
Pseudo-random functions and uniform
learnability

Eric R. Binnendyk

May 2021

Abstract

Boolean circuits are a model of computation. A class of Boolean cir-
cuits is called a polynomial class if the number of nodes is bounded by a
polynomial function of the number of input variables. A class Cn[s(n)] of
Boolean functions is called learnable if there are algorithms that can ap-
proximate functions in Cn[s(n)] when given oracle access to the function.
A distribution D of functions is called pseudorandom against a circuit
class C[t(n)] if any oracle circuit Cf from C[t(n)] outputs 1 with the
same probability if the oracle f is chosen from D as it would if the oracle
were random. It is known that a polynomial class of circuits is learnable if
and only if it contains no pseudorandom distributions of functions. How-
ever, there is no known efficient algorithm to produce the learner given
the number of inputs the circuits have (the learner is non-uniform). In
this paper we use a uniform version of the minmax theorem to prove the
existence of uniform learners under certain conditions.

1 Introduction
We aim to understand the constructive relationships between pseudorandomness
and learnability for concept classes. It is well-known that pseudorandomness
and learnability are closely related to each other. [1] [2] In the non-uniform
setting, there is a dichotomy between learnability and pseudorandomness, i.e.,
duality between “inability to simulate randomness” by a class and its “feasible
learnability”. We want to explore this dichotomy in the uniform setting.

In the non-uniform setting, Λ can be learned non-trivially if and only if
Λ cannot compute secure pseudorandom functions, i.e., nontrivial circuits can
learn the class of Λ-concepts if and only if Λ-functions are too “weak” to con-
vincingly simulate randomness. This is a striking and interesting result, because
it characterizes the difficulty of learning by the expressive power of the target
concept class.

One direction is well-established ([1], Lemma 5). If Λ-concepts can be
learned, then Λ-functions cannot simulate randomness. A randomness distin-
guisher can be built using the learner as follows: The learner can be run on the

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 132 (2021)

candidate random object. Those output by Λ-functions can be learned success-
fully. However, most randomly chosen functions will have almost no correlation
with the learner’s output. (This follows a counting argument that the Boolean
functions vastly outnumber Λ-functions, and so possible outputs of the learner).

It has recently been shown that if Λ functions cannot simulate randomness,
then Λ concepts can be learned. [1] The proof proceeds as follows: assume the
existence of detectors that distinguish functions in Λ from random responses
to their queries, thus preventing individual Λ-functions from successfully sim-
ulating randomness; then, we apply the minmax theorem, which guarantees
a universal detector that can identify any Λ function’s outputs; this univer-
sal detector is used in a blackbox generator to approximate Λ functions, thus
learning them. However, the learning “algorithm” produced by this result is
non-constructive, in the sense that it requires “advice” to operate. The natural
question to ask is: can we get a normal algorithm? And under what assump-
tions? This question was raised in [1], but they leave its answer unclear. In this
paper, we investigate this question and provide an answer.

The main tool used in proving the dichotomy in the non-uniform case is
two-player zero-sum game formulations. A version of the minmax theorem ap-
plied to such a game is central to the proof. The non-uniformity of the minmax
theorem contributes to the non-uniformity of the dichotomy. This makes the
entire proof non-uniform, i.e., under the assumption that there are no pseudo-
random generators in Λ against non-uniform adversaries/detectors, the proof
gives a separate algorithm to learn Λ concepts for each input size n, but not an
algorithm that works for all n. Though the assumption appears harder than the
uniform version, it is also non-constructive, i.e., the assumption only requires
the existence of adversaries for any potential pseudorandom generator.

We will explore the use of a uniform version of the minmax theorem [3]
and show that this leads to a uniform version of this result. To constructively
show the existence of a uniform learning algorithm for the class Λ, we need
to strengthen our assumption, requiring a constructive way to obtain a detec-
tor/adversary against any pseudorandom generator that works for any input
size.

1.1 Orgaization of the paper
Section 2 gives some definitions and discusses the setting in which these results
are useful.
Section 3 gives a summary of the result stating that non-existence of PRFs
implies learnability. This is simply an extraction of the relevant concepts and
proofs from the paper [1]. We give the set up and proofs which will be modified.
This is followed by an analysis of the use of non-uniformity.
Section 4 gives the results pertaining to the uniform minmax theorem given by
Vadhan and Zheng. Here, we only state the main results, leaving the proofs
to appendix, because we will only be using the results and not modifying the
proofs involved.
Section 5 gives our contribution which shows how to use the uniform minmax

2

theorem to get a result stating that non-existence of PRFs implies uniform
learnability, under some assumptions.

3

2 Basics - Definitions, Notations and established
results

This section covers definitions about circuit complexity, probabilistic and ran-
domized algorithms, learning, psuedorandom function families, black box gen-
erators, and the minmax theorem. Here we only give definitions and theorems
that are well-established and can be considered basic. Other definitions and
theorems that are more advanced are presented in the following sections.

2.1 Circuit Complexity
Except when specified, all of these definitions are from [4].

Boolean circuit: A Boolean circuit is a node-labeled DAG (directed, acyclic
graph) in which

• Source nodes are labeled by inputs

• Sink nodes are labeled by outputs

• Internal nodes are labeled by Boolean gates (we restrict this to be from
{¬,∧,∨}).

An edge is also called a wire. Each of the input nodes can be negated as soon as
it is processed. Due to De Morgan’s Law, this is equivalent to not gates being
allowed as nodes anywhere in the circuit.

Figure 1: An example of a Boolean circuit

Fan-in / Fan-out: Fan-in of a node is the number of wires going into it;
Fan-out of a node is the number of wires going out of it.
Note that the fan-in of a node should match the arity of the gate which is the

4

label of the node. If the gates can be made general (e.g. ∧, ∨), there is no
restriction on the fan-in.

Size of the circuit: Size is the number of nodes in a circuit. Given that
the number of edges is polynomial in the number of nodes, we may also specify
the size of a circuit as the number of edges in it.

Depth of a circuit: Depth of a circuit is the longest path in the DAG.
Descriptions of circuits: Since a circuit is just a labeled DAG, it is possible

to describe a circuit using a bit-string of length polynomial in its size. We will
assume such a standard encoding.

Evaluation of a circuit:

• Input nodes’ evaluation is given by the input corresponding to their label.

• Each edge’s evaluation is given by its source node’s evaluation.

• Internal nodes’ evaluation is the output produced by the gate correspond-
ing to their label, with inputs given by the edges coming into them.

• Output node’s evaluation is taken as the output corresponding to the
node’s label.

Note that the evaluation of the node is propagated to all the wires coming out
of it.

It is direct to see that, given the description of a circuit, it can be evaluated
in time polynomial in it the size of the description, and so in time polynomial
in the size of the circuit.

Model of computation: Given that a circuit is a DAG and its nodes can
be topographically sorted, a circuit computes a Boolean function f : BM → BN

where M is the number of inputs, and N is the number of outputs.
Unlike a program which can take inputs of any lengths, a single circuit

computing a Boolean function f : BM → BN can only take M -bit string as
input. There are 2M such bit-strings which this circuit can handle, whereas
a Turing machine can input any (finite) bit-string. Though this seems like
a property of circuits, it is a limitation: there are Boolean functions such as
conjunction, parity, majority etc. that can be naturally defined on any input
size; extending this idea, we may want to consider any function f : B ∗ B.

Circuit family: A family of circuit indexed by a set. Typically, a circuit
family is indexed by natural numbers, and the ith in the family takes i Boolean
inputs and one output. So, a circuit family C is a function F from N to circuits.
Thus, this circuit family simulates a Boolean function of any input size, and so
is a model of computation similar to Turing machines.

Size/Depth: Size/depth of a circuit family is the function mapping n to
the size/depth of the circuit taking n inputs. We can apply asymptotic resource
measures here.

Non-uniform model of computation: As defined, a circuit family need
not be computable, i,e, there need not exist a Turing machine that takes a
natural number i and outputs the circuit with i inputs. Because of this, such a
circuit family can compute undecidable functions.

5

Non-uniformity and advice: Even if no algorithm is known for a circuit
family, it can still be proven to exist non-constructively. This can be turned
into a partial algorithm for the circuit class, which requires consulting an oracle
for advice for the non-constructive part of the proof.

Uniform model of computation: A uniform circuit family is a circuit
family that is constructible, i,e, there is a Turing machine M that inputs i in
unary, and outputs a description of a circuit with i inputs.

Circuit classes: Circuit classes are sets of circuit families that satisfy some
restrictions. There are many ways to restrict a circuit family to get complexity
considerations in.

• We can restrict the size of a circuit family. Cn[s(n)]: the class of Boolean
functions of n input variables computable by circuits of at most s(n) wires.
A typical restriction is that if polynomial or subexponential. C[poly(n)]:
the class of Boolean functions computable by circuit families C1, C2, ...
where the size of all Cn is bounded by a polynomial of n.
Note that given there are only 2n inputs of size n, and only 22

n functions,
if a circuit is allowed to be exponential, any circuit is possible.

• We can restrict the depth of a circuit family. A typical restriction is that
of logarithmic depth.

• We can restrict the complexity of the Turing machine that generates the
function family. Typical restrictions include polynomial time or logarith-
mic space.

2.1.1 Variants and extensions to circuits

Randomized circuits [1]: These are circuits that take m random bits as inputs
in addition to their regular inputs. For such circuits we talk of the probability
of outputting “True” or 1 for a given input, when the random bits are drawn
from some distribution, typically the uniform distribution.

In case of circuit families, we may require that the probability of acceptance
should be a function of the input size, or that it should be bound away from
1/2 by a value that is a function of the input size. We may also require that the
number of random bits used by a circuit is a function of the number of inputs
of the circuit.

In the following, we use Un to denote the uniform distribution over n-bit
strings, and Fn to denote the uniform distribution over all Boolean function
over n inputs. We write x ∼ D to denote that x is drawn from the distribution
D. We write x ∼ A to denote that x is drawn uniformly at random from the
finite set A.

Oracle circuit [1]: circuit with “oracle gates” that can be substituted with
any Boolean function h (with the same arity) as its oracle. We denote an oracle
circuit by CO, and the output of the circuit with input x and oracle h is Ch(x).
Note that this corresponds to the idea that an oracle can be queried in one time
step.

6

If a circuit C has oracle access to a function h of m inputs, then for C to
determine the function h, it has to query 2m different inputs, thus it has to be
of size > 2m.

2.2 Computational Indistinguishability
A central concept of cryptography is “effective similarity”. Under this notion,
the inequality or dissimilarity between objects matter only if the difference is
detectable. This naturally gives rise to the notion of a detector (distinguisher)
and “cheater”. Generalizing this, we have a class of distingushers and try to
detect the ‘identity’ of another class of objects. Typically, the cheaters we
are interested in are probability distributions (that try to pass themselves off
as other probability distributions, e.g.,: as a uniformly random distribution);
typically, the detectors we are interested in are statistical tests with limited
resources.

Computational Indistinguishability [5]: Let X and Y be probability
distributions over strings of length n. We say that X and Y are computationally
indistinguishable if for every feasible algorithm A, we have |Pr[A(X) = 1] −
Pr[A(Y) = 1]| is a negligible function of n (e.g. exponentially decreasing with
n).

Distinguishers and distinguishing circuits [6]: Given a probability dis-
tribution Wn over {0, 1}n, and a Boolean function b : {0, 1}n → {0, 1}, we say
that hn is a distinguisher for Wn if |Prw∼Wnhn(w)− Prx∼Unhn(x)| ≥ 1/4.
A circuit Dn is a distinguishing circuit for Wn if Dn computes hn described
above.

The definitions of distinguishers and distinguishing circuits can be general-
ized directly to families indexed by n. Here, if the distinguishing circuit family is
computable, then we have uniform distinguishing circuits. Further, the resource
requirements of generating the probability distribution Wn and the distinguish-
ers can be limited separately, so it is possible to talk about one class of functions
being distinguishable (or not) by another class.

Figure 2: What a function distinguisher does

7

2.3 Pseudorandom generator
A true random string is a sequence generated by an unpredictable physical
process, such as a quantum event, or tossing of a coin. Pseudorandom string is
a sequence generated by a program, and so, is predicable; if a program takes a
true random string as seed to generate a much longer sequence, it would not be
completely predictable; but it would not be completely unpredictable, as a true
random string would be. Given these definitions are based on predictability, we
could consider the strength of the predictors as a parameter, i.e., predictability
can be defined with respect to a resource limited class of predictors. Then,
we can use a pseudorandom string instead of a true random string, even in
cryptographic settings.

Pseudorandom generator [5]: Let l : N → N with l(n) > n. A pseudo-
random generator with stretch function l is an efficient, deterministic algorithm
that inputs a (true) random n bit seed and outputs an l(n) bit string which is
computationally indistinguishable from a (true) random l(n) bit string.

Pseudorandom function [5]: A pseudorandom function is an efficient,
deterministic algorithm which inputs s, an n bit seed, and an n bit argument
x, and returns an n bit string, fs(x), so that it is infeasible to distinguish the
response of fS for a uniformly chosen s from a response of a truly random
function.

A pseudorandom function allows efficient, direct access to very long pseu-
dorandom sequence (too large to read in full). Pseudorandom functions can
replace truly random functions (a function chosen at random from a class of
functions) in applications where the function is only called (and not subjected
to a source-code analysis).

Figure 3: How a distinguisher samples from a pseudorandom function

Pseudorandom function family.
Function family: a pair (Gn, Dn)

• Gn: a set of Boolean functions of n variables

• Dn: a probability distribution over Gn

A (t(n), ε(n))-pseudorandom function family ([1], page 25) or PRF in Cn[s]

8

is a function family (Gn, Dn) in C[s(n)] such that∣∣Prh∼Dn,w1
[Bh(w1) = 1]− Prf∼Fn,w2

[Bf (w2) = 1]
∣∣ ≤ ε

for every randomized oracle circuit in BO ∈ CircuitO[t(n)].
As the circuits are parametrized by n, the definitions directly generalize to

families, and if the circuit family is computable, then we have pseudorandom
function families; similarly we may also have pseudorandom function families
secure against a uniform class. Further, the resource limits on pseudorandom
generators and distinguishers can be set separately.

2.4 Learning
PAC learners [7]: Probably approximately correct (PAC) learning is a type
of function learning. It involves an instance class I and a hypothesis class H.
An oracle algorithm AO samples queries from a function f ∈ I and returns a
function h ∈ H (as a circuit). The learner has two criteria based on parameters
δ and ε:

• The learner algorithm has a 1− δ chance of running successfully, given a
particular distribution over the instance class.

• If successful, the output h matches f on most inputs: Prx∼D[h(x) =
f(x)] ≥ 1− ε where D is some distribution over inputs.

We are interested in studying the learnability of some circuit classes by
oracles in other circuit classes.

Learning a circuit family: We say that a class C[s(n)] of Boolean func-
tions has (ε, δ)-learners running in time t if for large enough n: For every func-
tion f ∈ Cn[s(n)], with probability at least 1− δ over the algorithm’s random-
ness, the call Af (1n) outputs a circuit h such that Prx∼Un [h(x) ̸= f(x)] < ε(n).

Learner circuit: We are interested in learning functions from a class
C[s(n)] using a randomized oracle algorithm with membership queries. If a
function f is represented by a circuit C, the learner has oracle access to f and
outputs a circuit description C ′ that is a circuit for f . Note that C need not be
the same as C ′.

Circuit learning a circuit: Here, the learner L is a circuit - so L is an
oracle circuit that has oracle access to the function f and outputs a circuit
description of C where C computes f . (The outputs of L can encode the de-
scription of circuits. We will assume a standard encoding of this sort).

2.5 Black-box generator
A black-box generator (for this project) is a pseudorandom generator specifi-
cally designed for the purposes of derandomization, as opposed to cryptography.
It assumes the hardness of a function f (even to approximate), and guarantees

9

that if the pseudorandomness generated is distinguishable from true random-
ness, then f can be approximated by simple algorithms, violating the hardness
assumption.

Definition:
A (γ, ℓ)-black-box generator [8] for a circuit class Cn[s(n)] is a mapping
that assigns to each function f ∈ Fn a set of functions {gz|z ∈ Um} where
gz : {0, 1}ℓ → {0, 1}, for which the following conditions hold:

• size: the parameter m is polynomial in n and 1/γ

• complexity: For every z ∈ {0, 1}ℓ, we have gz ∈ Cf [poly(m)]

• reconstruction: Let L = 2ℓ and WL be the distribution supported over
{0, 1}L that is generated by the truth table of gz, where z is uniformly
sampled. There is a randomized algorithm Af , taking as input a circuit
D and having oracle access to f , which when D is a distinguishing circuit
for WL, outputs a circuit that is γ-close to f and is of size polynomial in
n, 1/γ, and size(D) with probability ≥ 1− 1/n.

2.6 Games and Minmax theorem
In a two-player game, player 1 and player 2 both have a finite number of pure
strategies. Player 1 and player 2 each play pure strategies and the outcome
or value of the game is a numeric value. Player 1 tries to minimize this value
while player 2 tries to maximize it.

2.6.1 Game matrix

This idea can be described by a matrix M , where each row is a pure strategy by
player 1 and each column is a pure strategy by player 2. Following the notation
used in [1], M(i, j) is the value of the game when player 1 plays pure strategy
i and player 2 plays pure strategy j.

2.6.2 von Neumann’s minmax theorem

An important result in game theory is von Neumann’s famous minmax theo-
rem:

Theorem 1 (minmax theorem) ([1], page 26). Let P denote a probabil-
ity distribution over matrix rows and Q denote a probability distribution over
matrix columns. Then

min
P

max
Q

Ei∈P,j∈QM(i, j) = max
Q

min
P

Ei∈P,j∈QM(i, j)

The distributions P and Q are called mixed strategies, and we use the notation
M(P,Q) = Ei∈P,j∈QM(i, j).

Because the optimal response to any given mixed strategy is a pure strategy
(due to the convexity of the space of mixed strategies), this can be rewritten:

min
P

max
j

Ei∈PM(i, j) = max
Q

min
i

Ej∈QM(i, j)

10

Definition: Value of a game: The value v(M) of a game with matrix M
is the value on both sides of the minmax equation.

Definition: Value of a strategy: The value of a mixed strategy P for
player 1 is v(P) = maxQ[M(P,Q)]. The value of a mixed strategy Q for player
2 is v(Q) = minP [M(P,Q)].

Interpretation: The minmax theorem gives us information about how well a
player’s mixed strategies perform.

The minmax theorem can be written as:
For any ε,

LHS = min
P

max
Q

Ei∈P,j∈QM(i, j) = min
P

v(P) > ε

if and only if

RHS = max
Q

min
P

Ei∈P,j∈QM(i, j) = max
Q

v(Q) > ε

LHS > ε can be interpreted as: for all mixed strategies P of player 1 there
exists a response j from player 2 such that M(P, j) > ε.
RHS > ε can be interpreted as: there exists a mixed strategy Q for player 2
such that for all i, M(i, Q) > ε
In other words, if player 2 has a response to each of player 1’s mixed strategies,
then player 2 has a single mixed strategy that can responds to any of player 1’s
strategies.

The minmax theorem is non-uniform. This means that there is no known
efficient algorithm for finding the maxmin strategy given the responses to player
1’s strategies. In fact, there may be no efficient way to describe the distribution
at all.

11

3 Non existence of PRF implies learnability: non-
uniform case

This section examines the proof of learnability in the absence of pseudorandom
functions in the non-uniform setting, with the aim of isolating the sources of
non-uniformity.

The definitions and proof given here are extracted from [1]. We first give
all the relevant definitions and theorem statements. These theorems may or
may not be used in our proof, but we will not modify them or their proofs. We
split the proof into two subsections - first showing the existence of a universal
distinguisher, then using it to show the existence of a learner. We give full
proofs in these subsections because we intend to modify these.

3.1 Game matrix of PRF
The result in [1] is that nonexistence of sampleable PRFs implies learnability
for Cn[n

k] for all k (and a particular value of n). This result is non-uniform
because the proof involves the minmax theorem.

3.1.1 Set up

We will create a game, the PRF distinguisher game ([1], pp. 26-27), that
involves distinguishing function families from random functions.

• Player 1’s pure strategies: functions h ∈ Cn[s]

• Player 2’s pure strategy: circuits C ∈ CircuitO[t]

• Game matrix values: M(h,CO) = Ch − Ef∼Fn
(Cf).

We also require that CircuitO[t] must be closed under complementation, for
reasons that will become clear soon.

In this setup, the minmax theorem states: minP maxCO∈CircuitO(t) Eh∼PM(h,C) ≥
ε if and only if maxQ∼CircuitO(t) minh EC∼QM(h,C) ≥ ε.

The value of the game with mixed strategies P and Q is given by:

Eh∼P,C∼QM(h,C)

= Eh∼P,C∼Q[C
h − Ef∼Fn

(Cf)]

= Eh∼P,C∼Q[C
h]− Ef∼Fn,C∼Q[C

f]

= Prh∼P,C∼Q[C
h = 1]− Prf∼Fn,C∼Q[C

f = 1]

12

Figure 4: Setup of the PRF distinguisher game.

3.1.2 Non-existence of PRF - interpretation

The LHS of the minmax theorem says:
For all distributions P over Cn[s], there exists a circuit C ∈ CircuitO[t] such
that Prh∈P [C

h = 1]− Prf∈Fn
[Cf = 1] ≥ ε.

This is almost the same as the statement “There are no (ε, t)-PRFs in Cn[s].”
The only difference is that it is missing the absolute value sign. But since
we assumed that the class CircuitO[t] is closed under complementation, this
statement follows from the nonexistence of PRFs. This is because for any circuit
C that distinguishes Cn[s], either C or its complement C ′ satisfies Prh∈P [C

h =
1]− Prf∈Fn

[Cf = 1] ≥ ε.

3.1.3 Universal ensemble distinguisher - interpretation

The RHS of the minmax theorem says:
There exists a distribution Q over CircuitO(t) such that for every function
h ∈ Cn[s], we have PrC∈Q[C

h = 1]− PrC∈Q,f∈Fn
[Cf = 1] ≥ ε.

This distribution Q acts like a distinguisher for every circuit in Cn[s], in

13

terms of its expected behavior. It is possible to make this into a single distin-
guishing circuit for the class, by combining all the circuits in Q into a single
randomized circuit. However, the number of circuits in CircuitO[t] is expo-
nential in t, and thus this distinguisher may be larger than exponential sized
in n. The proof of efficient learnability requires an reasonable sized universal
distinguisher, which Oliveira and Santhanam achieve using the small-support
minmax theorem.

3.2 Non-uniform small support minmax theorem
The small-support minmax theorem [9] [10] was introduced by Richard Lipton
and Neal Young. It guarantees the existence of small distributions that are
almost as good as the optimal row and column strategies.

Definition: k-uniform strategies: We say that a mixed strategy is k-
uniform if it is a uniform distribution over a multiset of at most k columns or
rows. We use Pk and Qk to denote the sets of all k-uniform row and column
strategies, respectively.

Theorem 2 - Small support minmax theorem ([1], page 26). Let M be
a r × c real-valued matrix with entries in the interval [−1, 1]. For every δ > 0,
if kr ≥ 10 ln(c)/δ2 and kc ≥ 10 ln(r)/δ2 then

min
P∈Pkr

v(P) ≤ v(M) + δ

and
max

Q∈Qkr

v(Q) ≥ v(M)− δ

This theorem allows for an ensemble of circuits that distinguish CircuitO[t]
and can be converted into a single reasonable sized random circuit.

3.3 Non-existence of PRFs implies universal distinguisher
Theorem 3 – Non-existence of PRFs implies universal distinguisher
([1], page 27). Let s(n) ≥ n, t(n) ≥ n, ε(n) > 0,and γ(n) > 0 be arbitrary
functions. If the circuit class Cn[s(n)] contains no (t(n), ε(n))-PRF, then there
is a randomized oracle circuit BO ∈ CircuitO[O(ts/γ)c] (for some universal
constant c ∈ N) that distinguishes every distribution over Cn[s(n)] from ran-
domness with advantage at least ϵ(n)− γ(n).

Because the minmax theorem is non-uniform (there is no efficient algo-
rithm to compute the max-min strategy), the universal distinguisher is also
non-uniform.

3.4 Universal distinguishers imply learners
Main lemma for this subsection:

14

Lemma – Universal distinguishers imply learners ([1], page 28). As-
sume that for every k > 1 and large enough n there is a randomized oracle
circuit BO

n in CircuitO[2O(n)] which distinguishes every distribution Dn over
Cn[n

k] from randomness with advantage 1/40. Then for every ℓ > 1 and ε > 0,
there is a non-uniform sequence of randomized oracle circuits in CircuitO[2n

ε

]
that learn every function f ∈ Cn[n

ℓ] to error at most n−ℓ.
The proof of the above theorem is basically from [1]. In this subsection, we

give the background needed and the proof itself.
This definition, in some sense, allows us to connect distinguishers for func-

tions to learners for similar functions.
Lemma [11]. The class AC0 can be learned in quasi-polynomial time.
Learners for the circuit classes Cn[n

k] are constructed from distinguishers
for Cn[n

k] via a black-box generator, as described above.
This next theorem guarantees that black-box generators exist for a large

class of circuit families.
Theorem 4 - existence of black-box generators [8]. Let p be a fixed

prime, and C be a typical circuit class containing AC0[p]. For every γ : N →
[0, 1] and ℓ : N → N, there exists a (γ, ℓ)-black-box generator within C. Fur-
thermore (although unstated in Oliveira and Santhanam), the reconstruction
algorithm Af can be considered a function of n and will still run in polynomial
time when taking input 1n. The function mapping z, x to gz(x) (with oracle
access to f) can also be computed in polynomial time.

This allows us to prove learners for a circuit class whenever we can find a
distinguisher D for the black-box distribution WL.

Lemma - faster learners from distinguishers [1]. Let C be a typical
circuit class. If C[poly(n)] has distinguishers running in time 2O(n), then for
every ε > 0, C[poly(n)] has strong learners running in time O(2n

ε

).
Requirements: There are separate distinguishing algorithms for Cn[f(n)] for

each polynomial f(n) and each n.
Guarantees: There are separate learning algorithms for Cn[f(n)] for each poly-
nomial f(n) and each n.

Proof : Let A0 be a complexity distinguisher for Cn[s] (or alternatively a
distinguisher that works for any distribution whose support is a subset of Cn[s]),
taking input 1ℓ. If C is the class AC0, then it can be learned due to the above
lemma. Otherwise, C contains ACO[p] for some prime p.
We show the existence of (1/nk, 1/n) learners.
Let 0 < ε′ < ε. Theorem 4 guarantees a (1/nk, nε′) black-box generator A1 of
functions gz ∈ Cf

ℓ [poly(m)], where m = O(poly(n, 1/γ)) = O(poly(n)).
The learner Af is constructed as follows:
Interpret the oracle algorithm Ag

0 as a probabilistic polynomial time algorithm
explicitly given the truth table of g as input.
This produces an algorithm D(·,−→r), where r is a vector of random bits. It is
converted into a circuit with these random bits fixed. Because we started with
an algorithm in time O(2n), and it took an input of size ℓ, it converts into a
circuit DL of size O(2ℓ).

15

We then run A1 on input DL, and Af returns with the same output.
Because of the complexity restriction of f , we have gz ∈ Cℓ[poly(ℓ)]. Thus, DL

works as a distinguisher of WL and running A1(DL) outputs a learner.
We can also prove the same thing assuming A0 is a distinguisher for the uniform
distribution over truth tables of circuits in any subset (or multiset) of Cn[s],
rather than a complexity distinguisher. This proof is more direct; we simply fix
the subset of Cn[s] to be {gz|z ∈ {0, 1}m} and the distribution to be WL, and
the result follows directly because we have a distinguisher for WL.

To prove that no PRFs in Cn[n
ℓ] implies learnability, we use Theorem 3 to

construct a universal distinguisher for Cn[n
ℓ] and Lemma 33 to show that Cn[n

ℓ]
(for each values of n, ℓ) has a learner. Because the distinguisher is non-uniform,
this will result in a non-uniform learner.

16

4 Uniform Minmax theorem with application to
hardcore lemma

Vadhan and Zheng (2014) present a uniform version of the minmax theorem.
This theorem constructs an algorithm to compute an approximate minmax
strategy given oracle access to the optimal response to a pure strategy of player
1. [3]

Definition. Let N be a natural number. We denote the set {1, 2, . . . , N}
as [N].

In this game setup, [N] is the set of options for player 1 and W is the set
of options for player 2. Unlike in the PRF distinguisher game, we allow player
1’s pure strategies to be any particular distribution P over rows, rather than
individual rows. We require that the are a finite number of pure strategies, and
denote the set of all pure strategies as V. A mixed strategy is then a linear
combination of these pure strategies; the space of mixed strategies may not
cover all distributions over rows. Player 2’s pure strategies are still individual
columns.

Unlike in the PRF distinguisher game, the payoff of the game M(x, y) is a
real number in the range [0, 1], not [−1, 1]. Player 1 tries to minimize the payoff
while player 2 maximizes it.

The uniform minmax theorem goes as follows:
Theorem 5 - Uniform Minmax Theorem [3]. Let there be a 2-player

game set up as above. For every 0 < ε ≤ 1 and every S, there is an algorithm to
output a mixed strategy Q∗ for Player 2 such that for all Player 1 pure strategies
P :

M(P,Q∗) ≥ E1≤i≤SM(P (i), Q(i))−O(ε)

for a particular sequence of mixed strategies P (1), P (2), ..., P (S) and their re-
sponse strategies Q(1), Q(2), ..., Q(S).
In particular, if we have an algorithm to compute a strategy Q(i) from a repre-
sentation of P (i) such that M(P (i), Q(i)) ≥ v(P)− δ, the resulting strategy Q∗

is such that for all Player 1 pure strategies P :

M(P,Q∗) ≥ v(M)− δ −O(ε)

We need some criteria regarding efficient computability in order for this the-
orem to hold:

• A compact representation of the mixed strategies P (i) (O(Poly(log(n)))
space).

• A fast algorithm to obtain a response Q(i) for each mixed strategy P (i).

• A fast algorithm to perform weight update, and to project onto Conv(V).

• A choice of pure strategies so that U[N] ∈ Conv(V)

17

An application of this theorem is the uniform hardcore theorem. This is a
uniform version of Russell Impagliazzo’s Hardcore Theorem [12], which goes as
follows:

Theorem 6 - Uniform hardcore theorem [3]. Let L be a parameter
indexing a family of distributions, m = m(L) be a polynomial function of L,
δ = δ(L), ε′ = ε′(L) computable in poly(L) time, and (X,B) = G(Um) be a joint
distribution where G : {0, 1}m → {0, 1}L × {0, 1} is computable in polynomial
time.

• Um is the uniform distribution over {0, 1}m.

Assume that for every C ∈ Cm,2δ and infinitely many L, we have Pr(x,b)∼G(C)[A
C(x) =

b] > 1/2 + ε′, where A is an oracle algorithm that runs in time t.

• Cm,2δ is the set of all 2δ-dense probability distributions over {0, 1}m.

• This set contains the uniform distribution Um.

Then there is a poly(t, L, 1/δ, 1/ε′) algorithm P such that for sufficiently large
L, Pr(x,b)∼G(Um)[P (x) = b] > 1− δ.

Note that this theorem is uniform because it assumes a single oracle algo-
rithm and guarantees a single predictor working for every value of L.

18

5 Non existence of PRF implies learnability: uni-
form case

In this section, we show that there exist uniform learners, assuming there is a
constructive way to find distinguishers for every function family in Cn[poly(n)].
We use the uniform hardcore lemma to produce uniform predictors which work
as distinguishers, and use the black-box generator to prove the existence of a
uniform learner.

Figure 5: Outline of the proof of uniform learners

5.1 Definitions
ttf - The truth table of the Boolean function f . If f has n inputs, ttf is a binary
string of length 2n where the i-th bit is the result of f evaluated on the i-th
configuration of inputs.

19

5.2 Nonexistence of PRF implies uniform learners
5.2.1 General set up and black-box distribution

We set up this theorem so that the predictor guaranteed by the hardcore theorem
is a distinguisher for the black-box distribution WL. This means that we have
to set up the distribution (X,B) to be related to WL.

Then, the existence of a black-box generator and a distinguisher directly
implies the existence of a learner. Because the constructions of both the black-
box generator and distinguisher are uniform, the learner is also uniform.

5.2.2 Hardcore Lemma set up

In the Hardcore Lemma, we need:

• A constant m: we take the uniform distribution Um over binary strings of
length m

• A set SX containing the values of X in the pair (X,B)

• A generator function G: It maps each of the strings in Um to a distribution
(X,B).

• A value δ that is the accuracy of the predictor. We need a distinguisher
for 2δ-dense distributions.

We satisfy these requirements as follows:

• m is the parameter from the black box generator.

• SX : we take SX = {0, 1}2ℓ – the set of binary strings of length 2ℓ.

• G: We set up G as follows: G(x) = 1/2(< U2ℓ , 0 > + < ttgx , 1 >), where
gx is the function from the black-box generator. In other words, a value
of X has a 1/2 chance of being chosen from U2m (in which case the value
from B is 0) and a 1/2 chance of being ttgx (in which case the value from
B is 1).

• We let δ = 3/16.

5.2.3 No PRF implies weak predictability of dense distributions in
BB distribution

Theorem 7 - No PRF implies weak predictability: Let kW (n) be com-
putable in poly(n) time. Assume that for every distribution D over Fn with
Support(D) ⊆ Cn[s], there is a circuit BO ∈ CircuitO[t(n)] such that |Prf∼Fn

[Bf =
1]−Prh∼D[Bh = 1]| ≥ ε. Furthermore, assume there is a tW (n)-time algorithm
W (1n) that with probability 1− εW constructs BO given kW (n) random sam-
ples from D. It follows that there is an oracle algorithm AO(1ℓ, x) that runs in
time t, sampling from a distribution C, such that:

20

For every integer n and every distribution C over Um(n), Pr(x,b)∼G(C)[A
C(1ℓ(n), x) =

b] > 1/2 + ε′ for ε′ = ε/2.
Proof :

Construct an algorithm orC(1ℓ) that samples up to 2kW (ℓ) samples (x, b) from
a distribution G(C), until b = 1. In this case, x is the truth table of a function
sampled from the distribution WL ⊂ Cℓ[ℓ

k]. This algorithm has a 1− 1/22kW (ℓ)

chance of success on each run. This algorithm runs in 2kW (ℓ) + poly(ℓ) time.
Construct the algorithm A as follows:
Input the strings 1ℓ and x with oracle access to C ⊆ Um.
Use orC to answer the kW (ℓ) queries used by W (1ℓ) to return an oracle cir-
cuit BO. The chance of all the queries being answered successfully is (1 −
1/22kW (ℓ))kW (ℓ) > 1− 1/2kW (ℓ).
Because or queries from a distribution over Cℓ[ℓ

k], the oracle circuit BO acts as
a distinguisher for this distribution.
Convert BO into a circuit B′ whose input is of size 2ℓ, such that Bf has the
same output as B′(ttf).
Finally, run B′(x) and output its return value.

Now we argue that A is a weak predictor. Let α = Prf∼Fn
[Bf = 1]. We

have Prf∼Fn(A
C(ttf) = 0) = 1 − α and Prh∼D(AC(tth) = 1) > α + ε. Since

G(C) is of the form 1/2(< Fn, 0 > + < D, 1 >), Pr<x,b>∼G(C)[A
C(x) = b] >

(1− α)/2 + (α+ ε)/2 > 1/2 + ε′ with ε′ = ε/2.
The total run time is O(tW (ℓ) + kW (ℓ)2 + t(ℓ) + 2ℓ).

5.2.4 Strong predictability of BB distribuion implies distinguisher
for BB distribution

Theorem 8 - Conclusion of HC implies dist for all WL: If there is an
algorithm P such that Pr(x,b)∼G(Um)[P (x) = b] > 13/16, then P is also a
distinguisher for the distribution WL = {ttgz |z ∼ {0, 1}m}.

Proof : Let δ = 3/16. We have Pr(x,b)∼G(Um)[P (x) = b] > 1 − δ. Because
G(Um) = 1/2 < UL, 0 > +1/2 < WL, 1 >, we have Prx∼WL

[P (x) = 1] > 1−2δ.
Now we calculate Prx∼UL

[P (x) = 1].
For a similar reason as above, Prx∼UL

[P (x) = 0] > 1 − 2δ, so Prx∼UL
[P (x) =

1] < 2δ.
Thus, |Prx∼WL

[P (x) = 1]− Prx∼UL
[P (x) = 1]| > 1− 4δ = 1/4.

From the definition of distinguisher, P is a distinguisher for WL (when input 1ℓ
is fixed).

5.2.5 Proof of uniform learners

Theorem 9 - No PRF implies uniform learners: Let γ : N → [0, 1] and
ℓ : N → N where ℓ(n) is computable in polynomial time and n = poly(ℓ). If
there are no (ε, t)-PRFs in a circuit class Cn[n

k] and there is an algorithm W
that constructs a distinguishing circuit BO for a distribution over Cn[n

k] by
sampling from the distribution, then the class Cn[n

k] has poly(n, 1/γ, 2ℓ)-time
learners AO that output circuits of size t · poly(n).

21

Proof :
Let f be the input to the learner algorithm A.
A takes input 1n and a function f from Fn as oracle.
Theorem 4 says that there is a poly(n, 1/γ, L(n))-time algorithm AO

0 that takes
in f and returns a (γ, ℓ)-black box generator in Cf

n [n
k] (the oracle version of

the class Cn[n
k]).

Theorem 7, combined with the fact that there is an oracle algorithm WO to
generate distinguishers for all function distributions, proves that there exists a
t-time algorithm AO

2 (1
n), that samples from a distribution C over G(Um) and

is a weak predictor for all 3/8-dense distributions.
Because AO

2 (1
n) is a weak predictor for all 3/8-dense distributions, the Uniform

Hardcore Theorem (using δ = 3/16) provides an poly(t, 2ℓ, 1/ε)-time algorithm
P such that for sufficiently large n:

Pr(x,b)∼G(Um)[P (x) = b] > 13/16

We convert P , on ℓ-bit inputs, into a circuit DP which is a strong predictor for
the distribution G(Um).
We run Af

0 (1
n) to output a circuit Q and run Qf (DP) to output a circuit h.

Finally, A returns the circuit h.
Now we argue that the algorithm works. By Theorem 8, the strong predictor

P is also a distinguisher for WL:

Prx∼WL
[P (1ℓ, x) = 1]− Prx∼UL

[P (1ℓ, x) = 1] > 1− 4δ = 1/4

Thus, DP is a distinguisher for WL for the particular value ℓ = ℓ(n).
By the definition of black-box generator (which is constructive) inputting the
distinguisher PO into the reconstruction circuit Q, with oracle access to f , re-
turns a function h such that:

Prx∼Un [h(x) = f(x)] ≥ 1− 1/γ

Thus, our algorithm A is a learner for Cn[n
k].

22

6 Appendix
6.1 Proof of uniform minmax theorem
Consider any P ∈ V (set of pure strategies for the row player) such that
KL(P ||P (1)) ≤ S · ε2.
It is shown in Lemma A.1 of [3] that:

KL(P ||P (i))−KL(P ||P (i)′) ≥ (log e)ε(E[M(P (i), Q(i))]− E[M(P,Q(i))]− ε)

Since P (i+1) is an ε2-approximate KL projection of P (i)′, it follows that:

KL(P ||P (i))−KL(P ||P (i+1)) ≥ (log e)ε(E[M(P (i), Q(i)]−E[M(P,Q(i))]−ε)−ε2

Summing for i from 1 to S, we get:

KL(P ||P (1))−KL(P ||P (S+1)) ≥ (log e)Sε(E1≤i≤S [M(P (i), Q(i)]−E[M(P,Q∗)]−ε)−Sε2

Using our bound on KL(P, P (1)), we get:

E1≤i≤S [M(P (i), Q(i))]− E[M(P,Q∗)] ≤ KL(P ||P (1)) + Sε2

(log e)Sε
+ ε = O(ε)

6.2 Proof of uniform hardcore theorem
The setup for the minmax theorem is as follows:

• V = Cm,2δ - mixed strategies for player 1

• W = {ckts of size tm+ poly(t)} - responses for player 2

M(z,W) = 1 if W (x) = b, else 0, where G(z) = (x, b).
Vadhan and Zheng show that the uniform minmax algorithm can be imple-

mented efficiently in this setting, using ε = ε′/c for a sufficiently large constant
c, γ = ε/2S, and S = (log(1/δ)− 1)/ε2.

From the weak predictor A, we use a randomized algorithm to produce a
circuit W of size tm+ poly(t) that approximates A with probability 1− γ such
that Pr[W (x) = b] > 1/2 + ε′ − 4ε. We represent the strategy P (i) as a circuit
M (i) of size ti that computes a measure for P (i), where the value M (i)(z) has
bit length O(i · log(1/ε)).

For each weight update, we compute a circuit M (i)′. The formula is M (i)′(z) =
exp(−ε · I(W (i)(x) = b)) · M (i)(z), where (x, b) = G(z) and I is the indicator
function. The exponential value has bit length log(1/ε) and multiplication can
be done in time poly(i · log(1/ε)). Using our sizes for W and G, we get that
M (i)′ has size t′i = ti + tm+ poly(t) + i · polylog(1/ε).

We also need a fast algorithm to do KL projection onto Conv(V).

• As described in Lemma A.3 of [3], KL projection algorithm can be done
in time poly(n, log(1/δ), 1/ε, log(1/γ)).

23

• Oracle access to the measure M (i)′.

• Distribution corresponding to M (i)′ must be in the neighborhood Cε of C.

• The result is M (i+1), an ε2-approximate projection of M (i)′ on C. The
algorithm works with probability 1 − γ and the circuit M (i+1) has size
ti+1 = t′i + polylog(1/ε). Bit length is O((i+ 1) · log(1/ε)).

Because the criteria for the uniform minmax theorem are satisfied, we out-
put a universal predicting distribution A∗. Lemma 3.4 in [3] allows us to do
this by approximating A∗ with a uniform distribution and gives a constructive
way to find a circuit P such that Pr[P (X) = B] > 1− (1− ε)δ.
Our predictor relies on an unknown value ϕ. We guess the value ϕ by setting
λ = 1/S, 2/S, ..., 1/2 and computing Eλ = Pr[Pϕ=λ(X) = B] for each λ.
By a Chernoff bound, it follows that Pr[P (X) = B] = 1− δ.

References
[1] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning

algorithms, circuit lower bounds and pseudorandomness, 2016.

[2] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM, 41(1):67–95, January 1994.

[3] Jia Zheng. A uniform min-max theorem and characterizations of compu-
tational randomness, 2014.

[4] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Ap-
proach. 2010.

[5] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge Uni-
versity Press, 2001.

[6] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography
(Chapman Hall/Crc Cryptography and Network Security Series). Chapman
Hall/CRC, 2007.

[7] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–
1142, November 1984.

[8] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and An-
tonina Kolokolova. Learning Algorithms from Natural Proofs. In Ran Raz,
editor, 31st Conference on Computational Complexity (CCC 2016), vol-
ume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:24, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[9] Ingo Althöfer. On sparse approximations to randomized strategies and
convex combinations, 1994.

24

[10] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum
games with applications to complexity theory, 1994.

[11] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. J. ACM, 40(3):607–620, July 1993.

[12] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In
Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
538–545, 1995.

25

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

