
QCDCL with Cube Learning or Pure Literal Elimination – What is best?

Benjamin Böhm1 , Tomáš Peitl2 , Olaf Beyersdorff1
1Friedrich Schiller University Jena, Jena, Germany , 2TU Wien, Vienna, Austria

Abstract
Quantified conflict-driven clause learning
(QCDCL) is one of the main approaches for
solving quantified Boolean formulas (QBF).
We formalise and investigate several versions
of QCDCL that include cube learning and/or
pure-literal elimination, and formally compare
the resulting solving models via proof complexity
techniques. Our results show that almost all of the
QCDCL models are exponentially incomparable
with respect to proof size (and hence solver run-
ning time), pointing towards different orthogonal
ways how to practically implement QCDCL.

1 Introduction
SAT solving has revolutionised the way we perceive compu-
tationally hard problems. Determining the satisfiability of
propositional formulas (SAT) has traditionally been viewed
as intractable due to its NP completeness. In contrast, modern
SAT solvers today routinely solve huge industrial instances of
SAT from a wide variety of application domains [Biere et al.,
2021a]. This success of solving has not stopped at SAT, but in
the last two decades was lifted to increasingly more challeng-
ing computational settings, with solving quantified Boolean
formulas (QBF)—a PSPACE-complete problem—receiving
key attention [Beyersdorff et al., 2021].

Conflict driven clause learning (CDCL) is the main
paradigm of modern SAT solving [Marques Silva et al.,
2021]. Based on the classic DPLL algorithm from the 1960s,
it combines a number of advanced features, including clause
learning, efficient Boolean constraint propagation, decision
heuristics, restart strategies, and many more. In QBF there
exist several competing approaches to solving, with lifting
CDCL to the quantified level in the form of QCDCL as
one of the main paradigms [Zhang and Malik, 2002], imple-
mented e.g. in the state-of-the-art solvers DepQBF [Lonsing
and Egly, 2017] and Qute [Peitl et al., 2019].

For SAT/QBF solving, two questions of prime theoretical
and practical importance are: (1) why are SAT/QBF solvers
so effective and on which formulas do they fail? (2) Which
solving ingredients are most important for their performance?

For (1), proof complexity offers the main theoretical ap-
proach to analyse the strength of solving [Buss and Nord-

ström, 2021]. In a breakthrough result, Pipatsrisawat and
Darwiche [2011] and Atserias et al. [2011] established that
CDCL on unsatisfiable formulas is equivalent to the resolu-
tion proof system, in the sense that from a CDCL run a reso-
lution proof can be efficiently extracted [Beame et al., 2004],
and conversely, each resolution proof can be efficiently sim-
ulated by CDCL [Pipatsrisawat and Darwiche, 2011]. Hence
the well-developed proof-complexity machinery for proof
size lower bounds in resolution [Krajı́ček, 2019] is directly
applicable to show lower bounds for running time in CDCL.

The latter simulation of resolution by CDCL assumes a
strong ‘non-deterministic’ version of CDCL, whereas practi-
cal CDCL (using decision heuristics such as VSIDS) has been
recently proved to be exponentially weaker than resolution
[Vinyals, 2020]. In contrast, an analogous proof-theoretic
characterisation is not known for QCDCL, and in particular
QCDCL has recently been shown to be incomparable to Q-
Resolution [Beyersdorff and Böhm, 2021], the QBF analogue
of propositional resolution [Kleine Büning et al., 1995].

Regarding question (2) above, there are some experimen-
tal studies [Sakallah and Marques-Silva, 2011; Elffers et al.,
2018; Kokkala and Nordström, 2020], but no rigorous theo-
retical results are known on which (Q)CDCL ingredients are
most crucial for performance. Of course, gaining such a the-
oretical understanding would also be very valuable in guiding
future solving developments.

In this paper, we contribute towards question (2) in QBF.

Our contributions. Following the approach of Beyersdorff
and Böhm [2021], we model QCDCL as rigorously defined
proof systems that are amenable to a proof-complexity anal-
ysis. This involves formalising individual QCDCL ingredi-
ents, such as clause and cube learning and different vari-
ants of Boolean constraint propagation. These can then
be ‘switched’ on or off, resulting in a number of different
QCDCL solving models that we can formally investigate.
Our results can be summarised as follows.

(a) QCDCL with or without cube learning. In contrast to
SAT solving, where there is somewhat of an asymmetry be-
tween satisfiable and unsatisfiable formulas, QCDCL imple-
ments a dual approach for false and true QBFs. In addition
to learning clauses (as in CDCL) when running into a con-
flict under the current assignment, QCDCL also learns terms
(or cubes) in the case a satisfying assignment is found (or a
previously learned cube is satisfied). While cube learning is

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 131 (2021)

necessary to make QCDCL solving complete on true QBFs, it
is less clear what the effect of cube learning is on false QBFs
(and we only consider those throughout the paper as we cast
all our models in terms of refutational proof systems, in ac-
cordance with the proof complexity analysis of SAT [Buss
and Nordström, 2021]).

Here we establish the perhaps surprising result that even
for false QBFs, cube learning can be advantageous, in the
sense that QCDCL without cube learning (as a proof system
for false QBFs) is exponentially weaker than QCDCL with
cube learning.

(b) QCDCL with or without pure-literal elimination. In its
simplest form, Boolean constraint propagation, used to con-
struct trails in (Q)CDCL, implements unit propagation. How-
ever, further methods can be additionally employed (and are
considered in pre- and in-processing [Biere et al., 2021b]).
One of the classic mechanisms is pure-literal elimination, set-
ting a pure literal (which occurs in only one polarity) to the
obvious value. This is e.g. implemented in DepQBF and an
efficient implementation is described by Lonsing [2012].

We show that QCDCL with or without pure-literal elimi-
nation results in incomparable proof systems, i.e., there are
QBFs that are easy in QCDCL with pure literal elimination,
but hard in plain QCDCL, and vice versa (the latter is perhaps
more surprising).

(c) Comparing QCDCL extensions. Given the preced-
ing results, it is natural (and possibly most interesting for
practice) to ask how the different QCDCL extensions com-
pare with each other. We consider QCDCL with cube learn-
ing, QCDCL with pure-literal elimination but without cube
learning, and QCDCL with both cube learning and pure-
literal elimination. Except for the simulation of the sec-
ond by the third system, we again obtain incomparability re-
sults between the systems with exponential separations. We
further show that all these systems are incomparable to Q-
Resolution, again via exponential separations. An overview
of the systems and their relations is given in Figure 1.

Technically, our results rest on formalising QCDCL sys-
tems as proof calculi and exhibiting specific QBFs for their
separations. The latter includes both the explicit construc-
tion of short QCDCL runs and proving exponential proof size
lower bounds for the relevant calculi. For the lower bounds,
we identify a property of proofs (called primitivity here) that
allows to use proof-theoretic machinery of Böhm and Bey-
ersdorff [2021] in the context of our QCDCL systems.

Our theoretical results on the strength of different QCDCL
models are empirically confirmed by experiments with state-
of-the-art QCDCL solvers (cf. Section 8).

Organisation. We start in Section 2 by reviewing QBFs and
Q-Resolution. In Section 3 we model variants of QCDCL as
formal proof systems and develop a lower technique for such
systems in Section 4. Sections 5 to 8 then contain our results
on the relative strength of QCDCL variants. We conclude in
Section 9 with an outlook on future research.

2 Preliminaries
We will use standard notions from propositional logic, such
as variables, literals, (propositional) formulas, clauses, con-

QCDCLCUBE

QCDCLPL

QCDCLCUBE+PL

long-distance
Q-resolution

Q-resolution

QCDCL

Figure 1: Hasse diagram of the simulation order of QCDCL proof
systems. Solid lines represent p-simulations and exponential separa-
tions (where the system depicted above is the stronger one). Dashed
lines represent separations in both directions (i.e., incomparability).

junctive normal form (CNF), disjunctive normal form (DNF),
assignments, satisfiability or restrictions. A cube (or term) is
a conjunction of literals. A literal ℓ in a formula Φ is pure, if
it only appears in one polarity (i.e., if ℓ is contained in Φ, but
ℓ̄ is not). We define two “empty” literals K and J. For a more
detailed explanation of these notions, see the appendix.

A QBF (quantified Boolean formula) Φ � Q � ϕ con-
sists of a propositional formula ϕ, called the matrix (denoted
by CpΦq), and a prefix Q. A prefix Q � Q1

1V1 . . .Q1
sVs

consists of non-empty and pairwise disjoint sets of variables
V1, . . . , Vs and quantifiers Q1

1, . . . ,Q1
s P tD,@u with Q1

i �
Q1

i�1 for i P rs�1s. For a variable x in Q, the quantifier level
is lvpxq :� lvΦpxq :� i, if x P Vi. For lvΦpℓ1q lvΦpℓ2q we
write ℓ1 Φ ℓ2.

We use the proof systems Q-resolution [Kleine Büning
et al., 1995] and long-distance Q-resolution [Balabanov and
Jiang, 2012], containing resolution and reduction rules. In
general, a clause C can be reduced universally, while a cube
D can be reduced existentially. We denote the maximally
universally (resp. existentially) reduced clause (resp. cube)
by red@ΦpCq (resp. redDΦpDq). Cf. the appendix for details.

3 Formal calculi for QCDCL versions
In this section we model different versions of QCDCL as for-
mal proof systems (we sketch this only here, full details are
contained in the appendix; for background on QCDCL cf.
[Beyersdorff et al., 2021]). For this we need to formalise
QCDCL ingredients. We start with trails. A trail T for a
QCNF Φ is a finite sequence of literals from Φ, including the
empty literals K and J. In general, a trail has the form

T � ppp0,1q, . . . , pp0,g0q;d1, pp1,1q, . . . ,

pp1,g1q; . . . ;dr, ppr,1q, . . . , ppr,grqq,
(3.1)

where the di are decision literals and ppi,jq are propagated
literals. Decision literals are written in boldface. We use a

semicolon before each decision to mark the end of a decision
level. We write x T y if x, y P T and x is left of y in T .

Trails can be interpreted as non-tautological sets of literals,
and therefore as (partial) assignments. If T is a trail, then
T ri, js, for i P t0, . . . , ru and j P t0, . . . , giu, is defined
as the subtrail that contains all literals from T left of (and
excluding) ppi,jq (resp. di, if j � 0). A trail T has run into
conflict if K P T or J P T .

Simply put, our QCDCL proof systems can be interpreted
as sequences of trails. These trails cannot be created arbitrary,
but have to follow special rules, depending on the model. We
consider the following four QCDCL variants:

• QCDCL, which can be seen as the plain model where we
can only make decisions following the level order of the
quantifier prefix, make propagations using clauses and
use classic clause learning. We will never learn or use
cubes and pure-literal elimination is turned off.

• QCDCLCUBE is an extension of QCDCL in which we
can learn cubes and use them for propagations. Deci-
sions are still level-ordered and pure-literal elimination
is turned off.

• QCDCLPL is an extension of QCDCL, where we decide
literals out of order if they are pure in the current con-
figuration (pure-literal elimination). All other decisions
(which we call regular decisions) are still level ordered.
Cube learning is turned off.

• QCDCLCUBE+PL is an extension of QCDCLPL, in which
cube learning is now allowed (as in QCDCLCUBE).

Note that decisions can only be made if there are no more
propagations possible and pure literal decisions always have
a higher priority than regular decisions. Also, conflicts have
a higher priority than propagations of proper (existential or
universal) literals. Hence, we will never skip conflicts, prop-
agations or pure literal decisions. For each propagated literal
ppi,jq in a trail T the formula must contain a clause or a cube
that caused this propagation by becoming a unit clause/cube.
We denote such a clause/cube by anteT pppi,jqq.

After a trail has run into a conflict, or if all variables were
assigned, we can start the learning process.
Definition 3.1 (learnable constraints). Let T be a trail for
Φ of the form (3.1) with ppr,grq P tK,Ju. Starting with
anteT pKq (resp. anteT pJq) we reversely resolve over the an-
tecedent clauses (cubes) that propagated the existential (uni-
versal) variables, until we stop at some arbitrarily chosen
point. The clause (cube) we so derive is a learnable con-
straint. We denote the set of learnable constraints by LpT q.

We can also learn cubes from trails that did not run into
conflict. If T is a total assignment of the variables from Φ,
then we define the set of learnable constraints as the set of
cubes LpT q :� tredDΦpDq|D � T and D satisfies CpΦqu.

Definition 3.2 (QCDCL proof systems). Let S be one of
QCDCL, QCDCLCUBE, QCDCLPL, QCDCLCUBE+PL. An S
proof ι from a QCNF Φ � Q � ϕ of a clause or cube C is
a sequence of triples

ι :� rpTi, Ci, πiqs
m
i�1,

where Cm � C, each Ti is a trail, each Ci P LpTiq is one of
the constraints we can learn from the trail, and πi is the long-
distance Q-resolution or long-distance Q-consensus proof of
Ci we get by performing the steps in Definition 3.1. We define
Rpιq as the proof of C we get by sticking together suitable πi.
We denote the set of trails in ι as Tpιq.

If C � pKq, then ι is called an S refutation of Φ. If C �
rJs, then ι is an S verification of Φ. The proof ends once we
have learned pKq or rJs. The size of ι is |ι| :�

°m
i�1 |Ti|.

Theorem 3.3. QCDCL, QCDCLCUBE, QCDCLPL, and
QCDCLCUBE+PL are sound and complete proof systems.

We highlight that these systems formally model QCDCL
solving as used in practice (cf. [Beyersdorff et al., 2021]).

4 Proving lower bounds for QCDCL systems
Throughout the paper we will concentrate on Σb

3 QCNFs
which we alway assume to have the form Φ � DX@UDT � ϕ
for non-empty blocks of variables X , U , and T .

A literal ℓ is an X-literal, if varpℓq P X . Analogously, we
get U - and T -literals and variables. A clause C P CpΦq is
an X-clause, if all its literals are X-literals. The empty clause
pKq is also an X-clause. Analogously, we define T-clauses.
A clause C P CpΦq is an XT-clause, if it contains at least one
X-literal, at least one T -literal, but no U -literals; analogously
we define UT-clauses. A clause C P CpΦq is an XUT-clause
if it contains at least one X-, U - and T - literal.

Definition 4.1. We say that Φ fulfils the XT-property, if CpΦq
contains no XT-clauses, no T-clauses that are unit (or empty)
and no two T-clauses from CpΦq are resolvable.

As shown by Böhm and Beyersdorff [2021], clause learn-
ing does not affect the XT-property, i.e., a formula Φ with the
XT-property will still fulfil it during the whole QCDCL run
even after having added new clauses to CpΦq.

Next we recall the definition of formula gauge from [Böhm
and Beyersdorff, 2021], which represents a measure that can
be used for lower bounds.

Definition 4.2 ([Böhm and Beyersdorff, 2021]). For a QCNF
Φ as above let WΦ be the set of all Q-resolution derivations π
from Φ of some X-clause such that π only contains resolutions
over T -variables and reduction steps. We set gaugepΦq :�
mint|C| : C is the root of some π PWΦu.

We now define fully reduced and primitive proofs. Our
lower bound technique will then work for fully reduced prim-
itive refutations of formulas that fulfil the XT-property.

Definition 4.3. A long-distance Q-resolution refutation π of a
QCNF Φ is called fully reduced, if the following holds: For
each clause C P π that contains universal literals that are
reducible, the reduction step has to be performed immediately
and C cannot be used otherwise in the proof.

Each proof Rpιq that was extracted from a QCDCL proof ι
is automatically fully reduced, as we perform reduction steps
as soon as possible during clause learning. On the other hand,
primitivity does not hold for proofs Rpιq in general. In fact,
the main work in proving our hardness results will be to show
that specific extracted proofs are primitive.

Definition 4.4. A long-distance Q-resolution proof π from a
Σb

3 formula with the XT-property is primitive, if there are no
two XUT-clauses in π that are resolved over an X-variable.

Since it is not possible to derive tautological clauses in
fully reduced primitive proofs, we may also refer to them as
(fully reduced) primitive Q-resolution proofs.

It follows from [Böhm and Beyersdorff, 2021], that these
two conditions suffice to show lower bounds via gauge.
Theorem 4.5 ([Böhm and Beyersdorff, 2021]). Each fully
reduced primitive Q-resolution refutation of a Σb

3 QCNF Φ
that fulfils the XT-property has size 2ΩpgaugepΦqq.

The next two results represent the main methodology for
most of our hardness results throughout the paper.

Lemma 4.6. Let T be a trail in a QCDCL, QCDCLCUBE,
QCDCLPL or QCDCLCUBE+PL proof from a QCNF Φ with the
XT-property. Then for each T -literal t1 P T , which was not
decided by pure literal elimination, there is a U -literal u P T
with u T t1.
Proposition 4.7. Let ι be a QCDCL, QCDCLCUBE, QCDCLPL

or QCDCLCUBE+PL refutation of a QCNF Φ that fulfils the XT-
property. If Rpιq is not primitive, then there exists a trail
T P Tpιq such that there is a U -literal u P T and an X-
literal x P T with u T x. Additionally, u cannot be a
regular decision literal.

Basically, this result tells us that for a non-primitive proof
Rpιq of some S proof ι, where S is one of our four QCDCL
variants, ι needs to consist of a trail that assigns a U -literal
out-of-order (i.e., before we have assigned all X-literals).

Since neither cube learning nor pure literal elimination is
allowed in QCDCL, we can immediately conclude:
Corollary 4.8. Let ι be a QCDCL refutation of a QCNF Φ
that fulfils the XT-property. Then Rpιq is primitive.

We remark that some of the QBFs we introduce in the pa-
per are not minimally false, i.e., we have added extra clauses
to formulas that were false already. Although this is unusual
in proof complexity, practical (false) instances are not guaran-
teed to be minimally false. Therefore it is natural to also con-
sider these QBFs when investigating QCDCL systems. These
algorithmic proof systems have to utilize all clauses, even if
they are redundant for Q-resolution refutations.

5 Plain QCDCL vs. extensions with cubes/PL
We start by examining the influence of cube learning on our
QCDCL model. For false formulas we can always prevent
learning cubes by just deciding the universal variables ac-
cording to a winning strategy for the universal player, which
will cause a conflict on the current trail. Thus cube learning
will never be disadvantageous in principle.

Proposition 5.1. QCDCLCUBE p-simulates QCDCL and
QCDCLCUBE+PL p-simulates QCDCLPL.

We recall the equality formulas Eqn of Beyersdorff
et al. [2019a]. These are QCNFs with prefix
Dx1 . . . xn@u1 . . . unDt1 . . . tn and matrix

pt̄1 _ . . ._ t̄nq ^
n©

i�1

ppx̄i _ ūi _ tiq ^ pxi _ ui _ tiqq.

The formulas are known to be hard for Q-resolution [Beyers-
dorff et al., 2019a] and also for QCDCL [Beyersdorff and
Böhm, 2021]. In contrast, we show that they are easy in
QCDCL with cube learning.

Proposition 5.2. There exist polynomial-size QCDCLCUBE

refutations of Eqn.

Proof Sketch. First we learn the cubes xi^ ūi and x̄i^ui for
i P rn� 1s. E.g., to learn x1 ^ ū1, we use the trail

T1 :� px1; . . . ;xn; ū1; . . . ; ūn; t̄1; t2; . . . ; tnq.

Then the partial assignment x1 ^ ū1 ^ t̄1 ^ t2 ^ . . . ^ tn
satisfies the matrix of Eqn. Reducing this cube existentially
results in x1 ^ ū1, hence x1 ^ ū1 P LpT1q.

Having learnt all these 2n � 2 cubes, we learn the clauses
Li :� x̄i _ ūi _

�n
j�i�1puj _ ūjq _

�i�1
k�1 t̄k and Ri :�

xi_ui_
�n

j�i�1puj_ūjq_
�i�1

k�1 t̄k, starting with i � n�1
and down to i � 2. E.g., to learn Ln�1 we use the trail

Un�1 :� px1, u1, t1; . . . ;xn�1, un�1, tn�1, t̄n, xn,Kq,

where ui are propagated directly after xi by the learnt cubes.
We resolve over xn, t̄n, and tn�1 to get Ln�1.

Having finally learnt L2 and R2, we form the trail U1 :�
px1, u1, t1, x2,Kq with anteU1px2q � R2 and anteU1pKq �
L2 and learn px̄1q. Then the last trail px̄1, ū1, t1, x2,Kq yields
the empty clause.

As the formulas Eqn require exponential-sized QCDCL
refutations [Beyersdorff and Böhm, 2021] we obtain:

Theorem 5.3. QCDCLCUBE is exponentially stronger than
QCDCL.

Next we will look at the influence of pure literal elimi-
nation. Now, the effect of pure literal elimination is similar
to cube learning: they enable out-of-order decisions that can
shorten the refutations. This again manifests in Eqn.

Proposition 5.4. Eqn has poly-size QCDCLPL (and
QCDCLCUBE+PL) refutations.

Although pure literal elimination helps to refute Eqn, it
turns out that pure literal elimination can also be disadvan-
tageous. It might be a fallacy to think that pure existential
literals should be satisfied in the same way as unit clauses in
unit propagation. We will construct formulas in which pure
literal elimination thwarts finding a convenient conflict and
therefore short refutations.

We construct these formulas in stages, starting with
MirrorCRn. In turn, these QBFs are based on the Comple-
tion Principle CRn of Janota [2016], known to be hard for
QCDCL [Janota, 2016; Böhm and Beyersdorff, 2021]. The
“Mirror”-modification adds new symmetries to the formula,
causing pure literals to appear too late to make a difference.

Definition 5.5. The QCNF MirrorCRn consists of the prefix
Dxp1,1q, . . . , xpn,nq@uDa1, . . . , an, b1, . . . , bn and the matrix
xpi,jq _ u_ ai, ā1 _ . . ._ ān, x̄pi,jq _ ū_ bj , b̄1 _ . . ._ b̄n
xpi,jq _ ū_ āi, a1 _ . . ._ an, x̄pi,jq _ u_ b̄j , b1 _ . . ._ bn
for i, j P rns.

It is easy to see that MirrorCRn fulfil the XT-property. Ad-
ditionally, we can show:
Proposition 5.6. The CNF CpMirrorCRnq is unsatisfiable
and gaugepMirrorCRnq ¥ n� 1.

Applying Theorem 4.5 we infer:
Corollary 5.7. MirrorCRn needs exponential-size fully re-
duced primitive Q-resolution refutations.

All we have to do now is to show that all QCDCLPL refu-
tations of MirrorCRn are primitive. Then the gauge lower
bound applies. We will show that for a non-primitive refuta-
tion of MirrorCRn we would need to decide literals by pure
literal elimination, and before each pure literal elimination we
have to perform another one, which is a contradiction.

Proposition 5.8. From each QCDCLPL refutation of
MirrorCRn we can extract a fully reduced primitive Q-
resolution refutation of the same size.

Proof Sketch. We show that Rpιq is primitive if ι is a
QCDCLPL refutation of MirrorCRn. Assume that some Rpιq
is not primitive. Therefore, by Proposition 4.7, a U -literal
was decided as a pure literal before all X-variables were as-
signed. However, such a situation is impossible due to the
formula structure, resulting in a contradiction.

Corollary 5.9. The QBFs MirrorCRn require exponential-
size QCDCLPL refutations.

Next we embed this formula into a new QCNF PLTrapn.
Definition 5.10. The QCNF PLTrapn has the prefix
Dy, xp1,1q, . . . , xpn,nq@uDa1, . . . , an, b1, . . . , bn, a, b. Its ma-
trix contains all clauses from MirrorCRn and additionally
py _ aq, pā_ bq, pā_ b̄q, pa_ bq, and pa_ b̄q.
Proposition 5.11. PLTrapn needs exponential-size
QCDCLPL and QCDCLCUBE+PL refutations.

Not having to follow the PLD rule, we can construct short
proofs of PLTrapn by focusing on the new clauses over a, b.
Proposition 5.12. PLTrapn has polynomial-size QCDCL
refutations.

We conclude that pure literal elimination is advantageous
for Eqn, but not for PLTrapn. Therefore we obtain:

Theorem 5.13. QCDCLPL and QCDCL are incomparable as
well as QCDCLCUBE+PL and QCDCL.

6 Cube learning vs. pure literal elimination
As shown in Section 5, cube learning improves QCDCL,
while adding pure literal elimination leads to incomparable
systems. Thus it is natural to directly compare cube learning
and pure literal elimination. Because of the results above, we
cannot use Eqn for a potential separation. However, we can
modify the QBFs such that they remain easy for QCDCLPL,
while eliminating the benefits from cube learning.
Definition 6.1. The QCNF TwinEqn has the prefix
Dx1, . . . , xn@u1, . . . , un, w1, . . . , wnDt1, . . . , tn. Its matrix
contains the clauses from Eqn together with xi _wi _ ti and
x̄i _ w̄i _ ti for i P rns.

The main idea of this twin construction is to ensure that all
potential cubes consist of at least two universal variables. We
can do the same construction for other QCNFs.

Obviously, TwinEqn fulfils the XT-property. We compute
gaugepTwinEqnq � n and hence infer by Theorem 4.5:
Proposition 6.2. Fully reduced primitive Q-resolution refu-
tations of TwinEqn have exponential size.

We show that QCDCLCUBE refutations of TwinEqn are
primitive by proving that it is impossible to propagate U -
literals before having assigned all X-literals.

Proposition 6.3. Each QCDCLCUBE refutation of TwinEqn
has at least exponential size.

Having shown that TwinEqn is hard for QCDCLCUBE, it
remains to prove that it is easy for QCDCLPL.

Proposition 6.4. TwinEqn has polynomial-size QCDCLPL

refutations.
For the other separation we use PLTrapn, which is hard for

QCDCLPL, but still easy for QCDCLCUBE by Proposition 5.1.
Therefore we conclude:
Theorem 6.5. QCDCLCUBE is incomparable to QCDCLPL.

We have seen earlier that the QCDCL system including
pure literal elimination is incomparable to the system with-
out. Now we will prove that this incomparability still holds
with cube learning turned on. By Proposition 5.1, we obtain
that QCDCLCUBE+PL p-simulates QCDCLPL. Therefore we get
from Proposition 6.4:

Corollary 6.6. TwinEqn has poly-size QCDCLCUBE+PL refu-
tations.

Since TwinEqn is hard for QCDCLCUBE, this gives us the
first separation between QCDCLCUBE+PL and QCDCLCUBE.
The other direction can be shown with PLTrapn.

Proposition 6.7. PLTrapn has poly-size QCDCLCUBE refuta-
tions.

Hence we get:

Theorem 6.8. QCDCLCUBE+PL and QCDCLCUBE are incom-
parable.

We now consider the relation between QCDCLCUBE+PL and
QCDCLPL. We introduce another modification of Eqn, which
we call BulkyEqn, where we add two clauses.
Definition 6.9. The QCNF BulkyEqn is obtained from Eqn
by adding the clauses u1 _ . . . _ un _ t1 _ . . . _ tn and
ū1 _ . . ._ ūn _ t1 _ . . ._ tn to the matrix.

As Eqn, this formula fulfils the XT-property and has a
high gauge value (¥ n � 1). By Theorem 4.5 we infer that
BulkyEqn needs exponential-size fully reduced primitive Q-
resolution refutations. Similarly to MirrorCRn, we can then
show that pure literal elimination does not shorten proofs be-
cause of the two additional ‘bulky’ clauses that prevent pure
literals to occur early in trails. Therefore BulkyEqn is hard
for QCDCLPL. On the other hand, we can explicitly construct
short proofs in QCDCLCUBE+PL. Therefore we get:

Proposition 6.10. BulkyEqn has poly-size QCDCLCUBE+PL

refutations, but needs exponential-size QCDCLPL refutations.
As for the systems without pure literal elimination, we get:

Theorem 6.11. QCDCLCUBE+PL is exponentially stronger
than QCDCLPL.

7 The QCDCL systems vs. Q-resolution
Beyersdorff and Böhm [2021] showed incomparability of Q-
resolution and QCDCL. We now lift this to the other QCDCL
variants introduced here. For one separation, we can use the
QCNF QParityn from [Beyersdorff et al., 2019b], which
have short QCDCL refutations. These formulas have prefix
Dx1 . . . xn@uDt1 . . . tn and clauses

x1 _ t̄1, x̄1 _ t1, u_ tn, ū_ t̄n,

xi _ ti�1 _ t̄i, xi _ t̄i�1 _ ti,

x̄i _ ti�1 _ ti, x̄i _ t̄i�1 _ t̄i for i P t2, . . . , nu.

Theorem 7.1. QCDCL, QCDCLCUBE, QCDCLPL and
QCDCLCUBE+PL are all incomparable to Q-resolution.

In detail, the QBFs QParityn have polynomial-size
QCDCL, QCDCLCUBE, QCDCLPL, and QCDCLCUBE+PL refu-
tations, but need exponential-size Q-resolution refutations.
On the other hand, MirrorCRn have polynomial-size Q-
resolution refutations, but need exponential-size QCDCL,
QCDCLCUBE, QCDCLPL, and QCDCLCUBE+PL refutations.

8 Experiments
We study proof systems in the hope that proof-complexity
results will translate to running-time complexity for solvers.
In this section we do our reality check to see whether this
hypothesis holds up experimentally.

We picked the solver DepQBF [Lonsing and Egly, 2017],
as it is the only one that supports pure-literal elimination
(PLE) and also has the ability to turn cube learning (SDCL)
off.1 We additionally ran Qute [Peitl et al., 2019] when we
wanted to confirm DepQBF’s surprising behaviour. Though,
Qute only supports QCDCLCUBE of the systems discussed
above, and so is poorly suited for most of our experiments.

We ran DepQBF on each of the formulas used for separa-
tions in this paper, as well as on the PCNF track of the QBF
Evaluation 2020.2 We report on selected results here, the full
results are in the appendix (including a larger copy of Fig-
ure 2). We set the time limit on each formula to 10 minutes
(no memory limit). The computation was performed on a ma-
chine with two 16-core Intel® Xeon® E5-2683 v4@2.10GHz
CPUs and 512GB RAM running Ubuntu 20.04.3 LTS on
Linux 5.4.0-48, and organized with the help of GNU Paral-
lel [Tange, 2021].

We discovered that heuristics have a significant impact
on performance on theoretically easy formulas (theoretically

1In order to obtain vanilla QCDCL in DepQBF, we set
--traditional-qcdcl --long-dist-res
--dep-man=simple --no-dynamic-nenofex
--no-trivial-truth --no-trivial-falsity.

2http://www.qbflib.org/qbfeval20.php

0 20 40 60 80 100
n

10-2

10-1

100

101

102

103

T
im

e
(s

)

The PLE configurations

The best non-PLE DepQBF configurations

Qute

Eq

P -simple
PC-satisfy
PC-falsify
PC-sdcl
PC-qtype
P -qtype
P -falsify
PC-simple
PC-rand
P -satisfy
P -sdcl
P -rand
 C-sdcl
 C-qtype
 C-falsify
 C-satisfy
 Q-invJW
 Q-false
 Q-qtype
 Q-random
 Q-true
 Q-watcher
 C-rand
 C-simple
 -sdcl
 -qtype
 -falsify
 -satisfy
 -simple
 -rand

Figure 2: Labels indicate whether PLE ("P*") and SDCL ("*C")
are on, configurations of one kind have the same line style. Lines for
Qute start with "Q", the remaining lines are for DepQBF. The rest
of the label is the heuristic; configurations with the same heuristic
share colour. Gaps in lines indicate time-outs at 10 minutes. The
legend is sorted in descending order of performance.

hard formulas must be hard for solvers as well, and we con-
firm this in every case). We thus decided to run DepQBF
with each available heuristic, in order to paint a full picture.
In total, we evaluated 24 configurations of DepQBF—with
and without PLE and with and without SDCL, and for each
of these four, with each of the 6 possible heuristics.3

Figure 2 shows the results on Equality. While the formulas
are easy using PLE regardless of the heuristic, without PLE
DepQBF’s performance fluctuates depending on the heuris-
tic, even though the formulas are ‘easy’ as long as SDCL is
on. Qute’s performance is stabler, but still much worse than
DepQBF with PLE. The formulas get hard without both PLE
and SDCL, in line with [Beyersdorff and Böhm, 2021].

While both PLE and SDCL make Eq easy, PLE seems eas-
ier to exploit. Perhaps there is simply less room for error in
applying PLE than in learning the right cubes. A mild ad-
vantage from PLE is also confirmed by DepQBF’s results on
QBF Eval formulas (cf. Figure 6 in the appendix).This sug-
gests that in spite of conceptual simplicity PLE can be quite
useful, and perhaps should appear on Qute’s feature roadmap.

9 Conclusion
While this paper only studies false formulas (in accordance
with proof complexity conventions), we expect similar phe-
nomena of incomparability on true formulas, which we leave
for future work to explore. Interestingly, while cube learning
is primarily needed for true QBFs, we have shown that it can
also improve the running time on false instances.

Technically, we believe that our new notion of primi-
tive proofs has further potential for showing QCDCL lower
bounds, also for QBFs of higher quantifier complexity. While
previous results tried to lift lower bounds from Q-Resolution
[Beyersdorff and Böhm, 2021], primitivity also applies to
QBFs easy for Q-Resolution, thus supplying new reasons for
QCDCL hardness.

3Using --dec-heur= (--phase-heuristic for Qute).

http://www.qbflib.org/qbfeval20.php

References
[Atserias et al., 2011] Albert Atserias, Johannes Klaus

Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. J. Artif.
Intell. Res., 40:353–373, 2011.

[Balabanov and Jiang, 2012] Valeriy Balabanov and Jie-
Hong R. Jiang. Unified QBF certification and its appli-
cations. Form. Methods Syst. Des., 41(1):45–65, 2012.

[Beame et al., 2004] Paul Beame, Henry A. Kautz, and
Ashish Sabharwal. Towards understanding and harness-
ing the potential of clause learning. J. Artif. Intell. Res.
(JAIR), 22:319–351, 2004.

[Beyersdorff and Böhm, 2021] Olaf Beyersdorff and Ben-
jamin Böhm. Understanding the Relative Strength of QBF
CDCL Solvers and QBF Resolution. In 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021),
volume 185 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 12:1–12:20, 2021.

[Beyersdorff et al., 2019a] Olaf Beyersdorff, Joshua
Blinkhorn, and Luke Hinde. Size, cost, and capacity:
A semantic technique for hard random QBFs. Logical
Methods in Computer Science, 15(1), 2019.

[Beyersdorff et al., 2019b] Olaf Beyersdorff, Leroy Chew,
and Mikolás Janota. New resolution-based QBF calculi
and their proof complexity. ACM Transactions on Compu-
tation Theory, 11(4):26:1–26:42, 2019.

[Beyersdorff et al., 2021] Olaf Beyersdorff, Mikolás Janota,
Florian Lonsing, and Martina Seidl. Quantified boolean
formulas. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications,
pages 1177–1221. IOS Press, 2021.

[Biere et al., 2021a] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021.

[Biere et al., 2021b] Armin Biere, Matti Järvisalo, and Ben-
jamin Kiesl. Preprocessing in sat solving. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, Frontiers in Artificial Intelli-
gence and Applications, pages 291–436. IOS Press, 2021.

[Böhm and Beyersdorff, 2021] Benjamin Böhm and Olaf
Beyersdorff. Lower bounds for QCDCL via formula
gauge. In Theory and Applications of Satisfiability Test-
ing (SAT 2021), pages 47–63. Springer, 2021.

[Buss and Nordström, 2021] Sam Buss and Jakob Nord-
ström. Proof complexity and sat solving. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, Frontiers in Artificial Intelli-
gence and Applications, pages 233–350. IOS Press, 2021.

[Elffers et al., 2018] Jan Elffers, Jesús Giráldez-Cru,
Stephan Gocht, Jakob Nordström, and Laurent Simon.
Seeking practical CDCL insights from theoretical SAT
benchmarks. In Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence
(IJCAI), pages 1300–1308. ijcai.org, 2018.

[Janota, 2016] Mikolás Janota. On Q-Resolution and CDCL
QBF solving. In Proc. International Conference on The-
ory and Applications of Satisfiability Testing (SAT), pages
402–418, 2016.

[Kleine Büning et al., 1995] Hans Kleine Büning, Marek
Karpinski, and Andreas Flögel. Resolution for quantified
Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[Kokkala and Nordström, 2020] Janne I. Kokkala and Jakob
Nordström. Using resolution proofs to analyse CDCL
solvers. In Principles and Practice of Constraint Program-
ming - 26th International Conference (CP), pages 427–
444. Springer, 2020.

[Krajı́ček, 2019] Jan Krajı́ček. Proof complexity, volume
170 of Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 2019.

[Lonsing and Egly, 2017] Florian Lonsing and Uwe Egly.
DepQBF 6.0: A search-based QBF solver beyond tradi-
tional QCDCL. In Proc. International Conference on Au-
tomated Deduction (CADE), pages 371–384, 2017.

[Lonsing, 2012] Florian Lonsing. Dependency Schemes and
Search-Based QBF Solving: Theory and Practice. PhD
thesis, Johannes Kepler University Linz, 2012.

[Marques Silva et al., 2021] João P. Marques Silva, Inês
Lynce, and Sharad Malik. Conflict-driven clause learn-
ing SAT solvers. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021.

[Peitl et al., 2019] Tomás Peitl, Friedrich Slivovsky, and Ste-
fan Szeider. Dependency learning for QBF. J. Artif. Intell.
Res., 65:180–208, 2019.

[Pipatsrisawat and Darwiche, 2011] Knot Pipatsrisawat and
Adnan Darwiche. On the power of clause-learning SAT
solvers as resolution engines. Artif. Intell., 175(2):512–
525, 2011.

[Sakallah and Marques-Silva, 2011] Karem A. Sakallah and
João Marques-Silva. Anatomy and empirical evaluation of
modern SAT solvers. Bull. EATCS, 103:96–121, 2011.

[Tange, 2021] Ole Tange. GNU Parallel 20211222
(’Støjberg’), December 2021. GNU Parallel is a general
parallelizer to run multiple serial command line programs
in parallel without changing them.

[Vinyals, 2020] Marc Vinyals. Hard examples for common
variable decision heuristics. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2020.

[Zhang and Malik, 2002] Lintao Zhang and Sharad Malik.
Conflict driven learning in a quantified Boolean satisfi-
ability solver. In Proc. IEEE/ACM International Con-
ference on Computer-aided Design (ICCAD), pages 442–
449, 2002.

Appendix
In addition to further explanations and definitions the ap-
pendix contains all proofs and details omitted from the main
part.

Additional material for Section 2
(Preliminaries)
Propositional and quantified formulas. Variables x and
negated variables x̄ are called literals. We denote the cor-
responding variable as varpxq :� varpx̄q :� x.

A clause is a disjunction of literals, interpreted as a set of
literals. A unit clause pℓq contains only one literal. The empty
clause consists of zero literals, denoted pKq. A clause C is
called tautological if tℓ, ℓ̄u � C for some literal ℓ.

A cube is a conjunction of literals. We define a unit cube of
a literal ℓ, denoted by rℓs, and the empty cube rJswith ‘empty
literal’ J. A cube D is contradictory if tℓ, ℓ̄u � D for some
literal ℓ. If C is a clause or a cube, we define varpCq :�
tvarpℓq : ℓ P Cu. The negation of a clause C � ℓ1_ . . ._ ℓm
is the cube C :� ℓ̄1 ^ . . .^ ℓ̄m.

A (total) assignment σ of a set of variables V is a non-
tautological set of literals such that for all x P V there is
some ℓ P σ with varpℓq � x. A partial assignment σ of V is
an assignment of a subset W � V . A clause C is satisfied by
an assignment σ if C X σ � H. A cube D is falsified by σ if
 DXσ � H. A clause C not satisfied by σ can be restricted
by σ, defined asC|σ :�

�
ℓPC,ℓ̄Rσ ℓ. Similarly we can restrict

a non-falsified cube D as D|σ :�
�

ℓPDzσ ℓ.
A CNF (conjunctive normal form) is a conjunction of

clauses and a DNF (disjunctive normal form) is a disjunc-
tion of cubes. We restrict a CNF (DNF) ϕ by an assign-
ment σ as ϕ|σ :�

�
CPϕ non-satisfied C|σ (resp. ϕ|σ :��

DPϕ non-falsified D|σ). For a CNF (DNF) ϕ and an assignment
σ, if ϕ|σ � H, then ϕ is satisfied (falsified) by σ.

A literal ℓ is called pure in a CNF ϕ, if there exists some
C P ϕ such that ℓ P C, but for all C 1 P ϕ we have ℓ̄ R C 1.

A QBF (quantified Boolean formula) Φ � Q � ϕ consists
of a propositional formula ϕ, called the matrix, and a prefix
Q. A prefix Q � Q1

1V1 . . .Q1
sVs consists of non-empty and

pairwise disjoint sets of variables V1, . . . , Vs and quantifiers
Q1

1, . . . ,Q1
s P tD,@u with Q1

i � Q1
i�1 for i P rs � 1s. For a

variable x in Q, the quantifier level is lvpxq :� lvΦpxq :� i,
if x P Vi. For lvΦpℓ1q lvΦpℓ2q we write ℓ1 Φ ℓ2.

For a QBF Φ � Q � ϕ with ϕ a CNF (DNF), we call Φ a
QCNF (QDNF). We write CpΦq :� ϕ (resp. DpΦq :� ϕ).
Φ is an AQBF (augmented QBF), if ϕ � ψ _ χ with CNF ψ
and DNF χ. Again we write CpΦq :� ψ and DpΦq :� χ.

We restrict a QCNF (QDNF) Φ � Q � ϕ by an assignment
σ as Φ|σ :� Q|σ � ϕ|σ , where Q|σ is obtained by deleting all
variables from Q that appear in σ. Analogously, we restrict
an AQBF Φ � Q � pψ _ χq as Φ|σ :� Q|σ � pψ|σ _ χ|σq.
(Long-distance) Q-resolution and Q-consensus. Let C1

and C2 be two clauses (cubes) from a QCNF (QDNF) or
AQBF Φ. Let ℓ be an existential (universal) literal with
varpℓq R varpC1q Y varpC2q. The resolvent of C1 _ ℓ and
C2 _ ℓ̄ over ℓ is defined as

pC1 _ ℓq
ℓ
'Φ pC2 _ ℓ̄q :� C1 _ C2

(resp. pC1 ^ ℓq
ℓ
'Φ pC2 ^ ℓ̄q :� C1 ^ C2q.

Let C :� ℓ1_ . . ._ℓm be a clause from a QCNF or AQBF
Φ such that ℓi ¤Φ ℓj for all i j, i, j P rms. Let k be mini-
mal such that ℓk, . . . , ℓm are universal. Then we can perform
a universal reduction step and obtain

red@ΦpCq :� ℓ1 _ . . ._ ℓk�1.

Analogously, we perform existential reduction on cubes.
LetD :� ℓ1^. . .^ℓm be a cube of a QDNF or AQBF Φ with
ℓi ¤Φ ℓj for all i j, i, j P rms. Let k be minimal such that
ℓk, . . . , ℓm are existential. Then redDΦpDq :� ℓ1^ . . .^ ℓk�1.

As defined by Kleine Büning et al. [1995], a Q-resolution
(Q-consensus) proof π from a QCNF (QDNF) or AQBF
Φ of a clause (cube) C is a sequence of clauses (cubes)
π � pCiq

m
i�1, such that Cm � C and for each Ci one of

the following holds:
• Axiom: Ci P CpΦq (resp. Ci P DpΦqq;

• Resolution: Ci � Cj

x
'Φ Ck with x existential (univ.),

j, k i, and Ci non-tautological (non-contradictory);

• Reduction: Ci � red@ΦpCjq (resp. Ci � redDΦpCjq) for
some j i.

We call C the root of π. Balabanov and Jiang [2012] in-
troduced an extension of Q-resolution (Q-consensus) proofs
to long-distance Q-resolution (long-distance Q-consensus)
proofs by replacing the resolution rule by

• Resolution (long-distance): Ci � Cj

x
' Ck with x ex-

istential (universal) and j, k i. The resolvent Ci is al-
lowed to contain tautologies such as u_ ū (resp. u^ ū),
if u is universal (existential). If there is a universal (exis-
tential) u P varpCjqXvarpCkq, then we require x Φ u.

A Q-resolution (Q-consensus) or long-distance Q-resolution
(long-distance Q-consensus) proof from Φ of the empty
clause pKq (the empty cube rJs) is called a refutation (ver-
ification) of Φ. In that case, Φ is called false (true).

A proof system S p-simulates a system S1, if every S1 proof
can be transformed in polynomial time into an S proof of the
same formula.

Full version of Section 3 with further details
(Formal calculi for QCDCL versions)
In this section we model different versions of QCDCL as for-
mal proof systems (for background on QCDCL cf. [Beyers-
dorff et al., 2021]). For this we need to formalise QCDCL
ingredients. We start with trails. A trail T for a QCNF or
AQBF Φ is a finite sequence of literals from Φ, including the
empty literals K and J. In general, a trail has the form

T � ppp0,1q, . . . , pp0,g0q;d1, pp1,1q, . . . ,

pp1,g1q; . . . ;dr, ppr,1q, . . . , ppr,grqq,
(3.1)

where the di are decision literals and ppi,jq are propagated
literals. Decision literals are written in boldface. We use a

semicolon before each decision to mark the end of a decision
level. We write x T y if x, y P T and x is left of y in T .

Trails can be interpreted as non-tautological sets of literals,
and therefore as (partial) assignments. If T is a trail, then
T ri, js, for i P t0, . . . , ru and j P t0, . . . , giu, is defined
as the subtrail that contains all literals from T left of (and
excluding) ppi,jq (resp. di, if j � 0).

In solving, trails cannot be arbitrary, but are constructed by
the rules of Boolean constraint propagation, defined next.
(Existential propagation rule) EP: Each ppi,jq is either an
existential literal from Φ or the empty literal K. For each
ppi,jq there exists a clause anteT pppi,jqq P CpΦq such that
red@Φ

�
anteT pppi,jqq|T ri,js

�
� pppi,jqq.

(Arbitrary propagation rule) AP: Each ppi,jq is some literal
from Φ or one of the empty literals K or J. If ppi,jq is exis-
tential or K, then the condition from EP applies. If ppi,jq is
universal or J, then there exists a cube anteT pppi,jqq P DpΦq
such that redDΦ

�
anteT pppi,jqq|T ri,js

�
�
�
p̄pi,jq

�
.

We call such a clause (cube) anteT pppi,jqq an antecedent
clause (antecedent cube). The next rules specify how deci-
sions are made.
(Level-ordered decision rule) LOD: For each di we have
that Φ|T ri,0s does not contain unit or empty clauses or cubes.
Also, lvΦ|T ri,0s

pdiq � 1, i.e., decisions are level-ordered.

(Pure literal decision rule) PLD: For each di we have that
Φ|T ri,0s does not contain any unit or empty clauses or cubes.
Also, if there are pure literals in CpΦ|T ri,0sq, then the fol-
lowing holds: If di is existential, then di has to be pure in
CpΦ|T ri,0sq. Otherwise, if di is universal, then d̄i has to be
pure in CpΦ|T ri,0sq. In that case we will underline di in T .
However, if CpΦ|T ri,0sq does not contain any pure literals,
then lvΦ|T ri,0s

pdiq � 1, i.e., decision literals which are not
pure have to be level-ordered.

From now on, we will distinguish regular decisions (not
underlined) and decisions via pure literal elimination (under-
lined). The last pair of rules will determine how we handle
conflicts in trails.
(Clause conflict rule) CC: If K P T , then K � ppr,grq
and there is no point ri, js except rr, grs such that there ex-
ists some C P CpΦ|T ri,jsq with red@ΦpCq � pKq, i.e., we are
not allowed to skip any conflicts.
(Arbitrary conflict rule) AC: IfK P T , thenJ R T and vice
versa. If there is an ℓ P tK,Ju with ℓ P T , then ℓ � ppr,grq
and there is no point ri, js except rr, grs such that there exists
some C P CpΦ|T ri,jsq or D P DpΦ|T ri,jsq with red@ΦpCq �
pKq or redDΦpDq � rJs.

A trail T has run into conflict if K P T or J P T .
We now explain clause/cube learning and how QCDCL

proofs are constructed.
Definition 3.1 (learnable constraints). Let T be a trail for Φ
such that either EP or AP holds. Furthermore, let T be of
the form (3.1) with ppr,grq P tK,Ju. Then we will denote the

sequence of learnable constraints LpT q as

LpT q :� pCpr,grq, . . . , Cpr,1q, . . . , Cp0,g0q, . . . , Cp0,1qq,

in which the clauses or cubes Cpi,jq are recursively defined
as:

If ppr,grq � K, then

• Cpr,grq :� red@Φ pantepKqq.

• For i P t0, . . . , ru, j P t1, . . . , gi � 1u, if p̄pi,jq P
Cpi,j�1q and ppi,jq existential, then

Cpi,jq :� red@Φ

�
Cpi,j�1q

ppi,jq
' red@Φ

�
antepppi,jqq

�

,

otherwise Cpi,jq :� Cpi,j�1q.

• For i P t0, . . . , r � 1u, if p̄pi,giq P Cpk,1q and ppi,giq
existential, then

Cpi,giq :� red@Φ

�
Cpk,1q

ppi,giq
' red@Φ

�
antepppi,giqq

�

otherwise Cpi,giq :� Cpk,1q where k :� minti h ¤
r| gh ¡ 0u (note that always gr ¡ 0).

If ppr,grq � J, then

• Cpr,grq :� redDΦpantepJqq.

• For i P t0, . . . , ru, j P t1, . . . , gi � 1u, if ppi,jq P
Cpi,j�1q and ppi,jq universal, then

Cpi,jq :� redDΦ

�
Cpi,j�1q

ppi,jq
' redDΦ

�
antepppi,jqq

�

,

otherwise Cpi,jq :� Cpi,j�1q.

• For i P t0, . . . , r � 1u, if ppi,giq P Cpk,1q and ppi,giq
universal, then

Cpi,giq :� redDΦ

�
Cpk,1q

ppi,giq
' redDΦ

�
antepppi,giqq

�

,

otherwise Cpi,giq :� Cpk,1q where k :� minti h ¤
r| gh ¡ 0u.

We can also learn cubes from trails that did not run into
conflict. If T is a total assignment of the variables from Φ,
then LpT q is defined as the following set of cubes

LpT q :� tredDΦpDq|D � T and D satisfies CpΦqu.

We will now define four different QCDCL proof systems.
All of these are proof systems for false QBFs and use trails.
The systems QCDCL and QCDCLPL work with trails us-
ing QCNFs, while trails of QCDCLCUBE and QCDCLCUBE+PL

work with AQBFs (the input is still a QCNF). The trails have
to meet the conditions specified in the next table.

QCDCL QCDCLCUBE QCDCLPL QCDCLCUBE+PL

EP AP EP AP
LOD LOD PLD PLD
CC AC CC AC

If S is one of QCDCL, QCDCLCUBE, QCDCLPL,
QCDCLCUBE+PL, then a trail T of some QCNF or AQBF Φ is
called a natural S trail, if it follows the specified rules.

Definition 3.2 (QCDCL proof systems). Let S be one of
QCDCL, QCDCLCUBE, QCDCLPL, QCDCLCUBE+PL. An S
proof ι from a QCNF Φ � Q � ϕ of a clause or cube C is
a sequence of triples

ι :� rpTi, Ci, πiqs
m
i�1,

where Cm � C, each Ti is a trail of Φi, each Ci P LpTiq is
one of the constraints we can learn from each trail and πi is
the long-distance Q-resolution or long-distance Q-consensus
proofs from Φi of Ci we obtain by performing the steps in
Definition 3.1. If necessary, we set πi :� H. We will denote
the set of trails in ι as Tpιq.

The QCNF or AQBF Φi is defined as follows: We set Φ1 :�

Φ. If S is one of QCDCL or QCDCLPL, then we set Φ1 :� Φ
and

Φj�1 :� Q � pCpΦjq ^ Cjq .

However, if S P tQCDCLCUBE,QCDCLCUBE+PLu, then the Φi

are AQBFs defined as Φ1 :� Q � pCpΦq _Hq and

Φj�1 :�

"
Q � ppCpΦjq ^ Cjq _DpΦjqq if Cj is a clause,
Q � pCpΦjq _ pDpΦjq _ Cjqq if Cj is a cube,

for j � 1, . . . ,m� 1.
Furthermore, we require that T1 is a natural S trail and for

each 2 ¤ i ¤ m there is a point rai, bis such that Tirai, bis �
Ti�1rai, bis and TizTirai, bis has to be a natural S trail for
Φi|Tirai,bis. This process is called backtracking. We will also
say that after Ti�1 we backtrack back to the point rai, bis. If
Ti�1rai, bis � H, then this is also called a restart.

Note that we only require TizTirai, bis to be natural. How-
ever, since the first part always belongs to a previous trail,
and the first trail in the proof is always natural, we can nev-
ertheless use the notion of antecedent clauses for the whole
trail Ti. In particular, for all Ti either EP or AP holds, which
we need for the learning process.

Unfortunately we cannot claim the same for LOD and
PLD, because for a decision di in a trail Tk P Tpιq it might
happen that Φk|Tkri,0s contains unit or empty clauses or lit-
erals after clause learning and backtracking. However, we
can still assume that the decisions are level-ordered, since the
condition lvΦk|Tkri,0s

pdiq � 1 is not affected by new clauses.
Also, it could happen that a literal di that was originally de-
cided by pure literal elimination in some trail Tk might not
pure in CpΦk�1|Tk�1ri,0sq anymore because of a new clause
Ck. Nevertheless, this will not cause too much difficulties
since we can always find the original trail (here: Tk) in which
di was in fact decided as a pure literal. Thus, when we say
that a literal was decided by pure literal elimination in a trail
T , we will always refer to this original trail.

If C � Cm � pKq, then ι is called an S refutation of Φ. If
C � Cm � rJs, then ι is called an S verification of Φ. The
proof ends once we have learned pKq or rJs.

If C is a clause, we can stick together the long-distance Q-
resolution derivations from tπ1, . . . , πmu and obtain a long-
distance Q-resolution proof from Φ of C, which we call Rpιq.
Similarly, if C is a cube, we can stick together the long-
distance Q-consensus derivations and obtain a long-distance
Q-consensus proof Rpιq from Φ of C.

The size of ι is defined as |ι| :�
°m

i�1 |Ti|. Obviously, we
have |Rpιq| P Op|ι|q.

We say that S p-simulates another system S1, if every S1
proof ι1 can be transformed in polynomial time into an S
proof ι of the same formula.

Theorem 3.3. QCDCL, QCDCLCUBE, QCDCLPL and
QCDCLCUBE+PL are sound and complete proof systems.

Proof. We start with the soundness. All Φi have the same
truth value. In fact, either the newly added clauses (cubes) are
derived from already known clauses (cubes) by long-distance
Q-resolution (long-distance Q-consensus), which is a sound
proof system, or we have added a cube D P LpTjq that can
be extended to an assignment σ which satisfies CpΦjq and
redDΦpσq � D. If adding such a D to DpΦjq would have
changed the truth value from false for Φj to true for Φj�1,
then there would be a strategy for the universal player that
falsifies CpΦjq_DpΦjq and the existential player would have
a strategy that satisfies CpΦjq _DpΦjq _D. If both players
play their strategy on Φj�1, then this would not satisfy CpΦjq,
but would satisfy D (and w.l.o.g. also σ). But then CpΦjq
would be satisfied, contradiction.

For the completeness, we refer to [Beyersdorff and Böhm,
2021] for a more detailed argumentation, in which the com-
pleteness of QCDCL is proven. Because each QCDCL refuta-
tion can be interpreted as QCDCLCUBE refutation, we imme-
diately gain completeness for QCDCLCUBE.

For the two systems with pure literal elimination, we will
argue similarly as in [Beyersdorff and Böhm, 2021]. There
it was shown that we can always learn clauses that become
unit after backtracking (so-called asserting clauses) and that
these clauses are always new, hence they cannot be contained
in the current matrix. We claim that the same can be done in
QCDCLPL.

First, it is always possible to let a trail run into a conflict
by deciding the universal literals according to a winning strat-
egy for the universal player. We can assume that in this win-
ning strategy universal pure literals are immediately set to
false, since this will never be disadvantageous for the uni-
versal player. At some point, we will falsify the matrix and
receive a conflict, from which we can start clause learning.

In [Beyersdorff and Böhm, 2021] we described how one
can find asserting clauses in a conflicting trail for a partic-
ular QCDCL variant (which we have not defined here) in
which we are allowed to decide universal literals earlier then
it would be allowed with the LOD rule. This construction can
be transferred to QCDCLPL because universal pure literals are
decided earlier, as well. We can ignore pure literal elimina-
tion for existential literals because they will always occur at a
dead end (we cannot use them for further propagations). That
means even if a trail contains existential literals that are de-
cided out-of-order as pure literals, they will not interfere with
finding asserting clauses as they will simply be ignored by
clause learning.

We conclude that from each trail we will be able to learn
asserting clauses that are always new. Since we only have a
finite number of literals, there are also only a finite number
of clauses to learn. At some point, we will learn the empty

clause pKq and our QCDCLPL proof ends. Due to the fact
that QCDCLPL proofs can be interpreted as QCDCLCUBE+PL

proofs, we conclude that both systems are complete.

We highlight that these systems formally model QCDCL
solving as used in practice (cf. [Beyersdorff et al., 2021]).

Missing proofs from Section 4
Theorem 4.5 ([Böhm and Beyersdorff, 2021]). Each fully
reduced primitive Q-resolution refutation of a Σb

3 QCNF Φ
that fulfils the XT-property has size 2ΩpgaugepΦqq.

Proof Sketch. We refer to the lower bound technique for so-
called quasi level-ordered Q-resolution refutations (it is not
necessary to define this notion here) explained in [Böhm and
Beyersdorff, 2021]. In the same paper, an algorithm was
designed that can transform QCDCL refutations of such Σb

3
formulas (resp. Rpιq if ι was a QCDCL refutation) into
quasi level-ordered refutations in polynomial time. However,
the algorithm only crucially requires that the given proof is
fully reduced (in order to input and output a Q-resolution and
no long-distance Q-resolution proof) and primitive, which is
true for Rpιq if the corresponding formula fulfils the XT-
property, even though the notion of primitivity was not ex-
plicitly defined in [Böhm and Beyersdorff, 2021]. In line 12
of this algorithm we need that there are no resolutions over
X-variables between two XUT-clauses. In fact, without this
precondition, we would not be able to guarantee a polynomial
running time, although a slightly modified algorithm could
handle arbitrary proofs (in exponential time), as well.

Therefore we can transform any (fully reduced) primi-
tive Q-resolution refutation of a formula that fulfils the XT-
property into a quasi level-ordered Q-resolution refutation,
for which the gauge lower bound can be applied. The result
then follows from Theorem 12 of [Böhm and Beyersdorff,
2021].

Lemma 4.6. Let T be a trail in a QCDCL, QCDCLCUBE,
QCDCLPL or QCDCLCUBE+PL proof from a QCNF Φ with the
XT-property. Then for each T -literal t1 P T , which was not
decided by pure literal elimination, there is a U -literal u P T
with u T t1.

Proof. If t1 was decided regularly, then the situation is clear
because we can only decide T -literals if and only if all U -
variables were assigned before. Therefore we can assume that
there is no T -literal t1 P T with t1 ¤T t1 such that t1 was a
regular decision.

We will show that then there must be a T -literal t ¤T t1
that was propagated in T via its antecedent clause F :�
anteT ptq and F contains at least one U -literal ū. Assume
that such a t does not exist. Then for each T -literal tj P T
with tj ¤T t1 that was propagated via its antecedent clause
Fj :� anteT ptjq, starting with j � 1, it holds that Fj can-
not contain any X-literal because of our assumption and the
XT-property. Again by the XT-property, Fj cannot be a unit
clause. Therefore we can find another T -literal tj � t̄j�1 P
Fj such that tj�1 P T and tj�1 T tj . By our assumption,
we know that tj�1 cannot be a regular decision. It cannot be
a pure literal decision either, since we have t̄j�1 P Fj . Then
tj�1 must have been propagated.

But now we have detected infinitely many T -literals
ptjq

8
j�1 assigned in T , which is obviously a contradiction.

That means that we can find at least one such t and some ū
with ū P anteT ptq and u T t ¤T t1.

Proposition 4.7. Let ι be a QCDCL, QCDCLCUBE, QCDCLPL

or QCDCLCUBE+PL refutation of a QCNF Φ that fulfils the XT-
property. If Rpιq is not primitive, then there exists a trail
T P Tpιq such that there is a U -literal u P T and an X-
literal x P T with u T x. Additionally, u cannot be a
regular decision literal.

Proof. If Rpιq is not primitive, then there are two XUT-
clauses C,D P Rpιq that are resolved over an X-variable
x, say x P C and x̄ P D. One of these clauses has to be
an antecedent clause of some trail T P Tpιq, w.l.o.g. let C
be the antecedent clause anteT pxq. Let t̄ P C be one of the
T -literals from C. In particular, we have t P T and t T x.
Because t was not a pure literal decision (we have t̄ P C)
and because of Lemma 4.6, there is a U -literal u P T with
u T t. We conclude that also u T x holds.

Since we can only decide U -literals regularly if all X-
variables are assigned in some polarity in T , it is impossible
for u to be a regular decision literal.

Missing proofs from Section 5
Proposition 5.1. QCDCLCUBE p-simulates QCDCL and
QCDCLCUBE+PL p-simulates QCDCLPL.

Proof. A QCDCL (QCDCLPL) proof translates into a
QCDCLCUBE (QCDCLCUBE+PL) proof where all trails run into
conflict and no cubes are learnt.

Proposition 5.2. There exist polynomial-size QCDCLCUBE

refutations of Eqn.

Proof. First we learn the cubes xi ^ ūi and x̄i ^ ui for i �
1, . . . , n� 1. In order to learn x1 ^ ū1, we can use the trail

T1 :� px1; . . . ;xn; ū1; . . . ; ūn; t̄1; t2; . . . ; tnq.

Then the partial assignment x1 ^ ū1 ^ t̄1 ^ t2 ^ . . . ^ tn
satisfies the matrix of Eqn. Reducing this cube existentially
results in x1 ^ ū1, hence x1 ^ ū1 P LpT1q.

Learning x̄1 ^ u1 works analogously. Note that the previ-
ously learned cube does not interfere with the learning of this
cube.

Having already learned the 2i cubes from 1 to i, let us now
explain how to learn the two cubes for i � 1. We create the
following trail:

Ti�1 :� px1, u1, t1; . . . ;xi, ui, ti;xi�1; . . . ;xn;

ūi�1; . . . ; ūn; t̄i�1; ti�2; . . . ; tnq

with

anteTi�1pujq � xj ^ ūj ,

anteTi�1ptjq � x̄j _ ūj _ tj

for j � 1, . . . , i.

Again, the partial assignment xi�1^ ūi�1^ t1^ . . .^ ti^
t̄i�1 ^ ti�2 ^ . . . ^ tn satisfies the matrix of Eqn. This can
be reduces to the cube xi�1 ^ ūi�1, which we will learn. As
before, learning x̄i�1 ^ ui�1 works analogously.

After we have learned all of these 2n�2 cubes, we will go
on with clause learning in which we will successively learn
the clauses

Li :� x̄i _ ūi _
nª

j�i�1

puj _ ūjq _
i�1ª
k�1

t̄k

Ri :� xi _ ui _
nª

j�i�1

puj _ ūjq _
i�1ª
k�1

t̄k

for i � 2, . . . , n� 1.
We start with the following trails:
Un�1 :� px1, u1, t1; . . . ;xn�1, un�1, tn�1, t̄n, xn,Kq

with
anteUn�1

pujq � xj ^ ūj

anteUn�1
ptjq � x̄j _ ūj _ tj

anteUn�1
pt̄nq � t̄1 _ . . ._ t̄n

anteUn�1
pxnq � xn _ un _ tn

anteUn�1
pKq � x̄n _ ūn _ tn

for j � 1, . . . , n � 1. We resolve over xn, t̄n and tn�1 and
get Ln�1. Analogously, we can learn Rn�1.

Suppose we have already learned Ln�1, Rn�1, . . . , Li, Ri

for some i P t3, . . . , n� 1u. Let us now construct trails from
which we can learn Li�1 and Ri�1:

Ui�1 :� px1, u1, t1; . . . ;xi�1, ui�1, ti�1, xi,Kq

with
anteUi�1pujq � xj ^ ūj ,

anteUi�1ptjq � x̄j _ ūj _ tj

anteUi�1pxiq � Ri

anteUi�1pKq � Li

for j � 1, . . . , i � 1. We resolve over xi and ti�1 and get
Li�1. Again, analogously we can derive Ri�1.

After we have finished learning L2 and R2, we can create
the last two trails as follows:

U1 :� px1, u1, t1, x2,Kq

with
anteU1

pu1q � x1 ^ ū1

anteU1
pt1q � x̄1 _ ū1 _ t1

anteU1px2q � R2

anteU1
pKq � L2.

We resolve over x2 and t1 and obtain the unit clause px̄1q.
Then the last trail will not contain any decision:

U 1
1 :� px̄1, ū1, t1, x2,Kq

with
anteU 1

1
px̄1q � px̄1q

anteU 1
1
pu1q � x1 ^ ū1

anteU 1
1
pt1q � x̄1 _ ū1 _ t1

anteU 1
1
px2q � R2

anteU 1
1
pKq � L2.

Resolving over all existential variables leads to the empty
clause.

Proposition 5.4. Eqn has poly-size QCDCLPL (and
QCDCLCUBE+PL) refutations.

Proof. The refutation is similar to the one in Proposition 5.2,
except that instead of learning cubes, we will use pure literal
elimination to decide the universal literals out of order. We
will again learn the clauses Li and Ri for i � 2, . . . , n� 1.

We start with the following trails:

Un�1 :� px1;u1, t1; . . . ;xn�1;un�1, tn�1, t̄n, xn,Kq

with

anteUn�1ptjq � x̄j _ ūj _ tj

anteUn�1pt̄nq � t̄1 _ . . ._ t̄n

anteUn�1pxnq � xn _ un _ tn

anteUn�1pKq � x̄n _ ūn _ tn

for j � 1, . . . , n � 1. We resolve over xn, t̄n and tn�1 and
get Ln�1. In an analogous way we can learn Rn�1.

Suppose we have already learned Ln�1, Rn�1, . . . , Li, Ri

for some i P t3, . . . , n� 1u. Let us now construct trails from
which we can learn Li�1 and Ri�1:

Ui�1 :� px1;u1, t1; . . . ;xi�1;ui�1, ti�1, xi,Kq

with

anteUi�1ptjq � x̄j _ ūj _ tj

anteUi�1pxiq � Ri

anteUi�1pKq � Li

for j � 1, . . . , i � 1. We resolve over xi and ti�1 and get
Li�1. Again, analogously we can derive Ri�1. Note that,
in our case, the learned clauses will not interfere with pure
literal elimination. Once we have learned Li and Ri, we will
not need to make the literals from ui, . . . , un pure any more.
Also, say we learn Li before Ri, once we decide x̄i in order
to learn Ri, we will also make Li true. Therefore pure literal
elimination behaves (almost) symmetrically.

After we have finished learning L2 and R2, we can create
the last two trails as follows:

U1 :� px1;u1, t1, x2,Kq

with

anteU1pt1q � x̄1 _ ū1 _ t1

anteU1px2q � R2 � x2 _ u2 _
nª

j�3

puj _ ūjq _ t̄1

anteU1
pKq � L2 � x̄2 _ u2 _

nª
j�3

puj _ ūjq _ t̄1.

We resolve over x2 and t1 and obtain the unit clause px̄1q.
Then the last trail will not contain any decision:

U 1
1 :� px̄1, ū1, t1, x2,Kq

with

anteU 1
1
px̄1q � px̄1q

anteU 1
1
pt1q � x̄1 _ ū1 _ t1

anteU 1
1
px2q � R2

anteU 1
1
pKq � L2.

Resolving over all existential variables leads to the empty
clause.

Proposition 5.6. The CNF CpMirrorCRnq is unsatisfiable
and gaugepMirrorCRnq ¥ n� 1.

Proof. We first show the unsatisfiability of the matrix. As-
sume otherwise. Let σ be a satisfying assignment for
CpMirrorCRnq. We can assume that σ is a total assignment.
W.l.o.g. let u P σ. We distinguish two cases:

Case 1: For all i P t1, . . . , nu there exists a j P t1, . . . , nu
such that x̄pi,jq P σ. Then we need āi P σ for all i � 1, . . . , n,
which falsifies the clause a1 _ . . ._ an.

Case 2: There is an i P t1, . . . , nu such that for all j P
t1, . . . , nu we have xpi,jq P σ. Then we need bj P σ for all
j � 1, . . . , n, which falsifies the clause b̄1 _ . . ._ b̄n.

In each case we can conclude that it is not possible to con-
struct a satisfying assignment for CpMirrorCRnq.

We now prove gaugepMirrorCRnq ¥ n� 1.
Since MirrorCRn contains no X-clauses as axioms, we

have to resolve over some ai or bj somehow. Obviously, it
is not possible to resolve xpi,jq _ u _ ai and xpi,jq _ ū _ āi
or x̄pi,jq _ ū _ bj and x̄pi,jq _ u _ b̄j . That means we have
to use the other axioms. Because of the symmetry, we can
assume that we use the clause ā1 _ . . ._ ān somehow. Then
we have to get rid of all āi. This can be done via the clauses
xpi,jq_ u_ ai, or we use the clause a1_ . . ._ an. However,
to use the latter clause we have to get rid of at least n � 1
different ai in another way first, which is only possible with
the aid of the clauses xpi,jq _ ū _ āi. We conclude that we
will pile up at least n� 1 different X-literals.

Proposition 5.8. From each QCDCLPL refutation of
MirrorCRn we can extract a fully reduced primitive Q-
resolution refutation of the same size.

Proof. Let ι be a QCDCLPL refutation of MirrorCRn. We
will show that Rpιq is primitive.

Assume not. Then by Proposition 4.7 there exists a trail
T P Tpιq such that there is an X-literal x P T and a U -literal
v P T with v T x and v is not a regular decision literal. Let
us say that varpxq � xpk,mq for some k,m P t1, . . . , nu.

That means we have decided v (which is either u or ū) out
of order via pure literal elimination. We show that this is not
possible before we have assigned all X-literals.

Claim 1: There is a T -literal t1 such that t1 T v T x.
W.l.o.g. let v � ū. We need to satisfy the clauses x̄pi,jq _

ū_ bj and xpi,jq _ ū_ āi for each i, j P t1, . . . , nu without

assigning u. Since we want to propagate x later, we cannot
assign the X-variable xpk,mq in order to satisfy these clauses.
That means we need to set bm to true and ak to false. If we
set t1 :� bm, then we get t1 T v T x.

Claim 2: For each T -literal tj with tj T v T x there is
another T -literal tj�1 such that tj�1 T tj T v T x.

Because of tj T v, the T -literal tj cannot be a regular
decision. Either tj was decided as a pure literal, or it was
propagated. If it was a pure literal, then we needed to satisfy
one of the clauses ā1_ . . ._ ān, b̄1_ . . ._ b̄n, a1_ . . ._an or
b1_ . . ._ bn. This is only possible if we assigned another T -
literal tj�1 before, hence tj�1 T tj T v T x. However,
if tj was propagated, then there is the antecedent clause F :�
anteT ptjq. Due to the XT-property, F cannot be unit. Then
there is another literal tj � ℓ P F . Because the formula only
contains one U -variable, ℓ can only be an X- or a T -literal.
Again, by the XT-property, F cannot be an XT-clause and
therefore ℓ has to be a T -literal, which needs to be falsified
by the current trail. Therefore, if we set tj�1 :� ℓ̄, we get
tj�1 T tj T v T x.

We proved that Rpιq has to be primitive, otherwise the trail
T would contain infinitely many T -literals tj .

Proposition 5.11. PLTrapn needs exponential-size
QCDCLPL and QCDCLCUBE+PL refutations.

Proof. Because CpPLTrapnq contains CpMirrorCRnq, which
is unsatisfiable, the matrix of PLTrapn is unsatisfiable, as
well. Therefore cube learning will never be applied and it
suffices to consider QCDCLPL refutations.

Let ι be a QCDCLPL refutation of PLTrapn. We will
show that each trail of Tpιq can only contain literals from
MirrorCRn or y. Then ι can be interpreted as a QCDCLPL

refutation of MirrorCRn where the only difference is the as-
signment of y, which does not affect clause learning in any
form. Then the result follows by Corollary 5.9.

In each QCDCLPL trail, we will set y to true due to pure
literal elimination. That means the clause y _ a will never
become the unit clause paq.

After this, we have to assign the variables from
MirrorCRn. We will show that for each trail T P Tpιq we
have ta, ā, b, b̄u X T � H.

First of all, it is obvious that pure literal elimination of a
or b is impossible at any time due to the four clauses ā _ b,
a_ b, ā_ b̄ and a_ b̄. In fact, if, for example, we would like
to make b pure, then we have to satisfy the clauses ā_ b̄ and
a_ b̄, which cannot be done without setting b to false.

Next, let us assume that there is some literal ℓ P ta, ā, b, b̄u
that was propagated in some trail T P Tpιq. In particular,
let T be the first trail in which we propagated a literal ℓ P
ta, ā, b, b̄u. Since y _ a can never be used as an antecedent
clause for a, we have anteT pℓq P tā_b, a_b, ā_b̄, a_b̄u. But
then we would need another ℓ � ℓ1 P ta, ā, b, b̄u with ℓ1 P T
and ℓ1 T ℓ. If we suppose that ℓ was the first propagation of
a literal from ta, ā, b, b̄u, then we conclude that ℓ1 has to be a
regular decision.

We will now argue that we get a contradiction if there
is a trail T P Tpιq in which we have decided a literal
ℓ1 P ta, ā, b, b̄u. Because of the level-ordered decision rule

LOD, there exists v P tu, ūu with v P T and v T ℓ1. We
can only decide v if we have assigned all existential literals
left of v. In particular, for each i, j � 1, . . . , n there is a lit-
eral ℓpi,jq P txpi,jq, x̄pi,jqu with ℓpi,jq P T and ℓpi,jq T v.
We now distinguish two cases.

Case 1: For all i P t1, . . . , nu there exists a j P t1, . . . , nu
with ℓpi,jq � x̄pi,jq.

Then if v � u, we will gain unit clauses pāiq for i �
1, . . . , n from the clauses xpi,jq _ ū_ āi, which can be used
for unit propagations that lead to a conflict in the clause
a1 _ . . . _ an. Otherwise, if v � ū, then we will get unit
clauses paiq from the clauses xpi,jq _ u_ ai and a conflict in
ā1 _ . . ._ ān.

Case 2: There exists an i P t1, . . . , nu such that for all
j P t1, . . . , nu it holds ℓpi,jq � xpi,jq.

This case is analogous to Case 1 with unit clauses pbjq
(resp. pb̄jq) and a conflict in b̄1_ . . ._ b̄n (resp. b1_ . . ._bn).

In each case we will get a conflict in some clause. That
means the trail T would run into a conflict before we would
have the chance to decide ℓ1. That shows that ℓ1 cannot be
decided at any point. We conclude that no trail from ι can
contain a literal from ta, ā, b, b̄u.

Proposition 5.12. PLTrapn has polynomial-size QCDCL
refutations.

Proof. The shortest refutation only consists of two trails. We
start with

T :� pȳ, a, b,Kq

with

anteT paq � y _ a

anteT pbq � ā_ b

anteT pKq � ā_ b̄.

We resolve over b and learn the unit clause pāq.
The final trail looks as follows:

U :� pā, b,Kq

with

anteU pāq � pāq
anteU pbq � a_ b

anteU pKq � a_ b̄,

from which we can learn the empty clause by resolving over
everything.

Missing proofs from Section 6
Proposition 6.2. Fully reduced primitive Q-resolution refu-
tations of TwinEqn have exponential size.

Proof. We need to show gaugepTwinEqnq � n , then the
result follows by Theorem 4.5.

Since we have to resolve over T somehow, we have to use
the clause t̄1_ . . ._ t̄n. Hence, we have to resolve over each
ti at least once, and therefore we will pile up xi or x̄i in each
resolution step due to the XUT-axioms.

Proposition 6.3. Each QCDCLCUBE refutation of TwinEqn
has at least exponential size.

Proof. We will prove that from each QCDCLCUBE refuta-
tion of TwinEqn we can extract a fully reduced primitive Q-
resolution refutation of the same size. Let ι be a QCDCLCUBE

refutation of TwinEqn. We will show that Rpιq is primitive.
Assume not. Then by Proposition 4.7 there exists a trail

T P Tpιq such that there is an X-literal x P T and a U -literal
u P T with u T x. Also, u cannot be a regular decision in
T .

Hence, we have propagated u before x. Universal propa-
gation can only be performed via cubes. Let us now consider
how the initial cubes from TwinEqn look like.

Assume that the cube A is a (not necessarily total) assign-
ment that satisfies the matrix of TwinEqn. We have to satisfy
the clause t̄1 _ . . ._ t̄n, hence there is a j P t1, . . . , nu with
t̄j P A. Then we also have to satisfy the four clauses

xj _ uj _ tj

x̄j _ ūj _ tj

xj _ wj _ tj

x̄j _ w̄j _ tj .

That means xj has to appear in some polarity in A, say
xj P A. But then we need to set both uj and wj to false, thus
ūj , w̄j P A.

We conclude that each (reduced) cube has to contain one
of the subcubes

xj ^ ūj ^ w̄j

x̄j ^ uj ^ wj

for some j P t1, . . . , nu. This also causes that none of these
cubes are resolvable.

We observe that all cubes that can be used for universal unit
propagation contain at least two universal literals. Since we
needed one of these cubes as antecedent cube of some uni-
versal literal in our trail T , we would have needed to decide
or propagate another universal literal before. Having only
finitely many universal literals, we would have needed to de-
cide one universal literal before propagating x, which is a
contradiction to our decision rule LOD.

This shows that Rpιq is indeed primitive.

Proposition 6.4. TwinEqn has polynomial-size QCDCLPL

refutations.

Proof. The proof is similar to the one in Proposition 5.4, ex-
cept one change: Each time some universal literal is getting
pure, say ui, then also wi becomes pure as well. That means
each time we decide some ui (resp. ūi) in the trail by pure
literal elimination, we also have to do the same to wi (resp.
w̄i) in the next decision level. However, this does not affect
anything concerning unit propagation or clause learning.

To give an example: The trail Un�1 from Proposition 5.4
will now look like

Un�1 :� px1;u1, t1;w1; . . . ;xn�2;un�2, tn�2;wn�2;

xn�1;un�1, tn�1, t̄n, xn,Kq.

Proposition 6.7. PLTrapn has poly-size QCDCLCUBE refuta-
tions.

Proof. The short proofs in QCDCLCUBE follow from Propo-
sitions 5.1 and 5.12.

Proposition 6.10. BulkyEqn has polynomial-size
QCDCLCUBE+PL refutations, but needs exponential-size
QCDCLPL refutations.

Proof. Part 1: BulkyEqn needs exponential-size QCDCLPL

refutations.
We first prove gaugepBulkyEqnq ¥ n�1. To derive an X-

clause, we have to use t̄1_ . . ._ t̄n somehow. That means we
have to resolve over each ti. We can resolve with u1 _ . . ._
un_ t1_ . . ._ tn or ū1_ . . ._ ūn_ t1_ . . ._ tn only after
we have resolved away at least n � 1 different T -variables
otherwise. That means we have pile up at least n�1 different
X-literals by using the clauses xi _ ui _ ti or x̄i _ ūi _ ti.
Hence gaugepBulkyEqnq ¥ n� 1.

We will now prove that from each QCDCLPL refutation
of BulkyEqn we can extract a fully reduced primitive Q-
resolution refutation of the same size. Let ι be a QCDCLPL

refutation of BulkyEqn. We will show that Rpιq is primitive.
Assume not. Then by Proposition 4.7 there exists a trail

T P Tpιq such that there is an X-literal x P T and a U -literal
u P T with u T x and u is not a regular decision literal.

Since cube learning is disabled, this universal literal u had
to be decided by pure literal elimination. We will show that
pure literal elimination of the universal literal u before de-
ciding or propagating all X-variables is not possible. Define
M :� tui, ūi, ti, t̄i : i � 1, . . . , nu.

Claim 1: There exists some ℓ1 PM such that ℓ1 T u T
x.

In order to make u pure, we have to satisfy one of the
clauses u1_. . ._un_t1_. . ._tn or ū1_. . ._ūn_t1_. . ._
tn. In particular, we need some ℓ1 PM with ℓ1 T u T x.

Claim 2: For each ℓj PM with ℓj T u T x there exists
some ℓj�1 PM such that ℓj�1 T ℓj T u T x

If ℓj was decided via pure literal elimination, we can use
a similar argument as in Claim 1 (now we have satisfy one
of the three clauses u1 _ . . . _ un _ t1 _ . . . _ tn, ū1 _
. . ._ ūn _ t1 _ . . ._ tn or t̄1 _ . . ._ t̄n) and conclude that
we need some ℓj�1 P M with ℓj�1 T ℓj T u T x.
However, if ℓj was not decided as a pure literal, then it has to
be a T -literal that was propagated. Note that we cannot have
decided ℓj regularly because of ℓj T x and ℓj T u. That
means there is an antecedent clause F :� anteT pℓjq. Due to
the XT-property, F cannot be a unit clause. That means there
is another literal ℓj � ℓ P F . If ℓ is a U - or a T -literal, then
we can set ℓj�1 :� ℓ̄. If ℓ is an X-literal, then there is at least
one U -literal v P F , again because of the XT-property. Then
we can set ℓj�1 :� v̄.

We have proven that if Rpιq is not primitive, then T has to
contain an endless number of literals ℓj , which is obviously
not possible since the formula only consists of finitely many
variables. That means Rpιq has to be primitive.

Part 2: BulkyEqn has polynomial-size QCDCLCUBE+PL

refutations.

We start with the learning of exactly two cubes: x1 ^ ū1
and x̄1 ^ u1. We do this via the following two trails:

T :� px1; . . . ;xn; ū1; . . . ; ūn; t̄1; t2; . . . ; tnq

T 1 :� px̄1; . . . ; x̄n;u1; . . . ;un; t̄1; t2; . . . ; tnq

Unfortunately we cannot continue learning the other cubes
as in Proposition 5.2 since this will be blocked by pure literal
elimination. However, we can use this effect to our advantage
by simulating the missing cubes in this way.

Let us now start the learning of the clauses Li and Ri for
i � 2, . . . , n� 1 from the proof of Proposition 5.2.

We begin by constructing the following trail:

Un�1 :� px1, u1, t1;x2;u2, t2, . . . ,xn�2;un�2, tn�2;

xn�1,un�1, tn�1, t̄n, xn,Kq

with the same antecedent constraint as in Proposition 5.2 (ex-
cept of the pure literals u2, . . . , un�2) and the same learned
clause Ln�1. Analogously we can learn Rn�1.

We go on with the trails Un�2, . . . ,U2 in the same way as
in Proposition 5.2 where we learn Ln�2, . . . , L2, except that
the literals u2, . . . , ui�1 in Ui�1 are now pure literals and not
propagated via cubes. However, this does not affect the clause
learning process in any aspect. The same is obviously true for
the analogous trails in which we learn Rn�2, . . . , R2.

We finish the proof with the last two trails U1 and U 1
1 ex-

actly as in Proposition 5.2.

Missing proofs from Section 7
Theorem 7.1. QCDCL, QCDCLCUBE, QCDCLPL and
QCDCLCUBE+PL are incomparable to Q-resolution. In de-
tail, the formula QParityn has polynomial-size QCDCL,
QCDCLCUBE, QCDCLPL and QCDCLCUBE+PL refutations, but
needs exponential-size Q-resolution refutations. On the other
hand, MirrorCRn has polynomial-size Q-resolution refu-
tations, but needs exponential-size QCDCL, QCDCLCUBE,
QCDCLPL and QCDCLCUBE+PL refutations.

Proof. Claim 1: QParityn has polynomial-size QCDCL and
QCDCLCUBE refutations.

It was proven in [Beyersdorff and Böhm, 2021] that
QParityn has short QCDCL refutations. And because of
Proposition 5.1, the formula is easy for QCDCLCUBE, as well.

Claim 2: QParityn has polynomial-size QCDCLPL and
QCDCLCUBE+PL refutations.

We will show that we will never find pure literals while
creating QCDCLPL trails. In fact, the only way in making
a literal ℓ pure is to create a unit clause pℓq, which would
immediately lead to the propagation of ℓ or a conflict.

For example, suppose the literal ti is pure at some point in
the trail. Then the clauses xi _ ti�1 _ t̄i and x̄i _ t̄i�1 _ t̄i
must have been satisfied by the current assignment of the trail.
Since we have not assigned ti yet, we have to set either xi
to true and ti�1 to false, or xi to false and ti�1 to true. In
both cases we would obtain the unit clause ptiq by apply this
assignment to either xi _ t̄i�1 _ ti or x̄i _ ti�1 _ ti.

The same holds for the universal variable u. For u or ū to
be pure, we need to set tn to false or true. But then we would
obtain the unit clause puq or pūq, which would immediately
lead to a conflict.

We conclude that the polynomial-size QCDCL refutation
of QParityn is a QCDCLPL refutation as well. And be-
cause QCDCLCUBE+PL p-simulates QCDCLPL, QParityn is
also easy for QCDCLCUBE+PL.

Claim 3: QParityn needs exponential-size Q-resolution
refutations.

This was already proven in [Beyersdorff et al., 2019b].
Claim 4: MirrorCRn needs exponential-size QCDCL,

QCDCLCUBE, QCDCLPL and QCDCLCUBE+PL refutations.
Because of Proposition 5.6, each trail T in a QCDCLCUBE

or QCDCLCUBE+PL refutation runs into a conflict. There-
fore we will always learn clauses and no cubes. Then each
QCDCLCUBE refutation can be interpreted as a QCDCL refu-
tation and each QCDCLCUBE+PL refutation can be interpreted
as a QCDCLPL refutation. The rest follows by Corollary 4.8,
5.7 and 5.9.

Claim 5: MirrorCRn has polynomial-size Q-resolution
refutations.

This follows directly from the fact that MirrorCRn ex-
tends the original QCNF CRn, which has polynomial-size Q-
resolution refutations [Janota, 2016]. We will just ignore the
clauses that are not contained in CRn.

Further experimental results
(complementing Section 8)
Figure 3 shows DepQBF’s behaviour on PLTrap and TwinEq.
We see that here solver performance matches proof com-
plexity almost perfectly. The only slight discrepancy is
that PLTrap remains hard without PLE with the heuristics
satisfy and qtype.
MirrorCR should be, and is, hard for every configuration

(Figure 4).
On the other hand, BulkyEq exhibits a similarly erratic be-

haviour as Equality (Figure 5). We know that BulkyEq is
easy for QCDCLCUBE+PL, but hard for QCDCLCUBE (Propo-
sition 6.10), yet somehow it seems the only configurations
able to solve BulkyEq fast are ones without PLE (and with
SDCL). It remains to be seen how PLE hurts solver perfor-
mance here; no apparent trap like in PLTrap is discernible.

Finally, Figure 6 shows the performance of DepQBF in the
default vanilla QCDCL configuration with and without pure-
literal elimination. With PLE, DepQBF solved 84 formulas,
while without only 80. 95 formulas were solved by at least
one configuration. This serves as an illustration that bene-
fits from pure-literal elimination can be observed outside of
crafted proof-complexity formulas. A state-of-the-art solver
configuration on industrial formulas would typically include
a preprocessor and other techniques that go beyond vanilla
QCDCL; we aim to test just QCDCL with and without PLE.

0 5 10 15 20 25

n

10-2

10-1

100

101

102

103

T
im

e
(s

)

TwinEq

P -qtype
P -falsify
P -sdcl
P -simple
P -satisfy
P -rand
PC-sdcl
PC-qtype
PC-falsify
PC-satisfy
PC-simple
PC-rand
 -sdcl
 -qtype
 -falsify
 -satisfy
 C-qtype
 C-simple
 C-falsify
 C-sdcl
 C-satisfy
 C-rand
 -rand
 -simple

0 5 10 15 20 25

n

10-2

10-1

100

101

102

T
im

e
(s

)

PLTrap

 -falsify
 -simple
 -sdcl
 -rand
 C-sdcl
 C-simple
 C-rand
 C-falsify
P -falsify
PC-falsify
 -satisfy
P -qtype
P -sdcl
 -qtype
P -satisfy
PC-qtype
PC-sdcl
 C-qtype
PC-satisfy
 C-satisfy
P -simple
PC-simple
PC-rand
P -rand

Figure 3: TwinEq (above) and PLTrap (below) formulas documenting Theorem 6.8. Labels indicate whether PLE ("P*") and SDCL ("*C")
are on, configurations of one kind have the same line style. The rest of the label is the heuristic; configurations with the same heuristic share
colour. Gaps in lines indicate time-outs at 10 minutes. The legend is sorted in descending order of performance.

1 2 3 4 5 6 7

n

10-2

10-1

100

101

102

T
im

e
(s

)

MirrorCR

P -falsify
PC-falsify
 -falsify
 C-falsify
 C-sdcl
PC-satisfy
 -sdcl
P -satisfy
 C-qtype
 -qtype
 C-satisfy
PC-sdcl
P -qtype
 -satisfy
PC-qtype
P -sdcl
P -simple
PC-simple
 -simple
 C-simple
 C-rand
 -rand
PC-rand
P -rand

Figure 4: MirrorCR, the same kind of plot as before. We tested the solver on up to n � 10, but all configurations timed out on n ¥ 8.

0 10 20 30 40 50

n

10-2

10-1

100

101

102

103

T
im

e
(s

)

BulkyEq

 C-sdcl
 C-qtype
 C-falsify
 Q-qtype
 Q-false
 Q-random
 Q-invJW
 Q-true
 C-satisfy
 C-rand
PC-rand
PC-satisfy
PC-simple
PC-falsify
PC-qtype
PC-sdcl
P -simple
P -sdcl
P -qtype
P -falsify
P -satisfy
P -rand
 C-simple
 -falsify
 -sdcl
 -qtype
 -satisfy
 -simple
 -rand

Figure 5: BulkyEq. Lines for Qute start with "Q", the remaining lines are for DepQBF, otherwise the same kind of plot as before.

0 20 40 60 80

n

10-2

10-1

100

101

102

103

T
im

e
(s

)

QBFEval 20 PCNF

PC-simple
 C-simple

Figure 6: DepQBF on the QBF Evaluation 2020 PCNF Track. Cactus plot; px, yq means the configuration solved x instances in y seconds.
Right and low is better. Lines are labeled like before.

0 20 40 60 80 100
n

10-2

10-1

100

101

102

103

T
im

e
(s

)

The PLE configurations

The best non-PLE DepQBF configurations

Qute

Eq

P -simple
PC-satisfy
PC-falsify
PC-sdcl
PC-qtype
P -qtype
P -falsify
PC-simple
PC-rand
P -satisfy
P -sdcl
P -rand
 C-sdcl
 C-qtype
 C-falsify
 C-satisfy
 Q-invJW
 Q-false
 Q-qtype
 Q-random
 Q-true
 Q-watcher
 C-rand
 C-simple
 -sdcl
 -qtype
 -falsify
 -satisfy
 -simple
 -rand

Figure 7: A larger copy of Figure 2.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

