
The (im)possibility of simple search-to-decision reductions for

approximate optimization

Alexander Golovnev∗ Siyao Guo† Spencer Peters‡ Noah Stephens-Davidowitz§

Abstract

We study the question of when an approximate search optimization problem is harder than
the associated decision problem. Specifically, we study a natural and quite general model of
black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy
with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or
maximize) a function f : D → R≥0 by making oracle queries to hf : S → R≥0 satisfying

min
x∈S

f(x) ≤ hf (S) ≤ γ ·min
x∈S

f(x) (1)

for some γ ≥ 1 and any subset S in some allowed class of subsets S of the domain D. (When the
goal is to maximize f , hf instead yields an approximation to the maximal value of f over S.)
We show tight upper and lower bounds on the number of queries q needed to find even a γ′-
approximate minimizer (or maximizer) for quite large γ′ in a number of interesting settings, as
follows.

• For arbitrary functions f : {0, 1}n → R≥0, where S contains all subsets of the domain, we
show that no branch-and-bound reduction can achieve γ′ . γn/ log q, while a simple greedy
approach achieves essentially γn/ log q.

• For a large class of MAX-CSPs, where S := {Sw} contains each set of assignments to the
variables induced by a partial assignment w, we show that no branch-and-bound reduction
can do significantly better than essentially a random guess, even when the oracle hf
guarantees an approximation factor of γ ≈ 1 +

√
log(q)/n.

• For the Traveling Salesperson Problem (TSP), where S := {Sp} contains each set of
tours extending a path p, we show that no branch-and-bound reduction can achieve γ′ .
(γ − 1)n/ log q. We also prove a nearly matching upper bound in our model.

These results show an oracle model in which approximate search and decision are strongly
separated. (In particular, our result for TSP can be viewed as a negative answer to a question
posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We
also note two alternative interpretation of our results. First, if we view hf as a data structure,
then our results unconditionally rule out black-box search-to-decision reductions for certain data
structure problems. Second, if we view hf as an efficiently computable heuristic, then our results
show that any reasonably efficient branch-and-bound algorithm requires more guarantees from
its heuristic than simply Eq. (1).

Behind our results is a “useless oracle lemma,” which allows us to argue that under certain
conditions the oracle hf is “useless,” and which might be of independent interest.

∗Georgetown University. Email: alexgolovnev@gmail.com.
†NYU Shanghai. Email: sg191@nyu.edu.
‡Cornell University. Supported in part by the NSF under Grant No. CCF-2122230. Email: sp2473@cornell.edu.
§Cornell University. Supported in part by the NSF under Grant No. CCF-2122230. Email: noahsd@gmail.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 141 (2021)

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Our model . 3
1.3 Our results . 4
1.4 Other interpretations of our model . 6
1.5 Our techniques . 7

2 Preliminaries 8

3 Useless Oracles 9

4 A Generic Optimization Problem 11

5 The Traveling Salesperson Problem 12

6 Constraint Satisfaction Problems 15
6.1 Proof of Theorem 6.1 . 16

ii

1 Introduction

We study branch-and-bound search-to-decision reductions for approximate optimization problems.
These are algorithms that attempt to find an approximate minimizer (or maximizer) of a function
f : D → R≥0 by making oracle queries to an oracle hf that yields an approximation to minx∈S f(x)
(or to maxx∈S f(x)) for certain subsets S ⊆ D.1 In the introduction, we will typically assume that
D = {0, 1}n.

1.1 Background and motivation

To explain our motivation, we first recall that any exact optimization problem comes in two flavors.
The decision problem asks us to compute minx∈{0,1}n f(x) (or to compute the maximum) for some
input objective function f .2 The search problem asks us to find an x ∈ {0, 1}n that optimizes f(x).
In practice, for many problems of interest, search and decision seem to be more-or-less equally
hard, in the sense that the fastest known algorithm for the decision problem effectively already
solves the search problem. In other words, often it seems that the best way to determine whether
something exists is to look for it. (Of course, this is certainly not always the case!)

One can try to formally explain this phenomenon by showing a search-to-decision reduction. In
other words, to show that search and decision are essentially equivalent, we can prove that we can
efficiently solve the search problem using an oracle for the decision problem.

Indeed, there is a well known and very elegant greedy approach to search-to-decision reductions
that works for many exact optimization problems. Specifically, to minimize some function f :

{0, 1}n → R≥0 (perhaps represented as a circuit), one can define fx1 : {0, 1}n−1 → R≥0 for a bit
x1 ∈ {0, 1} to be the function fx1(x′) := f(x1, x

′), i.e., the function f with its first input bit set to
x1. One can then use a decision optimization oracle to find Vx1 := minx′∈{0,1}n−1 fx1(x′). (Here, we
are assuming for simplicity that the decision problem is expressive enough to represent fx1 . More
generally, one can define f0 and f1 to be restrictions of f onto some sets S0, S1 that partition the
domain.) Notice that Vx1 ≤ V1−x1 if and only if there is an x that minimizes f and whose first bit
is x1. We can then repeat the process on fx1 with x1 chosen such that Vx1 is minimal, finding a
second bit x2 ∈ {0, 1} such that there exists a minimizer with first bit x1 and second bit x2, etc.
Eventually, we will have found all of the bits of a minimizer x of f .3

This elegant and natural idea has many applications. Perhaps most importantly, this shows
that if the decision problem of computing the minimal value of a function over subsets of the
domain is solvable in time TD(n), then the search problem of finding a minimizer is solvable in
time TS(n) ≤ O(n) · TD(n), so that the search and decision variants of this problem are equivalent
in quite a strong sense. Indeed, this reduction even shows a type of “instance-wise equivalence,” in

1The name “branch-and-bound reduction” comes from an analogy with branch-and-bound algorithms for optimiza-
tion problems, which are ubiquitous in both theory and practice. (See, e.g., [MJSS16] and the references therein.) In
the branch-and-bound literature, one typically uses some efficiently computable heuristic hf to estimate minx∈S f(x)
in order to find an (exact or approximate) minimizer of f . See Section 1.4.

2Formally, to make this a true decision problem, we should include a threshold r in the input, and the problem
should be to determine whether minx∈{0,1}n f(x) ≤ r. However, these two problems are essentially equivalent, as a
simple binary-search-based reduction shows. We therefore ignore such subtleties.

3For a more concrete example, consider the maximization problem MAX-3-SAT. In this example, the reduction
iteratively finds an assignment (x1, . . . , xn) ∈ {0, 1}n that maximizes the number of satisfied clauses one bit at a
time, using a decision MAX-3-SAT oracle. Specifically, it uses its decision oracle to determine x1 such that such
an assignment exists with first bit x1, then to determine x2 such that such an assignment exists with first two bits
(x1, x2), etc.

1

the sense that it shows that the search problem of minimizing any specific function f is essentially
equivalent to the problem of computing the minimal value of simple restrictions of f . Slight variants
of this simple greedy reduction work for many exact optimization problems of interest, so that one
can conclude that search and decision are essentially equivalent (and even instance-wise equivalent)
for many important optimization problems. (However, Bellare and Goldwasser showed that this is
not always the case by proving that there exist search problems that are not solvable in polynomial
time but whose decision problems are solvable in polynomial time [BG94] (assuming a certain
reasonable complexity-theoretic conjecture).)

It is then natural to ask what happens when we move to approximate optimization problems. In-
deed, Feige first raised the question of whether approximation can be harder than estimation [Fei08],
and Feige and Jozeph later showed that there exist problems for which approximation is harder
than estimation if and only if FP 6= TFNP [FJ15]. Here, we have adopted Feige’s terminology, in
which the task of finding x ∈ {0, 1}n such that f(x) ≤ γminx∈{0,1}n f(x) is called an approximation
problem, while the task of determining y ≥ 0 such that minx∈{0,1}n f(x) ≤ y ≤ γminx∈{0,1}n f(x)
is called an estimation problem. In other words, approximation is the approximate search problem,
and estimation is the approximate decision problem.

In fact, if the estimation problem is NP-complete for some approximation factor γ, then there
is a certain rather weak sense in which approximation is provably equivalent to estimation (where
both problems have the same approximation factor γ). For example, since such problems are
polynomial-time equivalent to various exact optimization problems for which the above search-to-
decision reduction works (e.g., MAX-3-SAT), one can simply combine reductions to and from such an
exact optimization problem together with the search-to-decision reduction described above to reduce
approximation to estimation for any NP-complete approximate optimization problem. However,
this reduction is much less satisfying than the (“greedy”) search-to-decision reduction described
above because, e.g., it can increase the size of the input instance by an arbitrary polynomial and
will not in general preserve properties of the input instance (i.e., it will not prove instance-wise
equivalence).4

What we would really like is a simple reduction from approximation to estimation, that is, a
reduction roughly like the “greedy” search-to-decision reduction for exact optimization described
above. Such a reduction would ideally not increase the size n of the input instance. And, it would
be even better if such a reduction only called its oracle on “subinstances” of the input instance,
again in analogy with the simple greedy reduction. We might even be willing to sacrifice in the
approximation factor in exchange for this simplicity—reducing γ′-approximation to γ-estimation
for some γ′ > γ.

Indeed, we originally arrived at this question in the context of lattice problems, in which pre-
serving the size and structure of the input instance is often even more important than preserving
the approximation factor. (See, e.g., [Mic08, Ste15, Ste16].)

4For example, the greedy reduction described above implies that TS(n) ≤ O(n) · TD(n), where TS(n) and TD(n)
are “the fastest possible running times” for exact search and decision optimization problems. In contrast, the above
NP-completeness-based reduction only guarantees that TA,γ(n) ≤ TE,γ(nC) where TA,γ(n) and TE,γ(n) are “the
fastest possible running times” for approximation and estimation respectively for some fixed optimization problem
for which γ-estimation is NP-complete (each with approximation factor γ), and C is an arbitrarily large constant.
Since TE,γ(n) is superpolynomial in n (unless P = NP), this is not a very useful conclusion. E.g., it could be the case

that TE,γ(n) = 2n, while TA,γ(n) = 2n
100

. The fundamental issue is that this NP-completeness-based reduction can
increase the instance size n by an arbitrary polynomial.

2

1.2 Our model

Our definition of branch-and-bound reductions can be viewed as one way of formalizing such “sim-
ple” reductions. Specifically, our model captures reductions that work via black-box access to an
estimation oracle for “subinstances,” i.e., an oracle hf that estimates the optimal value of f up to
a factor of γ over a subset S of the domain D.

In more detail, for an unknown objective function f : D → R≥0 over a domain D (from some
family of objective functions), such reductions have access to an oracle hf : S → R≥0, where S ⊆ 2D

is a collection of subsets of the domain D. We assume that the oracle hf satisfies

min
x∈S

f(x) ≤ hf (S) ≤ γ ·min
x∈S

f(x)

for some not-too-large γ ≥ 1, i.e., that hf is a γ-approximate estimation oracle that solves the
estimation problem on restrictions of f to various subsets. The goal of such a reduction is to find
an explicit x such that f(x) ≤ γ′minx∈D f(x) for some not-too-large γ′.

We measure the running time of the reduction entirely in terms of the number of queries q
made to this oracle. This makes our model quite strong in some sense. In particular, the lower
bounds that we describe below are lower bounds on the number of queries, and therefore even
rule out algorithms that perform a bounded number q of queries but otherwise perform arbitrary
unbounded computation. (To be clear, queries may even be adaptive, i.e., the result of a previous
query may be used to decide what to query next.) And, we study the best achievable approximation
factor γ′ for the problem of optimizing f that is achievable in this model, as a function of the number
of queries q and the estimation approximation factor γ.

We stress that the only information that these reductions have about the function f comes from
the oracle hf . In particular, these reductions does not take as input a description of the function f .
(Formally, the input to the reduction is actually empty.) This can be viewed as a weakness of our
model. But, it does capture a wide class of reductions, and even more importantly, it is precisely
this choice that will allow us to prove such strong unconditional lower bounds on the approximation
factor γ′ that is achievable after a certain number of oracle queries (without, e.g., requiring us to
prove that FP 6= TFNP along the way). Indeed, if we gave our reductions direct access to the input,
then our model would actually be stronger than the standard model(!), and we would therefore
have little hope of proving unconditional lower bounds in such a model.

We call reductions in our model branch-and-bound reductions in analogy with the paradigm of
branch-and-bound algorithms. (See section 1.4.) E.g., the simplest branch-and-bound reductions
use a greedy approach like the one described above. In other words, they find x∗ ∈ {0, 1}n that
approximately minimizes f : {0, 1}n → R≥0 as follows. The reduction first branches, i.e., it chooses
subsets S1, . . . , Sk ⊆ {0, 1}n that partition the input space {0, 1}n. It then uses hf to compute
values hf (S1), . . . , hf (Sk) such that hf (Si) ≈ minx∈Si f(x). It then chooses an i such that hf (Si) is
minimal and repeats the procedure on Si—partitioning Si into subsets T1, . . . , Tk ⊆ Si, computing
estimates hf (Tj), selecting Tj that minimizes this estimate, and so on. Eventually, the reduction
is left with a single element x∗ ∈ {0, 1}n, and we hope that f(x∗) is relatively close to the optimal
value minx∈{0,1}n f(x).

It is not hard to see that the greedy reduction described above uses q ≈ kn/ log k queries and
outputs x∗ with

f(x∗) ≤ γn/ log k min
x∈{0,1}n

f(x) ≈ γn/ log q min
x∈{0,1}n

f(x) .

3

(To see this, first notice that if the algorithm partitions the set evenly each time, then after ≈
n/ log k iterations, it will reach a set of size one—i.e., x∗. Furthermore, in each step of the algorithm,
the set Si chosen by the algorithm must satisfy minx∈Si f(x) ≤ γ ·minx∈S1∪···∪Sk f(x). Therefore,
the final approximation factor is γn/ log k ≈ γn/ log q after n/ log k iterations.) Even this quite large
approximation factor γ′ ≈ γn/ log q has proven to be quite useful in some rather specific contexts
(e.g., [HP13, Ste16]). But, we of course would like to know if we can do better. I.e., is there a
branch-and-bound reductions that makes at most q queries but achieves an approximation factor
significantly better than γn/ log q? For example, a significant improvement to this approximation
factor would resolve an important open problem in lattice-based cryptography [Ste16]. (Indeed,
this work originally arose from an effort to improve [Ste16].)

1.3 Our results

Our first main result shows that the greedy reduction described above is essentially optimal in
general. That is, there exist(s a distribution over) functions f : {0, 1}n → R≥0 and a γ-approximate
estimation oracle hf : 2{0,1}

n → R≥0 such that no algorithm making significantly fewer than q
queries to hf can find x∗ ∈ {0, 1}n with f(x∗)� γn/ log q minx∈{0,1}n f(x).

Theorem 1.1 (Lower bound for arbitrary functions f . See Section 4). For every γ ≥ 1 and
positive integer `, there exists a distribution over functions f : {0, 1}n → R≥0 and a γ-approximate
estimation oracle hf : 2{0,1}

n → R≥0 for f such that for any oracle algorithm A making at most q
queries to hf ,

Pr[x∗ ← Ahf () : f(x∗) ≤ γ′ min
x∈{0,1}n

f(x)] ≤ ε

where γ′ ≈ γn/` and ε ≈ q2−`.

This shows that there is no branch-and-bound search-to-decision reduction that performs sig-
nificantly better than the greedy reduction for all functions—even if it has an estimation oracle
that works for arbitrary subsets S of the domain. So, if we want to do better than the generic
greedy approach, we must place some restrictions on our objective function f . (In particular, this
shows that we cannot improve upon the search-to-decision reductions in [HP13, Ste16] without
using some specific properties of the relevant lattice-based objective functions f .)

We therefore turn our attention to specific classes of functions that have additional struc-
ture. Specifically, we study branch-and-bound search-to-decision reductions for Max-Constraint
Satisfaction Problems (Max-CSPs), and the Traveling Salesperson Problem (TSP). These prob-
lems are natural in this context in part because both of these problems are often solved using
branch-and-bound techniques in practice, for finding either exact solutions or approximate solu-
tions. See, e.g., [BHvMW21] for discussion of branch-and-bound algorithms for Max-CSPs (specif-
ically MAX-k-SAT), and [Coo11] for discussion of branch-and-bound algorithms for TSP.

In the case of Max-CSPs, we show a strong lower bound for any “reasonable” set of con-
straints F . (See Section 6.) In this introduction, we discuss only the application of our more
general result to MAX-3-SAT for simplicity.

Our result holds for partial assignment queries. That is, our oracle hI for an instance I takes
as input a partial assignment w to the n input variables and outputs a γ-approximation to the
maximal number of constraints in the instance I satisfied by any assignment v that matches w.5

5To formally represent this in our model, consider the function f : {0, 1}n → R≥0 such that f(v) is the number
of clauses satisfied by an assignment v. Then, hf takes as input subsets Sw ⊆ {0, 1}n consisting of all assignments v

4

This notion of a partial assignment arises naturally in this context (e.g., in practical branch-and-
bound algorithms for MAX–CSP).

Before we state our result, we note that it is trivial to find an assignment to a MAX-3-SAT
instance that satisfies roughly a 7/8−o(1) fraction of the constraints. Indeed, a random assignment
suffices with high probability. So, we can easily output an assignment that satisfies at least 7/8−o(1)
times as many clauses as an optimal assignment (with high probability, using an algorithm that is
actually independent of the instance). Our lower bound shows that a branch-and-bound reduction
cannot achieve an approximation factor of better than 7/8+o(1), even with a very good estimation
oracle with approximation factor β = 1 − o(1). (Here, since we have switched from minimization
to maximization, we have switched to oracles h satisfying

βmax
x∈S

f(x) ≤ hf (x) ≤ max
x∈S

f(x)

for some β ≤ 1.) In other words, no branch-and-bound reduction performs significantly better than
the algorithm that simply outputs a uniformly random assignment, even if the estimation oracle is
extremely powerful.

Theorem 1.2 (Lower bound for MAX-3-SAT. See Section 6 for a more general result.). There exists
a distribution over MAX-3-SAT instances I such that for every β < 1, there is a β-approximate
estimation oracle hI such that for any oracle algorithm A making at most q queries to hI ,

Pr[v∗ ← Ahf () : SATI(v
∗) ≥ δ max

v∈{0,1}n
SATI(v)] ≤ ε

where δ = 7/8 + o(1) and ε ≈ q2−(1−β)2n.

Finally, we study (non-metric) TSP. Here, we consider a natural class of oracles that work for
subtour queries. That is, they take as input a path (v1, . . . , vk) of (distinct) vertices in the input
graph, and they output a γ-approximation to the minimal value of a tour that contains the path
(v1, . . . , vk). This naturally captures branch-and-bound reductions that, e.g., “build a path one
edge at a time.” We prove the following lower bound.

Theorem 1.3 (Lower bound for TSP. See Section 5.). For every γ > 1 and positive integer `� n,
there exists a distribution G of TSP instances and a γ-approximate estimation oracle hG such that
for any oracle algorithm A making at most q oracle queries,

Pr[c∗ ← AhG() : wG(c∗) ≤ γ′ ·min
c
wG(c)] ≤ ε ,

where γ′ ≈ (γ − 1)n/`, ε ≈ qe−`, and wG(c) is the weight of the tour c in G.

We note in passing that this lower bound can be viewed as a partial answer to a question posed
by Bellare and Goldwasser [BG94], who asked whether a search-to-decision reduction was possible
for approximate TSP, and particularly one that preserves the approximation factor. Theorem 1.3
rules out a large class of such reductions, even those achieving a significantly worse approximation
factor than what was considered in [BG94]. But, we only rule this out in an oracle model.

that match a partial assignment w. E.g., {v = (v1, . . . , vn) ∈ {0, 1}n : v1 = 0, v82 = 1}. Of course, it is far more
natural to simply consider an oracle hI that takes w as input directly.

5

Our lower bound for TSP is in some sense quite strong. For example, it shows that a branch-
and-bound reduction cannot achieve a sublinear approximation factor γ′ < o(n) even with an
estimation oracle that achieves a constant approximation factor γ = O(1). However, it is not
immediately obvious whether there is a nearly matching upper bound. E.g., the natural greedy
approach achieves an approximation factor of roughly γ′ = γn/k using roughly nk queries, which is
quite far from our lower bound. Perhaps our lower bound can be improved?

As it happens, there is a nearly matching upper bound (specifically, a reduction that uses
roughly nt queries and achieves an approximation factor of roughly γn/t). So, our lower bound
is essentially tight in our model. But, the reduction achieving this upper bound is inefficient
and therefore rather unsatisfying. In other words, while the reduction uses relatively few oracle
queries, it performs additional computation that requires superpolynomial time, as described in
Theorem 5.4.6

1.4 Other interpretations of our model

Above, we have presented our model in terms of branch-and-bound reductions from approximation
problems to associated estimation problems. However, we note that there are at least two different
interpretations of our model (and results) that are perhaps just as interesting.

Branch-and-bound algorithms. We of course named our model of branch-and-bound reduc-
tions in analogy with branch-and-bound algorithms. Such algorithms are ubiquitous in the study
of optimization problems. (See, e.g., [MJSS16] and the references therein.) To view our model
in terms of branch-and-bound algorithms, one simply needs to view the estimation oracle hf as
some efficiently computable heuristic. In other words, a branch-and-bound algorithm works by
using some heuristic hf to estimate the optimal value of f on various subsets until it has found an
approximate optimizer of f .

Though branch-and-bound algorithms are very natural, they seem to be quite difficult to un-
derstand from a theoretical perspective. E.g., Nemhauser said “I have always wanted to prove a
lower bound about the behavior of branch and bound, but I never could” [LR12]. (See also the
third proposed research direction in [MJSS16].) Of course, part of the difficulty in proving such
lower bounds is simply coming up with a model that is sufficiently strong to capture a wide class
of branch-and-bound algorithms but weak enough to allow for provable lower bounds.

One can view our results as progress towards that goal. In particular, we prove lower bounds
for branch-and-bound algorithms with arbitrary estimation heuristics hf . That is, any branch-and-
bound algorithm that beats our lower bounds must use some property of the heuristic hf that is
stronger than the approximation guarantee

min
x∈S

f(x) ≤ hf (S) ≤ γmin
x∈S

f(x) .

Approximation vs. estimation for data structure problems. Yet another interpretation
of our results is in terms of data structures for optimization problems. For this interpretation, we
focus on the problem of optimizing an arbitrary function with arbitrary subset queries, as this is
most natural in this context.

6The reduction first calls the oracle on all nk subpaths V = (v1, . . . , vk) of length k. It then finds (in superpoly-
nomial time) a way to combine subpaths V1, . . . , Vn/k together into a tour while minimizing hG(V1) + · · ·+hG(Vn/k).
It is not hard to show that such a reduction achieves an approximation factor of essentially γn/k.

6

Specifically, consider the following very natural and simple data structure problem. We are first
given as input a function f : {0, 1}n → R≥0 (or, equivalently, a list of 2n numbers) and allowed
arbitrary time to preprocess it into some data structure H (with some constraint on the size of H).
Then, we receive as input some subset S ⊆ {0, 1}n. In the estimation version of this problem, our
goal is to estimate minx∈S f(x) using as few queries to H as possible (i.e., reading as few bits or
words from H as possible). In the approximation version, our goal is to find an x∗ ∈ S such that
f(x∗) is as small as possible, relative to minx∈S f(x) (again, using as few queries to H as possible).

It is then natural to ask whether there is a black-box data-structure reduction from approximation
to estimation in this setting. Here, a black-box reduction means an algorithm that solves the
approximation problem using only the estimates obtained from the data structure for the estimation
problem—i.e., a branch-and-bound algorithm. Notice in particular that, in the setting of data
structures, the number of queries made by such a reduction is the natural complexity measure.

Our lower bound on branch-and-bound reductions extends immediately to black-box data-
structure reductions as well. Specifically, no black-box data-structure reduction making q estimate
queries can achieve an approximation factor significantly better than γ′ ≈ γlog |S|/ log q.7

1.5 Our techniques

Our main technical tool is a “useless oracle lemma.” The idea is that “an oracle cannot be useful
if most of its answers are predictable.” While this lemma is quite general, we focus below on how
it applies to our setting.

Suppose that we can construct a distribution over functions f together with a γ-approximate
estimation oracle hf : S → R≥0 such that for any fixed query S ∈ S, hf (S) = g(S) with high
probability over f , where g is some fixed function that does not depend on f . E.g., our hard
instance for arbitrary optimization has this property with g(S) ≈ γn−log |S|. Then, the useless
oracle lemma tells us that “an algorithm with oracle access to hf is essentially no more powerful
than an algorithm with no access to any oracle that depends on f at all.” The specific statement
is of course quantitative and depends on the number of oracle queries and the probability that
hf (S) 6= g(S). (See Section 3. We do not claim that this idea is original, though we do not know
of prior work using it.)

With this tool in hand, our goal becomes to construct distributions of functions f together
with oracles hf such that (1) the oracle is “useless” in the sense described above; and (2) for
every fixed x ∈ {0, 1}n, f(x) ≥ γ′minx′∈{0,1}n f(x′) with high probability over f (i.e., there is
no way to choose an x independently of f such that f(x) is nearly optimal). This boils down to
finding a distribution over functions f such that (1) the random variable minx∈S f(x) is highly
concentrated; and (2) this quantity tends to be much larger as |S| becomes smaller. In particular,
concentration of minx∈S f(x) around some value g(S) (independent of f) implies that we can set
hf (S) ≈ g(S). And, if g(S) increases rapidly as |S| becomes smaller, then the optimal value
of f , minx∈{0,1}n f(x) ≈ g({0, 1}n) will in particular be much smaller than g({x′}) for any fixed
x′ ∈ {0, 1}n, causing our final approximation factor to be large.

Below, we briefly describe the distributions that we use and some of the intuition behind them.

7This statement is a bit more delicate than it might look. It is not immediately clear whether a generic lower
bound on branch-and-bound reductions in our model directly implies a lower bound for black-box data-structure
reduction. However, our proof technique of “useless oracles” (which we describe below) extends immediately to the
data-structure setting.

7

Arbitrary functions. For our lower bound against optimizing arbitrary functions (The-
orem 1.1), we sample each value f(x) independently from a distribution over the set
{1, γ, γ2 . . . , γn/`}, where 2` is the number of queries made by the algorithm. We choose this
distribution so that any subset S ⊆ {0, 1}n of size roughly 2`k (1) contains at least one element
with value either γn/k−1 or γn/k with probability significantly larger than 1− 2−`; and (2) does not
contain an element with value less than γn/k−2, except with probability significantly less than 2−`.
We can then set hf (S) = γn/k, and we see that with high probability “any 2` queries made by the
algorithm will reveal no information about the function f with high probability.”

TSP. For the Traveling Salesperson Problem, we sample the weight of each edge independently
to be either 1 or essentially γn, with equal probabilities. We then use the theory of random graphs
to argue that with high probability the value of an optimal tour containing any subpath of length `
is highly concentrated around a value of roughly γ`n/2 + n− `/2.

CSPs. For (“reasonable”) k-CSPs, we construct “a random instance with a random planted
satisfying assignment.” That is, we first sample a uniformly random assignment P ∼ [c]n.8 We
then repeatedly sample a k-tuple T = (t1, . . . , tk) ∈ [n]k and add to our CSP a random constraint
on the variables xt1 , . . . , xtk that is satisfied by our planted assignment Pt1 , . . . , Ptk . We do this
m = O(n) times to generate our CSP. (For simplicity, we are ignoring the possibility that there
might not exist any such constraint. In Section 6, we handle this carefully.)

Then, for any partial assignment w, we study ρw(P), which is the maximum over all assign-
ments v ∈ [c]n extending w of the probability that v satisfies a constraint sampled as above. It is
easy to see via the Chernoff-Hoeffding bound that, for a fixed planted assignment P , the maximum
over all such v of the actual number of satisfied constraints in our instance will be heavily concen-
trated around ρw(P) · m. The difficult step in our analysis is then to prove that ρw(P) is itself
highly concentrated around its expectation EP [ρw(P)]. This follows from a careful application of
McDiarmid’s inequality.

2 Preliminaries

We will need the following concentration inequalities.

Lemma 2.1 (Chernoff-Hoeffding bound [Hoe63]). Suppose X1, . . . , Xn are independent random
variables, and let X :=

∑n
i=1Xi. Then for any 0 < δ < 1,

Pr
[
|X − E[X]| ≥ δ E[X]

]
≤ 2 exp(δ2 E[X]/3).

Lemma 2.2 (McDiarmid’s inequality [McD98]). Suppose X1, . . . , Xn are independent random vari-
ables, c1, . . . , cn are real numbers, and f : Rn → R is a function with the property that for all i ∈ [n]
and xi, x

′
i ∈ R, |f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci. Then for all t > 0,

Pr
[
|f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]| ≥ t

]
≤ 2 exp

(−t2

2
∑n

i=1 c
2
i

)
.

Given an event E and a random variable X, we will write Pr[E | X] for the random variable
whose value in case X = x is Pr[E | X = x].

8Throughout this paper, for x ∈ N, [x] denotes the set {1, 2, . . . , x}.

8

3 Useless Oracles

We now present the technical tool that we will use for all of our lower bounds, which we call the
useless oracle lemma. (The authors do not claim that this result is original, though they do not
know of any prior work using a similar idea.)

To understand the lemma and its relation to branch-and-bound algorithms, suppose that we
sample the objective function f : D → R≥0 that our algorithm is meant to optimize from some
distribution, and then choose our heuristic hf according to f . And, recall that such an algorithm’s
“only access to this objective function f” is via oracle access to this heuristic hf , which satisfies
minx∈S f(x) ≤ hf (S) ≤ γminx∈S f(x) for every S in some collection of subsets S of the domain D.

Now, imagine that instead of giving our algorithm oracle access to hf , we give it oracle access
to some other function g, which is fixed (i.e., not a random variable) and therefore independent
of our choice of f . Notice that this is a rather cruel thing to do, since now our algorithm cannot
possibly hope to glean any information about f from its oracle queries. So, at least intuitively, it
should be quite easy to prove lower bounds against such algorithms.

The useless oracle lemma provides conditions that allow us to effectively replace the oracle
O = hf with the “useless” oracle g. In particular, it says that if (1) hf and g have the property
that Pr[hf (S) = g(S)] is large for all fixed S, and (2) our algorithm does not make too many oracle
queries; then the output of our algorithm is nearly the same whether it is given access to hf or
to g.

Lemma 3.1 (The useless oracle lemma). Let g : S → R be a fixed function, and let O : S → R be
a distribution over oracles such that for all S ∈ S,

Pr[O(S) 6= g(S)] ≤ p .

Then, for any oracle algorithm AO making at most q queries to O, the statistical distance between
AO() and Ag() is at most qp.

Proof. Let S1, . . . , Sq ∈ S be the sequence of oracle queries made by AO. Notice that the Si are
random variables, and that Si might depend on O(Sj) for j < i (which is what makes the lemma
non-trivial). Let Ei be the event that there exists a j ≤ i such that O(Sj) 6= g(Sj). It suffices to
prove that Pr[Eq] ≤ qp (because the two distributions are identical if we condition on ¬Eq).

Notice that
Pr[Eq] = Pr[Eq−1] + Pr[O(Sq) 6= g(Sq) and ¬Eq−1] .

Let S′1, . . . , S
′
q be the sequence of oracle queries made by Ag (as opposed to AO), and notice that S′i

is independent of O by definition. In particular, this implies that Pr[O(S′i) 6= g(S′i)] ≤ p. Therefore,

Pr[O(Sq) 6= g(Sq) and ¬Eq−1] = Pr[O(S′q) 6= g(S′q) and ¬Eq−1] ≤ Pr[O(S′q) 6= g(S′q)] ≤ p .

It follows that Pr[Eq] ≤ p+ Pr[Eq−1], which implies the result when combined with the trivial fact
that Pr[E1] ≤ p.

Corollary 3.2. Let f ∼ D be sampled over some distribution of functions f : D → R≥0, and let
S ⊆ 2D be a collection of subsets of D such that D ∈ S and {x} ∈ S for all x ∈ D. Suppose that
there exists some fixed function g : S → R≥0 such that

Pr[g(S)/γ ≤ min
x∈S

f(x) ≤ g(S)] ≥ 1− p

9

for all S ⊆ S and some p > 0, γ ≥ 1.
Then, there exists a γ-approximate heuristic hf : S → R≥0 for f such that for any algorithm A

making at most q oracle queries to hf ,

Pr[x∗ ← Ahf (), f(x∗) < γ′min
x∈D

f(x)] ≤ (q + 2)p ,

where

γ′ := γ−1 ·min
x∈D

g({x})
g(D)

.

Proof. We define

hf (S) :=

{
g(S) g(S)/γ ≤ minx∈S f(x) ≤ g(S)

minx∈S f(x) otherwise.

In other words, hf (S) is a γ-approximate heuristic that agrees with g(S) whenever it is possible
for a γ-approximate heuristic to do so (and when this is not possible, it simply outputs the exact
minimal value).

Notice that by assumption
Pr
f∼D

[hf (S) 6= g(S)] ≤ p .

We may therefore apply the useless oracle lemma with O = hf to show that Ahf () is within
statistical distance qp of Ag(). So, it suffices to show that

Pr
f∼D

[x∗ ← Ag(), f(x∗) ≤ γ′min
x∈D

f(x)] ≤ 2p .

Indeed, since g is independent of f (as it is a fixed function), we have that for any r ≥ 0,

Pr
f∼D

[x∗ ← Ag(), f(x∗) ≤ r] =
∑
x∈D

Pr[x∗ ← Ag(), x∗ = x] · Pr
f∼D

[f(x) ≤ r] ≤ max
x∈D

Pr
f∼D

[f(x) ≤ r] .

By assumption, for any x ∈ D,

Pr[f(x) < min
x′∈D

g({x′})/γ] ≤ p ,

and similarly,
Pr[min

x′∈D
f(x′) > g(D)] ≤ p .

Therefore, for any x ∈ D,

Pr[f(x) < γ′ min
x′∈D

f(x′)] ≤ Pr[f(x) < min
x′∈D

g({x′})/γ] + Pr[min
x′∈D

f(x′) > g(D)] ≤ 2p ,

and the result follows.

10

4 A Generic Optimization Problem

Theorem 4.1. For any n, any γ ≥ 1, and any integer 1 ≤ α ≤ n, there exists a distribution
over functions f : {0, 1}n → R≥0 such that for any integer 1 ≤ k ≤ α and any S ⊆ {0, 1}n with
2(k−1)n/α ≤ |S| ≤ 2kn/α,

Pr
f

[γα−k+1 ≤ min
x∈S

f(x) ≤ γα−k+2] ≥ 1− 4(n/α)2−n/α .

Proof. For each x ∈ {0, 1}n and integer 1 ≤ i ≤ α, we set f(x) = γi independently with prob-
ability pi, where pi := δ · 2in/α−n for i = 1, . . . , α − 1 and pα := 1 − p1 − p2 − · · · − pα−1, with
δ := n/α · 2−n/α < 1.

Notice that

pα = 1− δ ·
α−1∑
i=1

2in/α−n ≥ 1− δ .

In particular, this is non-negative, so that this is in fact a valid probability distribution. We have

Pr
f

[γα−k+1 ≤ min
x∈S

f(x) ≤ γα−k+2] = 1− Pr[min
x∈S

f(x) < γα−k+1]− Pr[min
x∈S

f(x) > γα−k+2] .

We wish to argue that each of the probabilities on the right-hand side are smaller than, say, 2δ.
First, we see that, for the non-trivial case k > 2,

Pr[min
x∈S

f(x) > γα−k+2] ≤ (1− pα−k+2)
|S| ≤

(
e−pα−k+2

)2(k−1)n/α

= e−δ2
n/α ≤ δ ,

where the second inequality uses the fact that 1− x ≤ e−x. Second,

Pr[min
x∈S

f(x) < γα−k+1] ≤ |S| · Pr[f(x) ≤ γα−k] ≤ 2kn/α · δ ·
α−k∑
i=1

2in/α−n ≤ 2δ ,

as needed.

Corollary 4.2. For any integer n, any 1 ≤ ` ≤ n/3, and any γ ≥ 1, there exists a distribution of
functions f : {0, 1}n → R≥0 and a γ-approximate heuristic hf : 2{0,1}

n → R≥0 for f such that for
any algorithm Ahf making at most q oracle queries to hf ,

Pr[x∗ ← Ahf (), f(x) < γ′ · min
x∈{0,1}n

f(x)] ≤ (q + 2) · `2−`+3

where γ′ := γbn/`c−1.

Proof. We apply Corollary 3.2 to the choice of f from Theorem 4.1, with g(S) := γα−k+2 for the
unique integer 1 ≤ k ≤ α satisfying 2(k−1)n/α ≤ |S| < 2kn/α where α := bn/`c and g({0, 1}n) := γ.
Notice in particular that g({x})/g({0, 1}n) = γα.

11

5 The Traveling Salesperson Problem

We consider undirected weighted complete graphs on n vertices with no self-loops where all edge
weights are non-negative. For an edge e = {i, j} of a graph G, w(e) and w(i, j) denote the weight
of e.

We write Cn for the set of all Hamiltonian cycles in a complete n-vertex graph G. The weight
of a cycle c is the sum of the weights of its edges: w(c) =

∑n
i=1w(ci, ci+1modn). For 0 ≤ k ≤ n− 1,

let P kn be the set of all length-k simple paths on an n-vertex graph:

P kn = {(v0, . . . , vk) | v0, . . . , vk ∈ [n], v0, . . . , vk all distinct}.

By OPT(G) we denote the weight of an optimal traveling salesperson (TSP) cycle in G, and for a
path p ∈ P kn by OPT(G, p) we denote the minimum weight of a TSP cycle in G containing p.

We will use the following result that says that a random graph contains a Hamiltonian cycle
with all but negligible probability.

Lemma 5.1 (E.g., [AK20]). A uniform random undirected graph with n vertices contains a Hamil-
tonian cycle with probability ≥ 1− 2−n+o(n).

We define a “useless oracle” for TSP in Theorem 5.2. Namely, for every approximation factor
γ > 1 and every probability of error (≈ e−t), we give a distribution of graphs such that with high
probability, the weight of an optimal Hamiltonian cycle extending a path of length k essentially
does not depend on the path, but only on its length k. Intuitively, an approximate TSP oracle
is useless for this distribution of graphs because (with high probability) it reveals no information
about the input graph.

Theorem 5.2 (TSP useless oracle). For all γ > 1 and 1 ≤ t ≤ δn/2 where δ = (γ − 1)/(γ + 1),
there exists a distribution G over n-vertex graphs, and values v0, . . . , vn−1 such that

• v0 ≤ n/γ and vn−1 ≥ (γ − 1)n2/(5t) ,

• for all 0 ≤ k ≤ n− 1 and all paths p ∈ P kn ,

Pr
G∼G

[
OPT(G, p) ∈ [vk, γvk]

]
≥ 1−O(e−δ

2t/30) .

Proof. G is defined by independently setting the weight of each edge e as follows:

w(e) =

{
1 w.p. 1/2 ,

ω := 1 + (γ − 1)n/t w.p. 1/2 .

The following is the definition of vk:

vk =


n/γ if k = 0 ,

n if 1 ≤ k ≤ t ,
k(ω + 1)/(γ + 1) + n− k if t < k < n− t ,(
k/2 + n/(γ + 1)

)
(ω + 1)/2 if k ≥ n− t .

12

The definitions of v0 and vn−1 satisfy the first item of the theorem statement as v0 = n/γ, and

vn−1 ≥ (n− 1)(ω + 1)/4 ≥ (n− 1)(γ − 1)n/(4t) ≥ (γ − 1)n2/(5t) .

It remains to bound from above PrG∼G
[

OPT(G, p) 6∈ [vk, γvk]
]

for every fixed p ∈ P kn . By the
Chernoff-Hoeffding bound (Lemma 2.1), for every ε ∈ (0, 1), p contains from (1−ε)k/2 to (1+ε)k/2
edges of weight ω with probability at least 1− 2e−ε

2k/6. Therefore,

Pr
G∼G

[
w(p) ∈ [(1− ε)k(ω + 1)/2, (1 + ε)k(ω + 1)/2]

]
≥ 1−O

(
e−ε

2k/6
)
. (2)

Let G ∼ G, and let G′ be the graph consisting of the vertices of G not belonging to the path p, and
the edges of G of weight 1. Note that G′ is a uniformly random unweighted graph with n− k − 1
vertices. By Lemma 5.1, G′ contains a Hamiltonian cycle with probability 1 − 2−(n−k−1)(1−o(1)).
With probability at least 1 − (3/4)n−k−1 the endpoints of p are connected by edges of weight 1
to a pair of consecutive points of the Hamiltonian cycle in G′. Thus, with probability at least
1 − O

(
(3/4)n−k

)
, p can be extended to a TSP cycle in G by taking a Hamiltonian path in G′,

removing an edge from it, and connecting the two endpoints to the endpoints of p by edges of
weight 1. Hence,

Pr
G∼G

[OPT(G, p) = w(p) + n− k] ≥ 1−O
(
(3/4)n−k

)
. (3)

Now we consider the following four cases.

• k = 0. For the distribution G, Lemma 5.1 implies that for every p ∈ P 0
n , OPT(G, p) =

OPT(G) = n with probability 1− 2−n+o(n) ≥ 1−O(e−δ
2t/30).

• 1 ≤ k ≤ t. For each path p ∈ P kn , OPT(G, p) ≥ n = vk, and, by (3), with probability at least
1−O

(
(3/4)n−k

)
≥ 1−O

(
(3/4)n/2

)
≥ 1−O(e−δ

2t/30), we have that

OPT(G, p) = w(p) + n− k ≤ kω + n− k ≤ γn = γvk .

• t < k < n−t. From (3), with probability 1−O
(
(3/4)t

)
, OPT(G, p) = w(p)+n−k. By setting

ε = δ, from (2), with probability at least 1 − O(e−δ
2t/6), w(p) ∈ [k(ω + 1)/(γ + 1), γk(ω +

1)/(γ + 1)]. Together these bounds give us that

OPT(G, p) = w(p) + n− k ∈ [vk, γvk]

with probability at least 1−O
(
(3/4)t

)
−O(e−δ

2t/6) ≥ 1−O(e−δ
2t/30).

• k ≥ n − t. From (2) with ε = 1/2 − n
k(γ+1) ≥ 1/2 − 2/(γ + 3), with probability

1−O(e−(1−4/(γ+3))2k/24) ≥ 1−O(e−δ
2t/30) (where we used that t ≤ δn/2 and k ≥ n(1−δ/2)),

we have that

w(p) ∈ [(1− ε)k(ω + 1)/2, (1 + ε)k(ω + 1)/2] and

OPT(G, p) ∈ [w(p), w(p) + ω(n− k)]

⊆ [(1− ε)k(ω + 1)/2, (ω + 1)(n− (1− ε)k/2)]

= [
(
k/2 + n/(γ + 1)

)
(ω + 1)/2,

(
2n−

(
k/2 + n/(γ + 1)

))
(ω + 1)/2]

⊆ [vk, γvk]

for every k ≥ n− t ≥ n(1− δ) = 2n/(γ + 1).

13

We are now ready to prove the main result of this section showing an essentially tight bound
on search to decision reductions with an approximate TSP oracle.

Definition 5.3 (TSP oracle). A function hG is a γ-approximate TSP estimation oracle for G ∈ Gn
if for all 0 ≤ k ≤ n− 1, for all p ∈ P kn ,

OPT(G, p) ≤ hG(p) ≤ γOPT(G, p) .

Theorem 5.4 (TSP oracle bounds). For every γ > 1 and positive integer ` ≤ δ3n/20 for δ =
(γ − 1)/(γ + 1), there exists a distribution G over n-vertex graphs G and a γ-approximate TSP
estimation oracle hG for G such that for any algorithm AhG making at most q queries to hG,

Pr[c← AhG() : w(c) ≤ γ′ ·OPT(G)] ≤ ε ,

where γ′ := (γ − 1)δ2n/(150`) and ε := O
(
q · e−`

)
.

Furthermore, for every γ ≥ 1 and positive integer `, there exists an algorithm AhG making at
most

(
n
`

)
·`! ≤ n` queries to a γ-approximate TSP estimation oracle hG that computes a γn/(`−1)-

approximation to TSP.

Proof. We prove the first part of the theorem using Corollary 3.2. For this, we first denote by G
the distribution of graphs from Theorem 5.2, and by D the set of all cycles Cn. We define the
distribution D of functions fG : D → R≥0 computing the length of a given cycle in G ∼ G. For a
path p ∈ P kn , we denote by Sp ⊆ Cn the set of cycles containing the path p, and we define

S = {Sp : p ∈ P kn , 0 ≤ k ≤ n− 1} .

It is easy to see that Cn ∈ S and for every cycle c ∈ Cn, {c} ∈ S. Now for a set Sp ∈ S
corresponding to a path p ∈ P kn , we define g(Sp) = γvk. By Theorem 5.2 with t = 30`/δ2, for

each Sp, Pr[g(Sp)/γ ≤ minc∈Sp f(c) ≤ g(Sp)] ≥ 1− p for p = O
(
e−δ

2t/30
)

= O
(
e−`
)
. Now we apply

Corollary 3.2 to our choices of f and g, and

γ′ := γ−1 ·min
c∈D

g({c})
g(D)

≥ γ−1 · vn−1/v0 ≥ (γ − 1)δ2n/(150`) ,

and have that

Pr
G∼G

[c← AhG(), w(c) ≤ γ′OPT(G)] ≤ (q + 2) ·O
(
e−`
)
≤ O

(
q · e−`

)
.

To prove the “furthermore” part, we consider the following algorithm. Let G be an input graph
on n vertices, and let n be a multiple of ` − 1. The algorithm first queries hG(p) for each path
p ∈ P `−1n of length `−1. Then the algorithm returns a cycle c = (c0, . . . , cn−1) ∈ Cn that minimizes
the sum

H(c) := hG(c0, . . . , c`−1) + hG(c`−1, . . . , c2(`−1)) + . . .+ hG(cn+1−`, . . . , cn−1, c0) .

It is easy to see that the algorithm makes |P `−1n | =
(
n
`

)
· `! queries to hG.

Since for every path p ∈ P `−1n , w(p) ≤ hG(p), the weight of the resulting cycle does not
exceed H(c). Now it remains to show that minx∈Cn H(x) ≤ γnOPT(G)/(` − 1). To this end,
consider an optimal TSP cycle c′ ∈ Cn in G. Since for every subpath p ∈ P `−1n of c′, hG(p) ≤
γOPT(G), we have that

H(c) ≤ H(c′) ≤ γOPT ·n/(`− 1) .

14

6 Constraint Satisfaction Problems

Informally, a constraint satisfaction problem (CSP) consists of constraints applied to variables; the
goal is to find an assignment of values to variables that satisfies all or most of the constraints. For
example, graph coloring is a CSP, where each edge corresponds to the constraint that the endpoints
have different colors.

A CSP is specified by a non-empty family of constraint functions F . Each constraint function
f ∈ F is a function f : [c]k → {0, 1}, where the alphabet size c and arity k are fixed. An
assignment assigns a value from [c] to each of the n variables x1, . . . , xn. Formally, we represent
this by a function v : [n]→ [c]. An assignment v satisfies a constraint C = (f, (j1, . . . , jk)), written
v |= C, if f(v(xj1), . . . , v(xjk)) = 1. We write CSP(F) for the CSP specified by F ; an instance
I ∈ CSP(F) is simply a collection of constraints. For simplicity, we allow duplicate constraints. As
is standard, we say I is satisfiable if there is an assignment v that satisfies all constraints of I. For
example, the classical 3-SAT problem is CSP(F3−SAT), where F3−SAT is the family of constraint
functions defined by disjunctive clauses (e.g., f(x1, x2, x3) = ¬x1 ∨ x2 ∨ x3).

We are interested in an approximation version of the constraint satisfaction problem, namely
MAX–CSP(F) [KSTW01]. MAX–CSP(F) is the computational problem whose instances I are
collections of m(I) constraints on variables x1, . . . , xn, and the objective is to find an assignment v
to these variables that maximizes the number of satisfied constraints.

A partial assignment assigns values to a subset of the n variables. Formally, a partial assignment
is represented by a partial function w : [n] → [c]. An assignment v extends w if v agrees with w
on all variables to which w assigns a value. Define SAT(I) to be the maximum number of satisfied
constraints over all assignments. Define SATI(w) in the same way, except the maximum is taken
over only the assignments extending w. In the special case where w is a total assignment, this is
simply the number of constraints satisfied (unsatisfied) by that assignment. Similar to before, for
β < 1, we define a function hI to be a β-heuristic if β SATI(w) ≤ hI(w) ≤ SATI(w).

To state our lower bound for Max-CSPs in full generality, we must first define the hard distribu-
tion Ds over instances I ∈ CSP(F). Ds is defined by the following sampling process. All sampling
steps are done uniformly at random. First we sample a “planted” assignment P . Then, for each

of s steps i = 1, 2, . . . , s, we sample an ordered tuple
(
x
J
(i)
1

, . . . , x
J
(i)
k

)
of k distinct variables, and

sample a constraint function Fi that is satisfied by the input
(
P
(
x
J
(i)
1

)
, . . . , P

(
x
J
(i)
k

))
. If there

is no such Fi ∈ F , we write Ci = NULL to indicate that we do not add a constraint; otherwise,

Ci is the constraint (Fi, (J
(i)
1 , . . . , J

(i)
k)). The sampled instance I ∼ Ds consists of all non-NULL

constraints Ci. Given an assignment v, it will be convenient to write v |= i to mean that Ci 6= NULL
and v |= Ci.

Let a(F) := lim infn→∞minv Pr[v does not satisfy Ci | Ci 6= NULL]. That is, a(F) is (close to,
for sufficiently large n) the minimal achievable expected fraction of unsatisfied constraints (in an
instance drawn from Ds) over all fixed assignments v. Our lower bound roughly states that even
for satisfiable instances, it is hard to satisfy much more than a (1 − a(F)) fraction of constraints.
Although the definition of a(F) looks complicated, it is actually a fairly natural measure of the
hardness of choosing a fixed assignment to satisfy a random constraint from F . For example, it
is not hard to see that a(F3−SAT) = 1/8, and a(Fk−LIN) = 1/2. These are exactly the expected
fraction of random constraints satisfied by any fixed assignment. We will write a for a(F) when F
is clear from context.

15

Say that a constraint family F is constant satisfiable (resp. constant unsatisfiable) if there is
b ∈ [c] for which every f ∈ F has f(b, . . . , b) = 1 (resp. f(b, . . . , b) = 0).

Theorem 6.1. For all constraint families F that are not constant unsatisfiable, there is r > 0 such
that for all 0 < ε < 1, there are (1− ε)-approximate estimation oracles hI such that for all oracle
algorithms AhI making at most q queries to hI , letting I ∼ Ds and v ← AhI (), for sufficiently large
n,

Pr[SATI(v)/SATI ≥ (1 + δ)(1− a)] ≤ q exp(−(δ2 + ε2) · r · n),

where s = 1000k2 log(c)n/ε2.

Before we prove Theorem 6.1, a few remarks are in order. The theorem is vacuous for trivially
satisfiable constraint families F , since the assignment v mapping every variable to b satisfies all
constraints, which implies a(F) = 0. But by the same logic, no non-trivial lower bound on the
approximation ratio is possible for such families. Fortunately, if F is not trivially satisfiable,
a(F) is strictly positive. To see this, fix an assignment v, and let b be the majority value of v. By
assumption, there is f∗ ∈ F such that f∗(b, . . . , b) = 0. Sample a random constraint (f, (j1, . . . , jk)).
Independent of (j1, . . . , jk), over the random choice of P , we have that f∗(P (xj1), . . . , P (xjk)) = 1
with probability at least 1/ck. Conditional on this, f is chosen to be f∗ with probability at least

1/2c
k
. Hence f is chosen to be f∗ with probability at least 1/ck · 1/2ck . Suppose n ≥ ck. For

any assignment v, we have v(xj1) = · · · = v(xjk) = b with probability (over the random choice
of j1, . . . , jk independent of P and f∗) at least Πk−1

i=0 (n/c − i)/(n − i) ≥ Πk−1
i=0 (k − i)/(ck − i) (the

last expression corresponds to the case of n = ck and balanced v). Thus, for n ≥ ck, the random

constraint is unsatisfied with probability at least 1/ck · 1/2ck · Πk−1
i=0 (k − i)/(ck − i) > 0; it follows

a(F) > 0.
The trivial unsatisfiability condition is slightly less natural; however, some similar condition is

necessary for lower bounds. Consider the problem of 3-coloring a graph to maximize the number
of edges with one green endpoint and one blue endpoint. This is clearly a CSP. Starting with all
nodes colored red, one can color two nodes blue and green and use a heuristic to determine if there
is an edge between them. Proceeding in this way, using O(n2) queries, one can recover the whole
graph and (using unbounded computation) recover the optimal coloring. So, in our model, we
cannot hope to rule out a branch-and-bound algorithm for such a CSP. This CSP is ruled out by
trivial unsatisfiability, because coloring all nodes red makes the only constraint in the family (the
blue-green constraint) output 0.

6.1 Proof of Theorem 6.1

We now prove the theorem. First, in the following lemma, we show that the “optimal satisfaction
probability” ρw(P) is concentrated as a function of P .

Lemma 6.2.

Pr
[
|ρw(P)− E[ρw(P)]| ≥ (ε/10)E[ρw(P)]

]
≤ 2 exp

(
− nε2 E[ρv(P)]2/(200k2)

)
.

Proof. Notice that for all valuations v, P and indices j ∈ [n], letting E be the event (j = J
(i)
1) ∨

· · · ∨ (j = J
(i)
k), we have

ρv(P) = Pr[E] · Pr[v |= i | E,P] + Pr[E] · Pr[v |= i | E,P]

16

Observe that Pr[E] = k/n, and Pr[v |= i | E,P] does not depend on P (j). Thus, defining

v⊕j =

{
¬v(x) x = j

v(x) x 6= j,

we have
|ρv(P)− ρv(P⊕j)| ≤ k/n.

It follows that for all partial valuations w,

|ρw(P)− ρw(P⊕j)| ≤ k/n.

The desired result follows by McDiarmid’s inequality (Lemma 2.2).

It follows from the definition of a = a(F) and the Chernoff-Hoeffding bound that there is a
constant r′ > 0 such that for all assignments v:

Pr
I∼D

[SATI(v)/SATI ≥ (1 + δ)(1− a)] = Pr
I∼D

[SATI(v) ≥ (1 + δ)(1− a)m(I)] ≤ exp(−r′ · δ2 · n).

(Informally, any fixed assignment is unlikely to satisfy much more than a 1 − a fraction of con-
straints.)

Notice that, for x, y > 0, if x ∈ [(1−ε/3)y, (1+ε/3)y], then x ∈ [(1−ε)z, z], where z = (1+ε/3)y.
Thus, by the useless oracle corollary (Corollary 3.2), Theorem 6.1 will follow immediately from the
claim below.

Claim 6.3. Given a partial assignment w, let ρw(P) = maxv:v extends w Pr[v |= i | P]. There is a
constant r > 0 such that

Pr
I∼Dm

[
|SATI(w)−mE[ρw(P)]| ≥ (ε/3)E[ρw(P)]

]
≤ exp(−r · ε2 · n).

Proof. Fix a partial assignment w. We will argue that SATI(w) is concentrated conditional on P .
Fixing P and an assignment v, SATI(v) is the sum of m independent coin tosses 1(v |= i) with
success probability ρv(P). For the optimal v∗ extending w (satisfying sv∗(P) = ρw(P)), we have
E[SATI(v)] = mρw(P), and the Chernoff-Hoeffding bound gives

Pr
[
|SATI(v∗)−mρw(P)| ≥ (ε/10)mρw(P) | P

]
≤ 2 exp(−ε2mρw(P)/600). (4)

Moreover, for any v extending w, SATI(v) is the sum of m independent coin tosses with a smaller
success probability ρv(P) ≤ ρw(P). Hence the upper bound of (4) holds, namely

Pr[SATI(v) ≥ (1 + ε/10)mρw(P) | P] ≤ exp(−ε2mρw(P)/600). (5)

Recall that SATI(w) is the maximum over all v extending w of SATI(v). Inequality (4) is thus
a high-probability upper bound on SATI(w), and (5) combined with a union bound over the (at
most cn) assignments v extending w gives a high-probability lower bound. Specifically, plugging in

m = 1000k2 log(c)n
ε2

, we have

Pr
[
|SATI(w)−mρw(P)| ≥ (ε/10)mρw(P) | P

]
≤ (cn + 2) exp(−ε2mρw(P)/600)

≤ exp(−nρw(P)/(100k2)). (6)

17

Third, combining Inequality (6) with Lemma 6.2 yields

Pr
[
|SATI(w)−mE[ρw(P)]| ≤ (ε/3)mE[ρw(P)]

]
≤ 2 exp(−nε2 E[ρw(P)]2/(200k2)), (7)

where we have used E[ρw(P)] ≤ 1⇒ E[ρw(P)]2 ≤ E[ρw(P)].
To finish the proof, we show that E[ρw(P)] is bounded below by a constant independent of

n and w, if n ≥ ck. Since F is not trivially unsatisfiable, for all b ∈ [c], there is f∗ ∈ F with
f(b, . . . , b) = 1. As we argued before with trivial satisfiability, when a random constraint is sampled,

it is non-NULL and has constraint function f∗ with probability at least 1/ck · 1/2ck . Letting the
variable indices in the constraint be j1, . . . , jk, again for any assignment v (for n ≥ ck) we have
v(xj1) = · · · = v(xjk) = b with probability at least Πk−1

i=0 (k − i)/(ck − i) (again, the last expression
corresponds to the case of n = ck and balanced v). Thus the constraint is satisfied with probability

at least 1/ck · 1/2ck ·Πk−1
i=0 (k − i)/(ck − i), as needed.

References

[AK20] Yahav Alon and Michael Krivelevich. Random graph’s Hamiltonicity is strongly tied
to its minimum degree. The Electronic Journal of Combinatorics, pages 1–30, 2020.
12

[BG94] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM
Journal on Computing, 23(1):97–119, 1994. 2, 5

[BHvMW21] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of satis-
fiability, volume 336. IOS press, 2021. 4

[Coo11] William J. Cook. In pursuit of the traveling salesman. Princeton University Press,
2011. 4

[Fei08] Uriel Feige. On estimation algorithms vs approximation algorithms. In FSTTCS,
2008. 2

[FJ15] Uriel Feige and Shlomo Jozeph. Separation between estimation and approximation.
In ITCS, 2015. 2

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963. 8

[HP13] Gengran Hu and Yanbin Pan. Improvements on reductions among different variants
of SVP and CVP. In WISA, 2013. 4

[KSTW01] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P Williamson. The
approximability of constraint satisfaction problems. SIAM Journal on Computing,
30(6):1863–1920, 2001. 15

[LR12] Richard J. Lipton and Kenneth W. Regan. Branch and bound—Why
does it work? https://rjlipton.wpcomstaging.com/2012/12/19/

branch-and-bound-why-does-it-work/, December 2012. 6

18

https://rjlipton.wpcomstaging.com/2012/12/19/branch-and-bound-why-does-it-work/
https://rjlipton.wpcomstaging.com/2012/12/19/branch-and-bound-why-does-it-work/

[McD98] Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete
mathematics, pages 195–248. Springer, 1998. 8

[Mic08] Daniele Micciancio. Efficient reductions among lattice problems. In SODA, 2008. 2

[MJSS16] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell.
Branch-and-bound algorithms: A survey of recent advances in searching, branching,
and pruning. Discrete Optimization, 19:79–102, February 2016. 1, 6

[Ste15] Noah Stephens-Davidowitz. Dimension-preserving reductions between lattice prob-
lems. http://noahsd.com/latticeproblems.pdf, 2015. 2

[Ste16] Noah Stephens-Davidowitz. Search-to-decision reductions for lattice problems with
approximation factors (slightly) greater than one. In APPROX, 2016. 2, 4

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://noahsd.com/latticeproblems.pdf

