
A Refinement of the Meyer-McCreight Union Theorem

Siddharth Bhaskar

August 19, 2021

Abstract
For a function t : 2? → 1?, let Ct be the set of problems decidable on input x in time

at most t(x) almost everywhere. The Union Theorem of Meyer and McCreight asserts that
any union

⋃
i<ω Cti for a uniformly recursive sequence of bounds ti is equal to CL for some

single recursive function L. In particular the class Ptime of polynomial-time relations can be
expressed as CL for some total recursive function L : 2? → 1?. By controlling the complexity of
the construction, we show that in fact Ptime = CL for some L computable in quasi-polynomial
time.

1 Introduction

Blum [1] observed that several fundamental properties about time complexity classes could be
derived abstractly using a few important properties of Turing machines as black boxes; in particular,
the property that the relation Φe(x) ≤ n is decidable, where Φe(x) is the running time of the Turing
machine encoded by e on the input x. (Indeed, the theory applies much more broadly, but we restrict
our attention to time on Turing machines.) Using this framework, Meyer and McCreight [4] showed
that given any uniformly recursive monotone sequence t0 < t1 < t2 < . . . of time bounds, there
exists a recursive function t such that a problem is decidable in time t iff it is decidable in time ti for
some i. If Ct is the set of problems decidable in time t almost everywhere, we have Ct =

⋃
i<ω Cti .

This result is known as the Union Theorem.
Consequentially, there is a single recursive function t such that the class Ct is equal to Ptime,

and the same holds for any complexity class which can be naturally expressed as a length-ω union
of Dtime(ti(n)) for a monotone sequence of recursive functions ti. The time bound t is super-
polynomial, but only just.

In this note, we show that Ptime is not only equal to Ct for some recursive function t, but
in fact that we can locate such a t within the class of quasi-polynomial time functions, i.e., those

computable in time 2(logn)
O(1)

. The starting point of our investigation is that the “Blum relation”
Φe(x) ≤ n is not only decidable, but is decidable quite efficiently, in particular within Ptime. Since
the Meyer-McCreight construction of t from ti does not use any unbounded minimization, we can
estimate the complexity of t from the complexity of ti and the complexity of the Blum relation.
The main technical innovation of our paper is a “delayed” version of the original diagonalization,
plus an analysis of its complexity.

Our paper is structured as follows: in Section 2, we review the fundamental background infor-
mation and notation; in Section 3, we prove the Blum relation is Ptime; in Section 4, we present
the delayed priority construction; and in Section 5, the complete theorem. Finally, in Section 6, we
discuss the significance and extensions of our work.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 134 (2021)

2 Preliminaries

Let ω be the set of natural numbers and {0, 1}? be the set of finite binary strings. We adopt the
convention, common in set theory, that identifies a natural number n with its set of predecessors
{0, 1, . . . , n − 1}. In particular, 2 = {0, 1}, and 2? is the set of binary strings. Similarly, 1? is the
set of unary strings. Given a string x, |x| ∈ ω is its length. We fix a polynomial-time bijection
〈·, ·〉 : 2? × 2? → 2? with inverse functions π0 and π1. (Colloquially, these are “pairing” and
“unpairing” functions respectively.)

In this paper, we shall have to deal with two different encodings of natural numbers by strings,
viz., by unary and binary numerals. To that end, we fix two bijections 1? ' ω and 2? ' ω, and
treat these as two separate copies of the natural numbers. The bijection 1? ' ω is simply given by
x 7→ |x|. We identify {1, 2}? with ω using the bijection

b0b1 . . . bn−1 7→ b0 + 2b1 + · · ·+ 2n−1bn−1;

then by fixing a bijection of {1, 2} with 2, we get an identification of 2? ' ω. Under this identi-
fication, the length of a number is proportional to the logarithm of its magnitude, and that the
arithmetic operations +,×,−,÷ as well as integer comparison < are all computable in polynomial
time.

For any sets X and Y , let X ⇀ Y be the set of partial functions from X to Y . If f : X ⇀ Y ,
then by f(x) = y, f(x) ≤ y, etc., we mean in particular that x is in the domain of convergence of
f . Let ∃∞ and ∀∞ mean “there exist infinitely many” and “for all but finitely many” respectively.
If P (x) is a unary predicate on the natural numbers, then by (µx)P (x) we mean the least natural
number satisfying P , if it exists. (We can also form (µx)P (x) for P ⊆ 1? or P ⊆ 2? via the above
identifications of these sets with ω.)

We assume familiarity with the basics of Turing machines and time complexity classes. For a
function f : ω → ω, Dtime(f(n)) is the class of all relations decidable by a deterministic Turing
machine in time at most f(n) for inputs of total length n. (By a relation we mean a subset of
(2?)n for some n; thus complexity classes are classes of relations, not just languages, i.e., monadic
relations. The total length is the sum of the lengths of the inputs.) We also assume familiarity
with fundamental complexity classes like Ptime, Pspace, and Exptime. We define the class of
quasi-polynomial time relations by

QPtime =
⋃
c<ω

Dtime(2(logn)
c

).

Notice that Ptime (QPtime (Etime, where Etime =
⋃
c<ωDtime(2cn).

For a given relational class, we will typically prefix it by “F” to indicate the corresponding class
of functions. For example, FPtime is the class of functions computable by a Turing machine in
polynomial time. Note that we are being deliberately ambiguous about the type of these functions;
they could be, for example 2? → 2? or 2? → 1?. We identify each relation with its characteristic
function; this gives us a containment of each relational class in the corresponding functional class.

We collect several important properties of QPtime into a lemma. But first, a definition.

Definition 1. A quasi-polynomial time bound is a function q : ωn → ω of the form 2p(log a1,...,log an)

for some polynomial p : ωn → ω defined by an element of N[x1, . . . , xn].

Lemma 1. The following properties hold of QPtime and FQPtime.

2

1. A relation R(x1, . . . , xn) is in QPtime iff there is a quasi-polynomial time bound q : ωn → ω
such that R is decidable by some Turing machine in time q(|x1|, . . . , |xn|). f

2. The function f : 2? × 2? → 1? defined by f(x, y) = |x|log |y| is in FQPtime.

3. Quasi-polynomial time bounds are closed under composition.

4. QPtime relations are closed under FQPtime many-one reductions; i.e., if R ∈ QPtime and
f ∈ FQPtime, then R(f(x)) ∈ QPtime.

5. QPtime is self-low; i.e., any relation computable in quasi-polynomial time with respect to
a quasi-polynomial time oracle is again in quasi-polynomial time; i.e., QPtimeQPtime =
QPtime.

Proof. We briefly sketch the proof of each item:

1. We have to show that each function of the form 2(log(a1+···+an))
c

is bounded by a quasi-
polynomial time bound in (a1, . . . , an) and vice-versa. For the first direction, by the AM-GM
inequality, for any n ≥ 1 and natural numbers a1, . . . , an,

a1 + · · ·+ an ≤ n(a1 . . . an)
1
n ≤ na1 . . . an.

Hence by applying the monotone function x 7→ 2(log x)
c

to the left and right sides,

2(log(a1+···+an))
c

≤ 2(logn+(log a1+···+log an))
c

.

In the other direction, given a quasi-polynomial time bound q(a1, . . . , an) we have that

q(a1, . . . , an) ≤ q(a1 + · · ·+ an, . . . , a1 + · · ·+ an).

The latter term has the form 2p(log(a1+···+an)) for some polynomial p; bound p by some
monomial term.

2. Given y, we can calculate the binary numeral encoding |y| in polynomial time, and then
the binary numeral encoding log |y| again in polynomial time. Let us treat x as a unary
numeral. Now the computational task is to raise a unary numeral to a binary exponent, and
the time required by that task is no more than the space required to write the output, which
is |x|log |y| = 2log |x| log |y|, visibly a quasi-polynomial time bound.

3. This follows from the closure of natural-number polynomials under composition.

4. If R is decidable in time q1 and f is computable in time q2, both quasi-polynomial time bounds,
then R ◦ f is computable in time q2 + q1 ◦ q2, which is dominated by a quasi-polynomial time
bound.

5. If P is decidable in time q1 relative to an oracle R itself decidable within a quasi-polynomial
time bound q2, then P is decidable absolutely in time q1 · q2 ◦ q1, which is dominated by a
quasi-polynomial time bound.

3

A note of caution. Complexity classes are parameterized by time bounds, which are functions
of type 2? → ω. (Given a time bound t, we can form the class Ct of all relations decidable within
time t almost everywhere.) When we consider the complexity of computing these times bounds, it
is important to distinguish whether by ω we mean 1? or 2?.

Consider, for example, the function t(x) = 2|x|
2

. As a function 2? → 1? this is certainly not
polynomial-time computable—the output is too long—but, as a function 2? → 2?, it is. In the
latter case, we are in the strange (though not contradictory!) situation of having a Ptime function
t which defines complexity class containing Etime.

On the other hand, if we restrict our time bounds to functions of type 2? → 1?, then Ptime
enjoys the Ritchie-Cobham property ; viz., Ptime is the union of all Ct for t computable in polyno-
mial time (cf. Odifreddi [5]). In other words, Ptime is exactly the set of all relations which can be
computed within some polynomially-computable running time. Moreover, no such Ct exhausts all
of Ptime by the Time Hierarchy theorem.

In this paper, we exhibit a quasi-polynomial time computable function t of type 2? → 1? such
that Ct = Ptime. This is stronger than exhibiting such a function of type 2? → 2?. Moreover, there
is a good corresponding lower bound: we know that such a t cannot be computable in polynomial
time.

3 A Blum structure

Let us fix a “standard” encoding of Turing machines by binary strings. We will not specify the
encoding, but rather state the crucial property that we need it to satisfy, namely that it admits
an efficient universal machine. Efficient universal machines are required to justify the time and
space hierarchy theorems; every encoding of Turing machines presented in a textbook or classroom
admits them.

Time-efficient universal machines were studied by Hartmanis and Stearns [2] and refined by
Hennie and Stearns [3]. The following theorem is a form of the main result of the latter paper but
does not appear verbatim in either. In fact, it is not a theorem at all, since the phrase simulate
for n steps has no formal meaning. However, we regard this, and related informal statements
concerning the operation of Turing machines, as part of the “folk knowledge” of the complexity
theory community. In particular, we believe that we all understand the same thing by this, and
that it requires no further explanation.

Theorem 1 (Existence of time-efficient universal Turing machines). There is an encoding of Turing
machines Mα by strings α and a universal Turing machine U , such that for every string α encoding
a machine and string x ∈ 2?, U(α, x) = Mα(x) (in particular, one side diverges iff the other one
does). Moreover,

1. it is decidable in polynomial time whether a string encodes a machine,

2. for every α encoding a machine, U simulates n steps of the computation of Mα on input x
within O(|α|n log n) steps.

Definition 2. For strings α ∈ 2? which encode machines, let Φα : 2? ⇀ 1? be the running time of
Mα.

The notation Φα is supposed to recall Blum structures, which are an indexing ϕe of partial
recursive functions, along with a “resource bound” Φα for each program code e, such that the
relation Φα(n) < m is recursive.

4

Now we state two fundamental lemmas about the complexity of computing the running time of
a given machine on given inputs. The first of these is the refinement of the classical Blum property
above. That is to say, for an encoding of Turing machines with an efficient universal function, not
only is Φα(x) < m computable, but it’s efficiently computable as well.

Note that this is the central gambit of this paper—if the Blum relation is not only computable,
but within some complexity class, can we control the complexity of other constructions made using
Blum structures?

Lemma 2. The relation P (α, x, y) defined by

(α encodes a machine) ∧ (Φα(x) < |y|)

is contained in Ptime.

Proof. Given α, x, and y, first test whether α encodes a Turing machine, in time |α|O(1). If so, using
y as a counter, run the universal machine U on inputs (α, x) for O(|α||y| log |y|) steps, to simulate
Mα(x) for |y| steps. Output true or false depending on whether or nor Mα converges within this
time. The complexity of the whole process is (|α||y|)O(1).

The next lemma concerns the complexity of computing partial functions. For a partial function
f to be computed within time t means that there is a Turing machine computing f whose running
time is bounded by t on convergent inputs.

Lemma 3. If g : 2? → 1? is in FQPtime, then the partial function

f(α, x) =

{
Φα(x) if Φα(x) < g(x)

↑ otherwise

is computable in quasi-polynomial time.

Proof. On inputs α and x, first compute n = g(x) in unary, in quasi-polynomial time. Using n
as a counter, run the universal machine U(α, x) for O(|α|n log n) steps, to simulate Mα(x) for n
steps. Since n is bounded by 2|x|

c

for some c, O(|α|n log n) is quasi-polynomial time relative to x
and α.

4 Efficient quasi-selection and enumeration

In recursion theory, there are all sorts of constructions along the general lines of: given a relation
R(x, y), construct a (total or partial) function f with certain properties. For example, a selection
function f satisfies R(x, f(x)) if there exists a y such that R(x, y), and an enumeration function
enumerates the image of R. Furthermore, if R is computable, then f should be too.

In this section, given an arbitrary relation R, we want to construct a partial function f which
has some properties of both a selection and enumeration function. The problem is, these properties
are mutually contradictory: for example, we might imagine that the graph of R is a vertical line,
i.e., (∃!x)(∃y)R(x, y), but for that unique x-value x0, (∀y)R(x0, y). In this case, the domain of
convergence of any selection function is finite, but the domain of convergence of any enumeration
function is infinite.

5

However, we can make these properties consistent by weakening them. For selection, we only
require that R(x, f(x)) when f(x) converges. For enumeration, we only require that the image
of f contains the infinitely-often image {y : (∃∞x)R(x, y)}. (Notice that “weak selection” can be
satisfied in and of itself by the always-diverging function, but it becomes nontrivial in the presence
of “weak enumeration,” which forces convergence at certain values.) Moreover—importantly—we
will show that the complexity of f can be controlled by the complexity of R.

The definition follows. Instead of literally defining a partial function f from the relation R, we
shall define and work with a binary relation G, but this is simply the graph of f .

Definition 3. For a given relation R ⊆ ω × ω, define the relation G ⊆ ω × ω by recursion on x as
follows:

G(x, y) ⇐⇒ y = (µy′ < log x)
[
R(x, y′) ∧ (∀x′ < log x)¬G(x′, y)

]
.

If there is no such y′, then ¬G(x, y) for all y. (In particular, this yields the base case ¬G(0, y).)

Lemma 4. Let G be obtained from R as in Definition 3. Then

• for each y, its G-preimage {x : G(x, y)} is finite,

• for each x, its G-forward image {y : G(x, y)} is finite,

• if there is a y such that G(x, y), then there is a y < log x such that G(x, y),

• G is contained in R, and

• the image {y : (∃x)G(x, y)} of G contains the “infinitely-often image” {y : (∃∞x)R(x, y)} of
R.

Proof. The first four bullet points are straightforward. Notice that G is the graph of a partial
function: for each x, if G(x, y) for some y, then G(x, y) for a unique y, and moreover that y is less
than log x. Hence for each x, its G-forward image {y : G(x, y)} is finite (in fact of size 0 or 1). If
G(x, y) for any y, then y < log x.

For each y, if there exists an x such that G(x, y), then for every x′ > 2x, the definition of G
ensures that ¬G(x′ + 1, y). Hence for each y, the inverse image {x : G(x, y)} is finite. Finally, if
G(x, y), then R(x, y), again by definition of G.

Let us consider the final bullet point. Fix some y0, and suppose that R(x, y0) for infinitely many
x; let X be the set of such x. Suppose by contradiction that for all x, ¬G(x, y0). Then

(∀x ∈ X)
[
R(x, y0) ∧ (∀x′ < log x)¬G(x′, y0)

]
.

However
(∀x ∈ X)(∃y < y0)

[
R(x, y) ∧ (∀x′ < log x)¬G(x′, y)

]
,

for, if y0 were the least witness y for some x0 ∈ X, then G(x0, y0) by definition of G, contradicting
the assumption that (∀x)¬G(x, y0).

Abbreviate R(x, y) ∧ (∀x′ < log x)¬G(x′, y) by Q(x, y). Then we have (∀x ∈ X)Q(x, y0) but
(∀x ∈ X)(∃y < y0)Q(x, y). Since X is an infinite set and {y : y < y0} is finite, we may conclude
(∃y < y0)(∃∞x ∈ X)Q(x, y).

Let y1 be the least witness y < y0 to (∃∞x ∈ X)Q(x, y). Then (∀y < y1)(∀∞x ∈ X)¬Q(x, y).
Exchanging quantifiers, (∀∞x ∈ X)(∀y < y1)¬Q(x, y). Since (∃∞x ∈ X)Q(x, y1), we may pick a
witness x0 satisfying x0 > 2y1 , Q(x0, y1), and (∀y < y1)¬Q(x0, y). Then

y1 = (µy < log x0)(Q(x0, y)),

6

and hence G(x0, y1) by definition of G.
However, since (∃∞x ∈ X)Q(x, y1), we may pick x1 ∈ X such that Q(x1, y1) and x1 > 2x0 . By

definition of Q, (∀x′ < log x1)¬G(x′, y1), but this contradicts G(x0, y1).

A game for G. Suppose that y < log x and R(x, y). Then there are two ways in which G(x, y)
could fail. Either there could be a strictly smaller y′ < y such that G(x, y′), or there could be some
x′ < log x such that G(x′, y). This suggests the following game for G:

Definition 4. Define a game G as follows. The positions of G are all pairs (x, y) ∈ ω×ω such that
y < log x and R(x, y). Given a position (x, y) the valid moves consist of all positions of the form
(x, y′) such that y′ < y, plus all positions of the form (x′, y) such that x′ < log x.

There are two players, I and II. Player I moves first from a given starting position (x, y)
and players alternate thereafter. A play is a sequence of positions ((x0, y0), (x1, y1), . . .) such that
each (xi, yi) → (xi+1, yi+1) is a valid move. Notice that each play of G must be finite. A play
((x0, y0), . . . , (xn, yn)) is terminal in case there are no valid moves from (xn, yn). A terminal play
is winning for I in case n is odd, otherwise it is winning for II. (In other words, if some player has
no permissible moves, the other player wins.)

Finally, let G† be the “dual game” in which player II moves first, and let us denote by, e.g.,
G(x, y) the game G from the initial position (x, y).

Remark 1. Notice that for any (x, y), G(x, y) is determined, i.e., either I has a winning strategy or
II does. Furthermore, I has a winning strategy in G(x, y) iff II has a winning strategy in G†(x, y).

Finally, G and G† can be defined by simultaneous recursion as follows. Given a position (x, y)
of G, player I moves to a position (x′, y′) of G†. Similarly, given a position (x, y) of G†, player II
moves to a position (x′, y′) of G.

The point is that G can be characterized by who wins G:

Lemma 5. Suppose y < log x and R(x, y). Then G(x, y) iff player II has a winning strategy in
the game G(x, y).

Proof. By induction on x + y. Suppose G(x, y). Then for every y′ < y, it must be the case that
¬G(x, y′), so player I has a winning strategy in G(x, y′) by induction, and hence player II has a
winning strategy in G†(x, y′). Similarly, for every x′ < log x, it must be the case that ¬G(x′, y), so
player II has a winning strategy in G†(x′, y).

Therefore, if G(x, y), then no matter which valid move player I makes from G(x, y), player II
has a winning strategy in the resulting instance of G†. Hence player II has a winning strategy in
G(x, y).

Conversely, suppose that ¬G(x, y). Then there is either some y′ < y such that G(x, y′) or some
x′ < log x such that G(x′, y). By induction, this means that there is either some y′ < y such that
player I has a winning strategy in G†(x, y′) or some x′ < log x such that player I has a winning
strategy in G†(x′, y). Therefore, player I has a winning strategy in G(x, y), by choosing to move to
the appropriate position of G†.

Corollary 1. Suppose ((x0, y0), . . . , (xn, yn)) is a play of G in which both players move optimally.
Then for each 0 ≤ i < n, G(xi, yi) ⇐⇒ ¬G(xi+1, yi+1).

Proof. The proof is by induction on n; there is nothing to prove if n = 0. Suppose that G(x0, y0),
so that player II has a winning strategy in G(x0, y0). Then player II has a winning strategy

7

in G†(x1, y1), so by Lemma 5, ¬G(x1, y1), and by induction, G(xi, yi) ⇐⇒ ¬G(xi+1, yi+1) for
1 ≤ i < n. Since G(x0, y0), we get G(xi, yi) ⇐⇒ ¬G(xi+1, yi+1) for 0 ≤ i < n. The proof is
similar (switching the roles of I and II) if ¬G(x0, y0).

Now we tackle the question of deciding G efficiently.

Definition 5. For any position (x, y) game tree of G(x, y) is the set of all valid plays starting with
(x, y). (This is a tree in the sense that it’s a prefix-closed set of sequences.)

To evaluate G(x, y), the idea is to construct the game tree for G(x, y), and then evaluate it
using the so-called “minimax” algorithm. This performs a depth-first traversal of the game tree,
recursively evaluating the winning positions at all children of (x, y), and using that to evaluate who
wins at (x, y). This algorithm takes time polynomial in the size of the game tree, so it suffices to
analyze the complexity of constructing the game tree.

The problem is that the game tree of G(x, y) might be too large relative to |x|. (We only care
about (x, y) for which y < log x, so we may take |x| to be the only parameter.) The reason is that
from any position there may be plays of length log x ≈ |x|. (Consider (x, y) where y = log x, and R
is always true. Then ((x, y), (x, y− 1), (x, y− 2), . . .) is a play of length log x.) This means that the
size of the game tree may be exponential in |x| in general—too big to construct in quasipolynomial
time.

Our way around this is to prune some strategies where one or the other player does not make
his or her best move. This is a common trick in game-playing algorithms: to evaluate which player
wins from a given position, we can ignore moves which we know to be sub-optimal, and thus reduce
the size of the tree we need to search through. Indeed, we will show that any play that follows a
winning strategy must be very short relative to the length of x. The resulting subtree of the game
tree we obtain will be small enough to construct in quasi-polynomial time.

Definition 6. Let a move in G of the form (x, y) 7→ (x′, y) for x′ < log x be a move of type (a),
and a move of the form (x, y) 7→ (x, y′) for y′ < y be a move of type (b).

Lemma 6. Suppose ((x0, y0), . . . , (xn, yn)) is a play of G in which both players play optimally.
Then there cannot be 3 (or more) consecutive moves of type (b).

Proof. Suppose that (x, y) 7→ (x, y′) 7→ (x, y′′) 7→ (x, y′′′) were 3 consecutive moves of type (b);
then y > y′ > y′′ > y′′′. By Corollary 1, either G(x, y) and G(x, y′′) or G(x, y′) and G(x, y′′′). But
either case is contradictory, since G is the graph of a partial function.

Remark 2. A play starting with (x, y) in which no three moves of type (b) are made consecutively
is very short relative to the magnitude of x. Namely, at least every third move, the x-value must
decrease by at least a logarithm. Hence the length of any such play is bounded above by 3 log? x,
where log? is the iterated logarithm. The iterated logarithm log? x certainly grows slower than, say,
log |x| ≈ log(log x).

Theorem 2. If R ∈ QPtime, then G ∈ QPtime.

Proof. We present a quasi-polynomial time decision procedure for G. Given (x, y), first verify that
y < log x and R(x, y), otherwise reject. Construct the game tree of G(x, y), omitting any plays
which have three or more consecutive moves of type (b).

From a position (x, y), there are most log x + y ≤ 2 log x valid moves, which means that every
node has at most 2 log x = 2|x| children. Moreover, the depth of this tree is at most 3 log |x|, as

8

observed above. Hence, the size of this tree is bounded by (2|x|)3 log |x| = 2O((log |x|)2), a quasi-
polynomial in |x|. The time required to construct this tree is bounded by a polynomial in the size
of the tree, so itself is a quasi-polynomial in |x|.

Finally, use the minimax algorithm applied to this game tree to determine the winner. The
complexity of this algorithm is again bounded by a polynomial in the size of the tree, which again
is a quasi-polynomial in |x|.

5 The union theorem

In this section, we prove a refinement of the Meyer-McCreight Union Theorem. The construction
of L is essentially identical to the construction in the original proof; all we must do is estimate its
complexity using the results of the previous section.

An important definition in this section is that of a complexity class Cf given a function f .

Definition 7. If f : 2? → 1?, then Cf is the class of decision problems decidable in time f almost
everywhere, i.e.,

Cf = {X ⊆ 2? : (∃α)Mα decides X ∧ (∀∞x) Φα < f(x)}.

Definition 8. Define t : 2? × 2? → 1? by t(x, y) = |x|log |y|; define ty(x) = t(x, y).

As observed previously, t ∈ FQPtime. When writing ty, we will typically think of y as living
in ω, using the bijection ω ' 2? specified earlier. Notice that Ct0 ⊆ Ct1 ⊆ . . . and the union of this
sequence is Ptime. The objective in this section is to construct an L : 2? → 1? in FQPtime such
that CL =

⋃
y<ω Cty = Ptime.

Definition 9. Define R ⊆ 2? × 2? by

R(x, y) ⇐⇒ ty(x) < Φπ0(y)(x) ≤ tx(x).

Remark 3. Notice that R is obtained by taking the polynomial-time relation Q ⊆ 1?× 2?× 2?× 1?

given by
Q(u, e, w, z) ⇐⇒ u < Φα(w) ≤ z

and substituting u ← ty(x), e ← π0(y), w ← x, and z ← tx(x). Since these are all FQPtime-
computable functions, R ∈ QPtime by the closure of QPtime under FQPtime reductions.

Definition 10. Define G ⊆ 2? × 2? from R as in Lemma 3, viz.,

G(x, y) ⇐⇒ y = (µy′ < log x)
[
R(x, y′) ∧ (∀x′ < log x)¬G(x′, y)

]
.

If there is no such y′, then ¬G(x, y) for all y.

Since R ∈ QPtime, G ∈ QPtime by Theorem 2.

Definition 11. Define L : 2? → 1? by

L(x) =

{
Φπ0(y?)(x)− 1 if y? = (µy)G(x, y)

tx(x) if ¬(∃y)G(x, y).

Remark 4. Observe that (∀x ∈ 2?)L(x) ≤ tx(x).

9

Lemma 7. L ∈ FQPtime.

Proof. Consider first the problem of, given x, finding out whether there exists a y ∈ 2? such that
G(x, y), and if so, finding the least one y?. By Lemma 4, we may restrict our search to y < log x,
which is |x| many strings. Since testing G(x, y) for each y < log x takes time bounded by a fixed
quasi-polynomial bound in |x|, this whole procedure runs in quasi-polynomial time.

If there exists a least witness y? to G(x, y), then in particular R(x, y?), so Φπ0(y?)(x) ≤ tx(x).
Since x 7→ tx(x) : 2? → 1? is contained in FQPtime, the partial function

f(α, x) =

{
Φα(x) if Φα(x) ≤ tx(x)

↑ otherwise

is computable in FQPtime. Hence, so is the function f(π0(y?), x). But this is exactly the function
we need to evaluate in this case.

Otherwise, if there is no witness y to G(x, y), we simply evaluate and return tx(x), in quasi-
polynomial time.

Theorem 3. CL =
⋃
y<ω Cty .

Proof. We must show two containments, ⊆ and ⊇. For the latter, it suffices to show that for each
z < ω, Ctz ⊆ CL. To show this in turn, it suffices to show that L dominates each tz cofinitely
often; i.e., that for each z, there are at most finitely many solutions x to L(x) < tz(x). Fix z. It
suffices to partition 2? into finitely many pieces and show that L(x) < tz(x) has at most finitely
many solutions from each piece.

Consider x such that G(x, y) has no solutions in y. For such x, L(x) = tx(x), and for any
solution to L(x) < tz(x), |x|log |x| < |x|log |z|. For sufficiently long x the left-hand side is larger;
therefore, there are at most finitely many solutions x to |x|log |x| < |x|log |z|.

On the other hand, consider x such that G(x, y) for some y. Let y? = y?(x) be the least witness
to G(x, y); for such x, L(x) = Φπ0(y?)(x) − 1. For each x, G(x, y?) implies R(x, y?); in particular,
ty?(x) < Φπ0(y?)(x), and hence ty?(x) ≤ L(x). Therefore any solutions to L(x) < tz(x) must satisfy
ty?(x) < tz(x), and thus |y?| ≤ |z|.

In other words, for each such x, (∃y) |y| ≤ |z| ∧G(x, y). But the set of such x can be expressed
as a finite union (over all y such that |y| ≤ |z|) of the G-pre-image of y, each of which are finite by
Lemma 4. This concludes the proof of the containment ⊇.

It remains to show that CL ⊆
⋃
n<ω Ctn . We shall show that for every program code α, if Mα

decides a language outside
⋃
n<ω Ctn , then it is not in CL either. Fix such an α. The hypothesis

entails
(∀z < ω)(∃∞x) tz(x) < Φα(x).

Suppose by contradiction that Mα decides a language in CL, i.e., (∀∞x) Φα(x) < L(x). Then in
particular,

(∀z < ω)(∃∞x) tz(x) < Φα(x) ≤ L(x).

Since L(x) ≤ tx(x) for all x,

(∀z < ω)(∃∞x) tz(x) < Φα(x) ≤ tx(x).

Substituting 〈α, z〉 for z,

(∀z < ω)(∃∞x) t〈α,z〉(x) < Φα(x) ≤ tx(x),

10

i.e., (∀z < ω)(∃∞x)R(x, 〈α, z〉). By Lemma 4, the infinitely-often image of R is contained in the
image of G, so (∀z < ω)(∃x)G(x, 〈α, z〉). Let Z = {y : (∃z) y = 〈α, z〉} be the set of all y such that
π0(y) = α. Then Z is an infinite set, since z 7→ 〈α, z〉 is an injection, and Z is contained in the
image of G.

By Lemma 4, the forward image of any finite set is finite. Therefore, the preimage of Z must
be infinite. But for those infinitely many x in the G-preimage of Z, L(x) ≤ Φα(x). This is because
for such x, G(x, y) for a unique y ∈ Z; for this y, ty(x) < Φα(x), but also L(x) = Φα(x)− 1. This
contradicts the assumption that Φα(x) < L(x) for cofinitely many x.

Hence, the language decided by Mα is not contained in CL. Since α was arbitrary, CL ⊆⋃
z<ω Ctz , which is what we needed to show.

6 Discussion

We have obtained a dramatic reduction in the known complexity of any time bound defining Ptime.
The original statement of the Union Theorem only guarantees that the time bound is recursive;
perhaps a back-of-the-envelope calculations shows that it can be computable in exponential space.
On the other hand, we have located such a bound within FQPtime.

A natural question to ask is, “how general is our argument?” On one hand, it seems hard to
mirror it in any smaller class. We use, seemingly crucially, the fact that polynomial time bounds are
closed under composition, as well as the fact that the binary logarithm is computable in polynomial
time. For larger complexity classes with similar closure properties (like elementary-time or primitive
recursive relations), it is not clear what the corresponding analogue of QPtime is. However, we
do find it plausible that our results relativize, i.e., for any (relational) oracle O, PtimeO = COL for
some L ∈ FQPtimeO. If true, this says something to the effect that this phenomenon holds “in a
neighborhood” of Ptime.

As to the utility of our result, we believe that Ptime is of such fundamental interest that
anything novel and non-obvious we can say about it is worth knowing. However, a natural question
suggested by our work is, for a given complexity class C, what the minimal time or space bound
t is that we need to express C as Ct. Odifreddi [5] notes that practically every natural class of
recursive functions which is sufficiently rich is a complexity class for measures such as time or
space complexity.

One might expect that for “most” classes C, the complexity of any t such that C = Ct might
be large relative to the complexity of decision problems contained in C. If true, this might imply
that Ptime is special in some sense: the t in question is not that complex compared to elements of
Ptime.

Finally, we raise the question of what other constructions in Blum’s theory might be mined for
complexity-theoretic information. Certain constructions contain an unbounded search, and may
not admit a complexity-theoretic refinement, no matter how efficient the Blum relation. However,
as we have shown here, some constructions may be made very efficient. Looking for others strikes
us as an important endeavor, with plausibly new consequences.

11

References

[1] M. Blum: A Machine-Independent Theory of the Complexity of Recursive Functions. Journal
of the ACM 14 (1967) 322-336.

[2] J. Hartmanis and R.E. Stearns: On the Computational Complexity of Algorithms, Trans. Am.
Math. Soc. 117 (1965) 285–306.

[3] F. C. Hennie and R. E. Stearns: Two tape simulation of multitape Turing machines. Journal of
the ACM 13 (1966) 533-546.

[4] A. R. Meyer and E. M. McCreight: Classes of computable functions defined by bounds of
computations, Proc. Symp. Th. Comp. 1 (1969) 79-88.

[5] P. G. Odifreddi: Classical Recursion Theory, vol. II, North Holland, 1999.

12

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

