Revisiting a Lower Bound on the Redundancy of Linear Batch Codes

Omar Alrabiah Venkatesan Guruswami
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213.
Email: \{oalrabia, venkatg\}@andrew.cmu.edu

Abstract

A recent work of LW21] shows a redundancy lower bound of $\Omega(\sqrt{N k})$ for systematic linear k-batch codes of block length N by looking at the $O(k)$ tensor power of the dual code. In this note, we present an alternate proof of their result via a linear independence argument on a collection of polynomials.

1 Result statement

Batch codes are a family of codes introduced by [IKOS04] for applications in load balancing. Following Definition 1.1 in [LW21, a linear batch code is formally defined as follows.

Definition 1 (Linear Batch Codes). For a field \mathbb{F}, Let $C \leqslant \mathbb{F}^{N}$ be a linear code of dimension n. The code C is a systematic linear k-batch code if for any multiset of indices $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]$, there exist k mutually disjoint sets $R_{1}, \ldots, R_{k} \subseteq[N]$ and linear functions g_{1}, \ldots, g_{k} such that $g_{j}\left(\left.\mathbf{c}\right|_{R_{j}}\right)=c_{i_{j}}$ for all codewords $\mathbf{c} \in C$ and $j \in[k]$.

Recently in [W21, they prove the following upper bound on the rate of systematic linear batch codes by looking at the $O(k)^{\prime}$ 'th tensor power of C^{\perp}.

Theorem 1 ([LW21). Given a systematic linear k-batch code $C \leqslant \mathbb{F}^{N}$, we have $\operatorname{dim}(C) \leqslant N-$ $\Omega(\sqrt{N k})$.

In this note, we give an alternate presentation of the lower bound proved in [LW21 for systematic linear k-batch codes. Our approach uses polynomials in a fashion similar to the approach in Woo16 (see also RV16 for a related perspective using vector products). The proof proceeds in two steps. We first convert the definition of a systematic linear $3 t$-batch code into something that we call a t-ordered-batch codes. We then work with t-ordered-batch codes to show the redundancy lower bound by constructing a collection of polynomials and then showing that they are linearly independent.

2 Proof

As part of our proof, we define the notion of ordered-batch codes and then proceed to show a reduction from linear systematic batch codes to ordered-batch codes.

Definition 2 (Ordered-Batch Codes). For a field \mathbb{F}, Let $C \leqslant \mathbb{F}^{N}$ be a linear code of dimension n. The code C is a t-ordered-batch code if for any set of indices $S=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[n]$, there exist $2 t$ mutually disjoint sets $A_{1} \ldots, A_{t}, B_{1}, \ldots, B_{t} \subseteq[N]$ and linear functions $g_{1}, \ldots, g_{t}, h_{1}, \ldots, h_{t}$ such that $g_{j}\left(\left.\mathbf{c}\right|_{A_{j}}\right)=h_{j}\left(\left.\mathbf{c}\right|_{B_{j}}\right)=c_{i_{j}}$ for all codewords $\mathbf{c} \in C$ and $j \in[t]$. Moreover, the repair groups satisfy the following additional property: consider a directed graph D_{S} with vertices S and edges $i_{j} \rightarrow i_{k}$ if $i_{k} \in A_{j} \cup B_{j}$. Then the graph D_{S} is a $D A G$.

Proposition 2. If a linear code $C \leqslant \mathbb{F}^{N}$ is a systematic linear 3 t-batch code, then it is also a t-ordered-batch code.

Proof. Consider a systematic linear $3 t$-batch code C. By applying the definition of systematic batch codes for the multiset $\left\{i_{1}, i_{1}, i_{1}, i_{2}, i_{2}, i_{2}, \ldots, i_{t}, i_{t}, i_{t}\right\}$ (the multiset where each of the elements of the set $S=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[n]$ occur exactly three times), each element i_{j} obtains three repair groups $R_{j}^{1}, R_{j}^{2}, R_{j}^{3}$, where all $3 t$ repair groups are subsets of $[N]$ and are all mutually disjoint. Now, consider the directed graph D_{S} with S as its vertices, and the edges are $i_{j} \rightarrow i_{k}$ if $i_{k} \in R_{j}^{\epsilon}$ for some $\epsilon \in\{1,2,3\}$ (D_{S} might also have self-loops). Because the repair groups are mutually disjoint, the in-degree of every vertex in D_{S} is at most 1 . Thus the directed cycles of D_{S} are vertex-disjoint. That's because if two cycles C_{1} and C_{2} have a common vertex v. then the incoming edges to v from the cycles C_{1} and C_{2} must be the same as the in-degree of v is at most 1 . Thus the previous vertex of v in both C_{1} and C_{2} is the same, and call it u. We can repeat the argument for the vertex u, and by iteration, we would deduce that all the edges of the cycles C_{1} and C_{2} are the same. Thus $C_{1}=C_{2}$. Now, because all the cycles of D_{S} are vertex-disjoint, then we can remove a collection E_{0} of vertex-disjoint edges such that D_{S} becomes a DAG. Since each edge has a uniquely associated repair group and the collection E_{0} is vertex-disjoint, then that means that we can remove at most one repair group from each $i_{j} \in S$ such that the new directed graph D_{S} is now a DAG.

Thus we have shown that a systematic linear $3 t$-batch code implies a t-ordered-batch code. Next, we are going to show a lower bound on the redundancy of a t-ordered-batch code, which by Proposition 2 yields us Theorem 1.
Theorem 3. For at-ordered-batch code $C \leqslant \mathbb{F}^{N}$ of dimension n and redundancy r (so $N=n+r$), we have the inequality $\binom{r+2 t-1}{2 t} \geqslant\binom{ n}{t}$. As such, $r=\Omega(\sqrt{t n})$.

Proof. First, let us setup the viewpoint for the dual code C^{\perp} that we shall follow in this proof. Let $G^{\perp} \in \mathbb{F}^{N \times r}$ denote the generator matrix for C^{\perp}. Let ω_{i} denote the i 'th row of G^{\perp}. Then by those definitions, we see that for any dual codeword $c^{\perp} \in C^{\perp}$, we can find an $\alpha \in \mathbb{F}^{r}$ such that $c^{\perp}=G^{\perp} \alpha=\left(\left\langle\alpha, \omega_{1}\right\rangle, \ldots,\left\langle\alpha, \omega_{N}\right\rangle\right)^{\top}$.

Now, for any t pairwise distinct elements $S=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[n]$, by applying the t-ordered-batch code property to the set $\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$, we can find pairwise disjoint repair groups $\left\{A_{1}, \ldots, A_{t}\right\} \cup$ $\left\{B_{1}, \ldots, B_{t}\right\}$ contained in $[N]$ such that their associated directed graph D_{S} is a DAG. Moreover, we can find dual codewords $\left\{a_{j}\right\}_{j=1}^{t} \cup\left\{b_{j}\right\}_{j=1}^{t} \subseteq C^{\perp}$ satisfying $i_{j} \in \operatorname{Supp}\left(\ell_{j}\right) \subseteq L_{j} \cup\left\{i_{j}\right\}$ for all $j \in[t]$ and $(\ell, L) \in\{(a, A),(b, B)\}$. By our argument in the beginning, this means that there are $V_{S}:=\left\{\alpha_{j}\right\}_{j=1}^{t} \cup\left\{\beta_{j}\right\}_{j=1}^{t} \subseteq \mathbb{F}^{r}$ such that $\left\langle\lambda_{j}, w_{k}\right\rangle \neq 0$ if and only if $k \in L_{j} \cup\left\{i_{j}\right\}$ for $j \in[t]$ and $(\lambda, L) \in\{(\alpha, A),(\beta, B)\}$.

Now, for $X=\left(x_{1}, \ldots, x_{r}\right)$ with x_{i} being an indeterminate over \mathbb{F}, define the polynomial

$$
p_{S}(X):=\prod_{j=1}^{t}\left\langle\alpha_{j}, X\right\rangle\left\langle\beta_{j}, X\right\rangle
$$

We claim that the collection of polynomials $\left\{p_{S}|S \subseteq[n],|S|=t\}\right.$ are linearly independent. The inequality then follows as there are $\binom{n}{t}$ such polynomials. On the other hand, the polynomials p_{S} are homogeneous polynomials of degree $2 t$ over r variables, and so the dimension of their span is at most $\binom{r+2 t-1}{2 t}$.

Consider variables $z_{1}, \ldots z_{N}$ over \mathbb{F}. Plug in $X=\sum_{k=1}^{N} z_{k} \omega_{k}$ in p_{S} to obtain the homogeneous polynomial

$$
\begin{aligned}
q_{S}\left(z_{1}, \ldots, z_{N}\right):=p_{S}\left(\sum_{k=1}^{N} z_{k} \omega_{k}\right) & =\prod_{j=1}^{t}\left\langle\alpha_{j}, \sum_{k=1}^{N} z_{k} \omega_{k}\right\rangle\left\langle\beta_{j}, \sum_{k=1}^{N} z_{k} \omega_{k}\right\rangle \\
& =\prod_{j=1}^{t}\left(\sum_{k=1}^{N} z_{k}\left\langle\alpha_{j}, \omega_{k}\right\rangle\right)\left(\sum_{k=1}^{N} z_{k}\left\langle\beta_{j}, \omega_{k}\right\rangle\right)
\end{aligned}
$$

To show that the p_{S} 's are linearly independent, it suffices for us to show that the q_{S} 's are linearly independent. This follows by the fact that the map $p(X) \mapsto p\left(\sum_{k=1}^{N} z_{k} \omega_{k}\right)$ is a linear map, and the images of the p_{S} 's are the q_{S} 's. Now, to show that the q_{S} 's are linearly independent, we will show that for any set $T \subseteq[N]$ of size t, the monomial $\prod_{i \in T} z_{i}^{2}$ has a nonzero coefficient in q_{S} if and only if $T=S$. From this claim, the linear independence of $\left\{q_{S}|S \subseteq[n],|S|=t\}\right.$ then follows.

Indeed, now, for any $k \notin S$, the degree of z_{k} in p_{S} is at most 1 . This follows from the fact that the repair groups $\left\{A_{j}\right\}_{j=1}^{t} \cup\left\{B_{j}\right\}_{j=1}^{t}$ are mutually disjoint, meaning that z_{k} appears at most once in the repair groups $\left\{A_{j}\right\}_{j=1}^{t} \cup\left\{B_{j}\right\}_{j=1}^{t}$ and thus once in the product-form of q_{S}. This then means that if the monomial $\prod_{i \in T} z_{i}^{2}$ has a nonzero coefficient, then $i \in S$ for all $i \in T$. By homogeneity, we must have $T=S$.

Now, to show that the monomial $\prod_{i \in S} z_{i}^{2}$ has a nonzero coefficient, it suffices for us to show that in the expansion of q_{S}, the monomial $\prod_{i \in S} z_{i}^{2}$ occurs only once, and so it must have a nonzero coefficient. We have

$$
\begin{aligned}
q_{S}\left(z_{1}, \ldots, z_{N}\right) & =\prod_{j=1}^{t}\left(\sum_{k=1}^{N} z_{k}\left\langle\alpha_{j}, \omega_{k}\right\rangle\right)\left(\sum_{k=1}^{N} z_{k}\left\langle\beta_{j}, \omega_{k}\right\rangle\right) \\
& =\sum_{\substack{\left(u_{1}, \ldots u_{t}\right) \in[N]^{t} \\
\left(v_{1}, \ldots v_{t}\right) \in[N]^{t}}}\left(\prod_{j=1}^{t}\left\langle\alpha_{j}, \omega_{u_{j}}\right\rangle\left\langle\beta_{j}, \omega_{v_{j}}\right\rangle\right) \prod_{j=1}^{t} z_{u_{j}} z_{v_{j}}
\end{aligned}
$$

Notice that the coefficient of the monomial is nonzero if and only if $u_{j} \in A_{j} \cup\left\{i_{j}\right\}$ and $v_{j} \in B_{j} \cup\left\{i_{j}\right\}$ for all $j \in[t]$. If the multiset $\left\{u_{j}\right\}_{j=1}^{t} \cup\left\{v_{j}\right\}_{j=1}^{t}$ is the same as the multiset $S \cup S$, then consider the directed graph G on S with edges $i_{j} \rightarrow u_{j}$ if $u_{j} \neq i_{j}$ and edges $i_{j} \rightarrow v_{j}$ if $v_{j} \neq i_{j}$. In this directed graph G, there are no self-loops. Moreover, the in-degree of every vertex is equal to its out-degree for the following reasoning: if we include the edges $i_{j} \rightarrow u_{j}$ if $u_{j}=i_{j}$ and $i_{j} \rightarrow v_{j}$ if $v_{j}=i_{j}$, then every vertex in D_{S} will have an out-degree of 2 , and since the multiset $\left\{u_{j}\right\}_{j=1}^{t} \cup\left\{v_{j}\right\}_{j=1}^{t}$ is
the same as the multiset $S \cup S$, then the in-degree of every vertex is 2 . Thus every vertex in this new graph has equal in-degree and out-degree. Since the edges that we added are self-loops, then removing them won't affect the equality between the in-degree and out-degree.

This means that G can be decomposed into a disjoint union of cycles, but since the edges of G are a subcollection of the edges of D_{S}, and the graph D_{S} has no directed cycles, then G must be the empty graph, which means $u_{j}=v_{j}=i_{j}$ for all $j \in[t]$. Thus the monomial $\prod_{i \in S} z_{i}^{2}$ occurs exactly once in the expansion of q_{S}.

Acknowledgments

We thank Ray Li and Mary Wootters for useful discussions and feedback.

References

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their applications. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 262-271, 2004.
[LW21] Ray Li and Mary Wootters. Improved batch code lower bounds. arXiv preprint arXiv:2106.02163, 2021.
[RV16] Sankeerth Rao and Alexander Vardy. Lower bound on the redundancy of PIR codes. arXiv preprint arXiv:1605.01869, 2016.
[Woo16] Mary Wootters. Linear codes with disjoint repair groups. https://web.stanford.edu/ ~marykw/files/disjoint_repair_groups.pdf, 2016.

