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Abstract

The Alon-Edmonds-Luby distance amplification procedure (FOCS 1995) is

an algorithm that transforms a code with vanishing distance to a code with

constant distance. AEL was invoked by Kopparty, Meir, Ron-Zewi, and Saraf

(J. ACM 2017) for obtaining their state-of-the-art LDC, LCC and LTC. Cohen

and Yankovitz (CCC 2021) devised a procedure that can amplify inverse-

polynomial distances, exponentially extending the regime of distances that

can be amplified by AEL. However, the improved procedure only works for

LDC and assuming rate 1´ 1
poly logn

.

In this work we devise a distance amplification procedure for LCC with

inverse-polynomial distances even for vanishing rate 1
poly log logn

. For LDC, we

obtain a more modest improvement and require rate 1´ 1
poly log logn

. Thus, the

tables have turned and it is now LCC that can be better amplified. Our key

idea for accomplishing this, deviating from prior work, is to tailor the distance

amplification procedure to the code at hand.

Our second result concerns the relation between linear LDC and LCC. We

prove the existence of linear LDC that are not LCC, qualitatively extending

a separation by Kaufman and Viderman (RANDOM 2010).
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1 Introduction

1.1 Distance amplification

It is a recurrent theme in coding theory that the construction of a code is done in two

steps. In the first step, a code with weak parameters is constructed, and typically it is

the distance of the code that is unsatisfactory. In the second step, one transforms the

code obtained in the first step to a code with the desired parameters, where typically,

in the process, the other parameters deteriorate only slightly. When the distance is the

unsatisfactory parameter, the second step is referred to as a distance amplification step.

Examples that fall into this framework include the breakthrough constructions of

near-optimal small-bias sets by Ta-Shma [TS17], and the state-of-the-art construction

of locally decodable codes (LDC), locally correctable codes (LCC), and locally testable

codes (LTC) by Kopparty, Meir, Ron-Zewi, and Saraf [KMRS17]. A prominent example

from the (adjacent) PCP literature is Dinur’s celebrated proof of the PCP Theorem by

gap amplification [Din06]. It is interesting to note that in all the above cases the first

step is done using algebraic machinery whereas the second step is based on combinatorial

arguments.

1.2 LDC and LCC

Informally, a linear pq, δq locally decodable code (LDC) is a code, given by an F-linear

encoding function Enc : Fk Ñ Fn, where F is a finite field, that is also equipped with a

“local decoder”. The latter is a randomized algorithm, denoted by Dec, with the following

guarantee. Given an oracle access to z P Fn that is within relative Hamming distance

δ from some codeword Encpxq, and given i P rks, Deczpiq “ xi with high probability.

Moreover, Dec makes at most q queries to z. That is, every message symbol can be

decoded, with high probability, by querying only few symbols of a corrupted codeword.

A pq, δq locally correctable code (LCC) is the variant in which one wishes to decode (or,

more precisely, correct) the codeword symbols rather than the message symbols.

Locally decodable codes were defined by Katz and Trevisan [KT00] who proved that

asymptotically good LDC require q “ Ωplog nq queries. Whether or not this bound is

tight is a major open problem. An intensive research effort is devoted to the study and

construction of LDC and LCC. Of particular interest is the study of asymptotically good

LDC and LCC [KSY14, GKS13, HOW15, KMRS17, GKO`18, CY21] where the goal is

to minimize the query complexity.

In their seminal work, Kopparty, Meir, Ron-Zewi and Saraf [KMRS17] contained LDC
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and LCC with sub-polynomial query complexity. For the first step, a code with vanishing

distance δ “ 1
polyplognq

was used [KSY14], having the desired query complexity, namely, q “

2
rOp
?

lognq. Then, in the second step the authors invoked a distance amplification procedure

due to Alon, Edmonds and Luby [AL96, AEL95], which was originally introduced in the

context of linear-time erasure codes, and observed that it converts an LDC (resp. LCC)

with distance δ and query complexity q to an LDC (resp. LCC) with constant distance

and query complexity qnew “ q ¨ polyp1
δ
q.

1.3 Improved distance amplification for LDC

Motivated by the key role that the distance amplification procedure plays in [KMRS17],

Cohen and Yankovitz [CY21] asked whether much lower distances can be amplified. In-

deed, AEL’s procedure is mostly relevant in the regime δ “ 1
polyplognq

. In [CY21], the

authors devised an improved procedure that can amplify distances as low as 1
nα

for any

constant α ă 1 with a fairly low cost in query complexity, qnew “ qOplog lognq 1 (and even

for α “ 1´ op1q at a small additional cost in query complexity). However, their improved

distance amplification procedure has two drawbacks:

1. Unlike the AEL distance amplification procedure, the improved procedure was only

shown to work for LDC (and it may or may not work for LCC).

2. Second, to amplify the distance, the original LDC must have rate close to one, more

precisely, rate 1´ 1
polyplognq

.

2 Our contribution

We turn to present the two results of this work.

2.1 Tailor-made distance amplification procedure

Our first contribution is a distance amplification procedure for LCC that can amplify

distances as low as those handled by [CY21] (for LDC). Moreover, our procedure works

even for vanishing rate LCC.

1polyplog log nq factors in the exponent of the query complexity can be safely ignored given that, at

present, the lowest known query complexity is 2
rΘp

?
log nq. Such an overlook will matter only when (and

if) the query complexity will go below quasi-poly-logarithmic.

2



Theorem 2.1 (Distance amplification for LCC; informal). Let h ě 1 ě α ą 0 be any

constants. There exists a transformation that takes a q-query LCC with distance 1
nα

and

rate 1
plog lognqh

to an asymptotically good LCC with query complexity

qnew “ qOpplog lognq2h`2q.

We chose to state our result in a somewhat informal manner. For the formal statement,

see Corollary 4.19. We turn to give further details on the result.

Explicitness. In the statement of Theorem 2.1 we ignore the issue of explicitness. In-

deed, understanding LDC and LCC is already interesting in the information-theoretic

level. Having said that, our transformation is fairly explicit: It is a zero error randomized

transformation that runs in polynomial-time. More precisely, for every “failure” param-

eter ε ą 0, our transformation runs in time polypnq ¨ log 1
ε

and produces an LCC with

probability at least 1´ ε; otherwise, it declares failure. We find this aspect to be a minor

issue as, recall, LCC are anyhow randomized in nature. Nonetheless, it will be interesting

to obtain a deterministic transformation with matching parameters.

Codes vs. family of codes. A second issue that we chose to sweep under the rag in

the statement of Theorem 2.1 is that the transformation operates on the level of family

of codes rather than on the level of individual codes. That is, in order to produce an

asymptotically good LCC of a given block-length n, our transformation requires as input

a sufficiently dense family of codes. By that we mean that the consecutive block-lengths

in the family are not too far apart. The density of the resulted family of codes is the same

as that of the original family.

Amplifying lower distances. Like [CY21], we can even amplify sub-polynomial dis-

tances, in particular, distances of the form 1{n1´1{gpnq for an increasing function g, and

assuming a certain technical relation between g and the rate. In particular, for every

constant m ě 1 we can handle gpnq “ plog log nqm, and end up with query complexity

qnew “ qOpplog lognq2h`2m`2q.

We note that constructing a code for gpnq “ log n is trivial.

Amplifying the distance of LDC. We also obtain an improvement for LDC by devis-

ing a distance amplification procedure that requires rate 1´ 1
polyplog lognq

, modestly improv-

ing upon the 1´ 1
polyplognq

rate required by [CY21]. The reason that we can do much better
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for LCC is due to the rate amplification procedure of [CY21] that, informally, can amplify

rate ρ LCC with q queries to constant rate LCC with query complexity qnew “ qpolyp 1
ρ
q.

Such a transformation is not known for LDC.

2.1.1 Proof idea

In this section we give a short and informal account on our proof technique, and start

by contrasting our technique with prior work. Both the AEL distance amplification

procedure, as was used in [KMRS17], and the one given by [CY21] are based on samplers

and further involve a “small” code, that is, a code with logarithmic block-length. The

latter improves upon the former by using unbalanced samplers (rather than balanced

ones, or expander graphs as was used originally [AEL95, AL96]) and using a recursive

construction. To obtain our result, we deviate from prior work and tailor the distance

amplification procedure to the LCC at hand. That is, our procedure is “white box” - it

produces a new code with improved distance by first examining the structure of the given

code. To tailor the procedure to the LCC at hand, we do not work directly with the

definition of LCC as it lacks sufficient structure to work with. Instead, we work with a

more combinatorial characterization of LCC as was used in [CY21]. We turn to elaborate

on this.

Let C Ď Fn be a linear pq, δq-LCC. One can prove the following structural result. With

every coordinate i P rns one can associate a set, called a query set, Ai “ tQ
i
1, . . . , Q

i
mu of

m “ δn{q disjoint subsets of rns, each of size at most q, such that the following holds: For

every c P C and t P rms, ci can be deduced from cQit . Assume from here on, for simplicity,

that δ “ 1{
?
n and so m “

?
n{q. Denote Āi “

Ťm
t“1Q

i
t and note that |Āi| ď

?
n.

For our distance amplification procedure, we make use of a special partition π of rns

into
?
n parts P1, . . . , P?n, each of size

?
n. We say that such a partition is a d-splitter

for C (more precisely, a d-splitter for the query sets A1, . . . , An obtained from C) if for

every s P r
?
ns and i P rns, |PsX Āi| ď d. We wish to minimize d and thus consider a max

load balls into bins like problem: For every i P rns we place a ball with color i at each of

the coordinates in Āi. Note that a coordinate j P rns may contain many balls of different

colors. Indeed, the average number of balls at coordinate j P rns is
?
n. Our goal is to

choose the partition π in such a way that every part Pt will contain at most d balls of the

same color. It is easy to show that a d-splitter for C exists with d “ Op logn
log logn

q.

We construct a new code C 1 Ď Fn as follows. We take C 1 to be the code C 1 Ď C with

the property that for every part Ps of π, when C 1 is projected to the coordinate set Ps,

the obtained vectors consist of codewords of a code C?n having block length
?
n, which is

a q1-query LCC. That is to say, we require that for every c P C 1 and s P r
?
ns, cPs P C

?
n.
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Observe that C 1 can be constructed by adjoining to the parity checks of C, the parity

checks of C?n when restricted to each block in π.

We show that if C?n is a smooth LCC, which means that it queries each coordinate

with roughly the same probability, then so is C 1. Moreover, C 1 has query complexity qq1.

Thus, C can be transformed into a smooth LCC of length n given that a smooth LCC of

length
?
n is at hand. This calls for a recursive construction which results with a smooth

LCC with query complexity qOplog lognq. After obtaining a smooth code, the final step is

to invoke the AEL distance amplification to end up with a good LCC. This final step has

a minor effect on the query complexity.

The above recursive construction must start with LCC of rate 1´ 1
polyplog lognq

. This is

due to the rate deterioration throughout the log log n recursive calls. For amplifying rate
1

polyplog lognq
LCC, as stated in Theorem 2.1, we invoke the rate amplification procedure

of [CY21] before running the recursive construction described above. This has some effect

on the density of the LCC family that the recursion has access to which requires some

care.

2.2 Refined separation between LDC and LCC

Understanding the relation between LDC and LCC is fundamental. Currently the only

regime in which the state of affairs is better understood is the 2-query regime [BDYW11,

BDSS11, BGT16]. In the constant-query regime for q ě 3, q-LDC with sub-exponential

length are known [Yek08, Efr12, DGY11] whereas it is not known if this can be matched

for q-LCC. Recall that in the constant-rate regime, the state of the art result of [KMRS17]

achieves sub-polynomial query complexity and holds for LDC and LCC alike.

In the general case, clearly, a systematic LCC is an LDC. As every linear code can

be made systematic (by applying Gaussian elimination to its generating matrix), a linear

LCC induces a linear LDC with the same parameters. Thus, informally, LCC are stronger

than LDC, at least for linear codes.

Are LDC and LCC “equivalent”? As for the converse, Kaufman and Viderman [KV10]

observed that an LDC is not necessarily an LCC. Their proof starts with an LDC. If it is

not an LCC to begin with, we are done. If it is an LCC, the proof goes on by transforming

it to a new code by appending to it one additional entry that does not involve low-weight

constraints (namely, every vector in the dual code that does not vanish on the new entry is

of large weight). In this way, one obtains an LDC with an entry that cannot be corrected

with few queries. Such an entry can be shown to exist by a counting argument. This

argument can be extended to produce many new bits that cannot be corrected.
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While, formally, the argument above establishes the existence of LDC that are not

LCC, it has a drawback which makes it somewhat less appealing. In the resulted code, the

adjoined bits that cannot be corrected are not needed for decoding the original bits. This

means that if one is given a code that is not an LCC because of the above transformation,

with the task of taking such a code and “convert” it to an LCC, this could be done

easily: simply by removing these coordinates, and this clearly would not harm the code’s

dimension. This raises the question: Can any linear LDC be so “easily” converted to an

LCC of similar dimension and query complexity?

The thought that the answer to this question may turn out to be in the affirmative

is not far fetched in the case of linear codes. Indeed, we know that the locality features

of linear codes “come from” linear relations between different bits of the codeword and

of the message. For example, if a linear code Enc : Fk Ñ Fn is a q-query LDC, and in

particular the i-th bit of each message m can be deduced from a subset Q Ď rns that

consists of at most q coordinates of c “ Encpmq, then there exists a linear map fi,Q which

satisfies mi “ fi,QpcQq for any m. Likewise, if mi can as well be deduced from another

subset Q1 Ď rns, |Q1| ď q (as is expected due to the distance guarantee), then there is a

linear map fi,Q1 satisfying mi “ fi,Q1pcQ1q for every m. It follows that in such a case, for

every codeword c, fi,QpcQq “ fi,Q1pcQ1q. Since fi,Q and fi,Q1 are linear maps (that, we may

assume, depend on all their parameters) this means that for every j P Q4Q1, there exists

a linear map gj satisfying cj “ gjpcQjq for every codeword c, where Qj “ pQYQ
1qztju.

Therefore, by the mere fact that j P rns is sometimes used in the local decoding process

of i P rks, it is implied that it is possible to “correct” the j-th coordinate by reading only

a few locations of the codeword (at most 2q ´ 1). Thus, the question of whether local

decoding implies local correction is in place, in the case of linear codes, and especially so

in the setting where k is close to n.

In light of this, the fact that in the separating result of [KV10] between linear LDC

and LCC, the coordinates which are shown to be uncorrectable are not used by the

local decoding process, calls for the question of whether there exists a linear LDC with

uncorrectable coordinates that are crucial for the decoding process.

Our result. The second contribution of this work is a proof for the existence of an

LDC that is not an LCC in the following stronger sense: It contains entries that cannot

be corrected which are crucial for the local decoder. This raises the question of what

we mean by coordinates that are “crucial”. The mere fact that it is possible for a set of

coordinates to be queried by the local decoding process should not qualify them as such,

as what allows for a code to be locally decodable or locally correctable is that there are

many options to decode or correct each symbol. Thus, a more suitable interpretation
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for a “crucial” set of coordinates J Ď rns is the following: If every coordinate j P J is

“zeroed out” from the code (i.e., for every codeword c we override cj with zero) then the

transformed code is no longer locally decodable. With this we are ready to present our

separation.

Theorem 2.2 (Separation of LDC and LCC; Informal). Let C : Fk Ñ Fn for |F| ą 2 and

k “ Θpnq be a linear q-query LDC. Then, there exists a linear q2-query LDC pC : Fk2 Ñ Fn2

with the following property. There exists a subset of coordinates J Ď rn2s in which every

coordinate cannot be locally corrected with query complexity
?
n and correction radius

1{
?
n. Moreover, if every coordinate j P J is zeroed out from the code, then the relative

distance of the obtained code is rOp1{
?
nq (and so it is certainly not an LDC).

For the formal, more general, statement, see Theorem 5.19. Note that our result does

not cover the binary field and it is an interesting question whether it can be extended to

include that case.

Proof idea. The underlying idea of the proof of Theorem 2.2 is an operation on two

codes to which we call weighted tensoring. The weighted tensoring of codes is similar to

the standard tensoring of codes. In the case of standard tensoring, the encoding of the

tensor of two codes is done by taking a matrix as input and applying the first code to

each column and then applying the second code to each row in the resulted matrix. In

the encoding of a weighted tesnor, before the second step, each entry of the matrix is

multiplied by a non-zero field element, or weight.

We consider the case of weighted tensoring which is done with random weights. We

show that while the code resulted from this is an LDC (assuming that the two input codes

were so), with high probability there is a set of coordinates in the code that cannot be

locally corrected, while being crucial for the decoding. The analysis showing that the set

of coordinates cannot be locally corrected is done by considering the affect of the weights

on the dual code. A probabilistic argument is then used to show that the argued codes

exist.

Discussion. We end this section with a short discussion to clarify a potentially con-

fusing point. While LCC are, in a sense, more powerful than LDC (indeed, our second

contribution, Theorem 2.2, attempts to formalize that better), our first result, given by

Theorem 2.1, transforms a vanishing rate LCC with polynomially-small distance to an

asymptotically good LCC–a result that is not known for LDC. So, how can it be that we

can do this for LCC and not for the weaker LDC?
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Of course, this should cause no confusion as the latter is a transformation that works

for LCC and not LDC, not a construction nor it is even a proof of existence. Put dif-

ferently, although the transformation generates the stronger object, the transformation is

also given it as its input.

3 Preliminaries

3.1 Notations and conventions

Unless stated otherwise, all logarithms are taken to the base 2. For n P N, we use

rns to denote the set t1, . . . , nu. For ease of readability, we sometimes avoid the use

of floor and ceiling. This does not affect the stated results. We use F to denote a

field, and any referenced field is assumed to be finite and of a constant size. When n

and F are clear from context, we use ei P Fn to denote the i-th vector of the standard

basis. For q P N, we use Hq to denote the q-ary entropy function, and H to denote the

binary entropy function. For a vector v P Fn, we denote by |v| the hamming weight of

v, which is the number of its non-zero coordinates |v| “ |tj P rns | vj ‰ 0u|, and the

support of v is supppvq “ tj P rns | vj ‰ 0u. For two vectors u, v P Fn, we denote their

(absolute) hamming distance by distpu, vq. For a linear subspace L Ď Fn, we denote by

Lďq the set of vectors of weight at most q. For two vector u, v P Fn, we use xu, vy to

denote the inner product of u and v,
řn
i“1 uivi P F. For a vector v P Fn and a sequence

I “ pi1, . . . , imq P rns
m, we denote by vI the vector pvi1 , . . . , vimq P Fm. For a linear

subspace L Ď Fn and a sequence I “ pi1, . . . , imq P rns
m, we denote by LI the subspace

tvI | v P Lu. Note that LI is indeed a subspace as it is given by a suitable projection.

A partition π of size k of rns is a set tP1, . . . , Pku of disjoint subsets of rns, such that

P1Y¨ ¨ ¨YPk “ rns. A partition tP1, . . . , Pku is ordered if each Pi is a sequence rather than a

set (and the sequences, when viewed as sets, satisfy the same requirements). Throughout

this paper, any partition of rns will be an ordered partition (though we may not state it

explicitly) with the sequences defined by the natural increasing order of N.

3.2 Error correcting codes

We start by recalling the definition of an error correcting code, and of a family of error

correcting codes. In this work we only consider linear codes.

Definition 3.1. For n P N and F a field, a code of length n over F is a linear subspace
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C Ď Fn.2 The dimension of the code, denoted by k, is the dimension of C over F, dimFC.

The (non-local) distance of the code, denoted by d, is mincPC,c‰0 |c|. The rate of the code,

denoted by ρ, is k{n. The (non-local) relative distance of the code, denoted by ∆, is d{n.

The elements of C are called codewords.

We will also need to consider encodings of codes.

Definition 3.2. We call a function Enc : Fk Ñ Fn an encoding of a code C if it is an

injective linear map and C “ ImpEncq.

Definition 3.3. For a field F, a code family over F is a set of codes C “ tCnu, which

contains at most one code Cn of length n over F, for every possible length n P N. For

every n P N, we denote by VnWC the minimal length of a code in the family C of length at

least n, and by TnUC the maximal length of a code in the family of length at most n. For

constants n0 P N, c ě 1 and d ď 1, we say that the family is pn0, c, dq-dense if for every

n ě n0, VnWC ď cn and TnUC ě dn.

Definition 3.4. For a field F, a code-encoding family over F is a set of pairs of codes

and corresponding encodings C “ tpCk,Enckqu, which contains at most one code Ck of

dimension k over F, for every possible dimension k P N. For every k P N, we denote

by VkWC the minimal dimension of a code in the family C of dimension at least k, and

by TkUC the maximal dimension of a code in the family of dimension at most k. For

constants k0 P N, c ě 1 and d ď 1, we say that the family is pk0, c, dq-dense if for every

k ě k0, VkWC ď ck and TkUC ě dk.

Definition 3.5. Let C be a code of length n over F. The dual code of C is defined to be

its orthogonal subspace CK.

Definition 3.6. Let C be a code of length n over F, let i P rns and B Ď rns. We say

that B determines i in C if there exists a function f : F|B| Ñ F such that for every c P C,

ci “ fpcBq.

We also need the following property of linear codes.

Fact 3.7. Let C be a code of length n over F. Further let i P rns, Q Ď rns and x P F|Q|.
Then, one of the following cases must hold.

1. There is at most one α P F for which there exists some c P C satisfying cQ “ x and

ci “ α.

2We may omit the phrase “over F” if the underlying field is clear from context.

9



2. For every α P F there is an equal number of c P C for which ci “ α.

In particular, either no function (even randomized) of cQ can predict ci with probability

larger than 1{|F|, when c P C is randomly chosen uniformly, or cQ determines ci for all

c P C.

3.3 Locally decodable codes and locally correctable codes

Definition 3.8. For C Ď Fn, we say that a procedure f : AÑ B is with oracle access to

c P C if when f is run, it gets besides an input a P A, access to c P C: f can query ci

for indices i P rns. To describe a specific run of f with input a P A and oracle access to

c P C, we either say that fpaq is run with oracle access to c, or write f cpaq for short. We

say that f is non-adaptive if the queries it makes are independent of c P C.

Definition 3.9. For a code C of length n and dimension k over F, and Enc and encoding

of it, pC,Encq is called a pq, δ, εq-LDC (locally decodable code, abbreviated) if there exists

a randomized procedure Dec : rks Ñ F that is given an oracle access to z P Fn, and has the

following guarantee. For every i P rks, x P Fk and z P Fn satisfying distpz,Encpxqq ď δn,

Deczpiq “ xi with probability at least 1´ ε. Furthermore, Deczpiq always makes at most q

queries to z. We further require that Dec is non-adaptive. We call Dec a local decoder

(or decoder) for pC,Encq, and the parameter q is called the query complexity of pC,Encq.

Definition 3.10. A code-encoding family C “ tpCk,Enckqu of codes over F is called a

family of good qpkq-LDC, or a a family of good LDC with query complexity qpkq, if every

code Ck in the family is a code with rate at least ρpkq, which is a pqpkq, δpkq, εpkqq-LDC,

for ρpkq “ Ωp1q, δpkq “ Ωp1q, and εpkq ď 1{3.

We have the following easy fact.

Fact 3.11. If C is a code of length n and dimension k ą 0 over F and Enc is an encoding

of it, and if pC,Encq is a pq, δ, εq-LDC, then, provided that ε ă 1 ´ 1{|F|, the (non-local)

relative distance of C, ∆, satisfies ∆ ą δ.3

Proof. Assume towards a contradiction that ∆ ď δ. Then, there exists some x P Fk and

i P rks such that |Encpxq| ď δn and xi ‰ 0, and we may assume without loss of generality

that xi “ 1. For every γ P F we define xγ “ γx. Note that pxγqi “ γ. Consider the

following scenario: We randomly and uniformly sample X P txγ | γ P Fu. Since for

every γ P F, the distance of Encpxγq from the zero codeword satisfies distpEncpxγq, 0q “

3Note that in the case that ε ă 1{2 a stronger bound ∆ ą 2δ holds.
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|Encpxγq| “ |γ ¨ Encpxq| ď δn, it is always the case that distpEncpXq, 0q ď δn. Therefore,

the probability that Dec0
piq “ Xi (over the choice of X and the randomness of Dec) is at

least 1 ´ ε ą 1{|F|, where Dec is a local decoder promised by the fact that pC,Encq is a

pq, δ, εq-LDC. This is clearly a contradiction, since Dec0
piq is independent of X and Xi is

uniformly distributed over F.

Definition 3.12. A code C of length n over F is called a pq, δ, εq-LCC (locally correctable

code, abbreviated) if there exists a randomized procedure Cor : rns Ñ F that is given an

oracle access to z P Fn, and has the following guarantee. For every i P rns, y P C and

z P Fn satisfying distpz, yq ď δn, Corzpiq “ yi with probability at least 1´ ε. Furthermore,

Corzpiq always makes at most q queries to z. We further require that Cor is non-adaptive

and that Corpiq never queries i4. We call Cor a local corrector (or corrector) for C, and

the parameter q is called the query complexity of C.

Definition 3.13. For a code C of length n over F (not necessarily a pq, δ, εq-LCC), and

i P rns, we say that i is a pδ, q, εq-correctable coordinate in C if there exists a procedure

Cor : rns Ñ F such that Corpiq satisfies the requirements in Definition 3.12.

Definition 3.14. A family C “ tCnu of codes over F is called a family of good qpnq-

LCC, or a a family of good LCC with query complexity qpnq, if every code Cn in the

family is a code with rate at least ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for ρpnq “ Ωp1q,

δpnq “ Ωp1q, and εpnq ď 1{3.

The following well-known fact is an implication of the fact that every linear code has

a systematic encoding5.

Fact 3.15. If a code C is a pq, δ, εq-LCC, then there exists an encoding Enc such that

pC,Encq is a pq, δ, εq-LDC.

4 Tailor made distance amplification

4.1 Characterization of LCC

In this section, we will need to use two characterizations of LCC, as was given by Defi-

nition 3.12. The first, given next in Definition 4.1, is of a pq, τq-LCC, and resembles the

4The assumption that Corpiq never queries i is only for simplicity. Any LCC which defies this assump-

tion can be easily converted to one which does not, with a negligible effect on δ.
5An encoding Enc is a systematic encoding if for some f : rks Ñ rns, for all x P Fk and i P rks,

Encpxqfpiq “ xi.
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definition of smooth codes given by [KT00] for LDC. A pq, τq-LCC differs from a pq, δ, εq-

LCC in that its local correction is only required to succeed if it is given a codeword of the

code, rather than a possible corrupted codeword. Accordingly, the correction of a pq, τq-

LCC has no “distance” guarantee, but instead it is required not to query any coordinate

with too high probability, i.e., probability larger than τ . When we will construct an LCC,

it will be easier to first argue that it is a pq, τq-LCC and use that to show it can be made

into a pq, δ, εq-LCC for any ε and δ “ ε{pτnq.

The second characterization, which will be given in Definition 4.5, is of what we call

a pq, τq-query-set LCC. Informally, a code is pq, τq-query-set LCC if for every coordinate

we have a large enough set of disjoint subsets of rns, from which it can be decoded.

The distance amplification procedure that we define utilizes these query sets and so the

properties of the input code that we will use are that of its characterization as a pq, τq-

query-set LCC. This is, in a sense, a more “combinatorial” characterization of LCC which

can be more conveniently used when a manipulation of these objects is needed.

The three characterizations of LCC all imply each other, but some of the transitions

are at some cost to the parameters. Indeed, Claim 4.2 will show that a pq, τq-LCC is a

pq, δ, εq-LCC for δ “ ε{pτnq, Claim 4.6 will show that a pq, τq-query-set is a pq, τq-LCC,

and Claim 4.7 will complete the cycle and show that a pq, δ, εq-LCC is a pq, τq-query-set

LCC for τ “ q{pδnq.

Definition 4.1. A code C of length n over F is called a pq, τq-LCC if there exists a

randomized procedure Cor : rns Ñ F that is given an oracle access to c P C, and has

the following guarantee. For every i P rns and c P C, Corcpiq “ ci, with probability 1.

Furthermore, Corcpiq always makes at most q queries to c, and for every j P rns, the

probability that cj is queried by Corcpiq is at most τ . We further require that Cor is non-

adaptive and that Corpiq never queries i. We call the parameter q the query complexity

and the parameter τ the smoothness of the LCC.

Claim 4.2. Let C be a code of length n which is a pq, τq-LCC. Then, for any ε ą 0, C is

a pq, δ, εq-LCC with δ “ ε{pτnq.

Proof. Let ε ą 0 and let Cor be a corrector of C. Let c P C and z P Fn such that

distpc, zq ď δn “ ε{τ , and set B “ tj P rns | zj ‰ cju. Fix i P rns. By the union bound

over j P B, except with probability ε, when Corpiq is run with oracle access to c P C, it

does not make a query to an index in B. If this is the case, then if Cor was given access to

z instead of c, it would successfully output ci, as well. Thus, C is indeed a pq, δ, εq-LCC

as the same corrector Cor can be used with oracle access to strings z P Fn, and given that

distpc, zq ď δn, Corpiq is promised to output ci with probability at least 1´ ε.

12



Definition 4.3. A set A “ tA1, . . . , Anu is called an n-query-set if for every i P rns, Ai

is a set of disjoint subsets of rnsztiu. For every i P rns we define ĎAi “
Ť

BPAi
B.

Definition 4.4. Let C be a code of length n and let A “ tA1, . . . , Anu be an n-query-set.

A is said to be a query-set for C if for every i P rns and B P Ai, B determines i in C

(see Definition 3.6).

Definition 4.5. Let C be a code of length n. C is said to be a pq, τq-query-set-LCC if

there exists a set A “ tA1, . . . , Anu which is a query-set for C, such that for every i P rns,

|Ai| ě 1{τ and for every B P Ai, |B| ď q.

Claim 4.6. Let C be a code of length n over F which is a pq, τq-query-set LCC. Then C

is a pq, τq-LCC.

Proof. Let A “ tA1, . . . , Anu be a query set that corresponds to C being a pq, τq-query-set

LCC. The following corrector Cor shows that C is a pq, τq-LCC. Given i P rns, and oracle

access to c P C, Corpiq samples uniformly at random some B P Ai and queries cB. As B

determines i in C, there exists a function f satisfying fpcBq “ ci for every c P C, and

so Corpiq uses such a function and outputs its result. Thus, for every c P C, the output

of Corpiq is always equal to ci, and note that as any sampled B P Ai satisfies |B| ď q,

Corpiq always makes at most q queries. Since Ai is of size at least 1{τ and is composed of

disjoint subsets of rnsztiu, any coordinate is queried by Corpiq with probability at most τ ,

and Corpiq never queries i. Thus, C is a pq, τq-LCC.

Claim 4.7. Let C be a code of length n over F which is a pq, δ, εq-LCC, for ε ă 1´ 1{|F|.
Then, C is a pq, τq-query-set-LCC for τ “ q{pδnq.

The proof for the claim is similar to the proof in [KT00] to their Theorem 1 and to

the proof in [ZD] for Theorem 1.1.

Proof for Claim 4.7. To prove the claim, we need to show that there exists a set A “

tA1, . . . , Anu which is a query-set for C, such that for every i P rns, |Ai| ě 1{τ “ δn{q and

for every B P Ai, |B| ď q. We construct A with the required properties by constructing

each of the subsets separately. Let Cor denote a corrector promised by the fact that C is

a pq, δ, εq-LCC, and let i P rns. To construct Ai, we construct a sequence of disjoint sets

Bi
1, . . . , B

i
mi
Ď rnsztiu, in an iterative manner. We will eventually set Ai “ tB

i
1, . . . , B

i
mi
u.

It will hold that for every j, Bi
j determines i in C, while satisfying |Bi

j| ď q, and that

mi ě δn{q, which will conclude the proof.

The construction of Bi
1, . . . , B

i
mi
Ď rns is done by the following procedure. Start by

setting Bi
0 “ H. For j “ 1, 2, . . ., set Sij “ Bi

0 Y ¨ ¨ ¨ Y Bi
j´1. If |Sij| ą δn halt and set
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mi “ j ´ 1 and Ai “ tB
i
1, . . . , B

i
mi
u. Otherwise, it holds that for every c P C, for every

modification of the coordinates in Sij to some erroneous values, Corpiq correctly outputs

ci with probability at least 1 ´ ε. An equivalent description of this case is the following:

for every c P C and z : Sij Ñ F, define cz P Fn such that for every r R Sij, c
z
r “ cr and

for r P Sij, c
z
r “ zprq. The corrector Cor chooses a set of queries Q Ď rnsztiu, |Q| ď q,

according to some distribution6 and applies some function fQ on czQ. We know that with

probability at least 1´ε, fQpc
z
Qq “ ci. Since Q is sampled in a manner that is independent

of c and z, by an averaging argument, there exists some fixed Q for which when c P C and

z : Sij Ñ F are chosen randomly in a uniform manner, with probablity at least 1´ ε (this

time over the choice of c and z), fQpc
z
Qq “ ci. Therefore, we can define another function

f 1Q that only gets cQzSij , chooses z uniformly at random, and outputs fQpc
z
Qq. If c P C is

chosen uniformly at random, f 1QpcQzSijq “ ci with probability at least 1 ´ ε ą 1{|F|. By

Fact 3.7, this implies that QzSij determines i in C. We therefore set Bi
j “ QzSij

7, and

proceed to the next j.

As this process only halts when |Sij| ą δn, and for every j, |Sij| ď qpj´1q, we have that

mi ě δn{q. Further note that by the choice of each Bi
j, the sets Bi

1, . . . , B
i
mi

are disjoint,

and of size at most q, as required. This thus shows how each Ai can be constructed, and

the claim follows.

4.2 Splitters for query sets

Splitters for query sets, that are defined as follows, are key ingredients in our distance

amplification procedure. Informally, a c-splitter for a query set A “ tA1, . . . , Anu is

partition of rns which satisfies that for every i, the intersection between ĎAi, the union

all the sets in Ai that correspond to an index i, and each part of the partition, is not

too large, i.e., of size at most c. In the distance amplification procedure, we will describe

a corrector which samples a set B P Ai, in some query set A, and then makes queries

according to which parts of the c-splitter intersect with B. For the resulted queries to

be smooth, we will need the partition to “split” A1, . . . , An, meaning that no part of the

partition is too common within any certain Ai.

Definition 4.8. Let n P N, A an n-query-set and c P N. A partition π of rns is called a

c-splitter of A if for every i P rns and P P π, |P XĎAi| ď c.

The next claim shows that if each Ai is of size at most k, then c-splitters with k parts

6As the corrector in non-adaptive, Corpiq naturally induces a distribution on subsets of rns which

correspond to the possible query sets.
7Note that i R Bi

j , as i R Q, since Corpiq by definition never queries i.
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exist, for c, the bound on the maximal intersection, being equal to roughly the minimal

intersection that is possible, up to a constant factor.

Claim 4.9. Let n, k, q P N such that k{n ď 1 and q ě log n. Further let A “ tA1, . . . , Anu

be an n-query-set such that for every i P rns, |Ai| ď k and for every B P Ai, |B| ď q.

Then, there exists a partition π of rns with k parts, each of size n{k, which is a c-splitter

of A for c “ 2eq.

Proof. The proof is by a probabilistic argument. We randomly choose a partition π with

k equally-sized parts in a uniform manner among all such partitions. We bound the

probability that π is not a c-splitter for A: this is the case if |ĎAiXP | ą c for some i P rns

and P a part of π. Towards this end, we first fix some i P rns and t P rks, and let Pt

denote the t-th part of π. We have that for every j PĎAi the probability that j P Pt is 1{k,

and for every fixed subset of ĎAi of size c, the probability that it is contained in Pt is at

most p1{kqc (since for distinct j, j1 PĎAi, the events that j P Pt and j1 P Pt are negatively

correlated). By a union bound over the possible subsets of size c, the probability that

|ĎAi X Pt| ą c is at most

ˆ

|ĎAi|

c

˙

p1{kqc ď

ˆ

e|ĎAi|

ck

˙c

ď

´eq

c

¯c

“

ˆ

1

2

˙2eq

.

By taking a union bound over all possible i, t, the probability that there exist i P rns and

t P rks such that |ĎAi X Pt| ą c is at most nk
`

1
2

˘2eq
ď n2

`

1
2

˘2eq
, which is less than 1 a

q ě log n, and the claim follows.

4.3 The distance amplification procedure

We now turn to define the basic operation behind our distance amplification procedure.

This operation “composes”8 two codes of different lengths, a big code and a small code,

in a way that is parameterized by some partition of rns. The result is a code of the same

length as the big code, with an improved smoothness (if the partition satisfies certain

requirements), as we will have in the claims that follow the definition. The distance am-

plification procedure (or perhaps, more directly, the smoothness amplification procedure)

will be an iterative application of this composition.

8Note that the term “composition” here is used in a different sense than the usual composition of two

codes in coding theory, which is achieved from the composition of the encoding functions.
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Definition 4.10. Let C1 be a code of length n1, C2 a code of length n2, π a partition of

rn1s into n1{n2 parts of size n2. We define the π-composition of C1 and C2, which we

denote by C1 dπ C2, to be the code tc P C1 | @P P π cP P C2u.

A bound on the rate of the composition of two codes is given in the following claim.

Claim 4.11. If C1, C2 are codes with of lengths n1, n2 and rates ρ1, ρ2 respectively, then

C “ C1 dπ C2 is a code of length n1 and rate at least ρ1 ` ρ2 ´ 1.

Proof. That the length of C is n1 follows from the definition. As for the rate, by inspecting

the code dual to C, it can be seen that the dimension of CK is at most

d “ p1´ ρ1qn1 `
n1

n2

p1´ ρ2qn2.

From that, the rate of C is at least 1´ d{n1 “ ρ1 ` ρ2 ´ 1.

We now show that if the partition used in the composition is a c-splitter for a query

set of the big code, the resulted code has smoothness roughly equal to the product of the

two smoothnesses.

Claim 4.12. Let C1 be a code of length n1 and C2 a code of length n2 which is a pq2, τ2q-

LCC. Let A “ tA1, . . . , An1u be a query-set for C1 such that for every i, |Ai| ě 1{τ1 and

for every B P Ai, |B| ď q1. If π is a c-splitter for A, then C “ C1 dπ C2 is a pq, τq-LCC

for q “ q1q2 and τ “ cτ1τ2.

Proof. To show that C is a pq, τq-LCC we need to show a corrector Cor for it. We first set

up some notations. Let Cor2 be a corrector promised by the fact that C2 is a pq2, τ2q-LCC.

For every j P rns, let Pj denote the part of π that contains j, and let j̄ denote the index

of j in Pj with respect to the natural order. For i P rns, and B P Ai, let fi,B : F|B| Ñ F
denote a function satisfying fi,BpcBq “ ci for every c P C1. Such fi,B is guaranteed to

exists as A is a query-set for C1.

For i P rns, Corpiq with oracle access to c P C acts as follows: it first samples B P Ai

uniformally at random. Secondly, for every j P B, the procedure obtains cj by invoking

Cor2pj̄q with oracle access to cPj . After obtaining cj for every j P B, Corpiq outputs

fi,BpcBq.

That Corpiq successfully outputs ci for every c P C is immediate, and follows from the

fact that for every j, cPj is a codeword of C2 and so Cor2pj̄q with access to cPj correctly

outputs cj, and from the fact c P C1 and so fi,BpcBq “ ci. Moreover, Corpiq makes at most

q1q2 queries to c, since |B| ď q1 by assumption, and Cor2 makes at most q2 queries.
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It remains to bound the probability that a coordinate r P rns is queried by Corpiq for

i P rns. Let p be the probability that Corpiq queries r. Fix B P Ai. Conditioned on the

event that B was sampled by Corpiq in the first step, r is queried by Corpiq if one of the

calls to Cor2pj̄q, with oracle access to cPj , queries cr for some j P B. That probability

is at most |B X Pr|τ2. Indeed, this follows by taking the union bound over the different

j P B, noting that if j R Pr, cr cannot be queried by Cor2pj̄q, and using that Cor2 queries

any coordinate with probability bounded above by τ2. Therefore,

p ď
ÿ

BPAi

PrrB is sampled by Corpiqs ¨ |B X Pr|τ2

“
ÿ

BPAi

1

|Ai|
¨ |B X Pr|τ2

ď
ÿ

BPAi

τ1 ¨ |B X Pr|τ2

“ τ1τ2|Pr XĎAi|

ď cτ1τ2.

Note that we used the assumptions that |Ai| ě 1{τ1, and that π is a c-splitter for A. We

thus have that p ď cτ1τ2, which concludes the proof.

The following lemma concludes the properties of the code that is achieved by the

composition of two codes, when done with the c-splitter that is given by Claim 4.9.

Lemma 4.13. Let n P N. Assume there exists a code C1 of length n over F, with rate ρ1,

which is a pq1, τ1q-query-set-LCC for q1 ě log n. Further assume that there exists a code

C2 of length nτ1 over F, with rate ρ2, which is a pq2, τ2q-LCC. Then, there exists a code

C of length n, with rate ρ1 ` ρ2 ´ 1, which is a pq1q2, 2eq1τ1τ2q-LCC.

Proof. As C1 is a pq1, τ1q-query-set-LCC, there exists an n-query-set A “ tA1, . . . , Anu in

which for every i, |Ai| ě 1{τ1 and for every B P Ai, |B| ď q1. In particular, there exists

a query set A1 “ tA11, . . . , A1nu in which every A1i is of size exactly 1{τ1 (which is achieved

by, for each Ai, arbitrarily removing sets B P Ai until it is of size 1{τ1). By Claim 4.9

invoked with k “ 1{τ1, there exists a partition π of rns, in which every part is of size τ1n,

which is a c-splitter for A1, with c “ 2eq1. We take C “ C1 dπ C2 to be the code with

the claimed properties. Indeed, by Claim 4.11, C is of length n, and has rate at least

ρ1 ` ρ2 ´ 1. Furthermore, by applying Claim 4.12, and using that π is a c-splitter for A1,
we get that C is a pq, τq-LCC for q “ q1q2 and τ “ 2eq1τ1τ2, and the lemma follows.

The following lemma, or more precisely, its proof, composes the distance amplification

procedure. It assumes a family of codes which are LCC, and describes the properties of
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the code that is obtained by an iterative application of the composition, where at each

iteration a code of the family is composed with the “current” code.

Lemma 4.14. Assume there exists a family of codes C “ tCnu over F, in which every

code Cn of length n in the family is a code of rate ρpnq “ 1´rpnq, which is a pqpnq, τpnqq-

query-set-LCC for qpnq ě log n. Then, for every t P N, there exists a code family C 1 “

tpC 1qnu over F which has a code pC 1qn of length n for every n which is a code length in

C, and pC 1qn has the following properties. Define n1 “ n and for i “ 2, . . . , t ` 1 let

ni “ Vτpni´1qni´1WC. Then, pC 1qn has rate ρ1pnq “ 1´
řt
i“1 rpniq, and is a pq1pnq, τ 1pnqq-

LCC for q1pnq “
śt

i“1 qpniq and

τ 1pnq “ p2eqt´1nt`1

n

t´1
ź

i“1

qpniq.

Proof. To show the existence of a code family with the claimed properties, we describe

how for every n that is a length of a code in the family C, a code of the same length, of the

family C 1, can be constructed. Let Cn be a code of length n of the family C. Set n1 “ n

and for i “ 2, . . . , t ` 1, ni “ Vτpni´1qni´1WC , as defined in the claim. We construct a

sequence of codes C 11, . . . , C
1
t, where for each i P rts, C 1i is a code of length ni and rate

ρ1i, which is a pq1i, τ
1
iq-LCC. We start by setting C 1t “ Cnt , and for i “ t ´ 1, . . . , 1, we

take C 1i to be a code which is the result of applying Lemma 4.13 on Cni and C 1i`1. Note

that Cni is a pqpniq, τpniqq-query-set-LCC and C 1i`1 is a code of length ni`1 ě τpniqni,

and so in particular Cni is indeed of smoothness ni`1{ni, as required for the lemma to be

applicable. From Lemma 4.13 it follows that C 1i is a code of rate

ρ1i “ ρpniq ` ρ
1
i`1 ´ 1 “ ρ1i`1 ´ rpniq

which is a pq1i, τ
1
iq-LCC for

q1i “ qpniqq
1
i`1,

τ 1i “ 2eqpniqτ
1
i`1

ni`1

ni
.

Recall that C 1t “ Cnt and so ρ1t “ 1´rpntq, q
1
t “ qpntq and τ 1t “ τpntq. It follows inductively

that for every i P rts,

ρ1i “ 1´
t
ÿ

j“i

rpnjq,

q1i “
t
ź

j“i

qpnjq,
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and

τ 1i “ p2eq
t´i

˜

t
ź

j“i

nj`1

nj

¸˜

t´1
ź

j“i

qpnjq

¸

“ p2eqt´i
nt`1

ni

˜

t´1
ź

j“i

qpnjq

¸

.

We set C 11, which is indeed a code of length n, to be the code pC 1qn of C 1, and from

the account given above it follows that its rate, query complexity and smoothness are as

stated, i.e., that q11 “ q1pnq, ρ11 “ ρ1pnq and τ 11 “ τ 1pnq. We thus have that C 1 is a family

of codes with rate at least ρpnq that are pqpnq, τpnqq-LCC, and the lemma follows.

4.4 Deriving the Corollaries

In this part we deduce two corollaries of our distance amplification procedure that is given

by Lemma 4.14. As a special case of the first corollary, Corollary 4.16, we will have that

if one has a sufficiently dense code family of pqpnq, δpnq, εpnqq-LCC which is of high rate,

meaning that each code has rate ρpnq that approaches 1 “fast enough”, but with δpnq

that is only polynomially small in n, δpnq “ 1{nα, for some constant α P p0, 1q, then

there exists a good family of LCC with query complexity qpnqOplog lognq. In the general

case, a weaker guarantee on δpnq can also be handled by Corollary 4.16, meaning that a

sub-polynomial δpnq can also be amplified. More precisely, Corollary 4.16 will state that

if δpnq “ 1{n1´1{gpnq for a (non-decreasing) function gpnq, then a family of good LCC

can be constructed, with query complexity qpnqOpgpnq log lognq. The requirement of the rate

function ρpnq, which we described as approaching 1 “fast enough”, in more detail comes

down to the requirement that ρpnq ě 1´ 1{pgpnqpln lnnq2q.

The second corollary, Corollary 4.19, addresses the case that the family of pqpnq, δpnq, εpnqq-

LCC one starts with is of a much smaller rate, either of a constant rate or of a vanishing

rate of p1{ ln lnnqh for some constant h. In the case that δpnq “ 1{nα for some constant

α P p0, 1q and ρpnq ě p1{ ln lnnqh, as a special case Corollary 4.19 we will have that

there exists a family of good LCC with query complexity qpnqpolyplog lognq. Here too, sub-

polynomial δpnq can also handled by the corollary, as in a more general case, it is shown

by Corollary 4.19 that if δpnq “ 1{n1´1{gpnq for a non-decreasing gpnq ď log n, and if ρpnq

is at least p1{ ln lnnqh for some constant h, then a family of good LCC can be constructed,

with query complexity qpnqgpnqpolyplog lognq. The precise statement Corollary 4.19 is more

generally stated and handles a few more cases that may be of interest.

We remark that while in any case that Corollary 4.16 can be applied so can Corol-

lary 4.19 be used, the reason that we state both corollaries is that if one starts with
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an LCC that satisfies the requirement of Corollary 4.16 then using it, rather than using

Corollary 4.19, would result in a better bound on the resulted query complexity. We

further remark that the proof for Corollary 4.19 builds on Corollary 4.16. Lastly, another

reason that Corollary 4.16 is of interest is that it has an analogous corollary in the case of

LDC (see Corollary 4.17), unlike Corollary 4.19 (whose proof relies on properties specific

to LCC).

4.4.1 From high rate and low distance LCC to good LCC

To prove the first corollary, we will need the following lemma which states that any

family of pq, τq-LCC with constant rate can be converted to a family of good LCC by

paying a multiplicative factor of polypτnq in query complexity. This lemma follows from

the AEL distance amplification procedure [AL96, AEL95] and from the adaptation of it

by [KMRS17] for LDC and LCC. To derive this lemma with certain parameters, some

adaptations to these techniques are needed, and so we provide a full proof for Lemma 4.15

in the appendix (Section A), for completeness.

Lemma 4.15. Let C “ tCnu be a code family over F in which every code Cn is a

pqpnq, τpnqq-LCC with rate ρpnq “ Ωp1q. Then, there exists a code family C 1 “ tpC 1qnu

over F which has a code pC 1qn of length n for every Cn in C, such that pC 1qn is a

pq1pnq, δ1pnq, εq-LCC for q1pnq “ Opqpnqpnτpnqq2q, δ1pnq “ Ωp1q and ε “ 1{3, with rate

ρ1pnq “ Ωp1q.

We now state our first corollary.

Corollary 4.16. Let qpnq ě log n9 and gpnq ą 1 be two non-decreasing functions. Assume

there exists a family of codes C “ tCnu over F that is pn0, c, dq-dense, in which every code

Cn of length n has rate

ρpnq ě 1´
1

gpnqpln lnnq2
,

and either Cn is a pqpnq, δpnq, εpnqq-LCC, for εpnq ă 1 ´ 1{|F| and δpnq “ 1{n1´1{gpnq,

or it is a pqpnq, τpnqq-query-set-LCC, for τpnq “ qpnq{n1{gpnq. Then, there exists a family

of codes C 1 “ tpC 1qnu over F that is pn0, c, dq-dense, which is a family of good LCC with

query complexity qnewpnq “ qpnqOpgpnq ln lnnq.

Note that Corollary 4.16 allows for the code family C in the hypothesis to be one of

two types, either a family of pq, δ, εq-LCC or a family of pq, τq-query-set-LCC. For the

9We remark that while we assume for simplicity that qpnq ě log n, by the Katz-Trevisan bound

(instantiated for the case of rate and distance as specified by the corollary), lifting this assumption would

not yield an improvement in the obtained query complexity in any case.
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proof, what we actually need is that C is of the second type. However, if one starts with a

family C which is known to be of the first (more standard) type, with the specified δpnq,

by Claim 4.7 it will follow that C is a family of query-set-LCC with the same smoothness

τpnq that is stated in the corollary in the second case. The corollary explicitly allows both

of the types because it is also possible that the base code is already known to be a query-

set-LCC, as would be the case in the proof of Corollary 4.19, which uses Corollary 4.16.

It is preferable to avoid going back and forth between the types, as this has some cost in

the resulted parameters.

Before giving the proof for Corollary 4.16, we state a corollary analogous to it, that

holds in the case of LDC. The proof for this corollary is straightforward given the result

regarding LCC, and follows the same lines.10

Corollary 4.17. Let npkq ą k, qpkq ě log npkq and gpkq ą 1 be non-decreasing functions.

Assume there exists a code-encoding family C “ tpCk,Enckqu over F that is pk0, c, dq-

dense, in which every code Ck of dimension k has rate

ρpkq ě 1´
1

gpkqpln ln kq2
ą

1

2
,

and either pCk,Enckq is a pqpkq, δpkq, εpkqq-LDC, for εpkq ă 1´1{|F| and δpkq “ 1{npkq1´1{gpkq,

or it is a pqpkq, τpkqq-query-set-LDC, for τpkq “ qpkq{npkq1{gpkq. Then, there exists a code-

encoding family C 1 “ tppC 1qk, pEnc1qkqu over F that is pk0, c, dq-dense, which is a family of

good LDC with query complexity qnewpkq “ qpkqOpgpkq ln ln kq.

Proof of Corollary 4.16. We argue that a code family of the claimed properties can be

constructed, and specifically we will show such a code family that has a code of length

n for every n which is a code length of the family C. The underlying idea of the proof

consists of applying, for every n which is a code length in C, Lemma 4.14 with the family

C and some appropriate t P N which depends on n, to get that there exists a code family

C 1 in which pC 1qn is a code of length n with desired properties.

With that plan in mind, let Cn be a code in C of length n. First, note that either

by assumption, or by Claim 4.7 (if Cn is given as a pqpnq, δpnq, εpnqq-LCC), we have that

Cn is a pqpnq, τpnqq-query-set-LCC, as required by the hypothesis of Lemma 4.14. Now,

we invoke Lemma 4.14 with the code family C and with t to be chosen later, to get a

code family C 1 and a code pC 1qn within it. We follow the notation of Lemma 4.14 and set

n1 “ n and for i “ 2, . . . , t` 1, ni “ Vτpni´1qni´1WC . We have that

ni “ Vqpni´1qn
p1´1{gpni´1qq

i´1 WC , (4.1)

10A separate proof will appear in the full version of this paper.
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and if we set c1 “ n0 ` c, as C is pn0, c, dq-dense,

ni ď c1 ¨ qpni´1qn
p1´1{gpni´1qq

i´1 .

Using the facts that both qpnq and gpnq are non-decreasing, it follows that

ni ď pc
1
¨ qpnqq

ři´1
j“0pp1´1{gpnqqjn

śi´1
j“1p1´1{gpnjqq,

and as
ři´1
j“0p1´ 1{gpnqqj ď gpnq, we get that

ni ď pc
1
¨ qpnqqgpnqn

śi´1
j“1p1´1{gpnjqq.

We need to choose t so that nt`1 is minimized (as nt`1 affects the resulted smoothness).

We choose t to be the minimal integer satisfying

n
śt
j“1p1´1{gpnjqq ď epc1 ¨ qpnqqgpnq.

Note that this choice implies

nt`1 ď epc1 ¨ qpnqq2gpnq (4.2)

and

n
śt´1
j“1p1´1{gpnjqq ą epc1 ¨ qpnqqgpnq. (4.3)

In order to verify that with that choice of t, pC 1qn has the claimed properties, we need

to bound from above the value of t which attains this (this would also imply that our

choice of t is well defined, i.e., that such t exists). For any t1 ě gpnq ln lnn, we have that

n
śt1

j“1p1´1{gpnjqq ď np1´1{gpnqqt
1

ď ne
´t1{gpnq

ď ne
´pgpnq ln lnnq{gpnq

“ e

ď epc1 ¨ qpnqqgpnq,

where the second inequality follows from that ex ě 1 ` x for any x P R. Therefore, we

have that t ď gpnq ln lnn. By the conclusion of Lemma 4.14, pC 1qn is a code with rate

ρ1pnq ě 1´
t
ÿ

i“1

1

gpniqpln lnniq2
,

which is a pq1pnq, τ 1pnqq-LCC, for

q1pnq ď qpnqt “ qpnqOpgpnq ln lnnq,
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and

τ 1pnq “ p2eqt´1
¨
nt`1

n
¨

t´1
ź

i“1

qpniq

ď qpnqOpgpnq ln lnnq
¨
nt`1

n

ď qpnqOpgpnq ln lnnq
¨

1

n
,

where the last inequality follows as qpnq ě log n and by Equation (4.2).

If it is the case that ρ1pnq “ Ωp1q we can conclude the proof by invoking Lemma 4.15.

Taking the set of codes pC 1qn (for every n a code length in C) to be the code family

of the hypothesis of Lemma 4.15, we would get that there exists a code family C2 “

tpC2qnu which satisfies the following. C2 is a family of codes in which every pC2qn is

a pq2pnq, δ2pnq, εq-LCC, for q2pnq “ Opq1pnqpnτ 1pnqq2q “ qpnqOpgpnq ln lnnq, δ2pnq “ Ωp1q,

and ε “ 1{3. Thus, C2 is a family of a good LCC with query complexity qnewpnq “

qpnqOpgpnq log lognq, the argued query complexity. Moreover, this code family has the same

code lengths as C, and is thus pn0, c, dq-dense as well.

It only remains to show that ρ1pnq “ Ωp1q. To bound ρ1pnq from below we need

to bound
řt
i“1

1
gpniqpln lnniq2

from above. First, we define n̄1 “ n and for i ą 1, n̄i “

n̄
1´1{gpni´1q

i´1 . As by Equation (4.1), ni ě n
1´1{gpni´1q

i´1 , it follows by induction that ni ě n̄i,

and note that n̄i “ n
śi´1
j“1p1´1{gpnjqq. We thus have that

t
ÿ

i“1

1

gpniqpln lnniq2
ď

t
ÿ

i“1

1

gpniqpln ln n̄iq2
.

Since

ln ln n̄i “ ln lnn`
i´1
ÿ

j“1

ln

ˆ

1´
1

gpnjq

˙

,

we have that

gpniqpln ln n̄iq ´ gpniqpln ln n̄i`1q “ ´gpniq ln

ˆ

1´
1

gpniq

˙

ě gpniq
1

gpniq

“ 1,
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where we used that x ě lnp1`xq, for every x ą 0. With that, we can deduce the following

1

gpniqpln ln n̄iq2
ď

ż gpniq ln ln n̄i

gpniq ln ln n̄i`1

1

gpniqpln ln n̄iq2
dx

“

ż ln ln n̄i

ln ln n̄i`1

gpniq

gpniqpln ln n̄iq2
dx

ď

ż ln ln n̄i

ln ln n̄i`1

1

x2
dx,

where the last inequality follows from that n̄i`1 ď n̄i. This implies that

t
ÿ

i“1

1

gpniqpln ln n̄iq2
ď

ż ln ln n̄1

ln ln n̄t`1

1

x2
dx

“
ln ln n̄1 ´ ln ln n̄t`1

pln ln n̄1qpln ln n̄t`1q

ď
1

ln ln n̄t`1

.

Furthermore, by Equation (4.3), we have that n̄t ě epc1 ¨ qpnqqgpnq, and so

n̄t`1 “ n̄
1´1{gpntq
t ě epc1 ¨ qpnqqp1´1{gpntqqgpnq.

Moreover, we have that
ˆ

1´
1

gpntq

˙

gpnq “ Ωpgpnqq,

as gpnq is non-decreasing and gpnq ą 1, and so it follows that

ln ln n̄t`1 “ Ωpln ln qpnq ` ln gpnqq.

Therefore,

ρ1pnq ě 1´
1

ln ln n̄t`1

“ 1´O

ˆ

1

ln ln qpnq ` ln gpnq

˙

,

which establishes that indeed ρ1pnq “ Ωp1q, and the claim follows.

4.4.2 From low rate and low distance LCC to good LCC

For the proof of our second corollary we will need the following proposition from [CY21].

This proposition is basically Proposition 4.14 in [CY21] but for pq, τq-query-set-LCC

rather than for a different object11. That the proposition indeed applies to pq, τq-query-

set-LCC is quite immediate with the account given in [CY21].

11“dual SLR” in the terminology of [CY21].
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Proposition 4.18 (Implicit in [CY21]). Let C be a code of length n over F with rate

ρ that is a pq, τq-query-set-LCC. Then, for every ` P N, there exists a code C 1 of length

n1 “ n` with rate 1´ p1´ ρq`, which is a pq1, τq-query-set-LCC for q1 “ q`.

We remark that while the rate of the resulted code of Proposition 4.18 is improved

compared to that of the starting code of the hypothesis, it’s smoothness is quite bad.

Note that this is true even though the smoothness of the obtained code is τ , i.e., the

same as that of the initial code, because the length of the code has increased. Indeed,

even if originally the smoothness of C was the best possible, τ “ Θpq{nq, for ` ą 1

the smoothness of C 1 is, at best, polynomially small in its length. Nonetheless, for our

purposes these codes will do. We point out that while we do not need to use it here,

in [CY21] a procedure that amplifies rate while maintaining the smoothness is given, as

in [CY21] the objective is to show that LCC with vanishing rate that can be as small as

1{
?

log n implies an LCC with constant rate, and for that such a procedure is crucial. In

our case the codes of Proposition 4.18 are satisfactory.

We now state our second corollary.

Corollary 4.19. Let h ě 1 be an arbitrary constant, qpnq ě log n and gpnq P r1, log ns

non-decreasing functions, and ρpnq a non-increasing function, satisfying

1

pln lnnqh
ď ρpnq ď 1´

1

gpnqpln lnnq2

for every n. Assume further that

1

ρpn` 1q
pln gpn` 1q ` ln ln lnpn` 1qq ´

1

ρpnq
pln gpnq ` ln ln lnnq “ O

ˆ

1

log n

˙

.

Assume there exists a family of codes C “ tCnu over F that is pn0, 1, 1q-dense12, in which

every code Cn of length n is a code of rate ρpnq, which is a pqpnq, δpnq, εpnqq-LCC, for

εpnq ă 1´ 1{|F| and

δpnq “
1

n1´1{gpnq
.

Then, there exists a family of codes C 1 “ tpC 1qnu over F, which is a family of good LCC

with query complexity qnewpnq “ qpnqepnq for

epnq “ O

ˆ

1

ρpnq2
pln gpnq ` ln ln lnnq2gpnq ln lnn

˙

.

12Note that if one starts with a code family C that is pn0, c, dq for some constants c, d, then it can be

easily converted to a pn0, 1, 1q-dense family, with a constant multiplicative cost to the rate and with little

affect to the obtained parameters.
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Proof. To show that the family C can be converted to a family of good LCC, the idea

is to apply Corollary 4.16. In order to be able to do so, we first need to show that the

family C can be converted to a family C 1 with high enough rate. We now explain how

such a family C 1 can be constructed. First we define, for every n which is a code length

in C,

`pnq “ 10h
1

ln
´

1
1´ρpnq

¯pln gpnq ` ln ln lnnq, (4.4)

and Npnq “ n`pnq. We have that

`pnq “ Θ

ˆ

1

ρpnq
pln gpnq ` ln ln lnnq

˙

, (4.5)

and per our assumption that ρpnq ď 1´ 1
gpnqpln lnnq2

, it follows that `pnq ą 1, and thus

Npnq ą n. (4.6)

Further note that the function Npnq is strictly increasing, and so it can be seen that there

exists a function pn : N Ñ R which is strictly increasing as well, and which satisfies that

for every n which is a code length in C, pnpNpnqq “ n. Let pn be any such function. Now,

by Claim 4.7 every Cn a code of length n of the family C, is a pqpnq, τpnqq-query-set-LCC

for

τpnq “
qpnq

n1{gpnq
.

For every such Cn, we apply Proposition 4.18 with ` “ `pnq, to get that there exists a code

pC 1qNpnq over F, of length Npnq, with the parameters detailed by the theorem. We define

the code family C 1 to be tpC 1qNpnq | Cn P C and n ě maxpn0, n1qu, for some constant

n1 P N to be chosen later. Note that as the function Npnq is strictly increasing, C 1 has at

most one code of every length. Define for every N P N

g1pNq “ `ppnpNqqgppnpNqq,

ρ1pNq “ 1´ p1´ ρppnpNqqq`ppnpNqq,

q1pNq “ qppnpNqq`ppnpNqq,

τ 1pNq “
q1pNq

N1{g1pNq
.

By Theorem 4.18, every pC 1qN is a code of length N of C 1 with rate ρ1pNq. Further it is
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a pq1pNq, τppnpNqqq-query-set-LCC. We have that

τppnpNqq “
qppnpNqq

pnpNq1{gppnpNqq

“
qppnpNqq

N1{p`ppnpNqqgppnpNqqq

“
qppnpNqq

N1{g1pNq

ď
q1pNq

N1{g1pNq

“ τ 1pNq.

It follows that every pC 1qN is in particular a pq1pNq, τ 1pNqq-query-set-LCC.

With the family C 1 at hand we wish to invoke Corollary 4.16, but before we can do

that, we need to verify that it satisfies the corollary’s hypotheses. First, we need to verify

that for every code length N which is a code length of C 1, q1pNq ě logN , and indeed

as q1pNq “ qppnpNqq`ppnpNqq, logN “ `ppnpNqq log pnpNq and qppnpNqq ě log pnpNq this holds

for every pnpNq ě 4. Secondly, we need to verify that 1{p1 ´ ρ1pNqq ě g1pNqpln lnNq2

for every N which is a code length of C 1. Equivalently, we need to verify that for every

n ě n1 a code length of C, 1{p1´ ρ1pNpnqqq ě g1pNpnqqpln lnNpnqq2. Indeed, on the one

hand we have that

1

1´ ρ1pNpnqq
“

1

p1´ ρpnqq`pnq

“
1

p1´ ρpnqq
10h 1

lnp 1
1´ρpnqq

pln gpnq`ln ln lnnq

“ pgpnq ln lnnq10h.

On the other hand,

g1pNpnqqpln lnNpnqq2 “ `pnqgpnqpln lnn` ln `pnqq2

ď `pnq2gpnqpln lnnq2

“

¨

˝10h
1

ln
´

1
1´ρpnq

¯pln gpnq ` ln ln lnnq

˛

‚

2

gpnqpln lnnq2

ď

ˆ

10h
1

lnp1` ρpnqq

˙2

gpnq3pln lnnq4

“ O

ˆ

1

ρpnq2
gpnq3pln lnnq4

˙

“ Opgpnq3pln lnnq2h`4
q,
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where the penultimate equality holds since lnp1 ` ρpnqq “ Ωpρpnqq (as ρpnq is non-

increasing), and the last equality is due to the hypothesis ρpnq ě 1{pln lnnqh. Thus

we have that
1

1´ ρ1pNpnqq
“ ω

`

g1pNpnqqpln lnNpnqq2
˘

.

We therefore set n1 to be the minimal satisfying that for every n ě n1, 1{p1´ρ1pNpnqqq ě

g1pNpnqqpln lnNpnqq2, and n1 ě 4. Note that n1 is some (well defined) constant. With

that choice we indeed have that for every pC 1qN P C 1, 1{p1´ ρ1pNqq ě g1pNqpln lnNq2.

Another thing that we need to verify is that for some constants, the family C 1 is

pn10, c
1, d1q-dense, and observe that this holds if VNWC1{N “ Op1q. We have that for every

N ě Npmaxpn0, n1qq, VNWC1 ď NprpnpNqsq. This holds since, notice, pnpNq is defined for

every N P N, and we have that rpnpNqs P N and pnpNq ě n0 (as N ě Npn0q), and so by the

fact that C is pn0, 1, 1q-dense, rpnpNqs is a code length of C. Thus, NprpnpNqsq is a code

length of C 1 which satisfies NprpnpNqsq ě N which shows that indeed VNWC1 ď NprpnpNqsq.

Furthermore, as Npnq is increasing, NprpnpNqsq ď NppnpNq`1q, and therefore it is enough

to verify that
Npn` 1q

Npnq
“ Op1q. (4.7)

We have that

Npn` 1q

Npnq
“
pn` 1q`pn`1q

n`pnq

“ n`pn`1q´`pnq

ˆ

1`
1

n

˙`pn`1q

,

and so for Equation (4.7) to hold it must be the case that `pn ` 1q ´ `pnq “ Op1{log nq

and `pn` 1q “ Opnq. Indeed, it follows by Equation (4.4) that

`pn` 1q ´ `pnq “ O

ˆ

1

ρpn` 1q
pln gpn` 1q ` ln ln lnpn` 1qq ´

1

ρpnq
pln gpnq ` ln ln lnnq

˙

“ O

ˆ

1

log n

˙

,

the second equality holds per our assumption regarding gpnq and ρpnq. By Equation (4.5),

and by the assumptions gpnq ď log n, ρpnq ě 1{pln lnnqh, it follows that `pnq “ opnq. We

can thus conclude that Equation (4.7) holds and that C 1 is pn10, c
1, d1q-dense for some

constants.

After verifying that C 1 withstands its requirements, we can now apply Corollary 4.16.

We get that there exists a code family C2 “ tpC2qnu over F, in which every code is a good
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LCC, with query complexity

qnewpNq “ q1pNqOpg
1pNq ln lnNq

“
`

qppnpNqq`ppnpNqq
˘Op`ppnpNqqgppnpNqq ln lnNq

“ qppnpNqqOp`ppnpNqq
2gppnpNqq ln lnNq

ď qpNqOp`pNq
2gpNq ln lnNq

“ qpNq
O
´

1
ρpNq2

pln gpNq`ln ln lnNq2gpNq ln lnN
¯

,

where the first inequality is justified by Equation (4.6), and the last equality is due to

Equation (4.5). Thus, C2 is a family with the desired query complexity, from which the

claim follows.

5 LDC are not LCC via random weighted tensor

codes

In this section we prove Theorem 2.2. We show that there exist linear codes which are

LDC but not LCC, in the following strong sense. What we prove is that not only are

these codes LDC while not being LCC even for a weak requirement of very high query

complexity and very low correction radius, moreover, this negative property that local

correction with such parameters is impossible is maintained in any puncturing of the

code. We will be able to show this to be the case because in the codes that we construct

the uncorrectable coordinates are crucial for the distance of the code, and in particular

for the LDC feature of the code, thus any attempt to remove them while keeping these

properties, fails.

5.1 Preliminaries for this section

Notation. In what follows we will sometimes need to conveniently convert a pair of

indices i1 P rm1s, i2 P rm2s to an index i P rm1m2s, and so we set the following convention.

Where m1,m2 P N are clear from context and i1 P rm1s, i2 P rm2s, we denote by pi1; i2q

the index pi2 ´ 1qm1 ` i1 P rm1m2s.

Definition 5.1. For a code C of length n over F, we say that a coordinate j P rns is

trivial (in C) if for every c P C, cj “ 0.

We define the operation of puncturing of codes.
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Definition 5.2. Let C be a code of length n and dimension k over F and let J Ď rns.

For every codeword c P C, we define the vector py1, . . . , ynq P Fn, where yj “ cj if j R J

and yj “ 0 otherwise, to be the J-puncturing of c, and we denote it by czJ . We define

tczJ | c P Cu to be the J-punctured code C, and denote it by CzJ . Note that CzJ is

indeed a code. Furthermore, given an encoding Enc of C, we define EnczJ : Fk Ñ Fn by

EnczJpxq “ EncpxqzJ for all x P Fk.

We have the following easy claim regarding the puncturing and the dual operators.

Claim 5.3. Let J Ď rns, C a code of length n, and CzJ its J-punctured code. Then, for

every w P pCzJq
K, wzJ P C

K.

Proof. Let w P pCzJq
K. We have that for all c P C, xczJ , wy “ 0. As xczJ , wy “ xc, wzJy,

we have that for all c P C, xc, wzJy “ 0, and so wzJ P C
K.

5.2 A necessary condition for local correction

We start this section by stating a necessary condition for a coordinate of a code to be

locally correctable. Using this condition we will be able to prove that some coordinates

of a code are not locally correctable. The condition is a certain property of the dual code.

We will call coordinates satisfying the property dual correctable coordinates.

Claim 5.4. Let C be a code of length n over F, j P rns and Q Ď rns a set of size q,

satisfying j R Q. If Q determines j in C, then there exists some w P pCKqďq`1 such that

j P supppwq Ď QY tju.

Proof. As Q determines j in C, there exists a function f : F|Q| Ñ F such that for every

c P C, cj “ fpcQq. As C is a vector space, it readily follows that f can be taken to be a

linear map. Therefore, there exists a vector w1 P Fn such that for every c P C, xw1, cy “ cj,

and supppw1q “ Q. It follows that if we take w “ w1 ´ ej, we have that for every c P C,

xw, cy “ 0, and so w P CK and j P supppwq Ď QY tju, as required.

Definition 5.5. Let C be a code of length n over F, and let j P rns. We say that j is pq, δq-

dual correctable coordinate in C if for m ě δn{q there exist some w1, . . . , wm P pC
Kqďq`1,

with the following guarantee. For every i P rms, j P supppwiq and for every i, i1 P rms,

i ‰ i1, supppwiq X supppwi1q “ tju.

Claim 5.6. Let C be a code of length n over F and let j P rns. If j is a pq, δ, εq-correctable

coordinate in C for ε ă 1´ 1{|F|, then j is a pq, δq-dual correctable coordinate.
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Proof. First, note that there exists a set Aj “ tB1, . . . , Bmu for m ě δn{q such that for

every i ‰ i1, Bi XBi1 “ H, and for every i P rms, |Bi| ď q, j R Bi, and Bi determines j in

C. This is exactly proven by the argument in the proof of Claim 4.7, and simply it follows

by taking Aj to be the set Aj constructed in that proof. Note that while Claim 4.7 is

stated for codes which are pq, δ, εq-LCC, the construction of the set Aj in the proof only

uses the property that j is a pq, δ, εq-locally-correctable coordinate in C.

Secondly, for each i P rms we apply Claim 5.4 with respect to the set Bi, to conclude

the existence of some wi P pC
Kqďq`1 such that j P supppwiq Ď Bi Y tju. It immediately

follows that j is a pq, δq-dual correctable coordinate in C.

5.3 Weighted tensors

We turn next to define an operation to which we call the weighted tensor of two codes

and state several of its properties. The codes of Theorem 2.2 will be constructed using

a weighted tensor. This operation gets two input codes (more precisely, two codes and

respective encodings), and a matrix of non-zero entries, and results in a new code. To

define the result of the operation, we will define a new encoding function which depends

on the encodings of the two input codes and on the weight matrix. We will then take the

resulted code to be the image of that encoding.

We thus begin by describing the encoding function of the weighted tensor.

Inputs. Let

• Enc1 : Fk1 Ñ Fn1 be a linear map.

• Enc2 : Fk2 Ñ Fn2 be a linear map.

• B P Fn1ˆk2 be a matrix with non-zero entries.

We define the following function Enc : Fk1k2 Ñ Fn1n2 that acts as follows on input

x P Fk1k2 .

Action of Enc on x.

1. Identify x with a matrix X P Fk1ˆk2 where for i1 P rk1s, i2 P rk2s, Xi1,i2 “ xpi1;i2q.

2. Use Enc1 to encode each column of X and set X 1 to be the resulted matrix, X 1 P

Fn1ˆk2 .
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3. For each j1 P rn1s, i2 P rk2s multiply the element X 1
j1,i2

by Bj1,i2 and set X2 to be

the resulted matrix.

4. Use Enc2 to encode each row of X2 and set X3 to be the resulted matrix, X3 P

Fn1ˆn2 .

5. Output x1 P Fn1n2 where for j1 P rn1s, j2 P rn2s, x
1
pj1;j2q

“ X3
j1,j2

.

Properties of Enc. We turn to state a few properties of the function Enc.

Claim 5.7. If Enc1 and Enc2 are injective then so is Enc.

Proof. Follows trivially as B is a matrix with no zero entries.

Claim 5.8. Let A1 P Fn1ˆk1 and A2 P Fn2ˆk2 be the generating matrices of Enc1 and Enc2,

respectively. Then, for every x P Fk1k2, Encpxq “ Ax, where A P Fn1n2ˆk1k2 is the matrix

where for i1 P rk1s, i2 P rk2s, j1 P rn1s, j2 P rn2s,

Apj1;j2q,pi1;i2q “ A1
j1,i1

A2
j2,i2

Bj1,i2 . (5.1)

In particular, Enc is a linear map.

Proof. Let x P Fk1k2 , and let X 1, X2, X3, x1 be as in the encoding described above. As

Encpxq “ x1, we need to show that Ax “ x1. Let j1 P rn1s, j2 P rn2s. For every i2 P rk2s,

the i2-nd column of X 1 is given by A1Xei2 since X 1 is the result of applying Enc1 on each

column of X. Therefore, for i2 P rk2s, we have that

X2
j1,i2

“ pA1Xei2qj1Bj1,i2 “
ÿ

i1Prk1s

A1
j1,i1

Xi1,i2Bj1,i2 , (5.2)

as X2 is the result of multiplying X 1 and B entry-wise. For j1 P rn1s, the j1-st row of X3

is given by pA2pX2qTej1q
T, since X3 is the result of applying Enc2 to each row of X2, and

so

x1pj1;j2q
“ X3

j1,j2

“ pA2
pX2

q
Tej1qj2

“
ÿ

i2Prk2s

A2
j2,i2
ppX2

q
Tej1qi2

“
ÿ

i2Prk2s

A2
j2,i2

X2
j1,i2

.
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Therefore, by Equation (5.2) and Equation (5.1),

x1pj1;j2q
“

ÿ

i2Prk2s

A2
j2,i2

ÿ

i1Prk1s

A1
j1,i1

Xi1,i2Bj1,i2

“
ÿ

i1Prk1s
i2Prk2s

Apj1;j2q,pi1;i2qXi1,i2

“ pAxqpj1;j2q.

Thus Ax “ x1, as required.

The weighted tensor operation. We can now define the weighted tensor operation.

Definition 5.9. Let Enc1, Enc2, B and Enc be as above. Let C1 be a code of length n1 and

dimension k1 over F such that Enc1 is an encoding of it, and let C2 be a code of length n2

and dimension k2 over F such that Enc2 is an encoding of it. Let C be the image of Enc.

We define the B-weighted tensor of pC1,Enc1q and pC2,Enc2q to be the pair pC,Encq, and

denote pC,Encq “ pC1,Enc1q bB pC2,Enc2q.

Claim 5.10. Let pC,Encq “ pC1,Enc1qbB pC2,Enc2q. Then C is a code of length n “ n1n2

and dimension k “ k1k2 over F, and Enc is an encoding of it.

Proof. Follows immediately by the definition of Enc, and since Enc is injective by Claim 5.7,

linear by Claim 5.8, and by the fact that C is defined to be its image.

5.4 Local decodability of weighted tensors

In this part we show that the weighted tensor of two LDC is an LDC with comparable

parameters, regardless of the weight matrix.

Claim 5.11. Let pC1,Enc1q be a pq1, δ1, ε1q-LDC, where C1 is a code of length n1 and

dimension k1 over F. Let pC2,Enc2q be a pq2, δ2, ε2q-LDC, where C2 is a code of length

n2 and dimension k2 over F, and let B P Fn1ˆk2 be a matrix with no zero entries. Then,

pC,Encq “ pC1,Enc1q bB pC2,Enc2q is a pq1q2, δ1δ2, 1´ p1´ ε1qp1´ ε2q
q1q-LDC.

Proof. Let Dec1 be a decoder promised by the fact that pC1,Enc1q is a pq1, δ1, ε1q-LDC

and let Dec2 be a decoder promised by the fact that pC2,Enc2q is a pq2, δ2, ε2q-LDC. To

show that pC,Encq is a pq1q2, δ1δ2, p1´ ε1qp1´ ε2q
q1q-LDC, we describe a decoder Dec for

it. For every i “ pi1; i2q, i1 P rk1s, i2 P rk2s, Dec acts as follows on input i and oracle

access to z P Fn1n2 .
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1. Identify z with a matrix Z P Fn1ˆn2 where for j1 P rn1s, j2 P rn2s, Zj1,j2 “ zpj1;j2q.

2. Simulate Dec1pi1q. Instead of giving Dec1pi1q direct oracle access to a word y P Fn1

do the following. For every index j1 P rn1s that Dec1pi1q needs to query:

(a) Simulate Dec2pi2q with oracle access to the j1-st row of Z, Zj1 .

(b) Divide the result of Dec2pi2q by Bj1,i2 P F and feed it to Dec1.13

3. Output the result of Dec1pi1q.

We turn to analyze the above decoder. First, it is immediate that given that Dec1 and

Dec2 are non-adaptive, so is Dec. Secondly, it is also immediate that Dec makes at most

q1q2 queries in any case. Thirdly, we need to show that the output of Decpiq is correct

with probability at least p1 ´ ε1qp1 ´ ε2q
q1 . Towards that, let z P Fn1n2 be such that

distpEncpxq, zq ď δ1δ2n1n2 for some x P Fk1k2 and assume that Decpiq is run with oracle

access to z. By the bound on distpEncpxq, zq, it follows that at most δ1n1 rows of Z have

more than δ2n2 erroneous entries, i.e., entries pj1, j2q such that Zj1,j2 ‰ Encpxqpj1;j2q. Let

E Ď rn1s be the set of indices of these “bad” rows.

Recall that in the definition of Enc, x1 “ Encpxq corresponds to a matrix X3, and the

rows of X3 are codewords of C2 as X3 is the result of applying Enc2 on every row of X2.

We thus have that for every j1 R E, it holds that Dec2pi2q, when run with oracle access

to Zj1 , outputs X2
j1,i2

with probability at least p1 ´ ε2q. Further recall that the matrix

X2 is the result of multiplying, entry-wise, a matrix X 1 with the values of B, and the

matrix X 1 is the result of applying Enc1 on each column of the matrix X that corresponds

to x. Let p be the probability of the event that for every index j1 R E which Decpi1q

requests to query it is fed with X 1
j1,i2

. Conditioned on this event, Decpi1q outputs Xi1,i2

with probability at least 1 ´ ε1.14 It follows that in general, Decpi1q outputs Xi1,i2 with

probability at least pp1´ ε1q.

It only remains to bound p from below. Clearly, for every index j1 R E which Dec1pi1q

requests to query, it is fed by Dec with X 1
j1,i2

if and only if Dec2pi2q with oracle access to

Zj1 outputs X2
j1,i2

, as Dec divides that result by the same weight Bj1,i2 which is used by

the encoding to multiply X 1
j1,i2

. As mentioned, the probability for the output of Dec2pi2q

13This can be thought of as giving Dec1pi1q oracle access to a “virtual” word, i.e., a word Y P Fn1

which is a random variable that satisfies Yj1 “ Dec
Zj1
2 pi2q{Bj1,i2 for every index j1 P rn1s.

14This holds as conditioned on the described event, the situation is equivalent to the case that Dec1

was given direct oracle access to a string Y P Fn1 which satisfies that for every j1 R E, Yj1 “ Enc1pmqj1
(in our case m is the i2-nd column of X 1) and for j1 P E, Yj1 can have any value and may depend on the

random choices of Dec1. We have that PrrDecY1 pi1q “ mi1s “
ř

sPF|E| PrrYE “ ssPrrDecY1 pi1q “ mi1 |

YE “ ss ě
ř

sPF|E| PrrYE “ ssp1´ ε1q “ 1´ ε1.
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to satisfy this is at least 1´ ε2. Thus, as Dec1 makes at most q1 queries and as different

calls to Dec2 are independent, the probability p that all the queries made by Dec1 to

indices not in E are met with the correct values of X 1 satisfies p ě p1 ´ ε2q
q1 , and so it

follows that Dec1 outputs Xi1,i2 with probability at least p1´ ε1qp1´ ε2q
q1 . As the output

of Dec is equal to the result of the simulation of Dec1pi1q and as Xi1,i2 “ xpi1;i2q “ xi, this

shows that Decpiq is correct with the stated probability and the claim follows.

5.5 Local correctablity of random weighted tensors

In this part we show that the weighted tensor of two codes, when performed with a

randomly chosen weight matrix is, with high probability, not locally correctable. In

particular, we show that a subset of the coordinates cannot be locally corrected even with

a small correction radius guarantee, and cannot be removed from the code either if its

decodablity is to be preserved.

Let pC1,Enc1q be a pq1, δ1, ε1q-LDC for a code C1 of length n1 and dimension k1 over

F and ε1 ă 1´ 1{|F|. Let pC2,Enc2q be a pq2, δ2, ε2q-LDC for a code C2 of length n2 and

dimension k2 over F and ε2 ă 1 ´ 1{|F|. We assume that C1 and C2 are free of trivial

coordinates.15 Let B P Fn1ˆk2 a random, uniformly and independently sampled, matrix

of non-zero weights. Let pC,Encq “ pC1,Enc1q bB pC2,Enc2q be the B-weighted tensor of

the two codes, and denote by n the length of C and by k its dimension. By Claim 5.10,

n “ n1n2 and k “ k1k2.

We will need the following definition.

Definition 5.12. For j˚1 P rn1s, j
˚
2 P rn2s and q̃ P N, we say that pj˚1 , j

˚
2 q is q̃-possibly

correctable if there exists w P pCKqďq̃`1 such that wpj˚1 ;j˚2 q
‰ 0 and for every j2 P rn2sztj

˚
2 u,

wpj˚1 ;j2q “ 0.

Claim 5.13. For q̃ P N and j P rns, if j “ pj˚1 ; j˚2 q and pj˚1 , j
˚
2 q is not q̃-possibly correctable,

then for every δ ě q̃{n1, j is not a pq̃, δq-dual correctable coordinate of C.

Proof. Let q̃ P N and j P rns be such that j “ pj˚1 ; j˚2 q and pj˚1 , j
˚
2 q is not q̃-possibly cor-

rectable. Assume towards contradiction that j is a pq̃, δq-dual correctable coordinate of C,

for δ ě q̃{n1. Then, there exist w1, . . . , wm P pC
Kqďq̃`1, m ě δn{q̃ ě n2, such that for ev-

ery i P rms, j P supppwiq and for every i, i1 P rms, i ‰ i1, supppwiqX supppwi1q “ tju. Thus,

the sets supppw1qztju, . . . , supppwmqztju are disjoint. Set R “ tpj˚1 ; rq | r P rn2sztj
˚
2 uu.

Since j is not q̃-possibly correctable, the sets RXsupppw1qztju, . . . , RXsupppwmqztju Ď R

are all disjoint and non-empty. Thus, m ď |R| “ n2 ´ 1, in contradiction.

15This assumption is for simplicity, clearly any trivial coordinate can be removed from a code and this

would only improve the parameters of the code.
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We will now describe a set of coordinates which we will argue are not q̃-possibly

correctable, with high probability over the choice of B. We show this to be the case

for every coordinate pj1; j2q such that j1 P rn1s, and such that j2 is in some subset

I Ď rn2s. Let A1, A2 and A denote the matrices that correspond to Enc1, Enc2 and

Enc, respectively. Let t ă k2 be a parameter. We write t “ αk2 for α ă 1. Define

I Ď rn2s to be the set of indices of C2 which in Enc2 depend on at least t message bits,

i.e., I “ tj2 P rn2s | |A
2
j2
| ě tu, where |A2

j2
| is the weight of the j2-th row of A2. We set

J “ rn1s ˆ I (5.3)

and

J̄ “ tpj1; j2q | pj1, j2q P Ju,

the corresponding set of coordinates in rns. We will now state a few claims which imply

that, with high probability, over the choice of B, J̄ is a set of coordinates that are not

correctable in C.

Claim 5.14. For pj˚1 , j
˚
2 q P J and q̃ P N, pj˚1 , j

˚
2 q is q̃-possibly correctable with probability

at most
`

n1n2

q̃

˘

|F|q̃{p|F| ´ 1qt, over the choice of B.

Proof. Let pj˚1 , j
˚
2 q P J and q̃ P N. Note that pj˚1 , j

˚
2 q is q̃-possibly correctable if there

exists some w P Fn1n2
ďq̃`1, such that wpj˚1 ;j˚2 q

‰ 0 and wpj˚1 ;j2q “ 0 for every j2 P rn2szj
˚
2 ,

w P CK. Further note that in such a case, we may assume wpj˚1 ;j˚2 q
“ 1 without loss of

generality. We therefore fix w P Fn1n2
ďq̃`1 with the aforementioned properties and consider

the probability that w P CK. Note that w P CK if and only if wTA “ 0, and that wTA “ 0

if and only if for every i1 P rk1s and i2 P rk2s, pw
TAqpi1;i2q “ 0. Hence, we are interested

in the probability, over the choice of B, that pwTAqpi1;i2q “ 0 for specific i1, i2. We fix

i1 P rk1s such that A1
j˚1 ,i1

‰ 0. Note that such i1 exists as C1 is assumed not to have trivial

coordinates. We fix i2 P rk2s such that A2
j˚2 ,i2

‰ 0. There are at least t possible choices of

such i2, since j˚2 P I. We have that

pwTAqpi1;i2q “
ÿ

j1Prn1s

j2Prn2s

wpj1;j2qApj1;j2q,pi1;i2q

“
ÿ

j1Prn1s

j2Prn2s

wpj1;j2qA
1
j1,i1

A2
j2,i2

Bj1,i2

“ wpj˚1 ;j˚2 q
A1
j˚1 ,i1

A2
j˚2 ,i2

Bj˚1 ,i2
`

ÿ

j1Prn1sztj
˚
1 u

j2Prn2s

wpj1;j2qA
1
j1,i1

A2
j2,i2

Bj1,i2 ,

where the second equality is due to Claim 5.8, and the last equality is per our as-

sumption on w. Also by that assumption, and by the choice of i1, i2, we have that
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wpj˚1 ;j˚2 q
A1
j˚1 ,i1

A2
j˚2 ,i2

‰ 0. Further note that Bj˚1 ,i2
P Fzt0u is uniformly chosen and is

independent of the disjoint distribution of tBj1,i2 | j1 P rn1sztj
˚
1 uu, and thus

Pr
B

“

pwTAqpi1;i2q “ 0
‰

ď
1

|F| ´ 1
.

Finally, note that this holds for all i2 for which A2
j˚2 ,i2

‰ 0 – there are at least t such, and

since the weights that correspond to different i2’s are chosen independently, we get that

Pr
B

“

wTA “ 0
‰

ď

ˆ

1

|F| ´ 1

˙t

.

By taking the union bound over all possible choices of w P Fn1n2
ďq̃`1 such that wpj˚1 ;j˚2 q

“ 1, we

get that the probability that pj˚1 , j
˚
2 q is q̃-possibly correctable is at most

`

n1n2

q̃

˘

|F|q̃{p|F|´1qt,

as required.

Claim 5.15. With probability at least 1´ n1n2

`

n1n2

q̃

˘

|F|q̃{p|F| ´ 1qt, over the choice of B,

for all pj˚1 , j
˚
2 q P J , pj˚1 , j

˚
2 q is not q̃-possibly correctable.

Proof. The proof follows from Claim 5.14 by taking the union bound over all possibilities

for pj˚1 , j
˚
2 q P J .

We can now conclude that, with high probability overB, the coordinates corresponding

to J , as defined by Equation (5.3), are not locally correctable. From that it will easily

follow that any puncturing that leaves out such a coordinate (to remain in the code),

remains not an LCC, as we have in the following claim.

Claim 5.16. For q̃ P N, with probability at least 1 ´ n1n2

`

n1n2

q̃

˘

|F|q̃{p|F| ´ 1qt, over the

choice of B, C satisfies the following. Every j P J̄ , j is not pq̃, δ, εq-locally correctable in

C, for any δ ě q̃{n1 and ε ă 1´ 1{|F|.

Proof. Let q̃ P N. By Claim 5.15, with probability at least 1 ´ n1n2

`

n1n2

q̃

˘

|F|q̃{p|F| ´ 1qt,

it is the case that every pj˚1 , j
˚
2 q P J is not q̃-possibly correctable. Assume that this is

indeed the case. Let j P J̄ be such that j “ pj1; j2q for pj1, j2q P J and j R J 1. Per our

assumption, pj1, j2q is not q̃-possible correctable. Assume towards a contradiction that for

δ ě q̃{n1 and ε ă 1´1{|F|, j is pq̃, δ, εq-locally correctable coordinate in C. By Claim 5.6,

it follows that j is a pq̃, δq-dual correctable coordinate of C. As pj1, j2q is not q̃-possibly

correctable in C, by Claim 5.13, this is a contradiction.

In the next claim we show that if the coordinates corresponding to J are removed

from the code, the resulted code is not an LDC (and in particular, not an LCC).

Claim 5.17. Let ∆ be the (non-local) relative distance of CzJ̄ . Then ∆ ă t{k2.
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Proof. Recall that J “ rn1s ˆ I, where I Ď rn2s is the set of coordinates of C2 which

depend on at least t message bits in the encoding Enc2, and that J̄ is the corresponding

subset of rns. One can verify that

pCzJ̄ ,EnczJ̄q “ pC1,Enc1q bB ppC2qzI , pEnc2qzIq.

Let Ã2 denote the matrix that corresponds to pEnc2qzI , and note that Ã2 is achieved by

setting each row j2 P I of A2 to a zero row. By the definition of I, it follows that Ã2 has

less than n2t non-zero entries. Let Ã denote the matrix that corresponds to EnczJ̄ . By

Claim 5.8 we have that

Ãpj1;j2q,pi1;i2q “ A1
j1,i1

Ã2
j2,i2Bj1,i2

for every j1 P rn1s, j2 P rn2s, i1 P rk1s, i2 P rk2s. From that, it follows that Ã has less than

n1k1n2t non-zero entries, and therefore there exists a column of Ã, v P Fn1n2 , which has

less than n1n2t{k2 non-zero entries. As we have that v P CzJ̄ , it follows that ∆ ă t{k2.

We have the following claim to conclude this part.

Claim 5.18. Let pC1,Enc1q be a pq1, δ1, ε1q-LDC of length n1 and dimension k1 over F,

and let pC2,Enc2q be a pq2, δ2, ε2q-LDC of length n2 and dimension k2 over F. Assume that

C1 and C2 have no non-trivial coordinates. Let B P Fn1ˆk2 be a random matrix of non-zero

weights, chosen uniformly and independently, and let pC,Encq “ pC1,Enc1qbB pC2,Enc2q.

For every t ă k2 and q̃, ˜̃q P N, δ ě q̃{n1, δ1 ě t{k2 and ε ă 1 ´ 1{|F|, with probability at

least 1 ´ n1n2

`

n1n2

q̃

˘

|F|q̃{p|F| ´ 1qt over the choice of B, C satisfies the following. There

exists a set J̄ Ď rns such that every j P J̄ is not pq̃, δ, εq-locally correctable in C. Further,

the relative (non-local) distance of CzJ̄ is less than t{k2.

Proof. The proof follows by Claim 5.17 and Claim 5.16.

5.6 Deriving the theorem

We are now ready to derive the main result of this section.

Theorem 5.19. Let pC0,Enc0q be a pq0, δ0, ε0q-LDC for a code C0 of dimension k0 and

length n0 over F for |F| ą 2, such that ε0 ă 1´1{|F|, k1{2
0 ą 10 log n0, and assume that C0

has no trivial coordinates. Then, there exists a pq2
0, δ

2
0, 1´p1´ε0q

q0`1q-LDC16 pC,Encq for

a code C of dimension k “ k2
0 and length n “ n2

0 over F satisfying the following property.

16Note that if pC0,Enc0q has error parameter ε0 ď 1{2 ´ Ωp1q then the error parameter of pC,Encq

can be made to match it by first reducing the error of pC0,Enc0q through repetitions. For example, if

ε0 ď 1{3, a decoder for pC0,Enc0q which makes ` “ Θplog q0q simulations of Dec and outputs the majority

vote can be used to show that pC,Encq is a pOpq0 log q0q
2, δ2

0 , 1{3q-LDC.
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There exists a set J Ď rns of coordinates such that every j P J , j is not pk1{4, k1{4{n1{2, εq-

locally correctable in C, for any ε ă 1 ´ 1{|F|. Moreover, the relative distance of CzJ

is less than 5 logpnq{k1{4 (in particular for any ˜̃q P N and ε ă 1 ´ 1{|F|, CzJ is not a

p˜̃q, 5 logpnq{k1{4, εq-LDC). 17

Proof. Let pC0,Enc0q which is a pq0, δ0, ε0q-LDC for a code C0 of dimension k0 and length

n0 over F, such that ε0 ă 1 ´ 1{|F|. Set C1 “ C2 “ C0, Enc1 “ Enc2 “ Enc0, and

for convenience also set n1 “ n2 “ n0 and k1 “ k2 “ k0. Let B P Fn1ˆk2 be a

matrix of non-zero weights, sampled uniformly and independently at random, and set

pC,Encq “ pC1,Enc1qbB pC2,Enc2q to be the B-weighted tensor of C1 and C2, and denote

its dimension by k and its length by n. By Claim 5.10, k “ k2
0 and n “ n2

0. By Claim 5.11,

pC,Encq is a pq, δ, εq-LDC for q “ q2
0, δ “ δ2

0 and ε “ p1 ´ ε0q
q0`1. Thus, indeed pC,Encq

is an LDC with the claimed properties, for any sampled B.

It remains to show that C satisfies the claimed negative LCC and LDC properties.

Towards this end, set q̃ “
?
k0 “ k1{4 and t “ 10q̃ log n0. Note that t ă k0 as by

assumption k
1{2
0 ą 10 log n0. Further note that with that choice of t we have that

1´ n1n2

ˆ

n1n2

q̃

˙

|F|q̃{p|F| ´ 1qt ą 0.

Therefore, by Claim 5.18, with a probability greater than zero, there exists a set J Ď rns,

satisfying the following. For every

δ ě q̃{n0 “
k1{4

n0

“
k1{4

n1{2
,

ε ă 1´ 1{|F| and j P J , j is not a pq̃, δ, εq-locally correctable coordinate of C. Moreover,

the relative distance of CzJ is less than

t

k0

“
10q̃ log n0

k0

“
5 log n

k1{4
.

By Fact 3.11, this implies that for every encoding Enc1 of CzJ , ε ă 1 ´ 1{|F|, and ˜̃q P N,

(CzJ ,Enc
1
q is not a p˜̃q, 5 log n{k1{4, εq-LDC.

17Clearly the fact that there exist such a set J implies that no puncturing of the code at a set J 1 (
rns can make it a pk1{4,maxpk1{4{n1{2, p5 log nq{k1{4q, εq-LCC. Indeed, if J 1 Ď J then CzJ 1 is not a

pk1{4, p5 log nq{k1{4, εq-LDC, and in particular not an pk1{4,maxpk1{4{n1{2, p5 log nq{k1{4q, εq-LCC, and if

J 1 * J then CzJ 1 is not a pk1{4, k1{4{n1{2, εq-LCC.
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A From smooth LCC to good LCC

In this part we provide a proof for Lemma 4.15.
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Theorem A.1 (The Gilbert-Varshamov bound, [Gil52, Var57]). For any n P N, a field F
of size q, and 0 ď δ ď 1´ 1{q, there exists a code of length n over F with relative distance

at least δ and rate r ě 1´ Hqpδq ´ gpnq, where gpnq “ 2{n.

Definition A.2. A linear subspace L Ď Fn is called a pq, δ, αq-local-amplifier if there

exists a deterministic procedure Cor : rns Ñ F that is given oracle access to z P Fn and

has the following guarantee. For every y P L and z P Fn such that distpz, yq ď δn, Corpiq

outputs yi when given oracle access to z, for at least α-fraction of the indices i P rns.

Furthermore, Cor always makes at most q queries to z.

Claim A.3. For every n P N, F a field, and δ, α P p0, 1q such that δ ď 1{25, there exists

a linear subspace L Ď Fn which is a pq, δ, αq-local-amplifier for q “ 25{pδp1´ αq2q, such

that dimL ě p1´ 2H|F|p5
?
δq ´ 4

?
δp1´ αq{5qn.

Proof. We prove the existence of such a subspace with a probabilistic argument. Set

d “ 5{pp1´αq
?
δq, and let Cd Ď Fd be a code of length d, with relative distance ∆ “ 5

?
δ

and rate r ě 1´H|F|p5
?
δq ´ gpdq where g is as in Theorem A.1. The existence of such a

code Cd follows from Theorem A.1. Let π be a partition of rns into n{d blocks P 1, . . . , P n{d

of size d, chosen uniformly at random. Further let π1 be the fixed partition of rns into n{d

subsequent blocks of size d: π1 “ tp1, . . . , dq, . . . , pn ´ d ` 1, . . . , nqu. We argue that the

following subspace L “ ty P Fn | for every P P π, P 1 P π1, yP P Cd and yP 1 P Cdu is of the

claimed properties, with probability greater than 0. Note that indeed, as L is defined by

at most 2pn{dqp1´ rqd constraints,

dimL ě p2r ´ 1qn “ p1´ 2H|F|p5
?
δq ´ 2gpdqqn

“ p1´ 2H|F|p5
?
δq ´ 4{dqn

“

ˆ

1´ 2H|F|p5
?
δq ´

4

5

?
δp1´ αq

˙

n

To show that L is a pq, δ, αq-local-amplifier, we need to describe a corrector Cor for

it, and towards that we first set up some notation. For every i P rns, Let P 1i denote the

part of π1 which satisfies i P P 1 and let r1i denote the index of i in P 1. Similarly, for

j P rns, let Pj denote the part of π which satisfies j P Pj and let rj denote the index of

j in Pj. On input i P rns, and oracle access to z P Fn, Corpiq acts as follows. For every

j P P 1i “ tj
i
1, . . . , j

i
du, Corpiq queries zPj , finds a word cj P Cd closest to zPj P Fd, and sets

tj “ pzPjqrj ; Corpiq then finds a word c1i P Cd closest to ptji1 , . . . , tjidq P Fd, and outputs

pc1iqr1i .

We inspect the described procedure Cor. Note first that the number of queries Cor

makes is exactly q “ d2 “ 25{pp1´ αq2δq, as required. Secondly, it is immediate that
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with access to z which satisfies distpz, yq ď δn, the output of Corpiq is equal to yi if

distpptji1 , . . . , tjidq, yP
1
i
q ă 1

2
∆d; this, in turn, holds if we have that for less than ∆d{2

indices j P P 1i , distpzPj , yPjq ě ∆d{2. Further note that for every y P L and z P Fn

such that distpz, yq ď δn, it is immediate that for at most a δ{p∆{2q fraction of the parts

P 1, . . . , P n{d of π, it holds that distpzP i , yP iq ě ∆d{2. Therefore, Corpiq always succeeds

on at least an α-fraction of the indices i P rns, if it is the case that the following property

holds: for every set I Ď rn{ds of “bad” parts indices (among P 1, . . . , P n{d),

|I| ď
δ

1
2
∆
¨
n

d
, (A.1)

we have that for less than p1 ´ αqn indices i P rns, at least ∆d{2 of the indices j P P 1i
satisfy j P P t for t P I. We denote by p the probability, over the choice of π, that the

requirement is not met, and we wish to show that it is less than 1.

We thus turn to bound p. We first fix some I Ď rn{ds satisfying Equation (A.1). For

any D Ď rns, the probability that for all j P D, j P P t for t P I, is at most p2δ{∆q|D|. We

have that for every subset of parts B Ď π1, the probability that for all P 1 P B, at least

∆d{2 of the indices j P P 1 satisfy j P P t for t P I, by a union bound over the possible

subsets of size ∆d{2 of each P 1 P B, is at most

ˆ

d
1
2
∆d

˙|B|ˆ
2δ

∆

˙|B|∆d{2

.

Again taking a union bound, this time over the possible subsets B Ď π1, of size p1´αqn{d,

the probability that there exists such a set B of size at least p1´ αqn{d is at most

ˆ

n

p1´ αqn{d

˙ˆ

d
1
2
∆d

˙p1´αqn{dˆ
2δ

∆

˙pp1´αqn{dq 1
2

∆d

.

By taking another union bound, over the possible choices of I, we can bound the proba-

bility that for some set I Ď rn{ks satisfying Equation (A.1), there exists such a set B of

size at least p1´ αqn{d, and get that

p ď

ˆ

n{d

p2δ{∆qn{d

˙ˆ

n{d

p1´ αqn{d

˙ˆ

d
1
2
∆d

˙p1´αqn{dˆ
2δ

∆

˙pp1´αqn{dq∆d{2

.

One can verify that when plugging ∆ “ 5
?
δ and d “ 5{p

?
δp1´ αqq results in that right

hand side is indeed smaller than one, as required.

We the claim, we can now prove Lemma 4.15.
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Proof for Lemma 4.15. Let Cn be a code of the family C. We show that for every such

Cn, there exists a code pC 1qn with the desired properties, and we will finally take the

family C 1 to be tpC 1qnu. By Claim 4.2 used with ε “ 1{3, Cn is a pqpnq, δpnq, 1{3q-

LCC for δpnq “ 1{p3nτpnqq. Let L Ď Fn be a pq2pnq, δ1pnq, αpnqq-local-amplifier, for

αpnq “ 1´ δpnq where δ1pnq is defined to be the maximal value in p0, 1{25s which satisfies

2H|F|p5
a

δ1pnqq ` 4
a

δ1pnqδpnq{5 ď ρpnq{2. (A.2)

One can see that since ρpnq “ Ωp1q, δ1pnq “ Ωp1q. By Claim A.3, for

q2pnq “ 25
25

p1´ αpnqq2δ1pnq

“ 25
25

δpnq2δ1pnq

“ Oppnτpnqq2q,

there exists such a subspace L, satisfying

dimL ě p1´ 2H|F|p5
a

δ1pnqq ´ 4
a

δ1pnqδpnq{5qn ď ρpnqn{2,

by Equation (A.2). We take pC 1qn “ Cn X L to be the code of the claimed properties,

and note that since the co-dimension of pC 1qn is at most p1´ ρpnq ` ρpnq{2qn the rate of

pC 1qn is at least ρpnq{2 “ Ωp1q.

It remains to show that pC 1qn is a pq1pnq, δ1pnq, εq-LCC, and towards that we de-

scribe a corrector Cor1 for it. Let Cor be a corrector for Cn promised by it being a

pqpnq, δpnq, εq-LCC, and let Cor2 be a corrector promised by that L is a pq2pnq, δ1pnq, αpnqq-

local-amplifier. On input i P rns, and oracle access to z P Fn such that distpz, cq ď δ1pnqn

for c P C 1, Cor1piq as follows. Cor1piq simulates Corpiq, and whenever it needs to query zj

for some j P rns, Cor1piq simulates Cor2pjq with access to z, and feeds Corpiq the result.

It is immediate the number of queries that Cor1piq makes is at most qpnq ¨ q2pnq “

Opqpnqpnτpnqq2q. As for the correctness, for any c P L and thus for any c P pC 1qn,

given that distpz, cq ď δ1pnqn, we are promised that for at least an αpnq-fraction of the

indices j P rns, Cor2pjq “ cj, when Cor2pjq is run with oracle access to c. Thus, from

the point of view of the procedure Cor, it is given access to a string z1 which satisfies

distpz1, cq ď p1´αpnqqn “ δpnqn, and thus Corpiq correctly outputs ci with probability at

least 1 ´ ε, by its promise. Thus, Cor1piq also outputs ci with probability at least 1 ´ ε,

as required.
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