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Abstract

We construct an explicit ε-hitting set generator (HSG) for regular ordered branching pro-
grams of length n and unbounded width with a single accept state that has seed length

O(log(n)(log log(n) + log(1/ε))). (1)

Previously, the best known seed length for regular branching programs of width w with a single
accept state was by Braverman, Rao, Raz and Yehudayoff (FOCS 2010, SICOMP 2014) and
Hoza Pyne and Vadhan (ITCS 2021), which gave

O(log(n)(log log(n) + min{log(w), log(n)}+ log(1/ε))).

We also give a simple co-HSG for the model with optimal seed length O(log n).
For the more restricted model of permutation branching programs, Hoza Pyne and Vadhan

(ITCS 2021) constructed a PRG with seed length matching (1), and then Pyne and Vadhan
(CCC 2021) developed an error-reduction procedure that gave an HSG (in fact a “weighted

PRG”) with seed length Õ(log(n)
√

log(n/ε) + log(1/ε)). We show that if an analogous error-
reduction result could be obtained for our HSG, there is an explicit HSG for general ordered
branching programs of width w = n with seed length Õ(log3/2 n), improving on the O(log2 n)
seed length of Nisan (Combinatorica 1992).
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1 Introduction

Starting with the work of Babai, Nisan, and Szegedy [BNS92], there has been three decades of work
on constructing and analyzing pseudorandom generators and variants for space-bounded computa-
tion, motivated by obtaining unconditional derandomization (e.g. seeking to prove that BPL = L)
and a variety of other applications (e.g. [Ind06, Siv02, HVV06, HHR11]). As in previous work, we
will use the following nonuniform model of space-bounded computation, which captures how a ran-
domized small-space algorithm uses its random bits. For l ∈ N we write [l] to denote {0, . . . , l− 1}.

Definition 1.1. An ordered branching program (OBP) B of length n and width w computes
a function B : {0, 1}n → {0, 1}. On an input x ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads the next input
symbol xt and updates its state according to a transition function Bt : [w]×{0, 1} → [w] by taking
vt = Bt(vt−1, xt). Note that the transition function Bt can differ at each time step.

Moreover, there is a set Vacc of accept states. Let vn be the final state reached by the branching
program on input x. If vn ∈ Vacc the branching program accepts, denoted B(x) = 1, and otherwise
the program rejects, denoted B(x) = 0. We also consider branching programs restricted to having
a single accept state, which is always denoted vacc.

We focus our attention on branching programs with additional structure:

Definition 1.2. An (ordered) regular branching program of length n and width w is an
ordered branching program where for every t = 1, . . . , n and every v ∈ [w], there are exactly 2 pairs
(u, b) ∈ [w]× {0, 1} such that Bt(u, b) = v.

Ordered regular branching programs are a powerful model with connections to space-bounded
derandomization, which we will detail later. We now recall the formal definition of hitting set and
pseudorandom generators. We let Ui denote the uniform distribution over {0, 1}i and US be the
uniform distribution over the set S.

Definition 1.3. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-hitting set generator
(ε-HSG) for F is a function H : {0, 1}s → {0, 1}n such that for every f ∈ F where Prx←Un [f(x) =
1] > ε, there exists x ∈ {0, 1}s such that f(H(x)) = 1.

Definition 1.4. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-pseudorandom gener-
ator (ε-PRG) for F is a function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,∣∣∣∣ Pr

x←U{0,1}n
[f(x) = 1]− Pr

x←U{0,1}s
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.
We say that G ε-fools F if it is an ε-PRG for F . The value s is the seed length of the PRG
(resp. HSG). We say a generator G is explicit if the ith bit of output is computable in space O(s).

Note that with our definition, an ε-PRG for a class F is an ε-HSG for F . It can be shown via
the probabilistic method that there is a (nonexplicit) ε-PRG for ordered branching programs of
length n and width w that has seed length O(log(nw/ε)), and moreover this seed length is optimal.
Decades of work has focused on constructing explicit hitting set and pseudorandom generators for
branching programs, motivated by the derandomization of space-bounded computation. All results
we subsequently discuss are explicit constructions. In 1990, Nisan [Nis92] constructed a PRG for
general ordered branching programs:
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Theorem 1.5 ([Nis92]). There exists an explicit ε-PRG for ordered branching programs of length
n and width w that has seed length

O(log(n)(log(n) + log(w) + log(1/ε)).

Nisan’s PRG is a factor of O(log n) from optimal, and achieves seed length O(log2 n) when
w ≤ poly(n) and ε ≥ 1/ poly(n), rather than the optimal O(log n).

In 2010, Braverman, Rao, Raz and Yehudayoff [BRRY10] achieved near-optimal dependence on
n for regular branching programs:1

Theorem 1.6 ([BRRY10]). There exists an explicit ε-PRG for regular branching programs of length
n and width w that has seed length

O(log(n)(log log(n) + log(w) + log(1/ε))).

However, if we consider w = poly(n) or ε = 1/ poly(n), the seed length remains O(log2 n) as
Nisan’s PRG. In addition, they obtained an HSG for regular branching programs with seed length
O(w log(n)).2

In 2020, Hoza, Pyne and Vadhan [HPV21] were able to eliminate the dependence on the width w
for permutation branching programs with a single accept state. Permutation branching programs
are a restricted class of regular branching programs where the transitions Bt(·, 1) and Bt(·, 0)
corresponding to each fixed input bit form a permutation on [w].

Theorem 1.7 ([HPV21]). There exists an explicit ε-PRG for permutation branching programs of
length n and unbounded width with a single accept state that has seed length

O(log(n)(log log(n) + log(1/ε))).

In addition, their work implies an explicit ε-HSG for regular branching programs of unbounded
width with a single accept state that has seed length

O(log(n)(log(n) + log(1/ε))).

However, neither result beats Nisan’s O(log2 n) barrier where w = poly(n) and we allow an arbitrary
set of accept states.

Recently, Pyne and Vadhan [PV21b] obtained an improved hitting set generator for permutation
branching programs of unbounded width:

Theorem 1.8 ([PV21b]). There exists an explicit ε-HSG for permutation branching programs of
length n and unbounded width with a single accept state that has seed length

Õ(log(n)
√

log(n/ε) + log(1/ε)).

Here, if we consider w = poly(n) and an arbitrary set of accept states, their HSG obtains seed
length Õ(log3/2 n), beating Nisan in the regime motivated by space-bounded derandomization.
This result is obtained by an “error reduction” procedure applied to the PRG of Hoza et al.
(Theorem 1.7).

1They consider regular branching programs with a single accept state, but dividing ε by w to allow an arbitrary
set of accept states does not change the seed length.

2The lack of dependence on ε can be explained by the observation of Braverman et al. that every regular branching
program that has nonzero acceptance probability has acceptance probability at least 1/2w−1, so WLOG ε > 1/2w,
i.e. w > log(1/ε).
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1.1 Our Contribution

In the case of regular branching programs with a single accept state, we eliminate the dependence
on w of Braverman et al. (Theorem 1.6), at the cost of only obtaining a hitting set generator.

Theorem 1.9. Given n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a single accept state that has seed length

O(log(n)(log log(n) + log(1/ε))).

Note that this result matches the seed length of the PRG of Hoza et al. (Theorem 1.7). For
regular branching programs of width w = poly(n) (the regime most relevant for the derandomization
of space-bounded computation), Theorem 1.9 is the first explicit construction with seed length
o(log2 n).

Since a regular branching program with a accept states can be written as a sum of a regular
branching programs each with a single accept state, we obtain the following corollary:3

Corollary 1.10. Given n, a ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a accept states that has seed length

O(log(n)(log log(n) + log(a/ε))).

To motivate our focus on regular branching programs of large width with a single accept state,
we prove that reducing the error of our construction analogously to how Pyne and Vadhan (The-
orem 1.8) did to the [HPV21] PRG (Theorem 1.7) would imply major advances in the derandom-
ization of space-bounded computation. We achieve this by extending results of Reingold Trevisan
and Vadhan [RTV06] to show a reduction from general ordered branching programs to regular
branching programs.

Theorem 1.11. Suppose there is an explicit ε/20-PRG (resp. HSG, weighted PRG) G : {0, 1}s →
{0, 1}t for regular branching programs of length t = poly(n log(w/ε)) and width poly(nw/ε). Then
there is an explicit ε-PRG (resp. HSG, weighted PRG) G′ : {0, 1}s → {0, 1}n for ordered branching
programs of length n and width w.

The main novelties of this reduction over that of [RTV06] are that it applies to HSGs and
WPRGs, not just PRGs, and that it only requires a PRG for regular branching programs over the
binary alphabet, whereas the [RTV06] reduction requires one over an alphabet of size poly(nw/ε).

Combining Theorem 1.11 with prior work, we read off several corollaries. We note an analogue
of the error-reduction result of Pyne and Vadhan (Theorem 1.8) would imply hitting sets for general
ordered branching programs beating the O(log2 n) barrier of Nisan.

Corollary 1.12. Suppose there is an explicit ε-HSG for regular branching programs of length n
and unbounded width with a single accept state that has seed length Õ(log(n)

√
log(n/ε)+ log(1/ε)).

Then there is an explicit ε-HSG for ordered branching programs of length n and width w with seed
length

Õ(log(n)
√

log(nw/ε) + log(w/ε)).

3We remark that it is not possible to improve this dependence on a by any analysis of the INW generator that
only uses the expansion properties of the auxiliary expanders [PV21a], even for HSGs.
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Recall that BPL is the set of languages decided by randomized logspace machines with two-sided
error, and L is the set of languages decided by deterministic logspace machines. The construction
of Saks and Zhou [SZ99], generalized by Armoni [Arm98], shows that a PRG improving on Nisan’s
dependence on the width w implies an improved derandomization of BPL. Braverman, Cohen and
Garg [BCG18] and Chattopadhyay and Liao [CL20] showed that a weighted PRG suffices. Using
Theorem 1.11, we deduce that a weighted PRG for regular BPs suffices:

Corollary 1.13. Suppose there is an explicit ε-weighted PRG for regular branching programs of
length n and unbounded width with a single accept state that has seed length O(log2 n + log(1/ε)).
Then BPL ⊆ L4/3.

Recently, Cheng and Hoza [CH20] proved that optimal HSGs for ordered branching programs
imply derandomization of logspace algorithms with two-sided error. Again using Theorem 1.11, we
deduce that an HSG for regular BPs suffices:

Corollary 1.14. Suppose there is an explicit ε-HSG for regular branching programs of length n
and width w with seed length O(log(nw/ε)). Then BPL = L.

It is natural to wonder if our HSG (Theorem 1.9) can be strengthened to be a PRG. To this
end, we observe that the Braverman et al. [BRRY10] co-HSG for constant width regular branching
programs extends to regular BPs with a constant number of accept states.

Proposition 1.15. Given n, a ∈ N, the set H = {σ ∈ {0, 1}n : wt(σ) ≤ a} where wt(σ) denotes the
Hamming weight of σ is a co-hitting set for regular branching programs of length n and unbounded
width with a accept states. That is, for every regular branching program B with at most a accept
states that is not the constant function B(x) = 1, there is σ ∈ H such that B(σ) = 0.

In contrast, Hoza et al. [HPV21] show that a random function is not a co-HSG for regular
branching programs of unbounded width and a single accept state unless the seed length is Ω(n).
Thus, we obtain a very simple explicit construction with exponentially shorter seed length than
that obtained via the probabilistic method.

1.2 Perspective

The recent progress on pseudorandomness for permutation branching programs [HPV21, PV21b]
has heavily relied on the permutation property of such programs to apply powerful results in
spectral graph theory [RV05, AKM+20, CKK+18]. (Specifically, permutation branching programs
have the property that the underlying graph remains regular and hence the uniform distribution
remains stationary even when we restrict to a pseudorandom sequence of paths.) Regular branching
programs have seemed much more difficult to handle, reinforced by the result of [RTV06] (cf.
Theorem 1.11) showing that pseudorandom generators for them can be used to derandomize all
space-bounded computation. Our work gives hope that this barrier can be bypassed, as we show
that the parameters of the [HPV21] PRG (Theorem 1.7) for permutation branching programs can
be matched by a HSG for regular branching programs (Theorem 1.9), and we prove this using
purely combinatorial arguments rather than spectral graph theory. If we can match the error
reduction of [PV21b] (Theorem 1.8) for regular branching programs, then we will obtain a major
improvement for HSGs for general ordered branching programs of polynomial width, obtaining seed
length Õ(log3/2 n) versus the O(log2 n) of Nisan’s PRG (Theorem 1.5).
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1.3 Overview of Proof of Theorem 1.9

The proof of Theorem 1.9 consists of two separate results which may be of independent interest.
Both results relate to a model of computation intermediate between regular and general branching
programs, which we formally define now.

Definition 1.16. An (ordered) regular plus sudden reject branching program B of length
n and width w has its set of states as {[w],⊥} in each layer. For every t ∈ 1, . . . , n, for every v ∈ [w]
there are at most two pairs (u, b) ∈ [w]× {0, 1} such that Bt(u, b) = v. Furthermore, Bt(⊥, b) =⊥
for all t, b. There is a single accept state vacc ∈ Vn and vacc 6=⊥.

In effect, a regular plus sudden reject BP consists of a width-w regular BP with a reject sink
⊥ added to each layer; transitions that previously reached states in [w] in the next layer can be
redirected to ⊥. A regular plus sudden reject program of width w is also a general ordered branching
program of width w + 1.

In Section 2, we show that for every ε > 0, every unbounded width regular branching program
B with a single accept state has a ε-“lower approximator” of width w = O(1/ε). This is a regular
plus sudden reject branching program BL that accepts on a susbet of the strings accepted by B,
and has acceptance probability (under the uniform distribution) within ε of that of B.

Proposition 1.17. Given ε > 0 and a regular branching program of length n and unbounded width
with a single accept state B, there is a length n, width d1/εe regular plus sudden reject branching
program Bε such that Bε is an ε-lower approximator of B.

We obtain Proposition 1.17 by a more careful analysis of a result of Hoza et al. [HPV21],
who prove that unbounded-width regular branching programs have ε-lower approximators of width
w = O(n/ε). The key observation behind our improvement is that regular branching programs
cannot concentrate low probability events. We show that removing all states in all layers with
probability at most ε of being reached under a uniformly random input decreases the probability
of reaching the accept state by at most ε (wiith no dependence on n). Thus, we can restrict a
branching program by discarding all but the most likely d1/εe states in each layer without cutting
the accept probability by more than ε. Every transition that would reach a discarded state is
instead sent to ⊥, which is why we require a sudden reject state.

Due to these lower approximators not being regular branching programs, we would naively need
to use a generator for general ordered branching programs to fool them. Unfortunately, existing
generators for that model have seed length Ω(log2 n) even for w = 4 and ε = Ω(1). To circumvent
this issue, we show in Section 3 that the INW PRG fools such “morally regular” branching programs
with seed length matching that of the result of Braverman et al. [BRRY10] for regular branching
programs:

Theorem 1.18. Given n,w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-PRG for regular plus
sudden reject branching programs of length n and width w that has seed length

O(log(n)(log log(n) + log(w) + log(1/ε))).

We show this result using a modification of the approach of Braverman et al. [BRRY10]. For
states u, v connected by a transition in the branching program, they define the weight of the
transition as |pu→− pv→|, where pu→ is the probability of accepting from u over uniformly random
input, and likewise for v. They show for a regular branching program of width w, the sum of the
weights of every transition is O(w), which crucially has no dependence on n. We extend this bound
on weight to regular plus sudden reject branching programs, via a modification of their “pebble
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game.” We then appeal to their result that the Impagliazzo–Nisan–Wigderson (INW) generator
fools programs with weight O(w) with the desired seed length.

Then to prove Theorem 1.9, a standard argument shows that an ε-PRG against an ε-lower
approximator BL of B is also a a 3ε-HSG for B. By Proposition 1.17, we can take BL to have
width O(1/ε). Thus by Theorem 1.18, we get a PRG against BL (and hence HSG against B) with
seed length

O(log(n)(log log(n) + log(1/ε)))

as desired.

1.4 Overview of Proof of Theorem 1.11

Our “transfer theorem” Theorem 1.11 is a modification of a result of Reingold Trevisan and Vad-
han [RTV06]. We give a version of their proof in the notation of branching programs in Appendix B:

Theorem 1.19 (Variant of [RTV06]). Given n,w ∈ N and ε > 0, there is D′ = O((ε/nw)4) such
that if G : {0, 1}s → [D′]n is an explicit ε-PRG (resp. HSG) for regular branching programs of length
n, width (nw/ε)8 and degree D′, there is an explicit 10ε-PRG (resp. HSG) G′ : {0, 1}s → {0, 1}n
for ordered branching programs of length n and width w.

Outside the appendix we assume all branching programs are of degree d = 2, and we give
the formal definitions of higher degree branching programs, and pseudorandom objects for such, in
Appendix A. To complete the proof of Theorem 1.11, we prove that sufficiently good pseudorandom
objects for regular branching programs over a binary alphabet imply equivalent constructions for
regular branching programs over larger alphabets. Specifically:

Theorem 1.20. Given n,w, d ∈ N and ε > 0, there is t = O(n log(nd/ε)) such that if there is an
explicit ε-PRG (resp. HSG) G : {0, 1}s → {0, 1}t for regular branching programs of length t, width
10wn2d/ε and degree 2, there is an explicit 4ε-PRG (resp. HSG) G′′ : {0, 1}s → [d]n for regular
branching programs of length n, width w and degree d.

The proof of Theorem 1.20 consists of a pair of reductions, and here we focus on the case where
the initial object is a PRG for simplicity.

First, given R = 2r ∈ N we show that given an explicit ε-PRG G : {0, 1}s → {0, 1}n for regular
branching programs of length n and width w over a binary alphabet, there is an explicit ε-PRG for
regular branching programs of length n/r and width w/R over the alphabet [R]. To establish this,
we take an arbitrary regular branching program B of length n/r and width w/R over the alphabet
[R]. We blow up each state in layer i of B into a “cloud” of R/2 states in layer ir of a new regular
branching program B′ : {0, 1}(n/r)r → {0, 1}. Then for every transition Bi(v, x) = u in the original
branching program, we add a gadget in layers ir, . . . (i+ 1)r of B′ that transitions from every state
in cloud C(v) to some state in cloud C(u) on input x, viewing x ∈ [R] as a binary string in {0, 1}r.
We then mark all states in the clouds corresponding to accept states in B as accept states in B′.
This increases the width (and number of accept states) by a factor of R/2 but exactly preserves
the computed function, so G ε-fooling B′ implies q ◦G ε-fools B, where q simply maps each block
of r bits to a number in [R].

Second, given d ∈ N (which need not be a power of 2) we show that given an explicit ε-PRG
G : {0, 1}s → [R]n for regular branching programs of length n, width w and degree R where
R = O(nd/ε) is a sufficiently large power of 2, there is an explicit 4ε-PRG for regular branching
programs of length n, width w and degree d. Here we take an arbitrary regular branching program
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B : [d]n → {0, 1} of width w and duplicate each transition bR/dc times to create a new regular
program B′ : [R]n → {0, 1}. This leaves at most d “extra” symbols in [R] that have not been
assigned, so for every state in B we wire the transitions corresponding to these symbols to nw new
dummy states that always reject. Letting p : [R]n → [d]n be the function that maps each symbol
to its preimage under the blowup (and maps the extra symbols arbitrarily), we wish to show that
p ◦G fools B.

To show this claim, we call x ∈ [R]N BAD if it contains an extra symbol. For every x that
is not BAD, we have B(p(x)) = B′(x) by construction. Furthermore, a random string x ← U[R]n

is BAD with probability at most n(d/R) < ε, and there exists a regular branching program Q of
width n ≤ w. Since G ε-fools Q, G has at most a 2ε fraction of BAD outputs, and so a chain of
inequalities shows that p ◦ G 4ε-fools B. Combining these two reductions, we obtain the desired
result.

1.5 Preliminaries

First, we define notation relating to states and transitions in a branching program.

Definition 1.21. For a branching program B of length n, let V0, V1, . . . , Vn be the sets of states in
layers 0, 1, . . . , n respectively. For v ∈ Vi and u ∈ Vj for j > i, we write B[v, x] = u if the program
transitions to state u starting from state v on input x ∈ {0, 1}j−i.

Next, we define notation for the probability of reaching the accept state from the start state,
and notation for the probability of accepting from that state.

Definition 1.22. For a branching program B with start state v0 and accept state vacc, for every
state v ∈ Vi let p→v = Pr[B[v0, Ui] = v] be the probability v is reached from the start state over
Ui, and let pv→ = Pr[B[v, Un−i] = vacc] be the probability the program reaches the accept state
over Un−i starting from v, where we define p→v0 = 1 and p→v = 0 for all v ∈ V0 \ v0 and likewise
pvacc→ = 1 and pv→ = 0 for v ∈ Vn \ vacc.

For a state v with transitions to u1, u2 (which are not necessarily distinct), the accept probability
pv→ is exactly equal to (pu1→ + pu2→)/2. Next, we define notation for the strings accepted by a
given branching program.

Definition 1.23. Given a branching program B of length n, let the accept set of B be defined
as A(B) = {x ∈ {0, 1}n : B[v0, x] ∈ Vacc}.

Definition 1.24. Given two branching programs B,B′ of length n, let

A∆(B,B′) =
|A(B)∆A(B′)|

2n

be the relative mass of the symmetric difference of A(B) and A(B′).

We require the following basic proposition:

Proposition 1.25. Given two branching programs B,B′ of length n, |Pr[B(Un) = 1]−Pr[B′(Un) =
1]| ≤ A∆(B,B′).

With this, we formally define the concept of a lower approximator.

Definition 1.26. Given a branching program B of length n and ε > 0, a length-n branching
program BL is an ε-lower approximator of B if A(BL) ⊆ A(B) and A∆(B,BL) ≤ ε.
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1.6 Organization

In Section 2, we show that regular branching programs with a single accept state can be approxi-
mated from below by regular plus sudden reject branching programs of width O(1/δ), where δ is
the approximation parameter. In Section 3 we prove the INW PRG fools regular plus sudden reject
branching programs. In Section 4 we combine these two results and conclude Theorem 1.9, and
give a short proof of Proposition 1.15. In Appendix A we prove Theorem 1.20, establishing that
pseudorandom objects for regular programs over a binary alphabet imply pseudorandom objects
for regular programs over a d-ary alphabet. In Appendix B we re-prove the result of Reingold
Trevisan and Vadhan [RTV06] in a formulation convenient for our use, and show their argument
works for HSGs.

2 Lower Approximators for Regular Branching Programs

We first show that regular branching programs of unbounded width have bounded-width lower ap-
proximators. Hoza et al. [HPV21] showed (Theorem 4.1) that unbounded-width regular branching
programs have regular ε-lower approximators of width O(n2/ε), which is too large for our applica-
tion.4 To obtain a lower approximator of width O(1/ε), we make two changes. First, rather than
retaining the n/ε most important states at each layer, we prove that retaining only the 1/ε most
important states suffices. Second, we compress the unimportant states into a single state ⊥. This
results in a non-regular lower approximator, though it retains enough structure that it is easy to
fool.

Proposition 1.17. Given ε > 0 and a regular branching program of length n and unbounded width
with a single accept state B, there is a length n, width d1/εe regular plus sudden reject branching
program Bε such that Bε is an ε-lower approximator of B.

Proof. First note that if p→vacc ≤ ε the result is immediate, so we subsequently assume this is not
the case. Let Vε = {v : p→v ≤ ε} be the set of states of B that have at most ε probability of being
reached over random input. We claim that for every state of B, the probability that a random input
reaches this state from v0 after passing through at least one element of Vε is at most ε. Formally:

Claim 2.1. For every i ∈ {1, . . . , n} and v ∈ Vi,

Pr
x←Ui

(B[v0, x] = v)
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)

 ≤ ε.
Proof. We show this via induction on i. The property is vacuously true for states in the 0th layer.
Assuming it holds for layer i, consider v ∈ Vi+1. If v ∈ Vε the property holds since

Pr
x←Ui+1

(B[v0, x] = v)
∧ i+1∨

j=1

(B[v0, x1..j ] ∈ V ε)

 = Pr
x←Ui+1

[B[v0, x] = v]

= p→v ≤ ε.
4They also show unbounded-width regular programs have regular plus sudden reject lower approximators of width

O(n/ε), which is likewise too wide.
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Otherwise, let u1, u0 ∈ Vi be the (not necessarily distinct) states in layer i with 1 and 0 transitions
to v respectively. Then

Pr
x←Ui+1

(B[v0, x] = v)
∧ i+1∨

j=1

(B[v0, x1..j ] ∈ V ε)


= Pr

x←Ui+1

[(B[v0, x1..i] = u1 ∧ xi+1 = 1) ∨ (B[v0, x1..i] = u0 ∧ xi+1 = 0)]
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)


=

1

2
· Pr
x←Ui

(B[v0, x] = u1)
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)


+

1

2
· Pr
x←Ui

(B[v0, x] = u0)
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)


≤ ε

2
+
ε

2

so the claim follows.

We conclude by creating Bε from B by wiring all transitions that would reach states in Vε to
the sudden reject state ⊥ in the relevant layer, and removing all states in Vε. Since there are at
most d1/εe states in each layer not in Vε (and there can be made to be exactly d1/εe such states
by adding dummy states with no in transitions and both out transitions wired to ⊥), and the non-
removed states have at most 2 in transitions, this produces a regular plus sudden reject branching
program of the desired width. Furthermore, the program is a lower approximator since the only
added state is ⊥. To see that A∆(Bε, B) ≤ ε, note that for x where B(x) = 1 and Bε(x) = 0 it
must be the case that B[v0, x] = vacc and B hits some element of Vε on x, so applying Claim 2.1
we obtain that there are at most ε · 2n such strings x.

As a corollary, we obtain that ε-hitting sets for branching programs of width O(1/ε) also
constitute O(ε)-hitting sets for regular programs of unbounded width.

Corollary 2.2. Let H be an ε/2-hitting set generator for ordered branching programs of length n
and width 1 + d2/εe. Then H is an ε-hitting set generator for regular branching programs of length
n and unbounded width with a single accept state.

Proof. Given an arbitrary regular branching program B such that Pr[B(Un) = 1] > ε, let BL be the
length n, width d2/εe + 1, ε/2-lower approximator ordered branching program that is guaranteed
to exist by Proposition 1.17. We have

Pr[BL(Un) = 1] = Pr[B(Un) = 1] + (Pr[BL(Un) = 1]− Pr[B(Un) = 1]) > ε−A∆(B,BL) ≥ ε/2

where the first inequality follows from Proposition 1.25. By assumption H hits BL and therefore
B, and since B was arbitrary we are done.

This establishes that better HSGs for ordered branching programs in the constant width, con-
stant error case imply improved constant-error hitting sets for regular branching programs of un-
bounded width with a single accept state. Unfortunately, even for general ordered branching
programs of width w = 4 the best known explicit HSG remains Nisan’s PRG, with seed length
Θ(log2 n). To obtain seed length o(log2 n), we must exploit the specific structure of regular plus
sudden reject branching programs.
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3 Fooling Regular Plus Sudden Reject Branching Programs

We now show that the lower-approximators produced by Proposition 1.17 can be fooled by the
Impagliazzo–Nisan–Wigderson [INW94] generator. We recall the precise statement:

Theorem 1.18. Given n,w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-PRG for regular plus
sudden reject branching programs of length n and width w that has seed length

O(log(n)(log log(n) + log(w) + log(1/ε))).

Our approach is similar to that of Baverman, Rao, Raz and Yehudayoff [BRRY10], in that
we show the error incurred by the generator does not accumulate linearly over the length of the
program. In fact, we show this by modifying the “pebble game” of [BRRY10], and appealing to their
results that the INW generator fools all programs with low “weight”. The weight of a branching
program can be thought of as the sum of the importance of the transitions, and we formally define
it now. Recall that pv→ is the probability of accepting from state v over truly random input. In
the notation of Braverman, Rao, Raz and Yehudayoff, this is denoted p(v).

Definition 3.1. Given a (not necessarily regular) branching program B, let

weight(B) =
∑

(u,v,b):B[u,b]=v

|pu→ − pv→|.

Furthermore, the weight of a specific transition from state u to state v is |pu→ − pv→|.

Braverman et al. prove that for B an arbitrary regular branching program of width w,
weight(B) ≤ 2(w + 1), which crucially has no dependence on n. The set of branching programs
we work with are not regular, but are almost regular, in that the only state with in-degree greater
than 2 is always wired to itself and always rejects in the final layer. We show that the weight of
regular plus sudden reject branching programs still does not depend on n. This is despite the fact
that a general ordered branching program of width 3 can have weight Ω(n).

Lemma 3.2. Let B be a regular plus sudden reject branching program of width w. Then weight(B) ≤
6w + 2.

To prove this, we introduce a modification of the pebble game of Braverman et al. [BRRY10]:

Definition 3.3. For every w ∈ N, the (modified) pebble game of size w features an initial
configuration of 2w pebbles 0 = q0 = q1 = . . . = q2w−3, 1 = q2w−2 = q2w−1, where qi denotes the
initial position of pebble i. At each step, a valid move consists of either moving a pair of pebbles
at positions a < b to position (a+ b)/2, which scores b− a, or moving a pebble to 0, which scores
nothing. The value of the game is the supremum over every valid sequence of moves of the score
obtained by those moves.

Our modification consists of adding the ability to move pebbles to the origin, which scores
nothing. We first bound the value of the game, then show that the weight of a regular plus sudden
reject branching program of width w is bounded by the value of the game of size w.

Lemma 3.4. The value of the pebble game of size w is at most 6w + 2.
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Proof. Let {qi}i∈[2w] be the positions of the pebbles at some point in the game. Given these
positions, define P =

∑
i,j∈[2w] |qi − qj | as the potential of the configuration. Note that P ≥ 0

always, and P = P0 ≤ 2w at the start of the game.
We claim that a move that scores δ decreases the potential of the game by at least δ. To see

this, note that for pebbles r1, r2 at positions a < b moved to (a + b)/2, for a pebble at position
c ≤ a or b ≤ c the sum of distances to r1 and r2 is unchanged. For a pebble at position a < c < b,
the sum of distances to r1 and r2 decreases. To see this, let x = (c − a) and y = (b − a)/2, and
WLOG x < y. Then the sum of distances from r1, r2 to the pebble at c starts at x+ (2y− x) = 2y
and ends at 2(y−x) < 2y. Finally, the distance between r1 and r2 decreases by exactly δ = |b−a|.

Next, note that moves that are not moving a pebble to zero do not change the sum D =∑
i∈[2w] qi of distances from zero. Note that D = D0 ≤ 2 at the start of the game and D ≥ 0

always. Furthermore, if a move to 0 increases P by γ, it decreases D by at least γ/2w. Thus moves
to zero can increase the potential P by at most 4w over the entire game.

Thus every move can either score δ and decrease P by at least δ (and leave D fixed), or increase
P by γ and decrease D by at least γ/4w (and leave the score fixed). Thus, we bound the maximum
possible score of every sequence of moves by 4w ·D0 + P0 ≤ 4w + 2(w + 1) as desired.

With this, we are prepared to prove Lemma 3.2, by giving a sequence of moves in the pebble
game whose score is exactly equal to the weight of the program.

Proof of Lemma 3.2. We model the weight of the program using the pebble game. For all j ∈ [w],
let q2j = q2j−1 = pvj→ ∈ [0, 1] where vj is the jth state in Vn\ ⊥, which corresponds to the initial
configuration of the pebble game of size w (and without loss of generality assume vw = vacc). We
do not place pebbles corresponding to ⊥.

Assume that there are 2 pebbles at pvj→ ∈ [0, 1] for all vj ∈ Vi\ ⊥, which is initially satisfied
with i = n. If there are t total transitions from states in Vi−1 to ⊥, there are t states (with
multiplicity) in Vi with fewer than two in-transitions. For every v ∈ Vi missing at least one in-
transition, move the corresponding number of pebbles from pv→ to p⊥→ = 0 (which scores nothing).
Now consider arbitrary u ∈ Vi−1. If u has transitions to v1 6=⊥ and v2 6=⊥, move pebbles from
pv1→, pv2→ to (pv1→ + pv2→)/2 = pu→. Otherwise, for the one or two transitions to ⊥, use one
or two of the pebbles at p→⊥ = 0 to make the corresponding move (handling the other transition
normally if relevant) to pu→. As p⊥→ = 0 in every layer, transitions from ⊥ to itself have weight
zero and can be ignored. Performing these moves for all u ∈ Vi−1\ ⊥, we obtain two pebbles on
pu→ for all u ∈ Vi−1\ ⊥, and the score obtained via this sequence of moves is precisely the weight
of all transitions from layer i− 1 to layer i. By iterating this procedure from layer n to layer 0, we
obtain a sequence of moves in the pebble game that scores exactly weight(B). But then weight(B)
is upper bounded by the value of the pebble game of size w, and we conclude by Lemma 3.4.

We now recall the main theorem of Braverman et al. [BRRY10], slightly restating it for our
application:

Theorem 3.5 (Theorem 5 [BRRY10]). Given i ∈ N and β ∈ (0, 1/2), there exists an explicit
(INW) PRG G : {0, 1}s → {0, 1}2i with error parameter β and seed length s = O(i · log(1/β)).
Then for every (not necessarily regular) branching program B of width w and length 2i we have

|Pr[B(U2i) = 1]− Pr[B(G(Us)) = 1]| ≤ i · (w + 1) · β · weight(B).

Then the proof of Theorem 1.18 is direct:

11



Theorem 1.18. Given n,w ∈ N and ε ∈ (0, 1/2), there is an explicit ε-PRG for regular plus
sudden reject branching programs of length n and width w that has seed length

O(log(n)(log log(n) + log(w) + log(1/ε))).

Proof. Since branching programs can ignore bits, without loss of generality assume n is a power
of 2. Let G : {0, 1}s → {0, 1}n be the explicit PRG of Theorem 3.5 with β = ε/14w2 log(n) and
i = log(n) and seed length s = O(log(n)(log log(n) + log(w) + log(1/ε))).

Now fix an arbitrary regular plus sudden reject branching program B of length n and width w.
We have that

Pr[B(Un) = 1]− Pr[B(G(Us)) = 1]| ≤ log(n) · (w + 2) · weight(B) · β (Theorem 3.5)

≤ log(n) · (w + 2) · 7w · β (Lemma 3.4)

≤ ε

and since B was arbitrary we otain the desired result.

4 Putting It All Together

We have that every regular branching program with a single accept state can be ε-lower approx-
imated by a regular plus sudden reject branching program of width w = O(1/ε), and the INW
generator fools regular plus sudden reject branching programs with seed length Õ(log(n) log(w/ε)),
so the proof of Theorem 1.9 is direct.

Theorem 1.9. Given n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a single accept state that has seed length

O(log(n)(log log(n) + log(1/ε))).

Proof. Let G : {0, 1}s → {0, 1}n be the explicit generator obtained from Theorem 1.18 with n = n
and w = d2/εe and ε = ε/4 with seed length s = O(log(n)(log log(n) + log(1/ε))).

Now fix an arbitrary regular branching program B of length n with a single accept state where
Pr[B(Un) = 1] > ε. Let BL be the ε/2-lower approximator of B that is guaranteed to exist by
Proposition 1.17. We have that BL is a regular plus sudden reject branching program of length
n and width d2/εe. Furthermore Pr[BL(Un) = 1] > ε − ε/2 by Proposition 1.25 and the reverse
triangle inequality. We have that G ε/4-fools BL, i.e.

|Pr[BL(Un) = 1]− Pr[BL(G(Us)) = 1]| ≤ ε/4,

therefore
Pr[BL(G(Us)) = 1] > ε/2− ε/4 ≥ 0.

So there is some string σ such that BL(G(σ)) = 1 and thus G hits BL and thus B. As B was
arbitrary, we conclude.

We now prove Corollary 1.10. The proof consists of noticing that a program with a accept
states and probability of accepting at least ε must have some accept state with probability of being
reached at least ε/a, and it suffices to hit this state.

Corollary 1.10. Given n, a ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a accept states that has seed length

O(log(n)(log log(n) + log(a/ε))).
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Proof. Given a regular branching program B of unbounded width and a accept states Vacc =
{v1, . . . , va} ⊆ Vn such that Pr[B(Un) = 1] > ε, we have that B can be written as B(x) =∑a

i=1Bi(x), where Bi is the program with identical structure to B with single accept state vacc = vi.
Then by linearity of expectation

a∑
i=1

Pr[Bi(Un) = 1] = Pr[B(Un) = 1] > ε

and since Pr[Bi(Un) = 1] is non-negative for all i there is some i0 such that Pr[Bi0(Un) = 1] > ε/a.
Then applying Theorem 1.9 with error ε/a, we obtain that G hits Bi0 and thus B, and seed length
and explicitness are as claimed.

Finally, we give a direct proof of Proposition 1.15, which we recall. The set is identical, and the
proof of correctness is nearly identical, to the hitting set for width w regular branching programs
of Braverman et al [BRRY10].

Proposition 1.15. Given n, a ∈ N, the set H = {σ ∈ {0, 1}n : wt(σ) ≤ a} where wt(σ) denotes the
Hamming weight of σ is a co-hitting set for regular branching programs of length n and unbounded
width with a accept states. That is, for every regular branching program B with at most a accept
states that is not the constant function B(x) = 1, there is σ ∈ H such that B(σ) = 0.

Proof. Let B be an arbitrary regular branching program of length n and unbounded width with at
most a accept states such that B(x) is not the constant 1 function.

We say a state v ∈ Vi is doomed if for every x ∈ {0, 1}n−i we have that B[v, x] ∈ Vacc. We say
a state v ∈ Vi is important if B[v, 0] is doomed and B[v, 1] is not, or vice versa. We claim that
B has at most a layers with at least one important state. To prove this, first note that if there
are k doomed states in Vi, there are at least k doomed states in Vi+1. This is because for doomed
v ∈ Vi, by definition B[v, 1] and B[v, 0] are doomed, and states in Vi+1 have in-degree at most 2.
Furthermore, note that if there are k doomed states in Vi and a non-doomed v ∈ Vi is important,
the number of doomed states in Vi+1 is at least k + 1, because there are at least 2k + 1 transitions
that must end at doomed states in Vi+1. We conclude by noting that there at at most a doomed
states in Vn, so the claim follows.

Finally, we show that the hitting set has a string that reaches a reject state. Consider an
algorithm starting at u = v0 ∈ V0. At each step, if u is an important state, take the transition
that leads to a non-doomed state, and otherwise take the 0 transition. Since B is not the constant
function B(x) = 1, this procedure reaches a reject state, and by the claim we take at most a 1
transitions, so there is σ ∈ H such that B(σ) = 0. Since B was arbitrary, we conclude.
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A Reductions From Large Alphabets

In this section, we prove that PRGs and HSGs for regular branching programs over a binary
alphabet imply PRGs and HSGs for regular branching programs over larger alphabets, with mild
degradation in parameters. We remark that our reduction holds with identical parameters given a
weighted PRG as the initial pseudorandom object.

To do so, we first define branching programs of higher degree.

Definition A.1. An ordered branching program (OBP) B of length n, width w, and degree
/ alphabet size d computes a function B : [d]n → {0, 1}. On an input x ∈ [d]n, the branching
program computes as follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads
the next input symbol xt and updates its state according to a transition function Bt : [w]×[d]→ [w]
by taking vt = Bt(vt−1, xt). As in the d = 2 case, there is a set Vacc of accept states. Let vn be
the final state reached by the branching program on input x. If vn ∈ Vacc the branching program
accepts, denoted B(x) = 1, and otherwise the program rejects, denoted B(x) = 0. The program B
is regular if for every t ∈ 1, . . . , n and v ∈ [w] there are exactly d pairs (u, σ) ∈ [w]× [d] such that
Bt(u, σ) = v.

We define regular branching programs over larger alphabets.
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Definition A.2. An (ordered) regular branching program of length n, width w and degree d
is an ordered branching program where for every t = 1, . . . , n and every v ∈ [w], there are exactly
d pairs (u, b) ∈ [w]× [d] such that Bt(u, b) = v.

Finally, we formally define HSGs and PRGs over larger alphabets.

Definition A.3. Let F be a class of functions f : [d]n → {0, 1}. An ε-hitting set generator
(ε-HSG) for F is a function H : {0, 1}s → [d]n such that for every f ∈ F where Prx←U[d]n

[f(x) =
1] > ε, there exists x ∈ {0, 1}s such that f(H(x)) = 1.

Definition A.4. Let F be a class of functions f : [d]n → {0, 1}. An ε-pseudorandom generator
(ε-PRG) for F is a function G : {0, 1}s → [d]n such that for every f ∈ F ,∣∣∣∣ Pr

x←U[d]n
[f(x) = 1]− Pr

x←U{0,1}s
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.
The value s is the seed length of the PRG (resp. HSG). We say a generator G is explicit if the
ith symbol of output is computable in space O(s).

We define notation for states and transitions in branching programs analogously for the d = 2
case. In particular, for a degree d branching program B we write B[v, x] = u if B reaches state
u ∈ Vj from state v ∈ Vi over input x ∈ [d]j−i. We can then state our main theorem for transferring
pseudorandom objects over a binary alphabet into pseudorandom objects over larger alphabets.
We state it in terms of bounded-width branching programs, but an equivalent result holds when
we restrict the number of accept states rather than the width.

Theorem 1.20. Given n,w, d ∈ N and ε > 0, there is t = O(n log(nd/ε)) such that if there is an
explicit ε-PRG (resp. HSG) G : {0, 1}s → {0, 1}t for regular branching programs of length t, width
10wn2d/ε and degree 2, there is an explicit 4ε-PRG (resp. HSG) G′′ : {0, 1}s → [d]n for regular
branching programs of length n, width w and degree d.

We now state and prove the pair of reductions which together imply the theorem. We first
transform a binary PRG into a PRG for alphabets of size arbitrary powers of two, and then
transform a PRG for a sufficiently large power of two into a PRG for the desired lower degree.

Lemma A.5. Given n,w,R ∈ N and ε > 0 where R = 2r, there is t = bn/rc and an explicit map
q : {0, 1}n → [R]t such that if G : {0, 1}s → {0, 1}n is an ε-PRG (resp. HSG) for regular branching
programs of length n, degree 2 and width w, then q ◦G is an explicit ε-PRG (resp. HSG) for regular
branching programs of length t, degree R and width w/R.

Proof. Let qe : {0, 1}r → [R] be defined as qe(x1, . . . xr) =
∑r

i=1 xi2
i−1 and define the function

q(x) = (qe(x1, . . . , xr), . . . , qe(x(t−1)r, . . . , xt)). Now fix an arbitrary branching program B of length
t = bn/dc, width w/R and degree R with a accept states. For each state v ∈ Vi of B, we blow
up v into a cloud C(v) of R/2 states in layer ir of a new program B′ : {0, 1}tr → {0, 1} of width
(w/R)(R/2) ≤ w. To connect these clouds, we rely on the following gadget:

Claim A.6. For every K = 2k for k ∈ N, there is a regular branching program M of length k and
degree 2 with K/2 states in layers 0, . . . , k − 1 and K states u0, . . . , uK−1 in layer k (each with a
single in-transition) such that for every state v in layer 0 and σ ∈ {0, 1}k, we have M [v, σ] = uσ ∈
Vk where we view σ as a number in [K].
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Figure 1: The blowup of state v in B into a cloud of states C(v) in B′ via the gadget of Claim A.6.

Proof. We proceed by induction. For k = 1 the statement is simply a program with one state v in
layer 0 and states u1, u0 in layer 1 where B[v, b] = ub for b ∈ {0, 1}.

Now assume we have the gadget of size k and consider k + 1. Let the states in layer 0 be
v0, . . . , vK−1 and in layer 1 be y0, . . . , yK/2−1, z0, . . . , zK/2−1. Then for b ∈ {0, 1} define the transi-
tion function from layer 0 to layer 1 as:

M1(vi, b) =

{
yi mod 2k−2 b = 0

zi mod 2k−2 b = 1

Then on y0, . . . , yK/2−1 we place the gadget of size K on the remaining layers and likewise for
z0, . . . , zK/2−1, so we obtain the desired construction.

In effect, M reaches a state in the final layer determined by the {0, 1}k bits of input, with no
dependence on the initial state.

Now fixing an arbitrary cloud C(v) in layer ir of B′, let yj = B[v, j] for all j ∈ [R]. In B′,
we place the program M of size k = r on layers ir, . . . , (i + 1)r where the initial states are C(v)
and the final states are arbitrary (not necessarily distinct) states in C(y0), . . . , C(yR−1). Since
for every w, elements of C(w) participate in the final layer of gadgets R times and thus have R
total in-transitions, we can apply this construction to all states in B so the blowup B′ is regular.
Therefore, if B[v, j] = yj , for every state u in the cloud C(v) we have B′[u, j] ∈ C(yj), viewing j
as an r-bit binary string. We illustrate this process in Figure 1.

We then mark as accept states all states in B′ corresponding to clouds of accept states of B
(and WLOG pad B′ to length n with identity layers), and so by construction B ◦ q = B′ and q
maps uniform input to uniform output. To conclude, we break into cases depending on the base
pseudorandom object:

(G is an ε-HSG): Assuming that Pr[B(U[R]t) = 1] > ε then

Pr[B′(U{0,1}n) = 1] = Pr[B(U[R]t) = 1] > ε

and so there is some x such that B′(G(x)) = 1 and thus B(q ◦G(x)) = 1.
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(G is an ε-PRG): We have∣∣∣∣∣ Pr
x←Us

[B(q ◦G(x)) = 1]− Pr
x←U[R]t

[B(x) = 1]

∣∣∣∣∣
=

∣∣∣∣ Pr
x←Us

[(B ◦ q)(G(x)) = 1]− Pr
x←U{0,1}n

[B′(x) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←U{0,1}n

[B′(x) = 1]

∣∣∣∣
≤ ε.

In both cases since B was arbitrary we obtain the desired result.

We remark that this component of the reduction does not preserve the property of B being a
permutation branching program, since the gadgets are not permutation programs. We then show
that PRGs and HSGs for alphabets of size powers of two imply PRGs and HSGs for other alphabet
sizes.

Lemma A.7. Given n,w, d ∈ N and ε > 0, there is R0 = O(nd/ε) such that for every 2r = R ≥ R0,
there is an explicit function p : [R]n → [d]n such that if G : {0, 1}s → [R]n is an ε-PRG (resp.
HSG) for regular branching programs of length n, degree R and width w, then p ◦ G is an explicit
4ε-PRG (resp. HSG) for regular branching programs of length n, degree d and width w/(n+ 1).

Proof. Let R = O(nd/ε) be an arbitrary power of two such that d
Rn < ε. Then let pe : [R] → [d]

be defined as pe(xi) = xi mod d and let p(x) = (pe(x1), . . . , pe(xn)).
Let m ≤ R be the largest multiple of d not greater than R. For x ∈ [R]n, we say x is BAD

if there exists i where xi > m. Let ρ = Prx←U[R]n
[x is BAD], and observe ρ ≤ n(d/R) < ε, and

furthermore there exists a length n, width n ≤ w, degree R regular branching program Q where
Q(x) = I[x is BAD].

Now fix an arbitrary regular branching program B : [d]n → {0, 1} of width w. Let B′ : [R]n →
{0, 1} be the regular branching program of length n, degree R and width w + nw where, for every
state v ∈ Vi of B, we add an auxiliary state v⊥ that is always wired to itself except in layer i, and
marked as reject in the final layer. Furthermore, we have

B′[v, σ] =

{
B[v, σ mod d] σ ≤ m
v⊥ otherwise.

Note that B[v, σ mod d] = B[v, pe(σ)], so for every x ∈ [R]n that is not BAD we have B′(x) =
B(p(x)) and p maps uniform non-BAD inputs to uniform outputs. Therefore we have

(∗) =

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1]− Pr
x←U[d]n

[B(x) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1|x is BAD] · ρ+ Pr
x←U[R]n

[B′(x) = 1|x is not BAD] · (1− ρ)− Pr
x←U[d]n

[B(x) = 1]

∣∣∣∣
≤ ρ+

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1|x is not BAD]− Pr
x←U[d]n

[B(x) = 1]

∣∣∣∣
≤ ε+ 0.

To conclude, we break into cases depending on the base pseudorandom object:
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(G is an ε-HSG): We have that if Pr[B(U[d]n) = 1] > 2ε then Pr[B′(U[R]n) = 1] > 2ε− ε by
(∗). Thus by assumption on G there is some x where B′(G(x)) = 1. Since B′ always rejects
on inputs that are BAD, we have 1 = B′(G(x)) = B(p ◦G(x)).

(G is an ε-PRG): We have that G ε-fools Q by assumption, so Prx←Us [G(x) is BAD] ≤
ε+ ε.5 Then using the structure of B′ and an equivalent argument to (*) we obtain:

(∗∗) =

∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←Us

[B(p ◦G(x)) = 1]

∣∣∣∣ ≤ Pr
x←Us

[G(x) is BAD] ≤ 2ε.

We finish by repeated application of the triangle inequality:∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←U[d]n

[B(x) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←U[R]n

[B′(x) = 1]

∣∣∣∣
+

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1]− Pr
x←U[d]n

[B(x) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←U[R]n

[B′(x) = 1]

∣∣∣∣+ ε (∗)

≤
∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←Us

[B′(G(x)) = 1]

∣∣∣∣
+

∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←U[R]n

[B′(x) = 1]

∣∣∣∣+ ε

≤
∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←Us

[B′(G(x)) = 1]

∣∣∣∣+ ε+ ε (Assumption)

≤ 2ε+ ε+ ε (∗∗).

In both cases since B was arbitrary we obtain the desired result.

We can then prove the main transfer result:

Theorem 1.20. Given n,w, d ∈ N and ε > 0, there is t = O(n log(nd/ε)) such that if there is an
explicit ε-PRG (resp. HSG) G : {0, 1}s → {0, 1}t for regular branching programs of length t, width
10wn2d/ε and degree 2, there is an explicit 4ε-PRG (resp. HSG) G′′ : {0, 1}s → [d]n for regular
branching programs of length n, width w and degree d.

Proof. Let R ≤ 2nd/ε be the constant in Lemma A.7 with n = n,w = w and ε = ε and let
t = dn logRe. We apply Lemma A.5 to G with n = t, w = 10wn2d/ε and R = R and obtain an
explicit ε-PRG (resp. HSG) G′ : {0, 1}s → [R]n for regular branching programs of length n, width
10wn and degree R. Then applying Lemma A.7 to G′ with n = t, w = 10wn and ε = ε, we obtain
an explicit 4ε-PRG (resp. HSG) G′′ : {0, 1}s → [d]n for regular branching programs of length n,
width 10wn/(n+ 1) ≥ w and degree d.

5A nearly identical bound establishes a matching transfer result for weighted PRGs.
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B Transfer to General Branching Programs

The original formulation of the result of Reingold, Trevisan and Vadhan stated that a “pseudocon-
verging walk generator” (an object implied by a PRG) with sufficiently short seed implies BPL = L.
We extend their results to HSGs and weighted PRGs, and derive the degradation in parameters in
the notation of branching programs.

Theorem 1.19 (Variant of [RTV06]). Given n,w ∈ N and ε > 0, there is D′ = O((ε/nw)4) such
that if G : {0, 1}s → [D′]n is an explicit ε-PRG (resp. HSG) for regular branching programs of length
n, width (nw/ε)8 and degree D′, there is an explicit 10ε-PRG (resp. HSG) G′ : {0, 1}s → {0, 1}n
for ordered branching programs of length n and width w.

Proof. Let B be an ordered branching program of length n and width w. Let T = (nw/ε)2 and
D = (nw/ε)4 (and WLOG assume D is a power of 2). For every state v ∈ Vk of B, let S = bT ·p→vc.
If S ≤ nw/ε, do not insert states, and otherwise blow up v into a cloud C(v) of S states in a new
branching program B′ : [D]n → {0, 1}. This results in (at present) at most T · w states in each
layer of B′. If v is an accept state, mark all states in the blowup C(v) as accept states, and mark
an arbitrary state in C(vacc) as the start state.

We now define transitions. Fixing state u ∈ Vk where B[u, 1] = v1 and B[u, 0] = v0, let
t1 = |C(v1)| and t0 = |C(v0)|, for u′ ∈ C(u) define the transition function:

B′k(u
′, σ) =

{
C(v1)i σ1 = 1 ∧ ((σ −D/2) mod t1) = i

C(v0)i σ1 = 0 ∧ (σ mod t0) = i

Where σ1 is the first bit of σ viewed as a string in {0, 1}logD. Furthermore, if t1 = 0 or t0 = 0
(i.e. v1 or v0 was not blown up into a cloud) instead send all relevant transitions to a dummy
reject state u′⊥. This results in a branching program B′ of degree D and width at most 4Tn2w.
Unfortunately, as B′ has roundoff errors, it is not yet a regular branching program, which we fix
by adding symbols to the alphabet.

Claim B.1. For every state v′ ∈ C(v) in B′, the number of in-transitions entering this state is at
most D(1 + ρ) where ρ = 3ε/n2w.

Proof. We can bound the number of in-transitions using the definition of the blowup. Let the states
in B with out-transitions to b be denoted u1, . . . , ur (where we double-count states with two such
transitions). Then:

r∑
i=1

∑
u′i∈C(ui)

|{σ : B′[u′i, σ] = v′}| ≤
r∑
i=1

|C(ui)| ·
(
D/2

|C(v)|
+ 1

)

≤ 2T +

r∑
i=1

bT · p→uic ·
(

D/2

bT · (
∑r

i=1 p→ui/2)c

)

≤ 2T +

(
r∑
i=1

T · p→ui

)
· D

T · (
∑r

i=1 p→ui)− 1

≤ 2T +D(1 + 2ε/nw)

≤ D(1 + ρ).

Where we use that if C(v) is non-empty it has at least nw/ε states.
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Thus every state in the blowup has in-degree at most D′ = D(1 + ρ). We then blow up B′

into a new regular branching program B′′ : [D′]n → {0, 1}, where the transitions corresponding
to the first D symbols are unchanged, and the symbols in [D′] \ [D] are wired to n(4Tn2w) new
dummy states that always reject. Note that B′′ is a regular branching program of length n, width
8Tn3w ≤ (nw/ε)8, and degree D′ = O((nw/ε)4) where D′ does not depend on B, only the input
parameters. Thus, G is required to be ε pseudorandom against B′′.

We next show that this blowup does not change the probability of transitions between clusters
too much. For the remainder of the proof, we work with clouds of states in B′′.

Claim B.2. For every v where C(v) 6= ∅, let u′ ∈ C(u) be such that B[u, b] = v. Then∣∣∣∣∣∣
∑

v′∈C(v)

Pr
σ←U[D′]

[B′′[u′, σ] = v′|σ1 = b]− 1

2

∣∣∣∣∣∣ ≤ ρ.
Proof. In B′ exactly 1/2 the transitions from u′ with first bit b reach states in C(v) by construction.
Then in the blowup from B′ to B′′ we add at most a ρ fraction of extra symbols, so we change the
probability of transitioning to v′ ∈ C(v) by at most an equal amount.

It remains to show that G fooling B′′ implies a modification of the generator fools B. We first
show the blowup process does not modify the accept probability too much.

Claim B.3. We have ∣∣∣∣∣ Pr
x←Un

[B(x) = 1]− Pr
x←U[D′]n

[B′′(x) = 1]

∣∣∣∣∣ ≤ 3ε.

Proof. For every state v ∈ Vk in the original branching program B, let

errv =

∣∣∣∣∣∣p→v −
∑

v′∈C(v)

p→v′

∣∣∣∣∣∣ .
Recall p→v is the probability of transitioning from v0 to state v in B over uniformly random input,
and likewise for p→v′ for state v′ in B′′. We prove that for v ∈ Vk with in transitions from u1, . . . , ur
(where we double count states with two such transitions) we have

errv ≤
1

2

r∑
i=1

errui +rρ.

Note that since erru appears in exactly two summations in layer k for every state u in layer k − 1,
the total error increases by an additive wρ at each layer. Then

∑
v∈Va errv ≤ nwρ and our choice

of ρ completes the claim.
First, suppose C(v) = ∅. Then we have Tp→v ≤ 2nw/ε, and by our choice of T we obtain
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errv = |p→v − 0| ≤ ρ so the claim is proved. Otherwise if C(v) is nonempty we have:

errv =

∣∣∣∣∣∣p→v −
∑

v′∈C(v)

p→v′

∣∣∣∣∣∣
=

∣∣∣∣∣∣p→v −
∑

v′∈C(v)

r∑
i=1

∑
u′i∈C(ui)

p→u′i Pr
σ←U[D′]

[B′[u′i, σ] = v′]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
r∑
i=1

p→ui/2−
r∑
i=1

∑
u′i∈C(ui)

p→u′i

∑
v′∈C(v)

Pr
σ←U[D′]

[B′[u′i, σ] = v′]

∣∣∣∣∣∣
≤

r∑
i=1

∣∣∣∣∣∣p→ui/2−
∑

u′i∈C(ui)

p→u′i/2

∣∣∣∣∣∣+ rρ (Claim B.2)

≤ 1

2

r∑
i=1

errui +rρ.

Next, we show that the blowup process does not alter the performance of G too much. Let
P : [D′]n → {0, 1}n be the explicit function that projects each symbol in [D] onto its first bit (and
maps other symbols arbitrarily).

Claim B.4. We have that B′′ ≤ B ◦ P , and if G is a PRG then6∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←Us

[B′′(G(x)) = 1]

∣∣∣∣ ≤ 6ε.

Proof. For x ∈ [D′]n, we call x BAD if it contains a symbol in [D′] \ [D]. To prove the first
component of the claim, suppose B′′(x) = 1. Then x is not BAD, so the sequence of states obtained
in evaluating B′′ on x, denoted v′0, v

′
1, . . . , v

′
n, is contained in a sequence of clouds C(v0), . . . , C(vn)

where vn is marked as accept in B. Thus evaluating B on P (x) results in the sequence of states
v0, . . . , vn by construction of P and transitions between clouds in B′′, so B(P (x)) = 1.

To prove the second component of the claim, we call x ∈ [D′]n NEG if B′′(x) = 0 whereas
B(P (x)) = 1. For x that is NEG, it must be the case that B′′(x) attempts to transition to a cloud
that does not exist and instead goes to a dummy state. From Claim B.3 we have that this occurs
with probability at most 6ε over uniformly random input (since the corresponding states are hit
with probability at most (ε/nw)nw in B). Furthermore, there are regular branching programs
Q1, Q2 of length n, width (nw/ε)8, and degree D′ that accept if x is BAD or NEG respectively,
and G is required to fool both. Thus, we have∣∣∣∣ Pr

x←Us

[B(P ◦G(x)) = 1]− Pr
x←U[D]n

[B′′(G(x)) = 1]

∣∣∣∣ ≤ Pr
x←Us

[G(x) is BAD] + Pr
x←Us

[G(x) is NEG]

≤ nρ+ ε+ 3ε+ ε

≤ 6ε.

To conclude, we break into cases depending on the base pseudorandom object:

(G is an ε-HSG): We have that if Pr[B(Un) = 1] > 10ε then Prx←U[D′]n [B′′(x) = 1] > ε

by Claim B.3. Then by assumption on G there is x such that B′′(G(x)) = 1. Thus 1 =
B(P ◦G(x)) = B′′(G(x)) by Claim B.4.

6Again, a nearly identical bound establishes an equivalent result for weighted PRGs.
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(G is an ε-PRG):∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←U{0,1}n

[B(x) = 1]

∣∣∣∣
≤

∣∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←U[D′]n

[B′′(x) = 1]

∣∣∣∣∣
+

∣∣∣∣∣ Pr
x←U[D′]n

[B′′(x) = 1] Pr
x←Un

[B(x) = 1]

∣∣∣∣∣
≤
∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←U[D]n

[B′′(x) = 1]

∣∣∣∣+ 3ε (Claim B.3)

≤
∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←Us

[B′′(G(x)) = 1]

∣∣∣∣
+

∣∣∣∣∣ Pr
x←Us

[B′′(G(x)) = 1− Pr
x←U[D′]n

[B′′(x) = 1]

∣∣∣∣∣+ 3ε

≤
∣∣∣∣ Pr
x←Us

[B(P ◦G(x)) = 1]− Pr
x←U[D]n

[B′′(G(x)) = 1]

∣∣∣∣+ 4ε (Assumption)

≤ 10ε (Claim B.4).

In both cases since B was arbitrary, we set G′ = P ◦G and obtain the desired result.
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