
QCDCL with Cube Learning or Pure Literal Elimination –
What is best?

Benjamin Böhm Olaf Beyersdorff

Institute of Computer Science, Friedrich Schiller University Jena, Germany

Abstract

Quantified conflict-driven clause learning (QCDCL) is one of the main approaches for solving quantified
Boolean formulas (QBF). We formalise and investigate several versions of QCDCL that include cube learn-
ing and/or pure-literal elimination, and formally compare the resulting solving models via proof complexity
techniques. Our results show that almost all of the QCDCL models are exponentially incomparable with
respect to proof size (and hence solver running time), pointing towards different orthogonal ways how to
practically implement QCDCL.

1 Introduction

SAT solving has revolutionised the way we perceive computationally hard problems. Determining the satisfia-
bility of propositional formulas (SAT) has traditionally been viewed as intractable due to its NP completeness.
In contrast, modern SAT solvers today routinely solve huge industrial instances of SAT from a huge variety of
application domains [7]. This success of solving has not stopped at SAT, but in the last two decades was lifted
to increasingly more challenging computational settings, with solving quantified Boolean formulas (QBF) – a
PSPACE-complete problem – receiving key attention [6].

Conflict driven clause learning (CDCL) is the main paradigm of modern SAT solving [16]. Based on the
classic DPLL algorithm from the 1960s, it combines a number of advanced features, including clause learning,
efficient Boolean constraint propagation, decision heuristics, restart strategies, and many more. In QBF there
exist several competing approaches to solving, with lifting CDCL to the quantified level in the form of QCDCL
as one of the main paradigms [21], implemented e.g. in the state-of-the-art solvers DepQBF [15] and Qute [17].

For SAT/QBF solving, two questions of prime theoretical and practical importance are: (1) why are
SAT/QBF solvers so effective and on which formulas do they fail? (2) Which solving ingredients are most
important for their performance?

For (1), proof complexity offers the main theoretical approach to analyse the strength of solving [10]. In a
breakthrough result, [18] established that CDCL on unsatisfiable formulas is equivalent to the resolution proof
system, in the sense that from a CDCL run a resolution proof can be efficiently extracted [2], and conversely,
each resolution proof can be efficiently simulated by CDCL [18]. Hence the well-developed proof-complexity
machinery for proof size lower bounds in resolution [13] is directly applicable to show lower bounds for running
time in CDCL.

The latter simulation of [18], however, assumes a strong ‘non-deterministic’ version of CDCL, whereas
practical CDCL (using decision heuristics such as VSIDS) has been recently proved to be exponentially weaker
than resolution [20]. In contrast, an analogous proof-theoretic characterisation is not known for QCDCL, and
in particular QCDCL has recently been shown to be incomparable to Q-Resolution [4], the QBF analogue of
propositional resolution [12].

Regarding question (2) above, there are some experimental studies [19], but no rigorous theoretical re-
sults are known on which (Q)CDCL ingredients are most crucial for performance. Of course, gaining such a
theoretical understanding would also be very valuable in guiding future solving developments.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 131 (2021)

In this paper, we contribute towards question (2) in QBF.

Our contributions. Following the approach of [4] [4], we model QCDCL as rigorously defined proof systems
that are amenable to a proof-complexity analysis. This involves formalising individual QCDCL ingredients,
such as clause and cube learning and different variants of Boolean constraint propagation. These can then be
‘switched’ on or off, resulting in a number of different QCDCL solving models that we can formally investigate.
Our results can be summarised as follows.

(a) QCDCL with or without cube learning. In contrast to SAT solving, where there is somewhat of an
asymmetry between satisfiable and unsatisfiable formulas, QCDCL implements a dual approach for false and
true QBFs. In addition to learning clauses (as in CDCL) when running into a conflict under the current assign-
ment, QCDCL also learns terms (or cubes) in the case a satisfying assignment is found (or a previously learned
cube is satisfied). While cube learning is necessary to make QCDCL solving complete on true QBFs, it is less
clear what is the effect of cube learning on false QBFs (and we only consider those throughout the paper as we
cast all our models in terms of refutational proof systems, in accordance with the proof complexity analysis of
SAT [10]).

Here we establish the perhaps surprising result that even for false QBFs, cube learning can be advantageous,
in the sense that QCDCL without cube learning (as a proof system for false QBFs) is exponentially weaker than
QCDCL with cube learning.

(b) QCDCL with or without pure-literal elimination. In its simplest form, Boolean constraint propaga-
tion – used to construct trails in (Q)CDCL – implements unit propagation. However, further methods can be
additionally employed (and are considered in pre- and in-processing [8]). One of the classic mechanisms is
pure-literal elimination, setting a pure literal (which occurs in only one polarity) to the obvious value. This is
e.g. implemented in DepQBF and an efficient implementation is described by [14].

We show that QCDCL with or without pure-literal elimination results in incomparable proof systems, i.e.,
there are QBFs that are easy in QCDCL with pure literal elimination, but hard in plain QCDCL, and vice versa
(the latter is perhaps more surprising).

(c) Comparing QCDCL extensions. Given the preceding results, it is natural (and possibly most interesting
for practice) to ask how the different QCDCL extensions compare with each other. We consider QCDCL with
cube learning, QCDCL with pure-literal elimination but without cube learning, and QCDCL with both cube
learning and pure-literal elimination. Except for the simulation of the second by the third system, we again
obtain incomparability results between the systems with exponential separations. We further show that all these
systems are incomparable to Q-Resolution, again via exponential separations. An overview of the systems and
their relations is given in Figure 1.

Technically, our results rest on formalising QCDCL systems as proof calculi and exhibiting specific QBFs
for their separations. The latter includes both the explicit construction of short QCDCL runs as well as proving
exponential proof size lower bounds for the calculi in question. For the lower bounds, we identify a property of
proofs (called primitivity here) that allows to use proof-theoretic machinery of [9] in the context of our QCDCL
systems.

We believe that our theoretical results on the strength of different QCDCL models will also be influential
for developing and improving QCDCL solvers (cf. Section 8).

Organisation. We start in Section 2 by reviewing QBFs and Q-Resolution. In Section 3 we model variants of
QCDCL as formal proof systems and develop a lower technique for such systems in Section 4. Sections 5 to 7
then contain our results on the relative strength of QCDCL variants. We conclude in Section 8 with an outlook
on future research.

2 Preliminaries

Propositional and quantified formulas. Variables x and negated variables x̄ are called literals. We denote the
corresponding variable as varpxq :� varpx̄q :� x.

2

QCDCLCUBE

QCDCLPL

QCDCLCUBE+PL

long-distance
Q-resolution

Q-resolution

QCDCL

Figure 1: The simulation order of QCDCL proof systems. Solid lines represent p-simulations and exponential
separations, while dashed lines represent separations in both directions (i.e., incomparability).

A clause is a disjunction of literals, interpreted as a set of literals. A unit clause pℓq contains only one
literal. The empty clause consists of zero literals, denoted pKq. A clause C is called tautological if tℓ, ℓ̄u � C
for some literal ℓ.

A cube is a conjunction of literals. We define a unit cube of a literal ℓ, denoted by rℓs, and the empty cube
rJs with ‘empty literal’ J. A cube D is contradictory if tℓ, ℓ̄u � D for some literal ℓ. If C is a clause or
a cube, we define varpCq :� tvarpℓq : ℓ P Cu. The negation of a clause C � ℓ1 _ . . . _ ℓm is the cube
 C :� ℓ̄1 ^ . . .^ ℓ̄m.

A (total) assignment σ of a set of variables V is a non-tautological set of literals such that for all x P V
there is some ℓ P σ with varpℓq � x. A partial assignment σ of V is an assignment of a subset W � V . A
clause C is satisfied by an assignment σ if CXσ � H. A cube D is falsified by σ if DXσ � H. A clause C
not satisfied by σ can be restricted by σ, defined as C|σ :�

�
ℓPC,ℓ̄Rσ ℓ. Similarly we can restrict a non-falsified

cube D as D|σ :�
�

ℓPDzσ ℓ.
A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive normal form) is a

disjunction of cubes. We restrict a CNF (DNF) ϕ by an assignment σ as ϕ|σ :�
�

CPϕ non-satisfied C|σ (resp.
ϕ|σ :�

�
DPϕ non-falsified D|σ). For a CNF (DNF) ϕ and an assignment σ, if ϕ|σ � H, then ϕ is satisfied

(falsified) by σ.
A literal ℓ is called pure in a CNF ϕ, if there exists some C P ϕ such that ℓ P C, but for all C 1 P ϕ we have

ℓ̄ R C 1.
A QBF (quantified Boolean formula) Φ � Q � ϕ consists of a propositional formula ϕ, called the matrix,

and a prefix Q. A prefix Q � Q1
1V1 . . .Q1

sVs consists of non-empty and pairwise disjoint sets of variables
V1, . . . , Vs and quantifiers Q1

1, . . . ,Q1
s P tD,@u with Q1

i � Q1
i�1 for i P rs � 1s. For a variable x in Q, the

quantifier level is lvpxq :� lvΦpxq :� i, if x P Vi. For lvΦpℓ1q lvΦpℓ2q we write ℓ1 Φ ℓ2.
For a QBF Φ � Q � ϕ with ϕ a CNF (DNF), we call Φ a QCNF (QDNF). We write CpΦq :� ϕ (resp.

DpΦq :� ϕ). Φ is an AQBF (augmented QBF), if ϕ � ψ _ χ with CNF ψ and DNF χ. Again we write
CpΦq :� ψ and DpΦq :� χ.

We restrict a QCNF (QDNF) Φ � Q � ϕ by an assignment σ as Φ|σ :� Q|σ � ϕ|σ, where Q|σ is obtained
by deleting all variables from Q that appear in σ. Analogously, we restrict an AQBF Φ � Q � pψ _ χq as
Φ|σ :� Q|σ � pψ|σ _ χ|σq.

(Long-distance) Q-resolution and Q-consensus. LetC1 andC2 be two clauses (cubes) from a QCNF (QDNF)
or AQBF Φ. Let ℓ be an existential (universal) literal with varpℓq R varpC1qY varpC2q. The resolvent of C1_ ℓ

3

and C2 _ ℓ̄ over ℓ is defined as

pC1 _ ℓq
ℓ
'Φ pC2 _ ℓ̄q :� C1 _ C2

(resp. pC1 ^ ℓq
ℓ
'Φ pC2 ^ ℓ̄q :� C1 ^ C2q.

Let C :� ℓ1 _ . . ._ ℓm be a clause from a QCNF or AQBF Φ such that ℓi ¤Φ ℓj for all i j, i, j P rms.
Let k be minimal such that ℓk, . . . , ℓm are universal. Then we can perform a universal reduction step and obtain

red@ΦpCq :� ℓ1 _ . . ._ ℓk�1.

Analogously, we perform existential reduction on cubes. Let D :� ℓ1 ^ . . .^ ℓm be a cube of a QDNF or
AQBF Φ with ℓi ¤Φ ℓj for all i j, i, j P rms. Let k be minimal such that ℓk, . . . , ℓm are existential. Then
redDΦpDq :� ℓ1 ^ . . .^ ℓk�1.

As defined by Kleine Büning et al. [12], a Q-resolution (Q-consensus) proof π from a QCNF (QDNF) or
AQBF Φ of a clause (cube) C is a sequence of clauses (cubes) π � pCiq

m
i�1, such that Cm � C and for each

Ci one of the following holds:

• Axiom: Ci P CpΦq (resp. Ci P DpΦqq;

• Resolution: Ci � Cj

x
'Φ Ck with x existential (univ.), j, k i, and Ci non-tautological (non-

contradictory);

• Reduction: Ci � red@ΦpCjq (resp. Ci � redDΦpCjq) for some j i.

We call C the root of π. [1] introduced an extension of Q-resolution (Q-consensus) proofs to long-distance
Q-resolution (long-distance Q-consensus) proofs by replacing the resolution rule by

• Resolution (long-distance): Ci � Cj

x
' Ck with x existential (universal) and j, k i. The resolvent Ci

is allowed to contain tautologies such as u _ ū (resp. u ^ ū), if u is universal (existential). If there is a
universal (existential) u P varpCjq X varpCkq, then we require x Φ u.

A Q-resolution (Q-consensus) or long-distance Q-resolution (long-distance Q-consensus) proof from Φ of the
empty clause pKq (the empty cube rJs) is called a refutation (verification) of Φ. In that case, Φ is called false
(true).

A proof system S p-simulates a system S1, if every S1 proof can be transformed in polynomial time into an
S proof of the same formula.

3 Formal calculi for QCDCL versions

In this section we model different versions of QCDCL as formal proof systems (for background on QCDCL cf.
[6]). For this we need to formalise QCDCL ingredients. We start with trails. A trail T for a QCNF or AQBF Φ
is a finite sequence of literals from Φ, including the empty literals K and J. In general, a trail has the form

T � ppp0,1q, . . . , pp0,g0q;d1, pp1,1q, . . . ,

pp1,g1q; . . . ;dr, ppr,1q, . . . , ppr,grqq,
(3.1)

where the di are decision literals and ppi,jq are propagated literals. Decision literals are written in boldface.
We use a semicolon before each decision to mark the end of a decision level. We write x T y if x, y P T and
x is left of y in T .

Trails can be interpreted as non-tautological sets of literals, and therefore as (partial) assignments. If T is a
trail, then T ri, js, for i P t0, . . . , ru and j P t0, . . . , giu, is defined as the subtrail that contains all literals from
T left of (and excluding) ppi,jq (resp. di, if j � 0).

In solving, trails cannot be arbitrary, but are constructed by the rules of Boolean constraint propagation,
defined next.

4

(Existential propagation rule) EP: Each ppi,jq is either an existential literal from Φ or the empty literal K. For
each ppi,jq there exists a clause anteT pppi,jqq P CpΦq such that red@Φ

�
anteT pppi,jqq|T ri,js

�
� pppi,jqq.

(Arbitrary propagation rule) AP: Each ppi,jq is some literal from Φ or one of the empty literals K or J. If
ppi,jq is existential or K, then the condition from EP applies. If ppi,jq is universal or J, then there exists a cube
anteT pppi,jqq P DpΦq such that redDΦ

�
anteT pppi,jqq|T ri,js

�
�
�
p̄pi,jq

�
.

We call such a clause (cube) anteT pppi,jqq an antecedent clause (antecedent cube). The next rules specify
how decisions are made.
(Level-ordered decision rule) LOD: For each di we have that Φ|T ri,0s does not contain unit or empty clauses
or cubes. Also, lvΦ|T ri,0s

pdiq � 1, i.e., decisions are level-ordered.
(Pure literal decision rule) PLD: For each di we have that Φ|T ri,0s does not contain any unit or empty clauses
or cubes. Also, if there are pure literals in CpΦ|T ri,0sq, then the following holds: If di is existential, then di has
to be pure in CpΦ|T ri,0sq. Otherwise, if di is universal, then d̄i has to be pure in CpΦ|T ri,0sq. In that case we
will underline di in T . However, if CpΦ|T ri,0sq does not contain any pure literals, then lvΦ|T ri,0s

pdiq � 1, i.e.,
decision literals which are not pure have to be level-ordered.

From now on, we will distinguish regular decisions (not underlined) and decisions via pure literal elimina-
tion (underlined). The last pair of rules will determine how we handle conflicts in trails.
(Clause conflict rule) CC: If K P T , then K � ppr,grq and there is no point ri, js except rr, grs such that there
exists some C P CpΦ|T ri,jsq with red@ΦpCq � pKq, i.e., we are not allowed to skip any conflicts.
(Arbitrary conflict rule) AC: If K P T , then J R T and vice versa. If there is an ℓ P tK,Ju with ℓ P T ,
then ℓ � ppr,grq and there is no point ri, js except rr, grs such that there exists some C P CpΦ|T ri,jsq or
D P DpΦ|T ri,jsq with red@ΦpCq � pKq or redDΦpDq � rJs.

A trail T has run into conflict if K P T or J P T .
We now explain clause/cube learning and how QCDCL proofs are constructed.

Definition 3.1 (learnable constraints). Let T be a trail for Φ such that either EP or AP holds. Furthermore, let
T be of the form (3.1) with ppr,grq P tK,Ju. Then we will denote the sequence of learnable constraints LpT q
as

LpT q :� pCpr,grq, . . . , Cpr,1q, . . . , Cp0,g0q, . . . , Cp0,1qq,

in which the clauses or cubes Cpi,jq are recursively defined as:
If ppr,grq � K, then

• Cpr,grq :� red@Φ pantepKqq.

• For i P t0, . . . , ru, j P t1, . . . , gi � 1u, if p̄pi,jq P Cpi,j�1q and ppi,jq existential, then

Cpi,jq :� red@Φ

�
Cpi,j�1q

ppi,jq
' red@Φ

�
antepppi,jqq

�

,

otherwise Cpi,jq :� Cpi,j�1q.

• For i P t0, . . . , r � 1u, if p̄pi,giq P Cpk,1q and ppi,giq existential, then

Cpi,giq :� red@Φ

�
Cpk,1q

ppi,giq
' red@Φ

�
antepppi,giqq

�

otherwise Cpi,giq :� Cpk,1q where k :� minti h ¤ r| gh ¡ 0u (note that always gr ¡ 0).

If ppr,grq � J, then

• Cpr,grq :� redDΦpantepJqq.

• For i P t0, . . . , ru, j P t1, . . . , gi � 1u, if ppi,jq P Cpi,j�1q and ppi,jq universal, then

Cpi,jq :� redDΦ

�
Cpi,j�1q

ppi,jq
' redDΦ

�
antepppi,jqq

�

,

otherwise Cpi,jq :� Cpi,j�1q.

5

• For i P t0, . . . , r � 1u, if ppi,giq P Cpk,1q and ppi,giq universal, then

Cpi,giq :� redDΦ

�
Cpk,1q

ppi,giq
' redDΦ

�
antepppi,giqq

�

,

otherwise Cpi,giq :� Cpk,1q where k :� minti h ¤ r| gh ¡ 0u.

We can also learn cubes from trails that did not run into conflict. If T is a total assignment of the variables
from Φ, then LpT q is defined as the following set of cubes

LpT q :� tredDΦpDq|D � T and D satisfies CpΦqu.

We will now define four different QCDCL proof systems. All of these are proof systems for false QBFs and
use trails. The systems QCDCL and QCDCLPL work with trails using QCNFs, while trails of QCDCLCUBE and
QCDCLCUBE+PL work with AQBFs (the input is still a QCNF). The trails have to meet the conditions specified
in the next table.

QCDCL QCDCLCUBE QCDCLPL QCDCLCUBE+PL

EP AP EP AP
LOD LOD PLD PLD
CC AC CC AC

If S is one of QCDCL, QCDCLCUBE, QCDCLPL, QCDCLCUBE+PL, then a trail T of some QCNF or AQBF Φ is
called a natural S trail, if it follows the specified rules.

Definition 3.2 (QCDCL proof systems). Let S be one of QCDCL, QCDCLCUBE, QCDCLPL, QCDCLCUBE+PL.
An S proof ι from a QCNF Φ � Q � ϕ of a clause or cube C is a sequence of triples

ι :� rpTi, Ci, πiqs
m
i�1,

where Cm � C, each Ti is a trail of Φi, each Ci P LpTiq is one of the constraints we can learn from each
trail and πi is the long-distance Q-resolution or long-distance Q-consensus proofs from Φi of Ci we obtain by
performing the steps in Definition 3.1. If necessary, we set πi :� H. We will denote the set of trails in ι as Tpιq.

The QCNF or AQBF Φi is defined as follows: We set Φ1 :� Φ. If S is one of QCDCL or QCDCLPL, then
we set Φ1 :� Φ and

Φj�1 :� Q � pCpΦjq ^ Cjq .

However, if S P tQCDCLCUBE,QCDCLCUBE+PLu, then the Φi are AQBFs defined as Φ1 :� Q � pCpΦq _Hq and

Φj�1 :�

"
Q � ppCpΦjq ^ Cjq _DpΦjqq if Cj is a clause,
Q � pCpΦjq _ pDpΦjq _ Cjqq if Cj is a cube,

for j � 1, . . . ,m� 1.
Furthermore, we require that T1 is a natural S trail and for each 2 ¤ i ¤ m there is a point rai, bis such

that Tirai, bis � Ti�1rai, bis and TizTirai, bis has to be a natural S trail for Φi|Tirai,bis. This process is called
backtracking. We will also say that after Ti�1 we backtrack back to the point rai, bis. If Ti�1rai, bis � H, then
this is also called a restart.

Note that we only require TizTirai, bis to be natural. However, since the first part always belongs to a
previous trail, and the first trail in the proof is always natural, we can nevertheless use the notion of antecedent
clauses for the whole trail Ti. In particular, for all Ti either EP or AP holds, which we need for the learning
process.

Unfortunately we cannot claim the same for LOD and PLD, because for a decision di in a trail Tk P Tpιq it
might happen that Φk|Tkri,0s contains unit or empty clauses or literals after clause learning and backtracking.
However, we can still assume that the decisions are level-ordered, since the condition lvΦk|Tkri,0s

pdiq � 1

6

is not affected by new clauses. Also, it could happen that a literal di that was originally decided by pure
literal elimination in some trail Tk might not pure in CpΦk�1|Tk�1ri,0sq anymore because of a new clause Ck.
Nevertheless, this will not cause too much difficulties since we can always find the original trail (here: Tk) in
which di was in fact decided as a pure literal. Thus, when we say that a literal was decided by pure literal
elimination in a trail T , we will always refer to this original trail.

If C � Cm � pKq, then ι is called an S refutation of Φ. If C � Cm � rJs, then ι is called an S verification
of Φ. The proof ends once we have learned pKq or rJs.

If C is a clause, we can stick together the long-distance Q-resolution derivations from tπ1, . . . , πmu and
obtain a long-distance Q-resolution proof from Φ of C, which we call Rpιq. Similarly, if C is a cube, we can
stick together the long-distance Q-consensus derivations and obtain a long-distance Q-consensus proof Rpιq
from Φ of C.

The size of ι is defined as |ι| :�
°m

i�1 |Ti|. Obviously, we have |Rpιq| P Op|ι|q.
We say that S p-simulates another system S1, if every S1 proof ι1 can be transformed in polynomial time

into an S proof ι of the same formula.

Theorem 3.3. QCDCL, QCDCLCUBE, QCDCLPL and QCDCLCUBE+PL are sound and complete proof systems.

Proof. We start with the soundness. All Φi have the same truth value. In fact, either the newly added
clauses (cubes) are derived from already known clauses (cubes) by long-distance Q-resolution (long-distance
Q-consensus), which is a sound proof system, or we have added a cube D P LpTjq that can be extended to
an assignment σ which satisfies CpΦjq and redDΦpσq � D. If adding such a D to DpΦjq would have changed
the truth value from false for Φj to true for Φj�1, then there would be a strategy for the universal player that
falsifies CpΦjq _DpΦjq and the existential player would have a strategy that satisfies CpΦjq _DpΦjq _D. If
both players play their strategy on Φj�1, then this would not satisfy CpΦjq, but would satisfy D (and w.l.o.g.
also σ). But then CpΦjq would be satisfied, contradiction.

For the completeness, we refer to [4] for a more detailed argumentation, in which the completeness of
QCDCL is proven. Because each QCDCL refutation can be interpreted as QCDCLCUBE refutation, we immedi-
ately gain completeness for QCDCLCUBE.

For the two systems with pure literal elimination, we will argue similarly as in [4]. There it was shown that
we can always learn clauses that become unit after backtracking (so-called asserting clauses) and that these
clauses are always new, hence they cannot be contained in the current matrix. We claim that the same can be
done in QCDCLPL.

First, it is always possible to let a trail run into a conflict by deciding the universal literals according to a
winning strategy for the universal player. We can assume that in this winning strategy universal pure literals
are immediately set to false, since this will never be disadvantageous for the universal player. At some point,
we will falsify the matrix and receive a conflict, from which we can start clause learning.

In [4] we described how one can find asserting clauses in a conflicting trail for a particular QCDCL variant
(which we have not defined here) in which we are allowed to decide universal literals earlier then it would be
allowed with the LOD rule. This construction can be transferred to QCDCLPL because universal pure literals
are decided earlier, as well. We can ignore pure literal elimination for existential literals because they will
always occur at a dead end (we cannot use them for further propagations). That means even if a trail contains
existential literals that are decided out-of-order as pure literals, they will not interfere with finding asserting
clauses as they will simply be ignored by clause learning.

We conclude that from each trail we will be able to learn asserting clauses that are always new. Since we
only have a finite number of literals, there are also only a finite number of clauses to learn. At some point, we
will learn the empty clause pKq and our QCDCLPL proof ends. Due to the fact that QCDCLPL proofs can be
interpreted as QCDCLCUBE+PL proofs, we conclude that both systems are complete.

We highlight that these systems formally model QCDCL solving as used in practice (cf. [6]).

7

4 Proving lower bounds for QCDCL systems

Throughout the paper we will concentrate on Σb
3 QCNFs which we alway assume to have the form Φ �

DX@UDT � ϕ for non-empty blocks of variables X , U , and T .
A literal ℓ is an X-literal, if varpℓq P X . Analogously, we get U - and T -literals and variables. A clause

C P CpΦq is an X-clause, if all its literals areX-literals. The empty clause pKq is also an X-clause. Analogously,
we define T-clauses. A clause C P CpΦq is an XT-clause, if it contains at least one X-literal, at least one T -
literal, but no U -literals; analogously we define UT-clauses. A clause C P CpΦq is an XUT-clause if it contains
at least one X-, U - and T - literal.

Definition 4.1. We say that Φ fulfils the XT-property, if CpΦq contains no XT-clauses, no T-clauses that are
unit (or empty) and no two T-clauses from CpΦq are resolvable.

As shown by [9], clause learning does not affect the XT-property, i.e., a formula Φ with the XT-property
will still fulfil it during the whole QCDCL run even after having added new clauses to CpΦq.

Next we recall the definition of formula gauge from [9], which represents a measure that can be used for
lower bounds.

Definition 4.2 ([9]). For a QCNF Φ as above let WΦ be the set of all Q-resolution derivations π from Φ of
some X-clause such that π only contains resolutions over T -variables and reduction steps. We set gaugepΦq :�
mint|C| : C is the root of some π PWΦu.

We now define fully reduced and primitive proofs. Our lower bound technique will then work for fully
reduced primitive refutations of formulas that fulfil the XT-property.

Definition 4.3. A long-distance Q-resolution refutation π of a QCNF Φ is called fully reduced, if the following
holds: For each clause C P π that contains universal literals that are reducible, the reduction step has to be
performed immediately and C cannot be used otherwise in the proof.

Each proof Rpιq that was extracted from a QCDCL proof ι is automatically fully reduced, as we perform
reduction steps as soon as possible during clause learning. On the other hand, primitivity does not hold for
proofs Rpιq in general. In fact, the main work in proving our hardness results will be to show that specific
extracted proofs are primitive.

Definition 4.4. A long-distance Q-resolution proof π from a Σb
3 formula with the XT-property is primitive, if

there are no two XUT-clauses in π that are resolved over an X-variable.

Since it is not possible to derive tautological clauses in fully reduced primitive proofs, we may also refer to
them as (fully reduced) primitive Q-resolution proofs.

It follows from [9], that these two conditions suffice to show lower bounds via gauge.

Theorem 4.5 ([9]). Each fully reduced primitive Q-resolution refutation of a Σb
3 QCNF Φ that fulfils the XT-

property has size 2ΩpgaugepΦqq.

Proof Sketch. We refer to the lower bound technique for so-called quasi level-ordered Q-resolution refutations
(it is not necessary to define this notion here) explained in [9]. In the same paper, an algorithm was designed
that can transform QCDCL refutations of such Σb

3 formulas (resp. Rpιq if ι was a QCDCL refutation) into
quasi level-ordered refutations in polynomial time. However, the algorithm only crucially requires that the
given proof is fully reduced (in order to input and output a Q-resolution and no long-distance Q-resolution
proof) and primitive, which is true for Rpιq if the corresponding formula fulfils the XT-property, even though
the notion of primitivity was not explicitly defined in [9]. In line 12 of this algorithm we need that there are
no resolutions over X-variables between two XUT-clauses. In fact, without this precondition, we would not
be able to guarantee a polynomial running time, although a slightly modified algorithm could handle arbitrary
proofs (in exponential time), as well.

Therefore we can transform any (fully reduced) primitive Q-resolution refutation of a formula that fulfils
the XT-property into a quasi level-ordered Q-resolution refutation, for which the gauge lower bound can be
applied. The result then follows from Theorem 12 of [9].

8

The next two results represent the main methodology for most of our hardness results throughout the paper.

Lemma 4.6. Let T be a trail in a QCDCL, QCDCLCUBE, QCDCLPL or QCDCLCUBE+PL proof from a QCNF Φ
with the XT-property. Then for each T -literal t1 P T , which was not decided by pure literal elimination, there
is a U -literal u P T with u T t1.

Proof. If t1 was decided regularly, then the situation is clear because we can only decide T -literals if and only
if all U -variables were assigned before. Therefore we can assume that there is no T -literal t1 P T with t1 ¤T t1
such that t1 was a regular decision.

We will show that then there must be a T -literal t ¤T t1 that was propagated in T via its antecedent clause
F :� anteT ptq and F contains at least one U -literal ū. Assume that such a t does not exist. Then for each
T -literal tj P T with tj ¤T t1 that was propagated via its antecedent clause Fj :� anteT ptjq, starting with
j � 1, it holds that Fj cannot contain any X-literal because of our assumption and the XT-property. Again by
the XT-property, Fj cannot be a unit clause. Therefore we can find another T -literal tj � t̄j�1 P Fj such that
tj�1 P T and tj�1 T tj . By our assumption, we know that tj�1 cannot be a regular decision. It cannot be a
pure literal decision either, since we have t̄j�1 P Fj . Then tj�1 must have been propagated.

But now we have detected infinitely many T -literals ptjq8j�1 assigned in T , which is obviously a contradic-
tion. That means that we can find at least one such t and some ū with ū P anteT ptq and u T t ¤T t1.

Proposition 4.7. Let ι be a QCDCL, QCDCLCUBE, QCDCLPL or QCDCLCUBE+PL refutation of a QCNF Φ that
fulfils the XT-property. If Rpιq is not primitive, then there exists a trail T P Tpιq such that there is a U -literal
u P T and an X-literal x P T with u T x. Additionally, u cannot be a regular decision literal.

Proof. If Rpιq is not primitive, then there are two XUT-clauses C,D P Rpιq that are resolved over an X-
variable x, say x P C and x̄ P D. One of these clauses has to be an antecedent clause of some trail T P Tpιq,
w.l.o.g. let C be the antecedent clause anteT pxq. Let t̄ P C be one of the T -literals from C. In particular, we
have t P T and t T x. Because t was not a pure literal decision (we have t̄ P C) and because of Lemma 4.6,
there is a U -literal u P T with u T t. We conclude that also u T x holds.

Since we can only decide U -literals regularly if all X-variables are assigned in some polarity in T , it is
impossible for u to be a regular decision literal.

Basically, this result tells us that for a non-primitive proof Rpιq of some S proof ι, where S is one of our
four QCDCL variants, ι needs to consist of a trail that assigns a U -literal out-of-order (i.e., before we have
assigned all X-literals).

Since neither cube learning nor pure literal elimination is allowed in QCDCL, we can immediately conclude:

Corollary 4.8. Let ι be a QCDCL refutation of a QCNF Φ that fulfils the XT-property. Then Rpιq is primitive.

We remark that some of the QBFs we introduce in the paper are not minimally false, i.e., we have added
extra clauses to formulas that were false already. Although this is unusual in proof complexity, practical (false)
instances are not guaranteed to be minimally false. Therefore it is natural to also consider these QBFs when
investigating QCDCL systems. These algorithmic proof systems have to utilize all clauses, even if they are
redundant for Q-resolution refutations.

5 Plain QCDCL vs. extensions with cubes/PL

We start by examining the influence of cube learning on our QCDCL model. For false formulas we can always
prevent learning cubes by just deciding the universal variables according to a winning strategy for the universal
player, which will cause a conflict on the current trail. Thus cube learning will never be disadvantageous in
principle.

Proposition 5.1. QCDCLCUBE p-simulates QCDCL.

9

Proof. A QCDCL proof translates into a QCDCLCUBE proof where all trails run into conflict and no cubes are
learnt.

We recall the equality formulas Eqn of [3]. These are QCNFs with prefix Dx1 . . . xn@u1 . . . unDt1 . . . tn and
matrix

pt̄1 _ . . ._ t̄nq ^
n©

i�1

ppx̄i _ ūi _ tiq ^ pxi _ ui _ tiqq.

The formulas are known to be hard for Q-resolution [3] and also for QCDCL [4]. In contrast, we show that they
are easy in QCDCL with cube learning.

Proposition 5.2. There exist polynomial-size QCDCLCUBE refutations of Eqn.

Proof. First we learn the cubes xi ^ ūi and x̄i ^ ui for i � 1, . . . , n� 1. In order to learn x1 ^ ū1, we can use
the trail

T1 :� px1; . . . ;xn; ū1; . . . ; ūn; t̄1; t2; . . . ; tnq.

Then the partial assignment x1 ^ ū1 ^ t̄1 ^ t2 ^ . . . ^ tn satisfies the matrix of Eqn. Reducing this cube
existentially results in x1 ^ ū1, hence x1 ^ ū1 P LpT1q.

Learning x̄1 ^ u1 works analogously. Note that the previously learned cube does not interfere with the
learning of this cube.

Having already learned the 2i cubes from 1 to i, let us now explain how to learn the two cubes for i � 1.
We create the following trail:

Ti�1 :� px1, u1, t1; . . . ;xi, ui, ti;xi�1; . . . ;xn; ūi�1; . . . ; ūn; t̄i�1; ti�2; . . . ; tnq

with

anteTi�1pujq � xj ^ ūj ,

anteTi�1ptjq � x̄j _ ūj _ tj

for j � 1, . . . , i.
Again, the partial assignment xi�1 ^ ūi�1 ^ t1 ^ . . . ^ ti ^ t̄i�1 ^ ti�2 ^ . . . ^ tn satisfies the matrix of

Eqn. This can be reduces to the cube xi�1^ ūi�1, which we will learn. As before, learning x̄i�1^ ui�1 works
analogously.

After we have learned all of these 2n � 2 cubes, we will go on with clause learning in which we will
successively learn the clauses

Li :� x̄i _ ūi _
nª

j�i�1

puj _ ūjq _
i�1ª
k�1

t̄k

Ri :� xi _ ui _
nª

j�i�1

puj _ ūjq _
i�1ª
k�1

t̄k

for i � 2, . . . , n� 1.
We start with the following trails:

Un�1 :� px1, u1, t1; . . . ;xn�1, un�1, tn�1, t̄n, xn,Kq

with

anteUn�1pujq � xj ^ ūj

anteUn�1ptjq � x̄j _ ūj _ tj

anteUn�1pt̄nq � t̄1 _ . . ._ t̄n

anteUn�1pxnq � xn _ un _ tn

anteUn�1pKq � x̄n _ ūn _ tn

10

for j � 1, . . . , n� 1. We resolve over xn, t̄n and tn�1 and get Ln�1. Analogously, we can learn Rn�1.
Suppose we have already learned Ln�1, Rn�1, . . . , Li, Ri for some i P t3, . . . , n�1u. Let us now construct

trails from which we can learn Li�1 and Ri�1:

Ui�1 :� px1, u1, t1; . . . ;xi�1, ui�1, ti�1, xi,Kq

with

anteUi�1pujq � xj ^ ūj ,

anteUi�1ptjq � x̄j _ ūj _ tj

anteUi�1pxiq � Ri

anteUi�1pKq � Li

for j � 1, . . . , i� 1. We resolve over xi and ti�1 and get Li�1. Again, analogously we can derive Ri�1.
After we have finished learning L2 and R2, we can create the last two trails as follows:

U1 :� px1, u1, t1, x2,Kq

with

anteU1pu1q � x1 ^ ū1

anteU1pt1q � x̄1 _ ū1 _ t1

anteU1px2q � R2

anteU1pKq � L2.

We resolve over x2 and t1 and obtain the unit clause px̄1q. Then the last trail will not contain any decision:

U 1
1 :� px̄1, ū1, t1, x2,Kq

with

anteU 1
1
px̄1q � px̄1q

anteU 1
1
pu1q � x1 ^ ū1

anteU 1
1
pt1q � x̄1 _ ū1 _ t1

anteU 1
1
px2q � R2

anteU 1
1
pKq � L2.

Resolving over all existential variables leads to the empty clause.

As the formulas Eqn require exponential-sized QCDCL refutations [4] we obtain:

Theorem 5.3. QCDCLCUBE is exponentially stronger than QCDCL.

Next we will look at the influence of pure literal elimination. Now, the effect of pure literal elimination
is similar to cube learning: they enable out-of-order decisions that can shorten the refutations. This again
manifests in Eqn.

Proposition 5.4. Eqn has polynomial-size QCDCLPL refutations.

Proof. The refutation is similar to the one in Proposition 5.2, except that instead of learning cubes, we will use
pure literal elimination to decide the universal literals out of order. We will again learn the clauses Li and Ri

for i � 2, . . . , n� 1.

11

We start with the following trails:

Un�1 :� px1;u1, t1; . . . ;xn�1;un�1, tn�1, t̄n, xn,Kq

with

anteUn�1ptjq � x̄j _ ūj _ tj

anteUn�1pt̄nq � t̄1 _ . . ._ t̄n

anteUn�1pxnq � xn _ un _ tn

anteUn�1pKq � x̄n _ ūn _ tn

for j � 1, . . . , n� 1. We resolve over xn, t̄n and tn�1 and get Ln�1. In an analogous way we can learn Rn�1.
Suppose we have already learned Ln�1, Rn�1, . . . , Li, Ri for some i P t3, . . . , n�1u. Let us now construct

trails from which we can learn Li�1 and Ri�1:

Ui�1 :� px1;u1, t1; . . . ;xi�1;ui�1, ti�1, xi,Kq

with

anteUi�1ptjq � x̄j _ ūj _ tj

anteUi�1pxiq � Ri

anteUi�1pKq � Li

for j � 1, . . . , i� 1. We resolve over xi and ti�1 and get Li�1. Again, analogously we can derive Ri�1. Note
that, in our case, the learned clauses will not interfere with pure literal elimination. Once we have learned Li

and Ri, we will not need to make the literals from ui, . . . , un pure any more. Also, say we learn Li before Ri,
once we decide x̄i in order to learn Ri, we will also make Li true. Therefore pure literal elimination behaves
(almost) symmetrically.

After we have finished learning L2 and R2, we can create the last two trails as follows:

U1 :� px1;u1, t1, x2,Kq

with

anteU1pt1q � x̄1 _ ū1 _ t1

anteU1px2q � R2 � x2 _ u2 _
nª

j�3

puj _ ūjq _ t̄1

anteU1pKq � L2 � x̄2 _ u2 _
nª

j�3

puj _ ūjq _ t̄1.

We resolve over x2 and t1 and obtain the unit clause px̄1q. Then the last trail will not contain any decision:

U 1
1 :� px̄1, ū1, t1, x2,Kq

with

anteU 1
1
px̄1q � px̄1q

anteU 1
1
pt1q � x̄1 _ ū1 _ t1

anteU 1
1
px2q � R2

anteU 1
1
pKq � L2.

Resolving over all existential variables leads to the empty clause.

12

Although pure literal elimination helps to refute Eqn, it turns out that pure literal elimination can also be
disadvantageous. It might be a fallacy to think that pure existential literals should be satisfied in the same way
as unit clauses in unit propagation. We will construct formulas in which pure literal elimination thwarts finding
a convenient conflict and therefore short refutations.

We construct these formulas in stages, starting with MirrorCRn. In turn, these QBFs are based on the
Completion Principle CRn of [11], known to be hard for QCDCL [9, 11]. The “Mirror”-modification adds new
symmetries to the formula, causing pure literals to appear too late to make a difference.

Definition 5.5. The QCNF MirrorCRn consists of the prefix Dxp1,1q, . . . , xpn,nq@uDa1, . . . , an, b1, . . . , bn and
the matrix

xpi,jq _ u_ ai ā1 _ . . ._ ān

x̄pi,jq _ ū_ bj b̄1 _ . . ._ b̄n

xpi,jq _ ū_ āi a1 _ . . ._ an

x̄pi,jq _ u_ b̄j b1 _ . . ._ bn for i, j P rns.

It is easy to see that MirrorCRn fulfil the XT-property. Additionally, we can show:

Proposition 5.6. The CNF CpMirrorCRnq is unsatisfiable and gaugepMirrorCRnq ¥ n� 1.

Proof. We first show the unsatisfiability of the matrix. Assume otherwise. Let σ be a satisfying assignment for
CpMirrorCRnq. We can assume that σ is a total assignment. W.l.o.g. let u P σ. We distinguish two cases:

Case 1: For all i P t1, . . . , nu there exists a j P t1, . . . , nu such that x̄pi,jq P σ. Then we need āi P σ for all
i � 1, . . . , n, which falsifies the clause a1 _ . . ._ an.

Case 2: There is an i P t1, . . . , nu such that for all j P t1, . . . , nu we have xpi,jq P σ. Then we need bj P σ
for all j � 1, . . . , n, which falsifies the clause b̄1 _ . . ._ b̄n.

In each case we can conclude that it is not possible to construct a satisfying assignment for CpMirrorCRnq.
We now prove gaugepMirrorCRnq ¥ n� 1.
Since MirrorCRn contains no X-clauses as axioms, we have to resolve over some ai or bj somehow.

Obviously, it is not possible to resolve xpi,jq _ u_ ai and xpi,jq _ ū_ āi or x̄pi,jq _ ū_ bj and x̄pi,jq _ u_ b̄j .
That means we have to use the other axioms. Because of the symmetry, we can assume that we use the clause
ā1 _ . . ._ ān somehow. Then we have to get rid of all āi. This can be done via the clauses xpi,jq _ u_ ai, or
we use the clause a1 _ . . ._ an. However, to use the latter clause we have to get rid of at least n� 1 different
ai in another way first, which is only possible with the aid of the clauses xpi,jq _ ū_ āi. We conclude that we
will pile up at least n� 1 different X-literals.

Applying Theorem 4.5 we infer:

Corollary 5.7. MirrorCRn needs exponential-size fully reduced primitive Q-resolution refutations.

All we have to do now is to show that all QCDCLPL refutations of MirrorCRn are primitive. Then the
gauge lower bound applies. We will show that for a non-primitive refutation of MirrorCRn we would need to
decide literals by pure literal elimination, and before each pure literal elimination we have to perform another
one, which is a contradiction.

Proposition 5.8. From each QCDCLPL refutation of MirrorCRn we can extract a fully reduced primitive Q-
resolution refutation of the same size.

Proof. Let ι be a QCDCLPL refutation of MirrorCRn. We will show that Rpιq is primitive.
Assume not. Then by Proposition 4.7 there exists a trail T P Tpιq such that there is an X-literal x P T and

a U -literal v P T with v T x and v is not a regular decision literal. Let us say that varpxq � xpk,mq for some
k,m P t1, . . . , nu.

13

That means we have decided v (which is either u or ū) out of order via pure literal elimination. We show
that this is not possible before we have assigned all X-literals.

Claim 1: There is a T -literal t1 such that t1 T v T x.
W.l.o.g. let v � ū. We need to satisfy the clauses x̄pi,jq_ ū_bj and xpi,jq_ ū_ āi for each i, j P t1, . . . , nu

without assigning u. Since we want to propagate x later, we cannot assign the X-variable xpk,mq in order to
satisfy these clauses. That means we need to set bm to true and ak to false. If we set t1 :� bm, then we get
t1 T v T x.

Claim 2: For each T -literal tj with tj T v T x there is another T -literal tj�1 such that tj�1 T tj T
v T x.

Because of tj T v, the T -literal tj cannot be a regular decision. Either tj was decided as a pure literal,
or it was propagated. If it was a pure literal, then we needed to satisfy one of the clauses ā1 _ . . . _ ān,
b̄1 _ . . . _ b̄n, a1 _ . . . _ an or b1 _ . . . _ bn. This is only possible if we assigned another T -literal tj�1

before, hence tj�1 T tj T v T x. However, if tj was propagated, then there is the antecedent clause
F :� anteT ptjq. Due to the XT-property, F cannot be unit. Then there is another literal tj � ℓ P F . Because
the formula only contains one U -variable, ℓ can only be an X- or a T -literal. Again, by the XT-property, F
cannot be an XT-clause and therefore ℓ has to be a T -literal, which needs to be falsified by the current trail.
Therefore, if we set tj�1 :� ℓ̄, we get tj�1 T tj T v T x.

We proved that Rpιq has to be primitive, otherwise the trail T would contain infinitely many T -literals tj .

Corollary 5.9. The QBFs MirrorCRn require exponential-size QCDCLPL refutations.

Next we embed this formula into a new QCNF PLTrapn.

Definition 5.10. The QCNF PLTrapn has the prefix Dy, xp1,1q, . . . , xpn,nq@uDa1, . . . , an, b1, . . . , bn, a, b. Its
matrix contains all clauses from MirrorCRn and additionally py _ aq, pā_ bq, pā_ b̄q, pa_ bq, and pa_ b̄q.

Proposition 5.11. PLTrapn needs exponential-size QCDCLPL refutations.

Proof. Let ι be a QCDCLPL refutation of PLTrapn. We will show that each trail of Tpιq can only contain
literals from MirrorCRn or y. Then ι can be interpreted as a QCDCLPL refutation of MirrorCRn where the
only difference is the assignment of y, which does not affect clause learning in any form. Then the result
follows by Corollary 5.9.

In each QCDCLPL trail, we will set y to true due to pure literal elimination. That means the clause y _ a
will never become the unit clause paq.

After this, we have to assign the variables from MirrorCRn. We will show that for each trail T P Tpιq we
have ta, ā, b, b̄u X T � H.

First of all, it is obvious that pure literal elimination of a or b is impossible at any time due to the four
clauses ā _ b, a _ b, ā _ b̄ and a _ b̄. In fact, if, for example, we would like to make b pure, then we have to
satisfy the clauses ā_ b̄ and a_ b̄, which cannot be done without setting b to false.

Next, let us assume that there is some literal ℓ P ta, ā, b, b̄u that was propagated in some trail T P Tpιq. In
particular, let T be the first trail in which we propagated a literal ℓ P ta, ā, b, b̄u. Since y _ a can never be used
as an antecedent clause for a, we have anteT pℓq P tā_ b, a_ b, ā_ b̄, a_ b̄u. But then we would need another
ℓ � ℓ1 P ta, ā, b, b̄u with ℓ1 P T and ℓ1 T ℓ. If we suppose that ℓ was the first propagation of a literal from
ta, ā, b, b̄u, then we conclude that ℓ1 has to be a regular decision.

We will now argue that we get a contradiction if there is a trail T P Tpιq in which we have decided a
literal ℓ1 P ta, ā, b, b̄u. Because of the level-ordered decision rule LOD, there exists v P tu, ūu with v P T
and v T ℓ1. We can only decide v if we have assigned all existential literals left of v. In particular, for each
i, j � 1, . . . , n there is a literal ℓpi,jq P txpi,jq, x̄pi,jqu with ℓpi,jq P T and ℓpi,jq T v. We now distinguish two
cases.

Case 1: For all i P t1, . . . , nu there exists a j P t1, . . . , nu with ℓpi,jq � x̄pi,jq.

14

Then if v � u, we will gain unit clauses pāiq for i � 1, . . . , n from the clauses xpi,jq _ ū _ āi, which can
be used for unit propagations that lead to a conflict in the clause a1 _ . . . _ an. Otherwise, if v � ū, then we
will get unit clauses paiq from the clauses xpi,jq _ u_ ai and a conflict in ā1 _ . . ._ ān.

Case 2: There exists an i P t1, . . . , nu such that for all j P t1, . . . , nu it holds ℓpi,jq � xpi,jq.
This case is analogous to Case 1 with unit clauses pbjq (resp. pb̄jq) and a conflict in b̄1 _ . . . _ b̄n (resp.

b1 _ . . ._ bn).
In each case we will get a conflict in some clause. That means the trail T would run into a conflict before

we would have the chance to decide ℓ1. That shows that ℓ1 cannot be decided at any point. We conclude that no
trail from ι can contain a literal from ta, ā, b, b̄u.

Not having to follow the PLD rule, we can construct short proofs of PLTrapn by focusing on the new
clauses over a, b.

Proposition 5.12. PLTrapn has polynomial-size QCDCL refutations.

Proof. The shortest refutation only consists of two trails. We start with

T :� pȳ, a, b,Kq

with

anteT paq � y _ a

anteT pbq � ā_ b

anteT pKq � ā_ b̄.

We resolve over b and learn the unit clause pāq.
The final trail looks as follows:

U :� pā, b,Kq

with

anteU pāq � pāq

anteU pKq � a_ b̄,

from which we can learn the empty clause by resolving over everything.

We conclude that pure literal elimination is advantageous for Eqn, but not for PLTrapn. Therefore we
obtain:

Theorem 5.13. QCDCLPL and QCDCL are incomparable.

6 Cube learning vs. pure literal elimination

As shown in Section 5, cube learning improves QCDCL, while adding pure literal elimination leads to incom-
parable systems. Thus it is natural to directly compare cube learning and pure literal elimination. Because of
the results above, we cannot use Eqn for a potential separation. However, we can modify the QBFs such that
they remain easy for QCDCLPL, while eliminating the benefits from cube learning.

Definition 6.1. The QCNF TwinEqn consists of the prefix Dx1, . . . , xn@u1, . . . , un, w1, . . . , wnDt1, . . . , tn and
the matrix

xi _ ui _ ti xi _ wi _ ti t̄1 _ . . ._ t̄n
x̄i _ ūi _ ti x̄i _ w̄i _ ti for i P rns.

15

The main idea of this twin construction is to ensure that all potential cubes consist of at least two universal
variables. We can do the same construction for other QCNFs and will later introduce TwinCRn as well.

Obviously, TwinEqn fulfils the XT-property. We compute gaugepTwinEqnq � n and hence infer by Theo-
rem 4.5:

Proposition 6.2. Fully reduced primitive Q-resolution refutations of TwinEqn have exponential size.

Proof. We need to show gaugepTwinEqnq � n , then the result follows by Theorem 4.5.
Since we have to resolve over T somehow, we have to use the clause t̄1 _ . . . _ t̄n. Hence, we have to

resolve over each ti at least once, and therefore we will pile up xi or x̄i in each resolution step due to the
XUT-axioms.

We show that QCDCLCUBE refutations of TwinEqn are primitive by proving that it is impossible to propagate
U -literals before having assigned all X-literals.

Proposition 6.3. Each QCDCLCUBE refutation of TwinEqn has at least exponential size.

Proof. We will prove that from each QCDCLCUBE refutation of TwinEqn we can extract a fully reduced primitive
Q-resolution refutation of the same size. Let ι be a QCDCLCUBE refutation of TwinEqn. We will show that Rpιq
is primitive.

Assume not. Then by Proposition 4.7 there exists a trail T P Tpιq such that there is an X-literal x P T and
a U -literal u P T with u T x. Also, u cannot be a regular decision in T .

Hence, we have propagated u before x. Universal propagation can only be performed via cubes. Let us
now consider how the initial cubes from TwinEqn look like.

Assume that the cube A is a (not necessarily total) assignment that satisfies the matrix of TwinEqn. We
have to satisfy the clause t̄1_ . . ._ t̄n, hence there is a j P t1, . . . , nu with t̄j P A. Then we also have to satisfy
the four clauses

xj _ uj _ tj

x̄j _ ūj _ tj

xj _ wj _ tj

x̄j _ w̄j _ tj .

That means xj has to appear in some polarity in A, say xj P A. But then we need to set both uj and wj to
false, thus ūj , w̄j P A.

We conclude that each (reduced) cube has to contain one of the subcubes

xj ^ ūj ^ w̄j

x̄j ^ uj ^ wj

for some j P t1, . . . , nu. This also causes that none of these cubes are resolvable.
We observe that all cubes that can be used for universal unit propagation contain at least two universal

literals. Since we needed one of these cubes as antecedent cube of some universal literal in our trail T , we
would have needed to decide or propagate another universal literal before. Having only finitely many universal
literals, we would have needed to decide one universal literal before propagating x, which is a contradiction to
our decision rule LOD.

This shows that Rpιq is indeed primitive.

Having shown that TwinEqn is hard for QCDCLCUBE, it remains to prove that it is easy for QCDCLPL.

Proposition 6.4. TwinEqn has polynomial-size QCDCLPL refutations.

16

Proof. The proof is similar to the one in Proposition 5.4, except one change: Each time some universal literal
is getting pure, say ui, then also wi becomes pure as well. That means each time we decide some ui (resp. ūi)
in the trail by pure literal elimination, we also have to do the same to wi (resp. w̄i) in the next decision level.
However, this does not affect anything concerning unit propagation or clause learning.

To give an example: The trail Un�1 from Proposition 5.4 will now look like

Un�1 :� px1;u1, t1;w1; . . . ;xn�2;un�2, tn�2;wn�2;xn�1;un�1, tn�1, t̄n, xn,Kq.

For the other separation we use PLTrapn, which is hard for QCDCLPL, but still easy for QCDCLCUBE by
Proposition 5.1. Therefore we conclude:

Theorem 6.5. QCDCLCUBE is incomparable to QCDCLPL.

We have seen earlier that the QCDCL system including pure literal elimination is incomparable to the sys-
tem without. Now we will prove that this incomparability still holds with cube learning turned on. Similarly to
Proposition 5.1, we obtain that QCDCLCUBE+PL p-simulates QCDCLPL. Therefore we get from Proposition 6.4:

Corollary 6.6. TwinEqn has polynomial-size QCDCLCUBE+PL refutations.

Since TwinEqn is hard for QCDCLCUBE, this gives us the first separation between QCDCLCUBE+PL and
QCDCLCUBE. The other direction can be shown with PLTrapn.

Proposition 6.7. PLTrapn has polynomial-size QCDCLCUBE refutations, but needs exponential-size QCDCLCUBE+PL

refutations.

Proof. The short proofs in QCDCLCUBE follow from Propositions 5.1 and 5.12.
We now show that PLTrapn needs exponential-size QCDCLCUBE+PL refutations. This follows directly from

Proposition 5.11 since by Proposition 5.6 the matrix of PLTrapn is unsatisfiable and therefore we will never be
able to learn cubes that satisfy the matrix. Hence each QCDCLCUBE+PL refutation of PLTrapn can be interpreted
as a QCDCLPL refutation.

Hence we get:

Theorem 6.8. QCDCLCUBE+PL and QCDCLCUBE are incomparable.

We now consider the relation between QCDCLCUBE+PL and QCDCLPL. We introduce another modification
of Eqn, which we call BulkyEqn, where we add two clauses.

Definition 6.9. The QCNF BulkyEqn is obtained from Eqn by adding the clauses u1_ . . ._un_ t1_ . . ._ tn
and ū1 _ . . ._ ūn _ t1 _ . . ._ tn to the matrix.

As Eqn, this formula fulfils the XT-property and has a high gauge value (¥ n � 1). By Theorem 4.5
we infer that BulkyEqn needs exponential-size fully reduced primitive Q-resolution refutations. Similarly to
MirrorCRn, we can then show that pure literal elimination does not shorten proofs because of the two additional
‘bulky’ clauses that prevent pure literals to occur early in trails. Therefore BulkyEqn is hard for QCDCLPL. On
the other hand, we can explicitly construct short proofs in QCDCLCUBE+PL. Therefore we get:

Proposition 6.10. BulkyEqn has polynomial-size QCDCLCUBE+PL refutations, but needs exponential-size QCDCLPL

refutations.

Proof. Part 1: BulkyEqn needs exponential-size QCDCLPL refutations.
We first prove gaugepBulkyEqnq ¥ n� 1. To derive an X-clause, we have to use t̄1 _ . . ._ t̄n somehow.

That means we have to resolve over each ti. We can resolve with u1 _ . . ._ un _ t1 _ . . ._ tn or ū1 _ . . ._
ūn_ t1_ . . ._ tn only after we have resolved away at least n� 1 different T -variables otherwise. That means

17

we have pile up at least n � 1 different X-literals by using the clauses xi _ ui _ ti or x̄i _ ūi _ ti. Hence
gaugepBulkyEqnq ¥ n� 1.

We will now prove that from each QCDCLPL refutation of BulkyEqn we can extract a fully reduced primi-
tive Q-resolution refutation of the same size. Let ι be a QCDCLPL refutation of BulkyEqn. We will show that
Rpιq is primitive.

Assume not. Then by Proposition 4.7 there exists a trail T P Tpιq such that there is an X-literal x P T and
a U -literal u P T with u T x and u is not a regular decision literal.

Since cube learning is disabled, this universal literal u had to be decided by pure literal elimination. We
will show that pure literal elimination of the universal literal u before deciding or propagating all X-variables
is not possible. Define M :� tui, ūi, ti, t̄i : i � 1, . . . , nu.

Claim 1: There exists some ℓ1 PM such that ℓ1 T u T x.
In order to make u pure, we have to satisfy one of the clauses u1 _ . . ._ un _ t1 _ . . ._ tn or ū1 _ . . ._

ūn _ t1 _ . . ._ tn. In particular, we need some ℓ1 PM with ℓ1 T u T x.
Claim 2: For each ℓj P M with ℓj T u T x there exists some ℓj�1 P M such that ℓj�1 T ℓj T

u T x
If ℓj was decided via pure literal elimination, we can use a similar argument as in Claim 1 (now we have

satisfy one of the three clauses u1_ . . ._un_ t1_ . . ._ tn, ū1_ . . ._ ūn_ t1_ . . ._ tn or t̄1_ . . ._ t̄n) and
conclude that we need some ℓj�1 PM with ℓj�1 T ℓj T u T x. However, if ℓj was not decided as a pure
literal, then it has to be a T -literal that was propagated. Note that we cannot have decided ℓj regularly because
of ℓj T x and ℓj T u. That means there is an antecedent clause F :� anteT pℓjq. Due to the XT-property, F
cannot be a unit clause. That means there is another literal ℓj � ℓ P F . If ℓ is a U - or a T -literal, then we can
set ℓj�1 :� ℓ̄. If ℓ is an X-literal, then there is at least one U -literal v P F , again because of the XT-property.
Then we can set ℓj�1 :� v̄.

We have proven that if Rpιq is not primitive, then T has to contain an endless number of literals ℓj , which
is obviously not possible since the formula only consists of finitely many variables. That means Rpιq has to be
primitive.

Part 2: BulkyEqn has polynomial-size QCDCLCUBE+PL refutations.
We start with the learning of exactly two cubes: x1 ^ ū1 and x̄1 ^ u1. We do this via the following two

trails:

T :� px1; . . . ;xn; ū1; . . . ; ūn; t̄1; t2; . . . ; tnq

T 1 :� px̄1; . . . ; x̄n;u1; . . . ;un; t̄1; t2; . . . ; tnq

Unfortunately we cannot continue learning the other cubes as in Proposition 5.2 since this will be blocked by
pure literal elimination. However, we can use this effect to our advantage by simulating the missing cubes in
this way.

Let us now start the learning of the clauses Li andRi for i � 2, . . . , n�1 from the proof of Proposition 5.2.
We begin by constructing the following trail:

Un�1 :� px1, u1, t1;x2;u2, t2, . . . ,xn�2;un�2, tn�2;

xn�1, un�1, tn�1, t̄n, xn,Kq

with the same antecedent constraint as in Proposition 5.2 (except of the pure literals u2, . . . , un�2) and the same
learned clause Ln�1. Analogously we can learn Rn�1.

We go on with the trails Un�2, . . . ,U2 in the same way as in Proposition 5.2 where we learn Ln�2, . . . , L2,
except that the literals u2, . . . , ui�2 in Ui are now pure literals and not propagated via cubes. However, this
does not affect the clause learning process in any aspect. The same is obviously true for the analogous trails in
which we learn Rn�2, . . . , R2.

We finish the proof with the last two trails U1 and U 1
1 exactly as in Proposition 5.2.

As for the systems without pure literal elimination, we obtain the following result:

Theorem 6.11. QCDCLCUBE+PL is exponentially stronger than QCDCLPL.

18

7 The QCDCL systems vs. Q-resolution

[4] showed incomparability of Q-resolution and QCDCL. We now lift this to the other QCDCL variants in-
troduced here. For one separation, we can use the QCNF QParityn from [5], which have short QCDCL
refutations. These formulas have prefix Dx1 . . . xn@uDt1 . . . tn and clauses

x1 _ t̄1, x̄1 _ t1, u_ tn, ū_ t̄n,

xi _ ti�1 _ t̄i, xi _ t̄i�1 _ ti, x̄i _ ti�1 _ ti, x̄i _ t̄i�1 _ t̄i for i P t2, . . . , nu.

Theorem 7.1. QCDCL, QCDCLCUBE, QCDCLPL and QCDCLCUBE+PL are all incomparable to Q-resolution.
In detail, the QBFs QParityn have polynomial-size QCDCL, QCDCLCUBE, QCDCLPL, and QCDCLCUBE+PL

refutations, but need exponential-size Q-resolution refutations. On the other hand, MirrorCRn have polynomial-
size Q-resolution refutations, but need exponential-size QCDCL, QCDCLCUBE, QCDCLPL, and QCDCLCUBE+PL

refutations.

Proof. Claim 1: QParityn has polynomial-size QCDCL and QCDCLCUBE refutations.
It was proven in [4] that QParityn has short QCDCL refutations. And because of Proposition 5.1, the

formula is easy for QCDCLCUBE, as well.
Claim 2: QParityn has polynomial-size QCDCLPL and QCDCLCUBE+PL refutations.
We will show that we will never find pure literals while creating QCDCLPL trails. In fact, the only way in

making a literal ℓ pure is to create a unit clause pℓq, which would immediately lead to the propagation of ℓ or a
conflict.

For example, suppose the literal ti is pure at some point in the trail. Then the clauses xi _ ti�1 _ t̄i and
x̄i_ t̄i�1_ t̄i must have been satisfied by the current assignment of the trail. Since we have not assigned ti yet,
we have to set either xi to true and ti�1 to false, or xi to false and ti�1 to true. In both cases we would obtain
the unit clause ptiq by apply this assignment to either xi _ t̄i�1 _ ti or x̄i _ ti�1 _ ti.

The same holds for the universal variable u. For u or ū to be pure, we need to set tn to false or true. But
then we would obtain the unit clause puq or pūq, which would immediately lead to a conflict.

We conclude that the polynomial-size QCDCL refutation of QParityn is a QCDCLPL refutation as well.
And because QCDCLCUBE+PL p-simulates QCDCLPL, QParityn is also easy for QCDCLCUBE+PL.

Claim 3: QParityn needs exponential-size Q-resolution refutations.
This was already proven in [5].
Claim 4: MirrorCRn needs exponential-size QCDCL, QCDCLCUBE, QCDCLPL and QCDCLCUBE+PL refuta-

tions.
Because of Proposition 5.6, each trail T in a QCDCLCUBE or QCDCLCUBE+PL refutation runs into a conflict.

Therefore we will always learn clauses and no cubes. Then each QCDCLCUBE refutation can be interpreted as
a QCDCL refutation and each QCDCLCUBE+PL refutation can be interpreted as a QCDCLPL refutation. The rest
follows by Corollary 4.8, 5.7 and 5.9.

Claim 5: MirrorCRn has polynomial-size Q-resolution refutations.
This follows directly from the fact that MirrorCRn extends the original QCNF CRn, which has polynomial-

size Q-resolution refutations [11]. We will just ignore the clauses that are not contained in CRn.

8 Conclusion

Our proof-complexity study of QCDCL versions shows that using different notions such as cube learning and
pure-literal elimination results in systems of incomparable strength. This points towards potential in imple-
menting different versions of QCDCL and possibly executing them in parallel. In particular, our theoretical
results support exploiting pure-literal elimination more widely in practice, as this is a simple technique that
demonstrably can yield sharp performance gains. As follow-up work it would be interesting to complement our
theoretical analysis with an experimental study.

19

While this paper only studies false formulas (in accordance with proof complexity conventions), we expect
similar phenomena of incomparability on true formulas, which we leave for future work to explore. Inter-
estingly, while cube learning is primarily needed for true QBFs, we have shown that it can also improve the
running time on false instances.

Technically, we believe that our new notion of primitive proofs has further potential for showing QCDCL
lower bounds, also for QBFs of higher quantifier complexity. While previous results tried to lift lower bounds
from Q-Resolution [4], primitivity also applies to QBFs easy for Q-Resolution, thus supplying new reasons for
QCDCL hardness.

Acknowledgements

Research was supported by DFG grant BE 4209/3-1.

References

[1] Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Form. Methods Syst. Des.
41(1), 45–65 (2012)

[2] Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause
learning. J. Artif. Intell. Res. (JAIR) 22, 319–351 (2004)

[3] Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: A semantic technique for hard random
QBFs. Logical Methods in Computer Science 15(1) (2019)

[4] Beyersdorff, O., Böhm, B.: Understanding the Relative Strength of QBF CDCL Solvers
and QBF Resolution. In: Lee, J.R. (ed.) 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 185,
pp. 12:1–12:20. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.ITCS.2021.12, https://drops.dagstuhl.de/opus/volltexte/2021/13551

[5] Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity.
ACM Transactions on Computation Theory 11(4), 26:1–26:42 (2019)

[6] Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 1177–1221. Frontiers in Artificial
Intelligence and Applications, IOS Press (2021)

[7] Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, IOS Press (2021)

[8] Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in sat solving. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, pp. 291–436. Frontiers in Artificial Intelligence and Applica-
tions, IOS Press (2021)

[9] Böhm, B., Beyersdorff, O.: Lower bounds for qcdcl via formula gauge. In: Li, C.M., Manyà, F. (eds.) The-
ory and Applications of Satisfiability Testing – SAT 2021. pp. 47–63. Springer International Publishing,
Cham (2021)

[10] Buss, S., Nordström, J.: Proof complexity and sat solving. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, pp. 233–350. Frontiers in Artificial Intelligence and Applica-
tions, IOS Press (2021)

[11] Janota, M.: On Q-Resolution and CDCL QBF solving. In: Proc. International Conference on Theory and
Applications of Satisfiability Testing (SAT). pp. 402–418 (2016)

20

https://drops.dagstuhl.de/opus/volltexte/2021/13551

[12] Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput.
117(1), 12–18 (1995)

[13] Krajı́ček, J.: Proof complexity, Encyclopedia of Mathematics and Its Applications, vol. 170. Cambridge
University Press (2019)

[14] Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis,
Johannes Kepler University Linz (2012)

[15] Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In: Proc.
International Conference on Automated Deduction (CADE). pp. 371–384 (2017)

[16] Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, IOS Press (2021)

[17] Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res. 65, 180–208 (2019)

[18] Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif.
Intell. 175(2), 512–525 (2011)

[19] Sakallah, K.A., Marques-Silva, J.: Anatomy and empirical evaluation of modern SAT solvers. Bull.
EATCS 103, 96–121 (2011)

[20] Vinyals, M.: Hard examples for common variable decision heuristics. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI) (2020)

[21] Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proc.
IEEE/ACM International Conference on Computer-aided Design (ICCAD). pp. 442–449 (2002)

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

