Electronic Colloquium on Computational Complexity, Report No. 136 (2021)

LCC and LDC: Tailor-made distance amplification

and a refined separation

Gil Cohen* Tal Yankovitz!

September 13, 2021

Abstract

The Alon-Edmonds-Luby distance amplification procedure (FOCS 1995) is
an algorithm that transforms a code with vanishing distance to a code with
constant distance. AEL was invoked by Kopparty, Meir, Ron-Zewi, and Saraf
(J. ACM 2017) for obtaining their state-of-the-art LDC, LCC and LTC. Cohen
and Yankovitz (CCC 2021) devised a procedure that can amplify inverse-
polynomial distances, exponentially extending the regime of distances that
can be amplified by AEL. However, the improved procedure only works for
LDC and assuming rate 1 — m.

In this work we devise a distance amplification procedure for LCC with
inverse-polynomial distances even for vanishing rate m. For LDC, we
obtain a more modest improvement and require rate 1 — m. Thus, the
tables have turned and it is now LCC that can be better amplified. Our key
idea for accomplishing this, deviating from prior work, is to tailor the distance
amplification procedure to the code at hand.

Our second result concerns the relation between linear LDC and LCC. We
prove the existence of linear LDC that are not LCC, qualitatively extending

a separation by Kaufman and Viderman (RANDOM 2010).

*Department of Computer Science, Tel Aviv University. Supported by the ERC starting grant 949499

and the Israel Science Foundation grant 1569/18. Email: gil@tauex.tau.ac.il.
tDepartment of Computer Science, Tel Aviv University. Supported by the Azrieli Faculty Fellowship.

Email: talyankovitz@mail.tau.ac.il.

ISSN 1433-8092

Contents

1 Introduction 1
1.1 Distance amplification 1
1.2 LDCand LCC e 1
1.3 Improved distance amplification for LDC 2
2 Owur contribution 2
2.1 Tailor-made distance amplification procedure 2
2.2 Refined separation between LDC and LCC)
3 Preliminaries 8
3.1 Notations and conventions 8
3.2 Error correcting codeso 8
3.3 Locally decodable codes and locally correctable codes 10
4 Tailor made distance amplification 11
4.1 Characterization of LCC 11
4.2 Splitters for query sets 14
4.3 The distance amplification procedure L. 15
4.4 Deriving the Corollaries 19
5 LDC are not LCC via random weighted tensor codes 29
5.1 Preliminaries for this section L. 29
5.2 A necessary condition for local correction 30
5.3 Weighted tensors 31
5.4 Local decodability of weighted tensors 33
5.5 Local correctablity of random weighted tensors 35
5.6 Deriving the theorem oo 38

A From smooth LCC to good LCC 41

1 Introduction

1.1 Distance amplification

It is a recurrent theme in coding theory that the construction of a code is done in two
steps. In the first step, a code with weak parameters is constructed, and typically it is
the distance of the code that is unsatisfactory. In the second step, one transforms the
code obtained in the first step to a code with the desired parameters, where typically,
in the process, the other parameters deteriorate only slightly. When the distance is the
unsatisfactory parameter, the second step is referred to as a distance amplification step.

Examples that fall into this framework include the breakthrough constructions of
near-optimal small-bias sets by Ta-Shma [TS17], and the state-of-the-art construction
of locally decodable codes (LDC), locally correctable codes (LCC), and locally testable
codes (LTC) by Kopparty, Meir, Ron-Zewi, and Saraf [KNRS17]. A prominent example
from the (adjacent) PCP literature is Dinur’s celebrated proof of the PCP Theorem by
gap amplification [Din06]. It is interesting to note that in all the above cases the first
step is done using algebraic machinery whereas the second step is based on combinatorial

arguments.

1.2 LDC and LCC

Informally, a linear (g,0) locally decodable code (LDC) is a code, given by an F-linear
encoding function Enc : F¥ — F", where F is a finite field, that is also equipped with a
“local decoder”. The latter is a randomized algorithm, denoted by Dec, with the following
guarantee. Given an oracle access to z € F" that is within relative Hamming distance
d from some codeword Enc(z), and given i € [k], Dec*(i) = z; with high probability.
Moreover, Dec makes at most ¢ queries to z. That is, every message symbol can be
decoded, with high probability, by querying only few symbols of a corrupted codeword.
A (q,6) locally correctable code (LCC) is the variant in which one wishes to decode (or,
more precisely, correct) the codeword symbols rather than the message symbols.

Locally decodable codes were defined by Katz and Trevisan [I[<T00] who proved that
asymptotically good LDC require ¢ = Q(logn) queries. Whether or not this bound is
tight is a major open problem. An intensive research effort is devoted to the study and
construction of LDC and LCC. Of particular interest is the study of asymptotically good
LDC and LCC [KSY 14, GKS13, HOW15, KMRS17, GKO'18, CY21] where the goal is
to minimize the query complexity.

In their seminal work, Kopparty, Meir, Ron-Zewi and Saraf [[KXNRS17] contained LDC

and LCC with sub-polynomial query complexity. For the first step, a code with vanishing
m was used [[KSY 14], having the desired query complexity, namely, ¢ =
20(VIogn) Then, in the second step the authors invoked a distance amplification procedure
due to Alon, Edmonds and Luby [AL96, AEL95], which was originally introduced in the

context of linear-time erasure codes, and observed that it converts an LDC (resp. LCC)

distance § =

with distance 0 and query complexity ¢ to an LDC (resp. LCC) with constant distance
and query complexity gnew = ¢ - poly(3).

1.3 Improved distance amplification for LDC

Motivated by the key role that the distance amplification procedure plays in [KNMRS17],
Cohen and Yankovitz [CY21] asked whether much lower distances can be amplified. In-
deed, AEL’s procedure is mostly relevant in the regime § = m. In [CY21], the
authors devised an improved procedure that can amplify distances as low as n% for any
constant o < 1 with a fairly low cost in query complexity, guew = ¢°1°8°™ ! (and even
for « = 1—0(1) at a small additional cost in query complexity). However, their improved

distance amplification procedure has two drawbacks:

1. Unlike the AEL distance amplification procedure, the improved procedure was only

shown to work for LDC (and it may or may not work for LCC).

2. Second, to amplify the distance, the original LDC must have rate close to one, more

1

precisely, rate 1 — poly(logn) -

2 Our contribution

We turn to present the two results of this work.

2.1 Tailor-made distance amplification procedure

Our first contribution is a distance amplification procedure for LCC that can amplify
distances as low as those handled by [CY21] (for LDC). Moreover, our procedure works

even for vanishing rate LCC.

Ipoly(loglogn) factors in the exponent of the query complexity can be safely ignored given that, at
present, the lowest known query complexity is 29(V1°87) " Such an overlook will matter only when (and

if) the query complexity will go below quasi-poly-logarithmic.

Theorem 2.1 (Distance amplification for LCC; informal). Let h > 1 > o > 0 be any
constants. There exists a transformation that takes a q-query LCC with distance n% and

rate m to an asymptotically good LCC with query complezity

Grew = qC(loglogn)*" %)
We chose to state our result in a somewhat informal manner. For the formal statement,

see Corollary 4.19. We turn to give further details on the result.

Explicitness. In the statement of Theorem 2.1 we ignore the issue of explicitness. In-
deed, understanding LDC and LCC is already interesting in the information-theoretic
level. Having said that, our transformation is fairly explicit: It is a zero error randomized
transformation that runs in polynomial-time. More precisely, for every “failure” param-
eter ¢ > 0, our transformation runs in time poly(n) - log% and produces an LCC with
probability at least 1 — ¢; otherwise, it declares failure. We find this aspect to be a minor
issue as, recall, LCC are anyhow randomized in nature. Nonetheless, it will be interesting

to obtain a deterministic transformation with matching parameters.

Codes vs. family of codes. A second issue that we chose to sweep under the rag in
the statement of Theorem 2.1 is that the transformation operates on the level of family
of codes rather than on the level of individual codes. That is, in order to produce an
asymptotically good LCC of a given block-length n, our transformation requires as input
a sufficiently dense family of codes. By that we mean that the consecutive block-lengths
in the family are not too far apart. The density of the resulted family of codes is the same

as that of the original family.

Amplifying lower distances. Like [CY21], we can even amplify sub-polynomial dis-
tances, in particular, distances of the form 1/n'~%9(for an increasing function g, and
assuming a certain technical relation between g and the rate. In particular, for every

constant m > 1 we can handle g(n) = (loglogn)™, and end up with query complexity

O((log lo 2h+2m+2
Gnew = q ((loglogn)).

We note that constructing a code for g(n) = logn is trivial.

Amplifying the distance of LDC. We also obtain an improvement for LDC by devis-

ing a distance amplification procedure that requires rate 1 — , modestly improv-
1

poly(logn)

1
poly(loglogn)

ing upon the 1— rate required by [CY21]. The reason that we can do much better

for LCC is due to the rate amplification procedure of [C'Y21] that, informally, can amplify
rate p LCC with ¢ queries to constant rate LCC with query complexity gnew = quIY(%).

Such a transformation is not known for LDC.

2.1.1 Proof idea

In this section we give a short and informal account on our proof technique, and start
by contrasting our technique with prior work. Both the AEL distance amplification
procedure, as was used in [[KMRS17], and the one given by [C'Y21] are based on samplers
and further involve a “small” code, that is, a code with logarithmic block-length. The
latter improves upon the former by using unbalanced samplers (rather than balanced
ones, or expander graphs as was used originally [AEL95, AL96G]) and using a recursive
construction. To obtain our result, we deviate from prior work and tailor the distance
amplification procedure to the LCC at hand. That is, our procedure is “white box” - it
produces a new code with improved distance by first examining the structure of the given
code. To tailor the procedure to the LCC at hand, we do not work directly with the
definition of LCC as it lacks sufficient structure to work with. Instead, we work with a

more combinatorial characterization of LCC as was used in [C'Y21]. We turn to elaborate

on this.
Let C' < F" be a linear (g, d)-LCC. One can prove the following structural result. With
every coordinate i € [n] one can associate a set, called a query set, A; = {Q},..., Q" } of

m = dn/q disjoint subsets of [n], each of size at most ¢, such that the following holds: For
every c € C' and t € [m], ¢; can be deduced from Cqi- Assume from here on, for simplicity,
that 6 = 1/y/n and so m = /n/q. Denote A; = | J;~, Qi and note that |4;| < /n.

For our distance amplification procedure, we make use of a special partition m of [n]
into \/n parts Py,..., P, each of size \/n. We say that such a partition is a d-splitter
for C' (more precisely, a d-splitter for the query sets Ay, ..., A, obtained from C) if for
every s € [\/n] and i € [n], |Ps n A;| < d. We wish to minimize d and thus consider a max
load balls into bins like problem: For every i € [n] we place a ball with color i at each of
the coordinates in A;. Note that a coordinate j € [n] may contain many balls of different
colors. Indeed, the average number of balls at coordinate j € [n] is y/n. Our goal is to

choose the partition 7 in such a way that every part P, will contain at most d balls of the

logn)

same color. It is easy to show that a d-splitter for C exists with d = O(log e

We construct a new code C’ < F" as follows. We take C’ to be the code C' < C with
the property that for every part P, of w, when C” is projected to the coordinate set Pk,
the obtained vectors consist of codewords of a code C 5 having block length +/n, which is
a ¢'-query LCC. That is to say, we require that for every c € C' and s € [\/n], cp, € C 4.

Observe that C” can be constructed by adjoining to the parity checks of C, the parity
checks of C 5 when restricted to each block in 7.

We show that if C' 4 is a smooth LCC, which means that it queries each coordinate
with roughly the same probability, then so is C’. Moreover, C’ has query complexity qq’.
Thus, C' can be transformed into a smooth LCC of length n given that a smooth LCC of
length /n is at hand. This calls for a recursive construction which results with a smooth
LCC with query complexity ¢®1°81°8™) After obtaining a smooth code, the final step is
to invoke the AEL distance amplification to end up with a good LCC. This final step has
a minor effect on the query complexity.

The above recursive construction must start with LCC of rate 1 — m. This is

due to the rate deterioration throughout the loglogn recursive calls. For amplifying rate

1
poly(loglogn)
of [C'Y21] before running the recursive construction described above. This has some effect

LCC, as stated in Theorem 2.1, we invoke the rate amplification procedure

on the density of the LCC family that the recursion has access to which requires some

care.

2.2 Refined separation between LDC and LCC

Understanding the relation between LDC and LCC is fundamental. Currently the only
regime in which the state of affairs is better understood is the 2-query regime [BDY W11,
BDSS11, BGTI16]. In the constant-query regime for g = 3, ¢-LDC with sub-exponential
length are known [Yek08, Efr12) DGY11] whereas it is not known if this can be matched
for ¢-LCC. Recall that in the constant-rate regime, the state of the art result of [[KNRS17]
achieves sub-polynomial query complexity and holds for LDC and LCC alike.

In the general case, clearly, a systematic LCC is an LDC. As every linear code can
be made systematic (by applying Gaussian elimination to its generating matrix), a linear
LCC induces a linear LDC with the same parameters. Thus, informally, LCC are stronger

than LDC, at least for linear codes.

Are LDC and LCC “equivalent”? As for the converse, Kaufman and Viderman [I[{V10]
observed that an LDC is not necessarily an LCC. Their proof starts with an LDC. If it is
not an LCC to begin with, we are done. If it is an LCC, the proof goes on by transforming
it to a new code by appending to it one additional entry that does not involve low-weight
constraints (namely, every vector in the dual code that does not vanish on the new entry is
of large weight). In this way, one obtains an LDC with an entry that cannot be corrected
with few queries. Such an entry can be shown to exist by a counting argument. This

argument can be extended to produce many new bits that cannot be corrected.

While, formally, the argument above establishes the existence of LDC that are not
LCC, it has a drawback which makes it somewhat less appealing. In the resulted code, the
adjoined bits that cannot be corrected are not needed for decoding the original bits. This
means that if one is given a code that is not an LCC because of the above transformation,
with the task of taking such a code and “convert” it to an LCC, this could be done
easily: simply by removing these coordinates, and this clearly would not harm the code’s
dimension. This raises the question: Can any linear LDC be so “easily” converted to an
LCC of similar dimension and query complexity?

The thought that the answer to this question may turn out to be in the affirmative
is not far fetched in the case of linear codes. Indeed, we know that the locality features
of linear codes “come from” linear relations between different bits of the codeword and
of the message. For example, if a linear code Enc : F¥ — F" is a ¢-query LDC, and in
particular the i-th bit of each message m can be deduced from a subset) < [n] that
consists of at most ¢ coordinates of ¢ = Enc(m), then there exists a linear map f; o which
satisfies m; = fig(cg) for any m. Likewise, if m; can as well be deduced from another
subset Q" < [n], |Q'| < ¢q (as is expected due to the distance guarantee), then there is a
linear map f; o satisfying m; = fi o/ (cg) for every m. It follows that in such a case, for
every codeword ¢, f;o(cq) = fiq(cqg). Since f; o and f; o are linear maps (that, we may
assume, depend on all their parameters) this means that for every j € QAQ)', there exists
a linear map g; satisfying ¢; = g;(cq,) for every codeword ¢, where Q; = (Q U Q")\{j}.

Therefore, by the mere fact that j € [n] is sometimes used in the local decoding process
of 7 € [k], it is implied that it is possible to “correct” the j-th coordinate by reading only
a few locations of the codeword (at most 2¢ — 1). Thus, the question of whether local
decoding implies local correction is in place, in the case of linear codes, and especially so
in the setting where k is close to n.

In light of this, the fact that in the separating result of [[XV10] between linear LDC
and LCC, the coordinates which are shown to be uncorrectable are not used by the
local decoding process, calls for the question of whether there exists a linear LDC with

uncorrectable coordinates that are crucial for the decoding process.

Our result. The second contribution of this work is a proof for the existence of an
LDC that is not an LCC in the following stronger sense: It contains entries that cannot
be corrected which are crucial for the local decoder. This raises the question of what
we mean by coordinates that are “crucial”. The mere fact that it is possible for a set of
coordinates to be queried by the local decoding process should not qualify them as such,
as what allows for a code to be locally decodable or locally correctable is that there are

many options to decode or correct each symbol. Thus, a more suitable interpretation

for a “crucial” set of coordinates J < [n] is the following: If every coordinate j € J is
“zeroed out” from the code (i.e., for every codeword ¢ we override ¢; with zero) then the
transformed code is no longer locally decodable. With this we are ready to present our

separation.

Theorem 2.2 (Separation of LDC and LCC; Informal). Let C : F* — F" for |F| > 2 and
k = ©(n) be a linear q-query LDC. Then, there exists a linear ¢>-query LDCC : F¥ —
with the following property. There exists a subset of coordinates J < [n?| in which every
coordinate cannot be locally corrected with query complexity r/n and correction radius

1/4/n. Moreover, if every coordinate j € J is zeroed out from the code, then the relative
distance of the obtained code is O(1/\/n) (and so it is certainly not an LDC).

For the formal, more general, statement, see Theorem 5.19. Note that our result does
not cover the binary field and it is an interesting question whether it can be extended to

include that case.

Proof idea. The underlying idea of the proof of Theorem 2.2 is an operation on two
codes to which we call weighted tensoring. The weighted tensoring of codes is similar to
the standard tensoring of codes. In the case of standard tensoring, the encoding of the
tensor of two codes is done by taking a matrix as input and applying the first code to
each column and then applying the second code to each row in the resulted matrix. In
the encoding of a weighted tesnor, before the second step, each entry of the matrix is
multiplied by a non-zero field element, or weight.

We consider the case of weighted tensoring which is done with random weights. We
show that while the code resulted from this is an LDC (assuming that the two input codes
were so), with high probability there is a set of coordinates in the code that cannot be
locally corrected, while being crucial for the decoding. The analysis showing that the set
of coordinates cannot be locally corrected is done by considering the affect of the weights
on the dual code. A probabilistic argument is then used to show that the argued codes

exist.

Discussion. We end this section with a short discussion to clarify a potentially con-
fusing point. While LCC are, in a sense, more powerful than LDC (indeed, our second
contribution, Theorem 2.2, attempts to formalize that better), our first result, given by
Theorem 2.1, transforms a vanishing rate LCC with polynomially-small distance to an
asymptotically good LCC-a result that is not known for LDC. So, how can it be that we
can do this for LCC and not for the weaker LDC?

Of course, this should cause no confusion as the latter is a transformation that works
for LCC and not LDC, not a construction nor it is even a proof of existence. Put dif-
ferently, although the transformation generates the stronger object, the transformation is

also given it as its input.

3 Preliminaries

3.1 Notations and conventions

Unless stated otherwise, all logarithms are taken to the base 2. For n € N, we use
[n] to denote the set {1,...,n}. For ease of readability, we sometimes avoid the use
of floor and ceiling. This does not affect the stated results. We use F to denote a
field, and any referenced field is assumed to be finite and of a constant size. When n
and [F are clear from context, we use e; € F" to denote the i-th vector of the standard
basis. For ¢ € N, we use H, to denote the g-ary entropy function, and H to denote the
binary entropy function. For a vector v € F", we denote by |v| the hamming weight of
v, which is the number of its non-zero coordinates |v| = [{j € [n] | v; # 0}|, and the
support of v is supp(v) = {j € [n] | v; # 0}. For two vectors u,v € F", we denote their
(absolute) hamming distance by dist(u,v). For a linear subspace L < F", we denote by
L=? the set of vectors of weight at most ¢. For two vector u,v € F", we use {u,v) to
denote the inner product of u and v, Y wv; € F. For a vector v € F"* and a sequence
I = (i1,...,in) € [n]™, we denote by v; the vector (v;,,...,v;,) € F™. For a linear
subspace L < F" and a sequence I = (i,...,iy) € [n]™, we denote by L; the subspace
{vr | ve L}. Note that L; is indeed a subspace as it is given by a suitable projection.

A partition 7 of size k of [n] is a set {Py,..., Py} of disjoint subsets of [n], such that
Piu---UP, = [n]. Apartition {Py, ..., P} is ordered if each P; is a sequence rather than a
set (and the sequences, when viewed as sets, satisfy the same requirements). Throughout
this paper, any partition of [n] will be an ordered partition (though we may not state it

explicitly) with the sequences defined by the natural increasing order of N.

3.2 Error correcting codes

We start by recalling the definition of an error correcting code, and of a family of error

correcting codes. In this work we only consider linear codes.

Definition 3.1. Forn e N and F a field, a code of length n over F is a linear subspace

C < F*.2 The dimension of the code, denoted by k, is the dimension of C' over F, dimy C.
The (non-local) distance of the code, denoted by d, is minec ..o |c|. The rate of the code,
denoted by p, is k/n. The (non-local) relative distance of the code, denoted by A, is d/n.

The elements of C are called codewords.
We will also need to consider encodings of codes.

Definition 3.2. We call a function Enc : F¥ — F" an encoding of a code C if it is an

injective linear map and C' = Im(Enc).

Definition 3.3. For a field F, a code family over F is a set of codes C' = {C™}, which
contains at most one code C™ of length n over F, for every possible length n € N. For
every n € N, we denote by [n]|¢ the minimal length of a code in the family C of length at
least n, and by ||n]| the mazimal length of a code in the family of length at most n. For
constants ng € N, ¢ = 1 and d < 1, we say that the family is (ng,c,d)-dense if for every
n = ng, [n]]¢ < cn and ||[n])¢ = dn.

Definition 3.4. For a field F, a code-encoding family over F is a set of pairs of codes
and corresponding encodings C' = {(C* Enc’)}, which contains at most one code C* of
dimension k over IF, for every possible dimension k € N. For every k € N, we denote
by [[KN€ the minimal dimension of a code in the family C of dimension at least k, and
by |k]|€ the mazimal dimension of a code in the family of dimension at most k. For
constants kg € N, ¢ = 1 and d < 1, we say that the family is (ko,c,d)-dense if for every
k= ko, k] < ck and ||| = dk.

Definition 3.5. Let C' be a code of length n over F. The dual code of C' is defined to be

its orthogonal subspace C*.

Definition 3.6. Let C' be a code of length n over F, let i € [n] and B < [n]. We say

|B|

that B determines i in C' if there exists a function f : F'°! — F such that for every c € C,

C;, = f(CB).

We also need the following property of linear codes.

Fact 3.7. Let C be a code of length n over F. Further let i € [n], Q < [n] and x € FI€.

Then, one of the following cases must hold.

1. There is at most one o € F for which there exists some c € C satisfying cg = x and

C;, = (.

2We may omit the phrase “over F” if the underlying field is clear from context.

2. For every a € F there is an equal number of c € C' for which ¢; = a.

In particular, either no function (even randomized) of cqg can predict c¢; with probability

larger than 1/|F|, when ¢ € C' is randomly chosen uniformly, or cq determines ¢; for all

ceC.

3.3 Locally decodable codes and locally correctable codes

Definition 3.8. For C < F", we say that a procedure f : A — B is with oracle access to
c € C if when f is run, it gets besides an input a € A, access to c € C: f can query ¢;
for indices i € [n]. To describe a specific run of f with input a € A and oracle access to
c e C, we either say that f(a) is run with oracle access to ¢, or write f°(a) for short. We

say that f is non-adaptive if the queries it makes are independent of c € C'.

Definition 3.9. For a code C of length n and dimension k over F, and Enc and encoding
of it, (C,Enc) is called a (q,0,¢)-LDC (locally decodable code, abbreviated) if there exists
a randomized procedure Dec : [k] — F that is given an oracle access to z € F*, and has the
following guarantee. For every i € [k], x € F* and z € F" satisfying dist(z, Enc(z)) < dn,
Dec®(i) = x; with probability at least 1 — . Furthermore, Dec®(i) always makes at most q
queries to z. We further require that Dec is non-adaptive. We call Dec a local decoder

(or decoder) for (C,Enc), and the parameter q is called the query complexity of (C, Enc).

Definition 3.10. A code-encoding family C = {(C*,Enc®)} of codes over F is called a
family of good ¢(k)-LDC, or a a family of good LDC with query complexity q(k), if every
code C* in the family is a code with rate at least p(k), which is a (q(k),d(k),e(k))-LDC,
for p(k) = Q(1), 6(k) = Q(1), and e(k) < 1/3.

We have the following easy fact.

Fact 3.11. If C is a code of length n and dimension k > 0 over F and Enc is an encoding
of it, and if (C,Enc) is a (q,9,e)-LDC, then, provided that ¢ <1 — 1/|F|, the (non-local)
relative distance of C, A, satisfies A > 6.3

Proof. Assume towards a contradiction that A < §. Then, there exists some z € F* and
i € [k] such that |[Enc(x)| < dn and z; # 0, and we may assume without loss of generality
that z; = 1. For every v € F we define z, = yx. Note that (z,); = 7. Consider the
following scenario: We randomly and uniformly sample X € {z, | v € F}. Since for

every v € IF, the distance of Enc(z,) from the zero codeword satisfies dist(Enc(z,),0) =

3Note that in the case that ¢ < 1/2 a stronger bound A > 2§ holds.

10

|[Enc(z,)| = |y - Enc(x)| < dn, it is always the case that dist(Enc(X),0) < dn. Therefore,
the probability that Dec’(i) = X; (over the choice of X and the randomness of Dec) is at
least 1 —e > 1/|F|, where Dec is a local decoder promised by the fact that (C,Enc) is a
(¢,0,¢)-LDC. This is clearly a contradiction, since Dec’() is independent of X and Xj is
uniformly distributed over F. O

Definition 3.12. A code C of length n over F is called a (g, 9,)-LCC (locally correctable
code, abbreviated) if there exists a randomized procedure Cor : [n] — F that is given an
oracle access to z € F", and has the following guarantee. For every i € [n], y € C' and
z € F" satisfying dist(z,y) < dn, Cor®(i) = y; with probability at least 1 —e. Furthermore,
Cor*(i) always makes at most q queries to z. We further require that Cor is non-adaptive

4

and that Cor(i) never queries i*. We call Cor a local corrector (or corrector) for C, and

the parameter q is called the query complexity of C.

Definition 3.13. For a code C' of length n over F (not necessarily a (q,9d,¢)-LCC), and
i € [n], we say that i is a (0,q,¢e)-correctable coordinate in C' if there exists a procedure

Cor : [n] — F such that Cor(i) satisfies the requirements in Definition 3.12.

Definition 3.14. A family C = {C™} of codes over F is called a family of good ¢(n)-
LCC, or a a family of good LCC with query complexity q(n), if every code C™ in the
family is a code with rate at least p(n), which is a (¢(n),d(n),e(n))-LCC, for p(n) = Q(1),
d(n) =Q(1), and e(n) < 1/3.

The following well-known fact is an implication of the fact that every linear code has
a systematic encoding”.

Fact 3.15. If a code C is a (q,9,e)-LCC, then there exists an encoding Enc such that
(C,Enc) is a (q,0,¢)-LDC.

4 Tailor made distance amplification

4.1 Characterization of LCC

In this section, we will need to use two characterizations of LCC, as was given by Defi-
nition 3.12. The first, given next in Definition 4.1, is of a (¢, 7)-LCC, and resembles the

4The assumption that Cor(i) never queries i is only for simplicity. Any LCC which defies this assump-

tion can be easily converted to one which does not, with a negligible effect on 6.
®An encoding Enc is a systematic encoding if for some f : [k] — [n], for all x € F* and i € [k],

Enc(z) sy = -

11

definition of smooth codes given by [[K'T00] for LDC. A (¢, 7)-LCC differs from a (g, 9, €)-
LCC in that its local correction is only required to succeed if it is given a codeword of the
code, rather than a possible corrupted codeword. Accordingly, the correction of a (g, 7)-
LCC has no “distance” guarantee, but instead it is required not to query any coordinate
with too high probability, i.e., probability larger than 7. When we will construct an LCC,
it will be easier to first argue that it is a (¢, 7)-LCC and use that to show it can be made
into a (g, 0,e)-LCC for any € and 6 = ¢/(mn).

The second characterization, which will be given in Definition 4.5, is of what we call
a (q,7)-query-set LCC. Informally, a code is (q, 7)-query-set LCC' if for every coordinate
we have a large enough set of disjoint subsets of [n], from which it can be decoded.
The distance amplification procedure that we define utilizes these query sets and so the
properties of the input code that we will use are that of its characterization as a (g, 7)-
query-set LCC. This is, in a sense, a more “combinatorial” characterization of LCC which
can be more conveniently used when a manipulation of these objects is needed.

The three characterizations of LCC all imply each other, but some of the transitions
are at some cost to the parameters. Indeed, Claim 4.2 will show that a (¢, 7)-LCC is a
(q,6,¢)-LCC for § = ¢/(mn), Claim 4.6 will show that a (g, 7)-query-set is a (¢, 7)-LCC,
and Claim 4.7 will complete the cycle and show that a (¢, 0,¢)-LCC is a (g, T)-query-set
LCC for 7 = ¢/(dn).

Definition 4.1. A code C of length n over F is called a (q,7)-LCC if there ezists a
randomized procedure Cor : [n] — F that is given an oracle access to ¢ € C, and has
the following guarantee. For every i € [n] and ¢ € C, Cor®(i) = ¢;, with probability 1.
Furthermore, Cor®(i) always makes at most q queries to ¢, and for every j € [n], the
probability that c; is queried by Cor®(i) is at most 7. We further require that Cor is non-
adaptive and that Cor(i) never queries i. We call the parameter g the query complexity

and the parameter T the smoothness of the LCC.

Claim 4.2. Let C be a code of length n which is a (q,7)-LCC. Then, for any e >0, C is
a (q,0,6)-LCC with 6 = ¢/(Tn).

Proof. Let ¢ > 0 and let Cor be a corrector of C. Let ¢ € C and z € F" such that
dist(c,z) < dn = ¢/7, and set B = {j € [n] | z; # ¢;}. Fix ¢ € [n]. By the union bound
over j € B, except with probability e, when Cor(7) is run with oracle access to ¢ € C, it
does not make a query to an index in B. If this is the case, then if Cor was given access to
z instead of ¢, it would successfully output ¢;, as well. Thus, C' is indeed a (g, d, e)-LCC
as the same corrector Cor can be used with oracle access to strings z € F”, and given that

dist(c, z) < dn, Cor(7) is promised to output ¢; with probability at least 1 — e.]

12

Definition 4.3. A set A = {Ay,..., A,} is called an n-query-set if for every i€ [n], A;
is a set of disjoint subsets of [n]\{i}. For everyi e [n] we define A; = Ugea, B-

Definition 4.4. Let C' be a code of length n and let A = {Ay,..., A,} be an n-query-set.
A is said to be a query-set for C' if for every i € [n] and B € A;, B determines i in C
(see Definition 3.6).

Definition 4.5. Let C' be a code of length n. C is said to be a (g, T)-query-set-LCC if
there exists a set A = {Aq, ..., A,} which is a query-set for C, such that for every i € [n],
|A;| = 1/7 and for every B € A;, |B| < q.

Claim 4.6. Let C be a code of length n over F which is a (q, T)-query-set LCC. Then C
is a (¢, 7)-LCC.

Proof. Let A = {A,...,A,} be a query set that corresponds to C being a (g, 7)-query-set
LCC. The following corrector Cor shows that C'is a (g, 7)-LCC. Given i € [n], and oracle
access to ¢ € C, Cor(i) samples uniformly at random some B € A; and queries cg. As B
determines i in C, there exists a function f satisfying f(cg) = ¢; for every ¢ € C, and
so Cor(i) uses such a function and outputs its result. Thus, for every ¢ € C, the output
of Cor(i) is always equal to ¢;, and note that as any sampled B € A; satisfies |B| < ¢,
Cor(7) always makes at most ¢ queries. Since A; is of size at least 1/7 and is composed of
disjoint subsets of [n]\{i}, any coordinate is queried by Cor(7) with probability at most T,
and Cor(7) never queries i. Thus, C'is a (g, 7)-LCC. O

Claim 4.7. Let C be a code of length n over F which is a (q,6,¢)-LCC, fore <1—1/|F|.
Then, C' is a (q,7)-query-set-LCC' for 7 = q/(dn).

The proof for the claim is similar to the proof in [[X'T00] to their Theorem 1 and to
the proof in [ZD] for Theorem 1.1.

Proof for Claim 4.7. To prove the claim, we need to show that there exists a set A =
{Ay,..., A,} which is a query-set for C, such that for every i € [n], |A;| = 1/7 = dn/q and
for every B € A;, |B| < q. We construct A with the required properties by constructing
each of the subsets separately. Let Cor denote a corrector promised by the fact that C' is
a (g,0,¢)-LCC, and let 7 € [n]. To construct A;, we construct a sequence of disjoint sets
Bi,...,B. < [n]\{i}, in an iterative manner. We will eventually set A; = {B{,..., B, }.
It will hold that for every j, B} determines i in C', while satisfying |B}| < ¢, and that
m; = on/q, which will conclude the proof.

The construction of Bi, ..., B! < [n] is done by the following procedure. Start by

my

setting By = J. For j = 1,2,...,set S} = By u---u B)_,. If [Si| > dn halt and set

13

m; =j—1and A; = {B.,..., Bfn,} Otherwise, it holds that for every ¢ € C, for every
modification of the coordinates in S; to some erroneous values, Cor(i) correctly outputs
¢; with probability at least 1 —e. An equivalent description of this case is the following:
for every ¢ € C' and z : S§ — F, define ¢* € F" such that for every r ¢ S}, ¢; = ¢, and
for r € S}, ¢; = z(r). The corrector Cor chooses a set of queries Q < [n]\{i}, |Q| < ¢,
according to some distribution® and applies some function fg on cH- We know that with
probability at least 1—¢, fo(ch) = ¢;. Since @ is sampled in a manner that is independent
of ¢ and z, by an averaging argument, there exists some fixed () for which when ¢ € C' and
z: S; — [F are chosen randomly in a uniform manner, with probablity at least 1 — ¢ (this
time over the choice of ¢ and z), fo(c§) = ¢;. Therefore, we can define another function
fo that only gets CQ\sis chooses z uniformly at random, and outputs fo(cj). If ce C'is
chosen uniformly at random, fé(CQ\S;_) = ¢; with probability at least 1 — ¢ > 1/|F|. By
Fact 3.7, this implies that Q\S} determines 7 in C. We therefore set B} = Q\S}", and
proceed to the next j.

As this process only halts when |S]“| > dn, and for every 7, |S;| < q(j—1), we have that
m; = on/q. Further note that by the choice of each B, the sets Bj, ..., B}, are disjoint,
and of size at most ¢, as required. This thus shows how each A; can be constructed, and

the claim follows. O

4.2 Splitters for query sets

Splitters for query sets, that are defined as follows, are key ingredients in our distance
amplification procedure. Informally, a c-splitter for a query set A = {Ay,..., A,} is
partition of [n] which satisfies that for every i, the intersection between A;, the union
all the sets in A; that correspond to an index i, and each part of the partition, is not
too large, i.e., of size at most c¢. In the distance amplification procedure, we will describe
a corrector which samples a set B € A;, in some query set A, and then makes queries
according to which parts of the c-splitter intersect with B. For the resulted queries to
be smooth, we will need the partition to “split” Ay, ..., A,, meaning that no part of the

partition is too common within any certain A;.

Definition 4.8. Let n € N, A an n-query-set and c € N. A partition w of [n] is called a
c-splitter of A if for everyi e [n] and P e x, |P n A;] < c.

The next claim shows that if each A; is of size at most &, then c-splitters with & parts

6As the corrector in non-adaptive, Cor(i) naturally induces a distribution on subsets of [n] which

correspond to the possible query sets.
"Note that i ¢ B} as 1 ¢ @, since Cor(7) by definition never queries i.

14

exist, for ¢, the bound on the maximal intersection, being equal to roughly the minimal

intersection that is possible, up to a constant factor.

Claim 4.9. Let n, k,q € N such that k/n < 1 and q¢ = logn. Further let A = {Ay,..., A}
be an n-query-set such that for every i € [n], |A;| < k and for every B € A;, |B| < q.
Then, there exists a partition © of [n] with k parts, each of size n/k, which is a c-splitter

of A for ¢ = 2eq.

Proof. The proof is by a probabilistic argument. We randomly choose a partition © with
k equally-sized parts in a uniform manner among all such partitions. We bound the
probability that 7 is not a c-splitter for A: this is the case if |A; n P| > ¢ for some i € [n]
and P a part of 7. Towards this end, we first fix some i € [n] and ¢t € [k], and let P,
denote the t-th part of 7. We have that for every j € A; the probability that j € P, is 1/k,
and for every fixed subset of A; of size ¢, the probability that it is contained in P, is at
most (1/k)¢ (since for distinct j, j' € A;, the events that j € P, and j’ € P, are negatively
correlated). By a union bound over the possible subsets of size ¢, the probability that

|A; n P| > cis at most

By taking a union bound over all possible i, ¢, the probability that there exist i € [n] and
t € [k] such that |4; n P,| > c is at most nk (%)Zeq < n? (%)%q, which is less than 1 a

q = logn, and the claim follows. O]

4.3 The distance amplification procedure

We now turn to define the basic operation behind our distance amplification procedure.
This operation “composes”® two codes of different lengths, a big code and a small code,
in a way that is parameterized by some partition of [n]. The result is a code of the same
length as the big code, with an improved smoothness (if the partition satisfies certain
requirements), as we will have in the claims that follow the definition. The distance am-
plification procedure (or perhaps, more directly, the smoothness amplification procedure)

will be an iterative application of this composition.

8Note that the term “composition” here is used in a different sense than the usual composition of two

codes in coding theory, which is achieved from the composition of the encoding functions.

15

Definition 4.10. Let C be a code of length ny, Cy a code of length ny, ™ a partition of
[n1] into ni/ny parts of size ny. We define the m-composition of C and Cy, which we
denote by Cy Oy Cy, to be the code {ce Cy |VPem cpe Cy}.

A bound on the rate of the composition of two codes is given in the following claim.

Claim 4.11. If Cy, Cy are codes with of lengths ny,ny and rates py, po respectively, then
C = C)©Or Cy 1s a code of length ny and rate at least p1 + po — 1.

Proof. That the length of C'is ny follows from the definition. As for the rate, by inspecting

the code dual to C, it can be seen that the dimension of C* is at most

n
d= (]_ — ,01)711 + —1(]_ - pg)ng.
Ny
From that, the rate of C'is at least 1 — d/ny = p; + ps — 1. O

We now show that if the partition used in the composition is a c-splitter for a query
set of the big code, the resulted code has smoothness roughly equal to the product of the

two smoothnesses.

Claim 4.12. Let Cy be a code of length ny and Cy a code of length ny which is a (g2, T2)-
LCC. Let A = {Ay,..., A, } be a query-set for Cy such that for every i, |A;| = 1/7 and
for every B € A;, |B| < q1. If w is a c-splitter for A, then C' = C1 ®, Cy is a (q,7)-LCC

for q = qiqo and T = cry 7.

Proof. To show that C'is a (¢, 7)-LCC we need to show a corrector Cor for it. We first set
up some notations. Let Cory be a corrector promised by the fact that Cy is a (gq, 72)-LCC.
For every j € [n], let P; denote the part of 7 that contains j, and let j denote the index
of j in P; with respect to the natural order. For i € [n], and B € A;, let f; g : FIBl > F
denote a function satisfying f; g(cp) = ¢; for every ¢ € Cy. Such f; p is guaranteed to
exists as A is a query-set for C.

For ¢ € [n], Cor(i) with oracle access to ¢ € C' acts as follows: it first samples B € A;
uniformally at random. Secondly, for every j € B, the procedure obtains ¢; by invoking
Cory(j) with oracle access to cp,. After obtaining ¢; for every j € B, Cor(i) outputs
fi,B(CB)-

That Cor(7) successfully outputs ¢; for every ¢ € C' is immediate, and follows from the
fact that for every j, cp, is a codeword of C; and so Cory (7) with access to cp; correctly
outputs ¢;, and from the fact ¢ € Cy and so f; g(cg) = ¢;. Moreover, Cor(i) makes at most

¢1q2 queries to ¢, since |B| < ¢ by assumption, and Cory makes at most go queries.

16

It remains to bound the probability that a coordinate r € [n] is queried by Cor(i) for
i € [n]. Let p be the probability that Cor(i) queries r. Fix B € A;. Conditioned on the
event that B was sampled by Cor(7) in the first step, r is queried by Cor(i) if one of the
calls to Cory(j), with oracle access to cp;, queries ¢, for some j € B. That probability
is at most |B n P,|r. Indeed, this follows by taking the union bound over the different
j € B, noting that if j ¢ P,, ¢, cannot be queried by Cor,(j), and using that Cory queries

any coordinate with probability bounded above by 75. Therefore,

p < Z Pr[B is sampled by Cor(i)] - |B n P.|7»

BEA»L'

= Z -|B N Pmy
BeAi| i

< 2 Tl"BﬂPT|T2
BEAi

= 7'17'2|Pr N E\

< CT1Ts.

Note that we used the assumptions that |A;| = 1/71, and that 7 is a c-splitter for .A. We
thus have that p < c¢m7p, which concludes the proof. O

The following lemma concludes the properties of the code that is achieved by the

composition of two codes, when done with the c-splitter that is given by Claim 4.9.

Lemma 4.13. Let n € N. Assume there ezists a code Cy of length n over F, with rate p;,
which is a (q, 1)-query-set-LCC' for ¢ = logn. Further assume that there exists a code
Cy of length nty over F, with rate py, which is a (qo, 72)-LCC. Then, there exists a code
C' of length n, with rate p1 + ps — 1, which is a (q1qz2, 2eq17172)-LCC.

Proof. As C is a (g1, 71)-query-set-LCC, there exists an n-query-set A = {A;,..., A,} in
which for every i, |A;| = 1/7; and for every B € A;, |B| < ¢1. In particular, there exists
a query set A" = {A},..., AL} in which every A’ is of size exactly 1/ (which is achieved
by, for each A;, arbitrarily removing sets B € A; until it is of size 1/77). By Claim 4.9
invoked with k = 1/7, there exists a partition 7 of [n], in which every part is of size Tin,
which is a c-splitter for A’, with ¢ = 2eq;. We take C' = C ®, C5 to be the code with
the claimed properties. Indeed, by Claim 4.11, C is of length n, and has rate at least
p1 + p2 — 1. Furthermore, by applying Claim 4.12, and using that 7 is a c-splitter for A’,
we get that C'is a (¢, 7)-LCC for ¢ = ¢1¢2 and 7 = 2eq; 7172, and the lemma follows. [

The following lemma, or more precisely, its proof, composes the distance amplification

procedure. It assumes a family of codes which are LCC, and describes the properties of

17

the code that is obtained by an iterative application of the composition, where at each

iteration a code of the family is composed with the “current” code.

Lemma 4.14. Assume there exists a family of codes C' = {C"} over F, in which every
code C™ of length n in the family is a code of rate p(n) = 1—r(n), which is a (q(n), 7(n))-
query-set-LCC for q(n) = logn. Then, for every t € N, there exists a code family C' =
{(C)"} over F which has a code (C')" of length n for every n which is a code length in
C, and (C")" has the following properties. Define ny = n and fori = 2,...,t + 1 let
n; = [[7(ni_1)ni111¢. Then, (C")" has rate p'(n) = 1—3"_, r(n;), and is a (¢'(n), 7' (n))-
LCC for ¢'(n) = []._, q¢(n;) and

t—1

P(n) = (26 " T gt

Proof. To show the existence of a code family with the claimed properties, we describe
how for every n that is a length of a code in the family C', a code of the same length, of the
family C’, can be constructed. Let C™ be a code of length n of the family C. Set ny =n
and for i = 2,...,t+ 1, n; = [[7(n;_1)ni_1]|¢, as defined in the claim. We construct a
sequence of codes C1,...,C}, where for each i € [t], C! is a code of length n; and rate
pi, which is a (¢}, 7/)-LCC. We start by setting C; = C™, and for i =t —1,...,1, we
take C! to be a code which is the result of applying Lemma 4.13 on C™ and C},,. Note
that C™ is a (q(n;), 7(n;))-query-set-LCC and C;,, is a code of length n;41 = 7(n;)n;,
and so in particular C™ is indeed of smoothness n;,1/n;, as required for the lemma to be

applicable. From Lemma 4.13 it follows that C! is a code of rate
pi = p(ni) + pigy — 1= piyy —r(n)
which is a (¢}, 77)-LCC for

4 = q(ni)qi 1,

n.

/ / 141

T, = 2eq(n;) T ——.
n;

Recall that C] = C™ and so p), = 1—r(n), ¢, = q(n;) and 7/ = 7(n;). It follows inductively
that for every i € [¢],

t
p; =1- Zr(n]')a
Jj=t
t

g =] an),

J=t

18

and

= (20)" (H ”;’;) <ﬁq<nj>>

= (2€)t_in;—T (1:[Q(nj)) :

We set €7, which is indeed a code of length n, to be the code (C')" of C’, and from
the account given above it follows that its rate, query complexity and smoothness are as
stated, i.e., that ¢; = ¢'(n), p| = p'(n) and 71 = 7/(n). We thus have that C’ is a family
of codes with rate at least p(n) that are (g(n),7(n))-LCC, and the lemma follows. O

4.4 Deriving the Corollaries

In this part we deduce two corollaries of our distance amplification procedure that is given
by Lemma 4.14. As a special case of the first corollary, Corollary 4.16, we will have that
if one has a sufficiently dense code family of (¢(n),d(n),e(n))-LCC which is of high rate,
meaning that each code has rate p(n) that approaches 1 “fast enough”, but with d(n)
that is only polynomially small in n, 6(n) = 1/n®, for some constant « € (0,1), then
there exists a good family of LCC with query complexity g(n)?(°¢!¢™ 1In the general
case, a weaker guarantee on §(n) can also be handled by Corollary 4.16, meaning that a
sub-polynomial §(n) can also be amplified. More precisely, Corollary 4.16 will state that
if 6(n) = 1/n'~Y90 for a (non-decreasing) function g(n), then a family of good LCC
can be constructed, with query complexity q(n)o(g(”) loglogn) ~ The requirement of the rate
function p(n), which we described as approaching 1 “fast enough”, in more detail comes
down to the requirement that p(n) =1 —1/(g(n)(Inlnn)?).

The second corollary, Corollary 4.19, addresses the case that the family of (¢(n), d(n),e(n))-
LCC one starts with is of a much smaller rate, either of a constant rate or of a vanishing
rate of (1/Inlnn)" for some constant h. In the case that (n) = 1/n® for some constant
a € (0,1) and p(n) = (1/Inlnn)", as a special case Corollary 4.19 we will have that
there exists a family of good LCC with query complexity g(n)P°¥{(°€l°e™) Here too, sub-
polynomial d(n) can also handled by the corollary, as in a more general case, it is shown
by Corollary 4.19 that if §(n) = 1/n'~9(™ for a non-decreasing g(n) < logn, and if p(n)
is at least (1/InInn)" for some constant h, then a family of good LCC can be constructed,
with query complexity g(n)9("pevlloglogn) The precise statement Corollary 4.19 is more
generally stated and handles a few more cases that may be of interest.

We remark that while in any case that Corollary 4.16 can be applied so can Corol-

lary 4.19 be used, the reason that we state both corollaries is that if one starts with

19

an LCC that satisfies the requirement of Corollary 4.16 then using it, rather than using
Corollary 4.19, would result in a better bound on the resulted query complexity. We
further remark that the proof for Corollary 4.19 builds on Corollary 4.16. Lastly, another
reason that Corollary 4.16 is of interest is that it has an analogous corollary in the case of
LDC (see Corollary 4.17), unlike Corollary 4.19 (whose proof relies on properties specific
to LCC).

4.4.1 From high rate and low distance LCC to good LCC

To prove the first corollary, we will need the following lemma which states that any
family of (¢, 7)-LCC with constant rate can be converted to a family of good LCC by
paying a multiplicative factor of poly(7n) in query complexity. This lemma follows from
the AEL distance amplification procedure [AL96, AEL95] and from the adaptation of it
by [KMRS17] for LDC and LCC. To derive this lemma with certain parameters, some
adaptations to these techniques are needed, and so we provide a full proof for Lemma 4.15

in the appendix (Section A), for completeness.

Lemma 4.15. Let C' = {C"} be a code family over F in which every code C™ is a
(g(n), 7(n))-LCC with rate p(n) = Q(1). Then, there exists a code family C' = {(C")"}
over F which has a code (C')* of length n for every C™ in C, such that (C')" is a
(¢ (n),d(n),e)-LCC for ¢'(n) = O(q(n)(nt(n))?), &'(n) = Q1) and € = 1/3, with rate
p(n) = Q1)

We now state our first corollary.

Corollary 4.16. Let g(n) = logn® and g(n) > 1 be two non-decreasing functions. Assume
there exists a family of codes C' = {C™} over F that is (ng, ¢, d)-dense, in which every code

C™ of length n has rate
1

g(n)(Inlnn)?’

and either C™ is a (q(n),d(n),e(n))-LCC, for e(n) < 1 — 1/|F| and §(n) = 1/n*=9m)
or it is a (q(n), 7(n))-query-set-LCC, for 7(n) = q(n)/n*9™). Then, there exists a family
of codes C" = {(C")"} over F that is (no, ¢, d)-dense, which is a family of good LCC with

n)lnlnn)

query complexity qpew(n) = q(n)° _

p(n) =1—

Note that Corollary 4.16 allows for the code family C' in the hypothesis to be one of
two types, either a family of (g,d,¢)-LCC or a family of (g, 7)-query-set-LCC. For the

9We remark that while we assume for simplicity that g(n) > logn, by the Katz-Trevisan bound
(instantiated for the case of rate and distance as specified by the corollary), lifting this assumption would

not yield an improvement in the obtained query complexity in any case.

20

proof, what we actually need is that C' is of the second type. However, if one starts with a
family C' which is known to be of the first (more standard) type, with the specified d(n),
by Claim 4.7 it will follow that C' is a family of query-set-LCC with the same smoothness
7(n) that is stated in the corollary in the second case. The corollary explicitly allows both
of the types because it is also possible that the base code is already known to be a query-
set-LCC, as would be the case in the proof of Corollary 4.19, which uses Corollary 4.16.
It is preferable to avoid going back and forth between the types, as this has some cost in
the resulted parameters.

Before giving the proof for Corollary 4.16, we state a corollary analogous to it, that
holds in the case of LDC. The proof for this corollary is straightforward given the result

regarding LCC, and follows the same lines.’

Corollary 4.17. Let n(k) > k, q(k) = logn(k) and g(k) > 1 be non-decreasing functions.
Assume there exists a code-encoding family C' = {(C*,Enc™)} over F that is (ko, c,d)-
dense, in which every code C* of dimension k has rate
1 1
kE)y21— ———s > -,
Pk) g()nn k)2~ 2
and either (C* Enc®) is a (q(k), 0(k), e(k))-LDC, fore(k) < 1—1/|F| and 6(k) = 1/n(k)'~9®),
oritis a (q(k), 7(k))-query-set-LDC, for 7(k) = q(k)/n(k)Y9%) . Then, there exists a code-
encoding family C' = {((C")*, (Enc)*)} over F that is (ko, c,d)-dense, which is a family of
good LDC with query complexity qne,(k) = q(k)® mink),

Proof of Corollary 4.16. We argue that a code family of the claimed properties can be
constructed, and specifically we will show such a code family that has a code of length
n for every n which is a code length of the family C. The underlying idea of the proof
consists of applying, for every n which is a code length in ', Lemma 4.14 with the family
C and some appropriate ¢ € N which depends on n, to get that there exists a code family
C" in which (C")" is a code of length n with desired properties.

With that plan in mind, let C™ be a code in C' of length n. First, note that either
by assumption, or by Claim 4.7 (if C™ is given as a (¢q(n),d(n),e(n))-LCC), we have that
C™ is a (q(n), 7(n))-query-set-LCC, as required by the hypothesis of Lemma 4.14. Now,
we invoke Lemma 4.14 with the code family C' and with ¢ to be chosen later, to get a
code family C” and a code (C’)™ within it. We follow the notation of Lemma 4.14 and set
ny =mnand fori=2,....t+1,n; = [[T(ni_1)n;_1]]¢. We have that

n; = Hq(niil)nil_zl/g(nifl))‘HC, (4_1)

10 A separate proof will appear in the full version of this paper.

21

and if we set ¢ = ng + ¢, as C is (ng, ¢, d)-dense,

n; <c - q(niil)ngl_zl/g(nifl)).

Using the facts that both ¢(n) and g(n) are non-decreasing, it follows that

n; < (¢ - q(n)) im0 (Ve T2 (0=1/g(ny)),
and as Y'_4(1 — 1/g(n)) < g(n), we get that
n; < (C’) q(n))g(n)nl_[;-jl(1—1/g(nj)).

We need to choose t so that n;.; is minimized (as nyy1 affects the resulted smoothness).

We choose t to be the minimal integer satisfying
plli=1(1=1/9(ny)) < e(c - q(n))g(").
Note that this choice implies
nipn < e(c - g(n))?™ (4.2)
and
pllim 0=1000)) > e - g(n))9™. (4.3)

In order to verify that with that choice of ¢, (C’)™ has the claimed properties, we need
to bound from above the value of ¢ which attains this (this would also imply that our

choice of t is well defined, i.e., that such ¢ exists). For any t' > g(n)Inlnn, we have that

Pl (=1g(my) < (1=1/g(m)"

—t'/g(n)
ne

N

e—(g(n) Inlnn)/g(n)
n

N

e(c - q(n))™,

N

where the second inequality follows from that e* > 1 + = for any x € R. Therefore, we

have that ¢ < g(n)Inlnn. By the conclusion of Lemma 4.14, (C")" is a code with rate

t

, 1
pin)=1- Z g(n;)(Inlnn;)?’

i=1

which is a (¢'(n), 7'(n))-LCC, for

and

n ”

) = (2¢)1- 2 T g(ny)

< q(n)O(g(n) Inlnn) n,;zl

n)lninn]'
< ()09 ntnn) =

where the last inequality follows as g(n) = logn and by Equation (4.2).

If it is the case that p'(n) = Q(1) we can conclude the proof by invoking Lemma 4.15.
Taking the set of codes (C")" (for every n a code length in C') to be the code family
of the hypothesis of Lemma 4.15, we would get that there exists a code family C” =
{(C")™} which satisfies the following. C” is a family of codes in which every (C”)" is
a (¢"(n),0"(n),e)-LCC, for ¢"(n) = O(q¢'(n)(n7'(n))?) = q(n)?0t",§"(n) = Q(1),
and ¢ = 1/3. Thus, C” is a family of a good LCC with query complexity guew(n) =
q(n)Clmloglogn) "the argued query complexity. Moreover, this code family has the same
code lengths as C, and is thus (ng, ¢, d)-dense as well.

It only remains to show that p'(n) = (1). To bound p'(n) from below we need
to bound Zz—l m from above. First, we define iy = n and for i > 1, n; =
i, 11/9 ") - As by Equation (4. 1) > nzl_ll/g(”i Vit follows by induction that n; > n;,
and note that n; = pl 21 (0=1/g(n))) We thus have that

t 1 t

2 g(n;)(Inlnn;)? S 2 g(n;)(Inlnn,)?

i=1 i=1)

Since

i—1
Inlnn; =Inlnn + Zln (1 -) ,

j=1 g(nj)

we have that

23

where we used that > In(1+x), for every x > 0. With that, we can deduce the following

1 r9(ni) Inln; 1

dx

g(nl)(ln In ,ﬁi)Q g(ni)Inln7;4q g(nz)(ln In ﬁi)Q
B rlnln 7, g(nz) p
Inln g g(n;)(Inlnn;)
rlnlnn; 1

< —ZdSC,

[

[

Jinlnn;4q
where the last inequality follows from that n;,; < n;. This implies that

Inlnnq 1

¢
< —d
Zg (n;) lnlnnz) Jl o

i=1 nlnngyr

Inlnn; — Inlnngq

B (Inln 7)(Inln)
1

< —.
Inlnng
Furthermore, by Equation (4.3), we have that 7, = e(c’ - ¢(n))?™, and so

ey = 90 5 (- g(n)) A Veme)g(n)

Moreover, we have that

(1— :)gm)—sz(g(n)),

g(ne)
as g(n) is non-decreasing and g(n) > 1, and so it follows that

Inln7;, 1 = Q(Inlng(n) + Ing(n)).

Therefore,
1
/ > 1 o
pn) Inlnng
1
=1
© (ln Ing(n) + lng(n)) ’
which establishes that indeed p/(n) = (1), and the claim follows. O

4.4.2 From low rate and low distance LCC to good LCC

For the proof of our second corollary we will need the following proposition from [CY21].
This proposition is basically Proposition 4.14 in [CY21] but for (g, 7)-query-set-LCC
rather than for a different object!'. That the proposition indeed applies to (g, 7)-query-
set-LCC is quite immediate with the account given in [CY21].

H4dual SLR” in the terminology of [C'Y21].

24

Proposition 4.18 (Implicit in [CY21]). Let C' be a code of length n over F with rate
p that is a (q,T)-query-set-LCC. Then, for every ¢ € N, there exists a code C' of length
n' = n® with rate 1 — (1 — p)*, which is a (¢, T)-query-set-LCC for ¢ = q*.

We remark that while the rate of the resulted code of Proposition 4.18 is improved
compared to that of the starting code of the hypothesis, it’s smoothness is quite bad.
Note that this is true even though the smoothness of the obtained code is 7, i.e., the
same as that of the initial code, because the length of the code has increased. Indeed,
even if originally the smoothness of C' was the best possible, 7 = ©(¢/n), for £ > 1
the smoothness of C” is, at best, polynomially small in its length. Nonetheless, for our
purposes these codes will do. We point out that while we do not need to use it here,
in [CY21] a procedure that amplifies rate while maintaining the smoothness is given, as
in [C'Y21] the objective is to show that LCC with vanishing rate that can be as small as
1/4/log n implies an LCC with constant rate, and for that such a procedure is crucial. In

our case the codes of Proposition 4.18 are satisfactory.

We now state our second corollary.
Corollary 4.19. Let h > 1 be an arbitrary constant, q(n) = logn and g(n) € [1,logn]
non-decreasing functions, and p(n) a non-increasing function, satisfying

1 1

(Inlnn)h <pln)<1- g(n)(Inlnn)?

for every n. Assume further that

1 1 1
—(! 1)+ Inlnl 1)) — ——=(Inlnl = .
p(n+1)(ng(n+)+ Inlnin(n + 1)) p(n>(ng(n)+ nlnlnn) O(logn)
Assume there exists a family of codes C = {C™} over F that is (ng, 1,1)-dense'?, in which
every code C™ of length n is a code of rate p(n), which is a (q(n),0(n),e(n))-LCC, for

e(n) <1—1/|F| and
1
o) = it

Then, there exists a family of codes C' = {(C")"} over F, which is a family of good LCC
with query complexity quew(n) = q(n)™ for

1 2
e(n) =0 (W(lng(n) +Inlnlnn)<g(n) lnlnn) .

12Note that if one starts with a code family C that is (ng, ¢, d) for some constants ¢, d, then it can be

easily converted to a (ng, 1, 1)-dense family, with a constant multiplicative cost to the rate and with little

affect to the obtained parameters.

25

Proof. To show that the family C' can be converted to a family of good LCC, the idea
is to apply Corollary 4.16. In order to be able to do so, we first need to show that the
family C' can be converted to a family C” with high enough rate. We now explain how
such a family C’ can be constructed. First we define, for every n which is a code length
in C,

{(n) = 10h (Ing(n) +Inlnlnn), (4.4)

and N(n) = n‘(™. We have that

L
p(n)

and per our assumption that p(n) < 1 —

l(n) =0 < (Ing(n) +Inlnln n)) : (4.5)

—g(n)(lilnn 5, it follows that ¢(n) > 1, and thus

N(n) > n. (4.6)

Further note that the function N (n) is strictly increasing, and so it can be seen that there
exists a function 7 : N — R which is strictly increasing as well, and which satisfies that
for every n which is a code length in C, n(N(n)) = n. Let n be any such function. Now,
by Claim 4.7 every C™ a code of length n of the family C, is a (¢(n), 7(n))-query-set-LCC

for
(n) = q(n)

nl/gn)”
For every such C", we apply Proposition 4.18 with ¢ = ¢(n), to get that there exists a code
(CN™ over F, of length N(n), With the parameters detailed by the theorem. We define
the code family C’ to be {(C")N™ | C™ € C and n > max(ng,n)}, for some constant
n1 € N to be chosen later. Note that as the function N(n) is strictly increasing, C’ has at

most one code of every length. Define for every N € N

g (N) = £(a(N))g(A(N)),
1-

P(N) =1~ (1= p@(N)T
¢'(N) = q(n(N)) ",
) = Sz

By Theorem 4.18, every (C")V is a code of length N of ¢ with rate p/(N). Further it is

26

a (¢'(N), 7(n(N)))-query-set-LCC. We have that

. g(n(N))
T““Nd)zqumummwn
¢(n(N))
NN 9@ ())
_ a(@(N))
NgM)

= 7'(N).

It follows that every (C")" is in particular a (¢'(N), 7'(N))-query-set-LCC.

With the family C” at hand we wish to invoke Corollary 4.16, but before we can do
that, we need to verify that it satisfies the corollary’s hypotheses. First, we need to verify
that for every code length N which is a code length of C’, ¢/(N) > log N, and indeed
as ¢'(N) = q(A(N))* ™) log N = £(i(N))logn(N) and q(7(N)) = logn(N) this holds
for every n(N) > 4. Secondly, we need to verify that 1/(1 — p/(N)) = ¢'(N)(Inln N)?
for every N which is a code length of C’. Equivalently, we need to verify that for every
n = ny a code length of C, 1/(1 — p/(N(n))) = ¢'(N(n))(Inln N(n))?. Indeed, on the one
hand we have that

1 1
11— p/(N(n)) B (1 _ p(n))é(n)
1
) (1 _p(n))lohlr«%)(lng(n)-‘rlnlnlnn)
= (g(n) Inlnn)'",

On the other hand,

g (N(n))(Inln N(n))* = £(n)g(n)(Inlnn + In £(n))?
{(n)?g(n)(Inlnn)?

//\

((ln g(n) +Inlnlnn) | g(n)(Inlnn)?

(1 1+p))2g(n)3(1n1nn)4
9)

(~ ()(mhm))

= O(g(n)*(InInn)***),

27

where the penultimate equality holds since In(1 + p(n)) = Q(p(n)) (as p(n) is non-
increasing), and the last equality is due to the hypothesis p(n) > 1/(Inlnn)*. Thus

we have that .

1—p'(N(n))
We therefore set n; to be the minimal satisfying that for every n = ny, 1/(1—p'(N(n))) =
¢ (N(n))(Inln N(n))?, and n; > 4. Note that n; is some (well defined) constant. With
that choice we indeed have that for every (C")Y € €', 1/(1 — p/(N)) = ¢'(N)(Inln N)2.
Another thing that we need to verify is that for some constants, the family C’ is
(np, ', d')-dense, and observe that this holds if [N /N = O(1). We have that for every
N > N(max(ng,ny)), [N < N([2(N)]). This holds since, notice, 2(N) is defined for
every N € N, and we have that [n(N)] € Nand n(N) = ng (as N = N(ny)), and so by the
fact that C' is (ng, 1, 1)-dense, [n(N)] is a code length of C. Thus, N([n(N)]) is a code
length of C’ which satisfies N([72(N)]) = N which shows that indeed [N < N([A(N)]).
Furthermore, as N(n) is increasing, N([n(N)]) < N(n(N)+1), and therefore it is enough
to verify that

=w (¢'(N(n))(Inln N(n))?) .

YT _ o). (4.7)

We have that

1 £(n+1)
_ n((n-‘rl)—f(n) (1 + _) ’
n

and so for Equation (4.7) to hold it must be the case that ¢(n + 1) — ¢(n) = O(1/logn)
and {(n + 1) = O(n). Indeed, it follows by Equation (4.4) that

{n+1)—l(n) = O <ﬁ

()
logn

the second equality holds per our assumption regarding g(n) and p(n). By Equation (4.5),
and by the assumptions g(n) < logn, p(n) = 1/(Inlnn)", it follows that £(n) = o(n). We
can thus conclude that Equation (4.7) holds and that C’ is (ng, ¢, d')-dense for some

constants.

(Ing(n+1)+Inlnln(n + 1)) — L(hrl g(n) +Inlnln n))

p(n)

After verifying that C’ withstands its requirements, we can now apply Corollary 4.16.
We get that there exists a code family C” = {(C")"} over F, in which every code is a good

28

LCC, with query complexity

/(N)O(g’(N) Inln N)

)e(ﬁ(zv)))O(Z(ﬁ(N))g(ﬁ(N)) Inln N)

(ﬁ(N))O(f(ﬁ(N))zg(ﬁ(N))ln In N)
(N O(¢(N)%g(N)Inln N)
(

)

)O(’J(ﬁ(lng(]\f)-&-lnlnlnN)zg(N)lnlnN)
where the first inequality is justified by Equation (4.6), and the last equality is due to
Equation (4.5). Thus, C” is a family with the desired query complexity, from which the

claim follows.]

5 LDC are not LCC via random weighted tensor

codes

In this section we prove Theorem 2.2. We show that there exist linear codes which are
LDC but not LCC, in the following strong sense. What we prove is that not only are
these codes LDC while not being LCC even for a weak requirement of very high query
complexity and very low correction radius, moreover, this negative property that local
correction with such parameters is impossible is maintained in any puncturing of the
code. We will be able to show this to be the case because in the codes that we construct
the uncorrectable coordinates are crucial for the distance of the code, and in particular
for the LDC feature of the code, thus any attempt to remove them while keeping these

properties, fails.

5.1 Preliminaries for this section

Notation. In what follows we will sometimes need to conveniently convert a pair of
indices i1 € [mq], iz € [m2] to an index ¢ € [myms], and so we set the following convention.
Where my,ms € N are clear from context and i; € [my], iy € [m2], we denote by (iy;i2)

the index (iy — 1)mq + i1 € [myma].

Definition 5.1. For a code C' of length n over F, we say that a coordinate j € [n] is
trivial (in C) if for every ce C, ¢; = 0.

We define the operation of puncturing of codes.

29

Definition 5.2. Let C be a code of length n and dimension k over F and let J < [n].
For every codeword ¢ € C, we define the vector (yi,...,y,) € F", where y; = ¢; if j ¢ J
and y; = 0 otherwise, to be the J-puncturing of ¢, and we denote it by ¢ ;. We define
{c.s | ¢ € C} to be the J-punctured code C', and denote it by C\;. Note that C\; is
indeed a code. Furthermore, given an encoding Enc of C', we define Enc\; : F* — T by
Enc\j(z) = Enc(z)\; for all x € F*.

We have the following easy claim regarding the puncturing and the dual operators.

Claim 5.3. Let J < [n], C a code of length n, and C\; its J-punctured code. Then, for
every w € (C\y)*, wyy € C*.

Proof. Let w € (C\ ;). We have that for all ¢ € C, {c,;,w) = 0. As (e, w) = {c,w\),
we have that for all c € C, {c,w ;) = 0, and so w,; € C*. O

5.2 A necessary condition for local correction

We start this section by stating a necessary condition for a coordinate of a code to be
locally correctable. Using this condition we will be able to prove that some coordinates
of a code are not locally correctable. The condition is a certain property of the dual code.

We will call coordinates satisfying the property dual correctable coordinates.

Claim 5.4. Let C' be a code of length n over F, j € [n] and @ < [n] a set of size q,
satisfying j ¢ Q. If Q determines j in C, then there exists some w € (C)< 41 such that

j € supp(w) € Q U {j}.

Proof. As @ determines j in C, there exists a function f : FI® — F such that for every
ce C, ¢; = flcg). As C is a vector space, it readily follows that f can be taken to be a
linear map. Therefore, there exists a vector w’ € F” such that for every c e C, (v, ¢) = ¢;,
and supp(w’) = Q. It follows that if we take w = w' — e;, we have that for every c € C,

{w,c) =0, and so w € C* and j € supp(w) < Q U {j}, as required. O]

Definition 5.5. Let C be a code of length n over F, and let j € [n]. We say that j is (q,)-
dual correctable coordinate in C' if for m = dn/q there exist some wy, ..., wy, € (CF)<yy1,

with the following guarantee. For every i € [m], j € supp(w;) and for every i,i" € [m],

i # 14, supp(w;) N supp(wy) = {j}.

Claim 5.6. Let C be a code of length n over F and let j € [n]. If j is a (q,0,€)-correctable

coordinate in C' for e <1 —1/|F|, then j is a (q,d)-dual correctable coordinate.

30

Proof. First, note that there exists a set A; = {By,..., B,,} for m > dn/q such that for
every i # 1, B; n By = J, and for every i € [m], |B;| < q, j ¢ B;, and B; determines j in
C'. This is exactly proven by the argument in the proof of Claim 4.7, and simply it follows
by taking A; to be the set A; constructed in that proof. Note that while Claim 4.7 is
stated for codes which are (g, d,¢)-LCC, the construction of the set A; in the proof only
uses the property that j is a (g, 6, €)-locally-correctable coordinate in C'.

Secondly, for each ¢ € [m] we apply Claim 5.4 with respect to the set B;, to conclude
the existence of some w; € (C*)<,41 such that j € supp(w;) < B; u {j}. It immediately

follows that j is a (g, 0)-dual correctable coordinate in C'. [

5.3 Weighted tensors

We turn next to define an operation to which we call the weighted tensor of two codes
and state several of its properties. The codes of Theorem 2.2 will be constructed using
a weighted tensor. This operation gets two input codes (more precisely, two codes and
respective encodings), and a matrix of non-zero entries, and results in a new code. To
define the result of the operation, we will define a new encoding function which depends
on the encodings of the two input codes and on the weight matrix. We will then take the

resulted code to be the image of that encoding.

We thus begin by describing the encoding function of the weighted tensor.

Inputs. Let
e Enc, : F* — F™ be a linear map.
e Ency : F*2 — ™ be a linear map.
e B e [F1*k2 be a matrix with non-zero entries.

We define the following function Enc : F¥1#2 — ™72 that acts as follows on input

x € Fhikz,

Action of Enc on z.
1. Identify z with a matrix X € FF1** where for i1 € [k1], s € [ka], X415 = T(iysin)-

2. Use Enc; to encode each column of X and set X’ to be the resulted matrix, X' €
]Fnlxkg'

31

3. For each j; € [n1],i2 € [ka] multiply the element X’ . by By, ;, and set X” to be

J1, 12
the resulted matrix.

4. Use Ency to encode each row of X” and set X” to be the resulted matrix, X" €

Fn1 Xng .

X "

5. Output 2’ € F""2 where for ji € [n1], j2 € [n2], 7, 5,) = X/ .-

Properties of Enc. We turn to state a few properties of the function Enc.
Claim 5.7. If Ency and Ency are injective then so is Enc.
Proof. Follows trivially as B is a matrix with no zero entries. O

Claim 5.8. Let A e F"'*F1 gnd A% € F*2**2 be the generating matrices of Ency and Encs,
respectively. Then, for every x € F¥*2 Enc(z) = Az, where A € Fmn2xkik2 s the matrix
where for iy € [k1], iz € [ko], j1 € [n1], ja € [na],
Al

A(j1§j2)7(i1:7f2 J1,81% “j2, ZQleyiQ' (51)

In particular, Enc is a linear map.

Proof. Let x € F**2 and let X', X”, X", 2’ be as in the encoding described above. As
Enc(z) = 2/, we need to show that Ax = 2/. Let j; € [n1], j2 € [no]. For every iy € [ko],
the iy-nd column of X’ is given by A!Xe;, since X’ is the result of applying Enc; on each

column of X. Therefore, for iy € [kq], we have that

lell is (A Xelz J1 ig = Z Ajl i1 <2 11,92]1 29 (52)

1€ kl]

as X" is the result of multiplying X" and B entry-wise. For j; € [ny], the ji-st row of X"
is given by (A%(X")Te;,)T, since X" is the result of applying Ency to each row of X”, and

SO

! n
L) = X o
= (A*(X")Te;,)j,
= Z A]Q 12 X” e]l)iQ

12€ kg]

= Z A3222 J1712

19€ k‘g]

32

Therefore, by Equation (5.2) and Equation (5.1),

/ _ 2 1 o o
L(jrsja) = Z Ajz,iz Z Aj17’51X11722B]1712

ige[kg] ile[kl]

= Z A(jl;j2)7(i1;i2)Xi1,i2
ile[kl]
’iQE[k’Q]

= (Ax)(j1§j2)'

Thus Az = 2/, as required. H

The weighted tensor operation. We can now define the weighted tensor operation.

Definition 5.9. Let Ency, Ency, B and Enc be as above. Let Cy be a code of length ny and
dimension ky over F such that Ency is an encoding of it, and let Cy be a code of length nq
and dimension ko over F such that Ency is an encoding of it. Let C be the image of Enc.
We define the B-weighted tensor of (C, Ency) and (Cy, Ency) to be the pair (C, Enc), and
denote (C,Enc) = (Cy, Ency) ®p (Ca, Ency).

Claim 5.10. Let (C,Enc) = (C1, Ency)®p(Cs, Ency). Then C' is a code of length n = nyng

and dimension k = kike over F, and Enc is an encoding of it.

Proof. Follows immediately by the definition of Enc, and since Enc is injective by Claim 5.7,
linear by Claim 5.8, and by the fact that C' is defined to be its image. n

5.4 Local decodability of weighted tensors

In this part we show that the weighted tensor of two LDC is an LDC with comparable

parameters, regardless of the weight matrix.

Claim 5.11. Let (C1,Ency) be a (q1,01,e1)-LDC, where Cy is a code of length ny and
dimension ky over F. Let (Cy, Ence) be a (qo,02,62)-LDC, where Cy is a code of length
ny and dimension ky over F, and let B € F™**2 be a matriz with no zero entries. Then,
(C,Enc) = (C1,Ency) ®p (Cq, Ency) is a (q1g2, 6109, 1 — (1 — 1) (1 — &2)1)-LDC.

Proof. Let Dec; be a decoder promised by the fact that (Ci,Ency) is a (qq,01,¢1)-LDC
and let Decy be a decoder promised by the fact that (Cy, Ency) is a (g2, 02, £2)-LDC. To
show that (C,Enc) is a (q1qa, 0102, (1 —&1)(1 — €2)?)-LDC, we describe a decoder Dec for
it. For every i = (iy;i2), i1 € [k1], ia € [k2], Dec acts as follows on input i and oracle
access to z € [F"1"2,

33

1. Identify z with a matrix Z € F™*"2 where for ji € [n1], j2 € [n2], Zj, js = 2(j11j2)-

2. Simulate Decy (7). Instead of giving Dec(i;) direct oracle access to a word y € F™

do the following. For every index j; € [n;]| that Dec;(i1) needs to query:

(a) Simulate Decy(i3) with oracle access to the ji-st row of Z, Z;,.

(b) Divide the result of Decy(is) by Bj, i, € F and feed it to Dec;.'?

3. Output the result of Decy (i;).

We turn to analyze the above decoder. First, it is immediate that given that Dec; and
Decy are non-adaptive, so is Dec. Secondly, it is also immediate that Dec makes at most
¢1q2 queries in any case. Thirdly, we need to show that the output of Dec(i) is correct
with probability at least (1 — e1)(1 — e3)?. Towards that, let z € F™""2 be such that
dist(Enc(z), 2) < 8105m1n, for some x € F¥1*2 and assume that Dec(i) is run with oracle
access to z. By the bound on dist(Enc(z), 2), it follows that at most d;n; rows of Z have
more than d,ny erroneous entries, i.e., entries (ji, j2) such that Zj, ;, # Enc(z)j,.,). Let
E < [n1] be the set of indices of these “bad” rows.

Recall that in the definition of Enc, 2’ = Enc(x) corresponds to a matrix X", and the
rows of X” are codewords of Cy as X" is the result of applying Ency on every row of X”.
We thus have that for every j; ¢ F, it holds that Decy (i), when run with oracle access
to Zj,, outputs X7
X" is the result of multiplying, entry-wise, a matrix X’ with the values of B, and the

with probability at least (1 — e2). Further recall that the matrix

matrix X' is the result of applying Enc; on each column of the matrix X that corresponds
to x. Let p be the probability of the event that for every index j; ¢ E which Dec(i;)
requests to query it is fed with X7 , . Conditioned on this event, Dec(i;) outputs Xj, ;,
with probability at least 1 — ;.'* It follows that in general, Dec(i) outputs X;, ;, with
probability at least p(1 — &1).

It only remains to bound p from below. Clearly, for every index j; ¢ E which Decy (i)

requests to query, it is fed by Dec with X’ . if and only if Decy(iz) with oracle access to

J1yi2

Zj, outputs X7 ;. as Dec divides that result by the same weight By, ;, which is used by

1,827

the encoding to multiply X7 ;. As mentioned, the probability for the output of Decy(iz)

13This can be thought of as giving Dec;(i1) oracle access to a “virtual” word, i.e., a word Y € F™
which is a random variable that satisfies Y;, = DeCQZj1 (i2)/Bj, iy for every index j; € [nq].

14This holds as conditioned on the described event, the situation is equivalent to the case that Dec;
was given direct oracle access to a string ¥ € F™ which satisfies that for every ji ¢ E, Y;, = Enci(m);,
(in our case m is the i-nd column of X’) and for j; € E, Y}, can have any value and may depend on the
random choices of Dec;. We have that Pr[Dec; (i1) = my, | = 3 pie Pr[Ye = s] Pr[Decy (i1) = my, |
Ye =52 ue Pr[Yg =s](1—¢c1) =1—¢1.

34

to satisfy this is at least 1 — e5. Thus, as Dec; makes at most ¢; queries and as different
calls to Decy, are independent, the probability p that all the queries made by Dec; to
indices not in E are met with the correct values of X’ satisfies p > (1 — &9)%', and so it
follows that Dec; outputs X;, ;, with probability at least (1 —e;)(1 —e2)?. As the output
of Dec is equal to the result of the simulation of Dec;(i;) and as Xj, ;, = (i, ;i,) = ¥;, this

shows that Dec(i) is correct with the stated probability and the claim follows. O

5.5 Local correctablity of random weighted tensors

In this part we show that the weighted tensor of two codes, when performed with a
randomly chosen weight matrix is, with high probability, not locally correctable. In
particular, we show that a subset of the coordinates cannot be locally corrected even with
a small correction radius guarantee, and cannot be removed from the code either if its
decodablity is to be preserved.

Let (C4,Ency) be a (qi,61,1)-LDC for a code C; of length ny and dimension k; over
F and e; <1 —1/|F|. Let (Cy, Ency) be a (g2, 92, £2)-LDC for a code Cy of length ny and
dimension ko over F and 5 < 1 — 1/|F|. We assume that C; and Cy are free of trivial
coordinates.’® Let B € F™**2 3 random, uniformly and independently sampled, matrix
of non-zero weights. Let (C,Enc) = (C4, Ency) ®p (Cy, Ency) be the B-weighted tensor of
the two codes, and denote by n the length of C' and by k its dimension. By Claim 5.10,
n =nine and k = kiks.

We will need the following definition.

Definition 5.12. For ji € [n1], j5 € [n2] and ¢ € N, we say that (j},j3) is G-possibly
correctable if there exists w € (CF) <41 such that wxgxy # 0 and for every js € [na]\{j3},

Wy = 0.

Claim 5.13. Forge N and j € [n], if j = (j§;75) and (j§, j3) is not G-possibly correctable,

then for every 6 = ¢/nq, j is not a (q,9)-dual correctable coordinate of C.

Proof. Let ¢ € N and j € [n] be such that j = (ji;j3) and (j§,75) is not g-possibly cor-
rectable. Assume towards contradiction that j is a (¢, 6)-dual correctable coordinate of C,
for § > G/ny. Then, there exist wy, ..., wy, € (CF)<gr1, m = dn/G = ng, such that for ev-
ery i € [m], j € supp(w;) and for every i,i" € [m], ¢ # @', supp(w;) Nnsupp(wy) = {j}. Thus,
the sets supp(wi)\{j},...,supp(w,)\{j} are disjoint. Set R = {(ji;7r) | r € [n2]\{J5}}
Since j is not ¢-possibly correctable, the sets R nsupp(wi)\{j}, ..., Rnsupp(w,)\{j} € R

are all disjoint and non-empty. Thus, m < |R| = ny — 1, in contradiction. O]

15This assumption is for simplicity, clearly any trivial coordinate can be removed from a code and this

would only improve the parameters of the code.

35

We will now describe a set of coordinates which we will argue are not g¢-possibly
correctable, with high probability over the choice of B. We show this to be the case
for every coordinate (ji;j2) such that j; € [n], and such that j5 is in some subset
I < [ny]. Let Al, A% and A denote the matrices that correspond to Ency, Enc, and
Enc, respectively. Let ¢t < ko be a parameter. We write ¢ = aky for a < 1. Define
I < [ns] to be the set of indices of Cy which in Ency depend on at least ¢t message bits,
ie., I = {js€[ng]||A%|=t}, where |A? | is the weight of the jo-th row of A*. We set

J = [nl] x I (53)

and
T =AU 2) | (G, J2) € T},
the corresponding set of coordinates in [n]. We will now state a few claims which imply

that, with high probability, over the choice of B, J is a set of coordinates that are not

correctable in C.

Claim 5.14. For (ji,j3) € J and § € N, (4}, j3) is G-possibly correctable with probability
at most (”16"2)|F|‘5/(\IF\ — 1), over the choice of B.

Proof. Let (j§,73) € J and ¢ € N. Note that (j§,75) is ¢-possibly correctable if there
exists some w € FZUP?), such that w(x s # 0 and w;x.,) = 0 for every js € [n2]\j3,

w € C*t. Further note that in such a case, we may assume we %) = 1 without loss of

i
generality. We therefore fix w € FLJ'? with the aforelrnentioned1 pQI'operties and consider
the probability that w € C*. Note that w € C* if and only if w' A = 0, and that wT A = 0
if and only if for every iy € [ki] and is € [k2], (W A) ()
in the probability, over the choice of B, that (w'A)q,.,) = 0 for specific iy,i,. We fix
i1 € [k1] such that A;i“,il # 0. Note that such 7; exists as C] is assumed not to have trivial
coordinates. We fix iy € [ky] such that A%k@ # 0. There are at least ¢ possible choices of

such 49, since j5 € I. We have that

T
(A) (i1332) = 2 w]l,Jz (1352),(31582)

J1€[n1]

= 0. Hence, we are interested

Jj2€[nz]
= 2 w .71 J2]1 Z1A]2,128j17i2
ji1€[n1]
J2€[n2]
2 1 2
= Witz AJ1 ,nA]2 Ji2 » T Z W(j1;42) Ayl ZlAjg g d1,829

jrefmi\{5F
J2€[n2

where the second equality is due to Claim 5.8, and the last equality is per our as-

sumption on w. Also by that assumption, and by the choice of 71,75, we have that

36

WALy A% # 0. Further note that By, € F\{0} is uniformly chosen and is

1302)7 755 i " 75 e J1 -2

independent of the disjoint distribution of {B;, ;, | j1 € [n1|\{ji}}, and thus

Finally, note that this holds for all i3 for which A?* ;, # 0 — there are at least ¢ such, and

since the weights that correspond to different i5’s are chosen independently, we get that

Tpg 1 '
Prlw'A =0] < <—|F|_1) .

By taking the union bound over all possible choices of w € FZ'? such that Wy = 1, we
get that the probability that (j5, j5) is g-possibly correctable is at most (”1;2) IF|7/(|F|—1)¢,

as required. O

Claim 5.15. With probability at least 1 — nyng ("1;2)|F|‘5/(|F| — 1), over the choice of B,
for all (j5,75) € J, (45, J3) is not G-possibly correctable.

Proof. The proof follows from Claim 5.14 by taking the union bound over all possibilities
for (jt,j5) € J. 0

We can now conclude that, with high probability over B, the coordinates corresponding
to J, as defined by Equation (5.3), are not locally correctable. From that it will easily
follow that any puncturing that leaves out such a coordinate (to remain in the code),

remains not an LCC, as we have in the following claim.

Claim 5.16. For ¢ € N, with probability at least 1 — nyng (”16"2)\IF 1/(|F| — 1), over the
choice of B, C satisfies the following. Every j € J, j is not (§,0,<)-locally correctable in
C, for any § = G/ny ande <1 —1/|F|.

Proof. Let ¢ € N. By Claim 5.15, with probability at least 1 — ning ("152)|IF|5/(|F| — 1)
it is the case that every (jf,75) € J is not ¢-possibly correctable. Assume that this is
indeed the case. Let j € J be such that j = (j;2) for (ji,j2) € J and j ¢ J'. Per our
assumption, (ji, jo) is not g-possible correctable. Assume towards a contradiction that for
d = q/niand e < 1—-1/|F|, jis (¢, 9, €)-locally correctable coordinate in C'. By Claim 5.6,
it follows that j is a (g, d)-dual correctable coordinate of C. As (j1,J2) is not g-possibly

correctable in ', by Claim 5.13, this is a contradiction. n

In the next claim we show that if the coordinates corresponding to J are removed

from the code, the resulted code is not an LDC (and in particular, not an LCC).

Claim 5.17. Let A be the (non-local) relative distance of C\j. Then A < t/k,.

37

Proof. Recall that J = [ny] x I, where I < [n2] is the set of coordinates of Cy which
depend on at least ¢t message bits in the encoding Enc,, and that J is the corresponding

subset of [n]. One can verify that
(C\5, Enc\7) = (C1, Enct) @5 ((C2),, (Enca),).

Let A2 denote the matrix that corresponds to (EncZ)\I, and note that A2 is achieved by
setting each row jy € I of A? to a zero row. By the definition of I, it follows that A2 has
less than not non-zero entries. Let A denote the matrix that corresponds to Enc ;. By
Claim 5.8 we have that

A B

J1,%2

L s
J1;72),(i1502) = Aj1,i1A2j2,i2
for every ji € [n1], ja € [n2], 41 € [Kk1], i2 € [k2]. From that, it follows that A has less than
nikinst non-zero entries, and therefore there exists a column of fl, v € ™M™ which has

less than nynot/ky non-zero entries. As we have that v € C, z, it follows that A < t/k,. O

We have the following claim to conclude this part.

Claim 5.18. Let (Cy,Ency) be a (q1,01,€1)-LDC of length ny and dimension ki over F,
and let (Cy, Ency) be a (g2, 02,€2)-LDC of length ny and dimension ke over F. Assume that
C1 and Cy have no non-trivial coordinates. Let B € F™**2 be a random matriz of non-zero
weights, chosen uniformly and independently, and let (C,Enc) = (C},Enc;) ®p (Ca, Ency).
For every t < ky and 4, € N, § = G/n1, 8 > t/ky and ¢ < 1 — 1/[F|, with probability at
least 1 — nyna ("7%)[F|7/(|F| — 1)" over the choice of B, C' satisfies the following. There

— q f—
exists a set J < [n] such that every j € J is not (g, 9, €)-locally correctable in C. Further,

the relative (non-local) distance of C\y is less than t/ks.

Proof. The proof follows by Claim 5.17 and Claim 5.16.]

5.6 Deriving the theorem
We are now ready to derive the main result of this section.

Theorem 5.19. Let (Cy, Ency) be a (qo,00,c0)-LDC for a code Cy of dimension ky and
length ng over F for |F| > 2, such that ey < 1—1/|F|, ké/Q > 10logng, and assume that Cy
has no trivial coordinates. Then, there exists a (g2, 02,1 — (1—¢g¢)®*1)-LDC' (C, Enc) for

a code C' of dimension k = k2 and length n = n% over F satisfying the following property.

6Note that if (Co, Encg) has error parameter g5 < 1/2 — Q(1) then the error parameter of (C,Enc)
can be made to match it by first reducing the error of (Cy, Ency) through repetitions. For example, if
g0 < 1/3, a decoder for (Cy, Ency) which makes ¢ = O(log go) simulations of Dec and outputs the majority
vote can be used to show that (C, Enc) is a (O(qo log q0)?, 62, 1/3)-LDC.

38

There exists a set J < [n] of coordinates such that every j € J, j is not (kY4 kY4 /n'/2 ¢)-
locally correctable in C, for any e < 1 — 1/|F|. Moreover, the relative distance of C\;
is less than 5log(n)/kY* (in particular for any § € N and e < 1 — 1/|F|, C\; is not a
(¢,5log(n)/kY*, e)-LDC). \7

Proof. Let (Cy, Ency) which is a (qo, dg, £0)-LDC for a code Cy of dimension ky and length
no over F, such that ¢g < 1 — 1/|F|. Set C} = Cy = Cy, Enc; = Ency = Ency, and
for convenience also set ny = ny = ng and ky = ky = k. Let B € F1*F2 he a
matrix of non-zero weights, sampled uniformly and independently at random, and set
(C,Enc) = (C1,Ency) ®p (Cs, Ency) to be the B-weighted tensor of C and Cy, and denote
its dimension by k and its length by n. By Claim 5.10, k = k2 and n = n3. By Claim 5.11,
(C,Enc) is a (q,,¢)-LDC for ¢ = g2, § = 6% and € = (1 — g9)®*!. Thus, indeed (C, Enc)
is an LDC with the claimed properties, for any sampled B.

It remains to show that C' satisfies the claimed negative LCC and LDC properties.
Towards this end, set § = ko = kY* and t = 10§logny. Note that t < ky as by
assumption ké/ > 10 log ng. Further note that with that choice of ¢t we have that

T (”q”) FI/(IF| - 1) > 0.

Therefore, by Claim 5.18, with a probability greater than zero, there exists a set J < [n],
satisfying the following. For every

k1/4 k1/4

un - m’

e<1—1/|F| and j € J, j is not a (g, d, €)-locally correctable coordinate of C'. Moreover,

the relative distance of C\; is less than

t 10qlogng Slogn

ko ko o kA

By Fact 3.11, this implies that for every encoding Enc’ of C\;, ¢ < 1 — 1/|F|, and geN,
(C\s,Enc’) is not a (g, 5logn/kY4,e)-LDC. O

17Clearly the fact that there exist such a set .J implies that no puncturing of the code at a set .J' C
[n] can make it a (k'/* max(k'/*/n'/2, (5logn)/k'/*),e)-LCC. Indeed, if J' = J then C\, is not a
(kY4 (5logn)/kY*, €)-LDC, and in particular not an (k4 max(kY*/n'/2, (5logn)/k'/*),¢)-LCC, and if
J' ¢ J then C\ y is not a (k¥*, k¥*/n1/2)-LCC.

39

References

[AELO5]

[AL96]

[BDSS11]

[BDYWT11]

[BGT16]

[CY21]

[DGY11]

[Din06]

[Efr12]

[Gil52]

[GKO*1§]

Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with
nearly optimal recovery. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 512-519. IEEE, 1995.

Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly
optimal recovery. IEEE Transactions on Information Theory, 42(6):1732—
1736, 1996.

Arnab Bhattacharyya, Zeev Dvir, Amir Shpilka, and Shubhangi Saraf. Tight
lower bounds for 2-query lccs over finite fields. In 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pages 638-647. IEEE, 2011.

Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds
for design matrices with applications to combinatorial geometry and locally
correctable codes. In Proceedings of the forty-third annual ACM symposium

on Theory of computing, pages 519-528, 2011.

Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for
2-query lccs over large alphabet. arXw preprint arXiv:1611.06980, 2016.

Gil Cohen and Tal Yankovitz. Rate amplification and query-efficient distance
amplification for linear lcc and Idc. In 36th Computational Complezity Con-
ference (CCC 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.

Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes.
SIAM Journal on Computing, 40(4):1154-1178, 2011.

Irit Dinur. The PCP theorem by gap amplification. In Proc. 38th ACM Symp.
on Theory of Computing, pages 241-250, 2006.

Klim Efremenko. 3-query locally decodable codes of subexponential length.
SIAM Journal on Computing, 41(6):1694-1703, 2012.

Edgar N Gilbert. A comparison of signalling alphabets. The Bell system
technical journal, 31(3):504-522, 1952.

Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. Locally testable and locally correctable codes approaching
the gilbert-varshamov bound. IEEE Transactions on Information Theory,
64(8):5813-5831, 2018.

40

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes
from lifting. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 529-540. ACM, 2013.

[HOW15] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability
of expander codes. Information and Computation, 243:178-190, 2015.

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-
rate locally correctable and locally testable codes with sub-polynomial query
complexity. Journal of the ACM (JACM), 64(2):11, 2017.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes
with sublinear-time decoding. Journal of the ACM (JACM), 61(5):28, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-
cedures for error-correcting codes. In Proceedings of the thirty-second annual

ACM symposium on Theory of computing, pages 80-86, 2000.

[KV10] Tali Kaufman and Michael Viderman. Locally testable vs. locally decodable
codes. In Approzimation, randomization, and combinatorial optimization, vol-
ume 6302 of Lecture Notes in Comput. Sci., pages 670-682. Springer, Berlin,
2010.

[TS17] A. Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
238-251. ACM, 2017.

[Varb7] R.R. Varshamov. Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR, 117:739-741, 1957.

[Yek08| Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential
length. Journal of the ACM (JACM), 55(1):1-16, 2008.

[ZD] Kalina Petrova Zeev Dvir. Lecture 1: Introduction. Lecture notes: https:
//www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf, year=2016,.

A From smooth LCC to good LCC

In this part we provide a proof for Lemma 4.15.

41

https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf
https://www.cs.princeton.edu/~zdvir/LDCnotes/LDC1.pdf

Theorem A.1 (The Gilbert-Varshamov bound, [Gil52, Var57]). For anyn e N, a field F
of size ¢, and 0 < § < 1—1/q, there ezists a code of length n over F with relative distance
=

at least § and rate r = 1 —H,(5) — g(n), where g(n) = 2/n.

Definition A.2. A linear subspace L < F™ is called a (q,9, a)-local-amplifier if there
exists a deterministic procedure Cor : [n] — F that is given oracle access to z € F" and
has the following quarantee. For every y € L and z € F™ such that dist(z,y) < dn, Cor(i)
outputs y; when given oracle access to z, for at least a-fraction of the indices i € [n].

Furthermore, Cor always makes at most q queries to z.

Claim A.3. For everyn € N, F a field, and §,« € (0,1) such that 6 < 1/25, there exists
a linear subspace L = F™ which is a (q, 6, a)-local-amplifier for ¢ = 25/(6(1 — «)?), such
that dim L > (1 — 2Hp(5¢/8) — 4v/0(1 —) /5)n.

Proof. We prove the existence of such a subspace with a probabilistic argument. Set
d=5/((1—a)V6), and let Cy < F¢ be a code of length d, with relative distance A = 5v/§
and rate 7 > 1 — Hg (5v/0) — g(d) where g is as in Theorem A.1. The existence of such a
code C, follows from Theorem A.1. Let 7 be a partition of [n] into n/d blocks P, ... P™4
of size d, chosen uniformly at random. Further let " be the fixed partition of [n] into n/d
subsequent blocks of size d: 7" = {(1,...,d),...,(n—d+1,...,n)}. We argue that the
following subspace L = {y € F" | for every P € m, P’ € ', yp € Cy and yp € Cy4} is of the
claimed properties, with probability greater than 0. Note that indeed, as L is defined by
at most 2(n/d)(1 — r)d constraints,

dim L > (2r — 1)n = (1 — 2H((5V3) — 2g(d))n
= (1 — 2Hg (5V/8) — 4/d)n

= (1 — 2Hyp(5V0) — 3\/5(1 E a)> n

To show that L is a (g, d, a)-local-amplifier, we need to describe a corrector Cor for
it, and towards that we first set up some notation. For every i € [n], Let P/ denote the
part of 7’ which satisfies @ € P’ and let r; denote the index of ¢ in P’. Similarly, for
J € [n], let P; denote the part of 7 which satisfies j € P; and let r; denote the index of
j in P;. On input i € [n], and oracle access to z € ", Cor(i) acts as follows. For every
je P ={j,....ji}, Cor(i) queries zp,, finds a word ¢; € Cy closest to zp, € F?, and sets
tj = (2p,)r;; Cor(i) then finds a word ¢j € Cqy closest to (¢;,... ;) € F? and outputs
(C;)r;'

We inspect the described procedure Cor. Note first that the number of queries Cor
makes is exactly ¢ = d* = 25/((1 — «)?9), as required. Secondly, it is immediate that

42

with access to z which satisfies dist(z,y) < dn, the output of Cor(i) is equal to y; if
dist((tsi, ... t51),yp) < $Ad; this, in turn, holds if we have that for less than Ad/2
indices j € P/, dist(zp,,yp;) = Ad/2. Further note that for every y € L and z € F"
such that dist(z,y) < on, it is immediate that for at most a §/(A/2) fraction of the parts
P',... P"% of 7, it holds that dist(zp:,ypi) = Ad/2. Therefore, Cor(i) always succeeds
on at least an a-fraction of the indices ¢ € [n], if it is the case that the following property
holds: for every set I < [n/d] of “bad” parts indices (among P!, ..., PV%),
J

n
I < — -,
<tx 3

(A1)

N

we have that for less than (1 — «)n indices i € [n], at least Ad/2 of the indices j € P/
satisfy j € P! for t € I. We denote by p the probability, over the choice of 7, that the
requirement is not met, and we wish to show that it is less than 1.

We thus turn to bound p. We first fix some I < [n/d] satisfying Equation (A.1). For
any D C [n], the probability that for all j € D, j € P! for t € I, is at most (26/A)/Pl. We
have that for every subset of parts B < 7', the probability that for all P’ € B, at least
Ad/2 of the indices j € P’ satisfy j € P for ¢ € I, by a union bound over the possible

subsets of size Ad/2 of each P’ € B, is at most

d \ /Bl 795\ |BIAd2
1Ad A ‘

Again taking a union bound, this time over the possible subsets B < 7, of size (1—a)n/d,

the probability that there exists such a set B of size at least (1 — a)n/d is at most

o g\ A-on/d sose\ (1—a)n/d)jAd
(1—a)n/d) \1ad A |

By taking another union bound, over the possible choices of I, we can bound the proba-
bility that for some set I < [n/k] satisfying Equation (A.1), there exists such a set B of
size at least (1 — a)n/d, and get that

s ((%Zc)in/d) ((1 nc/)jn/d) (%Zd) o (%) e

One can verify that when plugging A = 5v/6 and d = 5/(v/6(1 — «)) results in that right
hand side is indeed smaller than one, as required. O

We the claim, we can now prove Lemma 4.15.

43

Proof for Lemma 4.15. Let C™ be a code of the family C'. We show that for every such
C™, there exists a code (C')" with the desired properties, and we will finally take the
family C” to be {(C")"}. By Claim 4.2 used with ¢ = 1/3, C™ is a (q(n),d(n),1/3)-
LCC for 6(n) = 1/(3nt(n)). Let L < F" be a (¢"(n),d(n), a(n))-local-amplifier, for
a(n) =1—49(n) where ¢'(n) is defined to be the maximal value in (0, 1/25] which satisfies

2H‘F| 5 -I- 4/ 5/ 5 /2. (AQ)
One can see that since p(n) = Q(1), §'(n) = Q(1). By Claim A.3, for

25

(1= a(n))*d'(n)
25

d(n)2d'(n)
= O((n7(n))*),

q"(n) =25

=25

there exists such a subspace L, satisfying

dimL (1 — 2H|F| 5 4’\/ 5/ (5)n/Q

by Equation (A.2). We take (C")™ = C™ n L to be the code of the claimed properties,
and note that since the co-dimension of (C')" is at most (1 — p(n) + p(n)/2)n the rate of
(C")™ is at least p(n)/2 = Q(1).

It remains to show that (C")" is a (¢'(n),d'(n),e)-LCC, and towards that we de-
scribe a corrector Cor’ for it. Let Cor be a corrector for C™ promised by it being a
(q(n),d(n),e)-LCC, and let Cor” be a corrector promised by that Lis a (¢"(n),d (n), a(n))-
local-amplifier. On input ¢ € [n], and oracle access to z € F" such that dist(z,c) < §'(n)n
for ¢ € C’, Cor'(i) as follows. Cor'(7) simulates Cor(i), and whenever it needs to query z;
for some j € [n], Cor'(i) simulates Cor”(j) with access to z, and feeds Cor(7) the result.

It is immediate the number of queries that Cor’(i) makes is at most q(n) - ¢"(n) =
O(q(n)(n7(n))?). As for the correctness, for any ¢ € L and thus for any ¢ € (C')",
given that dist(z,c¢) < 0’(n)n, we are promised that for at least an «(n)-fraction of the
indices j € [n], Cor"(j) = ¢;, when Cor”(j) is run with oracle access to ¢. Thus, from
the point of view of the procedure Cor, it is given access to a string z’ which satisfies
dist(z',¢) < (1 — a(n))n = §(n)n, and thus Cor(i) correctly outputs ¢; with probability at
least 1 — €, by its promise. Thus, Cor'(i) also outputs ¢; with probability at least 1 — &,

as required. O

44

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

