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Abstract

We construct improved hitting set generators (HSGs) for ordered (read-once) regular branch-
ing programs in two parameter regimes. First, we construct an explicit ε-HSG for unbounded-
width regular branching programs with a single accept state with seed length

Õ(log n · log(1/ε)),

where n is the length of the program. Second, we construct an explicit ε-HSG for width-w
length-n regular branching programs with seed length

Õ
(

log n ·
(√

log(1/ε) + logw
)

+ log(1/ε)
)
.

For context, the “baseline” in this area is the pseudorandom generator (PRG) by Nisan (Combi-
natorica 1992), which fools ordered (possibly non-regular) branching programs with seed length
O(log(wn/ε) · log n). For regular programs, the state-of-the-art PRG, by Braverman, Rao, Raz,

and Yehudayoff (FOCS 2010, SICOMP 2014), has seed length Õ(log(w/ε) · log n), which beats
Nisan’s seed length when log(w/ε) = o(log n). Taken together, our two new constructions beat
Nisan’s seed length in all parameter regimes except when logw and log(1/ε) are both Ω(log n)
(for the construction of HSGs for regular branching programs with a single accept vertex).

Extending work by Reingold, Trevisan, and Vadhan (STOC 2006), we furthermore show that
an explicit HSG for regular branching programs with a single accept vertex with seed length
o(log2 n) in the regime logw = Θ(log(1/ε)) = Θ(log n) would imply improved HSGs for general
ordered branching programs, which would be a major breakthrough in derandomization. Pyne
and Vadhan (CCC 2021) recently obtained such parameters for the special case of permutation
branching programs.
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1 Introduction

Random choices can make computing easier sometimes, but random bits are not always available.
We therefore want to understand when randomized algorithms have an inherent advantage and
when randomness is unnecessary. In this work, we focus on the interplay between randomness
and space complexity. Starting with the work of Ajtai, Komlós, and Szemerédi [AKS87], there have
been three decades of work on the derandomization of space-bounded computation, with the goal of
eventually proving that every halting decision algorithm can be derandomized with only a constant
factor space blowup (L = BPL). As in previous work, we will use the following nonuniform model
of space-bounded computation, which captures how a randomized small-space algorithm uses its
random bits.

Definition 1.1. An (ordered) branching program B of length n and width w computes
a function B : {0, 1}n → {0, 1}. On an input x ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads the next input
bit xt and updates its state according to a transition function Bt : [w] × {0, 1} → [w] by taking
vt = Bt(vt−1, xt). Note that the transition function Bt can differ at each time step.

Moreover, there is a set Vacc ⊆ [w] of accept states. Let vn be the final state reached by the
branching program on input x. If vn ∈ Vacc the branching program accepts, denoted B(x) = 1, and
otherwise the program rejects, denoted B(x) = 0. We also consider branching programs restricted
to having a single accept state, which is always denoted vacc.

Arguably the most natural approach to derandomizing space-bounded computation is to design
a pseudorandom generator, defined next. We let Ui denote the uniform distribution over {0, 1}i.

Definition 1.2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-pseudorandom gener-
ator (ε-PRG) for F is a function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,∣∣∣∣ Pr

x←Un
[f(x) = 1]− Pr

x←Us
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.
We say that G ε-fools F if it is an ε-PRG for F . The input length s is the seed length of the
generator.

It can be shown via the probabilistic method that there is a (non-explicit) ε-PRG for ordered
branching programs of length n and width w that has seed length O(log(nw/ε)), and moreover this
seed length is optimal. We say a generator G is explicit if the output is computable in space O(s).
Decades of work has focused on constructing explicit pseudorandom generators with parameters
matching the probabilistic method. All results we subsequently discuss are explicit constructions.
In 1990, Nisan [Nis92] constructed an ε-PRG for general ordered branching programs of length n
and width w with seed length

O(log n · (log n+ logw + log(1/ε))).

Nisan’s PRG is a factor of O(log n) from optimal, and achieves seed length O(log2 n) when w ≤
poly(n) and ε ≥ 1/ poly(n), rather than the optimal O(log n).

There has been extensive work analyzing restricted classes of branching programs with addi-
tional structure. We focus on the well-studied class of regular programs:

Definition 1.3. An (ordered) regular branching program of length n and width w is an
ordered branching program where for every t = 1, . . . , n and every v ∈ [w], there are exactly 2 pairs
(u, b) ∈ [w]× {0, 1} such that Bt(u, b) = v.
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In 2010, Braverman, Rao, Raz and Yehudayoff [BRRY14] constructed a PRG for regular branch-
ing programs with near-optimal dependence on n, achieving seed length:1

O(log n · (log log n+ logw + log(1/ε))).

(Subsequently, De also presented a PRG for regular programs, albeit with a somewhat inferior
seed length [De11].) Braverman et al.’s result suggests two natural challenges regarding regular
programs. The first challenge is to improve the log n · logw term in Nisan’s seed length; this is
necessary to beat Nisan’s generator in the polynomial-width regime (e.g., w = n). The second
challenge is to improve the log n · log(1/ε) term; this is necessary to beat Nisan’s generator in the
small-error regime (e.g., ε = 1/n).

Designing PRGs that meet these challenges seems to be quite difficult, but fortunately PRGs
are not the only approach to derandomization. To address the challenges we will instead aim to
construct hitting set generators (HSGs). An HSG (defined next) is a “one-sided” generalization of
a PRG that is still valuable for derandomization.

Definition 1.4. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-hitting set generator
(ε-HSG) for F is a function H : {0, 1}s → {0, 1}n such that for every f ∈ F where Prx←Un [f(x) =
1] > ε, there exists x ∈ {0, 1}s such that f(H(x)) = 1.

Note that with our definitions, an ε-PRG for a class F is an ε-HSG for F . In many cases,
there has been more success at developing HSGs than at developing PRGs. Indeed, in the context
of regular branching programs, in addition to their PRG construction, Braverman, Rao, Raz, and
Yehudayoff constructed an HSG with seed length O(w log n), achieving optimal seed length for
constant width [BRRY14].2

1.1 Our Contributions

In this work, we present improved HSGs for regular branching programs. For our first result,
we focus on improving the dependence on w, the width of the program. In fact, we study the
intriguing setting of unbounded-width programs [MZ13,HPV21,PV21a,PV22]. We design an HSG
for unbounded-width regular branching programs with a single accept vertex with a near-optimal
dependence on the length of the program n.

Theorem 1.5. Given n ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a single accept state that has seed length

O(log n · (log log n+ log(1/ε))).

This result eliminates all dependence on w from the seed length of Braverman, Rao, Raz, and
Yehudayoff’s PRG [BRRY14], with the caveats that we only obtain an HSG and we assume that
there is only one accept state. For regular branching programs of width w = poly(n) (the regime
most relevant for the derandomization of space-bounded computation), Theorem 1.5 is the first
explicit construction with seed length o(log2 n). In the superpolynomial-width regime, the state of
the art prior to our work was the analysis of Hoza, Pyne, and Vadhan [HPV21], which implies that

1They consider regular branching programs with a single accept state, but dividing ε by w to allow an arbitrary
set of accept states does not change the seed length.

2The lack of dependence on ε can be explained by the observation of BRRY that every regular branching program
that has nonzero acceptance probability has acceptance probability at least 1/2w−1, so WLOG ε > 1/2w, i.e. w >
log(1/ε).
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Nisan’s generator is an HSG for unbounded-width regular branching programs with a single accept
vertex with seed length O(log n · log(n/ε)).

More generally, if a program has a accept states and acceptance probability at least ε, then there
must be an accept state that is reached with probability at least ε/a, so we obtain the following
corollary:3

Corollary 1.6. Given n, a ∈ N and ε ∈ (0, 1/2), there is an explicit ε-HSG for regular branching
programs of length n and unbounded width with a accept states that has seed length

O(log n · (log log n+ log(a/ε))).

For our second result, we focus on improving the dependence on ε, the threshold of the HSG.

Theorem 1.7. For every w, n ∈ N and ε > 0, there exists an explicit ε-HSG for width-w length-n
regular branching programs with seed length

O
(

log n ·
(√

log(1/ε) + logw + log log n
)

+ log(1/ε)
)
.

Comparing to the seed length of Braverman, Rao, Raz, and Yehudayoff’s PRG [BRRY14], we
improve the log n · log(1/ε) term to log n ·

√
log(1/ε). Recall that Braverman et al. also constructed

an HSG with seed length O(w log n), independent of ε. Our seed length has a much better de-
pendence on w, so for example, when w = 2O(

√
logn) and ε = 1/n, our seed length is Õ(log3/2 n),

whereas prior work could not beat Nisan’s O(log2 n) seed length for that regime. Furthermore, since
every nonzero width-w regular program has acceptance probability at least 2−(w−1) [BRRY14], The-
orem 1.7 implies that we can achieve seed length Õ (

√
w log n+ w), independent of ε. Theorem 1.7

makes progress on a problem posed by Hoza and Zuckerman [HZ20]: they asked for an HSG with
seed length Õ(log(n/ε)) for regular branching programs of width polylog n.

Taken together, Theorems 1.5 and 1.7 improve the seed length of Nisan’s construction for
hitting regular branching programs with a single accept state when log(1/ε) = o(log n) or logw =
o(log n), thereby identifying the regime log(1/ε) ∼ logw ∼ log n as the remaining target. An
explicit HSG of seed length o(log2 n) in that regime would also be an explicit HSG of seed length
o(log2 n) for polynomial-width regular branching programs with an arbitrary set of accept states.
In turn, we show that such an HSG would imply a major advance in derandomizing space-bounded
computation:

Theorem 1.8. For every n,w ∈ N and ε > 0, there are values w′ = poly(nw/ε) and n′ =
O(n log(nw/ε)) such that if there is an explicit ε-HSG (resp. PRG) G : {0, 1}s → {0, 1}n′ for
width-w′ length-n′ regular branching programs, then there is an explicit O(ε)-HSG (resp. PRG)
G′ : {0, 1}s → {0, 1}n for width-w length-n ordered branching programs with the same seed length.

The conclusion of Theorem 1.5 yields a derandomization of decision problems solvable in ran-
domized logspace with one-sided error (the class RL). Cheng and Hoza [CH20] show more gener-
ally that a two-sided error derandomization (the class BPL) follows. Thus we obtain the following
corollary:

Corollary 1.9. Suppose there is an explicit ε-HSG of seed length O(log(nw/ε)) for regular branch-
ing programs of length n and width w. Then BPL = L.

3We remark that it is not possible to improve this dependence on a by any analysis of the INW generator that
only uses the expansion properties of the auxiliary expanders [PV21b], even for HSGs.

3



1.2 Related work

Theorem 1.8 extends a result of Reingold, Trevisan, and Vadhan [RTV06]. They show an analogous
transformation for PRGs over alphabet size poly(nw/ε). In contrast, Theorem 1.8 also applies to
HSGs and works over the binary alphabet.

A number of results improve the seed length of Braverman et al. for the restricted class of “per-
mutation” branching programs. A permutation branching program is a regular branching program
with the further restriction that the transitions Bt(·, 1) and Bt(·, 0) are permutations of [w] for
every t. While most of these results are tailored to the constant-width regime [BV10,KNP11,De11,
Ste12, RSV13], two exceptions construct generators for unbounded-width permutation branching
programs with a single accept vertex:

• Hoza, Pyne, and Vadhan [HPV21] (building on work by Ahmadinejad, Kelner, Murtagh,
Peebles, Sidford, and Vadhan [AKM+20]) construct a PRG with seed length Õ(log n·log(1/ε)),
and

• Pyne and Vadhan [PV21a] construct an HSG4 with seed length Õ
(

log n ·
√

log(n/ε) + log(1/ε)
)

.

Our Theorem 1.5 matches the seed length of Hoza, Pyne, and Vadhan [HPV21] for the more
general setting of regular programs. Our Theorem 1.7 can be viewed as an analogue of the result of
Pyne and Vadhan [PV21a]. Unfortunately, our seed length includes an additional O(log n · logw)
term. If this term were at all improved, we would obtain o(log2 n) seed length HSGs for general
branching programs via Theorem 1.8.

The arguments used for unbounded-width permutation branching programs [HPV21, PV21a]
rely heavily on the permutation condition to leverage powerful results in spectral graph the-
ory [RV05, CKK+18, AKM+20] that are not applicable in the regular setting.5 In contrast, our
proofs are combinatorial. In particular, our Theorem 1.7 is proved via combinatorial rather than
spectral error-reduction methods, providing some hope that the aforementioned improvement in
the O(log n · logw) term might not be out of reach.

1.3 Overview of Proofs

1.3.1 The Unanimity Program Model

The proofs of Theorem 1.5 and Theorem 1.7 both rely on a new generalization of ordered branching
programs that we call unanimity programs. A unanimity program is defined like an ordered branch-
ing program, except that every vertex (not just those in the last layer) is labeled either “accept” or
“reject.” The program accepts if every vertex it visits is an accepting vertex; otherwise it rejects.
More precisely:

Definition 1.10. An (ordered) unanimity program B of length n and width w starts at a fixed
start state v0 ∈ [w]. In each step t ∈ [n], the program reads the next input symbol xt and updates
its state according to a transition function Bt : [w]× {0, 1} → [w] by taking vt = Bt(vt−1, xt). For

every t ∈ {0, 1, . . . , n}, there is a set of accept states V
(t)

acc ⊆ [w]. The program accepts, denoted

B(x) = 1, if for every t, we have vt ∈ V (t)
acc. Otherwise the program rejects, denoted B(x) = 0.

A unanimity program is regular if for every t = 1, . . . , n and every v ∈ [w], there are exactly
two pairs (u, b) ∈ [w]× {0, 1} such that Bt(u, b) = v. The program is a permutation unanimity

4Their result gives a more general object called “weighted PRG” or “pseudorandom pseudodistribution” [BCG20].
5Specifically, permutation branching programs have the property that the underlying graph remains regular – and

hence the uniform distribution remains stationary – even when we restrict to a pseudorandom sequence of paths.
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program if for every t = 1, . . . , n and every b ∈ {0, 1}, the function Bt(·, b) is a permutation on
[w].

The standard definition of an ordered branching program is the special case that for t < n, we

have V
(t)

acc = [w]. Throughout this paper, the phrase “branching program” will always refer to the
standard model, whereas “unanimity program” will refer to the more general model.

A width-w unanimity program can trivially be simulated by a width-(w+1) branching program.
However, this simulation does not preserve regularity, and in fact it is not possible in general to
simulate a regular unanimity program by a regular branching program of a similar width.6

Despite the fact that the unanimity model is strictly more powerful, we show (Lemma 2.1) that
designing PRGs for regular unanimity programs is essentially equivalent to designing PRGs for
regular branching programs (with an arbitrary set of accept states in the final layer). Therefore,
known PRGs for regular branching programs [BRRY14,De11] automatically also fool this broader
class of statistical tests. We use this lemma in two different ways to prove our two main results
(Theorems 1.5 and 1.7).

1.3.2 The Large-Width Case

To prove Theorem 1.5, for every unbounded-width regular branching program B with a single accept
state and every ε > 0, we construct an ε-“lower-approximator” for B. The lower approximator is
a regular unanimity program BL of width O(1/ε) that accepts on a subset of the strings accepted
by B, and has acceptance probability (under the uniform distribution) within ε of that of B.

Lemma 1.11. Let ε > 0. Every regular (respectively permutation) branching program of length n
and unbounded width, with a single accept state, is ε-lower approximated by a regular (respectively
permutation) unanimity program of length n and width 2 · b1/εc.

A standard argument shows that an HSG for a lower approximator of B is also an HSG for B, so
given Lemma 1.11, it follows that the BRRY PRG for bounded-width regular branching programs
[BRRY14] is our desired HSG for unbounded-width regular branching programs.

We prove Lemma 1.11 by a more careful analysis of a result of Hoza, Pyne, and Vadhan [HPV21],
who prove that B has an ε-lower approximator of width O(n/ε). The key observation behind our
improvement is that regular branching programs cannot concentrate low probability events. More
precisely, say that a vertex v of B is “negligible” if the probability of visiting v is at most ε when
B reads a uniform random input. We show that the probability of visiting some negligible vertex
and then accepting is at most ε, with no dependence on n. Thus, if we reject all inputs that visit
negligible vertices (i.e., we impose a unanimity condition), then we get an ε-lower approximator.
Furthermore, the “effective width” of the approximator (namely, the maximum number of accepting
vertices in any individual layer) is at most 1/ε. A regular unanimity program of effective width
weff can be simulated by one of actual width 2weff (see Lemma 3.3), completing the proof.

1.3.3 The Low-Threshold Case

To prove Theorem 1.7, we follow the approach of Hoza and Zuckerman [HZ20]. They designed
a method to convert any “moderate-error” PRG for ordered branching programs into an ε-HSG,
where ε is potentially very small [HZ20]. (See also related work on error reduction for “weighted
PRGs” [BCG20,CL20,CDR+21,PV21a,Hoz21].) We develop a modified version of their framework
that is suitable for the setting of regular programs.

6For example, the AND function on n bits can be computed by a width-2 permutation unanimity program, but it
cannot be computed by a width-w regular branching program unless w ≥ n+ 1.
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Let B be an ordered branching program that accepts with probability p. Let K > 1, and let S
be the set of vertices from which the acceptance probability is at least Kp. The starting point of the
construction is our Lemma 5.1, which states that on a uniformly random input, B has a moderately
large Ω(1/K) chance of visiting some vertex in S. If B is regular, then the predicate of failing to
visit S can be computed by a regular unanimity program of the same width. Therefore, when B
reads a pseudorandom string produced by a moderate-error PRG for regular branching programs,
there is still an Ω(1/K) chance of visiting S. The HSG guesses where to truncate the pseudorandom
string to land in S and then repeats the process, increasing the acceptance probability to K2p, then
K3p, etc., until eventually an accepting vertex is reached. To keep the overall seed length low, we
recycle the PRG’s seed from one iteration to the next using a hitter (also known as a disperser).

The upshot is that for any ε < ε0 < 0.1, we can convert an ε0-PRG for width-(2w) regular
branching programs into an ε-HSG for width-w regular branching programs. If the ε0-PRG has
seed length s, then our ε-HSG has seed length

O

(
s+

log(1/ε) · log n

log(1/ε0)
+ log(wn/ε)

)
.

We plug in the PRG construction by Braverman, Rao, Raz, and Yehudayoff [BRRY14] with error

ε0 = 2−
√

log(1/ε) to complete the proof of Theorem 1.7.
Hoza and Zuckerman’s original version of the reduction [HZ20] is similar. The key difference is

that in each iteration of their setup, the probability of visiting their “target set” S of vertices is
only 1/poly(n). As a result, their version of the reduction requires the “moderate-error” PRG to
have error ε0 < 1/ poly(n), which would be too small for our purposes. Our refined lemma allows us
to greatly increase the probability of visiting S. Unlike in Hoza and Zuckerman’s setting, however,
the set S may now be spread across multiple layers of the branching program and thus has to be
analyzed in the unanimity program model.

1.4 Other Results

Our approach for constructing HSGs for unbounded-width regular branching programs also works,
mutatis mutandis, for some other unbounded-width models. For unbounded-width permutation
branching programs with a single accept state, by plugging in the best PRGs for constant-width
permutation branching programs [De11, Ste12], we achieve seed length log n · poly(1/ε), which is
optimal when the threshold ε is constant.

Proposition 1.12. Given n ∈ N and ε > 0, there is an explicit ε-HSG for permutation branching
programs of length n and unbounded width with a single accept state that has seed length

O(log n · log(1/ε) · (1/ε4)).

The approach also works in the more challenging “unordered” model. For unordered permuta-
tion branching programs, we get near-optimal seed length for constant threshold ε.

Proposition 1.13. Given n ∈ N and ε > 0, there exists an explicit ε-HSG for unbounded-width
unordered permutation branching programs of length n with a single accept state that has seed length

O(log(n/ε) · log logn · (1/ε4)).

We also get an improvement for unordered regular branching programs. In the unordered
setting, it tends to be difficult to take advantage of regularity, because the regularity condition
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is not preserved under restrictions. This issue has forced some prior works to settle for fooling
permutation programs [RSV13,CHHL19]. However, our reduction does not involve any restrictions,
so we are not affected by the issue. For unbounded-width unordered regular branching programs,
we get seed length Õ((log2 n)/ε), which admittedly is still far from optimal, but keep in mind that
the state-of-the-art PRG for general polynomial-width unordered branching programs has seed
length O(log3 n) [FK18].

Proposition 1.14. Given n ∈ N and ε > 0, there exists an explicit ε-HSG for unbounded-width
unordered regular branching programs of length n with a single accept state that has seed length

O(log(n/ε) · log n · log logn · (1/ε)).

Our results for unordered branching programs (Propositions 1.13 and 1.14) rely on PRGs de-
veloped by prior work of Forbes and Kelley [FK18] and Chattopadhyay, Hatami, Hosseini and
Lovett [CHHL19].

We observe that the BRRY [BRRY14] HSG for constant-width regular branching programs can
be viewed more generally as a co-HSG for unbounded-width regular branching programs with a
constant number of accept states.

Proposition 1.15. Given n, a ∈ N, the set H = {x ∈ {0, 1}n : wt(x) ≤ a} where wt(x) denotes the
Hamming weight of x is a co-hitting set for regular branching programs of length n and unbounded
width with a accept states. That is, for every regular branching program B with at most a accept
states that is not the constant function B(x) = 1, there is x ∈ H such that B(x) = 0.

In contrast, [HPV21] show that a random function is not a co-HSG for regular branching
programs of unbounded width and a single accept state unless the seed length is Ω(n).7 Thus, we
obtain a very simple explicit construction with exponentially shorter seed length than that obtained
via the probabilistic method.

1.5 Preliminaries

First, we define notation relating to states and transitions in a branching program. Here, we adopt
the perspective of a branching program as a directed graph, with edges from layer i to layer i+ 1
corresponding to the ith transition function.

Definition 1.16. For a branching program B of length n, let V = V0 ∪ V1 ∪ . . .∪ Vn be the vertex
set of the branching program, where Vi holds the vertices corresponding to states in layer i. We
will overload notation and consider the transition function as a map Bt : Vt−1 × {0, 1} → Vt in
addition to thinking of it as a map Bt : [w]×{0, 1} → [w]. Similarly, we will often think of the start
state v0 as being an element of V0 instead of an element of [w], and similarly Vacc ⊆ Vn instead of
Vacc ⊆ [w], etc. For v ∈ Vi and u ∈ Vj for j > i, we write B[v, x] = u if the program transitions to
state u starting from state v on input x ∈ {0, 1}j−i.

Next, we define notation for the probability of reaching a state from the start state, and notation
for the probability of accepting from that state.

Definition 1.17. Let B be a branching program, let v0 ∈ V0 be the start state, and let Vacc ⊆ Vn
be the set of accept states. For every state v ∈ Vi, let p→v = Pr[B[v0, Ui] = v] be the probability
v is reached from the start state over Ui, and let pv→ = Pr[B[v, Un−i] ∈ Vacc] be the probability
the program accepts over Un−i starting from v, where we define p→v0 = 1 and p→v = 0 for all
v ∈ V0 \ {v0} and likewise pv→ = 1 for v ∈ Vacc and pv→ = 0 for v ∈ Vn \ Vacc.

7Their result is stated as showing a random function is not a PRG, but the argument also rules out a co-HSG.
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For a state v with transitions to u1, u2 (which are not necessarily distinct), the accept proba-
bility pv→ is exactly equal to (pu1→ + pu2→)/2. Next, we formally define the concept of a lower
approximator.

Definition 1.18. Given a branching program B of length n and ε > 0, a length-n branching
program BL is an ε-lower approximator of B if B−1

L (1) ⊆ B−1(1) and |Pr[B(Un) = 1] −
Pr[BL(Un) = 1]| ≤ ε.

Finally, we define the unordered branching program model (although it is not the focus of this
paper).

Definition 1.19. An unordered (oblivious read-once) branching program B consists of an
ordered branching program B′ and a permutation π : [n]→ [n]. It computes the function

B(x) = B′(xπ(1), . . . , xπ(n)).

We similarly define unordered regular branching programs, etc.

1.6 Organization

In Section 2 we prove that fooling regular unanimity programs is essentially equivalent to fooling
regular branching programs. In Section 3, we show that regular branching programs with a sin-
gle accept state can be ε-lower-approximated by regular unanimity programs of width O(1/ε). In
Section 4 we combine these two results and conclude Theorem 1.5 (our HSG for unbounded-width
regular branching programs); we also prove our other results for unbounded-width programs in this
section. In Section 5 we construct our low-threshold HSG. In Appendix A we prove Theorem A.4,
establishing that pseudorandom objects for regular programs over a binary alphabet imply pseudo-
random objects for regular programs over a D-ary alphabet. In Appendix B we re-prove the result
of Reingold, Trevisan, and Vadhan [RTV06] in a formulation convenient for our use, and show their
argument works for HSGs.

2 PRGs for Unanimity Programs

In this section, as outlined in Section 1.3.1, we prove that PRGs for regular branching programs
also fool the more general model of regular unanimity programs.

Lemma 2.1. Let w, n ∈ N and let G : {0, 1}s → {0, 1}n. If G is an ε-PRG for width-(2w)
regular (respectively permutation) branching programs, then G is a (2ε)-PRG for width-w regular
(respectively permutation) unanimity programs.

Proof. Let B be a width-w length-n unanimity program. Let the layers of the program be V0, . . . , Vn
and let v0 ∈ V0 be the start state. For t ∈ {0, . . . , n}, let V

(t)
acc ⊆ Vt be the set of accepting vertices

in layer t, and define a function Rt : {0, 1}n → {0, 1} by

Rt(x) = 1 ⇐⇒ B[v0, x1..t] 6∈ V (t)
acc.

That is, Rt(x) indicates whether B(x) visits a reject state in layer t. Then

1−B(x) =
n∨
t=0

Rt(x) = 2−n ·
∑

T⊆{0,...,n}

⊕
t∈T

Rt(x), (1)
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because by the Fourier expansion of the OR function we have we have OR(y0, . . . , yn) = 2 ·
ET⊆{0,...,n}

[⊕
t∈T yt

]
. For each T ⊆ {0, . . . , n}, define B(T )(x) =

⊕
t∈T Rt(x). Let us design a

width-(2w) branching program to compute B(T ). The vertex set in layer t ∈ {0, . . . , n} is given by

V
(T )
t = Vt × {0, 1}. The start state is (v0, a) where

a = (0 ∈ T ∧ v0 6∈ V (0)
acc ).

For t > 0, the transition function B
(T )
t : V

(T )
t−1 × {0, 1} → V

(T )
t is given by B

(T )
t ((vt−1, at−1), b) =

(vt, at), where

vt = Bt(vt−1, b)

at = at−1 ⊕ (t ∈ T ∧ vt 6∈ V (t)
acc).

In the final layer, the set of accept states is Vacc = Vn × {1}. This program indeed computes
B(T )(x), because in layer t, the program reaches the state (vt, at), where vt = B[v0, x1..t] and
at =

⊕
t∈T∩{0,...,t}Rt(x).

We claim that if B is a regular program, then so is B(T ), and furthermore if B is a permutation

program, then so is B(T ). To prove it, fix some t > 0 and some (v, a) ∈ V (T )
t . If B is regular, then

|B−1
t (v)| = 2, say B−1

t (v) = {(u0, b0), (u1, b1)}. Define

a′ = a⊕ (t ∈ T ∧ v 6∈ V (t)
acc).

From the definition of B(T ), we have

(B
(T )
t )−1((v, a)) = {((u0, a

′), b0), ((u1, a
′), b1)}.

In particular, |(B(T )
t )−1((v, a))| = 2, showing that B(T ) is regular. If furthermore B is a permutation

program, then b0 6= b1, which immediately implies that B(T ) is a permutation program.
Consequently, G fools each function B(T ) with error ε. By Equation 1, it follows that G fools

1−B (and therefore B) with error 2−n ·
∑

T⊆{0,...,n} ε = 2ε.

The idea of reducing disjunctions to parity functions (like what we do in Equation 1) is not
new. Prior works have used a similar technique in other settings (e.g. [Wil18,Lee19,DHH20]).

3 Lower Approximators for Regular Branching Programs

In this section, we show that unbounded-width regular branching programs can be lower approxi-
mated by bounded-width regular unanimity programs. Hoza, Pyne, and Vadhan showed [HPV21,
Theorem 4.1] that unbounded-width regular branching programs are ε-lower approximated by reg-
ular branching programs of width O(n2/ε), which is too large for our application.8 We obtain a
lower approximator of width O(1/ε):

Lemma 1.11. Let ε > 0. Every regular (respectively permutation) branching program of length n
and unbounded width, with a single accept state, is ε-lower approximated by a regular (respectively
permutation) unanimity program of length n and width 2 · b1/εc.

8They also constructed lower approximators of width O(n/ε). Those programs are not quite regular, but even
setting aside issues of regularity, they are still too wide for our application.
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To get the width down to O(1/ε), we make two changes to the proof by Hoza, Pyne, and
Vadhan [HPV21]. First, rather than retaining the n/ε most important states at each layer, we prove
that retaining only the 1/ε most important states suffices. Second, we show that the unanimity
program model allows us to rewire edges that previously pointed to deleted vertices (in such a way
that the approximator rejects whenever such edges are crossed) while only increasing the width by
a constant factor, whereas Hoza, Pyne, and Vadhan paid another factor of n at this stage to obtain
a regular branching program [HPV21].

We begin with the following claim, which shows that a regular branching program cannot
concentrate low-probability events.

Claim 3.1. Let ε > 0. Let B be a regular branching program, and let V ε = {v : p→v ≤ ε} be
the vertices of B that have at most ε probability of being reached over a uniformly random string.
Then, for every i ∈ {0, 1, . . . , n} and v ∈ Vi, the probability of reaching v and visiting at least one
vertex from V ε along the way is at most ε. That is,

Pr
x←Ui

(B[v0, x] = v)
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)

 ≤ ε.
Proof. The proof is by induction on i. The property is trivially true for states in the 0th layer.
Assuming it holds for layer i, consider v ∈ Vi+1. If v ∈ V ε the property holds since

Pr
x←Ui+1

(B[v0, x] = v)
∧ i+1∨

j=1

(B[v0, x1..j ] ∈ V ε)

 = Pr
x←Ui+1

[B[v0, x] = v] = p→v ≤ ε.

Otherwise,

Pr
x←Ui+1

(B[v0, x] = v)
∧ i+1∨

j=1

(B[v0, x1..j ] ∈ V ε)


= Pr

x←Ui+1


 ∨

(u,b)∈B−1
i+1(v)

(B[v0, x1..i] = u ∧ xi+1 = b)

∧ i∨
j=1

(B[v0, x1..j ] ∈ V ε)


=

∑
(u,b)∈B−1

i+1(v)

1

2
· Pr
x←Ui

(B[v0, x] = u)
∧ i∨

j=1

(B[v0, x1..j ] ∈ V ε)


≤

∑
(u,b)∈B−1

i+1(v)

ε

2

= ε,

where the last step uses regularity.

Using Claim 3.1, we now show that a regular branching program with a single accept state
is ε-lower approximated by a regular unanimity program with at most O(1/ε) accept states in
each layer. The maximum number of accept states in an individual layer of the program can be
considered a measure of the “effective width” of the program.
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Lemma 3.2. Let ε > 0. Every regular (respectively permutation) branching program of length n and
width w, with a single accept state, is ε-lower approximated by a regular (respectively permutation)
unanimity program of length n and width w, with at most b1/εc accept states in each layer.

Proof. Let B be a regular (permutation) branching program of length n and width w, with a single
accept state vacc, and let V ε = {v : p→v ≤ ε}. We construct a unanimity program BL that ε-lower
approximates B. We take BL to have the same set of states, transitions, and start state as B. For
i ∈ {0, . . . , n− 1}, the set of accept states in layer i of BL is Vi \ V ε, i.e., the set of states reached
with probability greater than ε. In layer n, the set of accept states is {vacc} \ V ε, i.e., the unique
accept state of B (or the empty set if Pr[B(Un) = 1] ≤ ε). By construction, each layer of BL has
at most b1/εc accept states. Moreover, BL is a regular (permutation) unanimity program if B is
a regular (permutation) branching program. Finally, note that BL(x) = 1 if and only if the path
in B corresponding to the string x reaches vacc without visiting any state in V ε. Therefore, by
Claim 3.1, BL is an ε-lower approximator of B.

Finally, we show that regular unanimity programs of “effective width” weff can be simulated
by regular unanimity programs of actual width 2 · weff (Lemma 3.3). Lemma 1.11 follows from
Lemmas 3.2 and 3.3.

Lemma 3.3. Let weff ∈ N. Every regular (respectively permutation) unanimity program with at
most weff accept states in each layer has an equivalent regular (respectively permutation) unanimity
program of width 2 · weff.

Proof. Let B be a regular (permutation) unanimity program of length n, with at most weff accept
states in each layer. We may assume without loss of generality that B has exactly weff accept states
in each layer9 and that the set of accept states in each layer is [weff]. Assume also that the start
state of B, v0, is an accept state, otherwise the claim is trivial.

We claim that there exists a regular (permutation) program A of length n and width weff that
includes every edge from an accept state of B to another accept state of B. That is, for t > 0,
Bt(u, b) = At(u, b) whenever u ∈ [weff] and Bt(u, b) ∈ [weff]. Indeed, such a program A can be
constructed greedily.

Now, for an input x ∈ {0, 1}n and t > 0, let vt = B[v0, x1..t], i.e., vt is the vertex that B reaches
in layer t. Observe that B(x) = 1 if and only if Bt(vt−1, xt) = At(vt−1, xt), for all t > 0. We
construct a regular (permutation) unanimity program B′ of length n and width 2 ·weff that accepts
x if and only if Bt(vt−1, xt) = At(vt−1, xt), for all t > 0.

Identify the state space [2 · weff] with [weff] × {0, 1}. The start state of B′ is (v0, 0), and the
set of accept states in each layer is [weff] × {0}. For t > 0, the transition function B′t is given by
B′t((ut−1, at−1), b) = (ut, at), where

ut = At(ut−1, b)

at = at−1 ⊕ 1[At(ut−1, b) 6= Bt(ut−1, b)].

One can verify that B′ is a regular (permutation) unanimity program by an argument similar to
the proof of Lemma 2.1.

9This is because we can add weff dummy states (unreachable from the start state) to each layer, along with
transitions between dummy states to maintain the regularity/permutation condition. We can then assign some of
the dummy states to be accept states to ensure that each layer has exactly weff accept states.
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4 Hitting Sets for Unbounded-Width Regular Branching Programs

Combining Lemmas 1.11 and 2.1, we get a general transfer theorem, which says that any PRG
for width-O(1/ε) regular programs is also an HSG for unbounded-width regular programs with a
single accept vertex.

Theorem 4.1. Let n ∈ N and ε > 0, and let G : {0, 1}s → {0, 1}n. If G is an ε-PRG for
width-(4 · b1/εc) regular (respectively permutation) branching programs, then G is a (3ε)-HSG for
unbounded-width regular (respectively permutation) branching programs with a single accept vertex.

Proof. Fix an arbitrary regular (resp. permutation) branching program B of length n and un-
bounded width with a single accept state where Pr[B(Un) = 1] > 3ε. Applying Lemma 1.11, there
is a regular (resp. permutation) unanimity program BL of length n and width 2 ·b1/εc such that BL
is an ε-lower approximator of B, i.e. Pr[BL(Un) = 1] > 2ε and B−1

L (1) ⊆ B−1(1). By Lemma 2.1,
G fools BL with error 2ε. In particular, this implies that G hits BL and thus B.

Then Theorem 1.5 follows from the BRRY PRG [BRRY14], Proposition 1.12 follows from the
PRG of Steinke [Ste12], and Proposition 1.14 and Proposition 1.13 follow from the PRGs of Forbes
and Kelley [FK18] and Chattopadhyay, Hatami, Hosseini, and Lovett [CHHL19] respectively.10

Finally, we give a direct proof of Proposition 1.15, which we recall. The set is identical, and the
proof of correctness is nearly identical, to the hitting set for width-w regular branching programs
of Braverman, Rao, Raz, and Yehudayoff [BRRY14].

Proposition 1.15. Given n, a ∈ N, the set H = {x ∈ {0, 1}n : wt(x) ≤ a} where wt(x) denotes the
Hamming weight of x is a co-hitting set for regular branching programs of length n and unbounded
width with a accept states. That is, for every regular branching program B with at most a accept
states that is not the constant function B(x) = 1, there is x ∈ H such that B(x) = 0.

Proof. Let B be an arbitrary regular branching program of length n and unbounded width with at
most a accept states such that B(x) is not the constant 1 function.

We say a state v is doomed if pv→ = 1. We say that v is important if B[v, 0] is doomed and
B[v, 1] is not, or vice versa. We claim that B has at most a layers with at least one important
state. To prove this, first note that if there are k doomed states in Vi, there are at least k doomed
states in Vi+1. This is because for doomed v ∈ Vi, by definition B[v, 1] and B[v, 0] are doomed,
and states in Vi+1 have in-degree at most 2. Furthermore, note that if there are k doomed states
in Vi and a non-doomed v ∈ Vi is important, the number of doomed states in Vi+1 is at least k+ 1,
because there are at least 2k+ 1 transitions that must end at doomed states in Vi+1. We conclude
by noting that there at at most a doomed states in Vn, so the claim follows.

Finally, we show that the hitting set has a string that reaches a reject state. Consider an
algorithm starting at u = v0 ∈ V0. At each step, if u is an important state, take the transition
that leads to a non-doomed state, and otherwise take the 0 transition. Since B is not the constant
function B(x) = 1, this procedure reaches a reject state, and by the claim we take at most a 1
transitions, so there is x ∈ H such that B(x) = 0. Since B was arbitrary, we conclude.

10Theorem 4.1 focuses on ordered programs, but the analogous theorem for the unordered programs follows. To see
why, fix some ordered program B and some permutation π : [n] → [n]. A generator G fools/hits B(xπ(1), . . . , xπ(n))

if and only if the generator G′(x)
def
= (G(x)π(1), . . . , G(x)π(n)) fools/hits B, so we can apply the theorem to G′ and

draw conclusions about G.
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5 Error Reduction for Regular Branching Programs

In this section, as outlined in Section 1.3.3, we use error reduction methods to construct an HSG

for regular branching programs with seed length Õ
(

log n ·
(√

log(1/ε) + logw
)

+ log(1/ε)
)

. The

first step is to show that for any ordered branching program, there is a noticeable chance of visiting
a vertex from which the acceptance probability has gone up significantly, refining a lemma of Hoza
and Zuckerman [HZ20]. We reiterate that in the following lemma, the set S is not guaranteed to
be contained within a single layer.

Lemma 5.1. Let K > 1 be a real number, and let B be a (possibly non-regular) branching program
with E[B] = p ≤ 1/K. Let V be the set of vertices in B, and let S = {v ∈ V : pv→ ≥ Kp}. Then
when B reads a uniform random input, the probability that it visits S is at least 1

2K .

Proof. Let S′ = {v ∈ V : Kp ≤ pv→ < 2Kp}. Because B has degree 2, the acceptance probability
pv→ can at most double when we move from a vertex to one of its outneighbors. Therefore, every
accepting path from the start vertex v0 must visit S′.

For each vertex v ∈ S′, define gv : {0, 1}n → {0, 1} by letting gv(x) = 1 if and only if B(x) visits
v and v is the first vertex in S′ that B visits. Then

p = E[B] = Pr
x←Un

[ ∨
v∈S′

(B(x) = gv(x) = 1)

]
=
∑
v∈S′

Pr
x←Un

[B(x) = gv(x) = 1]

=
∑
v∈S′

E[gv] · pv→

< 2Kp ·
∑
v∈S′

E[gv]

= 2Kp · Pr
x←Un

[B(x) visits S′].

Therefore, when B reads a uniform random input, there is at least a 1/(2K) chance that it visits
S′ ⊆ S.

Now we present our HSG. The construction and analysis closely follow those of Hoza and
Zuckerman [HZ20]; the main difference is that we need to invoke Lemma 2.1 (the equivalence
between unanimity programs and branching programs) to argue that when B reads a pseudorandom
input generated by the ε0-PRG, there is still a noticeable chance of visiting the set S of Lemma 5.1.

Let w, n ∈ N, let ε0 < 0.1, let G : {0, 1}s → {0, 1}n be an ε0-PRG for width-(2w) regular
branching programs, and let K = 1

6ε0
> 1. Let 0 < ε < ε0; we will construct an ε-HSG for width-w

length-n regular branching programs.
The construction uses a tool called a “hitter” [Gol11]. A (θ, δ)-hitter is a function Hit : {0, 1}`×

{0, 1}q → {0, 1}s such that for every set E ⊆ {0, 1}s, if |E| ≥ θ · 2s, then

Pr
x←U`

[∃y,Hit(x, y) ∈ E] ≥ 1− δ.

(A hitter is a one-sided version of a “sampler,” and one can show that it is equivalent to the concept
of a “disperser.”) Let Hit be a (θ, δ)-hitter with threshold θ = ε0 and failure probability δ = 1

2wn .
Our HSG G′ is given by

G′(x, t, y1, . . . , yt, n1, . . . , nt) = G(Hit(x, y1))1..n1 ◦ · · · ◦G(Hit(x, yt))1..nt ,

where x ∈ {0, 1}`, t is a positive integer with t ≤
⌈

log(1/ε)
logK

⌉
, y1, . . . , yt ∈ {0, 1}q, and n1, . . . , nt are

positive integers with n1 + · · ·+ nt = n. Here ◦ denotes string concatenation.
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Claim 5.2. G′ is an ε-HSG for width-w length-n regular branching programs.

Proof. Let B be a regular branching program with E[B] > ε, and let V be the set of vertices in B.
For each vertex u ∈ V , we define a “target set” Su ⊆ V by the rule

Su =

{
{v ∈ V : pv→ ≥ Kpu→} if pu→ ≤ 1/K

Vacc if pu→ > 1/K.

Say u is in layer i of the program. We define a function gu : {0, 1}n → {0, 1} where gu(x) indicates
whether B ever visits the target set Su when we start at u and read x, i.e.,

gu(x) =

n−i∨
j=0

(B[u, x1..j ] ∈ Su).

By Lemma 5.1, E[gu] ≥ 1/(2K) = 3ε0. Furthermore, 1− gu can be computed by a width-w regular
unanimity program. Therefore, by Lemma 2.1, G fools gu with error 2ε0, so E[gu(G(Us))] ≥ ε0.
Let Eu = {z ∈ {0, 1}s : gu(G(z)) = 1}. Then by the hitter condition,

Pr
x←U`

[∃y,Hit(x, y) ∈ Eu] ≥ 1− 1

2wn
.

By the union bound, therefore, there exists some x∗ ∈ {0, 1}` such that for every vertex u ∈ V ,
there exists a y ∈ {0, 1}q such that Hit(x∗, y) ∈ Eu.

Now we inductively define a sequence of vertices u0, u1, . . . , a sequence of strings y1, y2, . . . , and
a sequence of positive integers n1, n2, . . . as follows. We begin with u0 = v0 (the start vertex of B).
Assume that we have defined u0, u1, . . . , ui−1. Let yi be such that Hit(x∗, y) ∈ Eui−1 . Recalling the
definition of Eui−1 , this means that if we start at ui−1 and read the string G(Hit(x∗, y)), we visit
the target set Sui−1 . Let ui be the first vertex in the target set Sui−1 that we visit, and let ni be the
number of steps from ui−1 to ui. We terminate the process when we reach some vertex ui ∈ Vacc

in the final layer.
Let t be the number of iterations. In every iteration except possibly the last, the acceptance

probability goes up by at least a factor of K, by the definition of the target set Su. Therefore,
ε ·Kt−1 < 1, so t < 1 + log(1/ε)

logK . By construction,

B(G′(x∗, t, y1, . . . , yt, n1, . . . , nt)) = 1.

Proof of Theorem 1.7. The sampling algorithm by Bellare, Goldreich, and Goldwasser [BGG93]
implies that for every s ∈ N and every θ, δ > 0, there is an explicit (θ, δ)-hitter Hit : {0, 1}` ×
{0, 1}q → {0, 1}s with ` = O(s + log(1/δ)) and q = O(log(1/θ) + log log(1/δ)). In our case, we
get ` = O(s + log(wn)) and q = O(log(1/ε0) + log log(wn)). Therefore, the seed length of G′ is
bounded by

`+O(log log(1/ε)) +

(
1 +

log(1/ε)

logK

)
· (q + log n)

≤ O
(
s+

log(1/ε) · (log n+ log logw)

log(1/ε0)
+ log(wn/ε)

)
≤ O

(
s+

log(1/ε) · log n

log(1/ε0)
+ log(wn/ε)

)
,

where the last step holds without loss of generality because if log logw > log n then the claimed

seed length is greater than n, which is trivial. Finally, we choose ε0 = 2−
√

log(1/ε) and take G to
be the BRRY PRG [BRRY14], which has seed length s = O(log n · (log(w/ε0) + log log n)).
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A Reductions From Large Alphabets

In this section, we prove that PRGs and HSGs for regular branching programs over a binary
alphabet imply PRGs and HSGs for regular branching programs over larger alphabets, with mild
degradation in parameters. Together with the modified proof of Reingold, Trevisan, and Vadhan in
Appendix B, this suffices to establish Theorem 1.8 (the reduction from general ordered branching
programs to the regular case).

To do so, we first define branching programs of higher degree.

Definition A.1. An (ordered) branching program B of length n, width w, and degree /
alphabet size D computes a function B : [D]n → {0, 1}. On an input x ∈ [D]n, the branching
program computes as follows. It starts at a fixed start state v0 ∈ [w]. Then for t = 1, . . . , n, it reads
the next input symbol xt and updates its state according to a transition function Bt : [w]×[D]→ [w]
by taking vt = Bt(vt−1, xt). As in the D = 2 case, there is a set Vacc of accept states. Let vn be
the final state reached by the branching program on input x. If vn ∈ Vacc the branching program
accepts, denoted B(x) = 1, and otherwise the program rejects, denoted B(x) = 0. The program B
is regular if for every t ∈ 1, . . . , n and v ∈ [w] there are exactly D pairs (u, σ) ∈ [w] × [D] such
that Bt(u, σ) = v.

We define notation for states and transitions in branching programs analogously to the D = 2
case. In particular, for a degree D branching program B we write B[v, x] = u if B reaches state
u ∈ Vj from state v ∈ Vi over input x ∈ [D]j−i.

Finally, we formally define HSGs and PRGs over larger alphabets. We use US to denote the
uniform distribution over the set S.

Definition A.2. Let F be a class of functions f : [D]n → {0, 1}. An ε-hitting set generator
(ε-HSG) for F is a function H : {0, 1}s → [D]n such that for every f ∈ F where Prx←U[D]n

[f(x) =
1] > ε, there exists x ∈ {0, 1}s such that f(H(x)) = 1.

Definition A.3. Let F be a class of functions f : [D]n → {0, 1}. An ε-pseudorandom generator
(ε-PRG) for F is a function G : {0, 1}s → [D]n such that for every f ∈ F ,∣∣∣∣ Pr

x←U[D]n
[f(x) = 1]− Pr

x←Us
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.
We can now state our main theorem for transferring pseudorandom objects over a binary al-

phabet into pseudorandom objects over larger alphabets:

Theorem A.4. Given n,w,D ∈ N and ε > 0, there exist values w′ = O(wn2D/ε) and n′ =
O(n log(nD/ε)) and an explicit function p : {0, 1}n′ → [D]n such that if G : {0, 1}s → {0, 1}n′ is an
ε-PRG (resp. HSG) for regular branching programs of length n′, width w′, and degree 2, then p ◦G
is a (3ε)-PRG (resp. HSG) for regular branching programs of length n, width w and degree D.

A.1 Overview of Proof of Theorem A.4

Theorem A.4 follows from a pair of reductions (Lemmas A.5 and A.6). Here we focus on the case
where the initial object is a PRG for simplicity.

First, we show how to convert a PRG over the binary alphabet into a PRG over the alphabet
[R], where R is an arbitrary power of two, say R = 2r where r ∈ N. To establish this, we take an
arbitrary regular branching program B of length n and width w over the alphabet [R]. We define
a new program B′ : {0, 1}nr → {0, 1} that simulates B as follows. The state space is [w]× {0, 1}r.
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Each input in {0, 1}nr is divided into n blocks of r bits. When B′ is in state (u, x) and it reads
bit i of block t, it replaces the ith bit of x with the input bit. When it finishes reading a block, it
furthermore updates u according to the transition function of the original function u ← Bt(u, x),
and updates x in such a way that regularity is maintained. In effect, the new program stores every
block of r bits into an auxiliary component of the state and then uses this register (viewed as a
number in R) to make the appropriate transition in the original program. This increases the width
by a factor of R but exactly preserves the computed function, so G ε-fooling B′ implies p◦G ε-fools
B, where p simply maps each block of r bits to a number in [R].

Second, we show how to convert a PRG for regular branching programs over the alphabet [R]
into a PRG over the alphabet [D], where D is arbitrary (not necessarily a power of two) and R
is a sufficiently large power of two. We let p(x) = x mod D where we apply the mod function
entrywise. To show p ◦G fools regular branching programs over the alphabet [D], we let m be the
largest multiple of D less than R. Given a regular branching program B : [R]n → {0, 1}, we can
compute B′(x) = (B ◦ p)(x) ∧ {x ≤ m} by a regular branching program that G is required to fool.
Furthermore, the condition x ≤ m is satisfied with probability at least 1−ε over uniformly random
input, and there is a regular branching program that tests if its input satisfies x ≤ m (that G is
required to fool).

A.2 Proof of Theorem A.4

We now precisely state and prove the pair of reductions outlined in the preceding section. The first
reduction transforms a binary PRG into a PRG for alphabets of size arbitrary powers of two.

Lemma A.5 (Generator for degree two =⇒ generator for degree any power of two). Given
n,w,R ∈ N and ε > 0 where R = 2r, there is an explicit map p : {0, 1}nr → [R]n such that if
G : {0, 1}s → {0, 1}nr is an ε-PRG (resp. HSG) for regular branching programs of length nr, degree
2 and width wR, then p ◦G is an ε-PRG (resp. HSG) for regular branching programs of length n,
degree R and width w.

Proof. Let pe : {0, 1}r → [R] be an explicit bijection and define

p(x) = (pe(x1, . . . , xr), . . . , pe(x(n−1)r, . . . , xn)).

Note that p maps uniformly random input to uniformly random output.
Now fix an arbitrary regular branching program B of length n, width w, and degree R. For

every transition function Bt : [w] × [R] → [w], define Rott : [w] × {0, 1}r → [w] × {0, 1}r such
that Rott is injective, and Rott(u, x) = (v, y) =⇒ Bt(u, pe(x)) = v. Such a function exists since
|B−1

t (v)| = R for every v. (We use the notation “Rot” because the function is closely connected
to the concept of the “rotation map” of a regular digraph [RVW02, RV05].) Then define a new
branching program B′ : {0, 1}nr → {0, 1} where the states in each layer are [w]×{0, 1}r. For t ∈ [n]
and i ∈ [r] we define the transition function as

B′r(t−1)+i((u, x), b) =

{
(u, xi←b) i < r

Rott(u, x
i←b) i = r,

where xi←b denotes replacing the ith bit of x with b. Then B′ is regular, because the operation of
replacing the ith bit is regular. By choosing the start state to be (v0, 0

r) and marking as accept all
states (u, x) where u is an accept state in B, we obtain that B ◦ p = B′.

To conclude, we break into cases depending on the base pseudorandom object:
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(G is an ε-HSG): Assuming that Pr[B(U[R]n) = 1] > ε then

Pr[B′(Unr) = 1] = Pr[B(U[R]n) = 1] > ε

and so there is some x such that B′(G(x)) = 1 and thus B((p ◦G)(x)) = 1.

(G is an ε-PRG): We have∣∣∣∣ Pr
x←Us

[B((p ◦G)(x)) = 1]− Pr
x←U[R]n

[B(x) = 1]

∣∣∣∣ =

∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←Unr

[B′(x) = 1]

∣∣∣∣ ≤ ε.
In both cases since B was arbitrary we obtain the desired result.

We remark that the preceding component of the reduction does not preserve the property of
B being a permutation branching program, since the “overwriting the ith bit” operation does
not produce a permutation branching program. We next show that PRGs and HSGs over large
alphabets imply PRGs and HSGs over smaller alphabets, including alphabet sizes that are not
powers of two.

Lemma A.6 (Generator for large degree =⇒ generator for small degree). Given n,w, d ∈ N
and ε > 0, there is R0 = O(nD/ε) such that for every R ≥ R0, there is an explicit function
p : [R]n → [D]n such that if G : {0, 1}s → [R]n is an ε-PRG (resp. HSG) for regular branching
programs of length n, degree R and width w · (n + 1), then p ◦ G is a (3ε)-PRG (resp. HSG) for
regular branching programs of length n, degree D and width w.

Proof. Let R be large enough that D
Rn < ε. Then let pe : [R] → [D] be defined as pe(xi) = xi

mod D and define
p(x) = (pe(x1), . . . , pe(xn)).

Let m ≤ R be the largest multiple of D not greater than R. For x ∈ [R]n, we write x ≤ m if for all
i, xi ≤ m. Let ρ = Prx←U[R]n

[x 6≤ m], and observe ρ ≤ n ·D/R < ε, and furthermore there exists a

length n, width n ≤ w, degree R regular branching program Q where Q(x) = 1[x � m].
Now fix an arbitrary regular branching program B : [D]n → {0, 1} of width w with states

V0, . . . , Vn. Let B′ : [R]n → {0, 1} be a branching program of length n, degree R and width
w(n+ 1). We identify the states of B′ with Vi ∪ ([n]× Vi). The states in Vi simulate B, while the
other states are dummy rejection states. We now define the transition function B′i. For v ∈ Vi
define

B′i(v, σ) =

{
Bi(v, σ mod D) σ ≤ m
(v, i) otherwise.

Next, for (v, j) ∈ (Vi × [n]) define

B′i((v, j), σ) =

{
(v, j) σ ≤ m or j 6= i

v otherwise.

The accept states of B′ are the accept states of B. It can be seen that B′ is regular. Note that
B[v, σ mod D] = B[v, pe(σ)], so B′ computes the function

B′(x) = B(p(x)) · 1[x ≤ m]. (2)
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Furthermore, p maps the conditional distribution (x ← U[R]n |x ≤ m) to the uniform distribution
U[D]n . Therefore,∣∣∣∣ Pr

x←U[R]n
[B′(x) = 1]− Pr

x←U[D]n
[B(x) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1|x � m] · ρ+ Pr
x←U[R]n

[B′(x) = 1|x ≤ m] · (1− ρ)− Pr
x←U[D]n

[B(x) = 1]

∣∣∣∣
≤ ρ+

∣∣∣∣ Pr
x←U[R]n

[B′(x) = 1|x ≤ m]− Pr
x←U[D]n

[B(x) = 1]

∣∣∣∣
≤ ε+ 0. (3)

To conclude, we break into cases depending on the base pseudorandom object:

(G is an ε-HSG): If Pr[B(U[D]n) = 1] > 2ε, then Pr[B′(U[R]n) = 1] > 2ε− ε by Equation 3.
Thus by assumption on G there is some x where B′(G(x)) = 1. Since B′(x) = 0 on all x � m,
we have 1 = B′(G(x)) = B((p ◦G)(x)), i.e. p ◦G hits B.

(G is an ε-PRG): We have that G ε-fools Q by assumption, so Prx←Us [G(x) � m] ≤ ε+ ε.
Then by Equation 2, we obtain:∣∣∣∣ Pr

x←Us
[B′(G(x)) = 1]− Pr

x←Us
[B((p ◦G)(x)) = 1]

∣∣∣∣ ≤ Pr
x←Us

[G(x) � m] ≤ 2ε. (4)

We finish by repeated application of the triangle inequality:∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←U[D]n

[B(x) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
x←Us

[B(p ◦G(x)) = 1]− Pr
x←U[R]n

[B′(x) = 1]

∣∣∣∣+ ε (Equation 3)

≤
∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←U[R]n

[B′(x) = 1]

∣∣∣∣+ 2ε (Equation 4)

≤ 3ε (Assumption).

B Transfer to General Branching Programs

The original formulation of the result of Reingold, Trevisan and Vadhan stated that a “pseu-
doconverging walk generator” (an object implied by a PRG) with sufficiently short seed implies
BPL = L. We extend their results to HSGs, and derive the degradation in parameters in the
notation of branching programs.

Theorem B.1 (Variant of [RTV06]). Given n,w ∈ N and ε > 0, there are values D′ = O(n3w/ε3)
and w′ = O(n6 · w2/ε5) and an explicit map p : [D′]n → {0, 1}n such that if G : {0, 1}s → [D′]n is
an ε-PRG (resp. HSG) for regular branching programs of length n, width w′ and degree D′, then
p ◦ G is a (16ε)-PRG (resp. HSG) for (possibly non-regular) branching programs of length n and
width w.

First, we show that generators for regular programs imply generators for “almost-regular”
programs, and then we show that generators for almost-regular programs imply generators for
non-regular programs.
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Definition B.2. Let B be a width-w length-n ordered branching program of alphabet size D and
let ρ > 0. We say that B is ρ-almost-regular if for every t ∈ [n] and every v ∈ [w], we have

|B−1
t (v)| ≤ D · (1 + ρ).

Lemma B.3 (Generator for regular programs =⇒ generator for almost-regular programs). Let
n,w,D ∈ N and ε, ρ > 0. Let w′ = w · (n+ 1) and let D′ = bD · (1 + ρ)c. There is an explicit map
p : [D′]n → [D]n such that if G : {0, 1}s → [D′]n is an ε-PRG (resp. HSG) for width-w′ length-n
regular branching programs of degree D′, then p ◦G is a (2ε+ 2ρn)-PRG (resp. HSG) for width-w
length-n ρ-almost-regular branching programs of degree D.

Proof. The map p operates symbol-by-symbol according to the rule

p(x)i = min{D,xi}

for i ∈ [n]. To prove that this works, let B be a width-w length-n ρ-almost-regular branching
program of degree D. We will construct a regular branching program B′ of degree D′ that computes
the function

B′(x) =

{
B(x) if x ∈ [D]n

0 otherwise.
(5)

In particular, this function satisfies∣∣∣∣∣ Pr
x←U[D′]n

[B′(x) = 1]− Pr
x←U[D]n

[B(x) = 1]

∣∣∣∣∣ =

∣∣∣∣∣ Pr
x←U[D]n

[B(x) = 1] ·

(
Pr

x←U[D′]n
[x ∈ [D]n]− 1

)∣∣∣∣∣
≤ Pr

x←U[D′]n
[x 6∈ [D]n]

≤ n · D
′ −D
D′

≤ n · ρ. (6)

The construction is similar to the proof of Lemma 3.3. First, we claim that there exists a width-w
length-n regular branching program A over the alphabet [D′] such that for every t ∈ [n], every
u ∈ [w], and every σ ∈ [D] ⊆ [D′], we have At(u, σ) = Bt(u, σ). Indeed, such an A can be
constructed greedily, since every vertex of B has at most D′ incoming edges. Now, identify the
state space [w′] with [w]× Zn+1, where Zn+1 is the additive group of integers modulo n + 1. The
transition function B′t is given by B′t((ut−1, at−1), σ) = (ut, at), where

ut = At(ut−1, σ)

at =

{
at if σ ∈ [D]

at + 1 if σ ∈ [D′] \ [D].

The start state is (v0, 0) where v0 is the start state of B, and the set of accept states is Vacc × {0}
where Vacc is the set of accept states of B. Equation 5 is clear. The program B′ is regular because
A is regular. To conclude, we break into cases depending on the base generator:

(G is an ε-HSG): Suppose E[B] > ε + nρ. By Equation 6, we have E[B′] > ε. Therefore,
G hits B′. By Equation 5, this implies that there is some seed x such that G(x) ∈ [D]n and
B(G(x)) = 1. Therefore, B((p ◦G)(x)) = 1, i.e., p ◦G hits B.
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(G is an ε-PRG): One can construct a regular width-(n+1) branching program Q of degree
D′ such that Q(x) = 1 ⇐⇒ x 6∈ [D]n. Observe that B′ ≤ B ◦ p ≤ B′ +Q. Therefore,∣∣∣∣ Pr

x←Us
[B((p ◦G)(x)) = 1]− Pr

x←Us
[B′(G(x)) = 1]

∣∣∣∣ ≤ Pr
x←Us

[Q(G(x)) = 1]

≤ Pr
x←U[D′]n

[Q(x) = 1] + ε

≤ nρ+ ε.

Furthermore, since G fools B′, we have∣∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←U[D′]n

[B′(x) = 1]

∣∣∣∣∣ ≤ ε.
Together with Equation 6 and the triangle inequality, this implies∣∣∣∣ Pr

x←Us
[B((p ◦G)(x)) = 1]− Pr

x←U[D]n
[B(x) = 1]

∣∣∣∣ ≤ 2ε+ 2nρ

as claimed.

Lemma B.4 (Generator for almost-regular programs =⇒ generator for non-regular programs).
Given n,w ∈ N and ε, ρ > 0, there are values D = O(nw/(ερ2)) and w′ = O(n2w2/(ε2ρ3)) and an
explicit function p : [D]n → {0, 1}n such that if G : {0, 1}s → [D]n is an ε-PRG (resp. HSG) for
width-w′ length-n ρ-almost-regular branching programs of degree D, then p◦G is a (4ε)-PRG (resp.
HSG) for width-w length-n (possibly non-regular) branching programs.

Proof. Let T = d(nw/ε) · (2/ρ+ 1)e, and let D be the smallest even integer with D ≥ (4T + 4)/ρ.
Let φ : [D] → {0, 1} × [D/2] be a bijection, and let p : [D]n → {0, 1}n project each symbol to its
first bit, i.e., p(x)i = φ(xi)1.

Let B be an ordered branching program of length n and width w over the binary alphabet. We
define a new branching program B′ : [D]n → {0, 1} of width T · (D + 1) and length n as follows.
We identify the state space [T · (D + 1)] with [T ] ∪ ([T ]× [D]). Informally, the states in [T ] carry
a simulation of B, while the states in [T ] × [D] are dummy rejection states to handle certain rare
events.

Precisely, we associate each vertex v ∈ Vt of B with a “cloud” C(v) ⊆ [T ] as follows. Let
S = bT · p→vc. If S ≤ 2/ρ, let C(v) = ∅, and otherwise let |C(v)| = S. Since

∑
v∈VtbT · p→vc ≤ T ,

the clouds C(v) can be chosen in such a way that they are disjoint for v ∈ Vt. Number the states
in C(v) as C(v) = {C(v)1, . . . , C(v)S}, and extend the notation by defining C(v)i = C(v)i mod S

when i > S. Mark an arbitrary state in C(v0) as the start state of B′, and if v is an accept state
of B, then mark all states in the cloud C(v) as accept states.

Now we define transitions. Fix some t ∈ [n] and some symbol σ ∈ [D].

• For a state u′ ∈ [T ]:

– Let (b, i) = φ(σ) ∈ {0, 1} × [D/2]. First suppose that u′ is a member of a cloud, say
u′ ∈ C(u) where u ∈ Vt−1, and suppose furthermore that C(B[u, b]) 6= ∅. In this case,
we define

B′t(u
′, σ) = C(B[u, b])i ∈ [T ].

– Otherwise, we define
B′t(u

′, σ) = (u′, σ) ∈ [T ]× [D].
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• For a state of the form (u′, j) ∈ [T ]× [D], we define

B′t((u
′, j), σ) = (u′, j).

In summary, each edge (u, v) of B is “lifted” to a collection of edges from the cloud C(u) to the
cloud C(v) whenever possible, and furthermore these edges are distributed as evenly as possible.
We use dummy rejection states to deal with the case C(v) = ∅.

Unfortunately, due to roundoff errors, B′ is not necessarily regular. However, we next show
that B′ is almost regular.

Claim B.5. The branching program B′ is ρ-almost-regular.

Proof. We begin by analyzing states in clouds. Let t ∈ [n], and let v′ ∈ C(v) where v ∈ Vt. Let
(u1, v), . . . , (ur, v) be the edges incoming to v in B. In B′, all edges to the cloud C(v) come from
the clouds C(u1), . . . , C(ur). For each i ∈ [r], for each vertex u′i ∈ C(ui), there are D/2 edges from
u′i to the cloud C(v), and those edges are distributed as evenly as possible among the members of
C(v). In particular, if we let e(u′i, v

′) denote the number of edges from u′i to v′, we have

e(u′i, v
′) ≤ D/2

|C(v)|
+ 1.

Therefore, summing up,

deg−(v′) =
r∑
i=1

∑
u′i∈C(ui)

e(u′i, v
′) ≤

r∑
i=1

|C(ui)| ·
(
D/2

|C(v)|
+ 1

)

≤
(
D/2

|C(v)|
+ 1

)
· T ·

r∑
i=1

p→ui

=

(
D/2

|C(v)|
+ 1

)
· 2T · p→v

≤
(
D/2

|C(v)|
+ 1

)
· 2 · (|C(v)|+ 1)

= D ·
(

1 +
1

|C(v)|
+

2|C(v)|+ 2

D

)
≤ D ·

(
1 +

1

|C(v)|
+

2T + 2

D

)
.

Since C(v) is nonempty, |C(v)| > 2/ρ, so plugging in the definition of D, we get a bound of
D · (1 + ρ).

Next, we consider states outside clouds. By construction, a state v′ ∈ [T ] that is not in a cloud
has zero incoming edges. Finally, a state (v′, j) ∈ [T ]× [D] has at most D+1 ≤ D · (1+ρ) incoming
edges, namely the D transitions B′t((v

′, j)σ) = (v′, j) and possibly the one additional transition
B′t(v

′, j) = (v′, j).

Thus B′ is a ρ-almost-regular program of degree D and length n and width T · (D + 1), so G
is an ε-PRG (resp. ε-HSG) for B′. Next, we show that the program B′ approximately simulates B
(or rather B ◦ p). Define the function Q : [D]n → {0, 1} by the rule

Q(x) = 1 ⇐⇒ on input p(x), B visits some v such that C(v) = ∅.
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Claim B.6. We have B′ ≤ B ◦ p ≤ B′ +Q.

Proof. Let x ∈ [D]n, and let v0, . . . , vn be the sequence of vertices that B visits on input p(x),
i.e., vi = B[v0, p(x)1..i]. Looking at the definition of B′, we see that B′(x) visits vertices in the
clouds C(v0), C(v1), . . . , C(vn), unless at some point one of these clouds is empty, in which case B′

transitions to a reject vertex and we have B′(x) = 0. Therefore, if Q(x) = 0, then B′(x) = B(p(x)),
and meanwhile if Q(x) = 1, then B′(x) = 0.

Consequently, under the uniform distribution, we have∣∣∣∣ Pr
x←U[D]n

[B′(x) = 1]− Pr
x←Un

[B(x) = 1]

∣∣∣∣ =

∣∣∣∣ Pr
x←U[D]n

[B′(x) = 1]− Pr
x←U[D]n

[(B ◦ p)(x) = 1]

∣∣∣∣
≤ Pr

x←U[D]n
[Q(x) = 1]. (7)

By the union bound, we have

Pr
x←U[D]n

[Q(x) = 1] ≤
∑

v:bT ·p→vc≤2/ρ

p→v

≤ nw · 2/ρ+ 1

T
≤ ε. (8)

To conclude, we break into cases depending on the base pseudorandom object:

(G is an ε-HSG): If Pr[B(Un) = 1] > 2ε then Prx←U[D]n
[B′(x) = 1] > ε by Equations 7 and 8.

Then by assumption on G there is x such that B′(G(x)) = 1, which implies B((p◦G)(x)) = 1
by Claim B.6.

(G is an ε-PRG): We can construct a branching program that computes Q that is very
similar to B′. Namely, we modify B′ by setting the accept states in the final layer to be
[T ] × [D] (leaving the transitions unchanged). That branching program is ρ-almost-regular,
so G fools Q with error ε. Therefore, by Claim B.6 and Equation 8,∣∣∣∣ Pr

x←Us
[B((p ◦G)(x)) = 1]− Pr

x←Us
[B′(G(x)) = 1]

∣∣∣∣ ≤ Pr
x←Us

[Q(G(x)) = 1] ≤ 2ε. (9)

Then we conclude by a chain of inequalities:∣∣∣∣ Pr
x←Us

[B((p ◦G)(x)) = 1]− Pr
x←U{0,1}n

[B(x) = 1]

∣∣∣∣
≤
∣∣∣∣ Pr
x←Us

[B((p ◦G)(x)) = 1]− Pr
x←U[D]n

[B′(x) = 1]

∣∣∣∣+ ε (Equations 7 and 8)

≤

∣∣∣∣∣ Pr
x←Us

[B′(G(x)) = 1]− Pr
x←U[D′]n

[B′(x) = 1]

∣∣∣∣∣+ 3ε (Equation 9)

≤ 4ε (Assumption).

Theorem B.1 follows immediately from Lemmas B.3 and B.4 by choosing ρ = ε/n.
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