑥∼Z𝑛𝑟
[𝑆0 ·𝐶 (𝑥) 𝑗 +𝑇0 ·𝐶 (𝑥)𝑘 − 𝑦 = ℓ0𝑥𝑖 ] ≥

1

𝑟
+ 2𝜂

𝑟𝑎+2
.

Since both numbers 𝑆0 · 𝐶 (𝑥) 𝑗 and 𝑇0 · 𝐶 (𝑥)𝑘 are in the code 𝐶 ′
, it is possible to recover 𝑥𝑖 (the

inverse of ℓ0 is well defined since 𝑟 is prime) with just two queries and average probability at least

1/𝑟 + 2𝜂/𝑟𝑎+2. Averaging over the classical randomness, i.e., 𝑗, 𝑘 and 𝑓 , gives the lemma. Finally,

the 𝑐-smoothness of 𝐶 translates into 𝑐𝑟𝑎-smoothness of 𝐶 ′
. □
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We now get the following main theorem.

Theorem 36. Let 𝑟 ≥ 2 be prime. A classical 2-server PIR scheme with alphabet Z𝑟 , query size 𝑡 ,
answer size 𝑎, and recovery probability 1/𝑟 + 𝜀 satisfies 𝑡 ≥ Ω

(
(𝜀2𝑛/𝑟 4𝑎+6 − 𝑎)/log 𝑟

)
.

Proof. By Lemma 33, there is a (2, 3, 𝜀)-smooth code 𝐶 : Z𝑛𝑟 → (Z𝑎𝑟 )𝑚 with𝑚 ≤ 6𝑟 𝑡 . Lemma 34

allows us to transform 𝐶 into a (2, 3𝑟𝑎, 2𝜀/𝑟𝑎+2)-smooth code 𝐶 ′
: Z𝑛𝑟 → Z𝑚𝑟𝑎

𝑟 . Using Theorem 31

on 𝐶 ′
(note the theorem can be applied directly to a smooth code that is good on average) yields

𝑚𝑟𝑎 ≥ 2
Ω (𝜀2𝑛/𝑟 4𝑎+6) ,

and since𝑚 = 𝑂 (𝑟 𝑡 ), we get the desired lower bound in the theorem statement. □

Proof of Lemma 35. First notice that��� E
𝑥∼Z𝑛𝑟

[
𝜔

𝑓 (𝑥)
𝑟

] ��� = �����∑
𝑘∈Z𝑟

Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑘]𝜔𝑘

𝑟

����� ,
hence, for any 𝛽 ∈ R,∑

𝑘∈Z𝑟

���� Pr
𝑥∼Z𝑛𝑟

[𝑓 (𝑥) = 𝑘] − 𝛽

���� = ∑
𝑘∈Z𝑟

���� Pr
𝑥∼Z𝑛𝑟

[𝑓 (𝑥) = 𝑘]𝜔𝑘
𝑟 − 𝛽𝜔𝑘

𝑟

����
≥

�����∑
𝑘∈Z𝑟

(
Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑘]𝜔𝑘

𝑟 − 𝛽𝜔𝑘
𝑟

)����� = ��� E
𝑥∼Z𝑛𝑟

[
𝜔

𝑓 (𝑥)
𝑟

] ��� ≥ 𝛼.

Therefore, there exists 𝑦 ∈ Z𝑟 such that���� Pr
𝑥∼Z𝑛𝑟

[𝑓 (𝑥) = 𝑦] − 𝛽

���� ≥ 𝛼

𝑟
.

Take 𝛽 = 1

𝑟
− 𝛼 𝑟−2

𝑟 2
. Then either Pr𝑥∼Z𝑛𝑟 [𝑓 (𝑥) = 𝑦] ≥ 𝛽 + 𝛼

𝑟
= 1

𝑟
+ 2𝛼

𝑟 2
, and so the lemma follows, or

Pr𝑥∼Z𝑛𝑟 [𝑓 (𝑥) = 𝑦] ≤ 𝛽 − 𝛼
𝑟
= 1

𝑟
− 2𝛼 𝑟−1

𝑟 2
. In the second case,∑

𝑘∈Z𝑟

Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑘] = 1 =⇒

∑
𝑘≠𝑦

Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑘] ≥ 1 − 1

𝑟
+ 2𝛼

𝑟 − 1

𝑟 2
,

and so there exists 𝑧 ∈ Z𝑟 such that

Pr

𝑥∼Z𝑛𝑟
[𝑓 (𝑥) = 𝑧] ≥ 1

𝑟 − 1

− 1

𝑟 (𝑟 − 1) +
2𝛼

𝑟 2
=
1

𝑟
+ 2𝛼

𝑟 2
. □
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A CLASSICAL HIDDEN HYPERMATCHING LOWER BOUND
The general idea behind the proof of Theorem 18 is already well established and is a simple

generalization of results from [24, 30, 36, 68]. We shall need the following well-known fact and a

generalization of the KKL inequality [44].

Fact 37. Given just one sample, the best success probability in distinguishing between two probability
distributions 𝑝 and 𝑞 is 1

2
+ 1

4
∥𝑝 − 𝑞∥tvd.

Lemma 38 (Generalized KKL ineqality). Let 𝐴 ⊆ Z𝑛𝑟 and let 𝑓 : Z𝑛𝑟 → {0, 1} be its indicator
function (𝑓 (𝑥) = 1 iff 𝑥 ∈ 𝐴). Then, for every 𝛿 ∈ [0, 1/𝑟 ],∑

𝑆 ∈Z𝑛𝑟

𝛿 |𝑆 | |𝑓 (𝑆) |2 ≤
(
|𝐴|
𝑟𝑛

)
2/(1+𝑟𝛿)

.

Proof. Apply the hypercontractive inequality to real-valued functions with 𝑝 = 1 + 𝑟𝛿 . □

Theorem 39. Any classical protocol that achieves advantage 𝜀 > 0 for the 𝑟 -HH(𝛼, 𝑡, 𝑛) problem
with 𝑡 ≥ 2 and 𝛼 ≤ 1/2 needs Ω(𝑟−1 (𝜀4/𝛼)1/𝑡 (𝑛/𝑡)1−1/𝑡 ) bits of communication from Alice to Bob.

Proof. By the minimax principle, it suffices to analyse deterministic protocols under some

‘hard’ input distribution. For our input distribution, Alice and Bob receive 𝑥 ∈ Z𝑛𝑟 and𝑀 ∈ M𝛼
𝑡,𝑛 ,

respectively, uniformly at random, while Bob’s input 𝑤 ∈ Z𝛼𝑛/𝑡𝑟 is drawn from the distribution

D ≜ 1

2
DYES + 1

2
DNO

, i.e., with probability 1/2 is comes from DYES
, and with probability 1/2 it

comes from DNO
.
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Fix a small constant 𝜀 > 0 and let 𝑐 = 𝛾𝑟−1 (𝜀4/𝛼)1/𝑡 (𝑛/𝑡)1−1/𝑡 for some universal constant 𝛾 .

Consider any classical deterministic protocol that communicates at most 𝐶 ≜ 𝑐 − log(1/𝜀) bits.
Such protocol partitions the set of all 𝑟𝑛 𝑥 ’s into 2

𝐶
sets. These sets have size 𝑟𝑛/2𝐶 on average,

and by a counting argument, with probability 1 − 𝜀, the set 𝐴 corresponding to Alice’s message

has size at least 𝜀𝑟𝑛/2𝐶 = 𝑟𝑛/2𝑐 . Given Alice’s message, Bob knows that the random variable 𝑋

corresponding to her input was drawn uniformly at random from 𝐴, and he also knows his input

𝑀 . Therefore his knowledge of the random variable𝑀𝑋 is described by the distribution

𝑝𝑀 (𝑧) ≜ Pr[𝑀𝑋 = 𝑧 |𝑀,𝐴] = |{𝑥 ∈ 𝐴|𝑀𝑥 = 𝑧}|
|𝐴| .

Given one sample of𝑤 ∈ Z𝛼𝑛/𝑡𝑟 , Bob must decide whether it came from DYES
(the distribution

𝑀𝑋 ) or fromDNO
(the uniform distribution𝑈 ). According to Fact 37, the advantage of any classical

protocol in distinguishing between 𝑝𝑀 and 𝑈 is upper bounded by
1

4
∥𝑝𝑀 − 𝑈 ∥tvd. We prove in

Theorem 40 below that, if 𝛼 ≤ 1/2 and 𝑐 ≤ 𝛾

𝑟
( 𝜀4
𝛼
)1/𝑡 (𝑛/𝑡)1−1/𝑡 , then the average advantage over all

hypermatchings𝑀 is at most 𝜀2/4, i.e.,
E

𝑀∼M𝛼
𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥tvd] ≤ 𝜀2 .

Therefore, byMarkov’s inequality, for at least a (1−𝜀)-fraction of𝑀 , the advantage in distinguishing

between 𝑝𝑀 and 𝑈 is 𝜀/4-small. Hence, Bob’s total advantage over randomly guessing the right

distribution will be at most 𝜀 (for the event that 𝐴 is too small) plus 𝜀 (for the event that𝑀 is such

that the distance between 𝑀𝑋 and 𝑈 is more than 𝜀) plus 𝜀/4 (for the advantage over random

guessing when ∥𝑝𝑀 −𝑈 ∥tvd ≤ 𝜀), and so 𝑐 = Ω(𝑟−1 (𝜀4/𝛼)1/𝑡 (𝑛/𝑡)1−1/𝑡 ). □

Theorem 40. Let 𝑥 ∈ Z𝑛𝑟 be uniformly distributed over a set 𝐴 ⊆ Z𝑛𝑟 of size |𝐴| ≥ 𝑟𝑛/2𝑐 for some
𝑐 ≥ 1. If 𝛼 ≤ 1/2, there is a universal constant 𝛾 > 0 (independent of 𝑛, 𝑡 , 𝑟 and 𝛼), such that, for all
𝜀 > 0, if 𝑐 ≤ 𝛾

𝑟
( 𝜀4
𝛼
)1/𝑡 (𝑛/𝑡)1−1/𝑡 , then

E
𝑀∼M𝛼

𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥tvd] ≤ 𝜀2 .

Proof. Let 𝑓 : Z𝑛𝑟 → {0, 1} be the characteristic function of 𝐴, i.e., 𝑓 (𝑥) = 1 iff 𝑥 ∈ 𝐴. We shall

bound the Fourier coefficients of 𝑝𝑀 , which are related to the Fourier coefficients of 𝑓 as follows:

𝑝𝑀 (𝑉 ) = 1

𝑟𝛼𝑛/𝑡

∑
𝑧∈Z𝑛𝑟

𝑝𝑀 (𝑧)𝜔−𝑉 ·𝑧
𝑟 =

1

|𝐴|𝑟𝛼𝑛/𝑡
∑
𝑧∈Z𝑛𝑟

|{𝑥 ∈ 𝐴 : 𝑀𝑥 = 𝑧}| · 𝜔−𝑉 ·𝑧
𝑟

=
1

|𝐴|𝑟𝛼𝑛/𝑡
𝑟−1∑
𝑘=0

|{𝑥 ∈ 𝐴 : (𝑀𝑥) ·𝑉 = 𝑘}| · 𝜔−𝑘
𝑟

=
1

|𝐴|𝑟𝛼𝑛/𝑡
𝑟−1∑
𝑘=0

|{𝑥 ∈ 𝐴 : 𝑥 · (𝑀⊤𝑉 ) = 𝑘}| · 𝜔−𝑘
𝑟

=
1

|𝐴|𝑟𝛼𝑛/𝑡
∑
𝑥 ∈𝐴

𝜔
−𝑥 · (𝑀⊤𝑉 )
𝑟

=
𝑟𝑛

|𝐴|𝑟𝛼𝑛/𝑡
𝑓 (𝑀⊤𝑉 ).

We now start bounding the expected squared total variation distance,

E
𝑀∼M𝛼

𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥2
tvd

] ≤ 𝑟 2𝛼𝑛/𝑡 E
𝑀∼M𝛼

𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥2
2
] (Cauchy-Schwarz)
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= 𝑟 2𝛼𝑛/𝑡 E
𝑀∼M𝛼

𝑡,𝑛


∑

𝑉 ∈Z𝛼𝑛/𝑡𝑟 \{0𝛼𝑛/𝑡 }

|𝑝𝑀 (𝑉 ) |2
 (Parseval’s identity)

=
𝑟 2𝑛

|𝐴|2 E
𝑀∼M𝛼

𝑡,𝑛


∑

𝑉 ∈Z𝛼𝑛/𝑡𝑟 \{0𝛼𝑛/𝑡 }

|𝑓 (𝑀⊤𝑉 ) |2
 .

Note that there is at most one 𝑉 ∈ Z𝛼𝑛/𝑡𝑟 such that 𝑆 = 𝑀⊤𝑉 for a given 𝑆 ∈ Z𝑛𝑟 (and that the

only 𝑉 that makes 𝑀⊤𝑉 = 0
𝑛
is 𝑉 = 0

𝛼𝑛/𝑡
). This allows us to transform the expectation over

hypermatchings into a probability,

E
𝑀∼M𝛼

𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥2
tvd

] ≤ 𝑟 2𝑛

|𝐴|2 E
𝑀∼M𝛼

𝑡,𝑛


∑

𝑆 ∈Z𝑛𝑟 \{0𝑛 }
|{𝑉 ∈ Z𝛼𝑛/𝑡𝑟 : 𝑀⊤𝑉 = 𝑆}| · |𝑓 (𝑆) |2


=

𝑟 2𝑛

|𝐴|2
∑

𝑆 ∈Z𝑛𝑟 \{0𝑛 }
Pr

𝑀∼M𝛼
𝑡,𝑛

[∃𝑉 ∈ Z𝛼𝑛/𝑡𝑟 : 𝑀⊤𝑉 = 𝑆] · |𝑓 (𝑆) |2.

Now observe that Pr𝑀∼M𝛼
𝑡,𝑛
[∃𝑉 ∈ Z𝛼𝑛/𝑡𝑟 : 𝑀⊤𝑉 = 𝑆] is exactly the probability from Lemma 17, i.e.,

given 𝑆 ∈ Z𝑛𝑟 with 𝑘 𝑗 ≜
1

𝑡
· |{𝑖 ∈ [𝑛] : 𝑆𝑖 = 𝑗}| ∈ Z for 𝑗 ∈ [𝑟 − 1] (the number of entries from 𝑆

equal to 𝑗 ≠ 0 must be a multiple of 𝑡 ), and defining 𝑘 ≜
∑𝑟−1

𝑗=1 𝑘 𝑗 , then

Pr

𝑀∼M𝛼
𝑡,𝑛

[∃𝑉 ∈ Z𝛼𝑛/𝑡𝑟 : 𝑀⊤𝑉 = 𝑆] =
(𝛼𝑛/𝑡

𝑘

)(
𝑛
𝑘𝑡

) 𝑘!

(𝑘𝑡)!

𝑟−1∏
𝑗=1

(𝑘 𝑗𝑡)!
𝑘 𝑗 !

≤
(𝛼𝑛/𝑡

𝑘

)(
𝑛
𝑘𝑡

) ,

and so

E
𝑀∼M𝛼

𝑡,𝑛

[∥𝑝𝑀 −𝑈 ∥2
tvd

] ≤ 𝑟 2𝑛

|𝐴|2
𝛼𝑛/𝑡∑
𝑘=1

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) ∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

|𝑓 (𝑆) |2.

Similarly to the quantum proof, we shall split the above sum into two parts: one in the range

1 ≤ 𝑘 < 2𝑟𝑐 , and the other in the range 2𝑟𝑐 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 .
Sum I (1 ≤ 𝑘 < 2𝑟𝑐): in order to upper bound each term, pick 𝛿 = 𝑘/(2𝑟𝑐) in Lemma 38, thus

𝑟 2𝑛

|𝐴|2
∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

|𝑓 (𝑆) |2 ≤ 𝑟 2𝑛

|𝐴|2
1

𝛿𝑘𝑡

∑
𝑆 ∈Z𝑛𝑟

𝛿 |𝑆 | |𝑓 (𝑆) |2 ≤ 1

𝛿𝑘𝑡

(
𝑟𝑛

|𝐴|

)
2𝑟𝛿/(1+𝑟𝛿)

≤ 1

𝛿𝑘𝑡

(
𝑟𝑛

|𝐴|

)
2𝑟𝛿

≤
(
2
1/𝑡

2𝑟𝑐

𝑘

)𝑘𝑡
.

By using that 𝑐 ≤ 𝛾

𝑟
( 𝜀4
𝛼
)1/𝑡 (𝑛/𝑡)1−1/𝑡 and

(
𝑞
𝑠

) (
ℓ𝑞
ℓ𝑠

)−1 ≤ ( 𝑠
𝑞
) (ℓ−1)𝑠 (see [64, Appendix A.5]) for 𝑞 =

𝑛/𝑡, 𝑠 = 𝑘, ℓ = 𝑡 , we therefore have

𝑟 2𝑛

|𝐴|2
2𝑟𝑐−1∑
𝑘=1

𝛼𝑘

(𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) ∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

|𝑓 (𝑆) |2 ≤
2𝑟𝑐−1∑
𝑘=1

𝛼𝑘
(
𝑘𝑡

𝑛

) (1−1/𝑡 )𝑘𝑡 (
2
1/𝑡

2𝑟𝑐

𝑘

)𝑘𝑡
≤

2𝑟𝑐−1∑
𝑘=1

(
2
1/𝑡

2𝛾𝜀4/𝑡

𝑘1/𝑡

)𝑘𝑡
≤ 𝜀4

2

,

where we used that

(𝛼𝑛/𝑡
𝑘

)
≤ 𝛼𝑘

(𝑛/𝑡
𝑘

)
for 𝛼 ∈ [0, 1] at the beginning and picked 𝛾 sufficiently small.

Sum II (2𝑟𝑐 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 ): first note that the function 𝑔(𝑘) ≜
(𝛼𝑛/𝑡

𝑘

)
/
(
𝑛
𝑘𝑡

)
is decreasing in the

interval 1 ≤ 𝑘 ≤ 𝛼𝑛/𝑡 (since 𝛼 ≤ 1/2). Hence, by using Parseval’s identity

∑
𝑆 ∈Z𝑛𝑟 |𝑓 (𝑆) |

2 = |𝐴|/𝑟𝑛
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and the inequality

(
𝑞
𝑠

) (
ℓ𝑞
ℓ𝑠

)−1 ≤ ( 𝑠
𝑞
) (ℓ−1)𝑠 (for 𝑞 = 𝑛/𝑡, 𝑠 = 2𝑚, ℓ = 𝑡 ) in order to bound 𝑔(2𝑟𝑐),

𝑟 2𝑛

|𝐴|2
𝛼𝑛/𝑡∑
𝑘=2𝑟𝑐

(𝛼𝑛/𝑡
𝑘

)(
𝑛
𝑘𝑡

) ∑
𝑆 ∈Z𝑛𝑟
|𝑆 |=𝑘𝑡

|𝑓 (𝑆) |2 ≤ 2
𝑐𝑔(2𝑟𝑐) ≤ 2

𝑐𝛼2𝑟𝑐

(
2𝑟𝑐

𝑛/𝑡

)
2(𝑡−1)𝑟𝑐

= 2
𝑐𝛼2𝑟𝑐/𝑡

(
2𝛾𝜀4/𝑡

(𝑛/𝑡)1/𝑡

)2(𝑡−1)𝑟𝑐
≤ 𝜀4

2

,

where the last step used that 2(1 − 1/𝑡)𝑐 ≥ 1 =⇒ 𝜀2(1−1/𝑡 )𝑐 ≤ 𝜀 and picked 𝛾 sufficiently small.

Summing both results, if 𝑐 ≤ 𝛾

𝑟
( 𝜀4
𝛼
)1/𝑡 (𝑛/𝑡)1−1/𝑡 , then E𝑀∼M𝛼

𝑡,𝑛
[∥𝑝𝑀 −𝑈 ∥2

tvd
] ≤ 𝜀4. By Jensen’s

inequality, we finally get E𝑀∼M𝛼
𝑡,𝑛
[∥𝑝𝑀 −𝑈 ∥tvd] ≤

√
E𝑀∼M𝛼

𝑡,𝑛
[∥𝑝𝑀 −𝑈 ∥2

tvd
] ≤ 𝜀2. □
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