
Testing Distributions of Huge Objects*

Oded Goldreich� Dana Ron�

May 23, 2023

Abstract

We initiate a study of a new model of property testing that is a hybrid of testing properties
of distributions and testing properties of strings. Specifically, the new model refers to testing
properties of distributions, but these are distributions over huge objects (i.e., very long strings).
Accordingly, the model accounts for the total number of local probes into these objects (resp.,
queries to the strings) as well as for the distance between objects (resp., strings), and the
distance between distributions is defined as the earth mover’s distance with respect to the
relative Hamming distance between strings.

We study the query complexity of testing in this new model, focusing on three directions.
First, we try to relate the query complexity of testing properties in the new model to the
sample complexity of testing these properties in the standard distribution-testing model. Second,
we consider the complexity of testing properties that arise naturally in the new model (e.g.,
distributions that capture random variations of fixed strings). Third, we consider the complexity
of testing properties that were extensively studied in the standard distribution-testing model:
Two such cases are uniform distributions and pairs of identical distributions, where we obtain
the following results.

� Testing whether a distribution over n-bit long strings is uniform on some set of size m can
be done with query complexity Õ(m/ϵ3), where ϵ > (log2 m)/n is the proximity parameter.

� Testing whether two distribution over n-bit long strings that have support size at most m
are identical can be done with query complexity Õ(m2/3/ϵ3).

Both upper bounds are quite tight; that is, for ϵ = Ω(1), the first task requires Ω(mc) queries for
any c < 1 and n = ω(logm), whereas the second task requires Ω(m2/3) queries. Note that the
query complexity of the first task is higher than the sample complexity of the corresponding task
in the standard distribution-testing model, whereas in the case of the second task the bounds
almost match.
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g.,
a recent textbook [15]). Loosely speaking, property testing typically refers to sub-linear time
probabilistic algorithms for approximate decision making; that is, distinguishing between objects
that have a predetermined property and ones that are far from any object having this property.
Such algorithms, called testers, obtain local views of the object by making adequate queries; that
is, the object is modeled as a function and testers get oracle access to this function (and thus may
be expected to work in time that is sub-linear in the size of the object).

The foregoing description fits much of the research in the area (see [15, Chap. 1-10]), but not the
part that deals with testing properties of distributions (aka distribution testing, see [15, Chap. 11]
and [8]). In this context, a tester get samples from the tested distribution and sub-linearity means
sub-linearity in the size of the distribution’s domain.1 Each element in the domain is considered
to be small, and is assumed to be processed at unit time, and the distance between distributions is
defined as the total variation distance.

In this work we consider distributions over sets of huge (or very large) objects, and aim at
complexities that are sublinear in the size of these objects. As an illustrative example, think of
the distribution of DNA-sequences in a large population. We wish to sample this distribution and
query each sampled sequence at locations of our choice rather than read the entire sample.

One key issue is the definition of the distance between such distributions (i.e., distributions of
huge objects). A natural choice, which we use, is the earth mover’s distance under the (relative)
Hamming distance. Under this combined measure, the distance between distributions reflects the
probability mass that “needs to be moved” when weighted according to the Hamming distance
between strings (see Definition 1.1). Thus, a probability mass of p moved from a string x (in one
distribution) to a string y (in the other distribution) contributes p · δ units to the distance between
the distributions, where δ is the relative Hamming distance between x and y.

Recall that the basic paradigm of distribution testing postulates that, in many settings, it
suffices to distinguish distributions that satisfy the property (of interest) from ones that are far
from satisfying it; that is, it postulates that a notion of approximate decision is meaningful. In fact,
this basic paradigm underlies all of statistics. Here, we suggest that, in the case of distributions
on huge objects, a distance measure that is more refined than total variation distance is more
adequate. Specifically, the suggested distance measure accounts for the distance between elements
of the distributions’ domain rather than viewing them as atoms. Indeed, this suggestion goes hand
in hand with a more refined notion of inspecting an element of the domain (or of the sample); it
allows to partially inspect an element rather than forcing us to either look at the entire element or
not look at it at all.

We mention that, while we follow the archetypical convention of property testing in using the
Hamming distance as the distance between strings (i.e., objects), our framework allows to use
any other distance between strings as a basis for defining distance between distributions on huge
objects (i.e., long strings). For example, one may consider the edit distance between strings. Indeed,
standard distribution testing is obtained as a special case by considering the equality function as a
distance between strings.

To illustrate the flavor of our study, consider the problem of testing whether a distribution

1This is the most standard and well studied model of testing properties of distributions. For a discussion of other
models (e.g., providing the algorithm with the weight of any domain element of its choice) see [8, Part IV].
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over n-bit strings has support size m (resp., is uniform over m strings). When n-bit strings are
considered as atoms, the results of distribution testing apply and assert that, when ignoring the
(polynomial) dependence on the proximity parameter, the sample complexity of this problem is
Θ(m/ logm) [22, 23] (resp., Θ(m2/3) [3]). But the resulting tester requires entirely reading each of
the samples (i.e., an n-bit long string), which means reading Θ(nm/ logm) bits. The question we
address is whether the query complexity may be reduced (under the definitions outlined above and
detailed next). (Jumping ahead, the answer is positive: Both properties can be tested using Õ(m)
queries.)

1.1 The new model

We consider properties of distributions over sets of objects that are represented by n-bit long strings
(or possibly n-symbol long sequences); that is, each object has size n. (In Section 5 this will be
extended to properties of tuples of distributions.) Each of these objects is considered huge, and
so we do not read it in full but rather probe (or query) it at locations of our choice. Hence, the
tester is an algorithm that may ask for few samples, and queries each sample at locations of its
choice. This is modeled as getting oracle access to several oracles, where each of these oracles is
selected independently according to the tested distribution (see Definition 1.2). We shall be mainly
interested in the total number of queries (made into these samples), whereas the number of samples
will be a secondary consideration.

The distance between such distributions, P and Q (over the same domain Ω = {0, 1}n), is
defined as the earth mover’s distance under the Hamming measure; that is, the cost of transforming
the distribution P to the distribution Q, where the cost of transforming a string x to a string y
equals their relative Hamming distance. The minimum cost of such a transformation (of P to Q)
is captured by Eq. (2); an alternative formulation appears in Eq. (15) (in Appendix A.1).

Definition 1.1 (distance between distributions over huge objects): For two strings x, y ∈ {0, 1}n,
let ∆H(x, y) denote the relative Hamming distance between them; that is,

∆H(x, y) =
1

n
· |{i ∈ [n] : xi ̸= yi}|. (1)

For two distributions P,Q : Ω → [0, 1], where Ω = {0, 1}n, the earth mover’s distance under the
Hamming measure between P and Q, is the optimal value of the following linear program:

min
∀x∈Ω:

∑
y∈Ω wx,y=P (x)

∀y∈Ω:
∑

x∈Ω wx,y=Q(y)

∀x,y∈Ω: wx,y≥0

∑
x,y∈Ω

wx,y ·∆H(x, y)


.

(2)

We say that P is ϵ-close to Q if the optimal value of the linear program is at most ϵ; otherwise, we
say that P is ϵ-far from Q.

As stated above, Definition 1.1 represents the earth mover’s distance with respect to the rela-
tive Hamming distance between (binary) strings. Indeed, the earth mover’s distance between
distributions over a domain Ω is always defined on top of a distance measure that is associated
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with Ω. It is well known that the earth mover’s distance with respect to the inequality func-
tion (i.e., InEq(x, y) = 1 if x ̸= y and InEq(x, x) = 0) coincides with the variation distance
(between these distributions). That is, if we replace the distance ∆H(x, y) with InEq(x, y) in Defi-
nition 1.1, then we get the variation distance between P and Q (see Appendix A.1). Furthermore,
∆H(x, y) ≤ InEq(x, y) always holds. Hence, the distance between pairs of distributions according
to Definition 1.1 is upper-bounded by the total variation distance between them.

Hence, throughout this work, we shall be considering three distance measures:

1. The distance between distributions as defined above (i.e., in Definition 1.1). When we say
that distributions are “close” or “far” we refer to this notion.

2. The total variation distance between distributions. In this case, we shall say that the distri-
butions are “TV-close” or “TV-far” (or ϵ-TV-close/far).

3. The relative Hamming distance between strings, which we denoted by ∆H(·, ·). In this case,
we shall say that the strings are “H-close” or “H-far” (or ϵ-H-close/far).

Referring to Definition 1.1 and to machines that have access to multiple oracles, we present the
following definition of testing distributions on huge objects.

Definition 1.2 (testing properties of distributions on huge objects (the DoHO model)): Let D =
{Dn}n∈N be a property of distributions such that Dn is a set of distributions over {0, 1}n, and let
s : N× (0, 1]→ N. A tester, denoted T , of sample complexity s for the property D is a probabilistic
machine that, on input parameters n and ϵ, and oracle access to a sequence of s = s(n, ϵ) samples
drawn from an unknown distribution P : {0, 1}n → [0, 1] outputs a verdict (“accept” or “reject”)
that satisfies the following two conditions.

1. The tester accepts distributions that belong to D: If P is in Dn, then

Prx(1),...,x(s)∼P [T
x(1),...,x(s)

(n, ϵ)=1] ≥ 2/3,

where x(1), . . . , x(s) are drawn independently from the distribution P , and the probability is
taken ver these draws as well as over the internal random choices of T .

2. The tester rejects distributions that are far from D: If P is ϵ-far from Dn (i.e., P is ϵ-far
from any distribution in Dn (according to Definition 1.1)), then

Prx(1),...,x(s)∼P [T
x(1),...,x(s)

(n, ϵ)=0] ≥ 2/3,

where x(1), . . . , x(s) and the probability space are as in the previous item.
We say that q : N × (0, 1] → N is the query complexity of T if q(n, ϵ) is the maximum number of
queries that T makes on input parameters n and ϵ. If the tester accepts every distribution in D
with probability 1, then we say that it has one-sided error.

We may assume, without loss of generality, that the tester queries each of its samples, and that it
never makes the same query twice. Hence, q(n, ϵ) ∈ [s(n, ϵ), s(n, ϵ) · n].

The sample (resp., query) complexity of testing the property D (in the DoHO model) is the
minimal sample (resp., query) complexity of a tester for D (in the DoHO model). Note that the
tester achieving the minimal sample complexity is not necessarily the one achieving the minimal
query complexity. As stated before, we shall focus on minimizing the query complexity, while using
the sample complexity as a yardstick.
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Generalization. The entire definitional treatment can be extended to n-long sequences over an
alphabet Σ, where above (in Definitions 1.1 and 1.2) we used Σ = {0, 1}.

1.2 The standard notions of testing as special cases (and other observations)

We first observe that both the standard model of property testing (of strings) and the standard
model of distribution testing are special cases of Definition 1.2.

Standard property testing (of strings): Specifically, we refer to testing properties of n-bit strings
(equiv., Boolean functions over [n]).

This special case corresponds to trivial distributions, where each distribution is concentrated
on a single n-bit long string. Hence, a standard tester of query complexity q can be viewed as
a tester in the sense of Definition 1.2 that has sample complexity 1 and query complexity q.

Standard distribution testing: Specifically, we refer to testing distributions over Σ.

This special case corresponds to the case of n = 1, where each distribution is over Σ. Hence,
a standard distribution tester of sample complexity s can be viewed as a tester in the sense
of Definition 1.2 that has sample complexity s and query complexity q = s. Indeed, here we
used the generalization of the definitional treatment to sequences over Σ. The basic version,
which refers to bit sequences, can be used too (with a small overhead).2

Needless to say, the point of this paper is going beyond these standard notions. In particular, we
seek testers (for the DoHO model) with query complexity q(n, ϵ) = o(n) · s(n, ϵ), where s(n, ϵ) > 1
is the sample complexity in the DoHO model. Furthermore, our focus is on cases in which s(n, ϵ)
is relatively small (e.g., s(n, ϵ) = poly(n/ϵ) and even s(n, ϵ) = o(n) ·poly(1/ϵ)), since in these cases
a factor of n matters more.

We mention that the sample complexity in the DoHO model is upper-bounded by the sample
complexity in the standard distribution-testing model. This is the case because the distance between
pairs of distributions according to Definition 1.1 is upper-bounded by the total variation distance
between them (see the discussion following Definition 1.1). We state this observation for future
reference.

Observation 1.3 (on the sample complexity of testing distributions in two models): The sample
complexity of testing a property D of distributions over {0, 1}n in the DoHO model is upper-bounded
by the sample complexity of testing D in the standard distribution-testing model.

We mention that, for some properties D, the sample complexity in the DoHO model may be much
lower than in the standard distribution-testing model, because in these cases the distance measure
in the DoHO model is much smaller than the total variation distance.3 Needless to say, this is

2Specifically, we consider a good error correcting code C : Σ → {0, 1}n such that n = O(log |Σ|); that is, C
has distance Ω(n). In this case, the total variation distance between distributions over codewords is proportional to
their distance according to Definition 1.1, whereas the query complexity is at most n = O(log |Σ|) times the sample
complexity. The same effect can be obtained by using larger n’s, provided we use locally testable and correctable
codes.

3An obvious case is one in which testing distributions is trivial (in the DoHO model). This is the case for the
set of all distributions that are supported by a set of strings Π such that any string is H-close to Π. Specifically, if
every n-bit long string is ϵ-H-close to Π ⊆ {0, 1}n and D is set of distributions that contain every distribution that
is supported by Π, then every distribution is ϵ-close to D. On the other hand, testing D in the standard model may
be non-trivial. Additional examples are presented in Section 2.2.
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not true in general, and we shall focus on cases in which the two sample complexities are closely
related. In other words, we are not interested in the possible gap between the sample complexities
(in the two models), although this is a legitimate question too, but rather in the query complexity
in the DoHO model. Furthermore, we are willing to increase the sample complexity of a tester
towards reducing its query complexity in the DoHO model (e.g., see our tester for uniformity).

1.3 Our Results

We present three types of results. The first type consists of general results that relate the query
complexity of testing in the DoHO model to the query and/or sample complexity of related proper-
ties in the standard (distribution and/or string) testing models. The second type consists of results
for properties that have been studied (some extensively) in the standard distribution-testing model.
The third type consists of results for new properties that arise naturally in the DoHO model.

1.3.1 Some general bounds on the query complexity of testing in the DoHO model

A natural class of properties of distribution over huge objects is the class of all distributions that
are supported by strings that have a specific property (of strings). That is, for a property of bit
strings Π = {Πn}n∈N such that Πn ⊆ {0, 1}n, let DΠ = {Dn}n∈N such that Dn denotes the set of
all distributions that have a support that is subset of Πn. We observe that the query complexity
of testing the set of distributions DΠ (in the DoHO model) is related to the query complexity of
testing the set of strings Π (in the standard model of testing properties of strings).

Theorem 1.4 (from testing strings for membership in Π to testing distributions for membership
in DΠ): If the query complexity of testing Π is q, then the query complexity of testing DΠ in the
DoHO model is at most q′ such that q′(n, ϵ) = Õ(1/ϵ) · q(n, ϵ/2).

While the proof of Theorem 1.4 is simple, we believe it is instructive towards getting familiar with
the DoHO model. We thus include it here, while mentioning that some ramifications of it appear
in Appendix A.2.

Proof: The main observation is that if the tested distribution P (whose domain is {0, 1}n) is
ϵ-far from Dn (according to Definition 1.1), then, with probability at least ϵ/2, an object x selected
according to P is ϵ/2-H-far from Πn. Hence, with high constant probability, a sample of size O(1/ϵ)
will contain at least one string that is ϵ/2-H-far from Πn. If we have a one-sided error tester T for
Π, then we can detect this event (and reject) by running T (with proximity parameter ϵ/2) on each
sampled string. If we only have a two-sided error tester for Π, then we invoke it O(log(1/ϵ)) times
on each sample, and reject if the majority rule regarding any of these samples is rejecting. Hence,
in total we make O(ϵ−1 log(1/ϵ)) · q(n, ϵ/2) queries.

An opposite extreme. Theorem 1.4 applies to any property Π of strings and concerns the set of
all distributions that are supported by Π (i.e., all distributions P that satisfy {x :P (x)>0} ⊆ Π).
Hence, Theorem 1.4 focuses on the support of the distributions and pays no attention to all other
aspect of the distributions. The other extreme is to focus on properties of distributions that are
invariant under relabeling of the strings (i.e., label-invariant properties of distributions).4 We

4Recall that a property of distributions over {0, 1}n is called label-invariant if, for every bijection π : {0, 1}n →
{0, 1}n and every distribution P , it holds that P is in the property if and only if π(P ) is in the property, where
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consider several such specific properties in Section 1.3.2, but in the current section we seek more
general results. Our guiding question is the following.

Open Problem 1.5 (a key challenge, relaxed formulation):5 For which label-invariant properties
of distributions does it hold that testing them in the DoHO model has query complexity poly(1/ϵ) ·
Õ(s(n, ϵ/2)), where s is the sample complexity of testing them in the DoHO model?

Jumping ahead, we mention that in Section 1.3.2 we identify two label-invariant properties for which
the relation between the query complexity and the sample complexity is as sought in Problem 1.5,
and one for which this relation does not hold. More generally, we show that a relaxed form of such
a relation (in which s is the sample complexity in the standard model) is satisfied for any property
that is closed under mapping, where a property of distribution D is closed under mapping if, for
every distribution P : {0, 1}n → [0, 1] in D and every f : {0, 1}n → {0, 1}n, it holds that f(P ) is in
D, where Q = f(P ) is the distribution defined by Q(y) = P (f−1(y)).

Theorem 1.6 (testing distributions that are closed under mapping (see Theorem 2.2)): Suppose
that D = {Dn} is testable with sample complexity s(n, ϵ) in the standard model, and that each
Dn is closed under mapping. Then, D is testable in the DoHO model with query complexity
Õ(ϵ−1 · s(n, ϵ/2)).

Recall that a tester of sample complexity s in the standard distribution-testing model constitutes
a tester of sample complexity s in the DoHO model, alas this tester has query complexity n · s
(whereas our focus is on the case that n ≫ poly(ϵ−1 log s(n, ϵ/2))). We wonder whether a result
similar to Theorem 1.6 holds when s is the sample complexity in the DoHO model.6

A middle ground between properties that contain all distributions that are supported by a
specific set of strings and label-invariant properties of distributions is provided by properties of
distributions that are label-invariant only on their support, where the support of a property of
distributions is the union of the supports of all distributions in this property. That is, for a property
Dn of distributions over n-bit strings, we say that Dn is label-invariant over its support if, for every
bijection π : {0, 1}n → {0, 1}n that preserves the support of Dn (i.e., x is in the support if and only
if π(x) is in the support), it holds that the distribution P : {0, 1}n → [0, 1] is in Dn if and only if
π(P ) is in Dn. Indeed, generalizing Problem 1.5, one may ask

Open Problem 1.7 (a more general challenge): For which properties of distributions that are
label-invariant over their support does it hold that testing them in the DoHO model has query
complexity poly(1/ϵ) · Õ(s(n, ϵ/2) · (q(n, ϵ/2)+1)), where s is the sample complexity of testing them
in the DoHO model and q is the query complexity of testing their support?

The next theorem identifies a sufficient condition for a positive answer. Specifically, it requires
that the support of the property, denoted S, has a (relaxed) self-correction procedure of query

Q = π(P ) is the distribution defined byQ(y) = P (π−1(y)). We mention that label-invariant properties of distributions
are often called symmetric properties.

5Less relaxed formulations may require query complexity Õ(s(n, ϵ/2)/ϵ) or even O(s(n, ϵ)). On the other hand,
one may ease the requirement by comparing the query complexity in the DoHO model to the sample complexity in
the standard model.

6Such a result was wrongly claimed in Revision 1 of our ECCC TR21-133 (and in the extended abstract that
appeared in the proceedings of ITCS22). Partial progress towards such a result is presented in Appendix A.3.
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complexity q. We mention that such procedures may exist only in case the strings in S are pairwise
far apart. Loosely speaking, on input i ∈ [n] and oracle access to an n-bit string x, the self-
correction procedure is required to return xi if x ∈ S, to reject if x is far from S, and otherwise it
should either reject or return the ith bit of the string in S that is closest to x.

Theorem 1.8 (self-correction-based testers in theDoHOmodel, loosely stated (see Theorem 3.1)):
Let D be a property of distributions over bit strings that is label-invariant over its support. Then,
ignoring polylogarithmic factors, the query complexity of testing D in the DoHO model is upper-
bounded by the product of the sample complexity of testing D in the standard model and the query
complexity of testing and self-correcting the support of D.

One natural example to which Theorem 1.8 is applicable is a set of all distributions that are each
have a support that contains “few” low-degree multi-variate polynomials; specifically, for support-
size bound s(n) and the degree bound d(n), we get query complexity poly(d(n)/ϵ) · Õ(s(n)). Note
that the dependency on the support size is quite tight in light of Theorem 1.10 (see the proof of
Proposition 2.8).

1.3.2 Testing previously studied properties of distributions

Turning back to label-invariant properties of distributions, we consider several such properties that
were studied previously in the context of the standard distribution-testing model. Specifically, we
consider the properties of having bounded support size (see, e.g., [21]), being uniform over a subset
of specified size (see, e.g., [3]), and being m-grained (see, e.g., [17]).7

Theorem 1.9 (testers for support size, uniformity, and m-grained in the DoHO model (see Corol-
lary 2.3)): For any m, the following properties of distributions over {0, 1}n can be tested in the
DoHO model using poly(1/ϵ) · Õ(m) queries:

1. All distributions having support size at most m.
2. All distributions that are uniform over some set of size m.
3. All distributions that are m-grained.

Theorem 1.9 is proved by using Theorem 1.6. The foregoing upper bounds are quite tight (see
Theorem 1.10). They also provide positive and negative cases regarding Problem 1.5 (see discussion
following Theorem 1.10).

Theorem 1.10 (lower bounds on testing support size, uniformity, and m-grained in the DoHO
model (see Propositions 2.8, 2.10 and 2.9)):

1. For every m ≤ 2n−Ω(n), testing whether a distribution over {0, 1}n has support size at most
m requires Ω(m/ logm) samples.

2. For every constant c < 1 and m ≤ n, testing whether a distribution over {0, 1}n is uniform
over some subset of size m requires Ω(mc) queries.

3. For every constant c < 1 and m ≤ 2n−Ω(n), testing whether a distribution over {0, 1}n is
m-grained requires Ω(mc) samples.

7A distribution P : {0, 1}n → [0, 1] is called m-grained if any n-bit string appears in it with probability that is a
multiple of 1/m; that is, for every x ∈ {0, 1}n there exists an integer mx such that P (x) = mx/m.
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Note that Parts 1 and 3 assert lower bounds on the sample complexity in the DoHO model, which
imply the same lower bounds on the query complexity in this model. Combining the first part of
Theorems 1.9 and 1.10 yields a property that satisfies the requirement of Problem 1.5; that is, the
query complexity in the DoHO model is closely related to the sample complexity (in this model).
On the other hand, combining Part 2 of Theorem 1.10 with the tester of [3, 11] yields a property
that does not satisfy the requirement in Problem 1.5, since this tester uses O(m2/3/ϵ2) samples
(even in the standard distribution-testing model).8

Tuples of distributions. In Section 5 we extend the DoHO model to testing tuples (e.g., pairs)
of distributions, and consider the archetypical problem of testing equality of distributions (cf. [5, 6]).
In this case, we obtain another natural property that satisfies the requirement of Problem 1.5.

Theorem 1.11 (a tester for equality of distributions (see Theorem 5.2)): For any m,n ∈ N and
ϵ > 0, given a pair of distributions over {0, 1}n that have support size at most m, we can distinguish
between the case that the distributions are identical and the case that they are ϵ-far from one another
(according to Definition 1.1) using Õ(m2/3/ϵ3) queries and O(m2/3/ϵ2) samples.

We note that m2/3/ϵ2 is a proxy for max(m2/3/ϵ4/3,m1/2/ϵ2), which is a lower bound on the
sample complexity of testing this property in the standard distribution-testing model [24]. This
lower bound can be extended to the DoHO model. Hence, in this case, the query complexity in
the DoHO model is quite close to the sample complexity in this model.

1.3.3 Distributions as variations of an ideal object

A natural type of distributions over huge objects arises by considering random variations of some
ideal objects. Here we assume that we have no access to the ideal object, but do have access to
a sample of random variations of this object, and we may be interested both in properties of the
ideal object and in properties of the distribution of variations. We consider three types of such
variations, and provide testers for the corresponding properties.

Noisy versions of a string, where we bound the noise level. Specifically, we consider a
noise model in which each bit may be flipped with some bounded probability η < 1/2 such that
the resulting string is at relative Hamming distance at most δ from the original string. In this
case it is easy to recover bits of the original string, and test that the noisy versions respect the
predetermined noise model. Furthermore, we can test properties of the original string with rather
small overhead.

Random cyclic-shifts of a string. Specifically, we consider distributions obtained by applying
arbitrary random cyclic-shift to a fixed n-bit string as well as distributions obtained by shifting a
fixed n-bit string by a uniformly distributed number of positions. The first property (i.e., random
cyclic-shifts) is tested using O(1/ϵ) samples and Õ(

√
n/ϵ) queries (see Theorem 4.3), whereas for

testing the second property (i.e., uniformly random cyclic-shifts) we use Õ(n2/3/ϵ) queries (see

8We mention that in [3, 11] the complexity bound is stated in terms of the second and third norms of the tested
distribution, which can be roughly approximated by the number of samples required for seeing the first 2-way and
3-way collisions. To obtain complexity bounds in terms of m, we can take O(m2/3) samples and reject if no 3-way
collision is seen (ditto for not seeing a 2-way collision among the first O(m1/2) samples).
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Theorem 4.4). The first tester uses a tester of cyclic-shifts (i.e., given two strings, the tester
checks whether one is a cyclic shift of the other), whereas the second testing problem is reduced
to testing equality between distributions (as addressed in Theorem 1.11). In the latter case, the
two distribution that we test for equality are the given distribution and the distribution defined
by a uniform random shift of a single sample obtained from the given distribution. (The reduction
is requires a generalization of Theorem 1.11 to the case that only the support size of one of the
distributions is bounded.)

Random isomorphic copies of a graph (represented by its adjacency matrix). Specifi-
cally, here the n-bit string represents the adjacency matrix of an

√
n-vertex graph, and the tested

property is an arbitrary distribution over isomorphic copies of some fixed graph. In this case
we get a tester of query complexity poly(1/ϵ) · Õ(n5/8), by employing a known tester for graph
isomorphism [13].

1.4 Orientation and Techniques

As stated upfront, we seek testers that sample the distribution but do not read any of the samples
entirely (but rather probe some of their bits). In other words, we seek testers for distributions
over n-bit strings of query complexity that is o(n) times the sample complexity of testing these
distributions in the standard model.

In general, our proofs build on first principles, and are not technically complicated. Rather,
each proof is based on one or few observations, which, once made, lead the way to obtaining the
corresponding result. Hence, the essence of these proofs is finding the right point of view from
which the observations arise.

Conventions. It is often convenient to treat distributions as random variables; that is, rather
than referring to the distribution P : Ω → [0, 1] we refer to the random variable X such that
Pr[X=x] = P (x). Recall that ϵ denotes the proximity parameter (for the testing task). Typically,
the upper bounds specify the dependence on ϵ, whereas the lower bound refer to some fixed ϵ = Ω(1).

1.4.1 Our testers

Some of our testers refer to label-invariant properties (see Theorems 1.6 and 1.9). The key ob-
servation here is that, in this case, it suffices to determine which samples are equal and which
are different. Furthermore, considering close samples as if they were equal does not really create
a problem, because we are working under Definition 1.1. Hence, checking approximate equality
between strings suffices, and it can be performed by probing few random locations in the strings.

Unfortunately, the analysis does not reduce to the foregoing comments, because we cannot
afford to consider all strings in the (a priori unknown) support of the tested distribution; that
is, we cannot argue that the collision pattern among the projections (at few random locations)
correctly represent the distances between all pairs of strings in the support of the distribution.
Instead, the analysis refers to the empirical distribution defined by a sequence of samples; that
is, we show that the collision pattern among these projections correctly represent the distances
between all pairs of sampled strings. This is done by considering a mental experiment in which
the tested distribution is replaced by an imaginary distribution that is close to it. This strategy is
illustrated next.
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Illustration: The case of testing support size. Suppose that we wish to test whether a
distribution X has support size at most m. Our starting point is the observation that if X is
ϵ-far from having support size at most m (according to Definition 1.1), then taking s = O(m/ϵ)
samples from X yields (with high probability) a set that contains more than m strings that are
ϵ/2-H-far apart from one another. In this case, with high probility, the projection of the s samples
on ℓ = O(ϵ−1 logm) random locations would yield more than m different ℓ-bit strings. Hence, given
oracle access to the samples x(1), ..., x(s), our tester proceeds as follows.

1. Selects uniformly an ℓ-subset J of [n].

2. For every i ∈ [s], queries x(i) at the locations j ∈ J , obtaining y(i) = x
(i)
J , where x

(i)
J denotes

the restriction of x(i) to the locations in J .
3. Accepts if and only if |{y(i) : i ∈ [s]}| ≤ m.

Clearly if X has support size at most m, then the foregoing tester always accepts. On the other
hand, as shown next, if X is ϵ-far from having support size at most m, then, with very high
probability over the choice of the s samples, there exists a set I ⊂ [s] of size m + 1 such that for
every ii ̸= i2 ∈ I the relative Hamming distance between x(i1) and x(i2) is at least ϵ/2.

To prove the foregoing claim, we consider a mental experiment in which we try to find m + 1
strings that are pairwise far apart in m+1 sampling phases. For i ∈ [m], suppose that w(1), . . . , w(i)

are pairwise ϵ/2-H-far apart strings that were found in the first i phases. Then, assuming that X
is ϵ-far from having support size at most m, it must be that at least ϵ/2 of the probability weight
of X resides on strings that are ϵ/2-H-far from each of the w(j)’s (for all j ∈ [i]). Hence, a sampled
string taken from X is ϵ/2-H-far from all these w(j)’s with probability at least ϵ/2. Once such a
sampled string is found, we denote it w(i+1), and proceed to the next phase. It follows that, with
probability 1 − exp(−Ω(m)), the process is completed successfully (i.e., m + 1 strings are found)
while using O(m/ϵ) samples.

1.4.2 Lower bounds

Several of our lower bounds are obtained by transporting lower bounds from the standard distribution-
testing model. Typically, we transform distributions over an alphabet Σ to distributions over
{0, 1}n by using an error correcting code C : Σ→ {0, 1}n that has constant relative distance (i.e.,
∆H(C(σ), C(τ)) = Ω(1) for every σ ̸= τ ∈ Σ).

For example, when proving a lower bound on testing the support size, we transform a random
variable Z that ranges over Σ to the random variable C(Z). Clearly, if Z has support size at most
m, then so does C(Z). On the other hand, if Z is TV-far from having a support of size at most m,
then C(Z) is far (under Definition 1.1) from being supported on (at most) m codewords. However,
we need to show that C(Z) is far from being supported on any (subset of at most) m strings.
Specifically, we need to show that transporting a probability mass from more than m codewords
to at most m strings requires a constant fraction of this mass to be transported over a constant
(relative Hamming) distance. Intuitively, this is the case because trasporting a probability mass
to the vicinity of a codeword does not reduce the support size unless a similar (or larger) mass is
trasported from a different codeword.

1.5 Related work

Our work is informed by the vast literature on distribution testing (see [15, Chap. 11] and [8]) and
on property testing at large (see [15]). Here we only mention a prior model that refers to partial
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information obtained from individual samples, and a subsequent work that studies the DoHO
model.

1.5.1 A different model of partial information from samples

A sequence of works, initiated by [1], studies a model in which one may obtain only partial in-
formation regarding each of the samples drawn from the distribution. Specifically, the tester (or
learner) may obtain only ℓ ≥ 1 “bits of information” from each of the samples; however, unlike in
the DoHO model, these ℓ bits may be an arbitrary function of the entire sample (rather than actual
bits in the representation of the sample), which is actually viewed as an atom, and the distance
between distributions is the total variation distance (rather than Definition 1.1).

1.5.2 Subsequent work

Following the initial posting of our work [18], a study of index invariant properties in the DoHO
model, was initiated in [9], where a property D (of distributions over n-bit strings) is called index
invariant if a distribution X = X1 · · ·Xn is in D if and only if, for every permutation ϕ : [n]→ [n]
(on the indices of strings in {0, 1}n), it holds that Xϕ(1) · · ·Xϕ(n) is in D. Note that the class
of index-invariant properties extends the class of label-invariant properties, since the invariance
condition is much weaker: It only refers to relabling of strings by rearranging their bits (i.e., it
only considers permutations π : {0, 1}n → {0, 1}n that satisfy π(x1 · · ·xn) = xϕ(1) · · ·xϕ(n) for some
permutation ϕ : [n]→ [n]).

One notable result of [9] is that such properties can be tested within query complexity that is
upper-bounded by a function of the VC-dimension (and the proximity paramter). They also show
that their complexity bounds are tight, that index-invariance is essential for these bounds, and that
there exists a (tight) quadratic gap between adaptive and non-adaptive testers of such properties.

1.6 Organization

We start, in Section 2, with results that refer to a few natural properties of distributions that
were studied previously in the context of the standard distribution-testing model. Specifically, we
present the testers asserted in Theorems 1.6 and 1.9, and establish the lower bounds claimed in
Theorem 1.10.

Next, we turn to the general result captured by Theorem 1.8, and present its proof in Section 3.
In Section 4 we study several types of distributions that arise naturally in the context of the DoHO
model; that is, we consider distributions that capture random variations of some ideal objects.
Lastly, in Section 5, we extend our treatment to testing tuples of distributions, and present a tester
for the set of pairs of identical distributions (proving Theorem 1.11).

2 Support Size, Uniformity, and Being Grained

In this section we consider three natural types of label-invariant properties (of distributions). These
properties refer to the support size, being uniform (over some subset), and being m-grained (i.e.,
each string appears with probability that is an integer multiple of 1/m). Recall that D is a label-
invariant property of distributions over {0, 1}n if for every bijection π : {0, 1}n → {0, 1}n and every
distribution X, it holds that X is in D if and only if π(X) is in D. Label-invariant properties of
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distributions are of general interest and are also natural in the DoHO model, in which we wish to
avoid reading samples in full. In this section we explore the possibility of obtaining testers for such
properties.

We first present testers for these properties (in the DoHO model), and later discuss related
“triviality results” and lower bounds. Our testers (for the DoHO model) are derived by emu-
lating testers for the standard (distribution testing) model. The lower bounds justify this choice
retroactively.

2.1 Testers

Our (DoHO-model) testers for support size, being uniform (over some subset), and beingm-grained
are obtained from a general result that refers to arbitrary properties (of distributions) that satisfy
the following condition.

Definition 2.1 (closure under mapping): We say that a property D of distributions over n-bit
strings is closed under mapping if for every f : {0, 1}n → {0, 1}n it holds that if X is in D then
f(X) is in D.

Note that closure under mapping implies being label-invariant (i.e., for every bijection π : {0, 1}n →
{0, 1}n, consider both the mapping π and π−1).

Theorem 2.2 (testing distributions that are closed under mapping): Suppose that D = {Dn} is
testable with sample complexity s(n, ϵ) in the standard model, and that each Dn is closed under
mapping. Then, D is testable in the DoHO model with query complexity Õ(ϵ−1 · s(n, ϵ/2)). Fur-
thermore, the resulting tester uses 3 · s(n, ϵ/2) samples, makes (the same) O(ϵ−1 log(s(n, ϵ/2)/ϵ))
uniformly distributed queries to each sample, and preserves one-sided error of the original tester.

The factor of 3 in the sample complexity is due to modest error reduction that is used to compensate
for the small error that is introduced by our main strategy. Recall that a tester of sample complexity
s in the standard distribution-testing model constitutes a tester of sample complexity s in the
DoHO model, alas this tester has query complexity n · s.

Proof: The key observation is that, since D is closed under mapping, for any ℓ-subset J ⊆ [n], it
holds that if X is in D, then XJ0

n−ℓ is in D, whereas we can test XJ0
n−ℓ for membership in D with

ℓ queries per sample. Furthermore, as shown below, if X is ϵ-far from D, then, for a random set
J ⊆ [n] of size ℓ = O(ϵ−1 log(s/ϵ)), the original tester would have rejected XJ0

n−ℓ, when invoked
with proximity parameter ϵ/2. The foregoing claim relies on the fact that we may assume, without
loss of generality, that the original tester (which operates in the standard model) rules according
to the collsion pattern among the samples that it gets. Hence, it suffices to show that the collision
pattern among samples of XJ is statistically close to the collision pattern of samples drawn from a
distribution X ′ that is ϵ/2-far from D. Let us first spell out the proposed tester.

Our starting point is the guaranteed tester T , which operates in the standard distribution-
testing model. Hence, we may assume, without loss of generality, that T is label-invariant (see,
e.g., [15, Thm. 11.12]), which means that it rules according to the collision pattern that it sees
among its samples (i.e., the number of t-way collisions for each t ≥ 2). In particular, if the collision
pattern of s samples of XJ is statistically close to the collision pattern of s samples of X ′ that is
ϵ/2-far from D, then T will reject XJ0

n−ℓ. (Indeed, in the analysis, we shall present such an X ′.)

12



The actual tester. Let T be the guaranteed tester of sample complexity s : N × [0, 1] → N. Using
T , on input parameters n and ϵ, when given s = s(n, ϵ/2), samples, denoted x(1), ...., x(s), that are
drawn independently from a tested distribution X, we proceed as follows.

1. We select a set J ⊆ [n] of size ℓ = O(ϵ−1 log(s/ϵ)) uniformly at random and query each of

the samples at each location in J . Hence, we obtain x
(1)
J , ..., x

(s)
J .

(Recall that x
(i)
J denotes the restriction of x(i) to J .)

2. Invoking T with proximity parameter ϵ/2, we output T ′(x
(1)
J , ..., x

(s)
J ), where

T ′(z(1), ..., z(s)) = T (n, ϵ/2; z(1)0n−ℓ, ..., z(s)0n−ℓ). (3)

That is, we invoke T on s samples of the distribution XJ0
n−ℓ, where these s samples are

obtained by padding the strings x
(1)
J , ..., x

(s)
J obtained in Step 1.

As observed upfront, if X is in D, then so is XJ0
n−ℓ, for any choice of J . Hence, our tester accepts

each distribution in D with probability that is lower-bounded by the corresponding lower bound
of T . In particular, if T has one-sided error, then so does our tester.

We now turn to the analysis of the case that X is ϵ-far from D. In this case, we proceed with
a mental experiment in which we define, for each choice of J , a random variable X ′ = X ′(J) such
that for most J ’s it holds that (i) X ′

J ≡ XJ , (ii) X
′ is ϵ/2-close to X, and (iii) the collision pattern

of s samples of X ′
J is statistically close to the collision pattern of s samples of X ′. Note that

Condition (ii) implies that X ′ is ϵ/2-far from D, which means that T should reject s samples of
X ′ (whp), Condition (iii) implies that T should also reject s samples of X ′

J0
n−ℓ (whp), whereas

Condition (i) implies that the same holds for samples of XJ0
n−ℓ, which in turn means that our

tester rejects X (whp). In order to materialize the foregoing plan, we need a few definitions.

Definitions and initial observations. For integers ℓ ≤ n and s, and a generic random variable X that
ranges over {0, 1}n, we consider a sufficiently large s′ = O(s2 · ℓ), and use the following definitions.

� For any fixed ℓ-subset J , we say that σ ∈ {0, 1}ℓ is J-heavy (w.r.t X) if Pr[XJ =σ] ≥ 0.01/s2.

(The definition of J-heavy is aimed at guaranteeing that the probability that a collision on
a non-J-heavy string occurs among the J-restrictions of s samples of X is small; that is,

denoting the set of non-J-heavy strings by L, it holds that Prx(1),...,x(s)∼X [∃i ̸= j s.t. x
(i)
J =

x
(j)
J ∈L] < 0.005.)

� For any fixed ℓ-subset J , we say that a sequence of s′ strings (w(1), ...., w(s′)) ∈ ({0, 1}n)s′ is
J-good (for X) if its J-restrictions hit all J-heavy strings; that is, for every J-heavy string σ

there exists i ∈ [s′] such that w
(i)
J = σ.

Note that, for every J ,

Prw(1),....,w(s′)∼X [(w(1), ...., w(s′)) is J-good] = 1− o(1),

because the probability that some J-heavy string is not hit by any w
(i)
J is upper-bounded by

2ℓ · (1− 0.01/s2)s
′
= 2ℓ · exp(−Ω(s′/100s2)) = o(1).

(Here we used the fact that s′ = Ω(s2 · ℓ).)
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� We say that (w(1), ...., w(s′)) is good (for X) if it is J-good for a 1 − o(1) fraction of the
ℓ-subsets J ’s.

By an averaging argument,

Prw(1),....,w(s′)∼X [(w(1), ...., w(s′)) is good] = 1− o(1).

Actually, we shall only use the fact that there exists a good sequence of w(i)’s.

We fix an arbitrary good (for X) sequence (w(1), ...., w(s′)) for the rest of the proof.

Recall that, with probability 1 − o(1) over the choice of J ∈
([n]

ℓ

)
, it holds that (w(1), ..., w(s′))

is J-good (for X), which means that all J-heavy strings (w.r.t X) appear among the J-restrictions
of the w(i)’s. Fixing such a (typical) set J , let I = I(J) be a maximal set of indices i ∈ [s′] such

that the w
(i)
J ’s are distinct; that is, R = R(J)

def
= {w(i)

J : i∈I} has size |I| and equals {w(i)
J : i∈ [s′]}.

We stress that R contains all J-heavy strings (w.r.t X), which means that for every σ ̸∈ R it holds
that Pr[XJ =σ] < 0.01/s2, and that each J-heavy string corresponds to a unique i ∈ I. We now

define X ′ by selecting x ∼ X, and outputting w(i) if xJ = w
(i)
J for some i ∈ I, and outputting x

itself otherwise (i.e., if xJ ̸∈ R(J)); that is,

Pr[X ′=x] =


Pr[XJ =w

(i)
J ] if x = w(i) for i ∈ I

0 if xJ ∈ {w(i)
J : i∈I} but x ̸∈ {w(i) : i∈I}

Pr[X=x] if xJ ̸∈ {w(i)
J : i∈I}

(4)

Note that X ′
J ≡ XJ , which establishes Condition (i) of our plan. Turning to Condition (ii), we now

prove that, for a typical J , it holds that X ′ is ϵ/2-close to X.

Claim 2.2.1 (typically, X ′ is ϵ/2-close to X): With probability 1− o(1) over the choice of J , the
corresponding X ′ = X ′(J) is ϵ/2-close to X.

Proof: The key observation is that X ′ differs from X only when XJ ∈ {w(i)
J : i∈I(J)} = {w(i)

J : i∈
[s′]}. In this case, strings that are ϵ/4-H-close to {w(i) : i∈I(J)} contribute at most ϵ/4 units (to
the distance between X and X ′ (as in Definition 1.1)), and so we upper-bound the probability mass

of strings x ∼ X that are ϵ/4-H-far from {w(i) : i∈ I(J)} but satisfy xJ ∈ {w(i)
J : i∈ [s′]} = R(J).

Actually, letting W
def
= {w(i) : i∈ [s′]} and Fϵ′(S) denote the set of n-bit strings that are ϵ′-H-far

from S, for every x ∈ Fϵ/4(W ), we let Badx(J) denote the event xJ ∈ R(J). Letting Badx(J) = 0
for any x that is ϵ/4-H-close to W , we have

PrJ,X [BadX(J)] = Ex∼X

[
Pr

J∈([n]
ℓ )
[Badx(J)]

]
≤ max

x∈Fϵ/4(W )

{
Pr

J∈([n]
ℓ )
[Badx(J)]

}
≤ max

x∈Fϵ/4(W )

∑
i∈[s′]

Pr
J∈([n]

ℓ )
[xJ = w

(i)
J ]


≤

∑
i∈[s′]

max
x∈Fϵ/4({w(i)})

{
Pr

J∈([n]
ℓ )
[xJ = w

(i)
J ]
}

< s′ · (1− (ϵ/4))ℓ,
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which is o(ϵ) by the definition of ℓ = O(ϵ−1 log(s/ϵ)) (and s′ = Õ(s2/ϵ), where we actually use
s′ ≤ poly(s/ϵ)). Hence, with probability 1− o(1) over the choice of J , it holds that the probability

that x ∼ X is ϵ/4-H-far from W = {w(i) : i∈ [s′]} but satisfies xJ ∈ R(J) = {w(i)
J : i∈ [s′]} is at

most ϵ/4; that is,

Pr
J∈([n]

ℓ )

[
Prx∼X

[
x ∈ Fϵ/4(W ) but xJ ∈R(J)

]
≤ ϵ/4

]
= 1− o(1). (5)

It follows that, with probability 1 − o(1) over the choice of J , it holds that X ′ is ϵ/2-close to X,
where one term of ϵ/4 is due to the x’s that are ϵ/4-H-close to {w(i) : i∈ [s′]} and the other term
is due to the probability mass of x’s that are ϵ/4-H-far to {w(i) : i∈ [s′]} but satisfies xJ ∈ R(J).

Recalling that X is ϵ-far from D, for a typical J , Claim 2.2.1 implies that X ′ is ϵ/2-far from D,
which implies that X ′ is ϵ/2-TV-far from D, which implies that (with probability at least 2/3) the
tester T rejects X ′ (i.e., rejects when fed with s samples selected according to X ′). However, we
are interested in the probability that our tester (rather than T ) rejects X (rather than X ′).

Claim 2.2.2 (typically, our tester rejects X): Suppose that (w(1), ..., w(s′)) is J-good for X and
that the corresponding X ′ = X ′(J) is ϵ/2-far from D. Then, our tester rejects X with probability
at least 0.66.

Proof: Recalling that X ′
J = XJ , while relying on the hypothesis that w

def
= (w(1), ..., w(s′)) is J-good

(for X), we observe that the probability that our tester rejects X equals

Prx(1),...,x(s)∼X [T ′(x
(1)
J , ...., x

(s)
J )=0]

= Prx(1),...,x(s)∼X′ [T ′(x
(1)
J , ...., x

(s)
J )=0] [using X ′

J = XJ ]

= Prx(1),...,x(s)∼X′ [T (n, ϵ/2;x
(1)
J 0n−ℓ, ...., x

(s)
J 0n−ℓ)=0] [definition of T ′]

= Prx(1),...,x(s)∼X′ [T (n, ϵ/2;x(1), ...., x(s))=0]± (s2)
100·s2 [see next]

where the last (approximate) equality is justified as follows (based on the definition of X ′ and the
hypothesis that w is J-good (for X)).

� On the one hand, the equality-relations between samples of X ′ with a J-restriction in R are

identical to those of their J-restrictions (i.e., for x
i)
J , x

(j)
J ∈ R, it holds that xi) = x(j) iff

x
i)
J = x

(j)
J ). This holds because (by the definition of X ′), for each σ ∈ R, there is a unique x

in the support of X ′ such that xJ = σ (i.e., x = w(i) such that w
(i)
J = σ).

� On the other hand, the probability of collision among the J-restrictions of the other samples
(i.e., those with a J-restriction in {0, 1}ℓ \ R) is upper-bounded by

(
s
2

)
· 1
100·s2 < 0.005. This

is because (by the hypothesis that w is J-good) these J-restrictions are all non-heavy (and∑
σ∈L p2σ ≤ maxσ∈L{pσ}, for non-negative pσ’s that sum-up to at most 1). Needless to say,

the collision probability between these (other) samples themselves can only be smaller.

Indeed, the foregoing analysis establishes Condition (iii) of our plan (i.e., the collision pattern of s
samples of X ′

J is 0.005-close to the collision pattern of s samples of X ′).

It follows that our tester rejects X with probability at least 2
3 − 0.005 > 0.66, where the first term

lower-bounds the probability that T rejects when presented with s samples of X ′.
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Conclusion. Using the hypothesis that (w(1), ..., w(s′)) is good (for X), with probability 1 − o(1)

over the choice of J ∈
([n]

ℓ

)
, it holds that (w(1), ..., w(s′)) is J-good (for X) and (by Claim 2.2.1)

the corresponding X ′ = X ′(J) is ϵ/2-close to X. Assuming that X is ϵ-far from D, using both
conclusions, it follows (by Claim 2.2.2) that our tester rejects X with probability at least 0.66−o(1).
Using mild error reduction (via three experiments), the theorem follows.

Corollary 2.3 (testers for support size, uniformity, and m-grained in the DoHO model): For any
m, the following properties of distributions over {0, 1}n can be tested in the DoHO model using
poly(1/ϵ) · Õ(m) queries:

1. The set of all distributions having support size at most m.

Furthermore, the tester uses O(m/ϵ) samples, makes O(ϵ−1 log(m/ϵ)) queries to each sample,
and has one-sided error probability.

2. The set of all distributions that are uniform over some set of size m.

Furthermore, the tester uses O(ϵ−2m logm) samples, and makes q = O(ϵ−1 log(m/ϵ)) queries
to each sample.

3. The set of all distributions that are m-grained.

Furthermore, the tester uses O(ϵ−2m logm) samples, and makes O(ϵ−1 log(m/ϵ)) queries to
each sample.

Moreover, all testers make the same uniformly distributed queries to each of their samples.

Proof: For Parts 1 and 3 we present testers for the standard model and apply Theorem 2.2,
whereas for Part 2 we observe that a (DoHO model) tester for m-grained distributions will do.

Let us start with Part 2. The key observation is that any distribution that is uniform over
some m-subset is m-grained, whereas any distribution that is m-grained is ⌈log2 m⌉

n -close (under
Definition 1.1) to being uniform over some set of m elements (e.g., by modifying the first ⌈log2m⌉
bits in each string in the support).9 Hence, for ϵ > 2 · ⌈log2 m⌉

n , we test uniformity over m-subsets

by testing for being m-grained (using proximity parameter ϵ/2). If ϵ ≤ 2⌈log2 m⌉
n , then we can afford

reading entirely each sample, since n = O(ϵ−1 logm).
Turning to Parts 1 and 3, it is tempting to use known (standard model) testers of complexity

O(ϵ−2m/ logm) for these properties (cf. [23]), while relying on the fact that these properties are
label-invariant. However, these bounds hold only when the tested distribution ranges over a domain
of size O(m), and so some additional argument is required. Furthermore, this may not allow us
to argue that the tester for support-size has one-sided error. Instead, we present direct (standard
model) testers of sample complexity O(m/ϵ) and Õ(m/ϵ2), respectively.

Testing support size. On input parameters n and ϵ, given s = O(m/ϵ) samples, denoted x(1), ...., x(s),
that are drawn independently from a tested distribution X, we accept if and only if |{x(i) : i∈ [s]∥ ≤
m. Suppose that X is ϵ-TV-far from having support size at most m, and note that for any set S of

9Saying that X is m-grained means that it is uniform on a multiset {x(1), . . . , x(m)} of n-bit strings. We modify
X by replacing each x(i) by y(i) such that y(i) encodes the binary expansion of i−1 in the first ℓ = ⌈log2 m⌉ locations

and equals x(i) otherwise. That is, we set y
(i)
j to equal the jth bit in the binary expansion of i − 1 if j ∈ [ℓ], and

y
(i)
j = x

(i)
j otherwise (i.e., if j ∈ {ℓ+ 1, ..., n}).
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at most m strings it holds that Pr[X ̸∈S] > ϵ. Then, for each t ∈ [s− 1], either Wt = {x(i) : i∈ [t]}
has size exceeding m or Pr[x(t+1) ̸∈Wt] > ϵ. It follows that Pr[|Ws| ≤ m] = exp(−Ω(m)).

Testing the set of m-grained distributions. On input parameters n and ϵ, we set s = O(m logm) and
s′ = O(ϵ−2m logm). Given s + s′ samples, denoted x(1), ...., x(s+s′), that are drawn independently
from a tested distribution X, we proceed in two steps.

1. We construct W = {w(i) : i∈ [s]}, the set of strings seen in the first s samples.
(We may reject of |W | > m, but this is inessential.)

2. For each w ∈ W , we approximate Pr[X=w] by pw
def
= |{i∈ [s′] : x(s+i)=w}|/s′. We reject if

we either encountered a sample not in W or one of the pw’s is not within a 1± 0.1ϵ factor of
a positive integer multiple of 1/m.

Note that if X is m-grained, then, with high probability, W equals the support of X, and (whp)
each of the pw’s is within a 1±0.1ϵ factor of a positive integer multiple of 1/m. On the other hand,
suppose that X is accepted with high probability. Then, for any choice of W (as determined in
Step 1), for each w ∈ W , it holds that Pr[X=w] = (1 ± 0.1ϵ) · pw, since pw is within a (1 ± 0.1ϵ)
factor of a positive integer multiple of 1/m. Furthermore, Pr[X ̸∈W ] < 0.1ϵ. It follows that X is
ϵ-TV-close to being m-grained.

2.2 Triviality results

An obvious case in which testing is trivial is the property of all distributions (on n-bit strings) that
have support size 2n. In this case, each distribution is infinitesimally close (under Definition 1.1)
to being supported on all 2n strings. A less obvious result is stated next.

Observation 2.4 (triviality of testing 2n-grained distributions in the DoHO model): Under Def-
inition 1.1, every distribution over {0, 1}n is O( lognn )-close to being 2n-grained. Furthermore, for

every ℓ′ ∈ [log2 log2 n], every distribution over {0, 1}n is O( lognn )-close to being 2n−ℓ′-grained.

In contrast, in the standard (distribution testing) model, testing whether a distribution (over
{0, 1}n) is 2n−O(1)-grained requires 20.99·n samples [17].

Proof: We first show that, for every ℓ ∈ N, it holds that every distribution over {0, 1}n is ℓ
n -close

to a distribution that is supported by {0, 1}n−ℓ0ℓ. Next we show that each distribution of the latter
type is 2−ℓ-close to being 2n-grained. Letting ℓ = ⌊log2 n⌋, the main claim follows.

In the first step, given an arbitrary distribution X, we consider the distribution X ′ obtained by
setting the last ℓ bits of X to zero; that is, let Pr[X ′=x′0ℓ] =

∑
x′′∈{0,1}ℓ Pr[X=x′x′′]. Then, X ′

is (ℓ/n)-close to X (according to Definition 1.1).
In the second step, we considerX ′′ obtained by letting Pr[X ′′=x′0ℓ] equal 2−n·⌊2n · Pr[X ′=x′0ℓ]⌋,

and assigning the residual probability to (say) 1n. Then, X ′′ is 2n-grained and is at total variation
distance at most 2n−ℓ · 2−n = 2−ℓ from X ′, since the support size of X ′ is at most 2n−ℓ. Hence, X ′′

is ( ℓn + 2−ℓ)-close to X.

The furthermore claim follows by redefining X ′′ such that Pr[X ′′ = x′0ℓ] equal 2−(n−ℓ′) ·
⌊2n−ℓ′ · Pr[X ′=x′0ℓ]⌋. In this case X ′′ is 2n−ℓ′-grained and is at total variation distance at most
2n−ℓ · 2−(n−ℓ′) = 2−(ℓ−ℓ′) from X ′, which means that it is 2 ℓ

n -close to X, since ℓ′ ≤ log2 ℓ.
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Non-triviality results. It is easy to see that any property of distributions that includes only
distributions having a support of size 2n−Ω(n) is non-trivial in the sense that not all distributions
are close to it under Definition 1.1. This is the case because any such distribution is far from the
uniform distribution over {0, 1}n (since, w.h.p., a uniformly distributed n-bit string is at Hamming
distance Ω(n) from a set that contains 2n−Ω(n) strings). Additional non-triviality results follow
from the lower bounds presented in Section 2.3.

2.3 Lower bounds

We first consider three notions of uniformity: Uniformity over the entire potential support (i.e., all
n-bit strings), uniformity over the the support of the distribution (where the size of the support is
not specified), and uniformity over a support of a specified size. In all three cases (as well as in the
results regarding testing support size and the set of grained distributions), we prove lower bounds
on the sample (and query) complexity of testing the corresponding property in the DoHO model.
As usual, the lower bounds refer to testing with ϵ = Ω(1); that is, to the case that the proximity
parameter is set to some positive constant. Our proofs rely on the standard methodology by which
a lower bound of L on the complexity of testing is proved by presenting two distributions X and Y
that an algorithm of complexity L−1 cannot distinguish (with constant positive gap)10 such that X
has the property and Y is Ω(1)-far from having the property (cf. [15, Thm. 7.2]). In fact, typically,
at least one of the two distributions will be claimed to exist using a probabilistic argument; that
is, we shall actually prove that there exists two distribution x0 and Y0 (over {0, 1}n) such that, for
a random bijection π : {0, 1}n → {0, 1}n, setting X = π(X0) and Y = π(Y0) will do.

Observation 2.5 (lower bound on testing uniformity over {0, 1}n): For every c ∈ (0, 0.5) there
exists ϵ > 0 such that testing with proximity parameter ϵ whether a distribution is uniform over
{0, 1}n requires 2c·n samples in the DoHO model.

Proof: Let S be a random 22c·n-subset of {0, 1}n, and X be uniform over S. Then, a sample of
s = o(2cn) strings does not allow for distinguishing between X and the uniform distribution over
{0, 1}n; that is, for every decision procedure D : ({0, 1}n)s → {0, 1}, there exists a set S such that

Prx(1),...,x(s)∈S [D(x(1), . . . , x(s))=1] = Prx(1),...,x(s)∈{0,1}n [D(x(1), . . . , x(s))=1]± o(1).

(Intuitively, this is the case because s random samples from a random set S are distributed almost
identically to s random samples from the uniform distribution over n-bit strings.)11 On the other

10We say that A distinguishes s samples of X from s samples of Y with gap γ if

|Prz1,...,zs∼X [A(z1, . . . , zs)=1]− Prz1,...,zs∼Y [A(z1, . . . , zs)=1]| ≥ γ.

11Formally, for every sequence ovi = (i1, ..., is) ∈ [N ]s, where N = 22cn, let ζi(S) denote the output of D when fed
with si1 , ..., sis , where sj denotes the jth element of the N -set S. Then,

µ
def
= ES [ζi(S)] = Prx(1),...,x(s)∈{0,1}n [D(x(1), . . . , x(s))=1],

whereas almost all paits of ζi(S)’s are pairwise independent, because N = ω(s2). Hence,

PrS

∣∣∣∣∣∣
∑

i∈[N ]s

ζi(S)−Ns · µ

∣∣∣∣∣∣ > β ·Ns

 =
O(s2)

β2 ·N
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hand, for every S as above, it holds that X is Ω(1)-far from the uniform distribution over {0, 1}n
(according to Definition 1.1). This is the case because the probability mass of each x in the
support of X must be distributed among 2n/22cn strings, whereas most of these strings are at
relative Hamming distance at least ϵ = Ω(1) from the support of X (provided that ϵ is chosen such
that H2(ϵ) < 1− 2c).

Observation 2.6 (lower bound on testing uniformity over an unspecified support size): For every
c ∈ (0, 0.5) there exists ϵ > 0 such that testing with proximity parameter ϵ whether a distribution is
uniform over some set requires 2c·n samples in the DoHO model.

Proof: We consider the following two families of distributions, where each of the distributions is
parameterized by an 22c·n-subset of n-bit strings, denoted S.

1. XS is uniform on S.

2. With probability half, YS is uniform on S, and otherwise it is uniform on S
def
= {0, 1}n \ S.

Now, on the one hand, for a random S, no algorithm can distinguish XS from YS by using o(2cn)
samples (cf. Footnote 11). On the other hand, we prove that YS is far from being uniform on any
set. Suppose that Y = YS is δ-close to a distribution that is uniform on the set S′ ⊆ {0, 1}n. We
shall show that δ = Ω(1), by considering two cases regarding S′:

Case 1: |S′| ≤ 2(0.5+c)·n (recall that c < 0.5). In this case, the probability mass assigned by Y
to S \ S′ should be moved to S′, whereas the average relative Hamming distance between a
random element of S \ S′ and the set S′ is Ω(1). Specifically, letting Un denote the uniform
distribution on {0, 1}n, we upper-bound the probability that Un ∈ S \ S′ is H-close to S′ by
noting that |S \ S′| > 2n−1, since |S|+ |S′| = o(2n), whereas |S′| ≤ 2(0.5+c)·n = 2n−Ω(n).

Case 2: |S′| > 2(0.5+c)·n. In this case, almost all the probability assigned by Y to S should be
distributed among more than 2(0.5+c)·n strings such that each of these strings is assigned equal
weight. This implies that almost all the weight assigned by Y to S must be moved to strings
that are at Hamming distance Ω(n) from S, since |S| = 22cn = 2(0.5+c)·n−Ω(n) < 2−Ω(n) · |S′|.

Hence, in both cases, a significant probability weight of Y must be moved to strings that are
Ω(1)-H-far from their origin. The claim follows.

Observation 2.7 (lower bound on testing parameterized uniformity, grained, and support size):
For every m ≤ 2n−Ω(n), the following testing tasks regarding properties of distributions over {0, 1}n
require Ω(

√
m) samples in the DoHO model:

� The set of distributions that are uniform over some m-subset;

� The set of m-grained distributions;

� The set of distributions with support size at most m.

where s2/N accounts for the fraction of non-disjoint pairs of i’s.
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Stronger results are presented in Propositions 2.8 and 2.9.

Proof: As in the proof of Observation 2.5, observe that no algorithm can distinguish the uniform
distribution over {0, 1}n from a distribution that is uniform over an m-subset unless its sees Ω(

√
m)

samples. However, the uniform distribution over {0, 1}n is far from any of the foregoing properties
(also under Definition 1.1), since m ≤ 2n−Ω(n).

Proposition 2.8 (lower bound on testing parameterized support size): For every m ≤ 2n−Ω(n),
testing that a distribution over {0, 1}n has support size at most m requires Ω(m/ logm) samples in
the DoHO model.

Proof: We use the Ω(m/ logm) (sample complexity) lower bound of [22] that refers to testing
distributions over [O(m)] for support size at most m, in the standard testing model (that is, under
the total variation distance). This lower bound is proved in [22] by presenting two distributions,
X and Y , that cannot be distinguished by a label-invariant algorithm that gets s = o(m/ logm)
samples, where X has support size at most m and Y is far (in total variation distance) from having
support size at most m. We use an error correcting code C : [O(m)]→ {0, 1}n of constant relative
distance, and consider the distributions X ′ = C(X) and Y ′ = C(Y ).

Evidently, a label-invariant algorithm that obtains m samples cannot distinguish X ′ and Y ′.
Actually, as in the previous proofs, we need to consider any algorithm that takes s samples, and
we identify for each such algorithm two such distributions X and Y (which are relabelings of the
original X and Y ) that are indistinguishable by it (cf. Footnote 11). On the other hand, X ′ has
support size at most m whereas we claim that Y ′ is far from having support size at most m, under
Definition 1.1. Intuitively, this is the case because reducing the support size of Y ′ requires moving a
constant amount of probability weight from elements in the support of Y ′, which resides on strings
that are far away in Hamming distance, to fewer strings. Each such movement can be charged in
proportion to the relative distance of the code C. The actual argument follows.

Let Z be a distribution that is closest to Y ′, under Definition 1.1, among all distributions
that are supported on at most m strings, and let γ denote the distance between Y ′ and Z. By
Definition 1.1, this means that there exists a “weight relocation” function W : {0, 1}2n → [0, 1]
that satisfies

∑
z W (y′, z) = Pr[Y ′ = y′] for every y′, and

∑
y′ W (y′, z) = Pr[Z = z] for every z.

Furthermore,
∑

y′
∑

z W (y′, z) · ∆H(y′, z) = γ, where we refer to this sum as the cost associated
with W . Note that

∑
y′
∑

z W (y′, z) · InEq(y′, z) is lower-bounded by the total variation distance
between Y ′ and Z, where InEq(y′, z) = 1 if y′ ̸= z and InEq(y′, y′) = 0.

Let S denote the support of Z (so that W (y′, z) = 0 for every z /∈ Z), and let S′ be the subset of
S that contains those strings that are (0.4·δ)-H-close to the code C. Recall that the support of Y ′ is
a subset of C (so thatW (y′, z) = 0 for every y′ /∈ C). The cost associated withW is the sum of three
terms. The first is

∑
y′
∑

z∈S\S′ W (y′, z) ·∆H(y′, z), the second is
∑

y′
∑

z∈S′\C W (y′, z) ·∆H(y′, z)

and the third is
∑

y′
∑

z∈S′∩C W (y′, z) · ∆H(y′, z). We analyze each separately, while letting R
denote the support of Y ′.

� By the definition of S′ (and since the support of Y ′ is a subset of C), for each y′ in the
support of Y ′ and each z ∈ S \ S′, we have that ∆H(y′, z) > 0.4 · δ. Therefore, the first term
is lower-bounded by

∑
y′
∑

z∈S\S′ W (y′, z) · 0.4 · δ.

� Turning to the second term, for each z ∈ S′ \ C, let cc(z) ∈ C be the codeword in C that

is closest to z. By the definition of S′ we have that δ′(z)
def
= ∆H(cc(z), z) ≤ 0.4 · δ, and for

every y′ ∈ R \ {cc(z)}, we have that ∆H(y′, z) ≥ δ − δ′(z) ≥ 0.6 · δ.
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We claim that (for every z ∈ S′\C), at least half the probability mass that is relocated byW to
z (from Y ′) must come from codewords y′ (in the support of Y ′) that are different from cc(z);
that is,

∑
y′∈R\{cc(z)}W (y′, z) ≥ 1

2 ·
∑

y′ W (y′, z). We prove that
∑

y′∈R\{cc(z)}W (y′, z) ≥
W (cc(z), z), by showing that otherwise we could modify Z (and W ) to obtain a distribution
Z ′ with support size at most m (and a corresponding weight relocation function W ′) such
that Z ′ is closer to Y ′ than Z (i.e., W ′ has lower cost than W ).

Specifically, Z ′ is obtained by moving the probability mass that Z assigns z to the codeword
cc(z); that is, Pr[Z ′ = z] = 0 and Pr[Z ′ = cc(z)] = Pr[Z = cc(z)] + Pr[Z = z] (and Pr[Z ′ =
z′] = Pr[Z= z′] for every z′ /∈ {z, cc(z)}), while noting that Z ′ has support size at most m.
The weight relocation function W ′ is define accordingly (i.e., for each y′, we set W ′(y′, z) = 0
and W ′(y′, cc(z)) = W (y′, cc(z)) + W (y′, z) (leaving W ′(y′, z′) = W (y′, z′) for every z′ /∈
{z, cc(z)})). Then, the cost of W ′ (which upper-bounds the distance between Y ′ and Z ′)
equals the cost of W minus

∑
y′ W (y′, z) ·∆H(y′, z) plus

∑
y′ W (y′, z) ·∆H(y′, cc(z)). Now,∑

y′∈R
W (y′, z) ·∆H(y′, z) ≥W (cc(z), z) · δ′(z) +

∑
y′∈R\{cc(z)}

W (y′, z) · (δ − δ′(z)) , (6)

since for y′ ∈ R \ {cc(z)} it holds that ∆H(y′, z) ≥ ∆H(y′, cc(z))−∆H(z, cc(z)) ≥ δ− δ′(z),
whereas ∑

y′∈R
W (y′, z) ·∆H(y′, cc(z)) ≤

∑
y′∈R\{cc(z)}

W (y′, z) · δ . (7)

Using the counter hypothesis (i.e., W (cc(z), z) >
∑

y′∈R\{cc(z)}W (y′, z)), we lower-bound

Eq. (6) by
∑

y′∈R\{cc(z)}W (y′, z) · δ, and reach a contradiction to the optimality of W (since

the cost of W ′ is smaller than the cost of W ).

Hence, for each z ∈ S \ C we have that
∑

y′ W (y′, z) · ∆H(y′, z) ≥ 1
2

∑
y′ W (y′, z) · 0.6 · δ,

implying that second term in the cost of W is lower-bounded by
∑

y′
∑

z∈S′\C W (y′, z) ·0.3 ·δ.

� Lastly, for each y′ in the support of Y ′ and each z ∈ S′ ∩ C such that z ̸= y′, we have that
∆H(y′, z) ≥ δ. Therefore, the third term is lower-bounded by

∑
y′
∑

z∈(S′∩C)\{y′}W (y′, z) · δ,
which we rewrite as

∑
y′
∑

z∈(S′∩C)W (y′, z) · InEq(y′, z) · δ.

To summarize, the distance γ between Y ′ and Z, under Definition 1.1, is at least a 0.3δ factor of
the total variation distance between these two distributions.

Proposition 2.9 (lower bound on testing m-grained distributions): For every constant c < 1 and
m ≤ 2n−Ω(n), testing that a distribution over {0, 1}n is m-grained requires Ω(mc) samples in the
DoHO model.

We comment that the foregoing lower bound (for DoHO model) matches the best known lower
bound for the standard distribution-testing model [17]. See Section 2.4 for further discussion.

Proof: We use the Ω(mc) lower bound of [17] that refers to testing whether a distribution over
[O(m)] is m-grained, under the total variation distance. This lower bound is proved in [17] by
presenting two (2m-grained) distributions, X and Y , that cannot be distinguished by a label-
invariant algorithm that gets s = o(mc) samples, where X is m-grained and Y is far (in total
variation distance) from being m-grained.
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As in the proof of Proposition 2.8, applying an error correcting code C : [O(m)] → {0, 1}n
to X and Y , we observe that X ′ = C(X) is m-grained whereas Y ′ = C(Y ) is far from being
m-grained (also under Definition 1.1).12 To see that Y ′ is far from any distribution Z that is
m-grained and is supported by a set S, we (define S′ and) employ the same case-analysis as in the
proof of Proposition 2.8. (This shows that the distance (under Definition 1.1) between Y ′ and Z is
lower-bounded by a constant fraction of their total variation distance.)13

Proposition 2.10 (lower bound on testing parameterized uniformity): For every constant c < 1
and m ≤ n, testing that a distribution over {0, 1}n is uniform over some m-subset requires Ω(mc)
queries in the DoHO model.

We stress that, unlike Proposition 2.9, which lower-bounds the sample complexity of testers, in
Proposition 2.10 we only lower-bound their query complexity.14

Proof: Let X ′ and Y ′ denote the distributions derived in the proof of Proposition 2.9. Recall
that X ′ is m-grained, whereas Y ′ is far from being m-grained (under Definition 1.1). Note that

Y ′ is Ω(1)-far from being uniform over any set of size m, and observe that X ′ is log2 m
n -close to

a distribution X ′′ that is uniform over a set of size m. Specifically, we can transform X ′ to X ′′

by modifying only the bits that reside in log2m locations, where the choice of these locations is
arbitrary.15 Hence, a potential tester that make o(n/ logm) queries is unlikely to hit these locations,
if we select these locations uniformly at random. Using m ≤ n, we conclude that a potential tester
that makes min(o(mc), o(n/ logm)) = o(mc) queries cannot distinguish between the distribution
X ′′ and distribution Y ′, which implies that it fails to test uniformity in the DoHO model.

2.4 Conditional lower bounds

The lower bounds (for the DoHO model) presented in Proposition 2.9 and 2.10 build on the best
known lower bound for testing the set of grained distributions in the standard distribution-testing
model. The following lower bounds on the complexity of testing in the DoHO model rely on a
conjecture regarding the sample complexity of testing grained distributions in the standard model.

Conjecture 2.11 (on the complexity of testing the set of m-grained distributions in the standard
distribution-testing model): In the standard distribution-testing model, the sample complexity of
testing m-grained distributions over a domain of size O(m) is Ω(m/ logm).

Theorem 2.12 (on testing the set of m-grained distributions in the DoHO model): Assuming
Conjecture 2.11, for every m ≤ 2n−Ω(n), testing that a distribution over {0, 1}n is m-grained requires
Ω(m/ logm) samples in the DoHO model.

12In fact, as in the proof of Proposition 2.8, we actually consider adequare relabelings of X and Y .
13Note that in the second case (i.e., probability mass relocated from Y ′ to z ∈ S′ \ C), the potential replacement

(of z by the codeword closest to it) preserves m-grained-ness.
14We actually use m logm = o(n1/c), which follows from m ≤ n.
15Saying that X ′ is m-grained means that it is uniform on a multiset {x(1), . . . , x(m)} of n-bit strings. We modify

X ′ by replacing each x(i) by y(i) such that y(i) encodes the binary expansion of i − 1 in the chosen locations and
equals x(i) otherwise. That is, letting ℓ1 < ℓ2 < · · · < ℓlog2 m denote the chosen locations, we set y

(i)
ℓj

to equal the jth

bit in the binary expansion of i− 1 and set y
(i)
ℓ = x

(i)
ℓ if ℓ ∈ [n] \ {ℓ1, ℓ2, . . . , ℓlog2 m}.
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We mention that the proof would remain unchanged if the lower bound in Conjecture 2.11 is
replaced by s(m); that is, any lower bound of the form Ω(s(m)) on the sample complexity of
testing m-grained distributions in the standard distribution testing model translates to an Ω(s(m))
lower bound in the DoHO model. A similar comment refers to Theorem 2.13.

Proof: We would have liked to argue that the proof is analogous to the proof of Proposition 2.9,
except that here we assume the existence of two distributions, X and Y , over [O(m)] that cannot be
distinguished by a label-invariant algorithm that gets o(m/ logm) samples, where X is m-grained
and Y is far (in total variation distance) from being m-grained. However, since Conjecture 2.11
does not quite imply the existence of such distributions X and Y , we apply a slightly more complex
argument. Our starting point is the observation that Conjecture 2.11 implies the existence of
multisets of distributions16, denoted X and Y, such that the following holds:

1. Each distribution in X is m-grained.

2. Each distribution in Y is TV-far from being m-grained.

3. No algorithm can distinguish between s = o(m/ logm) samples taken from a distribution X
that is selected uniformly in X and s samples taken from a distribution Y that is selected
uniformly in Y.

The foregoing observation is proved by applying the MiniMax Principle (cf. [14, Apdx A.1]). Specif-
ically, we consider deterministic algorithms that, given s samples from a distribution Z, try to dis-
tinguish between the case that Z is m-grained and the case that Z is TV-far from being m-grained,
and denote by c(A,Z) the probability that algorithm A is correct on Z (i.e., it correctly identifies Z’s
type). Then, Conjecture 2.11 asserts that, for every distribution A of algorithms (i.e., a randomized
algorithm) that get s samples, there exists a distribution Z (which is either m-grained or far from
m-grained) such that A errs on Z with probability greater than 1/3 (i.e., EA∼A[c(A,Z)] < 2/3).
The minimax principle then implies that there exists a multiset Z of such distributions (which are
each either m-grained or far from m-grained) on which each algorithm A that takes s samples errs
on the average with probability greater than 1/3 (i.e., EZ∈Z [c(A,Z)] < 2/3). Analogously to [15,
Exer. 7.3], we obtain X and Y as desired, where the indistinguishability gap is less than 1/2.

Consider the corresponding multisets X ′ and Y ′, which are obtained by applying a (constant-
distance) error correcting code C to the elements of each distribution in X and Y, respectively. we
conclude that no algorithm that takes s samples can distinguish X ′ from Y ′, where X ′ (resp., Y ′) is
selected uniformly in X ′ (resp., Y ′), where the indistinguishability gap is less than 1/2. (As in the
proof of Proposition 2.9, we show that each Y ′ is far (under Definition 1.1) from being m-grained.)
Observing that a distinguishing gap of less than 1/2 means that no algorithm (of low complexity)
constitutes a tester with error probability at most 1/4 (rather than at most 1/3), the claim follows
(using error reduction).

Theorem 2.13 (on testing parameterized uniformity in the DoHO model): Assuming Conjec-
ture 2.11, for every m ≤ n, testing that a distribution over {0, 1}n is uniform over some m-subset
requires Ω(m/ logm) queries in the DoHO model.

16Actually, X and Y are distributions of distributions. However, to avoid confusion, we preferred to present them
as multi-set and consider a uniformly selected element in them.
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We stress that, unlike Theorem 2.12, which lower-bounds the sample complexity of testers, in
Theorem 2.13 we only lower-bound their query complexity.

Proof: Let X ′ and Y ′ denote the multisets of distributions derived in the proof of Theorem 2.12.
Recall that each distribution in X ′ is m-grained, whereas each distribution in Y ′ is far from being
m-grained (under Definition 1.1). As in the proof of Proposition 2.10, note that each distribution
in Y ′ is Ω(1)-far from being uniform over a set of size m, and observe that each distribution in X ′

is log2 m
n -close to being uniform over a set of size m. Specifically, we can make each distribution in

X ′ uniform by modifying only the bits that reside in log2m locations, where the choice of these
locations is arbitrary. Hence, a potential tester that make o(n/ logm) queries is unlikely to hit
these locations, if we select these locations uniformly at random. Using m ≤ n, we conclude
that a potential tester that makes o(m/ logm) queries cannot distinguish between distributions in
the modified multiset X ′ and distributions in the multiset Y ′, which implies that it fails to test
uniformity in the DoHO model.

3 Distributions on self-correctable/testable sets

In this section we prove Theorem 1.8, which refers to properties of distributions that are supported
on a set of strings Π ⊆ {0, 1}n that has an efficient self-correction/testing procedure. In this
case, label-invariance actually means being label-invariant when restricted to Π; that is, for every
bijection π : Π→ Π and every distribution X, it holds that X is in the property if and only if π(X)
is in the property.

Our starting point is a label-invariant property of distributions, denoted D, and a property
of strings, denoted Π, that has a relatively efficient tester and local self-corrector. Actually, we
use a relaxed definition of self-correction, which allows to output a special failure symbol in case
the input (oracle) is not in Π (but close to Π).17 Indeed, proper behavior of the self-corrector is
required only up to a specified distance from the set Π. Combining D and Π, we get a property
of distributions, denoted DΠ, that consists of all distributions in D that are supported by Π. Note
that DΠ is label-invariant over its support. We prove that the query complexity of testing DΠ in
the DoHO model is related to the sample complexity of testing D (in the standard model) and to
the query complexity of the two foregoing procedures.

Theorem 3.1 (from standard distribution testing of D to testing DΠ in the DoHO model, when
Π is efficiently testable and self-correctable):

� Let D be a label-invariant property of distributions over {0, 1}n, and suppose that D is testable
in the standard model using s(n, ϵ) = Ω(1/ϵ) samples.18

� Let Π ⊆ {0, 1}n be a property of strings that is testable with query complexity qT(n, ϵ) and
self-correctable up to distance δ(n) with qC(n) queries; that is, there exists an oracle machine
C that makes at most qC(n) queries such that for every x ∈ {0, 1}n and i ∈ [n] the following
two conditions hold:

1. If x ∈ Π, then Pr[Cx(i)=xi] ≥ 2/3.

17The notion of relaxed self-correction was introduced in [19], by analogy to the notion of relaxed LDCs [7, Sec. 4.2].
18Indeed, it would have been more consistent with the literature to denote the sample complexity by s(2n, ϵ), since

the domain size is 2n.
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2. If x is δ(n)-close to x′ ∈ Π, then Pr[Cx(i)∈{x′i,⊥}] ≥ 2/3, where ⊥ is a special symbol
indicating failure.

� Suppose that every distribution in D is supported by a subset of size at most |Π|, and let DΠ

denote the set of all distributions in D that have a support that is a subset of Π.19

Then, DΠ is testable with query complexity

q(n, ϵ) = Õ(s(n, ϵ′/2)) · qT(n, δ(n)) + qC(n)

δ(n)

and sample complexity s(n, ϵ′/2), where ϵ′ = min(ϵ, δ(n)).

Note that Π must have relative (Hamming) distance greater δ(n), since otherwise we reach a
contradiction by considering two strings in Π that are δ(n)-H-close to one another.20 We also note
that Π is testable with query complexity q′T(n, ϵ) = O(qT(n, δ(n)))+ Õ(1/ϵ) · qC(n), by first invoking
the original tester with proximity parameter set to δ(n), and then selecting O(1/ϵ) random locations
i ∈ [n] and comparing their self-corrected value (i.e., Cx(i)) to their given value (i.e., xi).

21 (The
extra O(log(1/ϵ)) factor accounts for reducing the error of the self-corrector to o(1/ϵ).)

In some natural applications (e.g., low-degree multi-variate polynomials), we may use δ(n) ≥
1/poly(log n) and qT(n, δ(n))+qC(n) ≤ poly(log n), but for relaxed locally correctable (and testable)
code [7, 19, 10] we may have δ(n) = Ω(1) and qT(n, δ(n)) + qC(n) = O(1).

Proof: We first recall that, we may assume, without loss of generality, that when testing a label-
invariant property, in the standard model, the tester is label-invariant [2] (see also [15, Thm. 11.12]).
Such a tester, denoted T ′, actually rules according to the collision pattern that it sees in the
sequence of samples; that is, the number of i-way collisions in the sequence, for each i ∈ N.
Specifically, the collision pattern of the sequence x = (x(1), . . . , x(s)), denoted CP(x), is the sequence
(c1, . . . , cs) such that ci = |{v∈Ω : #v(x

(1), . . . , x(s)) = i}| is the number of i-way collisions, where
#v(x

(1), . . . , x(s)) = |{j ∈ [s] : x(j) = v}| is the number of elements (in the sequence) that equal v.
Hence, we claim that

T ′(n, ϵ;x(1), . . . , x(s)) = T ′′(n, ϵ; CP(x(1), . . . , x(s))),

for some randomized decision procedure T ′′.

Warm-up (or a first attempt). Using the fact that Π has relative distance δ = δ(n), let us consider
a tester that, given the sample-sequence x = (x(1), . . . , x(s)), where s = s(n, ϵ), picks uniformly

at random an O(δ−1 log s)-subset of [n], denoted I, and outputs T ′′(n, ϵ; CP(x
(1)
I , . . . , x

(s)
I )), where

x
(i)
I is the restriction of x(i) to the coordinates in I. This tester works well when the tested

distribution X is supported on Π. In this case, for any sequence of s samples x = (x(1), . . . , x(s))

19The condition (regarding the size of the support of distributions in D) implies that if X ′ is supported by a subset
of Π and is TV-close to D, then it is TV-close to DΠ. Note that this implication does not hold without the condition.
(Consider, for example, Π = {0n, 1n} and D that contains all distributions that are uniform on some 2-subset as well
as all distribution that have support size 2n. Then, X ′ ≡ 0n is very TV-close to D, although it is TV-far from DΠ

(which consists of a single distribution).
20Let x and x′ be two distinct strings that are at relative distance at most δ(n), and suppose than xi ̸= x′

i. Then,
by the first condition Pr[Cx(i)=xi] ≥ 2/3, but by the second condition Pr[Cx(i)∈{x′

i,⊥}] ≥ 2/3.
21This idea is implicit in the proof of [15, Thm. 5.12].
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of X, with high probability, CP(x
(1)
I , . . . , x

(s)
I ) equals CP(x(1), . . . , x(s)), since x(i) ̸= x(j) implies

PrI [x
(i)
I = x

(j)
I ] < (1 − δ)O(δ−1 log s) = o(1/s2). Hence, in this case we correctly distinguish X in

DΠ from X that is ϵ-far from DΠ although it is supported by Π. Of course, we can easily test
that X is supported by Π (using the tester for Π – see Theorem 1.4), but the problem is that our
samples may be close to Π and yet not reside in it. This is a problem because the foregoing analysis
presupposed that the inequality between samples is reflected in their restrictions to a small subset

I (i.e., that x(i) ̸= x(j) typically implies x
(i)
I =x

(j)
I ]).

We address this problem by using the hypothesis regarding Π; that is, not only is Π testable
(with proximity parameter ϵ using qT(n, ϵ) queries), but it is also self-correctable to distance δ by
using qC(n) queries. In particular, combining the tester for Π (applied with proximity parameter
δ(n)), and the self-corrector (and employing error reduction22 we can obtain an oracle machine C
that satisfies the following for every x ∈ {0, 1}n and i ∈ [n] (for any integer parameter s):

1. If x ∈ Π, then Pr[Cx(i)=xi] ≥ 1− o(1/s2).

2. If x is δ-H-close to x′ ∈ Π, then Pr[Cx(i)∈{x′i,⊥}] ≥ 1− o(1/s2).

3. If x is δ-H-far from Π, then Pr[Cx(i)=⊥] ≥ 1− o(1/s2).

This combined machine has query complexity q′C(n, s) = O(log s) · (qT(n, δ) + qC(n)). We are now
ready to present an analyze our tester.

The proposed tester, T . On input n, ϵ and s = s(n, ϵ/2) samples drawn from a tested distribution
X, and denoted x(1), . . . , x(s), we proceeds as follows (assuming, for simplicity (and the most part),
that ϵ ≤ δ(n)/2).

1. We test whether X is supported by Π with proximity parameter ϵ/2, where the distance here
(and throughout the proof, unless stated explicitly otherwise) is according to Definition 1.1.
If this test rejects, then we reject.

(Here and below, “supported by Π” means having a support that is a subset of Π.)

We use the tester provided by Theorem A.2 (with proximity parameter ϵ/2), while noting
that we can reuse some of the samples provided to T for this purpose (since s = Ω(1/ϵ)). As
noted following the statement of Theorem 3.1, the query complexity of testing Π is q′T(n, ϵ) =
O(qT(n, δ(n))) + Õ(1/ϵ) · qC(n)). We infer that the query complexity of the current step is
max(Õ(q′T(n, ϵ/4)), O(qT(n, δ(n))/δ(n))).

23

2. For each i ∈ [s], we test whether x(i) is in Π, when setting the proximity parameter to δ = δ(n)
and the error bound to o(1/s). If any of these checks rejects, then we reject. Otherwise, we
may assume that each sample is δ(n)-H-close to Π.

Note that typically s≫ O(1/ϵ) and δ ≫ ϵ, which implies that the current step is incomparable
to Step 1.24 The query complexity of the current step is Õ(s) · qT(n, δ).

22In the context of self-correction, performing error reduction means that if a strict majority of the invocations
return a Boolean value, then we can use that value (which happens w.h.p. when x ∈ Π). Otherwise, we output ⊥,
since the lack of a strict majority indicates error.

23The first term account for the case of ϵ ≤ δ(n)/2, whereas the second term accounts for the opposite case.
24On the one hand, we test that all samples are in Π (rather than only testing the first O(1/ϵ) samples. On the

other hand, the proximity parameter we use is larger; that is, the test is more crude.
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3. For ℓ = O(δ−1 log s), select a random ℓ-subset of [n], denoted I, and obtain (y(1), . . . , y(s))
such that y(i) is the self-correction of x(i) for locations I; that is, letting I = {p1, . . . , pℓ}
such that pj < pj+1 (for all j ∈ [s − 1]), we let y

(i)
j ← Cx(i)

(pj). (Recall that C has error

probability o(1/s2).)

If any of these correction attempts fails (i.e., if any y
(i)
j equals ⊥), then we reject. Other-

wise, we output the verdict of T ′′(n, ϵ/2; CP(y(1), . . . , y(s))). We may assume, without loss of
generality, that T ′ (and so T ′′) errs with probability at most 0.1.

Typically (i.e., when s≫ 1/ϵ), the query complexity of T is dominated by the last step and equals

s · ℓ · q′C(n, s) = O(s log2 s) · qT(n, δ(n)) + qC(n)

δ(n) .

(Recall that the complexity of Step 1 is max(Õ(q′T(n, ϵ/4)), O(qT(n, δ(n))/δ(n))), where q
′
T(n, ϵ/4) =

O(qT(n, δ)) + Õ(1/ϵ) · qC(n), whereas the complexity of Step 2 is Õ(s) · qT(n, δ).)

Analysis of the proposed tester T . We start with the case that X is in DΠ. In this case, the first two
steps cause rejection with probability o(1), since all x(i)’s are in Π. Furthermore, in this case, with

probability 1−o(1), each y(i) equals the restriction of x(i) to the locations in I (i.e., y(i) = x
(i)
I ). As

argued in the motivational discussion, if x(i) ̸= x(j), then x(i) and x(j) are δ-H-far apart from one

another, and so Prp∈[n][x
(i)
p = x

(j)
p ] < 1− δ. This implies that PrI [x

(i)
I = x

(j)
I ] < (1− δ)ℓ = o(1/s2),

by our choice of ℓ. We conclude that PrI [CP(y
(1), . . . , y(s)))=CP(x(1), . . . , x(s)))] = 1− o(1), which

implies that our tester accepts X with probability at least 0.9− o(1).
We now turn to the case that X is ϵ-far from DΠ (according to Definition 1.1). The easy case

is that X is ϵ/2-far from being supported by Π, and this case leads Step 1 to reject with very high
probability. We thus assume that X is ϵ/2-close to being supported by Π, and let corr(x) denotes
the string in Π that is closest to x. Then, in expectation, corr(X) is ϵ/2-H-close to X, since the
Hamming distance between x and corr(x) equals the Hamming distance between x and Π. Hence,
corr(X) is ϵ/2-close to X, which implies that corr(X) is ϵ/2-far from DΠ. By the next claim, this
implies that the total variation distance between corr(X) and D is greater than ϵ/2.

Claim 3.1.1 (distance to DΠ vs TV-distance to D): Let X ′ be a distribution supported by Π such
that X ′ is ϵ′-far from DΠ (according to Definition 1.1). Then, the total variation distance between
X ′ and D is greater than ϵ′.

Proof: Assume, contrary to the claim, that X ′ is ϵ′-TV-close to some distribution Y ′ in D. If Y ′

in DΠ, then we immediately reach a contradiction to the hypothesis of the claim by which X ′ is at
distance greater than ϵ′ from DΠ (according to Definition 1.1). This is the case because (as noted
in the introduction), the total variation distance between distributions upper-bounds the distance
according to Definition 1.1. Hence, Y ′ in D \ DΠ. We claim that in such a case, based on Y ′, we
can define a distribution Y ′′ in DΠ such that X ′ is ϵ′-TV-close to Y ′′, resulting once again in a
contradiction. Thus, it remains to establish the existence of such a distribution Y ′′.

Recall that by the premise of Theorem 3.1, the support size of Y ′ is at most |Π|. Let S′ denote
the support of Y ′, and S′′ = S′ \ Π. Consider any subset Π′′ of Π \ S′ such that |Π′′| = |S′′|
(such a subset must exist because |S′| ≤ |Π| and hence |S′′| = |S′ \ Π| ≤ |Π \ S′|). Selecting
any bijection ϕ between S′′ and Π′′, we set Pr[Y ′′ = j] = Pr[Y ′ = ϕ−1(j)] for every j ∈ Π′′, and
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Pr[Y ′′ = j] = Pr[Y ′ = j] for every j ∈ Π ∩ S′. Note that the total variation distance between
X ′ and Y ′′ is upper-bounded by the total variation between X ′ and Y ′, because the probability
mass assigned by Y ′′ to Π′′ is already charged to the TV-distance between Y ′ and X ′ (since
Pr[Y ′∈S′′] = Pr[Y ′′∈Π′′] and Pr[X ′∈S′′] = 0).

By applying Claim 3.1.1, we get that the total variation distance between corr(X) and D is
greater than ϵ/2. It follows that, with probability at least 0.9, the (standard) tester for D (i.e.,
T ′), rejects when given s = s(n, ϵ/2) samples of corr(X). Hence, with probability at least 0.9, a
sequence of s samples of corr(X) yields a collision pattern that leads T ′′ to reject. Recall, however,
that we invoke T ′′ on s samples of X, not of corr(X). Nevertheless, we show that our tester (i.e.,
T ) will reject with high probability also in this case.

Claim 3.1.2 (the distance of corr(X) from D): If corr(X) is ϵ/2-TV-far from D, then T rejects
with probability 0.9− o(1).

Proof: We consider s samples x(1), . . . , x(s) taken from X. On the one hand, if any of these x(i)’s
is δ-H-far from Π, then Step 2 rejects with very high probability. On the other hand, if x(i) is
δ-H-close to Π, then Pr[Cx(i)

(j) ∈ {corr(x(i))j ,⊥}] = 1 − o(1/s2) for every j ∈ [n], which means
that T either obtains s samples of corr(X)I or rejects. Recall that, with very high probability,
a sequence of s samples of corr(X)I has the same collision pattern as a sequence of s samples
of corr(X), since corr(X) is supported by strings that are pairwise δ-H-far apart. Lastly, recall
that the collision pattern of a sequence of s samples of corr(X) causes T ′′ to reject (whp). To
summarize, letting Cx(p1, . . . , pℓ) = (Cx(p1), . . . , C

x(pℓ)), we have

Prx(1),...,x(s)∼X [T x(1),...,x(s)
(n, ϵ)=0]

≥ Pr
x(1),...,x(s)∼X ; I∈([n]

ℓ )
[T ′′(n, ϵ; CP(Cx(1)

(I), . . . , Cx(s)
(I))=0]

≥ Pr
x(1),...,x(s)∼X ; I∈([n]

ℓ )
[T ′′(n, ϵ; CP(corr(x(1))I , . . . , corr(x

(s))I)=0]− o(1)

≥ Prx(1),...,x(s)∼X [T ′′(n, ϵ; CP(corr(x(1)), . . . , corr(x(s)))=0]− o(1)

which is 0.9− o(1). We stress that the foregoing inequalities hold since we have ignored cases that
cause rejection (e.g., x(i) being δ-H-far from Π and other cases in which C outputs ⊥).

Combining Claims 3.1.1 and 3.1.2, we infer that if corr(X) is ϵ/2-far from DΠ, then T rejects
X with high probability. Recalling that if X is ϵ-far from DΠ, then either X is ϵ/2-far from being
supported on Π (which causes Step 1 to reject (whp)) or corr(X) is ϵ/2-far from DΠ, it follows
that T rejects (whp) in any case.

4 Distributions as Materialization of an Ideal Object

As stated in the introduction, we consider three types of random variations of an ideal object:
random noise applied to bits of a string (a.k.a perturbations), random cyclic-shifts of a string,
and random isomorphic copies of a graph represented by a string. These types are studied in the
following three subsections.
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4.1 Perturbation

For two constant parameters η ∈ [0, 0.5) and δ ∈ [0, 1], and every string x∗ ∈ {0, 1}n, we consider
all distributions in which each bit of x∗ is flipped with probability at most η and the outcome is at
Hamming distance at most δ · n from x∗. That is, Dper

η,δ (x
∗) contains the distribution X if

1. For every i ∈ [n], it holds that Pr[Xi ̸=x∗i ] ≤ η.

2. Pr[|{i∈ [n] :Xi ̸=x∗i }| ≤ δ · n] = 1.

Indeed, setting δ = 1 trivializes the second condition, whereas setting δ = 0 mandates X ≡ x∗.
Letting Dper

η,δ =
⋃

x∗∈{0,1}n D
per
η,δ (x

∗), we prove the following.

Theorem 4.1 (testing noisy versions of a string): For two constant parameters η ∈ [0, 0.5) and
δ ∈ [0, 1], the property Dper

η,δ can be tested with poly(1/ϵ) queries.

Proof: The key observation is that if X is in Dper
η,δ (x

∗), for some string x∗ ∈ {0, 1}n, then each bit

of x∗ can be recovered with probability 1−2−t by querying O(t) samples of X (at the corresponding
location). This allows to estimate the flipping probability of individual bits in X as well as the
distribution of the Hamming distance between X and x∗. In view of this observation, the tester
proceeds as follows (assuming η + 0.1ϵ < 0.5, or else ϵ is set so that it satisfies this constraints -
recall that η is a constant).

1. The tester selects uniformly, independently at random Õ(1/ϵ2) indices in [n] and lets the
resulting set be denoted by I.

2. For each i ∈ I, the tester estimates the probability Pr[Xi=1] by taking Õ(1/ϵ2) samples of
X and querying each sample at location i. If the estimated value is in [η+0.2ϵ, 1− η− 0.2ϵ],
then the tester rejects. Otherwise it determines x̂i accordingly; that is, x̂i = 1 if the estimate
is at most η + 0.2ϵ, and x̂i = 0 otherwise.

(Note that the same samples are used for all i ∈ I.)

3. The tester takes m = Õ(1/ϵ) samples of X, denoted x(1), . . . , x(m). If, for any j ∈ [m], it

holds that |{i∈ I :x(j)i ̸= x̂i}| > (δ + 0.1ϵ) · |I|, then the tester rejects. Otherwise, the tester
accepts.

Suppose X belongs to Dper
η,δ (x

∗) for some x∗ ∈ {0, 1}n. First observe that for any choice of the subset
I (in the first step of the algorithm), the following holds by applying the additive Chernoff bound and
a union bound: With high constant probability, taken over the choice of the sampled strings selected
in the second step, the tester does not reject in this step, and furthermore, x̂i = x∗i for every i ∈ I.
Next observe that for any choice of x(1), . . . , x(m) (as selected in the third step of the algorithm), the
following also holds by applying the additive Chernoff bound and a union bound: The probability,

taken over the choice of I, that for some j we have that |{i∈I :x(j)i ̸= x∗i }| > (δ+0.1ϵ) · |I|, is a small
constant. (Note that here we are referring to x∗ and not x̂). By combining the two observations
we get that the tester accepts with high constant probability (taken both over the choice of I and
over the choice of the sample selected in the second step).

Now suppose that X is ϵ-far from Dper
η,δ . For each i ∈ [n], let x′i denote the more likely value

of Xi. Then one of the following two conditions must hold (or else we get that X is ϵ-close to
Dper

η,δ (x
′)).
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1.
∑

i∈[n]min(Pr[Xi ̸=x′i]− η, 0) > ϵn/2. This implies that Pr[Xi ̸=x′i] > η+ ϵ/4 for at least ϵ/4
fraction of the indices i ∈ [n].

2. The probability that X is (δ + 0.2ϵ)-H-far from x′ = x′1 · · ·x′n is at least 0.3ϵ.

Suppose that the first condition holds. Then with high constant probability over the choice of I,
for at least one of the indices i ∈ I, we have that Pr[Xi ̸=x′i] > η+ ϵ/4. Assuming this event holds,
with high constant probability over the choice of the sample selected in the second step of the
algorithm, the algorithm rejects in this step. Furthermore, for any choice of I, if it does not contain
any i for which Pr[Xi ̸=x′i] > η + ϵ/4, then with high constant probability, x̂i = x′i for every i ∈ I.
Now suppose that the second condition holds. Then with high constant probability, for at least one
of the sample strings x(j) selected in the third step of the algorithm, x(j) is (δ + 0.2ϵ)-H-far from
x′. Conditioned on this event, with high constant probability over the choice of I, we have that

|{i∈I :x(j)i ̸= x′i}| > (δ+ 0.1ϵ) · |I|. We hence conclude that if X is ϵ-far from Dper
η,δ , then with high

constant probability, the algorithm rejects (either in the second step or in the third step).

Properties of the ideal object. For η and δ as above, and for a property of n-bit long strings
Π, we let Dper,Π

η,δ =
⋃

x∗∈ΠD
per
η,δ (x

∗). Building on the proof of Theorem 4.1, we get

Theorem 4.2 (testing noisy versions of a string in a predetermined set): Let η ∈ [0, 0.5) and
δ ∈ [0, 1] be constants, and Π be a property of n-bit strings that can be tested using Q(n, ϵ) queries.
Then, the property Dper,Π

η,δ can be tested using poly(1/ϵ) + Õ(Q(n, e/2)) queries.

Proof: We combine the tester presented in the proof of Theorem 4.1 with an emulation of the
tester for Π. Specifically, each query made by the latter tester is emulated by making corresponding
queries to O(logQ(n, e/2)) samples of the tested distribution (and taking a majority vote).

Evidently, any distribution X in Dper,Π
η,δ is accepted with high probability, and in case X is

ϵ/2-far from Dper
η,δ it is rejected with high probability (by the first step). Hence, we are left with

the case that X is ϵ/2-close to Dper
η,δ (x

∗) for some s that is ϵ/2-H-far from Π (since otherwise X

is ϵ-close to Dper,Π
η,δ ).25 Consequently, the emulated tester of Π will rejected with high probability.

4.2 Random cyclic shifts

For any string x∗ ∈ {0, 1}n, we consider all distributions that are obtained by random (cyclic)
shifts of the string x∗; that is, Dcyc(x∗) contains the distribution X if there exists a (related)
random variable J ∈ {0, 1, . . . , n− 1} such that, for every j, with probability Pr[J=j] it holds that
Xi = x∗(i+j)n

for every i ∈ [n], where (i+ j)n denotes i+ j if i+ j ∈ [n] and i+ j−n otherwise (i.e.,

i+ j > n).

Theorem 4.3 (testing random shifts of a string): The property Dcyc def
=
⋃

x∗∈{0,1}n Dcyc(x∗) can

be tested using O(1/ϵ) samples and Õ(
√
n/ϵ) queries.

25Specifically, suppose that X is ϵ/2-close to Dper
η,δ (x

∗) for some x∗ that is ϵ/2-H-close to x′ ∈ Π. Then, X is ϵ-close
to Dper

η,δ (x
′).
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Analogously to Theorem 4.2, we can also test the ideal string for a predetermined property provided
that this property is invariant under cyclic shifts.

Proof: For the sake of the presentation, we describe a slightly simpler tester that makes Õ(
√
n/ϵ2)

queries; the claimed tester can be obtained by employing Levin’s Economical Work Investment
Strategy [15, Sec. 8.2.4].

The tester is given oracle access to t = O(1/ϵ) samples, denoted x(1), . . . , x(t), and consists of
checking that each x(i) is a cyclic shift of x(1). Denoting the two strings by x and y, we check
whether y is a cyclic shift of x by selecting m = O(

√
n · log t) random position indices, denoted

p1, . . . , pm, and ℓ = O(ϵ−1 · log(n/ϵ)) offsets, denoted o1, . . . , oℓ, querying both strings at locations
(pj + ok)n for every j ∈ [m] and k ∈ [ℓ], and accepting if and only if there exists j, j′ ∈ [m] such
that x(pj+ok)n = y(pj′+ok)n for every k ∈ [ℓ].

We first consider the case that X is in Dcyc; that is, suppose that X is in Dcyc(x∗) for some
x∗ ∈ {0, 1}n. In this case, each of the samples (i.e., x(i)) is a cyclic shift of x∗; that is, for each i ∈ [t],

there exists a shift σi such that x
(i)
k = x∗(k+σi)n

for every k ∈ [n]. Hence, for every i ∈ {2, . . . , t}
and every pair j, j′ ∈ [m], with probability at least 1/n over the choice of pj , pj′ ∈ [n], it holds

that x
(1)
(k+pj)n

= x
(i)
(k+pj′ )n

for every k ∈ [n]. Since the events that correspond to different pairs

of samples are pairwise independent, it follows that, for every i ∈ {2, . . . , t}, with probability at

least 1 − O(n/m2) over the choice of p1, . . . , pm ∈ [n], it holds that x
(1)
(k+pj)n

= x
(i)
(k+pj′ )n

for some

j, j′ ∈ [m] and every k ∈ [n]. We conclude that, in this case (regardless of the choice of the x(i)’s
and the ok’s), the tester accepts with probability at least 2/3.

Suppose, on the other hand, that X is ϵ-far from Dcyc. Fixing the first sample, denoted x(1),
it follows that with probability at least ϵ/2 it holds that (a sample of) X is (ϵ/2)-H-far from being
a shift of x(1). Hence, with probability at least 0.9 over the choice of the x(i)’s, there exists an
i ∈ [t] such that x(i) is (ϵ/2)-H-far from being a shift of x(1). It follows that, for each choice of

p1, . . . , pm ∈ [n] and every j, j′ ∈ [m], it holds that |{k ∈ [n] : x(1)(k+pj)n
̸= x

(i)
(k+pj′ )n

}| > ϵn/2, and

consequently

Pro1,...,oℓ∈[n]

[
(∃k ∈ [ℓ]) x

(1)
(pj+ok)n

̸= x
(i)
(pj′+ok)n

}|
]

> 1− (1− 0.5ϵ)ℓ.

Recalling that m = O(
√
n · log t) and using a suitable ℓ = O(ϵ−1 · log(n/ϵ)), it follows that with

probability at least 1−m2 ·exp(−ϵ·ℓ) > 0.9 (over the choice of o1, . . . , ok) the tester detects that x
(i)

is not a cyclic shift of x(1). Therefore, in this case (i.e., X ϵ-far from Dcyc), the tester rejects with
probability at least 2/3. This completes the analysis of the slightly simpler tester, which performs
t ·m · ℓ = Õ(

√
n/ϵ2) queries.

The claimed tester (which performs Õ(
√
n/ϵ queries), follows by observing that if X is ϵ-far

from Dcyc, then, for some r ∈ [log(1/ϵ)], with probability at least 2r · ϵ/O(log(1/ϵ)) it holds that (a
sample of) X is 2−r-H-far from being a shift of x(1). Hence, it suffices to have O(log(1/ϵ)) iterations
such that in the r-th iteration we use t = Õ(1/ϵ)/2r and ℓ = O(2r log(n/ϵ)).

Testing specific distributions over cyclic shifts. The property Dcyc does not impose any
constraint on the distribution over shifts. We next consider a natural variant, where this distribution
is uniform.
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Theorem 4.4 (testing uniformly random shifts of a string): Let DUcyc(x∗) denote the uniform

distribution over the cyclic shifts of a string x∗. Then, the property DUcyc def
=
⋃

x∗∈{0,1}n DUcyc(x∗)

can be tested using Õ(n2/3/ϵ3) queries.

Theorem 4.4 is proved by a reduction to a more general problem, and it is indeed possible that a
more efficient tester exists. For every fixed distrution I over {0, 1, ..., n−1}, the foregoing reduction

and result extends to testing the property DcycI
def
=
⋃

x∗∈{0,1}n DcycI (x∗) such that DcycI (x∗) denote
the distribution obtained by shifting x∗ by I positions (to the right).

Proof: We reduce the current problem to testing the equality between two distributions over
{0, 1}n such that one of the distributions has support size at most n, while noting that a tester for
the latter problem is provided in Theorem 5.2. Specifically, given s samples, denoted x(1), . . . , x(s),

of a distribution X over n-bit strings, we consider the distribution Y
def
= DUcyc(x(1)), and test

equality between X and Y , where we emulate samples to X by using x(2), . . . , x(s), and emulate
samples to Y by using (random shifts of) x(1). Note that Y has support of size at most n, which
suffices when using the furthermore clause of Theorem 5.2.

The complexity of our tester equals the complexity of the tester of Theorem 5.2, and its analysis
reduces to the latter. Specifically, if X is in DUcyc, then, for every possible x(1) drawn from X, it
holds that X ≡ DUcyc(x(1)), and it follows that our tester accepts (whp). On the other hand, if X
is ϵ-far from DUcyc, then for every x∗ it holds that X is ϵ-far from DUcyc(x∗), and it follows that
our tester rejects (whp).

4.3 Random isomorphic copies of a graph

Using a sublinear-query tester for graph isomorphism, we can adapt the ideas underlying the proof
of Theorem 4.3 to test distributions of strings that describe the adjacency matrices of random
isomorphic copies of a graph. That is, we consider n-bit long strings that describe the adjacency
matrices of

√
n-vertex graphs. Specifically, for every string x∗ ∈ {0, 1}n, we consider the graph

Gx∗ described by x∗ and any distribution on isomorphic copies of Gx∗ ; that, Diso(x∗) contains the
distribution X if X is a distribution over strings that describe graphs that are isomorphic to Gx∗ .

Recall that testing isomorphism of k-vertex graphs in the dense graph model, which uses the
adjacency matrix representation, has query complexity poly(1/ϵ) · Õ(k5/4); see [13], where the
dependence on ϵ is mentioned at the end of Section 1. In contrast, the query complexity of the
tester of [20] is k1+o(1) provided that ϵ = ω((log log k)/(log k)1/2).

Theorem 4.5 (testing random isomorphic copies of a graph): The property Diso def
=⋃

x∗∈{0,1}n Diso(x∗) can be tested using O(1/ϵ) samples and poly(1/ϵ) · Õ(n5/8) queries.

Note that testing isomorphism in the dense graph model is reducible to testing Diso in the DoHO
model. We also mention that, analogously to Theorem 4.2, one can also test the ideal string for a
predetermined graph property (since a graph property is invariant under graph isomorphism).

Proof: Analogously to the proof of Theorem 4.3, the tester takes t = O(1/ϵ) samples, denoted
x(1), . . . , x(t), and checks whether all x(i)’s describe graphs that are isomorphic to the graph de-
scribed by x(1). Hence, for each i ∈ {2, . . . , t}, we check whether Gx(i) is isomorphic to Gx(1) , by
invoking a graph isomorphism tester for the dense graph model. Specifically, we use the tester
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presented in [13], while setting the proximity parameter to ϵ/2 (and the error probability of the
test to o(ϵ)).

Note that if X is in Diso, then each invocation of the isomorphism test accept with probability
1 − o(ϵ). On the other hand, if X is ϵ-far from Diso, then, for any choice of x(1) and every
i ∈ {2, . . . , t}, with probability at least ϵ/2 it holds that Gx(i) is ϵ/2-far from being isomorphic to
Gx(1) , where the latter distance is in the dense graph model. Hence, the corresponding invocation
of the graph isomorphism tester rejects (whp), and so does our tester.

What about the bounded-degree graph model? We could have adapted the proof strategy of
Theorem 4.5 to bounded-degree graphs that are represented by their incidence functions. However,
unfortunately, we do not know of a sublinear-query tester for graph isomorphism in that model
(see [16]).

5 Tuples of Distributions

Our notion of testing properties of distributions over huge objects (as captured by Definition 1.2),
extends easily to testing tuples of such distributions.

5.1 The definition

Following the convention stated in Section 1.4, we refer to distributions via the corresponding
random variables.

Definition 5.1 (testing properties of t-tuples of huge distributions): Let D be a property of t-tuples
of distributions, which are each as in Definition 1.2, and s : N× (0, 1]→ N. A tester, denoted T , of
sample complexity s for the property D is a probabilistic machine that, on input parameters n and
ϵ, and oracle access to a sequence of s(n, ϵ) samples drawn from each of the t unknown distributions
X(1), . . . , X(t) ∈ {0, 1}n, satisfies the following two conditions.

1. The tester accepts tuples that belong to D: If (X(1), . . . , X(t)) is in D, then

Prx(1,1),...,x(1,s)∼X(1);...;x(t,1),...,x(t,s)∼X(t) [T x(1,1),...,x(1,s),...,x(t,1),...,x(t,s)
(n, ϵ)=1] ≥ 2/3,

where s = s(n, ϵ) and x(i,1), . . . , x(i,s) are drawn independently from the distribution X(i).

2. The tester rejects tuples that are far from D: If (X(1), . . . , X(t)) is ϵ-far from D (i.e., for
every (Y1, . . . , Yt) in D the average distance (according to Definition 1.1) between Xj and Yj ,
where j ∈ [t], is greater than ϵ), then

Prx(1,1),...,x(1,s)∼X(1);...;x(t,1),...,x(t,s)∼X(t) [T x(1,1),...,x(1,s),...,x(t,1),...,x(t,s)
(n, ϵ)=0] ≥ 2/3,

where s = s(n, ϵ) and x(i,1), . . . , x(i,s) are as in the previous item.

The query complexity of such tester is defined as in the case of testing a single distribution (i.e.,
t = 1). Indeed, Definition 1.2 is a special case of Definition 5.1 (i.e., t = 1).
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5.2 Testing equality

This is indeed the archetypal example for the case of t = 2. Using any tester for the standard
model, we obtain a tester for the DoHO model by querying all samples at a logarithmic (in the
support size) number of locations. Hence, this tester requires an upper bound on the size of the
supports of the tested distributions.

Theorem 5.2 (testing equality of distributions in the DoHO model): For any m,n ∈ N and
ϵ > 0, given a pair of distributions over {0, 1}n that have support size at most m, we can distinguish
between the case that they are identical and the case that they are ϵ-far from one another (according
to Definition 1.1) using Õ(m2/3/ϵ3) queries and O(m2/3/ϵ2) samples. Furthermore, the claim holds
even if only the support size of one of the distributions is upper-bounded by m.

Actually, the sample complexity is s = O(max(ϵ−4/3m2/3, ϵ−2m1/2)), and the query complexity is
Õ(s/ϵ).

Proof: The key observation is that if X is ϵ-far from Y (according to Definition 1.1), then,
with high probability over the choice of a random O(ϵ−1 logm)-subset J ⊂ [n], the total variation
distance between XJ and YJ is at least 0.3ϵ. This observation is proved next.

Claim 5.2.1 (typically, the distance between X and Y is preserved by the distance between XJ

and YJ): Suppose that X is ϵ-far from Y , and that both distributions have support size at most

m. Then, with probability 1− o(1) over the choice of J ∈
( [n]
O(ϵ−1 logm)

)
, the total variation distance

between XJ and YJ is greater than 0.3ϵ. Actually, XJ is 0.3ϵ-far from YJ , even according to
Definition 1.1.

Proof: We start by letting x(1), . . . , x(m
′) (resp., y(1), . . . , y(m

′′)) denote the elements in the support
of X (resp., Y ), where m′ ≤ m (resp., m′′ ≤ m). Next, we note that for every i ∈ [m′] and k ∈ [m′′],
when selecting uniformly an O(t/ϵ)-subset J , with probability at least 1−2−t, the relative Hamming

distance between x
(i)
J and y

(k)
J it at least min(0.5 ·∆H(x(i), y(k)),∆H(x(i), y(k)) − 0.2ϵ), where the

first (resp., second) term refers to the case that ∆H(x(i), y(k)) > 0.2ϵ (resp., ∆H(x(i), y(k)) ≤ 0.2ϵ)
and followed by a multiplicative Chernoff bound (resp., by triviality).

Now, letting t = O(logm) and using a union bound (over all (i, k) ∈ [m′]×[m′′]), with probability

1 − o(1) over the choice of J ∈
( [n]
O(t/ϵ)

)
, for every i ∈ [m′] and every mapping µ : [m′] → [m′′], it

holds that
∆H(x

(i)
J , y

(µ(i))
J ) ≥ 0.5 ·∆H(x(i), y(µ(i)))− 0.2ϵ. (8)

(We stress the order of quantifiers: With high probability over the choice of J , Eq. (8) holds for
every i ∈ [m′] and µ : [m′] → [m′′].)26 Hence, with probability 1 − o(1) over the choice of J , for
every mapping µ : [m′]→ [m′′] and every probability distribution p : [m′]→ [0, 1], it holds that∑

i∈[m′]

p(i) ·∆H(x
(i)
J , y

(µ(i))
J ) ≥

∑
i∈[m′]

p(i) · (0.5 ·∆H(x(i), y(µ(i)))− 0.2ϵ) (9)

≥ 0.5 ·
∑
i∈[m′]

p(i) ·∆H(x(i), y(µ(i))) − 0.2ϵ . (10)

26Indeed, although there are (m′′)m
′
different µ’s, the union bounds is only over the pairs (i, µ(i)) ∈ [m′]× [m′′].
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Suppose now that instead of a (deterministic) mapping µ : [m′]→ [m′′], we consider a randomized
process µ : [m′]→ [m′′], where for each i ∈ [m′] the random variable µ(i) represents a distribution
over [m′′]. Then, Eq. (9)&(10) extends to any random process µ, where we consider expected
distances (with expectation taken over the random choices of µ). In particular, letting p(i) = Pr[X=
x(i)], with probability 1− o(1) over the choice of J , for any randomized process µ : [m′]→ [m′′], it
holds that∑

i∈[m′]

p(i) · Eµ

[
∆H(x

(i)
J , y

(µ(i))
J )

]
≥ 0.5 ·

∑
i∈[m′]

p(i) · Eµ

[
∆H(x(i), y(µ(i)))

]
− 0.2ϵ. (11)

We observe that for any choice of µ that maps X to Y (i.e.,
∑

i∈[m′] p(i) ·Pr[µ(i)=k] = Pr[Y =y(k)]

for every k ∈ [m′′]), the main sum in the r.h.s of Eq. (11) is lower-bounded by the distance between
X and Y (according to Definition 1.1; cf. Eq. (15)). Recalling that the latter distance is greater than
ϵ, it follows that (for any µ that maps X to Y ) the l.h.s of Eq. (11) is greater than 0.5·ϵ−0.2ϵ = 0.3ϵ.
On the other hand, we observe that the minimum over µ’s that map XJ to YJ of the l.h.s of Eq. (11)
captures the distance between XJ and YJ (according to Definition 1.1), which lower-bounds the
total variation distance between XJ and YJ . Hence, with probability 1− o(1) over the choice of J ,
the total variation distance between XJ and YJ is greater than 0.3ϵ.

The tester. In light of the above, our tester proceeds as follows. For s = O(max(ϵ−4/3m2/3, ϵ−2m1/2)),
given oracle access to s samples, denoted u(1), . . . , u(s) and v(1), . . . , v(s), of each of the two distri-
butions, the tester selects an O(ϵ−1 logm)-subset J ⊂ [n] uniformly at random, and queries each
sample at the bits in J . Denoting the resulting strings (i.e., the restrictions of the sampled strings

to J) by u
(1)
J , . . . , u

(s)
J and v

(1)
J , . . . , v

(s)
J , our tester invokes the standard tester (with proximity

parameter 0.3ϵ), and provides these strings as the expected samples.
Note that if X ≡ Y , then XJ ≡ YJ always holds, and the standard tester accepts (whp). On the

other hand, by the foregoing observation, if X is ϵ-far from Y (according to Definition 1.1), then,
with high probability over the choice of J , it holds that XJ is 0.3ϵ-far from YJ (in total variation
distance), and in this case the standard tester rejects (whp).

The foregoing establishes the main claim. Turning to the furthermore claim (i.e., only assuming
that Y has support size at mostm), note that we cannot afford a union bound over [m′]×[m′′]. Still,
letting t = O(log(m/ϵ)) and assuming only m′′ ≤ m, we replace the assertion regarding Eq. (8) by

the assertion that, for every i ∈ [m′], with probability 1 − o(ϵ) over the choice of J ∈
( [n]
O(t/ϵ)

)
, for

every mapping µ : [m′]→ [m′′] it holds that

∆H(x
(i)
J , y

(µ(i))
J ) ≥ 0.5 ·∆H(x(i), y(µ(i)))− 0.2ϵ. (12)

Fixing any probability distribution p : [m′]→ [0, 1], we call J good if for every mapping µ : [m′]→
[m′′] it holds that Eq. (12) is satisfies for a set of i’s that has weight at least 1 − 0.1ϵ under p
(i.e., letting I denote the set of these i’s, it holds that

∑
i∈I p(i) ≥ 1 − 0.1ϵ). Using an averaging

argument, it follows that 1 − o(1) of the J ’s are good. Hence, with probability 1 − o(1) over the
choice of J , for every µ : [m′]→ [m′′] it holds that∑

i∈[m′]

p(i) ·∆H(x
(i)
J , y

(µ(i))
J ) ≥

∑
i∈[m′]

p(i) · (0.5 ·∆H(x(i), y(µ(i)))− 0.2ϵ) − 0.05ϵ (13)

≥ 0.5 ·
∑
i∈[m′]

p(i) ·∆H(x(i), y(µ(i))) − 0.25ϵ. (14)
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where the term 0.05ϵ accounts for contribution of the i’s that do not satisfy Eq. (12). That is,
Eq. (9)&(10) is replaced by Eq. (13)&(14). Proceeding as in the proof of the Claim 5.2.1, we get

Claim 5.2.2 (Claim 5.2.1, extended): Suppose that X is ϵ-far from Y , and that Y has support size

at most m. Then, with probability 1− o(1) over the choice of J ∈
( [n]
O(ϵ−1 logm)

)
, the total variation

distance between XJ and YJ is greater than 0.25ϵ. Actually, XJ is 0.25ϵ-far from YJ , even according
to Definition 1.1.

The furthermore claim follows by observing that the equality tester (for the standard model)
of [12] works also when the support size of only one of the tested distributions is upper-bounded.27

Specifically, using the presentation of [15, Sec. 11.2–11.3], we observe that the support size is only
used in the proof of [15, Cor. 11.21], when upper-bounding the total variation distance between two
distributions by the norm-2 of their difference. But essentially the same upper bound (on the total
variation distance) holds also if only the support of one of the distributions is upper-bounded.28

(For more details, see Appendix A.4.)
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Appendices

The appendices vary in nature. Appendix A.1 presents a proof of a well-known fact, Appendix A.2
presents ramifications on a simple result stated in the main text, Appendix A.3 presents a possible
avenue towards a stronger version of Theorem 1.6, and Appendix A.4 presents a result that is only
implicit in prior work (and may be of independent interest).

A.1 Earth mover distance with inequality measure

A general definition of the earth model distance associates a distance function f with the domain,
and considers the cost of the best randomized process that transforms one distribution to another,
where the cost of the (randomized) process M , which moves the distribution X to the distribution
M(X), is defined as ∑

x

Pr[X=x] · E[f(x,M(x))]. (15)

Definition 1.1 is derived by letting f be the relative Hamming distance between strings.29 Here,
we consider the crude inequality function; that is, f(x, y) = 1 if x ̸= y and f(x, x) = 0. We prove
that the earth mover’s distance with respect to the inequality function equals the total variation
distance, where the total variation distance between X and Y equals maxS{Pr[X∈S]−Pr[Y ∈S]},
which equals half

∑
z |Pr[X=z]− Pr[Y =z]|.

29Here the random process M replaces the wx,y’s that appear in Eq. (2); specifically, Pr[M(x)=y] =
wx,y

Pr[X=x]
.
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Claim A.1 (on the earth mover’s distance with the inequality measure): The earth mover’s dis-
tance with respect to the inequality measure (i.e., f(x, y) = 1 if x ̸= y and f(x, x) = 0) coincides
with the total variation distance.

Proof: For S = {z : Pr[Y = z] ≥ Pr[X = z]}, consider the randomized process M such that

M(z) = z if z ∈ S and Pr[M(z) = z] = Pr[Y=z]
Pr[X=z] otherwise, where the excess probability mass is

distributed among the strings in S so that M(X) ≡ Y . Note that the cost of this M equals∑
x ̸∈S

Pr[X=x] ·
(
1− Pr[Y =z]

Pr[X=z]

)

which equals the total variation distance. Hence, the earth mover distance (w.r.t inequality) is
upper-bounded by the total variation distance. On the other hand, the earth mover distance
(w.r.t inequality) is lower-bounded by the total variation distance, since the latter measures the
probability mass that has to be moved from S = {z : Pr[X=z] ≥ Pr[Y =z]} to S.

A.2 Ramifications regarding Theorem 1.4

We first restate the basic claim of Theorem 1.4 and improve it in the special case of “nice” query
complexity bounds. Specifically, we prove the following.

Theorem A.2 (Theorem 1.4, restated and improved): Let Π and DΠ be as in Theorem 1.4. If the
query complexity of testing Π is q, then the query complexity of testing DΠ is at most q′ such that
q′(n, ϵ) = Õ(1/ϵ) · q(n, ϵ/2). Furthermore, if q(n, ϵ) ≥ 2c · q(n, 2ϵ) holds for some constant c ≥ 1
and all ϵ ∈ [O(1/n),Ω(1)], then q′(n, ϵ) = O(q(n, ϵ)) if c > 1 and q′(n, ϵ) = O(log(1/ϵ))3 · q(n, ϵ)
otherwise (i.e., if c = 1). In both cases, the tester uses O(1/ϵ) samples.

Proof: Recall that the proof of the main claim relied on the observation that if the tested dis-
tribution P is ϵ-far from Dn (according to Definition 1.1), then, x ∼ P is ϵ/2-H-far from Πn with
probability at least ϵ/2. (This is the case, since otherwise, letting f(x) be a string in Πn that is
closest to x in Hamming distance yields a distribution Q(y) =

∑
x∈f−1(y) P (x) that is in DΠ and is

( ϵ2 · 1 + (1− ϵ
2) ·

ϵ
2)-close to P .)

The furthermore claim is proved by employing Levin’s Economical Work Investment Strat-
egy [15, Sec. 8.2.4]. Specifically, the key observation is that there exists i ∈ [⌈log2(16/ϵ)⌉] such
that with probability at least 2−i/(i + 3)2 it holds that x ∼ X is 2i−3 · ϵ-H-far from Πn. In
this case, the query complexity is

∑
i≤ℓO(i2 · 2i) · q(n, 2i−3ϵ), where ℓ = ⌈log2(16/ϵ)⌉. Using

q(n, 2i−3ϵ) ≤ (2i−3)−c·q(n, ϵ), the foregoing sum is upper-bounded by is
∑

i≤ℓ i
2·2−(c−1)·i·O(q(n, ϵ)),

and the claim follows.

Generalization. Towards the following generalization of Theorem A.2, we consider a general-
ization of property testing of strings. In this generalization the property Πn is partitioned into
m = m(n) parts and, when accepting, the tester also indicates the index of the part in which the
object resides. For example, the set of low-degree multi-variate polynomials can be partitioned
according to their value at a fixed point, and coupled with a generalized tester of low complexity.
Generalizing Theorem A.2, we get –
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Theorem A.3 (Theorem A.2, generalized): For m : N→ N, let Π = {Πn}n∈N be an m-partitioned
property that is testable in the generalized sense within query complexity q(n, ϵ). Let D = {Dn}n∈N
be a property of distributions over [m(n)] that is testable in the standard model with sample complex-
ity s(m, ϵ) = Ω(1/ϵ), and let C = CΠ,D be a property of distributions such that X is in C if and only
if X consists of selecting an index i ∈ [m] according to some distribution in D and outputting an

element selected according to an arbitrary distribution that is supported by a subset of Π
(i)
n . Then,

the query complexity of testing C is at most q′ such that q′(n, ϵ) = Õ(s(m(n), 0.3ϵ)) · q(n, 0.3ϵ).

In particular, if Πn = ∪i∈[m]Π
(i)
n such that each Π

(i)
n is testable with q(n, ϵ) queries and the Π

(i)
n ’s

are δ-H-far apart, then we can obtain a generalized tester of query complexity Õ(m(n)) · q(n, δ) +
O(q(n, ϵ)) for Πn.

Proof: We combine the tester for Π, denoted T , with the tester for D, while invoking both
with proximity parameter ϵ/2, and reducing the error probability of T to o(1/s(m(n), 0.3ϵ)).
Hence, when invoked on input (n, 0.3ϵ) and given oracle access to x ∈ {0, 1}n, with probability

at least 1 − o(1/s(m(n), 0.3ϵ)), the tester T outputs i if x ∈ Π
(i)
n , where Π

(i)
n is the ith part of

Πn, and rejects (with output 0) if x is 0.3ϵ-H-far from Πn. Furthermore, with probability at least

1 − o(1/s(m(n), 0.3ϵ)), the tester T does not output i if x is 0.3ϵ-H-far from Π
(i)
n . Denoting the

(majority) output of T by χ(x), we may assume that either χ(x) = 0 (indicating rejection) or x

is ϵ/2-H-close to Π
(χ(x))
n . The key observation is that if X is ϵ-far from C (according to Defini-

tion 1.1), then either X is 0.7ϵ-far from being distributed over Πn (according to Definition 1.1)
or χ(X) is 0.3ϵ-TV-far from D. Hence, we get an adequate tester that, on access to the samples
x(1), . . . , x(s), where s = s(m(n), 0.3ϵ), invokes T on each of these samples, obtaining the answers
a1, . . . , as ∈ {0, 1, . . . ,m(n)}, rejects if any of these ai’s equals 0, and outputs the verdict of the
distribution tester (i.e., the D-tester) on (a1, . . . , as) ∈ [m(n)]s otherwise.

To see that the foregoing tester is correct, note that if X in C, then X = YI such that I is

in D and each Yi is supported by Π
(i)
n . It follows that, in this case, X is accepted with high

probability. On the other hand, if X is accepted with high probability, then χ(X) is 0.3ϵ-TV-close
to a distribution in D, and, with probability at least 1 − 0.3ϵ over the choice of x ∼ X, it holds

that x is 0.3ϵ-H-close to Π
(χ(x))
n . It follows that X is ϵ-close to C.

A.3 Towards a stronger version of Theorem 1.6

Recall that, for any property D that is closed under mapping, Theorem 1.6 upper-bounds the query
complexity of testing D in the DoHO model in terms of the sample complexity of testing D in the
standard model. This leaves open the question of whether the query complexity of testing D in the
DoHO model can be similarly upper-bounded in terms of the sample complexity of testing D in
the DoHO model, which may be lower than the sample complexity of testing D in the standard
model. A possible avenue towards establishing such a result is resolving positively the following
open problem.

Open Problem A.4 (preservation of distances under a random relabeling): Suppose that D is a
property of distributions over n-bit strings that is closed under mapping. Is it the case that if X is ϵ-
far from D, then, with high probability over the choice of a random bijection π : {0, 1}n → {0, 1}n, it
holds that π(X) is Ω(ϵ)-far from D? We stress that the distances here are according to Definition 1.1
and that the hidden constant in the Ω-notation is universal.
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A positive answer to Problem A.4 would allow to convert a tester for D in the DoHO model into
one that only considers the collision pattern among the samples. Specifically, given a collision
pattern among s samples, the latter tester will generate at random a sequence of s samples that
fits the given collision pattern, and invoke the original tester on this sequence of samples. In such
a case, we can apply the strategy used in the proof of Theorem 1.6 to the resulting tester.

We were able to establish a positive answer to Problem A.4 in the special case that the support
of X has size at most 2(0.5−Ω(1))·n. In fact, in that case, we prove a stronger result (where, for
simplicity, 0.49 stands for 0.5− Ω(1)).

Proposition A.5 (a partial answer to Problem A.4): Suppose that D is a property of distributions
over n-bit strings that is closed under mapping, and that X has support size at most 20.49n. Then, if
X is ϵ-far from D in total variation distance, then, with high probability over the choice of a random
bijection π : {0, 1}n → {0, 1}n, it holds that π(X) is Ω(ϵ)-far from D according to Definition 1.1.

The restriction on X is essential; see Section 2.2.

Proof: The key observation is that, for some constant δ > 0, with high probability over the choice
of a random bijection π : {0, 1}n → {0, 1}n, it holds that the elements in the support of π(X) are
at relative Hamming distance at least δ. Fixing any such π, we let C denote the support of π(X)
and note that minw ̸=w′∈C{∆H(w,w′)} ≥ δ. Assuming that X ′ = π(X) is ϵ′-close to D according
to Definition 1.1, we shall show that X ′ is 2

δ · ϵ
′-close to D in total variation distance. (It follows

that X is 2
δ · ϵ

′-close to D in total variation distance.) Specifically, we consider a distribution Y in
D such that X ′ is ϵ′-close to Y according to Definition 1.1, and show that a related distribution Y ′

that is also in D is 2
δ · ϵ

′-close to X ′ in total variation distance. In particular, we shall replace Y by
the distribution Y ′ of the strings in C that are closest to Y .

Claim A.5.1 (the effect of correction to the closest element of C): Suppose that X ′ is supported
on a set C such that minw ̸=w′∈C{∆H(w,w′)} ≥ δ, and that Y is ϵ′-close to X ′ according to Def-
inition 1.1. Then, Y ′ = corr(Y ) is 2

δ · ϵ
′-close to X ′ in total variation distance, where corr(y)

denotes a string in C that is closest to y.

Recalling that in our application Y is in D, it follows that corr(Y ) is in D, since D is closed under
mapping. Hence, X ′ is 2

δ · ϵ
′-close to D.

Proof: Intuitively, replacing Y by corr(Y ) may increase the distance from X ′ according to Defi-
nition 1.1, but not too much (i.e., for x′ ∈ C, it holds that ∆H(x′, corr(y)) ≤ 2 ·∆H(x′, y)). The
key observation is that the distance of Y ′ = corr(Y ) to X ′ (according to Definition 1.1) is due
solely to strings that are at Hamming distance at least δ. This implies that the total variation
distance between Y ′ and X ′ is at least a δ fraction of the distance between Y ′ and X ′ according to
Definition 1.1. Furthermore, we shall show that the total variation distance between Y ′ and X ′ is
at least a δ/2 fraction of the distance between Y and X ′ according to Definition 1.1. The actual
proof follow.

For wx′,y’s as in Definition 1.1 (i.e., the minimum sequence of non-negative numbers that satisfies∑
y wx′,y = Pr[X ′=x′] and

∑
x′ wx′,y = Pr[Y =y]), the hypothesis means that∑

x′,y∈{0,1}n
wx′,y ·∆H(x′, y) ≤ ϵ′.
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Recall that wx′,y > 0 only if x′ ∈ C, and that corr(y) denote a string in C that is closest to y.
Then, the foregoing sum equals∑

y∈{0,1}n
wcorr(y),y ·∆H(corr(y), y) +

∑
y∈{0,1}n

∑
x′∈C\{corr(y)}

wx′,y ·∆H(x′, y)

which is lower-bounded by ∑
y∈{0,1}n

∑
x′∈C\{corr(y)}

wx′,y ·
δ

2

because ∆H(x′, y) ≥ ∆H(x′, corr(y)) − ∆H(corr(y), y) and ∆H(x′, y) ≥ ∆H(corr(y), y) for any
x′ ∈ C, which implies ∆H(x′, y) ≥ ∆H(x′, corr(y))/2, whereas ∆H(x′, corr(y)) ≥ δ (for x′ ∈
C \ {corr(y)}). Hence, ∑

y∈{0,1}n

∑
x′∈C\{corr(y)}

wx′,y ·
δ

2
≤ ϵ′. (16)

Next, we observe that the total variation distance between X ′ and corr(Y ) is upper-bounded by∑
y′∈C

∑
x′∈C\{y′}

∑
y:corr(y)=y′

wx′,y =
∑

y∈{0,1}n

∑
x′∈C\{corr(y)}

wx′,y, (17)

since the l.h.s represents the cost of a possible way of transforming X ′ into corr(Y ).30 Combining
Eq. (16) and Eq. (17), it follows that X ′ is 2

δ · ϵ
′-close to Y ′ = corr(Y ) in total variation distance.

Recalling that corr(Y ) is in D and using Claim A.5.1, it follows that X ′ is 2
δ · ϵ

′-close to D
in total variation distance. (Recall that it follows that X = π−1(X ′) is 2

δ · ϵ
′-close to D in total

variation distance, since D is label invariant.)31 The claim follows, since if X is ϵ-far from D in
total variation distance, then X ′ must be δϵ/2-far from D according to Definition 1.1.

A.4 On standard testing of equality of distributions

Recall that when proving the furthermore clause of Theorem 5.2 we use the fact that the equality
tester (for the standard model) of [12] works also when only the support size of one of the tested
distributions is upper-bounded.32 Here, we provide more details about the proof of this fact.

Theorem A.6 (testing equality of two unknown distributions, revised): Suppose that X and Y are
distributed over U and that one of them has support size at most n. Then, distinguishing between the
case that X ≡ Y and the case that X is ϵ-far from Y is possible in time O(max(n2/3/ϵ4/3,

√
n/ϵ2)).

30That is, we map to y′ the mass of X ′ that was mapped to {y : corr(y) = y′} (i.e.,
∑

x′∈C\{y′}
∑

y:corr(y)=y′ wx′,y),

where we pay 1 unit per each x′ ̸= y′. Recall that the total variation distance equals the earth mover’s distance with
respect to the inequality function (i.e., InEq(x′, y′) = 1 if x′ ̸= y and InEq(y′, y′) = 0).

31Indeed, unlike Definition 1.1, the total variation distance (between a pair of distributions) is preserved under
relabeling.

32This is not a generic claim regarding any such tester. Consider, for example, a modification of any tester such
that the modified algorithm always accepts if all samples that are taken from one of the distributions are distinct.
The latter event is unlikely when the support size of both distributions is smaller than the square of the number of
samples, but is extremely likely if one distribution is uniform over a sufficiently large set (i.e., much larger than the
square of the number of samples).
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This is a generalization of [15, Thm. 11.24], which originates in [12], where the special case mandates
that U = [n] (and in that case the said algorithm is a tester of equality).

Proof: We follow the presentation of [15, Sec. 11.2–11.3], and observe that the support size is only
used in the proof of [15, Cor. 11.21], when upper-bounding the total variation distance between
two distributions by the norm-2 of their difference, whereas essentially the same upper bound holds
also if only the support of one of the distributions is upper-bounded. Details follow.

Our starting point is [15, Alg. 11.17], which is stated as referring to distributions over [n] but
can be restated as referring to distributions over U . Recall that the actions of this algorithm only
depend on the s samples it obtains from each distribution, whereas s is a free parameter. The
same holds with respect to the analysis of this algorithm as an L2-distance approximator, which is
provided in [15, Thm. 11.20].

The key point is that the analysis of [15, Alg. 11.17] as a very crude L1-distance approximator,
provided in [15, Cor. 11.21], remains valid under the relaxed hypothesis (i.e., when only one of the
two distributions is guaranteed to have support size at most n). This is because this upper bound
(on the support size) is only used when upper-bounding the norm-1 (of the difference between the
two distributions) by the norm-2 of the same difference. We observe that we only lose a factor of
two when performing the argument on the smaller of the two supports, because at least half of
the norm-1 of the difference is due to this smaller support. Specifically, let p : S → [0, 1] be the
probability function representing one distribution and q : U → [0, 1] be the function representing
the other distribution, where S ⊆ U . Then,∑

i∈U
|p(i)− q(i)| = 2 ·

∑
i∈U :p(i)>q(i)

|p(i)− q(i)|

≤ 2 ·
∑
i∈S
|p(i)− q(i)|

≤ 2 ·
√
|S| ·

(∑
i∈S
|p(i)− q(i)|2

)1/2

≤ 2 ·
√
|S| ·

(∑
i∈U
|p(i)− q(i)|2

)1/2

where the first inequality is due to {i ∈ U : p(i) > q(i)} ⊆ {i ∈ U : p(i) > 0} = S. (Indeed, the
first and last inequalities are the place where we go beyond the original proof of [15, Cor. 11.21].)
Hence, ∥p− q∥1 ≤ 2

√
|S| · ∥p− q∥2, where |S| ≤ n by our hypothesis. (In the original proof of [15,

Cor. 11.21], which refers to p, q : [n]→ [0, 1], one gets ∥p− q∥1 ≤
√
n · ∥p− q∥2, but the difference

is immaterial.)
Next, we note that [15, Cor. 11.22(2)] remains valid under the relaxed hypothesis (i.e., when

only one of the two distributions is guaranteed to have support size at most n).33 We stress that
this result will only be used when β ≥ n−1/2 (as presumed in the original text).

Lastly, we turn to [15, Alg. 11.24], which is stated as referring to distributions over [n] but can
be restated as referring to distributions over U , while making n a free parameter (just as m in
the original text). When analyzing this algorithm, we let n denote an upper bound on the size

33We mention that [15, Cor. 11.22(1)] also remains valid (even when both distributions have support of unbounded
size), but it is not used here.
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of the support of one of the two distributions, and apply the revised [15, Cor. 11.22(2)] (which
holds in this case). Using m = min(n2/3/ϵ4/3, n) (as in the original text), the current claim follows
(analogously to establishing [15, Thm. 11.26]).
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