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We suggest a general framework to study dependency schemes for dependency quantified Boolean formulas (DQBF). As our main

contribution, we exhibit a new infinite collection of implication-free DQBF dependency schemes that generalise the reflexive resolution

path dependency scheme. We establish soundness of all these schemes, implying that they can be used in any DQBF proof system. We

further explore the power of QBF and DQBF resolution systems parameterised by implication-free dependency schemes and show that

the hierarchical structure naturally present among the dependency schemes translates isomorphically to a hierarchical structure of

parameterised proof systems with respect to p-simulation.

As a special case, we demonstrate that our new schemes are exponentially stronger than the reflexive resolution path dependency

scheme when used in Q-resolution, thus resulting in the strongest QBF dependency schemes known to date.
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1 INTRODUCTION

Quantified Boolean formulas (QBF) have been intensively studied in the past decade, both practically and theoretically.

On the practical side, there have been huge improvements in QBF solving [35]. These build on the success of SAT

solving [41], but also incorporate new ideas genuine to the QBF domain, such as expansion solving [26] and dependency

schemes [37]. Due to its PSPACE completeness, QBF solving is relevant to many application domains that cannot be

efficiently encoded into SAT [22, 28, 31]. On the theoretical side, there is a substantial body of QBF proof complexity

results (e.g. [3, 6, 8, 10, 11]), which calibrates the strength of solvers while guiding their development.

In QBF solving, a severe technical complication is that variable dependencies stemming from the linear order of

quantification
1
must be respected when assigning variables. In contrast, a SAT solver can assign variables in any order,

granting complete freedom to decision heuristics, which are crucial for performance. As a remedy, QBF researchers

have developed dependency schemes. Dependency schemes try to determine algorithmically which of the variable

dependencies are essential, thereby identifying spurious dependencies which can be safely disregarded. The result is

greater freedom for decision heuristics.

Practical QBF solving uses dependency schemes, for example the solvers DepQBF [29] and Qute [32, 33], and

experiments show dependency-aware solving is particularly competitive on QBFs with high quantifier complexity [25,

30]. The performance gains are also underlined by theoretical findings. There is a sequence of results [7, 34, 40] that

establish how and when dependency schemes are sound to use with a QBF proof system, such as the central QBF

resolution systems Q-resolution [27] and long-distance Q-resolution [2]. In [6] it is demonstrated that using the reflexive

resolution path dependency scheme (Drrs
[40]) in Q-resolution can exponentially shorten proofs.

While dependency schemes aim to algorithmically determine spurious dependencies, dependency quantified Boolean

formulas (DQBF) allow to directly express variable dependencies by specifying, for each existential variable 𝑥 , a

dependency set of universal variables on which 𝑥 depends. This is akin to the use of Henkin quantifiers in first-order

logic [23]. Compared to QBFs, DQBFs boost reasoning power and enable further applications (cf. [38] for an overview).

1
The standard input for solvers is a prenex QBF.
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The price of succinct encodings is an increase of the complexity of the satisfiability problem from PSPACE (for QBF) to

NEXP (for DQBF) [1].

It seems natural that there should be a relationship between dependency schemes and DQBF, and indeed Beyersdorff

et al. [7] suggest that dependency schemes for QBF should be viewed as truth-preserving mappings from QBF to DQBF.

Now, is there even a need for dependency schemes for DQBF? The answer is yes: also for DQBFs it is possible that

the dependency sets contain spurious dependencies, which can be safely eliminated [42]. Indeed, Wimmer et al. [42]

showed that several dependency schemes for QBF, including Drrs
, can be lifted to DQBF. They also demonstrated that

using dependency schemes for DQBF preprocessing can have a significant positive impact on solving time.

However, in contrast to QBF, there are currently no results on how DQBF dependency schemes can be incorporated

into DQBF proof systems, and how this affects their proof-theoretic strength.

This paper contributes to the theory of DQBF dependency schemes on three main fronts.

A. A proof complexity framework for DQBF dependency schemes. We extend the interpretation of QBF depen-

dency schemes proposed in [7] to DQBF. The result is a framework in which a sound DQBF dependency scheme D can

be straightforwardly incorporated into an arbitrary DQBF proof system P, yielding the parameterised system P(D). In
fact, in our framework a proof of Φ in P(D) is simply a P proof of D(Φ), where D is a mapping between DQBFs.

A major benefit of this approach is that the rules of the proof system remain independent of the dependency scheme,

which essentially plays the role of a preprocessor. Moreover, soundness of a dependency scheme is characterised by the

natural property of full exhibition [4, 39], independently of proofs. This is a welcome feature, since even defining sound

parameterisations on the QBF fragment has been fairly non-trivial, e.g. for the long-distance Q-resolution calculus

[4, 34].

We also extend the notion of genuine proof size lower bounds [13, 15] to DQBF proof systems. SinceDQBF encompasses

QBF, proof systems are susceptible to lower bounds from QBF proof complexity. We define a precise condition by

which hardness from the QBF fragment is factored out. As such, our framework fosters the first dedicated DQBF proof

complexity results.

B. The implication-free dependency schemes. We define and analyse a new infinite class of implication-free

dependency schemes D𝐹 (𝑅, _), parameterised by an implication relation 𝑅, and an integer _. Each implication-free

dependency scheme generalises the reflexive resolution-path dependency scheme Drrs
[40] by discarding resolution

paths subsumed by certain propositional implicants of the input formula, thereby identifyingmore spurious dependencies

through missing resolution-path connections. Which implicants can be used in this step is dictated by the implication

relation—the more implicants, the more spurious dependencies found, though possibly at an increased computational

cost. How long a segment of each path is checked for subsumption is controlled by _—again with a trade-off between

effectiveness and efficiency.

Drrs
itself is in fact also an implication-free dependency scheme, as is Dtf

, the tautology-free dependency scheme,

which we introduced in the conference version of this paper [9], and which uses tautologies in place of implicants and

a _ value of 1. Prior to this paper, Drrs
was the strongest known DQBF dependency scheme—now it is superseded by

the implication-free schemes.

We show that all implication-free schemes are fully exhibited, and therefore sound, by reducing their full exhibition

to that of Drrs
. For this, we point out that the full exhibition of Drrs

on DQBF is an immediate consequence of results of

Wimmer et al. [42].
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C. Exponential separations of (D)QBF proof systems. To demonstrate the strength of our new schemes, we show

that they can exponentially shorten proofs in DQBF, as well as QBF, proof systems. As a case study, we consider the

expansion calculus ∀Exp+Res and the basic QBF system Q-resolution (Q-Res) [27]. These two proof systems form the

foundations of QBF proof theory: Q-Res, the first QBF proof system defined, is the foundation for proof systems that

model search-based solvers; ∀Exp+Res is the basis for expansion-based proof systems and solvers [26]. Of the two, only

∀Exp+Res lifts to a DQBF proof system—attempts to lift Q-Res and its derivatives to DQBF run into issues with either

soundness or completeness [12].

We show that parametrizing these proof systems by a particular class of implication-free dependency schemes (which

we call normal) operates homomorphically: the ordering of the dependency schemes with respect to their strength

carries over to the ordering of the proof systems with respect to p-simulation.

Since there exist no prior DQBF proof complexity results whatsoever, this entails proving exponential proof-size

lower bounds in an infinite number of proof systems. We obtain these by introducing a parameterised class of DQBF

versions of the equality formulas (originally QBFs [8, 14]). We highlight that these are genuine separations in the precise

sense of our DQBF framework, whereby hardness due to the QBF fragment is factored out.

Organisation. Section 2 defines DQBF preliminaries. In Section 3 we explain dependency schemes. Section 4 details

how to parameterise DQBF proof systems by dependency schemes. In Section 5 we define our new implication-free

schemes D𝐹 (𝑅, _) and show their soundness. In Section 6 we prove the proof complexity upper and lower bounds

needed to establish the hierarchy of proof systems corresponding to the hierarchical structure of implication-free

schemes. Finally, in Section 7 we discuss the computational cost of applying implication-free schemes.

2 PRELIMINARIES

DQBF syntax. We assume familiarity with the syntax of propositional logic and the notion of Boolean formula (simply

formula). A variable is an element 𝑧 of the countable set V. A literal is a variable 𝑧 or its negation 𝑧. The negation of a

literal 𝑎 is denoted 𝑎, where 𝑧 := 𝑧 for any variable 𝑧. A clause is a disjunction of literals. A conjunctive normal form

formula (CNF) is a conjunction of clauses. The set of variables appearing in a formula𝜓 is denoted vars(𝜓 ). For ease,
we often write clauses as sets of literals, and CNFs as sets of clauses. For any clause 𝐶 and any set of variables 𝑍 , we

define 𝐶↾𝑍 := {𝑎 ∈ 𝐶 : var(𝑎) ∈ 𝑍 }.
A dependency quantified Boolean formula (DQBF) is a sentence of the form Ψ := Π ·𝜓 , where

Π := ∀𝑢1 · · · ∀𝑢𝑚∃𝑥1 (𝑆𝑥1 ) · · · ∃𝑥𝑛 (𝑆𝑥𝑛 )

is the quantifier prefix and𝜓 is a CNF called the matrix. In the quantifier prefix, each existential variable 𝑥𝑖 is associated

with a dependency set 𝑆𝑥𝑖 , which is a subset of the universal variables {𝑢1, . . . , 𝑢𝑚}. With vars∀(Ψ) and vars∃ (Ψ) we
denote the universal and existential variable sets of Ψ, and with vars(Ψ) their union. We deal only with closed DQBFs,

in which vars(𝜓 ) ⊆ vars(Ψ). We define a relation deps(Ψ) on vars∀(Ψ) × vars∃ (Ψ), where (𝑢, 𝑥) ∈ deps(Ψ) if, and
only if, 𝑢 ∈ 𝑆𝑥 .

The set of all DQBFs is denoted DQBF. A QBF is a DQBF whose dependency sets are linearly ordered with respect to

set inclusion, i.e. 𝑆𝑥1 ⊆ · · · ⊆ 𝑆𝑥𝑛 . The prefix of a QBF can be written as a linear order in the conventional way. The set

of all QBFs is denoted QBF.

DQBF semantics. An assignment 𝛼 to a set 𝑍 of Boolean variables is a function from 𝑍 into the set of Boolean constants

{0, 1}. The domain restriction of 𝛼 to a subset 𝑍 ′ ⊆ 𝑍 is written 𝛼↾𝑍 ′ . The set of all assignments to 𝑍 is denoted ⟨𝑍 ⟩.
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The restriction of a formula𝜓 by 𝛼 , denoted𝜓 [𝛼], is the result of substituting each variable 𝑧 in 𝑍 by 𝛼 (𝑧), followed by

applying the standard simplifications for Boolean constants, i.e. 0 ↦→ 1, 1 ↦→ 0, 𝜙 ∨ 0 ↦→ 𝜙 , 𝜙 ∨ 1 ↦→ 1, 𝜙 ∧ 1 ↦→ 𝜙 , and

𝜙 ∧ 0 ↦→ 0. We say that 𝛼 satisfies 𝜓 when𝜓 [𝛼] = 1, and falsifies 𝜓 when𝜓 [𝛼] = 0. For a non-tautological clause 𝐶 , we

denote by 𝐶 the unique assignment 𝐶 : vars(𝐶) → {0, 1} that falsifies 𝐶 .
A model for a DQBF Ψ := Π ·𝜓 is a set of functions 𝑓 := {𝑓𝑥 : 𝑥 ∈ vars∃ (Ψ)}, 𝑓𝑥 : ⟨𝑆𝑥 ⟩ → ⟨{𝑥}⟩, for which, for each

𝛼 ∈ ⟨vars∀(Ψ)⟩, the combined assignment 𝛼 ∪ {𝑓𝑥 (𝛼↾𝑆𝑥 ) : 𝑥 ∈ vars∃ (Ψ)} satisfies 𝜓 . A DQBF is called true when it

has a model, otherwise it is called false. When two DQBFs share the same truth value, we write Ψ
tr≡ Ψ′.

DQBF expansion. Universal expansion is a syntactic transformation that removes a universal variable from a DQBF.

Let Ψ be a DQBF, let 𝑢 be a universal, and let 𝑦1, . . . , 𝑦𝑘 be the existentials for which 𝑢 ∈ 𝑆𝑦𝑖 . The expansion of Ψ by 𝑢 is

obtained by creating two ‘copies’ of Ψ. In the first copy, 𝑢 is assigned 0 and each 𝑦𝑖 is renamed 𝑦𝑢
𝑖
. In the second copy,

𝑢 is assigned 1 and each 𝑦𝑖 is renamed 𝑦𝑢
𝑖
. The two copies are then combined, and 𝑢 is removed completely from the

prefix. Formally, exp(Ψ, 𝑢) := Π′ ·𝜓 ′, where Π′ is obtained from Π by removing ∀𝑢 and replacing each ∃𝑦𝑖 (𝑆𝑦𝑖 ) with
∃𝑦𝑢

𝑖
(𝑆𝑦𝑖 \ {𝑢}) ∃𝑦𝑢𝑖 (𝑆𝑦𝑖 \ {𝑢}), and

𝜓 ′ := 𝜓 [𝑢 ↦→ 0, 𝑦1 ↦→ 𝑦𝑢
1
, . . . , 𝑦𝑘 ↦→ 𝑦𝑢

𝑘
] ∧𝜓 [𝑢 ↦→ 1, 𝑦1 ↦→ 𝑦𝑢

1
, . . . , 𝑦𝑘 ↦→ 𝑦𝑢

𝑘
] .

Universal expansion is known to preserve the truth value, i.e. Ψ
tr≡ exp(Ψ, 𝑢). Expansion by a set of universal variables

𝑈 is defined as the successive expansion by each 𝑢 ∈ 𝑈 (the order is irrelevant), and is denoted exp(Ψ,𝑈 ). Expansion by

the whole set vars∀(Ψ) is denoted exp(Ψ), and referred to as the total expansion of Ψ. The superscripts in the renamed

existential variables are known as annotations. Annotations grow during successive expansions. In the total expansion,

each variable is annotated with a total assignment to its dependency set.

3 DQBF DEPENDENCY SCHEMES AND FULL EXHIBITION

In this section, we lift the ‘DQBF-centric’ interpretation of QBF dependency schemes [7] to the DQBF domain, and

recall the definition of full exhibition.

How should we interpret variable dependence? Dependency schemes [37] were originally introduced to identify

so-called spurious dependencies: sometimes the order of quantification implies that 𝑧 depends on 𝑧′, but forcing 𝑧 to be

independent preserves the truth value. Technically, a dependency scheme D was defined to map a QBF Φ to a set of

pairs (𝑧′, 𝑧) ∈ vars(Φ) × vars(Φ), describing an overapproximation of the dependency structure: (𝑧′, 𝑧) ∈ D(Φ) means

that the dependence of 𝑧 on 𝑧′ should not be ignored, whereas (𝑧′, 𝑧) ∉ D(Φ) means that it can be. The definition was

tailored to QBF solving, in which variable dependencies for both true and false formulas come into play.

The DQBF-centric interpretation [7] followed somewhat later. There, the goal was a dependency scheme framework

tailored to refutational QBF proof systems. Refutational systems work only with false formulas, and this allows a broad

refinement: the dependence of universals on existentials can be ignored. As such, it makes sense to consider merely the

effect of deleting some universal variables from the existential dependency sets. Thus, a dependency scheme becomes a

mapping from QBF into DQBF.

Likewise, in this work we seek a framework tailored towards refutational proof systems. Hence we advocate the

same approach for the whole domain DQBF. A DQBF dependency scheme will be viewed as a mapping to and from

DQBF, in which the dependency sets may shrink. The notion of shrinking dependency sets is captured by the following

relation.
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Definition 3.1. We define the relation ≤ on DQBF × DQBF as follows: Π′ · 𝜙 ≤ Π · 𝜓 if, and only if, 𝜙 = 𝜓 ,

vars∃ (Ψ′) = vars∃ (Ψ), and the dependency set of each existential in Π′ is a subset of that of Π.

In this paper, we only consider poly-time computable dependency schemes.

Definition 3.2 (dependency scheme). A dependency scheme is a polynomial-time computable function D : DQBF→
DQBF for which D(Ψ) ≤ Ψ for all Ψ.

Under this definition, a spurious dependency according to D is a pair (𝑢, 𝑥) such that 𝑢 is in the dependency set for 𝑥

in Ψ, but not in D(Ψ). A natural property of dependency schemes, identified in [42], is monotonicity.2

Definition 3.3 (monotone (adapted from [42])). We call a dependency scheme D monotone when Ψ′ ≤ Ψ implies

D(Ψ′) ≤ D(Ψ), for all Ψ and Ψ′.

Dependency schemes can be compared on their generality—the more general a dependency scheme, the more

independence it detects.

Definition 3.4 (more general). We say that a dependency scheme D is more general than a dependency scheme D ′,
written D ′ ≤ D, if D(Ψ) ≤ D ′(Ψ) for all Ψ.

A fundamental concept in the DQBF-centric framework, which has strong connections to soundness in related proof

systems [6], is full exhibition. First used by Slivovsky [39], the name was coined later in [4], describing the fact that there

should be a model which ‘fully exhibits’ all spurious dependencies. ‘Full exhibition’ is synonymous with ‘truth-value

preserving’.

Definition 3.5 (full exhibition [4, 39]). A dependency scheme D is called fully exhibited when Ψ
tr≡ D(Ψ), for all Ψ.

Dependency schemes preserve falsity by definition; that is, if Ψ is false, so is D(Ψ), since D(Ψ) ≤ Ψ. Therefore

fully exhibited dependency schemes can also be characterised as those that preserve truth. It is easy to see that full

exhibition carries over to less general schemes.

Proposition 3.6. If D is fully exhibited and more general than D ′, then D ′ is fully exhibited.

4 PARAMETERISING DQBF CALCULI BY DEPENDENCY SCHEMES

In this section we show how to incorporate dependency schemes into DQBF proof systems. In the spirit of so-called

‘genuine’ lower bounds [13], we also introduce a notion of genuine DQBF hardness.

Refutational DQBF proof systems.We first define what we mean by a DQBF proof system. With FDQBF we denote

the set of false DQBFs. We consider only refutational proof systems, which try to show that a given formula is false.

Hence, ‘proof’ and ‘refutation’ can be considered synonymous.

Following [16], a DQBF proof system over an alphabet Σ is a polynomial-time computable onto function P : Σ∗ →
FDQBF. In practice, we do not always want to define a proof system explicitly as a function on a domain of strings.

Instead, we define what constitutes a refutation in the proof system P, and then show: (1) Soundness: if Ψ has a refutation,

it is false (the codomain of P is FDQBF); (2) Completeness: every false DQBF has a refutation (P is onto); (3) Checkability:

refutations can be checked efficiently (P is polynomial-time computable).

2
A different notion of monotonicity for dependency schemes is defined in [34].
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Two concrete examples of DQBF proof systems from the literature are the fundamental expansion-based system

∀Exp+Res [7], and the more sophisticated instantiation-based system IR-calc [7].

Incorporating dependency schemes. A dependency scheme, interpreted as a DQBF mapping as in Definition 3.2,

can be combined with an arbitrary proof system in a straightforward manner.

Definition 4.1 (P(D)). Let P be a DQBF proof system and let D be a dependency scheme. A P(D) refutation of a

DQBF Ψ is a P refutation of D(Ψ).

The proof system P(D) essentially utilises the dependency scheme as a preprocessing step, mapping its input Ψ to

the image D(Ψ) before proceeding with the refutation. In this way, the application of the dependency scheme D is

separated from the rules of the proof system P, and consequently the definition of P need not be explicitly modified to

incorporate D (cf. [4, 40]).

Of course, we must ensure that our preprocessing step is correct; we do not want to map a true formula to a false

one, which would result in an unsound proof system. Now it becomes clear why full exhibition is central for soundness.

Proposition 4.2. Given a DQBF proof system P and a dependency scheme D, P(D) is sound if, and only if, D is fully

exhibited.

Proof. Suppose thatD is fully exhibited. Let 𝜋 be a P(D) refutation of a DQBF Ψ. Then 𝜋 is a P refutation ofD(Ψ),
which is false by the soundness of P. Hence Ψ is false by the full exhibition of D, so P(D) is sound.

Suppose now that D is not fully exhibited. Since D preserves falsity by definition, there must exist a true DQBF Ψ

for which D(Ψ) is false. Then there exists a P refutation of D(Ψ) by the completeness of P, so P(D) is not sound. □

Note that completeness and checkability of P are preserved trivially by any dependency scheme, so we can even say

that P(D) is a DQBF proof system if, and only if, D is fully exhibited. Thus full exhibition characterises exactly the

dependency schemes whose incorporation preserves the proof system.

Simulations, separations and genuine lower bounds. Of course, the rationale for utilising a dependency scheme

as a preprocessor lies in the potential for shorter refutations. We first recall the notion of 𝑝-simulation from [16]. Let P

and Q be DQBF proof systems. We say that P 𝑝-simulates Q (written Q ≤𝑝 P) when there exists a polynomial-time

computable function from Q refutations to P refutations that preserves the refuted formula.

Since a 𝑝-simulation is computed in polynomial time, the translation from Q into P incurs at most a polynomial size

blow-up. As such, the conventional approach to proving the non-existence of a 𝑝-simulation is to exhibit a family of

formulas {Ψ𝑛}𝑛∈N that has polynomial-size refutations in Q , while requiring super-polynomial size in P.

Now, it is of course possible that the hard formulas {Ψ𝑛}𝑛∈N are QBFs. While this suffices to show that Q ≰𝑝 P, it is

not what we want from a study of DQBF proof complexity; it is rather a statement about the QBF fragments of the

systems P and Q . In reality the situation is even more complex. The lower bound may stem from QBF proof complexity

even when {Ψ𝑛}𝑛∈N are not QBFs. More precisely, there may exist an ‘embedded’ QBF family {Φ𝑛}𝑛∈N which is already

hard for P, where ‘embedded’ means Φ𝑛 ≤ Ψ𝑛 . Under the reasonable assumption that decreasing dependency sets

cannot increase proof size,
3 any DQBF family in which {Φ𝑛}𝑛∈N is embedded will be hard for P.

For that reason, we introduce a notion of genuine DQBF hardness that dismisses all embedded QBF lower bounds.

3
This holds for all known DQBF proof systems.
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Definition 4.3. Let P and Q be DQBF proof systems. We write Q ≰∗𝑝 P when there exists a DQBF family {Ψ𝑛}𝑛∈N
such that:

(a) {Ψ𝑛}𝑛∈N has polynomial-size Q refutations;

(b) {Ψ𝑛}𝑛∈N requires superpolynomial-size P refutations;

(c) every QBF family {Φ𝑛}𝑛∈N with Φ𝑛 ≤ Ψ𝑛 has polynomial-size P refutations.

We write P <∗𝑝 Q when both P ≤𝑝 Q and Q ≰∗𝑝 P hold.

Hence, P <∗𝑝 Q means that Q simulates P, but P does not simulate Q , and the hardness result for P is a genuine

DQBF lower bound. Prior to this paper, there were no such hardness results in the DQBF literature.

5 THE IMPLICATION-FREE DEPENDENCY SCHEMES

In this section we will define an infinite parameterised class of dependency schemes that generalize the reflexive

resolution-path dependency scheme Drrs
[40], until now the most general (D)QBF dependency scheme. We introduce

Drrs
formally later, in Definition 5.4, as a special case. In the conference version of this paper [9], we proposed a

generalization of Drrs
called the tautology-free dependency scheme, Dtf

, which is also a special case in our new class;

Dtf
is formally presented in Definition 5.5.

Before we proceed with technical details, let us discuss informally the motivation and intuition for these gener-

alizations of Drrs
. The main building stone of Drrs

are resolution paths, which are sequences of clauses where each

consecutive pair contains a pair of complementary existential literals.

· · · −→ 𝐶 ∨ 𝑝 −→ 𝑝 ∨ 𝐷 −→ · · ·

A resolution path that consists of binary clauses establishes a chain of implications—falsifying the first literal will

propagate values throughout the chain and set the value of the last literal. Hence, such a resolution path makes its

endpoints depend on each other. Even if a resolution path consists of clauses of larger width, it holds the potential,

under the right partial assignment, to reduce to a width-2 chain and enforce a dependency.

Drrs
identifies independent pairs of variables based on the non-existence of resolution paths connecting them.

Suppose 𝑥 depends on 𝑢 syntactically (𝑢 ∈ 𝑆𝑥 ). This dependence is only real if a change of the value of 𝑢 can enforce a

change of the value of 𝑥 , and moreover if both values can be enforced. Such a change of value, in turn, can only be

enforced through a resolution path. Therefore, there must be a pair of resolution paths that connects complementary

literals on 𝑢 with complementary literals on 𝑥 , for the dependency to be realizable. This pair of paths can in fact be

concatenated at the endpoints that contain 𝑥 and 𝑥 , creating a single joint path from 𝑢 through 𝑥 and 𝑥 (or 𝑥 and 𝑥 ) to 𝑢.

(𝑢 ∨𝐶1 ∨ 𝑝1) → (𝑝1 ∨𝐶2 ∨ 𝑝2) → · · · → (𝑝𝑖−1 ∨𝐶𝑖 ∨ 𝑥)

(𝑥 ∨𝐶𝑖+1 ∨ 𝑝𝑖+1) → · · · → (𝑝𝑘−1 ∨𝐶𝑘 ∨ 𝑢)

The existence of two paths is equivalent to the existence of one joint path, and this is also how we define resolution

path dependencies in this paper (Definition 5.3). If there is no such joint resolution path, Drrs
detects independence and

removes 𝑢 from the dependency set of 𝑥 .

We build on this intuition by observing that some resolution paths are in fact unable to carry information between

their endpoints because they can never reduce to a chain of binary clauses. Let us restrict ourselves to QBFs for a

moment, and imagine we are evaluating whether 𝑥 depends on 𝑢, and there is another existential variable 𝑦, which

needs to be assigned before 𝑢 (i.e. comes earlier in the prefix). If, for a resolution path connecting 𝑢 and 𝑥 , for each
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assignment to 𝑦 a clause on the path is satisfied, then the path can never reduce to a chain of implications—at the

‘moment’ of assigning 𝑢 one of the clauses will always have disappeared. Such resolution paths can therefore be safely

disregarded when checking whether 𝑥 depends on 𝑢.

The concept of the order in which variables are assigned is quite natural in QBF, where each formula represents a

game and players take turns in the order of the quantifier prefix. It is not clear how we can get a full analogue of such

an ordering in DQBF, where variables are ordered inherently non-linearly, but we can at least get an approximation in

the form of the independent existential variables 𝐼∃ (Ψ)—the variables in a DQBF Ψ with empty dependency sets. For all

intents and purposes, we can also think of 𝐼∃ (Ψ) as free variables in the usual sense. These variables arguably need

to be assigned before anything else. Along with the observation from the previous paragraph, this gives rise to the

tautology-free dependency scheme Dtf
defined in the conference version of this paper [9]. We simply check for each

candidate resolution path whether or not it contains both literals of some independent existential variable 𝑦 ∈ 𝐼∃ (Ψ)—if
(and only if) it does, then every assignment to 𝐼∃ (Ψ) satisfies a clause on the path and the path is discarded.

Here, we further strengthen the observation that leads to Dtf
, by not considering all assignments to 𝐼∃ (Ψ), but only

those that are propositionally consistent with the matrix—those that can be extended to a full satisfying assignment of

the matrix. This rests on the idea that under an inconsistent assignment to 𝐼∃ (Ψ), no real value propagation can occur,

because the matrix is already propositionally unsatisfiable, and so further assignments, and indeed dependencies, do not

matter anymore. Another way to look at this is to consider what unit propagation does—it extends an assignment with

further, forced assignments that are necessary to maintain propositional consistency. In a propositionally inconsistent

state, it no longer makes sense to speak of a semantically forced assignment. We capture this by collecting, for a candidate

resolution path, all the independent existential literals appearing on the path, and asking whether the clause formed

by them is implied by the matrix of our formula Ψ—if (and only if) not, then all those literals can be simultaneously

falsified by a consistent assignment to 𝐼∃ (Ψ) and the path can be restricted without satisfying any of its clauses. If, on

the other hand, this clause is implied, then every propositionally consistent assignment to 𝐼∃ (Ψ) must satisfy one of the

clauses on the path, and the path can safely be discarded.

In practice, because full propositional entailment is coNP-complete, we will also ask whether the clause is a particular,

polynomial-time identifiable kind of implied clause—which leads us to the notion of an implication relation.

Definition 5.1 (implication relation). An implication relation is a relation 𝑅 ⊆ CNF × C between CNFs and clauses

such that for every CNF𝜓 and clause 𝐶 , if (𝜓,𝐶) ∈ 𝑅, then𝜓 |= 𝐶 . If (𝜓,𝐶) ∈ 𝑅, we say that 𝐶 is 𝑅-implied by𝜓 .

We will be particularly interested in well-behaved, normal, implication relations.

Definition 5.2. We say that an implication relation 𝑅 is normal if

(1) (weakening) whenever (𝜓,𝐶) ∈ 𝑅 and𝜓 ⊆ 𝜙,𝐶 ⊆ 𝐷 , then (𝜙, 𝐷) ∈ 𝑅;
(2) (restriction) for every partial assignment 𝛼 ∈ ⟨𝑉 ⟩, 𝑉 ⊆ var(𝜓 ), if (𝜓,𝐶) ∈ 𝑅, then (𝜓 [𝛼],𝐶 [𝛼]) ∈ 𝑅;
(3) (expansion) if 𝐶 is non-tautological, then (𝜓 [𝐶], ∅) ∈ 𝑅 =⇒ (𝜓,𝐶) ∈ 𝑅; and
(4) (tautology closure) (𝜓,𝐶) ∈ 𝑅 ⇐⇒ (𝜙, 𝐷) ∈ 𝑅 for any𝜓, 𝜙 and any tautological clauses 𝐶, 𝐷 .

Several important examples of (normal) implication relations are listed below.

• 𝑅∅ = ∅ is the empty implication relation.

• 𝑅⊨ is the full implication relation, i.e 𝑅⊨ = {(𝜓,𝐶) : 𝜓 |= 𝐶}. For every implication relation 𝑅, we have 𝑅 ⊆ 𝑅⊨.

• 𝑅⊤ is the maximal implication relation where every clause is a tautology. Property 4. of normality can be restated

as 𝑅 ∩ 𝑅⊤ ≠ ∅ =⇒ 𝑅⊤ ⊆ 𝑅. Together with Property 1., this can be strengthened to 𝑅 ≠ 𝑅∅ =⇒ 𝑅⊤ ⊆ 𝑅.
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We are now ready to define our class of implication-free dependency schemes. Apart from an implication relation,

they also have an integer parameter that controls the length of the path segment checked for the implication relation.

We will later see (Theorem 7.2) that this has a significant impact on computational complexity.

Let N denote the set of positive integers, and N∞ = N ∪ {∞}.

Definition 5.3 (implication-free dependency schemes D𝐹 (𝑅, _)). Let 𝑅 be an implication relation. For any _ ∈ N, the
_-locally 𝑅-free dependency scheme D𝐹 (𝑅, _) is defined as the mapping Ψ ↦→ Ψ′, where

Ψ := ∀𝑢1 · · · ∀𝑢𝑚∃𝑥1 (𝑆𝑥1 ) · · · ∃𝑥𝑛 (𝑆𝑥𝑛 ) ·𝜓 ,

Ψ′ := ∀𝑢1 · · · ∀𝑢𝑚∃𝑥1 (𝑆 ′𝑥1 ) · · · ∃𝑥𝑛 (𝑆
′
𝑥𝑛
) ·𝜓 ,

and 𝑆 ′𝑥𝑖 is the set of universal variables 𝑢 ∈ 𝑆𝑥𝑖 for which there exists a _-locally 𝑅-free (𝑢, 𝑥𝑖 )-resolution path, i.e. a

sequence𝐶1, . . . ,𝐶𝑘 of clauses in𝜓 and a sequence 𝑝1, . . . , 𝑝𝑘−1 of existential literals satisfying the following conditions:

(a) 𝑢 ∈ 𝐶1 and 𝑢 ∈ 𝐶𝑘 ;
(b) for some 𝑗 ∈ [𝑘 − 1], 𝑥𝑖 = var(𝑝 𝑗 );
(c) for each 𝑗 ∈ [𝑘 − 1], 𝑝 𝑗 ∈ 𝐶 𝑗 , 𝑝 𝑗 ∈ 𝐶 𝑗+1, and 𝑢 ∈ 𝑆var(𝑝 𝑗 ) ;

(d) for each 𝑗 ∈ [𝑘 − 2], var(𝑝 𝑗 ) ≠ var(𝑝 𝑗+1).
(e) for each 𝑗 ∈ [𝑘 − _],

(
𝜓, (𝐶 𝑗 ∪ · · · ∪𝐶 𝑗+_)↾𝐼∃ (Ψ)

)
∉ 𝑅.

The globally 𝑅-free dependency scheme D𝐹 (𝑅,∞) replaces condition (e) with

(e
′
)

(
𝜓, (𝐶1 ∪ · · · ∪𝐶𝑘 )↾𝐼∃ (Ψ)

)
∉ 𝑅.

For the empty implication relation 𝑅∅ , conditions (e) and (e
′
) are satisfied vacuously, and so D𝐹 (𝑅∅, _) reduces to

just Drrs
(c.f. the original definition of Drrs

).

Definition 5.4 (Drrs [40]). For each _ ∈ N∞, Drrs
:= D𝐹 (𝑅∅, _).

The tautology-free dependency scheme Dtf
, which we introduced in the conference version of this paper [9], is also a

special case.

Definition 5.5. Dtf
:= D𝐹 (𝑅⊤, 1).

Wimmer et al. [42] essentially showed thatDrrs
is fully exhibited, even though they did not use that term. Theorems 3

and 4 in [42] together imply that all spurious dependencies can be removed one by one in any order without changing

the truth value (as is remarked at the start of Section 3.1 in that paper).

Theorem 5.6 (Wimmer et al. [42]). Drrs is fully exhibited.

We show full exhibition of any D𝐹 (𝑅, _) by reduction to full exhibition of Drrs
. In order to show that, it is sufficient

to show that D𝐹 (𝑅⊨,∞) is fully exhibited—it can be easily seen from Definition 5.3 that D𝐹 (𝑅⊨,∞) is the most general

implication-free dependency scheme.

Proposition 5.7. For every implication relation 𝑅 and _ ∈ N∞, D𝐹 (𝑅, _) ≤ D𝐹 (𝑅⊨,∞).

Proof. Conditions (a)-(d) of Definition 5.3 are independent of 𝑅 and _. Whenever condition (e
′
) is satisfied for 𝑅⊨,

then, by definition, both (e) and (e
′
) are satisfied for any implication relation 𝑅 and any (_ + 1)-sized segment. □

Similarly, Drrs
is the least general implication-free dependency scheme.
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Proposition 5.8. For every implication relation 𝑅 and _ ∈ N∞, Drrs ≤ D𝐹 (𝑅, _).

Proof. Conditions (e) and (e’) are always satisfied for Drrs
. □

Under the assumption of normality, we can similarly order any two implication-free dependency schemes whose

implication relations are comparable.

Lemma 5.9. Let 𝑅 ⊆ 𝑅′ be normal implication relations and _ ≤ _′ ∈ N∞. Then D𝐹 (𝑅, _) ≤ D𝐹 (𝑅′, _′).

Proof. All we need to observe is that by checking a potentially longer path segment (_′ instead of _), we can collect

a potentially larger clause 𝐷 ⊇ 𝐶 , but the weakening property ensures that whenever 𝐶 is 𝑅-implied, so is 𝐷 . □

Theorem 5.10. D𝐹 (𝑅⊨,∞) is fully exhibited.

Proof. Since D𝐹 (𝑅⊨,∞)(Ψ) ≤ Ψ, we only need to show that if Ψ is true, then D𝐹 (𝑅⊨,∞)(Ψ) is true. Assume Ψ is

true; then there is an assignment 𝜎 ∈ ⟨𝐼∃ (Ψ)⟩ such that Ψ[𝜎] is true. We claim that (𝑢, 𝑥) ∈ deps(Drrs (Ψ[𝜎])) implies

(𝑢, 𝑥) ∈ deps(D𝐹 (𝑅⊨,∞)(Ψ)).
Consider the sequences𝐶1, . . . ,𝐶𝑘 and 𝑝1, . . . , 𝑝𝑘−1 that witness (𝑢, 𝑥) ∈ deps(Drrs (Ψ[𝜎])). For each𝐶𝑖 there is𝐶 ′𝑖 ∈

Ψ, such that𝐶𝑖 = 𝐶 ′
𝑖
[𝜎], i.e.𝐶 ′

𝑖
⊆ 𝐶𝑖∪𝜎 , where 𝜎 is the largest clause falsified by 𝜎 . It is readily verified that the sequences

𝐶 ′
1
, . . . ,𝐶 ′

𝑘
and 𝑝1, . . . , 𝑝𝑘−1 witness (𝑢, 𝑥) ∈ deps(D𝐹 (𝑅⊨,∞)(Ψ)). In particular, the clause (𝐶 ′

1
∪ · · · ∪𝐶 ′

𝑘
)↾𝐼∃ (Ψ) ⊆ 𝜎

is not implied, because the assignment 𝜎 falsifies it, but leaves the formula Ψ[𝜎] true, and therefore leaves its matrix

propositionally satisfiable.

Hence, we get Drrs (Ψ[𝜎]) ≤ D𝐹 (𝑅⊨,∞)(Ψ) [𝜎]. By full exhibition of Drrs
, we have that Drrs (Ψ[𝜎]) is true, which

means D𝐹 (𝑅⊨,∞)(Ψ) [𝜎] is true, and hence D𝐹 (𝑅⊨,∞)(Ψ) is true. □

Corollary 5.11. For any implication relation 𝑅 and any _ ∈ N∞, D𝐹 (𝑅, _) is fully exhibited.

Let us give an example, illustrating that Dtf
is stronger than Drrs

.

Example 5.12. Consider the DQBF Ψ = ∃𝑥∀𝑢∃𝑧 ·𝐶1 ∧𝐶2, where 𝐶1 = 𝑥 ∨ 𝑢 ∨ 𝑧 and 𝐶2 = 𝑥 ∨ 𝑢 ∨ 𝑧. The sequence
of clauses 𝐶1,𝐶2 and the sequence consisting of the single literal 𝑝1 = 𝑧 show that (𝑢, 𝑧) ∈ deps(Drrs (Ψ)). However,
the same sequence of clauses violates condition (e) of Definition 5.3 (with the implication relation 𝑅 = 𝑅⊤) because

(𝐶1 ∪𝐶2)↾𝐼∃ (Ψ) is a tautology on 𝑥 ∈ 𝐼∃ (Ψ). Since there are no other sequences to consider, we conclude that

(𝑢, 𝑧) ∉ deps(Dtf (Ψ)).
As we have just shown Dtf (Ψ) = ∃𝑥∃𝑧∀𝑢 · (𝑥 ∨ 𝑧 ∨ 𝑢) ∧ (𝑥 ∨ 𝑧 ∨ 𝑢). The assignment 𝑥 ↦→ 1, 𝑧 ↦→ 0 is a model of

Dtf (Ψ), which is therefore true, in line with full exhibition of Dtf
.

We remark that the parameters 𝑅 and _ in Definition 5.3 could in principle also be turned into functions of the input

formula. While in this paper we focus on the case where the parameters are fixed, it is straightforward to see that

Proposition 5.7, and by extension Corollary 5.11, generalize to the case of functional parameters as well.

6 PROOF COMPLEXITY

In this section we turn to proof complexity of QBF and DQBF proof systems parametrized by implication-free dependency

schemes. The base proof systems we analyze are ∀Exp+Res, which is a full-blown DQBF proof system, andQ-Res, which

is sound on DQBF but only complete for QBF, and hence is treated as a QBF proof system (we define both proof systems

in Subsection 6.1). The central result is Theorem 6.1, which lifts the generality ordering between implication-free

dependency schemes established by Lemma 5.9 onto the level of proof systems.
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Theorem 6.1. Let 𝑃 ∈ {∀Exp+Res,Q-Res}, 𝑅, 𝑅′ non-empty normal implication relations, and _, _′ ∈ N∞. Then

𝑃 (D𝐹 (𝑅, _)) ≤𝑝 𝑃 (D𝐹 (𝑅′, _′)) ⇐⇒ 𝑅 ⊆ 𝑅′ and _ ≤ _′ ,

and whenever 𝑅 ⊈ 𝑅′ or _ > _′, the separation ∀Exp+Res(D𝐹 (𝑅, _)) ≰∗𝑝 ∀Exp+Res(D𝐹 (𝑅′, _′)) is DQBF-genuine.

Theorem 6.1 is phrased with elegance in mind, but as such requires some explanation. The part where 𝑃 = Q-Res

refers to the proof system on QBF; the part where 𝑃 = ∀Exp+Res has a twofold interpretation—first as a DQBF proof

system, and second as its QBF restriction. In effect, what we aim to say is that the simulations hold on all of DQBF,

while the separations can already be obtained with QBF; and DQBF-genuine separations exist as well.

In spite of its elegance, Theorem 6.1 unfortunately cannot capture all of our results on implication-free dependency

schemes. Part of the reason is that the empty implication relation 𝑅∅ , which gives rise to D𝐹 (𝑅∅, _) = Drrs
, requires

special treatment, and part is that the non-parameterised versions of the proof systems (i.e., ∀Exp+Res and Q-Res

themselves) cannot be expressed in a parameterised form, and must also be treated separately. We can capture the

remaining cases with one extra theorem.

Theorem 6.2. Let 𝑃 ∈ {∀Exp+Res,Q-Res}. Then 𝑃 <𝑝 𝑃 (Drrs) <𝑝 𝑃 (Dtf), and in the case of∀Exp+Res, the separations
are DQBF-genuine.

The separation between Q-Res and Q-Res(Drrs) from Theorem 6.2 is known [5], the rest of Theorem 6.2 was the

subject of the conference version of this paper [9] (and is also contained below in this version). The new content in this

version is the generalisation ofDtf
toD𝐹 (𝑅, _) and, correspondingly, Theorem 6.1. A visual summary of both theorems

is provided in Figure 1.

Before we dive into the technical details, let us give a high-level overview of the proof.

(1) The first ingredient is monotonicity of both ∀Exp+Res and Q-Res, meaning that if Ψ ≤ Ψ′, then any proof of Ψ′

in either ∀Exp+Res or Q-Res can be transformed into a proof of Ψ in the same proof system in polynomial time.

In other words, deleting some dependencies only makes a formula easier. For Q-Res the proof in fact does not

even need to be changed, and for ∀Exp+Res one just needs to restrict annotations as necessary.

(2) Monotonicity together with an ordering of the dependency schemes (Lemma 5.9) gives us all the simulations.

(3) For the separations, we define a class of formula families parameterised by a propositional formulaW and an

integer _. We show that if both parameters of an implication-free dependency scheme are sufficiently strong, the

dependency scheme removes all dependencies, otherwise it leaves them intact.

(4) Finally, we show that our parameterised class is hard with dependencies in, and easy with dependencies removed.

A separation follows, and we further demonstrate that for ∀Exp+Res it can be made DQBF-genuine.

The rest of the section is organised as follows. We first define the proof systems ∀Exp+Res and Q-Res, and then

proceed proving the separations in Theorems 6.1 and 6.2, starting with the latter.

6.1 ∀Exp+Res and Q-Res

Among the first DQBF proof systems introduced, the expansion based system ∀Exp+Res [7, 26] is arguably the most

natural.

We first recall the propositional resolution proof system [36]. A resolution refutation of a CNF 𝜓 is a sequence

𝐶1, . . . ,𝐶𝑘 of clauses where 𝐶𝑘 is empty and each 𝐶𝑖 is derived by one of the following rules:

A Axiom: 𝐶𝑖 is a clause in𝜓 ;
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No scheme

Drrs = D𝐹 (𝑅∅, _)

Dtf = D𝐹 (𝑅⊤, 1)

D𝐹 (𝑅⊤, 2)

D𝐹 (←−𝑅 , 1)
D𝐹 (−→𝑅 , 1)

D𝐹 (𝑅⊨, 1) D𝐹 (←−𝑅 , 2)
D𝐹 (−→𝑅 , 2)

D𝐹 (𝑅⊨, 2) D𝐹 (𝑅⊤,∞)

D𝐹 (←−𝑅 ,∞)
D𝐹 (−→𝑅 ,∞)

D𝐹 (𝑅⊨,∞)

Fig. 1. A visualization of the proof complexity results from Theorems 6.1 and 6.2. The upper lattice shows Theorem 6.1, the bottom
chain corresponds to Theorem 6.2. All types of lines and downward paths indicate strict p-simulations—lack of downward connection
indicates incomparability. The line style only serves to highlight the presence of the two dimensions; the dots on solid lines indicate
that there is an infinite omitted sequence of _ = 3, . . . ,. The dashed-line lattices with a fixed _ and varying implication relation are in
general much larger, containing every non-empty normal implication relation; here we simplified them for the purpose of visual

presentation assuming incomparable normal implication relations
←−
𝑅 and

−→
𝑅 .

R Resolution: 𝐶𝑖 = 𝐴 ∨ 𝐵, where 𝐶𝑟 = 𝐴 ∨ 𝑥 and 𝐶𝑠 = 𝐵 ∨ 𝑥 , for some 𝑟, 𝑠 < 𝑖 .

∀Exp+Res is built upon resolution. Perhaps the most obvious way to decide DQBF is to reduce it to propositional

logic by expanding out all the universal variables, based on the fact that Ψ is true if, and only if, the matrix of exp(Ψ) is
satisfiable. This is exactly how ∀Exp+Res works. The input DQBF is first expanded, and then refuted in resolution.

Definition 6.3 (∀Exp+Res [7, 26]). A ∀Exp+Res refutation of a DQBF Ψ is a resolution refutation of the matrix of

exp(Ψ).

It is known that ∀Exp+Res is sound, complete and checkable on DQBFs [7]. Note that a ∀Exp+Res refutation of

Ψ may be small even if its expansion exp(Ψ) is large, since the underlying resolution refutation of exp(Ψ) need not

necessarily introduce every clause as an axiom.

Given that fully exhibited dependency schemes like D𝐹 (𝑅, _) (Theorem 5.10) can be incorporated into an arbitrary

DQBF proof system P (Proposition 4.2), we obtain a class of DQBF proof systems of the form ∀Exp+Res(DF (R, _)).
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Definition 6.4 (Q-Res(D)[27, 40]). A Q-Res refutation of a DQBF Ψ is a sequence 𝐶1, . . . ,𝐶𝑘 of clauses in which 𝐶𝑘

is empty and each 𝐶𝑖 is derived by one of the following rules:

A Axiom: 𝐶𝑖 is a non-tautological clause in the matrix of Ψ;

R Resolution: 𝐶𝑖 = 𝐴 ∨ 𝐵, where 𝐶𝑟 = 𝐴 ∨ 𝑥 and 𝐶𝑠 = 𝐵 ∨ 𝑥 , for some 𝑟, 𝑠 < 𝑖 and some 𝑥 ∈ vars∃ (Φ), and 𝐶𝑖 is not
a tautology.

U Universal reduction:𝐶𝑖∨𝑎 = 𝐶𝑟 for some 𝑟 < 𝑖 and some literal 𝑎with var(𝑎) = 𝑢 ∈ vars∀(Ψ) and (𝑢, 𝑥) ∉ deps(Ψ)
for each 𝑥 ∈ vars(𝐶𝑖 ).

Given a QBF dependency scheme D, a Q-Res(D) refutation of a QBF Φ is a Q-Res refutation of D(Φ).

Q-Res(DF (R, _)) is complete for QBF because it generalizes Q-Res (which itself is sound and complete by [27]), and

soundness follows by full exhibition as in the proof of Proposition 4.2.

6.2 Establishing Lower Bounds

In order to simplify the notation in some of the lemmas to come, we will write, for a proof system 𝑃 and a formula Ψ,

ℎ𝑃 (Ψ) (for hardness of Ψ in 𝑃 ) to denote the length of the shortest 𝑃-proof of the formula Ψ. For a DQBF Ψ, we write

𝛿 (Ψ) for the DQBF that results from Ψ by removing all dependencies, i.e. 𝛿 (Ψ) is uniquely defined by the properties

𝛿 (Ψ) ≤ Ψ and vars∃ (𝛿 (Ψ)) = 𝐼∃ (𝛿 (Ψ)).
Our separation results are based on various families of formulas derived by modifying the equality QBFs [8], defined

below.

Definition 6.5 (EQ𝑛 (adapted from [8])). EQ𝑛 := ΠEQ

𝑛 ·𝜓
EQ

𝑛 , where

ΠEQ

𝑛 := ∃𝑥1 · · · ∃𝑥𝑛∀𝑢1 · · · ∀𝑢𝑛 ∃𝑧1 · · · ∃𝑧𝑛 ,

𝜓
EQ

𝑛 := (𝑧1 ∨ · · · ∨ 𝑧𝑛) ∧
𝑛∧
𝑖=1

(
(𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑧𝑖 ) ∧ (𝑥𝑖 ∨ 𝑢𝑖 ∨ 𝑧𝑖 )

)
.

Lemma 6.6. 𝜓
EQ

𝑛 is propositionally satisfiable (𝑥𝑖 ↦→ 0, 𝑢𝑖 ↦→ 1, 𝑧𝑖 ↦→ 0).

It is known that EQ𝑛 is hard for both ∀Exp+Res and Q-Res.

Lemma 6.7 ([5, 8]). For 𝑃 ∈ {∀Exp+Res,Q-Res}, ℎ𝑃 (EQ𝑛) ≥ 2
𝑛 .

While EQ𝑛 would be a sufficient building stone for classical separations, in order to obtain DQBF-genuine separations

we will additionally need a modified version, which we mark with a ↓ to evoke that the dependency sets shrink.

Definition 6.8 (EQ↓𝑛 (adapted from [8])). EQ↓𝑛 := Π
EQ↓
𝑛 ·𝜓 EQ

𝑛 , where

Π
EQ↓
𝑛 := ∀𝑢1 · · · ∀𝑢𝑛∃𝑥1 (∅) · · · ∃𝑥𝑛 (∅) ∃𝑧1 (𝑢1) · · · ∃𝑧𝑛 (𝑢𝑛).

We may now begin proving Theorem 6.2, first establishing a DQBF-genuine separation between ∀Exp+Res and
∀Exp+Res(Drrs).

Since the dependency sets of EQ
↓
𝑛 are strict subsets of those of the original equality formulas (in which each 𝑧𝑖

depends on each 𝑢 𝑗 ), the QBF lower bound for ∀Exp+Res [5] does not suffice for EQ
↓
𝑛 . Nonetheless, a similar argument

works, based on the fact that no small subset of clauses in the expansion is unsatisfiable.

Theorem 6.9. ℎ∀Exp+Res (EQ↓𝑛) ≥ 2
𝑛 .
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Proof. The total expansion of EQ
↓
𝑛 is the CNF𝜓 ∧∧𝑛

𝑖=1

(
(𝑥𝑖 ∨ 𝑧𝑢𝑖𝑖 ) ∧ (𝑥𝑖 ∨ 𝑧

𝑢𝑖
𝑖
)
)
, where𝜓 is the conjunction of all

clauses of the form (𝑧𝑎1
1
∨ · · · ∨ 𝑧𝑎𝑛𝑛 ) with var(𝑎𝑖 ) = 𝑢𝑖 . We show that removing any of the 2

𝑛
clauses from𝜓 makes the

total expansion satisfiable. It follows that any resolution refutation of exp(EQ↓𝑛) must have 2
𝑛
axiom clauses.

Suppose that some clause 𝐴 is absent from𝜓 , and let us assume without loss of generality that 𝐴 := (𝑧𝑢1

1
∨ · · · ∨ 𝑧𝑢𝑛𝑛 ),

i.e. the clause corresponding to 𝑢𝑖 ↦→ 1 for each 𝑖 (the general case is symmetrical). Now, assigning each 𝑧
𝑢𝑖
𝑖
↦→ 1

satisfies every clause in 𝜓 except 𝐴. Assigning each 𝑧
𝑢𝑖
𝑖
↦→ 0 satisfies each clause (𝑥𝑖 ∨ 𝑧𝑢𝑖𝑖 ). Finally, assigning each

𝑥𝑖 ↦→ 1 satisfies each clause (𝑥𝑖 ∨ 𝑧𝑢𝑖𝑖 ). □

The corresponding upper bound for EQ
↓
𝑛 in ∀Exp+Res(Drrs) does follow from that of the original equality QBFs (by

monotonicity of Drrs
and ∀Exp+Res). We give a full proof nonetheless, since we will use the details later. The main

point is that Drrs
identifies all pairs as spurious dependencies.

Proposition 6.10 ([6]). Drrs (EQ𝑛) = Drrs (EQ↓𝑛) = 𝛿 (EQ↓𝑛) = 𝛿 (EQ𝑛).

Proof. It is sufficient to prove Drrs (EQ𝑛) = 𝛿 (EQ𝑛), i.e that Drrs
removes all dependencies from EQ𝑛 ; the rest

follows from monotonicity of Drrs
. Aiming for contradiction, suppose that there exists a sequence of clauses 𝐶1, . . . ,𝐶𝑘

and a sequence of literals 𝑝1, . . . , 𝑝𝑘−1 satisfying conditions (a) to (d) of Definition 5.3 with respect to some pair

(𝑢𝑖 , 𝑧𝑖′) ∈ deps(EQ𝑛). Obviously 𝑘 ≥ 2; 𝑘 = 2 is impossible due to condition (c), so 𝑘 ≥ 3. For 2 ≤ 𝑗 < 𝑘 , 𝑝 𝑗 , 𝑝 𝑗−1 ∈ 𝐶 𝑗

(c) and var(𝑝 𝑗 ) ≠ var(𝑝 𝑗−1) (d), whence it follows that 𝐶 𝑗 = {𝑧1 ∨ · · · ∨ 𝑧𝑛}; but then 𝑘 = 3 by condition (c). By (a) we

must have 𝑝1 = 𝑧𝑖 and 𝑝𝑘−1 = 𝑝2 = 𝑧𝑖 , which contradicts (d). □

Theorem 6.11 ([6]). ℎ∀Exp+Res(Drrs) (EQ
↓
𝑛) ∈ 𝑂 (𝑛).

Proof. By Proposition 6.10, the total expansion of Drrs (EQ↓𝑛) is obtained simply by removing the universal literals;

that is, the matrix of exp(Drrs (EQ↓𝑛)) is

(𝑧1 ∨ · · · ∨ 𝑧𝑛) ∧
𝑛∧
𝑖=1

(
(𝑥𝑖 ∨ 𝑧𝑖 ) ∧ (𝑥𝑖 ∨ 𝑧𝑖 )

)
. (1)

It is easy to see that this CNF has linear-size resolution refutations. First, resolve each pair (𝑥𝑖 ∨ 𝑧𝑖 ), (𝑥𝑖 ∨ 𝑧𝑖 ) over 𝑥𝑖 ,
and resolve the resulting unit clauses (𝑧𝑖 ) with the remaining clause to obtain the empty clause. □

Theorems 6.9 and 6.11 together show that ∀Exp+Res does not 𝑝-simulate ∀Exp+Res(Drrs). It remains to show that

the lower bound is genuine.

Theorem 6.12. ∀Exp+Res ≰∗𝑝 ∀Exp+Res(Drrs).

Proof. It is easy to see that any largest QBF Φ
↓
𝑛 that is smaller than EQ

↓
𝑛 has exactly one non-empty dependency

set. Let us assume without loss of generality that this is 𝑆𝑧𝑛 = {𝑢𝑛}. We will show that Φ
↓
𝑛 has a linear-size ∀Exp+Res

refutation. Hence, by the monotonicity of ∀Exp+Res, any family of QBFs smaller than {EQ↓𝑛}𝑛∈N has linear-size

∀Exp+Res refutations. Thus, by Theorems 6.9 and 6.11, {EQ↓𝑛}𝑛∈N satisfies all the conditions of Definition 4.3.

It remains to show that Φ
↓
𝑛 has a linear-size ∀Exp+Res refutation, or equivalently, that exp(Φ↓𝑛) has a linear-size

resolution refutation. It is readily verified that exp(Φ↓𝑛) contains every clause in exp(Drrs (EQ↓
𝑛−1)) except (𝑧1∨· · ·∨𝑧𝑛−1).

Figure 2 illustrates that this clause can be derived from exp(Φ↓𝑛) in a constant number of resolution steps. Since

exp(Drrs (EQ↓
𝑛−1)) has a linear-size resolution refutation by Theorem 6.11, so does exp(Φ↓𝑛). □
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(𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧𝑛) (𝑧1 ∨ · · · ∨ 𝑧𝑛) (𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧𝑛)

(
𝑥𝑛 ∨ 𝑧𝑢𝑛𝑛

) (
𝑧1 ∨ · · · ∨ 𝑧𝑛−1 ∨ 𝑧𝑢𝑛𝑛

) (
𝑧1 ∨ · · · ∨ 𝑧𝑛−1 ∨ 𝑧𝑢𝑛𝑛

) (
𝑥𝑛 ∨ 𝑧𝑢𝑛𝑛

)
(𝑥𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1) (𝑥𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1)

(𝑧1 ∨ · · · ∨ 𝑧𝑛−1)

A A A A

R R

R

Fig. 2. The prelude to a linear-size ∀Exp+Res refutation of Φ↓𝑛 . In order to reduce exp(Φ↓𝑛) to exp(Drrs (EQ↓
𝑛−1)) , we need only derive

the clause (𝑧1 ∨ · · · ∨ 𝑧𝑛−1) .

Now we turn to simulations and separations between the parameterised proof systems ∀Exp+Res(D𝐹 (𝑅, _)), during
the course of which we will prove both Theorem 6.1 as well as the remainder of Theorem 6.2, i.e. a (genuine) separation

between 𝑃 (Drrs) and 𝑃 (Dtf). We will define a parameterised class of QBF and DQBF families derived from EQ𝑛 and

EQ
↓
𝑛 .

We use the following notation: thematrix-clause product of a CNF𝜓 and a clause𝐶 is the CNF𝜓⊗𝐶 := {𝐷 ∪𝐶 : 𝐷 ∈ 𝜓 }.
Note that as a special case, if𝜓 = ∅ is the empty CNF, then any matrix-clause product𝜓 ⊗ 𝐶 = ∅ is also empty.

Definition 6.13. Let 𝑛, _ ∈ N, 𝑏+, 𝑏−, 𝑠1, . . . , 𝑠_ ∈ V, and letW be a CNF such that the sets var(W), var(EQ𝑛), and
{𝑏+, 𝑏−, 𝑠1, . . . , 𝑠_} are pairwise disjoint. We define a modification EQ𝑛 (W, _) of the equality formulas as follows:

ΠEQ

𝑛 ∃𝑏+ (∅) ∃𝑏− (∅) ∃𝑜∈var(W)𝑜 (∅) ∃𝑠1 (𝑈𝑛) · · · 𝑠_ (𝑈𝑛) ·(
{𝑏+, 𝑠1} ⊗𝜓𝐸𝑄

𝑛

)
∪

(
{𝑏−, 𝑠_} ⊗𝜓𝐸𝑄

𝑛

)
∪ ({𝑏+, 𝑏−} ⊗W) ∪𝜓𝐿

_
,

where𝜓𝐿
_
:=

{
{𝑠1, 𝑠2}, . . . , {𝑠_−1, 𝑠_}, {𝑏+, 𝑠1}, {𝑏−, 𝑠_}

}
. Furthermore, we define EQ𝑛 (⊤, _) as EQ𝑛 (∅, _) with the variable

𝑏− removed and occurrences of its literals replaced by substituting 𝑏− = 𝑏+. We denote by𝜓
EQ

𝑛 (W, _) and𝜓 EQ

𝑛 (⊤, _)
the matrix of EQ𝑛 (W, _) and EQ𝑛 (⊤, _), respectively.

We further define EQ
↓
𝑛 (W, _) as the DQBF

Π
EQ↓
𝑛 ∃𝑏+ (∅) ∃𝑏− (∅) ∃𝑜∈var(W)𝑜 (∅) ∃𝑠1 (𝑈𝑛) · · · 𝑠_ (𝑈𝑛) ·𝜓 EQ

𝑛 (W, _)

and EQ
↓
𝑛 (⊤, _) as EQ

↓
𝑛 (∅, _) with the variable 𝑏− removed and occurrences of its literals replaced by substituting

𝑏− = 𝑏+.

The intuition for these formulas is the following. Resolution paths that certify dependencies between the 𝑢𝑖 and

𝑧 𝑗 must use both copies of 𝜓
EQ

𝑛 , collecting the independent-existential clause {𝑏+, 𝑏−} along the way. The CNFW,

which will typically be unsatisfiable, ensures that {𝑏+, 𝑏−} is implied—but in order to discover this implication, an

implication relation has to have the power to refuteW (i.e. (W, ∅) ∈ 𝑅). The sub-formula𝜓𝐿
_
is a gadget that prolongs

paths—in order to collect both 𝑏+ and 𝑏− for an implied clause, a high value of _ is required to see a long segment at

once. Deficiency in either of the parameters means that the implied clause {𝑏+, 𝑏−} will not be discovered.
We now proceed with the technical details of the proofs.
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Since EQ
↓
𝑛 (W, _) and EQ

↓
𝑛 (⊤, _) can be restricted with the assignment 𝑏+ ↦→ 0, 𝑏− ↦→ 1, 𝑠𝑖 ↦→ 0 to obtain EQ

↓
𝑛 , and

any ∀Exp+Res or Q-Res proof can also be restricted with the same assignment at no cost in size, the lower bound from

Theorem 6.9 lifts to EQ
↓
𝑛 (W, _), and by monotonicity of ∀Exp+Res to EQ𝑛 (W, _).

Lemma 6.14. Let 𝑛, _ ∈ N, andW a CNF. For Ψ in {EQ𝑛 (W, _), EQ𝑛 (⊤, _), EQ
↓
𝑛 (W, _), EQ↓𝑛 (⊤, _)}, ℎ∀Exp+Res (Ψ) ≥

2
𝑛 .

The same argument lifts the Q-Res lower bound as well.

Lemma 6.15. Let 𝑛, _ ∈ N,W a CNF. For Φ ∈ {EQ𝑛 (W, _), EQ𝑛 (⊤, _)}, ℎQ-Res (Φ) ≥ 2
𝑛 .

Lemma 6.16. For every 𝑛, _ ∈ N andW a CNF, there is a propositional model of 𝜓 EQ

𝑛 (W, _) where 𝑏+ ↦→ 1, 𝑏− ↦→ 0,

and there is one where 𝑏+ ↦→ 0, 𝑏− ↦→ 1. In other words, 𝜓 EQ

𝑛 (W, _) ̸|= {𝑏+}, {𝑏−}, {𝑏+}, {𝑏−}. On the other hand,

𝜓
EQ

𝑛 (W, _) |= {𝑏+, 𝑏−}, and ifW is unsatisfiable, then also𝜓 EQ

𝑛 (W, _) |= {𝑏+, 𝑏−}.

Proof. Concatenate the assignment given by Lemma 6.6 with the appropriate assignment to 𝑏+ and 𝑏−. The

implications are immediate. □

Proposition 6.17. Let 𝑅 be a non-empty normal implication relation, (W, ∅) ∈ 𝑅. For all 𝑛, _ ∈ N:

D𝐹 (𝑅, _)
(
EQ𝑛 (W, _)

)
= D𝐹 (𝑅, _)

(
EQ
↓
𝑛 (W, _)

)
= 𝛿 (EQ𝑛 (W, _)),

D𝐹 (𝑅⊤, _)
(
EQ𝑛 (⊤, _)

)
= D𝐹 (𝑅, _)

(
EQ
↓
𝑛 (⊤, _)

)
= 𝛿 (EQ𝑛 (⊤, _))

Proof. Any sequence of clauses that satisfies conditions (a)-(d) must use both copies of EQ𝑛—otherwise we reach a

contradiction in the same way as in the proof of Proposition 6.10 (note that the added literals 𝑏+ and 𝑠1, or 𝑏− and 𝑠_
in the second copy, do not have any impact on the existence of paths, because they appear in one polarity only). On

the other hand, consider a path that goes through both copies of EQ𝑛 . It is easy to see that in order to transition from

one copy to the other, other than going directly, the path has to go through the chain of clauses {𝑠1, 𝑠2}, . . . , {𝑠_−1, 𝑠_}.
This chain is _ − 1 long, and so there is a segment of length _ + 1 that contains both a clause from the first copy as

well as a clause from the second copy. Together, these two clauses restricted to 𝐼∃ (EQ↓𝑛 (W, _)) give the clause {𝑏+, 𝑏−}.
Because 𝑅 is normal and (W, ∅) ∈ 𝑅, also ({𝑏+, 𝑏−} ⊗W, {𝑏+, 𝑏−}) ∈ 𝑅, and thus (𝜓 EQ

𝑛 (W, _), {𝑏+, 𝑏−}) ∈ 𝑅, falsifying
condition (e) of Definition 5.3. Similarly, in the case of 𝑅⊤, we collect the tautology {𝑏+, 𝑏+} and falsify condition (e).

We conclude there are no resolution paths satisfying all conditions (a)-(e), and hence all dependencies are removed. □

Corollary 6.18. Let 𝑃 ∈ {∀Exp+Res,Q-Res}, let 𝑅 be a non-empty normal implication relation, (W, ∅) ∈ 𝑅. For

Ψ ∈ {EQ𝑛 (W, _), EQ𝑛 (⊤, _), EQ
↓
𝑛 (W, _), EQ↓𝑛 (⊤, _)}, ℎ𝑃 (D𝐹 (𝑅,_)) (Ψ) ∈ 𝑂 (𝑛 + _).

Proof. By Proposition 6.17, exp(D𝐹 (𝑅, _) (EQ𝑛 (W, _))) is obtained simply by deleting all universal literals from

𝜓
EQ

𝑛 (W, _)). Using the chain𝜓𝐿
_
we can derive exp(𝛿 (EQ𝑛)) from the two copies in a linear number of steps, and then

we proceed like in the proof of Theorem 6.11. The case of EQ𝑛 (⊤, _) is analogous, and the part about the EQ
↓
𝑛 versions

follows from monotonicity of ∀Exp+Res and Q-Res. □

Proposition 6.19. Let 𝑅 be a normal implication relation,W a CNF, _, _′ ∈ N. For Ψ ∈ {EQ𝑛 (W, _), EQ↓𝑛 (W, _)},

(W, ∅) ∉ 𝑅 =⇒ D𝐹 (𝑅,∞)
(
Ψ
)
= Ψ ,

_′ < _ =⇒ D𝐹 (𝑅⊨, _′)
(
Ψ
)
= Ψ ,
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and for Ψ′ ∈ {EQ𝑛 (⊤, _), EQ
↓
𝑛 (⊤, _)},

Drrs
(
Ψ′

)
= Ψ′ .

Proof. To prove the proposition, we must find sequences of clauses and literals satisfying conditions (a) to (e) of

Definition 5.3 with respect to both (𝑢𝑖 , 𝑧𝑖 ), (𝑢𝑖 , 𝑠 𝑗 ) ∈ deps(EQ↓𝑛 (W, _)), or (𝑢𝑖 , 𝑧 𝑗 ), (𝑢𝑖 , 𝑠 𝑗 ) ∈ deps(EQ𝑛 (W, _)), for
each 𝑖 ∈ [𝑛] and 𝑗 ∈ [_]. We will show that for EQ𝑛 (W, _) the sequence of clauses

𝑃 = {𝑏+, 𝑥𝑖 , 𝑢𝑖 , 𝑧𝑖 , 𝑠1}, {𝑏+, 𝑧1, . . . , 𝑧𝑛, 𝑠1}, {𝑏+, 𝑥 𝑗 , 𝑢 𝑗 , 𝑧 𝑗 , 𝑠1}, {𝑠1, 𝑠2}, . . . , {𝑠_−1, 𝑠_}, {𝑏−, 𝑥𝑖 , 𝑢𝑖 , 𝑧𝑖 , 𝑠_},

and the sequence of literals 𝑧𝑖 , 𝑧 𝑗 , 𝑠1, . . . , 𝑠_ suffice, and similarly, for EQ
↓
𝑛 (W, _)

𝑃 ↓ = {𝑏+, 𝑥𝑖 , 𝑢𝑖 , 𝑧𝑖 , 𝑠1}, {𝑏+, 𝑧1, . . . , 𝑧𝑛, 𝑠1}, {𝑠1, 𝑠2}, . . . , {𝑠_−1, 𝑠_}, {𝑏−, 𝑥𝑖 , 𝑢𝑖 , 𝑧𝑖 , 𝑠_}

with the literals 𝑧𝑖 , 𝑠1, . . . , 𝑠_ . It is readily verified that conditions (a) to (d) are satisfied regardless of 𝑅,W, and _, and

in particular this serves to show the case with Drrs
and Ψ′ because condition (e) is vacuous there. Hence it remains to

verify condition (e) in the other cases. Consider the independent existential literals that appear on the sequences 𝑃 and

𝑃 ↓: 𝑏+ and 𝑏−.

If _′ < _, on any segment of length _′ + 1, there is at most one of 𝑏+ and 𝑏−, and by Lemma 6.16 those unit clauses

are not implied, hence condition (e) is satisfied for any implication relation 𝑅 and 𝑃 detects a dependency.

If _′ ≥ _, we collect the clause {𝑏+, 𝑏−}, which is implied as long asW is unsatisfiable. Though, by normality of 𝑅,

(W, ∅) ∉ 𝑅 ⇐⇒ ({𝑏+, 𝑏−} ⊗W ∪ {𝑏+, 𝑏−}, {𝑏+, 𝑏−}) ∉ 𝑅 =⇒ (𝜓 EQ

𝑛 (W, _), {𝑏+, 𝑏−}) ∉ 𝑅,

where the last implication follows from (the contrapositive of) the restriction property of normality using the satisfying

assignment given by Lemma 6.6 extended by setting all 𝑠𝑖 to 1. Hence, condition (e) is satisfied. □

Proposition 6.19 and Lemma 6.14 together imply hardness for parameterised versions of our proof systems. For the

sake of brevity of the statement, we skip the lower bound for the EQ𝑛 versions in ∀Exp+Res, which follows trivially by

monotonicity.

Corollary 6.20. Let 𝑅 be a normal implication relation, (W, ∅) ∉ 𝑅, _ ∈ N0. Then

ℎ∀Exp+Res(D𝐹 (𝑅,∞)) (EQ
↓
𝑛 (W, _)) ≥ 2

𝑛
;

ℎ∀Exp+Res(D𝐹 (𝑅⊨,_−1)) (EQ
↓
𝑛 (W, _)) ≥ 2

𝑛
;

ℎ∀Exp+Res(Drrs) (EQ
↓
𝑛 (⊤, _)) ≥ 2

𝑛
;

and for 𝑃 ∈ {∀Exp+Res,Q-Res},

ℎ𝑃 (D𝐹 (𝑅,∞)) (EQ𝑛 (W, _)) ≥ 2
𝑛
;

ℎ𝑃 (D𝐹 (𝑅⊨,_−1)) (EQ𝑛 (W, _)) ≥ 2
𝑛
;

ℎ𝑃 (Drrs) (EQ𝑛 (⊤, _)) ≥ 2
𝑛
;

We are finally ready to prove Theorem 6.1 and the rest of Theorem 6.2.

Theorem 6.1. The simulations follow from Lemma 5.9 and monotonicity of the proof systems. The separations

follow from Corollaries 6.18 and 6.20, for finite _, as follows. By assumption 𝑅 \ 𝑅′ contains some (W,𝐶) for some

non-tautological clause 𝐶 , and by normality then (W[𝐶], ∅) ∈ 𝑅 \ 𝑅′. Then, we can invoke the two corollaries
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with EQ𝑛 (W[𝐶], _) to obtain linear-size proofs in 𝑃 (D𝐹 (𝑅, _)) and exponential lower bounds in 𝑃 (D𝐹 (𝑅, _′)) and
𝑃 (D𝐹 (𝑅′, _)). To separate the global dependency schemes from their local counterparts, we can make a diagonalization

argument. The family (EQ𝑛 (W, 𝑛))𝑛∈N can be seen to have short proofs in 𝑃 (D𝐹 (𝑅, _)) if, and only if (W, ∅) ∈ 𝑅 and

_ = ∞.
Finally, we need to show that the separations for ∀Exp+Res are genuine. That means that as soon as we transform a

hard family into a QBF family by shrinking dependency sets, the hardness vanishes. Like in the proof of Theorem 6.12,

any largest QBF embedded in EQ
↓
𝑛 (W, _) has only one variable with a non-empty dependency set, other than the

𝑠-variables; but also like in that proof, such QBFs can easily be seen to have short ∀Exp+Res proofs even without any

dependency scheme. □

6.3 Consequences of Theorem 6.1

One trivial consequence of Theorem 6.1, which is nevertheless worth pointing out explicitly, is that it implies the

converse of Lemma 5.9.

Lemma 6.21. Let 𝑅, 𝑅′ be non-empty normal implication relations and _, _′ ∈ N∞. Then D𝐹 (𝑅′, _′) is more general

than D𝐹 (𝑅, _) if, and only if, 𝑅 ⊆ 𝑅′ and _ ≤ _′.

Proof. One direction is just Lemma 5.9, for the other direction, consider the separating formulas EQ𝑛 (W, _) for
(W, ∅) ∈ 𝑅 \ 𝑅′, where one scheme detects independence that the other misses. □

Together with Proposition 5.8, which says that Drrs
is less general than any other implication-free scheme, this

allows us to restate Theorem 6.1 slightly more compactly as follows. We say that an implication-free dependency

scheme is normal if its implication relation is.

Theorem 6.22. Let 𝑃 ∈ {∀Exp+Res,Q-Res}, D,D ′ normal implication-free dependency schemes. Then

𝑃 (D) ≤𝑝 𝑃 (D ′) ⇐⇒ D ≤ D ′,

and whenever D ≰ D ′, the separation ∀Exp+Res(D) ≰∗𝑝 ∀Exp+Res(D ′) is DQBF-genuine.

This version, which also incorporates the upper half of the chain from Theorem 6.2, highlights that the parameteri-

sation operator is an injective homomorphism from the partially ordered set of normal implication-free dependency

schemes, into the partially ordered set of parameterised versions of 𝑃 .

Theorem 6.1 speaks about an infinite ordered hierarchy of proof systems even when the implication relation 𝑅 is

fixed. As a potentially interesting application, we will now sketch one way to use the full power of Theorem 6.1 in order

to extend this 1-dimensional hierarchy and obtain an infinite 2-dimensional grid hierarchy of DQBF proof systems

parameterised by implication-free dependency schemes. The crucial component here are hierarchies of implication

relations.

Let {𝑅𝑘 }𝑘∈N be a sequence of normal polynomial-time computable implication relations of increasing size, i.e.

𝑅𝑘 ⊊ 𝑅𝑘+1. Then, Theorem 6.1 says that

𝑃 (D𝐹 (𝑅𝑘 , _)) ≤𝑝 𝑃 (D𝐹 (𝑅𝑘′, _′)) ⇐⇒ 𝑘 ≤ 𝑘 ′ and _ ≤ _′.

One example of such a hierarchy of implication relations can be constructed from bounded-depth DPLL. DPLL [19, 20]

is a well known algorithm for SAT, which proceeds by branching on indeterminate variables alternated with formula
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(𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧𝑛) (𝑧1 ∨ · · · ∨ 𝑧𝑛) (𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧𝑛)

(𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1) (𝑥𝑛 ∨ 𝑢𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1)

(𝑥𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1) (𝑥𝑛 ∨ 𝑧1 ∨ · · · ∨ 𝑧𝑛−1)

(𝑥𝑛−1 ∨ 𝑢𝑛−1 ∨ 𝑧𝑛−1) (𝑧1 ∨ · · · ∨ 𝑧𝑛−1) (𝑥𝑛−1 ∨ 𝑢𝑛−1 ∨ 𝑧𝑛−1)
.
.
.

.

.

.
.
.
.

A A A

R R

U U

R

Fig. 3. Linear-size Q-Res refutation of the DQBF EQ↓𝑛 . In a constant number of steps, EQ↓𝑛 is reduced to EQ↓
𝑛−1.

simplification by unit propagation.
4
If unsatisfiability is determined in a given branch, the last decision is reverted.

Crucially, this reverted value is no longer considered a decision; it is effectively propagated by a deeper inference

that just determined unsatisfiability of the other branch. A bounded-depth version simply requires that the number

of active decisions at any time in the algorithm is bounded by a fixed constant 𝑘—as soon as that bound is to be

exceeded, the algorithm terminates with the answer ‘don’t know’. We can define an implication relation 𝑅
DPLL(𝑘) to

consist of pairs (𝜓,𝐶) for which𝜓 [𝐶] can be proved unsatisfiable by 𝑘-bounded-depth DPLL (for at least one choice

of decision variables). This generalizes reverse unit propagation, which is just 0-bounded-DPLL. It can easily be seen

that 𝑘-bounded-depth DPLL can be executed in worst-case 𝑂 (𝑛𝑘 ) · poly(𝑛) time, by going over all possible choices

of decision variables and simplifying by unit propagation accordingly. Thus, 𝑅
DPLL(𝑘) is indeed a polynomial-time

computable implication relation, and it is not too hard to see that all conditions of normality are fulfilled. An example of

a formula that is decidable with bounded depth 𝑘 , but not with depth 𝑘 − 1, is the formula which contains all 2
𝑘+1

full

clauses on some set of 𝑘 + 1 variables. Thus, the sequence of 𝑅𝑘 is indeed strictly increasing, and Theorem 6.1 applies as

described.

Until now Drrs
was the state-of-the-art dependency scheme for Q-Res(D); Theorem 6.22 shows that each normal

implication-free dependency scheme is stronger, pushing the state of the art in dependency-aware QBF solving.

7 COMPUTATIONAL COMPLEXITY

In view of Theorem 5.10, it is natural to ask why one should even consider less general implication-free schemes. The

answer lies in the complexity of computing the dependency scheme. While Theorem 7.1 tells us that local schemes with

polynomial-time computable implication relations are themselves polynomial-time computable, Theorems 7.2 and 7.3

provide negative results—both globality and hardness in computing the implication relation translate into hardness for

the dependency scheme.

Theorem 7.1. D𝐹 (𝑅, _) is polynomial-time computable if 𝑅 is polynomial-time computable and _ < ∞.

4
We do not consider other techniques, like pure literal elimination, to be part of core DPLL for the discussion here; though they could be added without

affecting the gist of the idea.
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Proof. Before we proceed with the technical details, let us discuss the intuition. In order to decide the existence of a

clause path fulfilling conditions (a)-(e) of Definition 5.3, we must essentially perform a reachability search. However,

unlike plain reachability, this search must keep track of the last _ clauses on the path being searched in order to be able

to test condition (e). We show that this can be simulated by plain, memoryless reachability by considering a blown-up

graph where the vertices are all _-tuples of clauses, effectively encoding the _-size memory into a single vertex. The

formal proof follows.

Let Ψ = Π ·𝜓 be a DQBF. There is only a polynomial number of variable pairs, so it is sufficient that we can test in

polynomial time whether a given 𝑥 depends on a given 𝑢. Let 𝑢 ∈ vars∀(Ψ), 𝑥 ∈ vars∃ (Ψ). As a preprocessing step, we

go over all candidate paths of length at most _, which can be done in 𝑂 ( |Ψ|_) time simply by listing all _-tuples of

clauses. If we find a suitable path, we are done, so for the rest of the proof assume there is no path of length ≤ _.

Consider the directed graph 𝐺𝑢
Ψ,_

= (𝑉𝑢
Ψ,_

, 𝐸𝑢
Ψ,_
) with the vertex set

𝑉𝑢
Ψ,_ =

{ [
(𝐶

1
, 𝑎

1
), . . . , (𝐶

_
, 𝑎

_
)
]
: 𝐶𝑖 ∈ Ψ, 𝑎𝑖 ∈ 𝐶𝑖 for 𝑖 ∈ [_],

𝑎𝑖+1 ∈ 𝐶𝑖 , var(𝑎𝑖 ) ≠ var(𝑎𝑖+1), 𝑢 ∈ 𝑆var(𝑎𝑖+1) for 𝑖 ∈ [_ − 1]
}

and with an edge

[
(𝐶

1
, 𝑎

1
), . . . , (𝐶

_
, 𝑎

_
)
]
→

[
(𝐷1, 𝑒1), . . . , (𝐷_, 𝑒_)

]
if (𝐶𝑖 , 𝑎𝑖 ) = (𝐷𝑖−1, 𝑒𝑖−1), 𝑒_ ∈ vars∃ (Ψ), 𝑢 ∈

𝑆
var(𝑒_) , and (

𝜓,

_⋃
𝑖=1

(𝐶𝑖 ∪ 𝐷𝑖 )↾𝐼∃ (Ψ)

)
∉ 𝑅

In other words, the definitions of 𝑉𝑢
Ψ,_

and 𝐸𝑢
Ψ,_

are exactly such that for an edge, the sequences 𝐶1, . . . ,𝐶_, 𝐷_ and

𝑎2, . . . , 𝑎_, 𝑒_ fulfill conditions (a)-(e) of Definition 5.3.

We claim that (𝑢, 𝑥) ∈ deps(Ψ) if, and only if, there are vertices

𝑉 =
[
(𝐶

1
, 𝑎

1
), . . . , (𝐶

_
, 𝑎

_
)
]
, 𝑉 ′ =

[
(𝐶
′
1
, 𝑎
′
1
), . . . , (𝐶

′

_
, 𝑎
′

_
)
]
, 𝑉 ′′ =

[
(𝐶
′′
1
, 𝑎
′′
1
), . . . , (𝐶

′′

_
, 𝑎
′′

_
)
]
,

allowing𝑉 = 𝑉 ′ or𝑉 ′ = 𝑉 ′′, such that𝑢 = 𝑎1,𝑢 ∈ 𝐶 ′′_ , ∃𝑖 ∈ [_−1] : var(𝑎′
𝑖+1) = 𝑥 , and there are paths𝑉 → 𝑉 ′ → 𝑉 ′′.

Indeed, it is easy to verify that the clauses and literals on the concatenated path 𝑉 → 𝑉 ′′ constitute the required

sequences from Definition 5.3, and vice versa, any sequences according to Definition 5.3 with more than _ clauses can

be translated to a path 𝑉 → 𝑉 ′ → 𝑉 ′′ in 𝐺𝑢
Ψ,_

.

Clearly, 𝐺𝑢
Ψ,_

can be constructed in 𝑂

(
𝑡𝑅 ( |Ψ|) |Ψ|2_

)
time, where 𝑡𝑅 is the time it takes to check 𝑅. Hence we can

test all candidates for 𝑉 , compute all suitable middle points 𝑉 ′ reachable from them, and check whether some 𝑉 ′′ is

reachable from any of them, all in polynomial time. □

Theorem 7.1 gives a recipe for an algorithm that runs in time poly( |Ψ|)_ . If we treat _ as a parameter as in

parameterised complexity theory [18, 21], this is called an XP algorithm. A natural question from the point of view of

parameterised complexity is whether there is a fixed-parameter tractable (FPT) in _ algorithm to compute D𝐹 (𝑅, _) for
a polynomial-time computable 𝑅, i.e. one whose running time scales as 𝑓 (_) · poly( |Ψ|) for some computable function

𝑓 . We leave this question for future work.

Setting aside the XP vs FPT question, we can look at the limit case of _ = ∞. If global implication-free schemes were

polynomially computable, we would not have to worry about the local schemes at all. Though, as the next theorem

says, computing a global implication-free scheme is in fact NP-hard.

Theorem 7.2. If 𝑅 is an implication relation with 𝑅⊤ ⊆ 𝑅, then D𝐹 (𝑅,∞) is NP-hard.
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Proof. By reduction from SAT. Let𝜓 = 𝐶1 ∧ · · · ∧𝐶𝑟 be a CNF. Using the fresh variables 𝑢, 𝑧1, . . . , 𝑧𝑟+1 ∉ vars(𝜓 )
we define the following (D)QBF:

Ψ = ∃vars(𝜓 ) ∀𝑢 ∃𝑧1, . . . , 𝑧𝑟+1 · 𝜙,

where

𝜙 = (𝑢 ∨ 𝑧1) ∧ (𝑢 ∨ 𝑧𝑟+1) ∧
𝑟∧
𝑖=1

∧
𝑎∈𝐶𝑖

(𝑎 ∨ 𝑧𝑖 ∨ 𝑧𝑖+1) .

Since 𝜙 can be satisfied by the fresh variables only, no non-tautological clause on vars(𝜓 ) is implied by 𝜙 . Because

𝐼∃ (Ψ) = vars(𝜓 ), in condition (e
′
) applied to Ψ we will only ever test whether (𝜙,𝐶) ∈ 𝑅 for clauses 𝐶 on vars(𝜓 ),

which means that D𝐹 (𝑅,∞)(Ψ) = D𝐹 (𝑅⊤,∞)(Ψ). To complete the proof, we will now show that𝜓 is satisfiable if and

only if (𝑢, 𝑧𝑖 ) ∈ deps(D𝐹 (𝑅⊤,∞)(Ψ)) for any 𝑖 ∈ [𝑟 + 1].
Let 𝐷1, . . . , 𝐷𝑘 and 𝑝1, . . . , 𝑝𝑘−1 be sequences that satisfy conditions (a)-(d) of Definition 5.3 for (𝑢, 𝑧𝑖 ) for some 𝑖 .

Because 𝑢 ∈ 𝐷1, we have 𝐷1 = (𝑢, 𝑧1), and so 𝑝1 = 𝑧1. Hence 𝑧1 ∈ 𝐷2, and so 𝐷2 must be one of the clauses (𝑎∨𝑧1 ∨𝑧2)
corresponding to some 𝑎 ∈ 𝐶1, and so 𝑝2 must be 𝑧2. By induction, we have that 𝐷𝑖 is one of the clauses corresponding

to 𝐶𝑖−1 for 1 < 𝑖 < 𝑘 , and 𝑝𝑖 = 𝑧𝑖 for 1 ≤ 𝑖 < 𝑘 . Finally 𝐷𝑘 = (𝑢, 𝑧𝑟+1), and hence 𝑘 = 𝑟 + 2.
Therefore, 𝛼 := (𝐷1 ∪ · · · ∪ 𝐷𝑘 )↾𝐼∃ (Ψ) contains at least one literal from every clause 𝐶𝑖 , and conversely for every

set of literals 𝛼 that hits every clause 𝐶𝑖 , we can construct corresponding sequences 𝐷1, . . . , 𝐷𝑟+2 and 𝑧1, . . . , 𝑧𝑟+1 for

which 𝐷1 ∪ · · · ∪ 𝐷𝑟+2↾𝐼∃ (Ψ) ⊆ 𝛼 . Because 𝛼 hits every clause of𝜓 , it is a satisfying assignment of𝜓 if and only if it is

non-tautological. It follows that𝜓 is satisfiable if and only if condition (e
′
) of Definition 5.3 can be satisfied on top of

(a)-(d), i.e. (𝑢, 𝑧𝑖 ) ∈ deps(D𝐹 (𝑅⊤,∞)(Ψ)). □

Theorem 7.2 says that globality is a source of hardness. Next, we will show that hardness of a normal implication

relation also translates into hardness of any implication-free dependency scheme that uses it, regardless of _.

Theorem 7.3. For any normal implication relation 𝑅, the co-problem of computing 𝑅 can be reduced in polynomial time

to computing D𝐹 (𝑅, 1) (or indeed any value of _ ∈ N∞).

Proof. Let 𝑅 be a normal implication relation,𝜓 a CNF,𝐶 a clause. Using the fresh variables 𝑢, 𝑧 ∉ vars(𝜓 ) ∪vars(𝐶)
we define the following (D)QBF:

Ψ = ∃vars(𝐶) ∀𝑢 ∃(vars(𝜓 ) \ vars(𝐶)) ∃𝑧 · 𝜙,

where 𝜙 = 𝜓 ∧𝐶1 ∧𝐶2 and 𝐶1 = (𝐶 ∨ 𝑢 ∨ 𝑧), 𝐶2 = (𝑢 ∨ 𝑧). We claim that (𝑢, 𝑧) ∈ deps(D𝐹 (𝑅, 1) (Ψ)) if and only if

(𝜓,𝐶) ∉ 𝑅.

If (𝑢, 𝑧) ∈ deps(D𝐹 (𝑅, 1) (Ψ)), then this can only be due to the sequences𝐶1,𝐶2 and 𝑧 satisfying all conditions (a)-(e)

of Definition 5.3. In particular, (𝜙, (𝐶1 ∪𝐶2)↾𝐼∃ (Ψ) = 𝐶) ∉ 𝑅. By the weakening property then also (𝜓,𝐶) ∉ 𝑅.

Conversely, if (𝜓,𝐶) ∉ 𝑅, then, since𝜓 = 𝜙 [𝑢, 𝑧] and 𝐶 = 𝐶 [𝑢, 𝑧], by the restriction property (𝜙,𝐶) ∉ 𝑅. Hence, the

sequences 𝐶1,𝐶2 and 𝑧 satisfy conditions (a)-(e), and (𝑢, 𝑧) ∈ deps(D𝐹 (𝑅, 1) (Ψ)). □

As a corollary, we obtain NP-hardness for D𝐹 (𝑅⊨, _), transferred from its coNP-complete normal full implication

relation 𝑅⊨. In fact, since 𝑅⊨ is in coNP, the following observation additionally gives us NP membership as well.

Observation 1. For any implication relation 𝑅 in coNP, D𝐹 (𝑅⊨, _) is in NP for any _ ∈ N∞.

Proof. To check that for a pair (𝑢, 𝑥) ∈ vars(Ψ) of variables (𝑢, 𝑥) ∈ deps(D𝐹 (𝑅⊨, _) (Ψ)), we can simply guess the

right sequences of clauses and literals, and verify that none of the corresponding restricted clause unions are in 𝑅 with
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respect to the matrix of Ψ, which can all be done in non-deterministic polynomial time (we are checking that a clause is

not in 𝑅). □

Corollary 7.4. For any _ ∈ N∞, D𝐹 (𝑅⊨, _) is NP-complete.

8 CONCLUSIONS

We conclude with an interesting observation and a question for future research. The family {EQ↓𝑛}𝑛∈N fromDefinition 6.8

is an adaptation of the equality QBFs {EQ𝑛}𝑛∈N from [8], obtained by shrinking the dependency set of each 𝑧𝑖 to

just {𝑢𝑖 }. While in QBF {EQ𝑛}𝑛∈N requires exponentially long proofs in both ∀Exp+Res and Q-Res [5, 8], in DQBF

{EQ↓𝑛}𝑛∈N remains hard only for ∀Exp+Res. Indeed, even though Q-Res is incomplete for DQBF, it is sound, and

{EQ↓𝑛}𝑛∈N has linear-size Q-Res refutations, as shown in Figure 3. This suggests that there may be some hidden

proof-complexity relationship between ∀Exp+Res and Q-Res in DQBF, even though Q-Res is incomplete there.

In the conference version of this paper, we introduced only the dependency scheme Dtf
, at that time the strongest

known dependency scheme. With this paper, we answer the open question posed there—whether dependency schemes

even stronger than Dtf
exist—by showing that there is in fact a rich infinite multidimensional world of parameterised

dependency schemes that naturally generalize Dtf
. Nevertheless, our concluding question in this paper remains the

same: do some even stronger dependency schemes for (D)QBF exist?
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