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Abstract. We pioneer a new technique that allows us to prove a multi-
tude of previously open simulations in QBF proof complexity. In particu-
lar, we show that extended QBF Frege p-simulates clausal proof systems
such as IR-Calculus, IRM-Calculus, Long-Distance Q-Resolution, and
Merge Resolution. These results are obtained by taking a technique of
Beyersdorff et al. (JACM 2020) that turns strategy extraction into sim-
ulation and combining it with new local strategy extraction arguments.

This approach leads to simulations that are carried out mainly in propo-
sitional logic, with minimal use of the QBF rules. Our proofs therefore
provide a new, largely propositional interpretation of the simulated sys-
tems. We argue that these results strengthen the case for uniform cer-
tification in QBF solving, since many QBF proof systems now fall into
place underneath extended QBF Frege.

1 Introduction

The problem of evaluating Quantified Boolean Formulas (QBF), an exten-
sion of propositional satisfiability (SAT), is a canonical PSPACE-complete
problem [1, 37]. Many tasks in verification, synthesis and reasoning have
succinct QBF encodings [36], making QBF a natural target logic for au-
tomated reasoning. As such, QBF has seen considerable interest from the
SAT community, leading to the development of a variety of QBF solvers
(e.g., [20,21,30,31,33]). The underlying algorithms are often highly non-
trivial, and their implementation can lead to subtle bugs [9]. While formal
verification of solvers is typically impractical, trust in a solver’s output can
be established by having it generate a proof trace that can be externally
validated. This is already standard in SAT solving with the DRAT proof
system [40], for which even formally verified checkers are available [15].
A key requirement for standard proof formats like DRAT is that they
simulate all current and emerging proof techniques.

Currently, there is no decided-upon checking format for QBF proofs
(although there have been some suggestions [19, 23]). The main chal-
lenge of finding such an universal format, is that QBF solvers are so
radically different in their proof techniques, that each solver basically
works in its own proof system. For instance, solvers based on CDCL and
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(some) clausal abstraction solvers can generate proofs in Q-resolution (Q-
Res) [26] or long-distance Q-resolution (LD-Q-Res) [2], while the proof sys-
tem underlying expansion based solvers combines instantiation of univer-
sally quantified variables with resolution (∀Exp+Res) [22]. Variants of the
latter system have been considered: IR-calc (Instantiation Resolution) ad-
mits instantiation with partial assignments, and IRM-calc (Instantiation
Resolution Merge) additionally incorporates elements of long-distance
Q-resolution [7].

A universal checking format for QBF ought to simulate all of these
systems. A good candidate for such a proof system has been identified in
extended QBF Frege (eFrege +∀red): Beyersdorff et al. showed [6] that
a lower bound for eFrege +∀red would not be possible without a major
breakthrough.

In this work, we show that eFrege +∀red does indeed p-simulate IR-
calc, IRM-calc, Merge Resolution (M-Res) and LQU+-Res (a generalisation
of LD-Q-Res), thereby establishing eFrege+∀red and any stronger system
(e.g., QRAT [19] or G [29]) as potential universal checking formats in
QBF. As corollaries, we obtain (known) simulations of ∀Exp+Res [24]
and LD-Q-Res [25] by QRAT, as well as a (new) simulation of IR-calc by
QRAT, answering a question recently posed by Chede and Shukla [10].
A simulation structure with many of the known QBF proof systems and
our new results is given in Figure 1.
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Fig. 1. Hasse diagram for polynomial simulation order of QBF calculi [2, 3, 5–7, 12,
13, 18, 39]. In this diagram all proof systems below the first line are known to have
strategy extraction, and all below the second line have an exponential lower bound. G
and QRAT have strategy extraction if and only if P = PSPACE.



Our proofs crucially rely on a property of QBF proof systems known
as strategy extraction. Here, “strategy” refers to winning strategies of a
set of PSPACE two-player games (see Section 2 for more details) each of
which corresponds exactly to some QBF. A proof system is said to have
strategy extraction if a strategy for the two-player game associated with
a QBF can be computed from a proof of the formula in polynomial time.
Balabanov and Jiang discovered [2] that Q-Resolution admitted a form of
strategy extraction where a circuit computing a winning strategy could be
extracted in linear time from the proofs. Strategy extraction was subse-
quently proven for many QBF proof systems (cf. Figure 1): the expansion
based systems ∀Exp+Res [7], IR-calc [7] and IRM-calc [7], Long-Distance
Q-Resolution [16], including with dependency schemes [16], Merge Res-
olution [5], Relaxing Stratex [11] and C-Frege +∀red systems including
eFrege+∀red [6]. Strategy extraction also gained notoriety because it be-
came a method to show Q-resolution lower bounds [7]. Beyersdorff et
al. [6, 8] generalised this approach to more powerful proof systems, al-
lowing them to establish a tight correspondence between lower bounds
for eFrege+∀red and two major open problems in circuit complexity and
propositional proof complexity: they showed that proving a lower bound
for eFrege+∀red is equivalent to either proving a lower bound for P/poly
or a lower bound for propositional eFrege. Chew conjectured [12] that
this meant that all the aforementioned proof systems that had strategy
extraction were very likely to be simulated by eFrege +∀red and showed
an outline of how to use strategy extraction to obtain the corresponding
simulations.

We follow this outline in proving simulations for multiple systems
by eFrege +∀red. While the strategy extraction for expansion based sys-
tems [7] has been known for a while using the technique from Goultiaeva
et. al [17], there currently is no intuitive way to formalise this strategy
extraction into a simulation proof. Here we specifically studied a new
strategy extraction technique given by Schlaipfer et al. [35], that creates
local strategies for each ∀Exp+Res line. Inductively, we can affirm each of
these local strategies and prove the full strategy extraction this way. This
local strategy extraction technique is based on arguments of Suda and
Gleiss [38], which allow it to be generalised to the expansion based sys-
tem IRM-calc. We thus manage to prove a simulation for ∀Exp+Res and
generalise it to IR-calc and then to IRM-calc. We also show a much more
straight-forward simulation of M-Res and an adaptation of the IRM-calc
argument to LQU+-Res.



The remainder of the paper is structured as follows. In Section 2 we
go over general preliminaries and the definition of eFrege +∀red. The
remaining sections are each dedicated to simulations of different calculi
by eFrege +∀red. In Section 3 we begin with a simulation of M-Res as a
relatively easy example. In Section 4 we show for expansion based systems,
how both an interpretation by in propositional logic and a local strategy
is possible and why that leads to a simulation by eFrege +∀red. For IR-
calc we present an outline of the proof and for IRM-calc we detail which
modifications are needed (full details are given in Appendix 7.1 and 7.2).
In Section 5 we study the strongest CDCL proof system LQU+-Res and
show that it is also simulated by eFrege+∀red, using a similar argument
to IRM-calc.

2 Preliminaries

2.1 Quantified Boolean Formulas

A Quantified Boolean Formula (QBF) is a propositional formula aug-
mented with Boolean quantifiers ∀,∃ that range over the Boolean values
⊥,> (the same as 0, 1). Every propositional formula is already a QBF.
Let φ be a QBF. The semantics of the quantifiers are that: ∀xφ(x) ≡
φ(⊥) ∧ φ(>) and ∃xφ(x) ≡ φ(⊥) ∨ φ(>).

When investigating QBF in computer science we want to standardise
the input formula. In a prenex QBF, all quantifiers appear outermost in
a (quantifier) prefix, and are followed by a propositional formula, called
the matrix. If every propositional variable of the matrix is bound by
some quantifier in the prefix we say the QBF is a closed prenex QBF.
We often want to standardise the propositional matrix, and so we can
take the same approach as seen often in propositional logic. A literal
is a propositional variable or its negation. A clause is a disjunction of
literals. Since disjunction is idempotent, associative and commutative we
can think of a clause simultaneously as a set of literals. The empty clause is
just false. A conjunctive normal form (CNF) is a conjunction of clauses.
Again, since conjunction is idempotent, associative and commutative a
CNF can be seen as set of clauses. The empty CNF is true, and a CNF
containing an empty clause is false. Every propositional formula has an
equivalent formula in CNF, we therefore restrict our focus to closed PCNF
QBFs, that is closed prenex QBFs with CNF matrices.



2.2 QBF Proof Systems

Proof Complexity A proof system [14] is a polynomial-time checking
function that checks that every proof maps to a valid theorem. Different
proof systems have varying strengths, in one system a theorem may re-
quire very long proofs, in another the proofs could be considerably shorter.
We use proof complexity to analyse the strength of proof systems [27]. A
proof system is said to have an Ω(f(n))-lower bound, if there is a family
of theorems such that shortest proof (in number of symbols) of the family
are bounded below by Ω(f(n)) where n is the size (in number of symbols)
of the theorem. Proof system p is said to simulate proof system q if there
is a fixed polynomial P (x) such that for every q-proof π of every theorem
y there is a p-proof of y no bigger than P (|π|) where |π| denotes the size of
π. A stricter condition, proof system p is said to p-simulate proof system
q if there is a polynomial-time algorithm that takes q-proofs to p-proofs
preserving the theorem.

Extended Frege+∀-Red Frege systems are “text-book” style proof
systems for propositional logic. They consist of a finite set of axioms and
rules where any variable can be replaced by any formula (so each rule and
axiom is actually a schema). A Frege system needs also to be sound and
complete. Frege systems are incredibly powerful and can handle simple
tautologies with ease. No lower bounds are known for Frege systems and
all Frege systems are p-equivalent [14,34]. For these reasons we can assume
all Frege-systems can handle simple tautologies and syllogisms without
going into details.

Extended Frege (eFrege) takes a Frege system and allows the intro-
duction of new variables that do not appear in any previous line of the
proof. These variables abbreviate formulas. The rule works by introducing
the axiom of v ↔ f for new variable v (not in appearing in the formula
f). Alternatively one can consider eFrege as the system where lines are
circuits instead of formulas.

Extended Frege is a very powerful system, it was shown [4,28] that any
propositional proof system f can be simulated by eFrege+ ||φ|| where φ is
a polynomially recognisable axiom scheme. The QBF analogue is eFrege
+∀red, which adds the reduction rule to all existing eFrege rules [6]. eFrege
+∀red is refutationally sound and complete for closed prenex QBFs. The
reduction rules allows one to substitute a universal variable in a formula
with 0 or with 1 as long as no other variable appearing in that formula
is right of it in the prefix. Extension variables now must appear in the
prefix and must be quantified right of the variables used to define it.



2.3 QBF Strategies

With a closed prenex QBF Πφ, the semantics of a QBF has an alter-
native definition in games. The two-player QBF game has an ∃-player
and a ∀-player. The game in played in order of the prefix Π left-to-right,
whose quantifier appears gets to assign the quantified variable to ⊥ or >.
The existential player is trying to make the matrix φ become true. The
universal player is trying to make the matrix become false. Πφ is true if
and only if there winning strategy for the ∃ player. Πφ is false if and only
if there winning strategy for the ∀ player.

A strategy for a false QBF is a set of functions fu for each universal
variable u on variables left of u in the prefix. In a winning strategy the
propositional matrix must evaluate to false when every u is replaced by
fu. A QBF proof system has strategy extraction if there is a polynomial
time program that takes in a refutation π of some QBF Ψ and outputs
circuits that represent the functions of a winning strategy.

A policy is similarly defined as a strategy but with partial functions
for each universal variables instead of fully defined.

3 Extended Frege+∀-Red p-simulates M-Res

In this section we show a first example of how the eFrege +∀red simula-
tion argument works in practice for systems that have strategy extraction.
Merge resolution provides a straightforward example because the strate-
gies themselves are very suitable to be managed in propositional logic.
In later theorems where we simulate calculi like IR-calc and IRM-calc,
representing strategies is much more of a challenge.

3.1 Merge Resolution

Merge resolution (M-Res) was first defined by Beyersdorff, Blinkhorn and
Mahajan [5]. Its lines combines clausal information with a merge map, for
each universal variable. Merge maps give a “local” strategy which when
followed forces the clause to be true or the original CNF to be false.

Definition of Merge Resolution Each line of an M-Res proof consists
of a clause on existential variables and partial universal strategy functions
for universal variables. These functions are represented by merge maps,
which are defined as follows. For universal variable u, let Eu be the set
of existential variables left of u in the prefix. A non-trivial merge map



Mu
i is a collection of nodes in [i], where the construction function Mu

i (j)
is either in {⊥,>} for leaf nodes or Eu × [j] × [j] for internal nodes.
The root r(u, i) is the highest value of all the nodes Mu

i . The strategy
function hui,j : {0, 1}Eu → {0, 1} maps assignments of existential variables
Eu in the dependency set of u to a value for u. The function hui,t for
leaf nodes t is simply the truth value Mu

i (t). For internal nodes a with
Mu
i (a) = (y, b, c), we should interpret hui,a as “If y then hui,b, else hui,c”

or hui,a = (y ∧ hui,b) ∨ (¬y ∧ hui,c). In summary the merge map Mu
i (j) is a

representation of the strategy given by function hui,r(u,i).
The merge resolution proof system inevitably has merge maps for the

same universal variable interact, and we have two kinds of relations on
pairs of merge maps.

Definition 1. Merge maps Mu
j and Mu

k are said to be consistent if
Mu
j (i) = Mu

k (i) for each node i appearing in both Mu
j and Mu

k .

Definition 2. Merge maps Mu
j and Mu

k are said to be isomorphic if is
there exists a bijection f from the nodes of Mu

j to the nodes of Mu
k such

that if Mu
j (a) = (y, b, c) then Mu

k (f(a)) = (y, f(b), f(c)) and if Mu
j (t) =

p ∈ {⊥,>} then Mu
k (f(t)) = p.

With two merge maps Mu
j and Mu

k , we define two operations as fol-
lows:

– Select(Mu
j ,M

u
k ) returns Mu

j if Mu
k is trivial (representing a “don’t

care”), or Mu
j and Mu

k are isomorphic and returns Mu
k if Mu

j is trivial
and not isomorphic to Mu

j . If neither Mu
j or Mu

k is trivial and the two
are not isomorphic then the operation fails.

– Merge(x,Mu
j ,M

u
k ) returns the map Mu

i with i > j, i > k when
Mu
j ,M

u
k are consistent where if a is a node in Mu

j then Mu
i (a) =

Mu
j (a) and if a is a node in Mu

k then Mu
i (a) = Mu

k (a). Merge map
Mu
i has a new node r(u, i) as a root node (which is greater than

the maximum node in each of Mu
i (a) or Mu

j (a)), and is defined as
Mu
i (r(u, i)) = (x, r(u, j), r(u, k)).

Proofs in M-Res consist of lines, where every line is a pair (Ci, {Mu
i |

u ∈ U}). Here, Ci is a purely existential clause (it contains only literals
that are from existentially quantified variables). The other part is a set
containing merge maps for each universal variable (some of the merge
maps can be trivial, meaning they do not represent any function). Each
line is derived by one of two rules:

Axiom: Ci = {l | l ∈ C, var(l) ∈ E} is the existential subset of some
clause C where C is a clause in the matrix. If universal literals u, ū do not



appear in C, let Mu
i be trivial. If universal variable u appears in C then

let i be the sole node of Mu
i with Mu

i (i) = ⊥. Likewise if ¬u appears in
C then let i be the sole node of Mu

i with Mu
i (i) = >.

Resolution: Two lines (Cj , {Mu
j | u ∈ U}) and (Ck, {Mu

k | u ∈ U})
can be resolved to obtain a line (Ci, | {Mu

i | u ∈ U}) if there is literal
¬x ∈ Cj and x ∈ Ck such that Ci = Cj ∪Ck \ {x,¬x}, and every Mu

i can
either be defined as Select(Mu

j ,M
u
k ), when Mu

j and Mu
k are isomorphic

or one is trivial, or as Merge(x,Mu
j ,M

u
k ) when x < u and Mu

j and Mu
k

are consistent.

3.2 Simulation of Merge Resolution

We now state the main result of this section.

Theorem 1. eFrege +∀red simulates M-Res.

For a false QBF Πφ refuted by M-Res, the final set of merge maps rep-
resent a falsifying strategy S for the universal player. It then should be
the case that if φ is true, S must be false, a fact that can be proved
propositionally, formally φ ` ¬S.

To build up to this proof we can inductively find a local strategy Si
for each clause Ci that appears in an M-Res line (Ci, {Mu

i }) such that
φ ` Si → Ci. Elegantly, Si is really just a circuit expressing that each
u ∈ U takes its value in Mu

i (if non-trivial). Extension variables are used
to represent these local strategy circuits and so the proof ends up as a
propositional extended Frege proof.

The final part of the proof is the technique suggested by Chew [12]
which was originally used by Beyersdorff et al. [6]. That is, to use universal
reduction starting from the negation of a universal strategy and arrive at
the empty clause.

Proof. Definition of extension variables. We create new extension
variables for each node in every non-trivial merge map appearing in a
proof. sui,j is created for the node j in merge map Mu

i . sui,t is defined
as a constant when t is leaf node in Mu

i . Otherwise sui,a is defined as
sui,a := (y ∧ sui,b)∨ (¬y ∧ sui,c), when Mu

i (j) = (y, b, c). Because y has to be
before u in the prefix, sui,j is always defined before universal variable u.
Induction Hypothesis: It is easy for eFrege to prove

∧
u∈Ui(u↔ sui,r(u,i))→

Ci, where r(u, i) is the index of the root node of Merge map Mu
i . Ui is

the subset of U for which Mu
i is non-trivial.

Base Case: Axiom: Suppose Ci is derived by axiom download of clause
C. If u has a strategy, it is because it appears in a clause and so u↔ sui,i,



where sui,i ↔ cu for cu ∈ >,⊥, cu is correctly chosen to oppose the literal
in C so that Ci is just the simplified clause of C replacing all universal u
with their cu. This is easy for eFrege to prove.

Inductive Step: Resolution: If Cj is resolved with Ck to get Ci with
pivots ¬x ∈ Cj and x ∈ Ck, we first show

∧
u∈Ui(u↔ sui,r(u,i))→ Cj and∧

u∈Ur(u ↔ sui,r(u,i)) → Ck, where r(u, i) is the root index of the Merge
map for u on line i. We resolve these together.

To argue that
∧
u∈Ui(u ↔ sui,r(u,i)) → Cj we prove by induction that

we can replace u↔ suj,r(u,j) with u↔ sui,r(u,i) one by one.

Induction Hypothesis: Ui is partitioned into W the set of adjusted
variables and V the set of variables yet to be adjusted.

(
∧
v∈V ∩Uj (v ↔ svj,r(v,j))) ∧ (

∧
v∈W (v ↔ svi,r(v,i)))→ Cj

Base Case: (
∧
v∈V ∩Uj (v ↔ svj,r(v,j)) is the premise of the (outer)

induction hypothesis

Inductive Step: Starting with (
∧
v∈V ∩Uj (v ↔ svj,r(v,j)))∧(

∧
w∈W (w ↔

swi,r(w,i))) → Cj We pick a u ∈ V to show (u ↔ swi,r(u,i)) ∧ (
∧
v∈V ∩Uj (v ↔

svj,r(v,j))) ∧ (
∧
v∈W (w ↔ swi,r(w,i)))→ Cj We have four cases:

1. Select chooses Mu
i = Mu

j

2. Select chooses Mu
i = Mu

k because Mu
j is trivial

3. Select chooses Mu
i = Mu

k because there is an isomorphism f that
maps Mu

j to Mu
k .

4. Merge so that Mu
i is the merge of Mu

j and Mu
k over pivot x

In (1) we prove inductively from the leaves to the root that sui,t ↔ suj,t.
Eventually, we end up with sui,r(u,i) ↔ suj,r(u,j). Then (u ↔ suj,r(u,j)) can

be replaced by (u↔ sui,r(u,i)).

In (2) we are simply weakening the implication as (u↔ suj,r(u,j)) never
appeared before.

In (3) we prove inductively from the leaves to the root that sui,f(t) =
suk,f(t) = suj,t. Eventually, we end up with sui,f(r(u,i)) = suk,f(r(u,i)) = suj,r(u,i).

Then (u ↔ suj,r(u,j)) can be replaced by (u ↔ sui,f(r(u,j))). As f is an

isomorphism f(r(u, j)) = r(u, k) and because Select is used r(u, k) =
r(u, i). Therefore we have (u↔ sui,r(u,i)).

In (4) we prove inductively that for each node t in Mu
j (sui,t ↔ suj,t).

This is true in all leaf nodes as sui,t and suj,t have the same constant value.
For intermediate nodes a, suj,a := (y ∧ suj,b) ∨ (¬y ∧ suj,c) where b and c
are other nodes. Since Mu

i is consistent with Mu
j then sui,a := (y ∧ sui,b) ∨

(¬y∧sui,c) and since sui,b ↔ suj,b and sui,c ↔ suj,c by induction hypothesis, we
have sui,a ↔ suj,a. eventually we have sui,r(u,j) ↔ suj,r(u,j). However we need



to replace suj,r(u,j) with sui,r(u,i), not sui,r(u,j). For this we use the definition

of merging that x → (sui,r(u,i) ↔ sui,r(u,j)) and so we have (sui,r(u,i) ↔
suj,r(u,j)) ∨ ¬x but the ¬x is absorbed by the Cj in right hand side of the
implication.

Finalise Inner Induction: At the end of this inner induction, we
have

∧
u∈Ui(u↔ sui,r(u,i))→ Cj and symmetrically

∧
u∈Ui(u↔ sui,r(u,i))→

Ck. We can then prove
∧
u∈Ui(u↔ sui,r(u,i))→ Ci.

Finalise Outer Induction: Note that we have done three nested induc-
tions on the nodes in a merge maps, on the the universal variables, and
then on the lines of an M-Res proof. Nonetheless, this gives a linear size
eFrege proof in the number of nodes appearing in the proof. In M-Res
the final line will be the empty clause and its merge maps. The induction
gives us

∧
u∈Ul(u ↔ sul,r(u,l)) → ⊥. In other words, if Ul = {y1, . . . yn},

where yi appears before yi+1 in the prefix,
∨n
i=1(yi ⊕ s

yi
l,r(yi,l)

)

We derive (0⊕syn−k+1

l,r(yn−k+1,l)
)∨

∨n−k
i=1 (yi⊕syil,r(yi,l)) and (1⊕syn−k+1

l,r(yn−k+1,l)
)∨∨n−k

i=1 (yi⊕syil,r(yi,l)) from reduction of
∨n−k+1
i=1 (yi⊕syil,r(yi,l)). We can resolve

both with the easily proved tautology
∨n−k
i=1 (yi ⊕ syil,r(yi,l)). We continue

this until we reach the empty disjunction.

4 Extended Frege+∀-Red p-simulates Expansion Based
Systems

4.1 Expansion-Based Resolution Systems

The idea of an expansion based QBF proof system is to utilise the seman-
tic identity: ∀uφ(u) = φ(0) ∧ φ(1), to replace universal quantifiers and
their variables with propositional formulas. With ∀u∃xφ(u) = ∃xφ(0) ∧
∃xφ(1) the x from ∃xφ(0) and from ∃xφ(1) are actually different vari-
ables. The way to deal with this while maintaining prenex normal form
is to introduce annotations that distinguish one x from another.

Definition 3.

1. An extended assignment is a partial mapping from the universal vari-
ables to {0, 1, ∗}. We denote an extended assignment by a set or list
of individual replacements i.e. 0/u, ∗/v is an extended assignment.

2. An annotated clause is a clause where each literal is annotated by an
extended assignment to universal variables.

3. For an extended assignment σ to universal variables we write lrestrictl(σ)

to denote an annotated literal where restrictl(σ) = {c/u ∈ σ | lv(u) < lv(l)}.



4. Two (extended) assignments τ and µ are called contradictory if there
exists a variable x ∈ dom(τ) ∩ dom(µ) with τ(x) 6= µ(x).

Definitions The most simple way to use expansion would be to expand
all universal quantifiers and list every annotated clause. The first expan-
sion based system we consider, ∀Exp+Res, has a mechanism to avoid this
potential exponential explosion in some (but not all) cases. An annotated
clause is created and then checked to see if it could be obtained from
expansion. This way a refutation can just use an unsatisfiable core rather
than all clauses from a fully expanded matrix.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
∪ {τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(Res)

C1 ∪ C2

Fig. 2. The rules of ∀Exp+Res (adapted from [22]).

The drawback of ∀Exp+Res is that one might end up repeating almost
the same derivations over and over again if they vary only in changes in
the annotation which make little difference in that part of the proof. This
was used to find a lower bound to ∀Exp+Res for a family of formulas
easy in system Q-Res [22]. To rectify this, IR-calc improved on ∀Exp+Res
to allow a delay to the annotations in certain circumstances. Annotated
clauses now have annotations with “gaps” where the value of the universal
variable is yet to be set. When they are set there is the possibility of
choosing both assignments without the need to rederive the annotated
clauses with different annotations.

Definition 4. Given two partial assignments (or partial annotations) α
and β. The completion α ◦ β, is a new partial assignment, where

α ◦ β(u) =


α(u) if u ∈ dom(α)

β(u) if u ∈ dom(β) \ dom(α)

unassigned otherwise



For α an assignment of the universal variables and C an annotated
clause we define inst(α,C) :=

∨
lτ∈C l

restrictl(τ ◦ α). Annotation α here gives
values to unset annotations where one is not already defined. Because the
same α is used throughout the clause, the previously unset values gain
consistent annotations, but mixed annotations can occur due to already
existing annotations.

(Axiom){
lrestrictl(τ) | l ∈ C, l is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where
the notation 0/u for literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪ C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 3. The rules of IR-calc [7].

The definition of IR-calc is given in Figure 3. Resolved variables have
to match exactly, including that missing values are missing in both pivots.
However, non-contradictory but different annotations may still be used
for a later resolution step after the instantiation rule is used to make the
annotations match the annotations of the pivot.

Local Strategies and Policies The work from Schlaipfer et al. [35]
creates a conversion of each annotated clause C into a propositional for-
mula con(C) defined in the original variables of φ (so without creating
new annotated variables). C appearing in a proof asserts that there is
some (not necessarily winning) strategy for the universal player to force
con(C) to be true under φ. The idea is that for each line C in an ∀Exp+Res
refutation of Πφ there is some local strategy S such that S∧φ→ con(C).

The construction of the strategy is formed from the structure of the
proof and follows the semantic ideas of Suda and Gleiss [38], in particular
the Combine operation for resolution. The extra work by Schlaipfer et al.
is that the strategy circuits (for each u) can be constructed in polynomial
time, and can be defined in variables left of ui in the prefix.

Let u1 . . . un be all universal variables in order. For each line in an
∀Exp+Res proof we have a strategy which we will here call S. For each ui



there is an extension variable ValiS , before ui, that represents the value
assigned to ui by S (under an assignment of existential variables). Us-
ing these variables, we obtain a propositional formula representing the
strategy as S =

∧n
i=1 ui ↔ ValiS . Additionally, we define a conversion of

annotated logic in ∀Exp+Res to propositional logic as follows. For anno-
tations τ let anno(τ) =

∧
1/ui∈τ ui ∧

∧
0/ui∈τ ūi. We convert annotated

literals as con(lτ ) = l ∧ anno(τ) and clauses as con(C) =
∨
l∈C con(l).

4.2 Simulating IR-calc

The conversion needs to be revised for IR-calc. In particular the variables
not set in the annotations need to be understood. The solution is to
basically treat unset as a third value, although in practice this requires
new SetiS variables (left of ui) which state that the ith universal variable
is set by policy S. We include these variables in our encoding of policy
S and let S =

∧n
i=1 SetiS → (ui ↔ ValiS). The conversion of annotations,

literals and clauses also has to be changed. For annotations τ let

anno
x,S

(τ) =
∧

1/ui∈τ

(
i

Set
S
∧ui) ∧

∧
0/ui∈τ

(
i

Set
S
∧ūi) ∧

ui /∈dom(τ)∧
ui<Πx

¬
i

Set
S
.

Let conS(lτ ) = l ∧ annox,S(τ) and conS(C) =
∨
l∈C conS(l) similarly to

before, we just reference a particular policy S. This means that we again
want S ∧ φ→ conS(C) for each line, note that SetiS variables are defined
in their own way.

The most crucial part of simulating IR-calc is that after each applica-
tion of the resolution rule we can obtain a working policy.

Lemma 1. Suppose, there are policies L and R such that L→ conL(C1∨
¬xτ ) and R → conL(C1 ∨ xτ ) then there is a policy B such that B →
conB(C1 ∨ C2) can be obtained in a short eFrege proof.

The proof of the simulation of IR-calc relies on Lemma 1. To prove
this we have to first give the precise definitions of the policy B based on
policies L and R. Schlaipfer et al.’s work [35] is used to crucially make
sure the strategy B, respects the prefix ordering.

Building the Strategy. We start to define ValiB and SetiB on lower i
values first. In particular we will always start with 1 ≤ i ≤ m where um is
the rightmost universal variable still before x in the prefix. Starting from
i = 0, the initial segments of conx,L(τ) and conx,R(τ) may eventually



reach such a point j where one is contradicted. Before this point L and
R are detailing the same strategy (they may differ on Vali but only when
Seti is false) so B can be played as both simultaneously as L and R.
Without loss of generality, as soon as L contradicts annox,L(τ), we know
that conL(xτ ) is not satisfied by L and thus it makes sense for B = BL,
at this point and the rest of the strategy as it will satisfy conB(C1). It is
entirely possible that we reach i = m and not contradict either conx,L(τ)
or conx,R(τ). Fortunately after this point in the game we now know the
value the existential player has chosen for x. We can use the x value to
decide whether to play B as L (if x is true) or R (if x is false).

To build the circuitry for ValiB and SetiB we will introduce other cir-
cuits that will act as intermediate. First we will use constants Setiτ and
Valiτ that make annox,S(τ) equivalent to

∧
ui<Πx

(SetiS ↔ Setiτ ) ∧ Setiτ →
(ui ↔ Valiτ ). This mainly makes our notation easier. Next we will de-
fine circuits that represent two strategies being equivalent up to the ith
universal variable. This is a generalisation of what was seen in the local
strategy extraction for ∀Exp+Res [35].

Eq0
f=g := 1, Eqif=g := Eqi−1f=g ∧(Setif ↔ Setig) ∧ (Setif → (Valif ↔ Valig)).

We specifically use this for a trigger variable that tells you which one
of L and R differed from τ first.

Dif0L := 0 and DifiL := Difi−1L ∨(Eqi−1R=τ ∧((SetiL⊕Setiτ )∨(Setiτ ∧(ValiL⊕Valiτ ))))

Dif0R := 0 and DifiR := Difi−1R ∨(Eqi−1L=τ ∧((SetiR⊕Setiτ )∨(Setiτ ∧(ValiR⊕Valiτ ))))

Note that DifiL and DifiR can both be true but only if they start to
differ at the same point.

Suda and Gleiss’s Combine operation allows one to construct a bottom
policy B that chooses between the left and right policies.

Definition 5 (Definition of resolvent policy for IR-calc).

For 0 ≤ i ≤ m, define ValiB and SetiB such ValiB = ValiR and SetiB =
SetiR if

¬
i−1
Dif
L
∧(

i−1
Dif
R
∨(¬

i
Set
τ
∧¬

i
Set
L
∧

i
Set
R

) ∨ (
i

Set
τ
∧

i
Set
L
∧(

i
Val
τ
↔

i
Val
L

)))

and ValiB = ValiL and SetiB = SetiL, otherwise.

For i > m, define ValiB and SetiB such ValiB = ValiR and SetiB = SetiR
if

¬
m

Dif
L
∧(

m
Dif
R
∨x̄)

and ValiB = ValiL and SetiB = SetiL, otherwise.



We will now define variables BL and BR. These say that B is choosing
L or R, respectively. These variables can appear rightmost in the prefix,
as they will be removed before reduction takes place. The purpose of BL
(resp. BR) is that conB becomes the same as conL (resp. conR).

– BL :=
∧n
i=1(SetiB ↔ SetiL) ∧ (SetiB → (ValiB ↔ ValiL))

– BR :=
∧n
i=1(SetiB ↔ SetiR) ∧ (SetiB → (ValiB ↔ ValiR))

We have not fully defined B here (see Appendix 7.1 for details).
The important points are that B is set up so that it either takes values

in L or R , i.e. B → BL ∨ BR, specifically we need that whenever the
propositional formula annox,B(τ) is satisfied,

B = BL when x, and B = BR when ¬x. The variables SetiB and ValiB
that comprise the policy are carefully constructed to come before ui.

Proof (Proof of Lemma 1). Since B ∧ BL → L and B ∧ BR → R, L →
conL(C1 ∨ ¬xτ ) and R → conL(C2 ∨ xτ ) imply B ∧ BL → conB(C1 ∨
C2) ∨ annox,B(τ), B ∧ BR → conB(C1 ∨ C2) ∨ annox,B(τ), B ∧ BL →
conB(C1 ∨ C2) ∨ ¬x and B ∧BR → conB(C1 ∨ C2) ∨ x.

We combine B → BL ∨ BR (proved in Lemma 10) with B ∧ BL →
conB(C1 ∨ C2) ∨ annox,B(τ) (removing BL) and B ∧ BR → conB(C1 ∨
C2)∨annox,B(τ) (removing BR) to gain B → conB(C1∨C2)∨annox,B(τ).
Next, we derive B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ). Policy B is set
up so that B ∧ annox,B(τ) ∧ x → BL and B ∧ annox,B(τ) ∧ ¬x → BR
have short proofs (Lemma 11). We resolve these, respectively, with B ∧
BR → conB(C1 ∨ C2) ∨ x (on x) to obtain B ∧ annox,B(τ) ∧ BR →
BL ∨ conB(C1 ∨C2), and with B ∧BL → conB(C1 ∨C2)∨¬x (on ¬x) to
obtain B∧annox,B(τ)∧BL → BR∨conB(C1∨C2). Putting these together
allows us to remove BL and BR, deriving B∧annox,B(τ)→ conB(C1∨C2),
which can be rewritten as B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ).

We now have two formulas B → conB(C1 ∨ C2) ∨ ¬ annox,B(τ) and
B → conB(C1∨C2)∨annox,B(τ), which resolve to get B → conB(C1∨C2).

Theorem 2. eFrege +∀red p-simulates IR-calc.

Proof. We prove by induction that every annotated clause C appearing
in an IR-calc proof has a local policy S such that φ `eFrege S → conS(C)
and this can be done in a polynomial-size proof.

Axiom: Suppose C ∈ φ and D = inst(C, τ) for partial annotation τ .
We construct policy B such that B → conB(D).

SetjB =

{
1 if uj ∈ dom(τ)

0 uj /∈ dom(τ)
, ValjB =

{
1 if 1/uj ∈ τ
0 if 0/uj ∈ τ



Instantiation: Suppose we have an instantiation step for C on a
single universal variable ui using instantiation 0/ui, so the new annotated
clause is D = inst(C, 0/ui). From the induction hypothesis T → conT (C)
we will develop B such that B → conB(D).

SetjB =

{
1 if j = i

SetjT if j 6= i
, ValjB =

{
ValjT ∧SetjT if j = i

ValjT if j 6= i

ValjT ∧SetjT becomes ValjT ∨¬SetjT for instantiation by 1/uj . Either
case means B satisfies the same annotations anno as T appearing in our
converted clauses conB(C) and conB(D), proving the rule as an inductive
step.

Resolution: See Lemma 1.
Contradiction: At the end of the proof we have T → conT (⊥).

T is a policy, so we turn it into a full strategy B by having for each i:
ValiB ↔ (ValiT ∧SetiT ) and SetiB = 1. Effectively this instantiates ⊥ by the
assignment that sets everything to 0 and we can argue that B → conB(⊥)
although conB(⊥) is just the empty clause. So we have ¬B. But ¬B is
just

∨n
i=1(ui ⊕ ValiB). Furthermore, just as in Schlaipfer et al.’s work ,

we have been careful with the definitions of the extension variables ValiB
so that they are left of ui in the prefix. In eFrege +∀red we can use the
reduction rule (this is the first time we use the reduction rule). We show
an inductive proof of

∨n−k
i=1 (ui⊕ValiB) for increasing k eventually leaving

us with the empty clause. This essentially is where we use the ∀-Red rule.
Since we already have

∨n
i=1(ui⊕ValiB) we have the base case and we only

need to show the inductive step.
We derive from

∨n+1−k
i=1 (ui ⊕ValiB) both (0⊕Valn−k+1

B ) ∨
∨n−k
i=1 (ui ⊕

ValiB) and (1⊕Valn−k+1
B )∨

∨n−k
i=1 (ui⊕ValiB) from reduction. We can resolve

both with the easily proved tautology (0↔ Valn−k+1
B ) ∨ (1↔ Valn−k+1

B )

which allows us to derive
∨n−k
i=1 (ui ⊕ValiB).

We continue this until we reach the empty disjunction.

Corollary 1. eFrege +∀red p-simulates ∀Exp+Res.

While this can be proven as a corollary of the simulation of IR-calc, a
more direct simulation can be achieved by defining the resolvent strategy
by removing the Seti variables (i.e. by considering them as always true).

4.3 Simulating IRM-calc

Definition IRM-calc was designed to compress annotated literals in clauses
in order simulate LD-Q-Res. Like that system it uses the ∗ symbol, but



since universal literals do not appear in an annotated clause, the ∗ value is
added to the annotations, 0/u, 1/u, ∗/u being the first three possibilities
in an extended annotation (the fourth being when u does not appear in
the annotation).

Axiom and instantiation rules as in IR-calc in Figure 3.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1) ∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ (Merging)
C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ} ∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}

Fig. 4. The rules of IRM-calc.

The rules of IRM-calc as given in Figure 4, become more complicated
as a result of the ∗/u. In particular resolution is no longer done between
matching pivots but matching is done internally in the resolution steps.
This is to prevent variables resolving with matching ∗ annotations. Al-
lowing such resolution steps would be unsound in general, as these ∗
annotations show that the universal variables are set according to some
function, but when appearing in two different literals the functions could
be completely different. Resolutions where one pivot literal has a ∗/u
annotation means that the other pivot literal must not have u in its an-
notation’s domain. The intuition is that the unset u is given a ∗ value
during the resolution but it can be controlled to be exactly the same ∗ as
in the other pivot. A 0/u, 1/u or ∗/u value cannot be given a new ∗ value
so cannot match the other ∗/u annotation.

It is in IRM-calc where the positive Set literals introduced in the sim-
ulation of IR-calc become useful. In most ways SetiS asserts the same
things as ∗/ui, that ui is given a value, but this value does not have to
be specified.

Conversion The first major change from IR-calc is that while conS
worked on three values in IR-calc, in IRM-calc we effectively run in four
values SetiS ,¬SetiS ,SetiS ∧ui and SetiS ∧¬ui. SetiS is the new addition de-
liberately ambiguous as to whether ui is true or false. Readers familiar
with the ∗ used in IRM-calc may notice why SetiS works as a conversion



of ∗/ui, as SetiS is just saying our policy has given a value but it may be
different values in different circumstances.

annox,S(τ) =
∧

1/ui∈τ (SetiS ∧ui) ∧
∧

0/ui∈τ (SetiS ∧ūi) ∧
∧
∗/ui∈τ (SetiS) ∧∧

ui /∈dom(τ)(¬SetiS).
conS(xτ ) = x ∧ annox,S(τ)
conS(C1) =

∨
xτ∈C1

con(xτ )

Like in the case of IR-calc, most work needs to be done in the IRM-calc
resolution steps, although here it is even more complicated. A resolution
step in IRM-calc is in two parts. Firstly C1 ∨ ¬xτtσ, C2 ∨ xτtξ are both
instantiated (but by ∗ in some cases), secondly they are resolved on a
matching pivot. We simplify the resolution steps so that σ and ξ only
contain ∗ annotations, for the other constant annotations that would nor-
mally be found in these steps suppose we have already instantiated them
in the other side so that they now appear in τ (this does not affect the
resolvent).

Again we assume that there are policies L and R such that L →
conL(C1 ∨ ¬xτtσ) and R→ conR(C2 ∨ xτtξ). We know that if L falsifies
annox,L(τ t σ) then conL(C1) and likewise if R falsifies annox,R(τ t ξ)
then conR(C2) is satisfied. However, this leaves cases when L satisfies
annox,L(τ t σ) and R satisfies annox,R(τ t ξ) but L and R are not equal.
This happens either when SetiL and ¬SetiR both occur for ∗/ui ∈ σ or
when ¬SetiL and SetiR both occur for ∗/ui ∈ ξ.

This would cause issues if B had to choose between L and R to sat-
isfy conB(C1 ∨ C2). Fortunately, we are not trying to satisfy conB(C1 ∨
C2) but conB(inst(ξ, C1) ∨ inst(σ,C2)), so we have to choose between a
policy that will satisfy conB(inst(ξ, C1)) and a policy that will satisfy
conB(inst(σ,C2)). By borrowing values from the opposite policy we ob-
tain a working new policy that does not have to choose between left and
right any earlier than we would have for IR-calc.

Policy We can once again use Dif and Eq notation but change the mean-
ings of the variables.
Equivalence
Eq0

f=g := 1

Eqif=g := Eqi−1f=g ∧(Setif ↔ Setig)∧ (Setif → (Valif ↔ Valig)) when ∗/ui /∈ g
Eqif=g := Eqi−1f=g ∧(Setif ) when ∗/ui ∈ g
Difference
Dif0L := 0 and Dif0R := 0



For ui /∈ dom(τ t σ t ξ),
DifiL := Difi−1L ∨(Eqi−1R=τtξ ∧(SetiL)

DifiR := Difi−1R ∨(Eqi−1L=τtσ ∧(SetiR)
For ui ∈ dom(τ),

DifiL := Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ ))))

DifiR := Difi−1R ∨(Eqi−1L=τtσ ∧(¬SetiR ∨(Setiτ ∧(ValiR⊕Valiτ ))))
For ui ∈ dom(σ),

DifiL := Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL)

DifiR := Difi−1R ∨(Eqi−1L=τtσ ∧(SetiR)
For ui ∈ dom(ξ),

DifiL := Difi−1L ∨(Eqi−1R=τtξ ∧(SetiL)

DifiR := Difi−1R ∨(Eqi−1L=τtσ ∧(¬SetiR)
Policy Variables

We define the policy variables ValiB and SetiB based on a number of
cases, in all cases ValiB and SetiB are defined on variables left of ui.

For ui /∈ dom(τ t σ t ξ), ui < x,

(ValiB, SetiB) =

{
(ValiR,SetiR) if ¬Difi−1L ∧(Difi−1R ∨¬SetiL)

(ValiL, SetiL) otherwise.

For ui ∈ dom(τ),

(ValiB, SetiB) =

{
(ValiR,SetiR) if ¬Difi−1L ∧(Difi−1R ∨(SetiL ∧(ValiL ↔ Valiτ )))

(ValiL, SetiL) otherwise.

For ∗/ui ∈ σ,

(ValiB, SetiB) =


(0, 1) if ¬Difi−1L ∧Difi−1R ∧¬SetiR
(ValiR,SetiR) if ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL)

(ValiL,SetiL) otherwise.

For ∗/ui ∈ ξ,

(ValiB, SetiB) =


(0, 1) if Difi−1L ∧¬SetiL
(ValiR,SetiR) if ¬Difi−1L ∧(Difi−1R ∨¬SetiL)

(ValiL,SetiL) otherwise.
For ui > x,

(ValiB, SetiB) =

{
(ValiR,SetiR) if ¬DifmL ∧(DifmR ∨¬x)

(ValiL,SetiL) otherwise.

Simulation

Theorem 3. eFrege +∀red simulates IRM-calc.

Proof. For each line C we create a policy S such that S → conS(C).



Axiom Suppose C ∈ φ and it is downloaded as D = inst(C, τ) for partial
annotation τ . We construct strategy B so that B → conB(D).

– SetjB = 1 if uj ∈ dom(τ)

– SetjB = 0 if uj /∈ dom(τ)

– ValjB = 1 if 1/uj ∈ τ
– ValjB = 0 if 0/uj ∈ τ

Instantiation Suppose we have instantiation step on C on a single uni-
versal variable ui using instantiation 0/ui. So the new annotated clause
is D = inst(C, 0/u).

From the induction hypothesis T → conT (C) we will develop B such
that B → conB(D).

– ValiB ↔ ValiT ∧SetiT (for instantiation by 1 we use a disjunction in-
stead)

– SetiB = 1
– ValjB ↔ ValjT , for j 6= i

– SetjB ↔ SetjT , for j 6= i

Merge When merging the local strategy need not change. When literals
yα and yβ are merged the strategy only has to occasionally satisfy a SetBi
variable instead of a SetBi ∧ui or SetBi ∧¬ui, so the condition that needs
to be satisfied is weaker.
Resolution See the definition of B and Lemma 19.
Contradiction At the end of the proof we have T → conT (⊥) T is a
policy, so we turn it into a strategy B by having for each i

– ValiB ↔ (ValiT ∧SetiT )
– SetiB = 1

Effectively this instantiates ⊥ by the assignment that sets everything to
0 and we can argue that B → conB(⊥) although conB(⊥) is just the
empty clause. so we have ¬B. But ¬B is just

∨n
i=1(ui ⊕ValiB). In eFrege

+∀red we can use the reduction rule (this is the first time we use the
reduction rule ). The proof follows from [12] We show an inductive proof
of

∨n−k
i=1 (yi⊕ValiB) for increasing k eventually leaving us with the empty

clause. This essentially is where we use the ∀-Red rule. Since we already
have

∨n
i=1(yi ⊕ ValiB) we have the base case and we only need to show

the inductive step.
We derive from

∨n+1−k
i=1 (yi ⊕ValiB) both (0⊕Valn−k+1

B ) ∨
∨n−k
i=1 (yi ⊕

ValiB) and (1⊕Valn−k+1
B )∨

∨n−k
i=1 (yi⊕ValiB) from reduction. We can resolve



both with the easily proved tautology (0↔ Valn−k+1
B ) ∨ (1↔ Valn−k+1

B )

which allows us to derive
∨n−k
i=1 (yi ⊕ValiB).

We continue this until we reach the empty disjunction.

Corollary 2. eFrege +∀red simulates LD-Q-Res.

5 Extended Frege+∀-Red p-simulates LQU+-Res

5.1 QCDCL Resolution Systems

The most basic and important CDCL system is Q-resolution (Q-Res) by
Kleine Büning et al. [26]. Long-distance resolution (LD-Q-Res) appears
originally in the work of Zhang and Malik [41] and was formalized into
a calculus by Balabanov and Jiang [2]. It merges complementary literals
of a universal variable u into the special literal u∗. These special literals
prohibit certain resolution steps. QU-resolution (QU-Res) [39] removes
the restriction from Q-Res that the resolved variable must be an existen-
tial variable and allows resolution of universal variables. LQU+-Res [3]
extends LD-Q-Res by allowing short and long distance resolution pivots
to be universal, however, the pivot is never a merged literal z∗. LQU+-
Res encapsulates Q-Res, LD-Q-Res and QU-Res. Figure 5 details the rules
of LQU+-Res.

5.2 Conversion to Propositional Logic and Simulation

LQU+-Res and IRM-calc are mutually incomparable in terms of proof
strength, however both share similarities. Once again we can use Seti

variables to represent an u∗i , and a ¬SetiS variable to represent that policy
S chooses not to issue a value to ui.

For any set of universal variables U , let annox,S(U) =
∧uj /∈U
uj<x ¬SetjS ∧

∧uj∈U
uj<x SetjS .

Note that we do not really need to add polarities to the annotations,
these are taken into account by the clause literals. Literals u and ū
do not need to be assigned by the policy, they are now treated as a
consequence of the the CNF. Because they can be resolved we treat
them like existential variables in the conversion. For universal variable
ui, conS,C(ui) = ui ∧ ¬SetiS ∧ annox,S({u | u∗ ∈ C}) and conS,C(¬ui) =

¬ui ∧ ¬SetiS ∧ annox,S({v | v∗ ∈ C}). We reserve SetjS for starred lit-
erals as they cannot be removed. For existential literal x, conS,C(x) =
x ∧ annox,S({u | u∗ ∈ C}). Finally, conS,C(u∗) = ⊥, because we do
not treat u∗ as a literal but part of the “annotation” to literals right
of it. Also, u∗ cannot be resolved but it automatically reduced when



(Axiom)
C

D ∪ {u}
(∀-Red)

D
D ∪ {u∗}

(∀-Red∗)
D

C is a clause in the original matrix. Literal u is universal and lv(u) ≥ lv(l) for all
l ∈ D.

C1 ∪ U1 ∪ {¬x} C2 ∪ U2 ∪ {x}
(Res)

C1 ∪ C2 ∪ U

We consider two settings of the Res-rule:
SR: If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
LR: If l1 ∈ C1, l2 ∈ C2, and var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2

contain only universal literals with var(U1) = var(U2). ind(x) < ind(u) for each
u ∈ var(U1).
If w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2 or w1 = u∗ or w2 = u∗.
U = {u∗ | u ∈ var(U1)}.

For b = {1, 2}, define Vb = {u∗ | u∗ ∈ Cb}. In other words Vb is the subclause of
Cb ∨ Ub of starred literals left of x.

Fig. 5. The rules of LQU+-Res.

no more literals are to the right of it. For clauses in LQU+-Res, we let
conS(C) =

∨
l∈C conS,C(l). In summary, in comparison to IRM-calc the

conversion now includes universal variables and gives them annotations,
but removes polarities from the annotations. Policies still remain struc-
tured as they were for IR-calc, with extension variables ValiS and SetiS ,
where S =

∧n
i=1 SetiS → (ui ↔ ValiS).

Observation 4 V1∩V2 = ∅ by definition of resolution in LQU+-Res (see
Figure 5).

Equivalence The notation for equivalence slightly changes due to the
fact we are no longer working with annotations, but present starred lit-
erals. These work in much the same way.
Eq0

f,V := 1

Eqif,V := Eqi−1f=g ∧Setif when u∗i ∈ V
Eqif=g := Eqi−1f=g ∧(¬Setif ) when u∗i /∈ V

Difference Dif0L := 0 and Dif0R := 0
For u∗i /∈ C1 ∪ C2,



DifiL := Difi−1L ∨(Eqi−1R,V2
∧(SetiL)

DifiR := Difi−1R ∨(Eqi−1L,V2
∧(SetiR)

For u∗i ∈ C1,
DifiL := Difi−1L ∨(Eqi−1R,V2

∧(¬SetiL)

DifiR := Difi−1R ∨(Eqi−1L,V1
∧(SetiR)

For u∗i ∈ C2,
DifiL := Difi−1L ∨(Eqi−1R,V2

∧(SetiL)

DifiR := Difi−1R ∨(Eqi−1L,V1
∧(¬SetiR)

Policy Variables For ui∗ /∈ C1 ∪ C2, i ≤ m

(ValiB, SetiB) =

{
(ValiR,SetiR) if ¬Difi−1L ∧(Difi−1R ∨¬SetiL)

(ValiL, SetiL) otherwise.

For u∗i ∈ C1, i ≤ m

(ValiB, SetiB) =


(0, 1) if ¬Difi−1L ∧Difi−1R ∧¬SetiR
(ValiR,SetiR) if ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL)

(ValiL,SetiL) otherwise.
For u∗i ∈ C2, i ≤ m

(ValiB, SetiB) =


(0, 1) if Difi−1L ∧¬SetiL
(ValiR,SetiR) if ¬Difi−1L ∧(Difi−1R ∨¬SetiL)

(ValiL,SetiL) otherwise.

For ui ∈ dom(U), i > m

(ValiB, SetiB) =



(ValiR,SetiR) if SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(0, 1) if ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(1, 1) if ¬ui ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(ValiR, SetiR) if u∗i ∈ U2 and ¬SetiR ∧¬DifmL ∧(DifmR ∨¬x)

(ValiL,SetiL) SetiL ∧DifmL ∨(¬DifmR ∧x)

(0, 1) if ui ∈ U2 and ¬SetiL ∧DifmL ∨(¬DifmR ∧x))

(1, 1) if ¬ui ∈ U2 and ¬SetiL ∧DifmL ∨(¬DifmR ∧x))

(ValiR, SetiR) if u∗i ∈ U2 and ¬SetiL ∧DifmL ∨(¬DifmR ∧x))

For ui /∈ dom(U), i > m

(ValiB,SetiB) =

{
(ValiR, SetiR) if ¬DifmL ∧(DifmR ∨¬x)

(ValiL,SetiL) otherwise.
One may notice there are a larger number of cases for i > m than in

previous sections, this is because u and ¬u become u∗ and end up joining
the annotation and policies.

Theorem 5. eFrege +∀red simulates LQU+-Res.



Proof. We inductively build a strategy S such that S → conS(C) can be
proved from φ using eFrege, for every clause C in an LQU+-Res proof.
At the end we have the empty clause and a strategy and we can use
reduction to remove the strategy and obtain the empty clause as in The-
orems 1 and 2.
Axiom Each Axiom is treated with the empty strategy.
Reduction (ui or ¬ui) If the clause contains literal ui, we know that
T → conT (C ∨ ui). We define S so that

(ValjS ,SetjS) = (ValjT , SetjT )

(ValiS ,SetiS) =

{
(ValiT , SetiT ) if SetiT ∨ conT (C) is satisfied,

(0, 1) otherwise.

We need to show that S → conS(C). Note that conT (C ∨ ui) =
conT (C) ∨ conT,C(ui). Therefore T → conT (C) or T → ¬ SetiT ∧ui. If
SetiT is true or conT (C) then T → conT (C) is true and as S will match
T , S → conS(C). Suppose SetiT and conT (C) are both false. If S is true,
then ui is false by construction. Moreover, since S agrees with T on every
variable except ui, and T does not set ui, T must be true as well. But since
conT (C) is false, we must have T → ¬ SetiT ∧ui. In particular, ui must
be true, a contradiction. We conclude that the implication S → conS(C)
holds in this case.
Reduction (u∗i ) If T → conT (C∨u∗i ) and we reduce u∗i we need to define
the strategy S so that S → conS(C). Since u∗i is the rightmost literal in
the clause conT (C ∨ u∗i ) = conT (C) so we define S the same way as T .
Resolution See Lemma 25.
Contradiction Just as in IR-calc we have to give a complete assignment
to the missing values in the policy. We then have simply the negation of
the strategy for which we can apply our same technique to reduce to the
empty clause.

6 Conclusion

Our work reconciles many different QBF proof techniques under the sin-
gle system eFrege+∀red. This is also beneficial to QRAT, which inherits
these simulations. QRAT’s simulation of ∀Exp+Res is now upgraded to
a simulation of IRM-calc, and we do not even have to use the extended
universal reduction rule to do this. Existing QRAT checkers can be used
to verify converted eFrege +∀red proofs. Since our simulations split off
propositional inference from a standardised reduction part at the end,
another option is to use (highly efficient) propositional proof checkers in-
stead. In either case there is at least one more hurdle to overcome, as our



simulations use large amounts of extension variables which are known to
negatively impact the checking time of existing tools such as DRAT-trim.
One may hope that simulations presented in this paper can be refined to
become more efficient in this regard.

While we proved a multitude of simulations in this work using a similar
technique each time, it may yet be possible to subsume all the simulated
proof systems under one class, and prove that eFrege+∀red simulates all
systems in this class. In addition there are other systems, particularly ones
using dependency schemes, such as Q(Drrs)-Res and LD-Q(Drrs)-Res that
have strategy extraction [32]. Local strategy extraction and ultimately a
simulation seem likely for these systems, whether it can be proved directly
or by generalising the simulation results from this paper.
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7 Appendix

7.1 Proof of Simulation of IR-calc

Lemma 2. For 0 < j ≤ m the following propositions have short deriva-
tions in Extended Frege:

– DifjL →
∨j
i=1 DifiL ∧¬Difi−1L

– DifjR →
∨j
i=1 DifiR ∧¬Difi−1R

– ¬Eqjf=g →
∨j
i=1 ¬Eqif=g ∧Eqi−1f=g. For f, g ∈ {L,R, τ}.



Proof. Induction Hypothesis on j: DifjL →
∨j
i=1 DifiL ∧¬Difi−1L has

an O(j)-size proof

Base Case j = 1: Dif1L → Dif1L is a basic tautology that Frege can han-
dle, Dif0L is false by definition so Frege can assemble Dif1L → Dif1L ∧¬Dif0L.

Inductive Step j + 1: ¬DifjL ∨DifjL and Difj+1
L → Difj+1

L are tau-

tologies that Frege can handle. Putting them together we get Difj+1
L →

Difj+1
L ∧(¬DifjL ∨DifjL) and weaken to Difj+1

L → (Difj+1
L ∧¬DifjL)∨DifjL.

Using the induction hypothesis, DifjL →
∨j
i=1 DifiL ∧¬Difi−1L , we can

change this tautology to

Difj+1
L → (Difj+1

L ∧¬DifjL) ∨
∨j
i=1 DifiL ∧¬Difi−1L

Note that since ¬Dif0R,Eq0
L=τtξ,Eq0

L=τtσ are all true . The proofs for

DifjR, ¬EqjL=τtσ and ¬EqjR=τtξ are identical modulo the variable names.

Lemma 3. For 0 ≤ i ≤ j ≤ m the following propositions that describe
the monotonicity of Dif have short derivations in Extended Frege:

– DifiL → DifjL
– DifiR → DifjR
– ¬Eqif=g → ¬Eqjf=g

Proof. For DifL and DifR,

Induction Hypothesis on j: DifiL → DifjL has an O(j) proof.

Base Case j = i: DifiL → DifiL is a tautology that Frege can handle.

Inductive Step j + 1: Difj+1
L := DifjL ∨A where expression A depends

on the domain of uj+1. Therefore in all cases DifjL → Difj+1
L is a straight-

forward corollary in Frege. Using the induction hypothesis DifiL → DifjL
we can get DifiL → Difj+1

L . The proof is symmetric for R.

For ¬Eqf=g,

Induction Hypothesis on j: ¬Eqif=g → ¬Eqjf=g has an O(j) proof.

Base Case j = i: ¬Eqif=g → ¬Eqif=g is a tautology that Frege can
handle.

Inductive Step j + 1: Eqj+1
f=g := Eqjf=g ∧A where expression A de-

pends on the domain of uj+1. Therefore in all cases ¬Eqjf=g → ¬Eqj+1
f=g

is a straightforward corollary in Frege. Using the induction hypothesis
¬Eqif=g → ¬Eqjf=g we can get ¬Eqif=g → ¬Eqj+1

f=g.

Lemma 4. For 0 ≤ i ≤ j ≤ m the following propositions describe the
relationships between the different extension variables.



– EqiL=τ → ¬DifiL
– DifiL ∧¬Difi−1L → Eqi−1R=τ

– DifiL ∧¬Difi−1L → ¬Difi−1R

– EqiR=τ → ¬DifiR
– DifiR ∧¬Difi−1R → Eqi−1L=τ

– DifiR ∧¬Difi−1R → ¬Difi−1L

Proof. Induction Hypothesis on i: EqiL=τ → ¬DifiL in an O(i)-size
eFrege proof.

Base Case i = 0: DifiL is defined as 0 so ¬DifiL is true and trivially
implied by EqiL=τ . Frege can manage this.

Inductive Step i + 1: If Seti+1
τ is false then Eqi+1

L=τ is equivalent to
EqiL=τ ∧¬Seti+1

L and ¬Difi+1
L is equivalent to ¬DifiL ∧¬Seti+1

L ∨¬EqiL=τ .
If Seti+1

τ is true then Eqi+1
L=τ is equivalent to EqiL=τ ∧Seti+1

L ∧(Vali+1
L ↔

Vali+1
τ ) and ¬Difi+1

L is equivalent to ¬DifiL ∧Seti+1
L ∧(Vali+1

L ↔ Vali+1
τ )∨

¬EqiL=τ . Therefore using the induction hypothesis EqiL=τ → ¬DifiL. Sim-
ilarly for R.

The formulas DifiL ∧¬Difi−1L → Eqi−1R=τ are simple corollaries of the
inductive definition of DifiL, and combined with Eqi−1R=τ → ¬Difi−1R we
get DifiL ∧¬Difi−1L → ¬Difi−1R . Similarly if we swap L and R.

Lemma 5. For any 0 ≤ i ≤ m the following propositions are true and
have short Extended Frege proofs.

– L ∧DifiL → ¬ annox,L(τ)

– R ∧DifiR → ¬ annox,R(τ)

Proof. We primarily use the disjunction in Lemma 2

i
Dif
L
→

j∨
i=1

i
Dif
L
∧¬

i−1
Dif
L

.

In each disjunct DifiL ∧¬Difi−1L we can say that the difference triggers
at that point. We can represent that in a proposition that can be proven
in eFrege: DifiL ∧¬Difi−1L → ((SetiL⊕Setiτ ) ∨ (Setiτ ∧(ValiL⊕Valiτ ))) If L
differs from τ on a SetiL value we contradict annox,L(τ) in one of two ways:
L ∧ (SetiL⊕Setiτ ) ∧ SetiL → ¬Setiτ or L ∧ (SetiL⊕Setiτ ) ∧ ¬ SetiL → Setiτ .

If L differs from τ on a ValiL value when SetiL = Setiτ = 1 we contradict
annox,L(τ) in one of two ways:

– L ∧ SetiL ∧Setiτ ∧(Setiτ → (ValiL⊕Valiτ )) ∧ValiL → ¬Valiτ ∧ui



– L ∧ SetiL ∧Setiτ ∧(Setiτ → (ValiL⊕Valiτ )) ∧ ¬ValiL → Valiτ ∧¬ui.

When put together with the big disjunction this lends itself to a short
eFrege proof which is also symmetric for R.

For a resolution step we want to define the strategy for the resolvent
B based on the strategies L and R. We define the extension variables
ValiB and SetiB based on ValiL, SetiL,ValiR,SetiR and use the technical Dif
variables to separate out the cases.

The idea is that B will be start off as both L and R while they are
identical, and eventually pick one of them to commit to, depending on
whether it will satisfy con(C1) or con(C2). The decision will be made by
choosing the first L or R that falsifies ¬x ∧ conx,L(τ) or x ∧ conx,R(τ)
(and given a draw prioritises L over R). As we have seen in Lemma 5,
DifiL means that L contradicts con(τ). However we do not use DifiL to
decide the value of ui under B since we want our ValiB and SetiB ex-
tension variables to appear before Dif variables. So instead we make the
same decisions just with ValiL,SetiL,ValiR, SetiR. This is significantly more
comprehensible in ∀Exp+Res where the Set variables play no role, but it
works the same way in IR-calc just with more cases.

Lemma 6. For any 1 ≤ j ≤ m the following propositions are true and
have a short Extended Frege proof.

– ¬DifjL ∧¬DifjR → EqjL
– ¬DifjL ∧¬DifjR → EqjR
– ¬DifjL ∧¬DifjR → (SetjB ↔ SetjL)

– ¬DifjL ∧¬DifjR → SetiB → (ValiB ↔ ValiL)

– ¬DifjL ∧¬DifjR → (SetjB ↔ SetjR)

– ¬DifjL ∧¬DifjR → SetiB → (ValjB ↔ ValjR)

Proof. We first show ¬EqjL=τ → ¬Eqj−1R=τ ∨DifjL ∨DifjR and ¬EqjR=τ →
¬Eqj−1L ∨DifjR ∨DifjR. ¬Eqj−1R=τ and ¬Eqj−1L=τ are the problems here re-
spectively, but they can be removed via induction to eventually get
¬DifjL ∧¬DifjR → EqjL and ¬DifjL ∧¬DifjR → EqjR=τ . The remaining
implications are corollaries of these and rely on the definition of Eq, SetB
and ValB.

Induction Hypothesis on j: ¬DifjL ∧¬DifjR → EqjL and ¬DifjL ∧¬DifjR →
EqjR.

Base Case j = 0: EqjL=τ and EqjR=τ are both true by definition so the
implications automatically hold.



Inductive Step j: ¬Eqj+1
L=τ → ¬Eqj−1L=τ ∨(SetjL⊕Setjτ ) ∨

(SetjL ∧(ValjL⊕Valjτ )), (SetjL⊕Setjτ ) ∨ (SetjL ∧(ValjL⊕Valjτ )) →
DifjL ∨¬Eqj−1R=τ so we get ¬EqjL=τ → ¬Eqj−1L=τ ∨DifjL ∨¬Eqj−1R=τ ,
which using the induction hypothesis can be generalised to
¬EqjL=τ → DifjR ∨DifjL which is equivalent to ¬DifjL ∧¬DifjR → EqjL.
Similarly when swapping L and R.

We can obtain the remaining propositions as corollaries by using the
definition of Eq.

Nonetheless, DifiL and DifiR still end up being relevant to the choice
of ValjB.

Lemma 7. For any 0 ≤ i ≤ m the following propositions are true and
have short Extended Frege proofs.

– DifiL → (ValiB ↔ ValiL) ∧ (SetiB ↔ SetiL)

– ¬DifiL ∧DifiR → (ValiB ↔ ValiR) ∧ (SetiB ↔ SetiR)

Proof. Suppose we want to prove DifiL → (ValiB ↔ ValiL)∧(SetiB ↔ SetiL).
We will assume the definition

i
Dif
L

:=
i−1
Dif
L
∨(

i−1
Eq
R
∧((

i
Set
L
⊕

i
Set
τ

) ∨ (
i

Set
τ
∧(

i
Val
L
⊕

i
Val
τ

))))

and show that the proposition

¬
i−1
Dif
L
∧(

i−1
Dif
R
∨(¬

i
Set
τ
∧¬

i
Set
L
∧

i
Set
R

) ∨ (
i

Set
τ
∧

i
Set
L
∧(

i
Val
τ
↔

i
Val
L

)))

is falsified.

The first thing is that we only need to consider DifiL ∧¬Difi−1L as
Difi−1L already falsifies our proposition. Next we show ¬Difi−1R is forced to
be true in this situation. To do this we need Lemma 4 for DifiL ∧¬Difi−1L →
¬Difi−1R .

Now we use DifiL ∧¬Difi−1L → ((SetiL⊕Setiτ )∨(Setiτ ∧(ValiL⊕Valiτ ))),
we break this down into three cases

1. DifiL ∧¬Difi−1L ∧¬SetiL ∧Setiτ
2. DifiL ∧¬Difi−1L ∧SetiL ∧¬Setiτ
3. DifiL ∧¬Difi−1L ∧(Setiτ ∧(ValiL⊕Valiτ ))

1. DifiL ∧¬Difi−1L contradicts Difi−1R , Setiτ contradicts (¬Setiτ ∧¬SetiL ∧SetiR),
and ¬SetiL contradicts (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)).



2. DifiL ∧¬Difi−1L contradicts Difi−1R , SetiL contradicts (¬Setiτ ∧¬SetiL ∧SetiR),
and ¬Setiτ contradicts (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)).

3. DifiL ∧¬Difi−1L contradicts Difi−1R , Setiτ contradicts (¬Setiτ ∧¬SetiL ∧SetiR),
(ValiL⊕Valiτ ) contradicts (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL))

Since in all cases we contradict¬Difi−1L ∧(Difi−1R ∨(¬Setiτ ∧¬SetiL ∧SetiR)∨
(Setiτ ∧SetiL ∧(Valiτ ↔ ValiL))) then as per definition
(ValB,SetB)=(ValL,SetL). Using DifiL → (DifiL ∧¬Difi−1L ) ∨ Difi−1L

we get DifiL → (ValiB ↔ ValiL) ∧ (SetiB ↔ SetiL), in a polynomial number
of Frege lines.

Now we suppose we want to prove the second proposition
¬DifiL ∧DifiR → (ValiB ↔ ValiR) ∧ (SetiB ↔ SetiR). We need
¬DifiL ∧DifiR to satisfy ¬Difi−1L ∧(Difi−1R ∨(¬Setiτ ∧¬SetiL ∧SetiR) ∨
(Setiτ ∧SetiL ∧(Valiτ ↔ ValiL)))

Lemma gives us that ¬DifiL → ¬Difi−1L . We can show that ¬Difi−1L ∧¬Difi−1R →
Eqi−1L=τ using Lemma 9. This allows us to examine just the part where the
difference is being triggered ¬DifiL ∧¬Difi−1R → (Setiτ ↔ SetiL)∧ (Setiτ →
(Valiτ ↔ ValiL)).

Suppose the term (¬Setiτ ∧¬SetiL ∧SetiR) is false, assuming Difi−1R

is also false, we have to show that (Setiτ ∧SetiL ∧(Valiτ ↔ ValiL) will be
satisfied. We look at the three ways the term (¬Setiτ ∧¬SetiL ∧SetiR) can
be falsified and show that all the parts of the remaining term must be
satisfied when assuming ¬DifiL ∧DifiR ∧¬Difi−1R

1. Setiτ , in this case (Valiτ ↔ ValiL) is active and SetiL is implied by
(Setiτ ↔ SetiL).

2. SetiL, Setiτ is implied by (Setiτ ↔ SetiL), then (Valiτ ↔ ValiL) is active.

3. ¬SetiR, then using DifiR and ¬Difi−1R we must Setiτ (as this is the only
allowed way Dif can trigger). Once again, (Valiτ ↔ ValiL) is active and
SetiL is implied by (Setiτ ↔ SetiL)

Since our trigger formula is always satisfied when ¬DifiL ∧DifiR ∧¬Difi−1R .
It means that (ValB,SetB) = (ValR, SetR). Using DifiR → (DifiR ∧¬Difi−1R )∨
Difi−1R we get ¬DifiL ∧DifiR → (ValiB ↔ ValiR)∧(SetiB ↔ SetiR), in a poly-
nomial number of Frege lines.

Lemma 8. The following propositions are true and have short Extended
Frege proofs.

– B ∧DifmL → BL
– B ∧ ¬DifmL ∧DifmR → BR



Proof. We use the disjunction DifmL →
∨m
j=1 DifjL ∨¬Difj−1L So there is

some j where this is the case.

– For 1 ≤ i < j observe that DifjL ∨¬Difj−1L → ¬Difj−1R . Now these neg-

ative literals propagate downwards. ¬Difj−1L ∧¬Difj−1R → ¬DifiL ∧¬DifiR
for 0 ≤ i < j and ¬DifiL ∧¬DifiR means that B and L are consistent
for those i as proven in Lemma 6.

– For j ≤ k ≤ m, DifjL → DifkL and DifkL means B and L are consistent
on those k as proven in Lemma 7.

– For indices greater than m, B ∧ DifmL falsifies ¬DifmL ∧(DifmR ∨x̄), so
B and L are consistent on those indices.

With the second proposition DifmR →
∨m
j=1 DifjR ∨¬Difj−1R once again. So

there is some j where this is the case. Note that ¬DifmL → ¬DifkL for
k ≤ m.

– For 1 ≤ i < j, both ¬DifiL and ¬DifiR occur so then B and R are
consistent for these values.

– For j ≤ k ≤ m, DifjR → DifkR and DifkR ∧¬DifkL means B and R are
consistent on those k as proven in Lemma 7.

– For indices greater thanm,B∧DifmR ∧¬DifmL satisfies ¬DifmL ∧(DifmR ∨x̄),
so B and R are consistent on those indices.

Lemma 9. The following propositions are true and have short Extended
Frege proofs.

– B ∧ ¬DifmL ∧¬DifmR → BL ∨ ¬x
– B ∧ ¬DifmL ∧¬DifmR → BR ∨ x

Proof. For indices 1 ≤ i ≤ m, but since ¬DifmL → ¬DifiL and ¬DifmR →
¬DifiR, Lemma 6 can be used to show that B ∧ DifmL ∧DifmR leads to
SetiB = SetiL = SetiR and ValiB = ValiL = ValiR whenever SetiB is also true.
Extended Frege can prove O(m) many propositions expressing as such.

For i > m, by definition B ∧ ¬DifmL ∧¬DifmR ∧x gives SetiB = SetiL
and ValiB = ValiL. And B ∧ ¬DifmL ∧¬DifmR ∧¬x gives SetiB = SetiR and
ValiB = ValiR. The sum of this is that B ∧ DifmL ∧DifmR ∧x → BL and
B ∧DifmL ∧DifmR ∧¬x→ BR.

Lemma 10. The following proposition is true and has a short Extended
Frege proof. B → BL ∨BR

Proof. This roughly says that B either is played entirely as L or is played
as R. We can prove this by combining Lemmas 8 and 9, it essentially is
a case analysis in formal form.



Lemma 11. The following propositions are true and have short Extended
Frege proofs.

– B ∧ anno(τ) ∧ x→ BL,
– B ∧ anno(τ) ∧ ¬x→ BR

Proof. We start withB∧¬DifmL ∧¬DifmR → BL∨¬x andB∧¬DifmL ∧¬DifmR →
BR ∨ x. It remains to remove ¬DifmL ∧¬DifmR from the left hand side.
This is where we use L∧DifiL → ¬ annoL(τ) and R∧DifiR → ¬ annoR(τ)
from Lemma 5. These can be simplified to B ∧BL ∧DifmL → ¬ annoB(τ)
and B ∧ BR ∧ DifmR → ¬ annoB(τ). The BL and BR can be removed
by using B ∧ DifmL → BL and B ∧ ¬DifmL ∧DifmR → BR and we can
end up with B ∧ BR → ¬ annoB(τ) ∨ (¬DifmR ∧¬DifmL ) we can use this
to resolve out (¬DifmR ∧¬DifmL ) and get B ∧ anno(τ) ∧ x → BL and
B ∧ anno(τ) ∧ ¬x→ BR.

7.2 Proof of Simulation of IRM-calc

Lemmas

Lemma 12. For 0 < j ≤ m the following propositions have short deriva-
tions in Extended Frege:

– DifjL →
∨j
i=1 DifiL ∧¬Difi−1L

– DifjR →
∨j
i=1 DifiR ∧¬Difi−1R

– ¬EqjL=τtσ →
∨j
i=1 ¬EqiL=τtσ ∧Eqi−1L=τtσ

– ¬EqjR=τtξ →
∨j
i=1 ¬EqiR=τtξ ∧Eqi−1R=τtξ

Proof. The proof of Lemma 2 still works despite the modifications to
definition.

Lemma 13. For 0 ≤ i ≤ j ≤ m the following propositions that describe
the monotonicity of Dif and Eq have short derivations in Extended Frege:

– DifiL → DifjL
– DifiR → DifjR
– ¬Eqif=g → ¬Eqjf=g

Proof. The proofs of Lemma 3 still work despite the modifications to
definition.

Lemma 14. For 0 ≤ i ≤ j ≤ m the following propositions describe the
relationships between the different extension variables



– EqiL=τtσ → ¬DifiL
– DifiL ∧¬Difi−1L → Eqi−1R=τtξ
– DifiL ∧¬Difi−1L → ¬Difi−1R
– EqiR=τtξ → ¬DifiR
– DifiR ∧¬Difi−1R → Eqi−1L=τtξ
– DifiR ∧¬Difi−1R → ¬Difi−1L

Proof. Induction Hypothesis on i: EqiL=τtσ → ¬DifiL in an O(i)-size
eFrege proof.
Base Case i = 0: DifiL is defined as 0 so ¬DifiL is true and trivially
implied by EqiL=τtσ. Frege can manage this.
Inductive Step i + 1: This breaks into cases depending on the do-
mains of ui+1. If ui+1 /∈ dom(σ) Eqi+1

L=τtσ := EqiL=τtσ ∧(Seti+1
L ↔

Seti+1
τtσ) ∧ (Seti+1

L → (Vali+1
L ↔ Vali+1

τtσ)) further if ui+1 /∈ dom(τ t σ)
then Difi+1

L := DifiL ∨(EqiR=τtξ ∧(Seti+1
L ) Note that here Seti+1

τtσ is defined

as 0 so Eqi+1
L=τtσ → (EqiL=τtσ ∧(¬Seti+1

L )). The induction hypothesis
gives Eqi+1

L=τtσ → ¬DifiL ∧¬Seti+1
L . Note that because ¬DifiL ∧¬Seti+1

L

directly refutes DifiL ∨(EqiR=τtξ ∧(Seti+1
L ) we get Eqi+1

L=τtσ → ¬Difi+1
L .

Now if ui+1 ∈ dom(τ) then

i
Dif
L

:=
i−1
Dif
L
∨(

i−1
Eq

R=τtξ
∧(¬

i
Set
L
∨(

i
Set
τ
∧(

i
Val
L
⊕

i
Val
τ

))))

Now Seti+1
τtσ is defined as 1. If 1/ui+1 ∈ τ Vali+1

τtσ := 1 so
Difi+1

L := DifiL ∨(Eqi−1R=τtξ ∧(¬Seti+1
L ∨Vali+1

L )) and Eqi+1
L=τtσ →

EqiL=τtσ ∧(Seti+1
L ) ∧ Vali+1

L ). The induction hypothesis gives
Eqi+1

L=τtσ → DifiL ∧(Seti+1) ∧ Vali+1
L ). But DifiL ∧Seti+1) ∧ Vali+1

L )
falsifies DifiL ∨(EqiR=τtξ ∧(¬Seti+1

L ∨(Seti+1
L ∧(Vali+1

L )))). So Eqi+1
L=τtσ →

¬Difi+1
L . Similarly if 0/ui+1 ∈ τ If ui+1 ∈ dom(σ), Eqi+1

L=τtσ :=
EqiL=τtσ ∧(Seti+1

L ) and Difi+1
L := DifiL ∨(EqiR=τtξ ∧(¬Seti+1

L )) But from

the induction hypothesis we can have Eqi+1
L=τtσ → DifiL ∧Seti+1

L ‘ and
DifiL ∧SetiL directly contradicts DifiL ∨(EqiR=τtξ ∧(¬Seti+1

L )) so then

Eqi+1
L=τtσ → ¬DifiL Each case require a constant number of Frege steps
In every case DifiL = Difi−1L ∨(EqiR=τtξ ∧A) where A is a formula

dependent on the domain of ui ¬Difi−1L ∧DifiL means that EqiR=τtξ must

be true. So we have DifiL ∧¬Difi−1L → Eqi−1R=τtξ in a constant size eFrege
proof.

If we combine the above we have a linear size proof of DifiL ∧¬Difi−1L →
Difi−1R

The same proofs symmetrically work for R



Lemma 15. For any 0 ≤ i ≤ m the following propositions are true and
have short Extended Frege proofs.

– L ∧DifiL → ¬ annox,L(τ t σ)
– R ∧DifiR → ¬ annox,R(τ t ξ)

Proof. If ui /∈ dom(τ t σ), then DifiL ∧¬Difi−1L → SetiL is a simple
corollary of the definition line DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧SetiL). But as

annox,L(τtσ) insists on ¬SetiL, we can get DifiL ∧¬Difi−1L → ¬ annox,L(τt
σ)

If 1/ui ∈ τ , then DifiL ∧¬Difi−1L → ¬ SetiL ∨¬ValiL is a simple corol-
lary of the definition lines DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))),

Setiτ and Valiτ But as annox,L(τ t σ) insists on SetiL ∧ui, and L insists on
ValiL ↔ ui we get L ∧DifiL ∧¬Difi−1L → ¬ annox,L(τ t σ)

Similarly, if 0/ui ∈ τ , then DifiL ∧¬Difi−1L → ¬SetiL ∨ValiL is a simple
corollary of the definition lines DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))),

Setiτ and ¬Valiτ But as annox,L(τ tσ) insists on SetiL ∧¬ui, and L insists
on ValiL ↔ ui we get DifiL ∧¬Difi−1L → ¬ annox,L(τ t σ)

Finally if ∗/ui ∈ σ, then DifiL ∧¬Difi−1L → SetiL is a corollary of the
definition line DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL). But as annox,L(τ tσ)

insists on SetiL. we get DifiL ∧¬Difi−1L → ¬ annox,L(τ t σ)
L ∧ DifiL ∧¬Difi−1L → ¬ annox,L(τ t σ) is not quite as strong as L ∧

DifiL ∧ → ¬ conx,L(τtσ) However here we can use DifjL →
∨j
i=1 DifiL ∧¬Difi−1L

which will give us L∧DifjL → ¬ conx,L(τ tσ) in a linear size proof which
is also symmetric for R.

Lemma 16. For any 0 ≤ j ≤ m the following propositions are true and
have a short Extended Frege proof.

– ¬DifjL ∧¬DifjR → EqjL=τtσ
– ¬DifjL ∧¬DifjR → EqjR=τtξ
– ¬DifjL ∧¬DifjR → (¬SetjB ∧¬SetjL ∧¬SetjR) when uj /∈ dom(τtσtξ).
– ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧SetjR ∧(ValjB ↔ ValjL) ∧ (ValjB ↔

ValjR)) when uj ∈ dom(τ).

– ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjL)) when ∗/uj ∈
σ.

– ¬DifjL ∧¬DifjR → (SetjB ∧¬SetjL ∧SetjR ∧(ValjB ↔ ValjR)) when ∗/uj ∈
ξ.

Proof. We show that ¬EqiL=τtσ ∧Eqi−1L=τtσ → DifiL ∨¬Eqi−1R=τtξ , and

symmetrically that ¬EqiR=τtξ ∧Eqi−1R=τtξ → DifiR ∨¬Eqi−1L=τtσ. These will
be useful ingredients in our proof by induction.



For ui /∈ dom(τ tσt ξ) or ui ∈ dom(ξ) We use the definition formulas
EqiL=τtσ ↔ Eqi−1L=τtσ ∧(SetiL ↔ Setiτtσ) ∧ (Setiτtσ → (ValiL ↔ Valiτtσ))
and ¬Setiτtσ to get ¬EqiL=τtσ ∧Eqi−1L=τtσ → SetiL. Likewise, we use
DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(SetiL) to get SetiL → DifiL ∨¬Eqi−1R=τtξ . We

can combine the two to get ¬EqiL=τtσ ∧Eqi−1L=τtσ → DifiL ∨¬Eqi−1R=τtξ.

For 1/ui ∈ τ , We use the definition formulas EqiL=τtσ ↔
Eqi−1L=τtσ ∧(SetiL ↔ Setiτtσ) ∧ (Setiτtσ → (ValiL ↔ Valiτtσ)) , Setiτtσ and
Valiτtσ to get ¬EqiL=τtσ ∧Eqi−1L=τtσ → ¬SetiL ∨¬ValiL. Likewise, we use
DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))) and Valiτ to

get (¬SetiL ∨¬ValiL)→ DifiL ∨¬Eqi−1R=τtξ. We can combine the two to get

¬EqiL=τtσ ∧Eqi−1L=τtσ → DifiL ∨¬Eqi−1R=τtξ.

For 0/ui ∈ τ , We use the definition formulas EqiL=τtσ ↔
Eqi−1L=τtσ ∧(SetiL ↔ Setiτtσ) ∧ (Setiτtσ → (ValiL ↔ Valiτtσ)) , Setiτtσ and
¬Valiτtσ to get ¬EqiL=τtσ ∧Eqi−1L=τtσ → ¬SetiL ∨ValiL. Likewise, we use
DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL ∨(Setiτ ∧(ValiL⊕Valiτ )))) and ¬Valiτ
to get (¬SetiL ∨ValiL) → DifiL ∨¬Eqi−1R=τtξ. We can combine the two to

get ¬EqiL=τtσ ∧Eqi−1L=τtσ → DifiL ∨¬Eqi−1R=τtξ.

For ∗/ui ∈ σ, we use the definition formula EqiL=τtσ ↔
Eqi−1L=τtσ ∧(SetiL) to get ¬EqiL=τtσ ∧Eqi−1L=τtσ → ¬SetiL Like-
wise, we use DifiL ↔ Difi−1L ∨(Eqi−1R=τtξ ∧(¬SetiL)) to get

(¬SetiL) → DifiL ∨¬Eqi−1R=τtξ. We can combine the two to get

¬EqiL=τtσ ∧Eqi−1L=τtσ → DifiL ∨¬Eqi−1R=τtξ.

Induction Hypothesis (on j): (¬EqjL=τtσ ∨¬EqjR=τtσ) →
(DifjL ∨DifjR)

Base Case: ¬Eq1
L=τtσ ∧Eq0

L=τtσ → Dif1L ∨¬Eq0
R=τtξ , and

¬Eq1
R=τtξ ∧Eq0

R=τtξ → Dif1R ∨¬Eq0
L=τtσ

However since Eq0
L=τtσ and Eq0

R=τtξ are both true it simplifies to

¬Eq1
L=τtσ → Dif1L and ¬Eq1

R=τtξ → Dif1R which can be combined to get

(¬Eq1
L=τtσ ∨¬Eq1

R=τtσ)→ (Dif1L ∨Dif1R)

Inductive Step: The Induction Hypothesis (¬EqjL=τtσ ∨¬EqjR=τtσ)→
(DifjL ∨DifjR) can be weakened to (¬EqjL=τtσ ∨¬EqjR=τtσ) →
(Difj+1

L ∨Difj+1
R ), using DifjL → Difj+1

L and DifjR → Difj+1
R .

Now we need to replace ¬EqjL=τtσ and ¬EqjR=τtσ. We can use

¬Eqj+1
L=τtσ ∧EqjL=τtσ → Difj+1

L ∨¬EqjR=τtξ and get (¬Eqj+1
L=τtσ) →

(Difj+1
L ∨Difj+1

R ) or use ¬Eqj+1
R=τtξ ∧EqjR=τtξ → Difj+1

R ∨¬EqjL=τtσ and



get (¬Eqj+1
R=τtξ)→ (Difj+1

L ∨Difj+1
R ) and then putting them together we

get (¬Eqj+1
L=τtσ ∨¬Eqj+1

R=τtξ)→ (Difj+1
L ∨Difj+1

R ).
Once we are finished with the induction we have in O(j)-size proofs:

– ¬DifjL ∧¬DifjR → EqjL=τtσ
– ¬DifjL ∧¬DifjR → EqjR=τtξ

If uj /∈ dom(τ t σ t ξ), then Setjτtσ and Setjτtξ are false. We there-

fore have EqjL=τtσ → ¬ SetiL and EqjR=τtξ → ¬ SetiR then we need to
work with the definition of SetB to derive (SetB ↔ SetL) ∨ (SetB ↔
SetR), which gives ¬SetiL ∧¬SetiR → ¬SetiB so therefore we can derive
EqjL=τtσ ∧EqjR=τtξ → ¬SetiL ∧¬SetiR ∧¬SetiB.

Similarly if uj ∈ dom(τ) we can derive EqjL=τtσ ∧EqjR=τtξ → SetiL ∧SetiR ∧SetiB.
However we can go even further as we can also derive (ValB ↔ SetL) ∨
(ValB ↔ SetR). But since we have EqjL=τtσ → (SetiL → (ValL ↔ Valτtσ))

and EqjR=τtξ → (SetiR → (ValR ↔ Valτtξ)) when SetiL and SetiR are

true then (EqjL=τtσ ∧EqjR=τtξ) ∧ ((ValB ↔ ValL) ∨ (ValB ↔ ValR)) →
(ValB ↔ Valτ ) putting this all together we get ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧SetjR ∧(ValjB ↔
ValjL) ∧ (ValjB ↔ ValjR))

Now we have uj ∈ dom(σ) then Setjτtσ is true and Setjτtξ is false.

We therefore have EqjL=τtσ → SetjL and EqjR=τtξ → ¬SetjR. ¬DifjR
means that ¬Difj−1R and so ¬Difj−1R ∧¬SetjR means (SetB ↔ SetL) and
(ValB ↔ ValL). Therefore SetB is true in this situation, so we have
¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjL)

Finally for uj ∈ dom(ξ) we have Setjτtσ is false and Setjτtξ is true.

EqjL=τtσ → ¬SetjL and EqjR=τtξ → SetjR. ¬DifjR means that ¬Difj−1R and

so Difj−1L ∧¬SetjL which satisfies ¬Difi−1L ∧(Difi−1R ∨¬SetiL) so (SetB ↔
SetR) and (ValB ↔ ValR) and thus SetB is true. so we have ¬DifjL ∧DifjR →
(SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjR).

Lemma 17. Suppose L→ conL(C1 ∨ ¬xτ∪σ) and R → conL(C1 ∨ xτ∪ξ)
The following propositions are true and have short Extended Frege proofs.

– B ∧DifmL → L
– B ∧ ¬DifmL ∧DifmR → R
– B ∧DifmL → conB(inst(ξ, C1))
– B ∧ ¬DifmL ∧DifmR → conB(inst(σ,C2))

Proof. Suppose we look at the L cases. In order to manage this proof
we first break down the disjunction in C1 into constituent literals. So we



pick a particular literal yα ∈ C1 and we argue that (L → conL(yα)) →
(B ∧DifmL → conB(inst(ξ, yα))).

For any i, such that ui < y in the prefix. We will show that
(DifmL ∧SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)). When we
take a conjunction over all i, we get B ∧ DifmL → L. A maximum of one
of ¬SetiB, SetiB, SetiB ∧ui and SetiB ∧¬ui appears in annoy,B(α ◦ ξ), we
treat annoy,B(α[ξ]) as a set containing these subformulas. We show that
if formula ci ∈ annoy,B(α ◦ ξ), when ci is equal to ¬SetiB, SetiB, SetiB ∧ui
or SetiB ∧¬ui then (L → annoy,B(α)) → (B ∧ L ∧ DifmL → ci). We also
have (L→ y)→ (B ∧ L→ ∧DifmL → y)

Eventually we can put all these together and get (L → conL(yα)) →
(B ∧ L ∧ DifmL → conB(inst(ξ, yα)). We can cut out the L with
B ∧ DifmL → L. If DifmL then there is some 1 ≤ j ≤ m such that
DifjL ∧¬Difj−1L ∧¬Difj−1R via Lemmas 12 and 14 For each 1 ≤ i ≤ m
we have to argue for j < i, j = i and 1 ≤ i ≤ j, in order to cover all
possibilities. For i > m it is more simple.

The proof for each i adds a linear amount of lines in i for each proof
, Once we have L → conL(yα)) → (B ∧ L ∧ DifmL → conB(inst(ξ, yα)),
for one literal we can have (L ∧ DifmL → conL(C1)) → (B ∧ L ∧ DifmL →
conB(inst(ξ, C1)). However the premise is (L → conL(C1 ∨ ¬x)), so in
order to remove the ¬x we use Lemma 15. L∧DifmL → ¬ annox,L(τ t σ),
so L∧DifmL → ¬ conL(xτ t σ), and thus (L∧DifmL → conL(C1)). We will
detail all the cases here, note that we have to again do the same for R.
The proof size will be O(wn) where w is the width or number of literals
in inst(ξ, C1) t inst(σ,C2) and n is the number of universal variables in
the prefix.

We detail the cases below:

Suppose i > m.

DifiL refutes ¬DifmL ∧(DifmR ∨¬SetiL) so whenever DifmL is true,
(ValiB, SetiB) = (ValiL,SetiL), therefore (SetiB → (ui ↔ ValiB))→ (SetiL →
(ui ↔ ValiL)).

If ¬SetiB ∈ annoy,B(α ◦ ξ), then ui /∈ dom(α ◦ ξ). We know
ui /∈ dom(α) otherwise it would be in dom(α ◦ ξ). Therefore ¬SetiL is
in annoy,L(α). And so if L → annoy,L(α) then L → ¬ SetiL, , therefore
B∧L∧DifmL → ¬SetiB. We now look at all the cases of ci ∈ annoy,B(α ◦ ξ)
and show they can be satisfied with our strategy in B:

If SetiB ∈ annoy,B(α ◦ ξ), then ui ∈ dom(α ◦ ξ) ui /∈ dom(ξ)
because dom(ξ) only extends up to m hence ui /∈ dom(α ◦ ξ) and
SetiL ∈ annoy,L(α). And so if L → annoy,L(α) then L → SetiL, therefore
B ∧ L ∧DifmL → SetiB.



If SetiB ∧ui ∈ annoy,B(α ◦ ξ) then ui ∈ dom(α ◦ ξ). We know
ui /∈ dom(ξ) because dom(ξ) only extends up to m hence ui /∈ dom(α ◦ ξ).
Hence ui ∈ dom(α) and SetiL ∧ui ∈ annoy,L(α) And so if L→ annoy,L(α)
then L→ SetiL ∧ui, therefore B ∧ L ∧DifmL → SetiB ∧ui.

If SetiB ∧¬ui ∈ annoy,B(α ◦ ξ) then ui /∈ dom(α ◦ ξ) ui /∈ dom(ξ)
because dom(ξ) only extends up to m hence ui /∈ dom(α ◦ ξ). Hence
ui ∈ dom(α) and SetiL ∧¬ui ∈ annoy,L(α) And so if L→ annoy,L(α) then
L→ SetiL ∧¬ValiL, therefore B ∧ L ∧DifmL → SetiB ∧¬ui.
Suppose j < i ≤ m.

We know DifjL → Difi−1L from Lemma 13, we will use that to get

that when DifjL ∧SetiL then (ValiB,SetiB) = (ValiL, SetiL) which allows
us to then show (SetiB → (ui ↔ ValiB)) → (SetiL → (ui ↔ ValiL)).
When Difi−1L for ui /∈ dom(ξ) we refute ¬Difi−1L ∧(Difi−1R ∨¬SetiL),
¬Difi−1L ∧(Difi−1R ∨(SetiL ∧(ValiL ↔ Valiτ ))) , ¬Difi−1L ∧Difi−1R ∧¬SetiR
and ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL). When Difi−1L for ui ∈ dom(ξ) when
SetiL is true we refute Difi−1L ∧¬SetiL and ¬Difi−1L ∧(Difi−1R ∨¬SetiL).

if ¬SetiB ∈ annoy,B(α ◦ ξ) then ui /∈ dom(α ◦ ξ), also ui /∈ dom(α)
and ui /∈ dom(ξ) so ¬SetiL ∈ annoy,L(α) And so if L → annoy,L(α) then
L → ¬SetiL when Difi−1L and ui /∈ dom(ξ), (ValiB,SetiB) = (ValiL,SetiL)
and so B ∧ L ∧Difi−1L ∧SetiB

If SetiB ∈ annoy,B(α ◦ ξ) then ∗/ui dom(α ◦ ξ) so either ∗/ui ∈ α
or ui /∈ dom(α) and ∗/ui ∈ ξ. If ∗/ui ∈ α then SetiL ∈ annoy,L(α)
and L → SetiL so when Difi−1L ∧SetiL no matter which domain ui is in
(ValiB, SetiB) = (ValiL,SetiL) B ∧ L ∧ Difi−1L ∧SetiB. If ui /∈ dom(α) and
∗/ui ∈ ξ. ¬SetiL ∈ annoy,L(α) so L → ¬ SetiL. ui ∈ dom(ξ) means that
when Difi−1L and ¬SetiL (ValiB, SetiB) = (0, 1) so B ∧ L ∧Difi−1L ∧SetiB

If SetiB ∧ui ∈ annoy,B(α ◦ ξ) then 1/ui ∈ (α ◦ ξ) and it can
only be that 1/ui ∈ α as ξ can only add ∗/ui So SetiL ∧ui ∈ annoy,L(α)
and L → SetiL. so when Difi−1L ∧SetiL no matter which domain ui is in
(ValiB, SetiB) = (ValiL,SetiL). B ∧ L ∧Difi−1L ∧SetiB ∧ui.

Likewise, If SetiB ∧¬ui ∈ cony,B(α ◦ ξ) then 0/ui ∈ (α ◦ ξ) and it can
only be that 0/ui ∈ α as ξ can only add ∗/ui So SetiL ∧ui ∈ annoy,L(α)
and L → SetiL. so when Difi−1L ∧SetiL no matter which domain ui is in
(ValiB, SetiB) = (ValiL,SetiL). B ∧ L ∧Difi−1L ∧SetiB ∧¬ui.
Suppose i = j.

¬Difj−1L by definition of j. ¬Difj−1R is also true as Difj−1R contra-

dicts Eqj−1R=τ∨ξ which is necessary for DifjL. With ¬Difj−1R , (ValjB,SetjB)

can only be defined as (ValjR, SetjR) in a small selection of circumstances

That is when: ¬SetjL and ui /∈ dom(τ t σ t ξ) SetjL ∧ValjL and 1/uj ∈ τ



SetjL ∧¬ValjL and 0/uj ∈ τ SetjL ∧SetjR and ∗/uj ∈ σ ¬SetjL and ∗/uj ∈ ξ
All but the latter contradict DifjL ∧Difj−1L , but we can ignore when-

ever SetjL is false. So DifjL ∧¬Difj−1L ∧SetjL → SetjB this means that

SetjB → (ui ↔ ValjB)→ SetjL → (ui ↔ ValjL).

if ¬SetjB ∈ annoy,B(α ◦ ξ) then uj /∈ dom(α ◦ ξ) and so

uj /∈ dom(α) uj /∈ dom(ξ). So ¬SetjL ∈ annoy,L(α) and L → ¬ SetjL
Since DifjL is true then it can only be that uj ∈ dom(τ) or uj ∈
dom(σ). If uj ∈ dom(τ) then ¬Difj−1L ∧(¬Difj−1L ∨(SetjL ∧(ValjL ↔
ValjL))) is contradicted so (ValjB,SetjB) = (ValjL, SetjL) and B ∧ L ∧
DifjL ∧¬Difj−1L → ¬SetiB. If uj ∈ dom(σ) then ¬Difj−1L ∧Difj−1R ∧¬SetjR
and ¬Difj−1L ∧SetjR ∧(Difj−1R ∨SetjL) are contradicted so (ValjB, SetjB) =

(ValjL,SetjL) and B ∧L∧DifjL ∧¬Difj−1L → ¬SetiB. If uj /∈ dom(τ tσt ξ)
DifjL is false in this case So we can ignore it. (ValjB, SetjB) = (ValjL,SetjL)

means that B ∧ L ∧DifjL ∧¬Difj−1L ∧¬SetjB ∧¬uj .

If SetjB ∈ annoy,B(α ◦ ξ), uj ∈ dom(α ◦ ξ). Either ∗/uj ∈ α or

uj 6∈ dom(α) and ∗/uj ∈ ξ If ∗/uj ∈ α, then SetjL ∈ annoy,L(α) and

L → SetjL. If uj /∈ dom(τ t σ t ξ), ¬Difj−1L ∧(Difj−1R ∨¬SetjL is falsi-

fied so (ValjB, SetjB) = (ValjL,SetjL) and B ∧ L ∧ DifjL ∧¬Difj−1L → SetiB.

If uj ∈ dom(τ), DifjL ∧¬Difj−1L ∧SetjL means that ValjL⊕Valjτ and so.

¬Difj−1L ∧(Difj−1R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsified so (ValjB, SetjB) =

(ValjL,SetjL) and B∧L∧DifjL ∧¬Difj−1L → SetiB. If uj ∈ dom(σ) SetjL con-

tradicts DifjL ∧¬Difj−1L , so this scenario does not occur. If uj ∈ dom(ξ)

Difj−1L ∧¬SetjL is falsified by ¬Difj−1L . ¬Difj−1L ∧(Difj−1R ∨¬SetjL) is falsi-

fied by SetjL so (ValjB,SetjB) = (ValjL, SetjL) and B∧L∧DifjL ∧¬Difj−1L →
SetiB. If uj 6∈ dom(α) and ∗/uj ∈ ξ then ¬SetjL ∈ annoy,L(α) and

L→ ¬SetjL. However this conflicts with DifjL ∧¬Difj−1L .

If SetjB ∧ValjB ∈ annoy,B(α ◦ ξ), 1/uj ∈ (α ◦ ξ). As instanti-

ate is only done by ∗ then 1/uj ∈ (α). So it follows SetjL ∧ValjL ∈
annoy,L(α) If uj /∈ dom(τ t σ t ξ), ¬Difj−1L ∧(Difj−1R ∨¬SetjL) is fal-

sified so (ValjB, SetjB) = (ValjL, SetjL) and B ∧ L ∧ DifjL ∧¬Difj−1L →
SetiB ∧ValiB . If uj ∈ dom(τ), DifjL ∧¬Difj−1L ∧SetjL ∧ValjL means that

¬Valjτ and so. ¬Difj−1L ∧(Difj−1R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsi-

fied so (ValjB, SetjB) = (ValjL, SetjL) and B ∧ L ∧ DifjL ∧¬Difj−1L →
SetiB ∧ValiB. If uj ∈ dom(σ) SetjL contradicts DifjL ∧¬Difj−1L , so this

scenario does not occur. If uj ∈ dom(ξ) Difj−1L ∧¬SetjL is falsified by



¬Difj−1L . ¬Difj−1L ∧(Difj−1R ∨¬SetjL) is falsified by SetjL so (ValjB, SetjB) =

(ValjL,SetjL) and B ∧ L ∧DifjL ∧¬Difj−1L → SetiB ∧ValiB.

If SetjB ∧¬ValjB ∈ annoy,B(α ◦ ξ) 0/uj ∈ (α ◦ ξ). As instanti-

ate is only done by ∗ then 0/uj ∈ (α). So it follows SetjL ∧¬ValjL ∈
annoy,L(α) If uj /∈ dom(τ t σ t ξ), ¬Difj−1L ∧(Difj−1R ∨¬SetjL is fal-

sified so (ValjB, SetjB) = (ValjL, SetjL) and B ∧ L ∧ DifjL ∧¬Difj−1L →
SetiB ∧¬ValiB . If uj ∈ dom(τ), DifjL ∧¬Difj−1L ∧SetjL ∧¬ValjL means

that Valjτ and so ¬Difj−1L ∧(Difj−1R ∨(SetjL ∧(ValjL ↔ Valjτ ))) is falsi-

fied so (ValjB, SetjB) = (ValjL, SetjL) and B ∧ L ∧ DifjL ∧¬Difj−1L →
SetiB ∧¬ValiB. If uj ∈ dom(σ) SetjL contradicts DifjL ∧¬Difj−1L , so this

scenario does not occur. If uj ∈ dom(ξ) Difj−1L ∧¬SetjL is falsified by

¬Difj−1L . ¬Difj−1L ∧(Difj−1R ∨¬SetjL) is falsified by SetjL so (ValjB, SetjB) =

(ValjL,SetjL) and B ∧ L ∧DifjL ∧¬Difj−1L → SetiB ∧¬ValiB.

Suppose i < j.

In this case ¬DifiL,¬Difi−1L ,¬DifiR,¬Difi−1R are all true. We can
see from Lemma 16 that SetiL → SetiB in all cases. We observe all
the cases when SetiL is true and ValiB is not defined as ValiL. For
ui ∈ dom(τ), this happens if (ValiL ↔ Valiτ ), but then also (ValiR ↔
Valiτ ) if ¬DifiR. For ui ∈ dom(σ) if ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL) then
ValiB = ValiR, but this cannot happen if ¬DifiL ∧¬Difi−1L . So in all cases of
¬DifiL,¬Difi−1L ,¬DifiR,¬Difi−1R ,SetiL we have ValiB = ValiL. This means
that SetiB → (ui ↔ ValiB)→ SetiL → (ui ↔ ValiL).

If ¬SetiB ∈ annoy,B(α ◦ ξ) then uj /∈ dom(α ◦ ξ) and so
uj /∈ dom(α) uj /∈ dom(ξ). So ¬SetiL ∈ annoy,L(α) and L → ¬ SetiL
¬DifiL,¬Difi−1L means that ui /∈ dom(τ tσtξ) From Lemma 16 we know

¬DifiL ∧¬DifiR → ¬SetiB. So B ∧ L ∧DifjL ∧¬DifiL → ¬SetiB
If SetiB ∈ annoy,B(α ◦ ξ) Either ∗/ui ∈ α or ui 6∈ dom(α) and ∗/ui ∈ ξ

If ∗/ui ∈ α, then SetiL ∈ annoy,L(α) and L → SetiL. By Lemma 16,
ui must be in dom(τ) or dom(σ). In either case SetiB is true. So B ∧
L ∧ DifjL ∧¬DifiL → SetiB If ui 6∈ dom(α) and ∗/ui ∈ ξ, then ¬SetiL ∈
annoy,L(α) and L → ¬SetiL By Lemma 16, SetiB is true. So B ∧ L ∧
DifjL ∧¬DifiL → SetiB.

If SetiB ∧ValiB ∈ annoy,B(α ◦ ξ) then 1/ui ∈ α ◦ ξ, so it must
be that 1/ui ∈ α. And so SetiL ∧ValiL ∈ annoy,L(α) By Lemma 16, ui
must be in dom(τ) or dom(σ) In either case (ValiB, SetiB)=(ValiL,SetiL).
So B ∧ L ∧DifjL ∧¬DifiL → SetiB ∧ValiL, because L→ SetiL ∧ValiL

Likewise, if SetiB ∧¬ValiB ∈ annoy,B(α ◦ ξ) then 0/ui ∈ α ◦ ξ, so it
must be that 0/ui ∈ α. And so SetiL ∧¬ValiL ∈ annoy,L(α) By Lemma 16,



ui must be in dom(τ) or dom(σ) In either case (ValiB,SetiB)=(ValiL, SetiL).
So B ∧ L ∧DifjL ∧¬DifiL → SetiB ∧¬ValiL, because L→ SetiL ∧¬ValiL
In all DifmL cases SetiB → (ui ↔ ValiB) → SetiL → (ui ↔ ValiL) so
then B ∧ DifmL → L. We also have B ∧ DifmL ∧L → annoy,B(α ◦ ξ).
We also get B ∧ DifmL ∧L → conB(y), from L → y so we can get B ∧
DifmL ∧L→ annoB(yα ◦ ξ), this can be put in a disjunction B∧DifmL ∧L→
conB(inst(ξ, C1)), when L → conL(C1) instead of L → conL(yα). This is
simplified to B ∧DifmL → conB(inst(ξ, C1)) as B ∧DifmL → L.

Now we argue that (R → conR(yα)) implies (B ∧ ¬DifL ∧DifmR ) →
conR(yα ◦ σ).

Suppose i > m

DifL ∧DifmR satisfies ¬DifmL ∧(DifmR ∨¬x) so
(ValiB, SetiB)=(ValiR, SetiR) in all cases. This means that (SetiB →
(ValiB ↔ ui))→ (SetiR → (ValiR ↔ ui)).

If ¬SetiB ∈ cony,B(α ◦ σ) then ui /∈ dom(α) and ui /∈
dom(σ) then ¬SetiR ∈ cony,R(α) so R → ¬SetiR. and so B ∧ R ∧
¬SetiB ∧¬DifmL ∧DifmR → ¬SetiB

If SetiB ∈ cony,B(α ◦ σ) then ui ∈ dom(α ◦ σ) Which means either
ui ∈ dom(α) or ui /∈ dom(α) and ui ∈ σ. But ui /∈ σ because i > m. Since
ui ∈ dom(α) SetiR ∈ cony,R(α) and so B ∧ R ∧ ¬SetiB ∧¬DifmL ∧DifmR →
SetiB

If SetiB ∧ValiB ∈ cony,B(α ◦ σ) then 1/ui ∈ α ◦ σ Which means 1/ui ∈
α SetiR ∧ValiR ∈ cony,R(α) and so B ∧ R ∧ ¬SetiB ∧¬DifmL ∧DifmR →
SetiB ∧ValiB

If SetiB ∧ValiB ∈ cony,B(α ◦ σ) then 0/ui ∈ α ◦ σ Which means 0/ui ∈
α SetiR ∧¬ValiR ∈ cony,R(α) and so B ∧ R ∧ ¬SetiB ∧¬DifmL ∧DifmR →
SetiB ∧¬ValiB
Suppose j < i ≤ m

In this case ¬Difi−1L , ¬DifiL, Difi−1R and DifiR are all true. If SetiR is
true then

¬Difi−1L ∧(Difi−1R ∨¬SetiL), ¬Difi−1L ∧(Difi−1R ∨(SetiL ∧(ValiL ↔
Valiτ ))), ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL) and ¬Difi−1L ∧(Difi−1R ∨¬SetiL)
are all satisfied. So (ValiB, SetiB)=(ValiR, SetiR) whenever SetiR is true.
This means that (SetiB → (ValiB ↔ ui))→ (SetiR → (ValiR ↔ ui)).

If ¬SetiB ∈ cony,B(α ◦ σ) then ui /∈ dom(α) and ui /∈
dom(σ) then ¬SetiR ∈ cony,R(α) so R → ¬ SetiR. When ¬Difi−1L

and Difi−1R and ui /∈ dom(σ) then (ValiB, SetiB)=(ValiR,SetiR), so B ∧
¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R→ ¬SetiB.

If SetiB ∈ cony,B(α ◦ σ) then ∗/ui ∈ α ◦ σ So either ∗/ui ∈ α
or ∗/ui ∈ σ and ui /∈ dom(α) If ∗/ui ∈ α then SetiR ∈ cony,R(α)



and when SetiR is true then (ValiB,SetiB)=(ValiR,SetiR) so R → SetiR
implies B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R → SetiB If ∗/ui ∈ σ and
ui /∈ dom(α) ¬SetiR ∈ cony,R(α) ¬Difi−1L ∧Difi−1R ∧¬SetiR is satisfied

so(ValiB,SetiB)=(0, 1) therefore B ∧ ¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R →
SetiB

If SetiB ∧ValiB ∈ cony,B(α ◦ σ) then 1/ui ∈ α ◦ σ. and it must
be that 1/ui ∈ α and so SetiR ∧ValiR ∈ cony,R(α) and when SetiR is
true then (ValiB,SetiB)=(ValiR,SetiR) so R → SetiR ∧ValiR implies B ∧
¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R→ SetiB ∧ValiB

If SetiB ∧¬ValiB ∈ cony,B(α ◦ σ) then 0/ui ∈ α ◦ σ. and it must
be that 0/ui ∈ α and so SetiR ∧ValiR ∈ cony,R(α) and when SetiR is
true then (ValiB, SetiB)=(ValiR, SetiR) so R → SetiR ∧¬ValiR implies B ∧
¬DifjL ∧¬DifiL ∧DifjR ∧DifiR ∧R→ SetiB ∧¬ValiB
Suppose i = j

In this case ¬Difj−1L , ¬DifjL, ¬Difj−1R and DifjR. If SetjR then either
(ValiB, SetiB)=(ValiR, SetiR) or (ValiB, SetiB)=(ValiL, SetiL). We will argue
that (ValiB,SetiB)=(ValiL, SetiL) is not chosen because of ¬DifjL and EqR
¬Difi−1L ∧(Difi−1R ∨¬SetiL) cannot be falsified because SetiL being true

would contradict ¬DifjL. Likewise ¬Difi−1L ∧(Difi−1R ∨(SetiL ∧(ValiL ↔
Valiτ )))(ValiL, SetiL) cannot be falsified as (SetiL ∧(ValiL ↔ Valiτ ))
being false would contradict ¬DifjL. If ui ∈ dom(σ) then
¬Difi−1L ∧Difi−1R ∧¬SetiR is false and ¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL
is true. Likewise if ui ∈ dom(ξ) then Difi−1L ∧¬SetiL is false and
¬Difi−1L ∧(Difi−1R ∨¬SetiL) is true. The result is that (SetiB → (ValiB ↔
ui))→ (SetiR → (ValiR ↔ ui)).

If ¬SetjB ∈ cony,B(α ◦ σ) then ui /∈ dom(α ◦ σ), which means ui /∈
dom(α) and ui /∈ dom(σ). So ¬SetjR ∈ cony,R(α) and thus R→ ¬SetjR If

uj ∈ dom(τ) We argue that ¬Difj−1L ∧(Difj−1R ∨(SetjL ∧(ValjL ↔ Valijτ )))
is satisfied because of ¬DifiL. Hence (ValiB,SetiB)=(ValiR, SetiR) and so
B ∧ ¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ ¬SetjB

If uj ∈ dom(ξ) We argue that ¬Difi−1L ∧(Difi−1R ∨¬SetiL)
is satisfied because of ¬DifiL which insists on
¬SetiL . Hence (ValiB,SetiB)=(ValiR,SetiR) and so B ∧
¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ ¬SetjB.

‘ If uj /∈ dom(τ t σ t ξ) We argue that ¬Difi−1L ∧(Difi−1R ∨¬SetiL)
is satisfied because of ¬DifiL. Hence (ValiB, SetiB)=(ValiR, SetiR) and so
B ∧ ¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ ¬SetjB.

If SetjB ∈ cony,B(α ◦ σ), so ∗/uj ∈ (α ◦ σ). So either ∗/uj ∈ α

or ∗/uj /∈ α and ∗/uj ∈ σ. If ∗/uj ∈ α then SetjR ∈ cony,R(α)



and R → SetjR When SetjR is true we know (ValjB, SetjB)=(ValjR, SetjR)

and so B ∧ ¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L → SetjB If ∗/uj /∈
α and ∗/uj ∈ σ So ¬SetjR ∈ cony,R(α) and thus R → ¬SetjR
¬Difi−1L ∧SetjR ∧(Difj−1R ∨SetjL) is falsified. So (ValjB,SetjB)=(ValjL,SetiL)

But because ¬DifjL we know that SetiL is true therefore B ∧
¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ SetjB

If SetjB ∧ValjB ∈ cony,B(α ◦ σ), so 1/uj ∈ (α ◦ σ). So it must be

that 1/uj ∈ α And so SetjR ∧ValjR ∈ cony,R(α) and thus R → ¬SetjR
since SetjR is true we know that (ValjB, SetjB)=(ValjR, SetjR) and so B ∧
¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ SetjB ∧ValjB

If SetjB ∧¬ValjB ∈ cony,B(α ◦ σ), so 0/uj ∈ (α ◦ σ). So it must be

that 0/uj ∈ α And so SetjR ∧¬ValjR ∈ cony,R(α) and thus R → ¬ SetjR
since SetjR is true we know that (ValjB, SetjB)=(ValjR,SetjR) and so B ∧
¬Difj−1L ∧¬DifjL ∧¬Difj−1R ∧DifjR ∧L→ SetjB ∧ValjB

Suppose i < j.

In this case ¬DifiL,¬Difi−1L ,¬DifiR,¬Difi−1R are all true. We can see
from Lemma 16 that SetiR → SetiB in all cases. We observe all the cases
when SetiR is true and ValiB is not defined as ValiR and show they cannot
happen

For ui /∈ dom(τ t σ t ξ), if ¬Difi−1L ∧(Difi−1R ∨¬SetiL) is false
then SetiL must be true, but this conflicts with ¬DifiL,¬Difi−1L . For
ui ∈ dom(τ) if ¬Difi−1L ∧(Difi−1R ∨(SetiL ∧(ValiL ↔ Valiτ ))) is false then
SetiL → (ValiL⊕Valiτ ) contradicting ¬DifiL,¬Difi−1L For ui ∈ dom(σ) if
¬Difi−1L ∧SetiR ∧(Difi−1R ∨SetiL) is false the then SetiL is false contradict-
ing ¬DifiL,¬Difi−1L . For ui ∈ dom(ξ) if ¬Difi−1L ∧(Difi−1R ∨¬SetiL) is false
then SetiL is true but in dom(ξ) this contradicts ¬DifiL,¬Difi−1L . There-
fore (SetiB → (ValiB ↔ ui))→ (SetiR → (ValiR ↔ ui))

If ¬SetiB ∈ cony,B(α ◦ σ) then uj /∈ dom(α ◦ σ) and so
uj /∈ dom(α) uj /∈ dom(σ). So ¬SetiR ∈ cony,R(α) and R → ¬SetiR
¬DifiR,¬Difi−1R means that ui /∈ dom(τ t σ t ξ) From Lemma 16 we

know ¬DifiL ∧¬DifiR → ¬SetiB. So B ∧R ∧DifjR ∧¬DifiL → ¬SetiB

If SetiB ∈ cony,B(α ◦ σ) Either ∗/ui ∈ α or ui 6∈ dom(α) and ∗/ui ∈ σ
If ∗/ui ∈ α, then SetiR ∈ cony,R(α) and R → SetiR. By Lemma 16,
ui must be in dom(τ) or dom(ξ) . In either case SetiB is true. So B ∧
R ∧ DifjR ∧¬DifiL → SetiB If ui 6∈ dom(α) and ∗/ui ∈ σ, then ¬SetiR ∈
cony,R(α) and R → ¬ SetiR By Lemma 16, SetiR is true. So B ∧ R ∧
DifjR ∧¬DifiL → SetiB



If SetiB ∧ValiB ∈ cony,B(α ◦ σ) then 1/ui ∈ α ◦ σ, so it must
be that 1/ui ∈ α. And so SetiR ∧ValiR ∈ cony,R(α) By Lemma 16, ui
must be in dom(τ) or dom(ξ) In either case (ValiB,SetiB)=(ValiR, SetiR).
So B ∧R ∧DifjR ∧¬DifiR → SetiB ∧ValiB, because R→ SetiR ∧ValiR

Likewise, if SetiB ∧¬ui ∈ cony,B(α ◦ σ) then 0/ui ∈ α ◦ σ, so it
must be that 0/ui ∈ α. And so SetiR ∧ValiR ∈ cony,R(α) By Lemma 16,
ui must be in dom(τ) or dom(ξ) In either case (ValiB,SetiB)=(ValiR, SetiR).
So B ∧ R ∧ DifjR ∧¬DifiR → SetiB ∧¬ui, because R → SetiR ∧¬ui. With
that we conclude all cases in R and argue similarly to L.

Lemma 18. Suppose L→ conL(C1 ∨¬xτ ) and R→ conL(C1 ∨xτ ). The
following propositions are true and have short Extended Frege proofs.

– B ∧ ¬DifmL ∧¬DifmR → conB(inst(ξ, C1)) ∨ ¬x
– B ∧ ¬DifmL ∧¬DifmR → conB(inst(σ,C2)) ∨ x

Proof. Suppose that L→ conL(yα), we will show thatB∧¬DifmL ∧¬DifmR →
conL(inst(ξ, yα)).

We show first that SetiL ∧¬DifiL ∧¬DifiR → SetiB ∧(ValiB ↔ ValiL)
this is true in each i : 1 ≤ i ≤ m by observing each case in Lemma 16.
For i > m, ¬DifmL ∧¬DifmR ∧x → (SetiL ↔ SetiB) ∧ (ValiB ↔ ValiL)). So
for all ieither ¬SetiL or SetiB ∧(ValiB ↔ ValiL) when ¬DifiL ∧¬DifiR.

This we can use to show B ∧¬DifiL ∧¬DifiR ∧x→ L by taking a con-
junction of all these. We then can derive (L→ y)→ (B∧¬DifmL ∧¬DifmR ∧x→
y) for existential literal y.

We still have to show that (L→ cony,L(α))→ (B∧¬DifmL ∧¬DifmR ∧x→
cony,L(α ◦ ξ)) for y’s annotation α. We next show that ¬SetiL ∧¬DifiL ∧¬DifiR →
¬SetiB when ui /∈ dom(ξ). We can do this by simply observing the lines
in Lemma 16 when ¬SetiL is permitted.

And finally we show ¬SetiL ∧¬DifiL ∧¬DifiR → SetiB when ui ∈ dom(ξ).
Remembering that ¬DifmS → ¬DifiS for S ∈ {L,R} and 1 ≤ i ≤ m.

We can now know that if L satisfies cony,L(α) then ¬DifmL ∧¬DifmL ∧x
will force B to satisfy cony,L(α ◦ ξ) and we can prove this in eFrege as

(L→ con
y,L

(α))→ (B ∧ ¬
m

Dif
L
∧¬

m
Dif
R
∧x→ con

y,B
(α ◦ ξ))

Adding (L→ y)→ (B ∧ ¬DifmL ∧¬DifmR ∧x→ y and for every literal
yα ∈ C1and annotation in C1 we can assemble

(L→ con
yL

(yα))→ (B ∧ ¬
m

Dif
L
∧¬

m
Dif
R
∧x→ con

B
(inst(ξ, yα)))



Using conB(¬xτtσtξ)→ ¬x we can get

(L→ con
L

(C1 ∨ x)→ (B ∧ ¬
m

Dif
L
∧¬

m
Dif
R
∧x→ con

B
(inst(ξ, C1)))

And symmetrically we can make a derivation of

(L→ con
R

(C2 ∨ ¬x)→ (B ∧ ¬
m

Dif
L
∧¬

m
Dif
R
∧¬x→ con

B
(inst(σ,C2)))

The proofs here are polynomial, in this proof section we argue for
each literal in the clause, and for each universal variable, but also refer to
Lemmas 16 and 13 which have linear proofs. So we have cubic size proofs
in the worst case or more specifically O(wn2), where w is the number of
literals in the derived clause inst(σ,C2) ∪ inst(ξ, C2).

Lemma 19. Suppose L→ conL(C1 ∨ ¬xτtσ) and R → conL(C1 ∨ xτtξ)
then B → conB(inst(ξ, C1) ∨ inst(σ,C2)) has a short eFrege proof.

Proof. B∧DifmL → conB(inst(ξ, C1)),B∧¬DifmL ∧DifR → conB(inst(σ,C2)),
and B ∧ ¬DifmL ∧¬DifR → conB(inst(ξ, C1) ∨ inst(σ,C2)) and we can re-
solve on DifmL and DifmR

7.3 Proof of Simulation of LQU+-Res

Lemmas

Lemma 20. For 0 < j ≤ m the following propositions have short deriva-
tions in Extended Frege:

– DifjL →
∨j
i=1 DifiL ∧¬Difi−1L

– DifjR →
∨j
i=1 DifiR ∧¬Difi−1R

– ¬EqjL,V1 →
∨j
i=1 ¬EqiL,V1 ∧Eqi−1L,V1

– ¬EqjR,V2 →
∨j
i=1 ¬EqiR,V2 ∧Eqi−1R,V2

Proof. The proof of Lemma 2 still works despite the modifications to
definition.

Lemma 21. For 0 ≤ i ≤ j ≤ m the following propositions that describe
the monotonicity of Dif and Eq have short derivations in Extended Frege:

– DifiL → DifjL
– DifiR → DifjR



– ¬Eqif=g → ¬Eqjf=g

Proof. The proofs of Lemma 3 still work despite the modifications to
definition.

Lemma 22. For any 0 ≤ j ≤ m the following propositions are true and
have a short Extended Frege proof.

– ¬DifjL ∧¬DifjR → EqjL,V1
– ¬DifjL ∧¬DifjR → EqjR,V2
– ¬DifjL ∧¬DifjR → (¬SetjB ∧¬SetjL ∧¬SetjR) when u∗j /∈ C1 ∨ C2.

– ¬DifjL ∧¬DifjR → (SetjB ∧SetjL ∧¬SetjR ∧(ValjB ↔ ValjL)) when u∗j ∈
C1.

– ¬DifjL ∧¬DifjR → (SetjB ∧¬SetjL ∧SetjR ∧(ValjB ↔ ValjR)) when u∗j ∈
C2.

Proof. We show that ¬Eqj+1
L,V1

→ ¬EqjL,V1 ∨¬EqjR,V2 ∨Difj+1
L and

¬Eqj+1
R,V2

→ ¬EqjR,V2 ∨¬EqjL,V2 ∨Difj+1
R . Suppose u∗j+1 ∈ V1 then

¬Eqj+1
L,V1
∧EqjL,V1 → Setj+1

L and Setj+1
L → ¬EqjR,V2 ∨Difj+1

L , so we have

¬Eqj+1
L,V1
∧ → ¬EqjR,V2 ∨¬EqjL,V1 ∨Difj+1

R . This is symmetric for R and
for u∗j+1 /∈ V1.
Induction Hypothesis (on j): (¬EqjL,V1 ∨¬EqjR,V2)→ (DifjL ∨DifjR)

Base Case (j = 1): ¬Eq1
L,V1
∧Eq0

L,V1
→ Dif1L ∨¬Eq0

R,V2
, and ¬Eq1

R,V2
∧Eq0

R,V2
→

Dif1R ∨¬Eq0
L,V1

.

However since Eq0
L,V1

and Eq0
R,V2

are both true it simplifies to ¬Eq1
L,V1
→

Dif1L and ¬Eq1
R,V2
→ Dif1R which can be combined to get (¬Eq1

L,V1
∨¬Eq1

R,V2
)→

(Dif1L ∨Dif1R)
Inductive Step (j + 1):

The Induction Hypothesis (¬EqjL,V1 ∨¬EqjR,V2) → (DifjL ∨DifjR) can

be weakened to (¬EqjL,V1 ∨¬EqjR,V2) → (Difj+1
L ∨Difj+1

R ), using DifjL →
Difj+1

L and DifjR → Difj+1
R .

We now need to replace (¬EqjL,V1 ∨¬EqjR,V2) with

(¬Eqj+1
L,V1
∨¬Eqj+1

R,V2
). Suppose uj+1 ∈ V1, note that ¬Eqj+1

L,V1
→

¬EqjL,V1 ∨¬Setj+1
L . ¬Setj+1

L ∧EqjR,V2 → Difj+1
R

We show that ¬Eqj+1
L,V1

→ ¬EqjL,V1 ∨¬EqjR,V2 ∨Difj+1
L and

¬Eqj+1
R,V2
→ ¬EqjR,V2 ∨¬EqjL,V2 ∨Difj+1

R .

Suppose u∗j+1 ∈ V1 then ¬Eqj+1
L,V1
∧EqjL,V1 → Setj+1

L and Setj+1
L →

¬EqjR,V2 ∨Difj+1
L , so we have ¬Eqj+1

L,V1
∧ → ¬EqjR,V2 ∨¬EqjL,V1 ∨Difj+1

R .
This is symmetric for R and for u∗j+1 /∈ V1.



We can use these formulas to show ¬Eqj+1
L,V1
∧¬Eqj+1

R,V2
→

¬EqjL,V1 ∨¬EqjR,V2 ∨Difj+1
L ∨Difj+1

R and we can simplify this to

¬Eqj+1
L,V1
∧¬Eqj+1

R,V2
→ Difj+1

L ∨Difj+1
R .

¬DifjL ∧¬DifjR → EqjL,V1 , ¬DifjL ∧¬DifjR → EqjR,V2 are corollaries of

this. ¬DifjL ∧¬DifjR means ¬Difj−1L ∧¬Difj−1R . u∗j ∈ C1 implies u∗j /∈ C2,

so SetjL and ¬SetjR, and that makes (ValiB, SetiB)=(ValiL, SetiL).

u∗j ∈ C2 implies u∗j /∈ C1 so ¬SetjL and SetjR, and that makes

(ValiB, SetiB)=(ValiR, SetiR).
u∗j /∈ C1 ∪ C2 implies ¬SetjL and ¬SetjL, therefore

(ValiB, SetiB)=(ValiL,SetiL).

Lemma 23. The following propositions are true and have short Extended
Frege proofs, given (L→ conL(C1∪U1∨¬x)) and (R→ conR(C2∪U2∨x))

– B ∧DifmL → L
– B ∧ ¬DifmL ∧DifmR → R
– B ∧DifmL → conB(C1 ∨ V2 ∨ U)
– B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U)

Proof. Let us consider the L cases. Suppose we pick some non-starred
literal y ∈ C1 we will show that (L → conL,C1∪U1(y)) → (B ∧ DifmL →
conB,V2∪C1∪U1(y)).

For any i, such that ui < y, we will show that DifmL ∧SetiB → (ui ↔
ValiB)→ (SetiL → (ui ↔ ValiL)) and when we take a conjunction over all
i, we get B ∧DifmL → L. For p ∈ {1, 2} let Wp = {u∗ | u∗ ∈ Up}. For each
i, either SetiB or ¬SetiB appears in annoy,B(V1 ∪ V2 ∪ U∗), so we treat
annoy,B(V1 ∪ V2 ∪ U∗) as a set containing these subformulas. We show
that if ci ∈ annoy,B(V1 ∪ V2 ∪ U∗) when ci = SetiB or ci = ¬SetiB then
L → annoy,L(V1 ∪W1) → B ∧ DifmL → ci and we also have (L → y) →
(B ∧ DifmL → y). For existential y, we can put these all together to get
(L → conL,C1∪U1(y)) → (B ∧ L ∧ DifmL → conB,V2∪C1∪U1(y)). L can be
cut out when we show B ∧DifmL → L.

If DifmL is true then there is some j such that DifjL ∧¬DifjL ∧¬DifjR
via Lemmas 20 and 21.
Suppose i > m.

DifiL refutes ¬DifmL ∧(DifmR ∨¬SetiL) so whenever DifmL is true and
SetiR is true, (ValiB,SetiB) = (ValiL, SetiL), therefore (SetiB → (ui ↔
ValiB))→ (SetiL → (ui ↔ ValiL)).

If SetiB ∈ annox,B(V1 ∪ V2 ∪ U), then u∗i ∈ U . ValiB depends on the
polarity of variable ui in the subclause U1, but in every case SetiB is true
when annox,L(V1 ∪W1) is affirmed by L.



If ¬SetiB ∈ annox,B(V1∪V2∪U) then u∗i /∈ U , this means that u∗i /∈W1,
so whenever annox,L(V1 ∪W1) is true, ¬SetiL. But then ¬SetiB must be
true because of DifmL .

Suppose j < i ≤ m.

We know DifjL → Difi−1L from Lemma 21, we will use that to get that

when DifjL ∧SetiL then (ValiB,SetiB) = (ValiL,SetiL) which allows us to
then show (SetiB → (ui ↔ ValiB))→ (SetiL → (ui ↔ ValiL)).

Suppose ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U), then u∗i /∈ C1 ∪ C2 so
(ValiB,SetiB) = (ValiL, SetiL). But since SetiL will be false because u∗i /∈ C1,
SetiB will be false.

Now suppose SetiB ∈ annox,B(V1 ∪ V2 ∪ U), either ui ∈ C1 in which
case (ValiB,SetiB) = (ValiL, SetiL), but since ui ∈ C1 ValiL must be true,
or ui ∈ C2 in which (ValiB,SetiB) = (ValiL, SetiL) or ¬SetiL, but here we
know SetiB will be forced to be true.

Suppose i = j.

DifiL, ¬Difi−1L and ¬Difi−1R are all true. If SetiL ∈ annox,L(V1 ∪W1)
then ¬SetiL, and if ¬SetiL ∈ annox,L(V1 ∪ W1) then SetiL. If SetiL ∈
annox,L(V1 ∪ W1) and ¬SetiL then u∗i ∈ C1 and so (ValiB,SetiB) =
(ValiL,SetiL). So if annox,L(V1 ∪ W1) is satisfied by L the term SetiB ∈
annox,L(V1 ∪ V2 ∪ U) is satisfied by B.

If ¬SetiL ∈ annox,L(V1 ∪ W1) and SetiL then if u∗i ∈ C2, we know
SetiB ∈ annox,L(V1 ∪ V2 ∪ U), since SetiL is true then SetiB is true.

If u∗i /∈ C1 ∪ C2 then ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U), but then
(ValiB, SetiB) = (ValiL, SetiL). So if annox,L(V1 ∪W1) is satisfied by L the
term SetiB ∈ annox,L(V1 ∪ V2 ∪ U) is satisfied by B.

Suppose i < j.

If ¬SetiB ∈ annox,B(V1∪V2∪U) then u∗ /∈ C1∪C2 and so by Lemma 22
¬SetiB is true. If SetiB ∈ annox,B(V1 ∪ V2 ∪ U) then u∗ ∈ C1 ∪ C2 and so
by Lemma 22, SetiB is true.

We can put this all together to show in eFrege that B∧DifmL → L, L→
conLC1 ∨ U1 ∨ ¬x(y)→ B ∧L∧DifmL → conB,C2∨V2∨U (y), for existential
literal y. Note that DifL means that conR,C2∪U2∨x,R(¬x) is not satisfied
by L to begin with.

Additional universal consideration.

If y = uk, then when y does not become merged we also have to show
that ¬SetkB is preserved when conL,C1∪U1∨x(y) and DifmL . Note that if DifkL
then the annotation is contradicted. If uk ∈ C1 ∨ C2 or ¬uk ∈ C1 ∨ C2,
for i ≤ m then ¬SetiB is desired, but SetiB will only happen when forced
by SetiR being true, but this would mean DifkR and ¬DifkL, which would
contradict DifmL . If uk ∈ C1 ∨ C2 or ¬uk ∈ C1 ∨ C2 for i > m then DifmL



will contradict an annotation. uk ∈ U1 then the literal will not appear as
such in conB(C1 ∪ C2 ∪ U) because it will now only count as a starred
literal.

In all DifmL cases.

The sum of this for all literals is (L→ conL(C1∪U1∨¬x))→ (B∧L∧
DifmL → conB(C1 ∨ V2 ∨ U)). Using B ∧DifmL → L, this can be cut down
to (L→ conR(C2 ∪U2 ∨x))→ (B ∧¬DifmL ∧DifmR → conB(C2 ∨V1 ∨U))
which when combined with the premise (L→ conR(C1 ∪U1 ∨¬x)) to get
(B ∧ ¬DifmL ∧DifmR → conB(CL ∨ V2 ∨ U)).

Suppose i > m.

DifmR ∧¬DifmL satisfies ¬DifmL ∧(DifmR ∨¬SetiL) so whenever
DifmR ∧¬DifmL is true and SetiR is true (ValiB, SetiB) = (ValiR, SetiR),
therefore (SetiB → (ui ↔ ValiB))→ (SetiR → (ui ↔ ValiR)).

If SetiB ∈ annox,B(V1 ∪ V2 ∪ U), then u∗i ∈ U . ValiB depends on the
polarity of variable ui in the subclause U2, but in every case SetiB is true
when annox,R(V2 ∪W2) is affirmed by R and DifmR ∧¬DifmL is true.

If ¬SetiB ∈ annox,B(V1∪V2∪U) then u∗i /∈ U , this means that u∗i /∈W2,
so whenever annox,R(V2 ∪W2) is true, ¬SetiR. But then ¬SetiB must be
true because of DifmR ∧¬DifmL .

Suppose j < i ≤ m.

We know DifjR → Difi−1R and ¬DifmR → ¬Difi−1R from Lemma 21, we

will use that to get that when DifjR ∧¬DifmL SetiR then (ValiB,SetiB) =
(ValiR, SetiR) which allows us to then show (SetiB → (ui ↔ ValiB)) →
(SetiR → (ui ↔ ValiR)).

Suppose ¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U), then u∗i /∈ C1 ∪ C2 so
(ValiB, SetiB) = (ValiR,SetiR). But since SetiR will be false because u∗i /∈ C2,
SetiB will be false.

Now suppose SetiB ∈ annox,B(V1 ∪ V2 ∪ U), either ui ∈ C2 in which
case (ValiB, SetiB) = (ValiR,SetiR), but since ui ∈ C2 ValiR must be true,
or ui ∈ C1 in which case (ValiB,SetiB) = (ValiR, SetiR) or ¬SetiR, but here
we know SetiB will be forced to be true.

Suppose i = j.

DifiR ¬Difi−1R , ¬DifiL and ¬Difi−1L are all true. If SetiR ∈ annox,R(V2∪
W2) then ¬SetiR, and if ¬SetiR ∈ annox,R(V2 ∪W2) then SetiR. If SetiR ∈
annox,R(V2 ∪ W2) and ¬SetiR then u∗i ∈ C2 and ui /∈ C1. ¬DifiL and
¬Difi−1L means that ¬SetiL, so then (ValiB,SetiB) = (ValiR, SetiR) So if
annox,L(V1 ∪W1) is satisfied by R the term SetiB ∈ annox,L(V1 ∪ V2 ∪ U)
is satisfied by B.

If ¬SetiR ∈ annox,R(VR ∪WR) and SetiR then if u∗i ∈ C1, we know
SetiB ∈ annox,L(V1 ∪ V2 ∪ U), ¬DifiL and ¬Difi−1L means that SetiL is



true, since SetiR is also true then SetiB is true. If u∗i /∈ C1 ∪ C2 then
¬SetiB ∈ annox,B(V1 ∪ V2 ∪ U), ¬DifiL and ¬Difi−1L means that SetiL
is true, so then (ValiB,SetiB) = (ValiR, SetiR). So if annox,R(V2 ∪W2) is
satisfied by R the term SetiB ∈ annox,B(V1 ∪ V2 ∪ U) is satisfied by B.

Suppose i < j.

If ¬SetiB ∈ annox,B(V1∪V2∪U) then u∗ /∈ C1∪C2 and so by Lemma 22
¬SetiB is true. If SetiB ∈ annox,B(V1 ∪ V2 ∪ U) then u∗ ∈ C1 ∪ C2 and so
by Lemma 22, SetiB is true.

We can put this all together to show in eFrege that B ∧
DifmR ∧¬DifmL → R R → conR,C2∨U2∨x(y) → B ∧ R ∧ DifmR ∧¬DifmL →
conB,C2∨V2∨U (y), for existential literal y. Note that DifR means that
conR,C2∪U2∨x,R(x) is not satisfied by R to begin with.

Additional universal consideration.

If y = uk then we also have to show that ¬SetkB is preserved when
conR,C2∪U2∨x,L(y) and DifmR ∧¬DifmL , Note that if DifkR then the annota-
tion is contradicted. If uk ∈ C1 ∨ C2 or ¬uk ∈ C1 ∨ C2, for i ≤ m then
¬SetiB is desired, but SetiB will only happen when forced by SetiL being
true, but this would mean DifkL contradicting ¬DifmL If uk ∈ C1 ∨ C2 or
¬uk ∈ C1∨C2 for i > m then DifmL will contradict an annotation. uk ∈ U1

then the literal will not appear as such in conB(C2 ∨ V2 ∨ U) because it
will now only count as a starred literal.

In all DifmR ∧¬DifmL cases.

The sum of this for all literals is (R→ conR(C2∪U2∨x))→ (B∧R∧
¬DifmL ∧DifmR → conB(C2 ∨V1 ∨U)). Using B ∧DifmR ∧¬DifmL → R, this
can be cut down to (R → conR(C2 ∪ U2 ∨ x)) → (B ∧ ¬DifmL ∧DifmR →
conB(C2 ∨ V1 ∨ U)) which when combined with the premise (R →
conR(C2 ∪ U2 ∨ x)) to get (B ∧ ¬DifmL ∧DifmR → conB(C2 ∨ V1 ∨ U).

Lemma 24. The following propositions are true and have short Extended
Frege proofs, given (L→ conL(C1∪U1∨¬x)) and (R→ conR(C2∪U2∨x)).

– B ∧ ¬DifmL ∧¬DifmR → conB(C1 ∨ V2 ∨ U) ∨ ¬x
– B ∧ ¬DifmL ∧¬DifmR → conB(C2 ∨ V1 ∨ U) ∨ x

Proof. For indices 1 ≤ i ≤ m, but since ¬DifmL → ¬DifiL and ¬DifmR →
¬DifiR, Lemma 6 can be used to show that B∧DifmL ∧DifmR leads to SetiB
taking the a value consistent with both V1 ∪ V2, if L was consistent with
V1 and R was consistent with V2.

For i > m, ¬DifmR ∧¬DifmL will make the policy B pick between the
left and right policy based on x. However in either case SetiB will be forced
to update based on the new annotations.



Lemma 25. Suppose, there are policies L and R such that L→ conL(C1∨
¬x ∨ U1) and R → conL(C2 ∨ x ∨ U2) then there is a policy B such that
B → conB(C1 ∨ C2 ∨ U) can be obtained in a short eFrege proof, where
C1, C2, U1, U2 and U follow the same definitions as in Figure 5.

Proof. From Lemmas 24 and 23, conB(C1∨V2∨U) and conB(C2∨V1∨U)
can be weakened to conB(C1 ∨ C2 ∨ U). These can all be combined over
the different possibilities to give B → conB(C1 ∨ C2 ∨ U).
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