
Extractors for Sum of Two Sources

Eshan Chattopadhyay*

Cornell University
eshan@cs.cornell.edu

Jyun-Jie Liao*

Cornell University
jjliao@cs.cornell.edu

October 25, 2021

Abstract

We consider the problem of extracting randomness from sumset sources, a general class of weak sources
introduced by Chattopadhyay and Li (STOC, 2016). An (n, k, C)-sumset source X is a distribution on
{0, 1}n of the form X1+X2+ . . .+XC , where Xi’s are independent sources on n bits with min-entropy at
least k. Prior extractors either required the number of sources C to be a large constant or the min-entropy
k to be at least 0.51n.

As our main result, we construct an explicit extractor for sumset sources in the setting of C = 2
for min-entropy poly(logn) and polynomially small error. We can further improve the min-entropy
requirement to (logn) · (log log n)1+o(1) at the expense of worse error parameter of our extractor. We find
applications of our sumset extractor for extracting randomness from other well-studied models of weak
sources such as affine sources, small-space sources, and interleaved sources.

Interestingly, it is unknown if a random function is an extractor for sumset sources. We use techniques
from additive combinatorics to show that it is a disperser, and further prove that an affine extractor works
for an interesting subclass of sumset sources which informally corresponds to the “low doubling” case
(i.e., the support of X1 + X2 is not much larger than 2k).

1 Introduction

Randomness is a powerful resource in computer since, and has been widely used in areas such as algorithm
design, cryptography, distributed computing, etc. Most of the applications assume the access to perfect
randomness, i.e. a stream of uniform and independent random bits. However, natural sources of randomness
often generate biased and correlated random bits, and in cryptographic applications there are many scenarios
where the adversary learns some information about the random bits we use. This motivates the area of
randomness extraction, which aims to construct randomness extractors which are deterministic algorithms
that can convert an imperfect random source into a uniform random string.

Formally, the amount of randomness in an imperfect random source X is captured by its min-entropy,
which is defined as H∞(X) = minx∈Supp(X)(− log(Pr [X = x])).1 We call X ∈ {0, 1}n a (n, k)-source if it
satisfies H∞(X) ≥ k. Ideally we want a deterministic function Ext with entropy requirement k � n, i.e. for
every (n, k)-source X the output Ext(X) is close to a uniform string. Unfortunately, a folklore result shows
that it is impossible to construct such a function even when k = n− 1.

To bypass the impossibility result, researchers have explored two different approaches. The first one is
based on the notion of seeded extraction, introduced by Nisan and Zuckerman [NZ96]. This approach assumes
that the extractor has access to a short independent uniform random seed, and the extractor needs to convert
the given source X into a uniform string with high probability over the seed. Through a successful line of
research we now have seeded extractors with almost optimal parameters [LRVW03, GUV09, DKSS13]. In
this paper, we focus on the second approach, called deterministic extraction, which assumes some structure
in the given source. Formally, a deterministic extractor is defined as follows.

*Supported by NSF CAREER award 2045576
1Supp(X) denotes the support of X. We use log to denote the base-2 logarithm in the rest of this paper.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 147 (2021)

Definition 1.1. Let X be a family of distribution over {0, 1}n. We say a deterministic function Ext :
{0, 1}n → {0, 1}m is a deterministic extractor for X with error ε if for every distribution X ∈ X ,

Ext(X) ≈ε Um.

We say Ext is explicit if Ext is computable by a polynomial-time algorithm.

The most well-studied deterministic extractors are multi-source extractors, which assume that the ex-
tractor is given C independent (n, k)-sources X1,X2, . . . ,XC . This model was first introduced by Chor
and Goldreich [CG88]. They constructed explicit two-source extractors with error 2−Ω(n) for entropy 0.51n,
and proved that there exists a two-source extractor for entropy k = O(log(n)) with error 2−Ω(k). Sig-
nificant progress was made by Chattopadhyay and Zuckerman [CZ19], who showed how to construct an
extractor for two sources with entropy k = polylog(n), after a long line of successful work on indepen-
dent source extractors (see the references in [CZ19]). The output length was later improved to Ω(k) by
Li [Li16]. Furthermore, Ben-Aroya, Doron and Ta-Shma [BDT19] showed how to improve the entropy re-

quirement to O(log1+o(1)(n)) for constant error and 1-bit output. The entropy requirement was further
improved in subsequent works [Coh17, Li17], and the state-of-the-art result is by Li [Li19], which requires

k = O(log(n) · log log(n)
log log log(n)). For a more elaborate discussion, see the survey by Chattopadhyay [Cha20].

Apart from independent sources, many other classes of sources have been studied for deterministic extrac-
tion. We briefly introduce some examples here. A well-studied class is oblivious bit-fixing sources [CGH+85,
GRS06, KZ07, Rao09], which is obtained by fixing some bits in a uniform random string. Extractors for
such sources have found applications in cryptography [CGH+85, KZ07]. A natural generalization of bit-
fixing sources is the class of affine sources, which are uniform distributions over some affine subspaces and
have been widely studied in literature (see [CGL21] and references therein). Another important line of work
focuses on the class of samplable sources, which are sources sampled by a “simple procedure” such as effi-
cient algorithms [TV00], small-space algorithms [KRVZ11] or simple circuits [Vio14]. Researchers have also
studied interleaved sources [RY11, CZ16, CL16b, CL20], which is a generalization of independent sources
such that the bits from different independent sources are permuted in an unknown order.

In this paper, we consider a very general class of sources called sumset sources, which was first studied by
Chattopadhyay and Li [CL16b]. A sumset source is the sum (XOR) of multiple independent sources, which
we formally define as follows.

Definition 1.2. A source X is a (n, k, C)-sumset source if there exist C independent (n, k)-sources {Xi}i∈[C]

such that X =
∑C
i=1 Xi.

Chattopadhyay and Li [CL16b] showed that the class of sumset sources generalize many different classes
we mentioned above, including oblivious bit-fixing sources, independent sources, affine sources and small-
space sources. They also constructed an explicit extractor for (n, k, C)-sumset sources where k = polylog(n)
and C is a large enough constant, and then used the extractor to obtain new extraction results for small-
space sources and interleaved C sources. An interesting open question left in [CL16b] is whether it is
possible to construct an extractor for (n, polylog(n), 2)-sumset source. An explicit construction of such an
extractor would imply improved results on extractors for interleaved sources and small-space sources with
polylogarithmic entropy. (We discuss the details in Section 1.1.)

However, it has been challenging to construct such an extractor for low min-entropy. The only known
extractor for sum of two sources before this work is the Paley graph extractor [CG88], which requires one
source to have entropy 0.51n and the other to have entropy O(log(n)), based on character sum estimate
by Karatsuba [Kar71, Kar91] (see also [CZ16, Theorem 4.2]). In fact, unlike other sources we mentioned
above, it is not clear whether a random function is an extractor for sumset sources. (See Section 1.3 for
more discussions.)

In this paper, we give a positive answer to the question above. Formally, we prove the following theorem.

Theorem 1. There exists a universal constant C such that for every k ≥ logC(n), there exists an explicit
extractor Ext : {0, 1}n → {0, 1}m for (n, k, 2)-sumset source with error n−Ω(1) and output length m = kΩ(1).

We can further lower the entropy requirement to almost logarithmic at the expense of worse error pa-
rameter of the extractor.

2

Theorem 2. For every constant ε > 0, there exists a constant Cε such that there exists an explicit extractor
Ext : {0, 1}n → {0, 1} with error ε for (n, k, 2)-sumset source where k = Cε log(n) log log(n) log log log3(n).

Since a sumset source extractor is also an affine extractor, Theorem 2 also gives an affine extractor with en-
tropy O(log(n) log log(n) log log log3(n)), which slightly improves upon the O(log(n) log log(n) log log log6(n))
bound in [CGL21]. We note that this improvement comes from a new construction of “affine correlation
breakers”, which we discuss in Section 1.2.

1.1 Applications

Next we show applications of our extractors to get improved extractors for other well-studied models of weak
sources.

1.1.1 Extractors for Interleaved Sources

Interleaved sources are a natural generalization of two independent sources, first introduced by Raz and
Yehudayoff [RY11] with the name “mixed-2-sources”. The formal definition of interleaved sources is as
follows. For a n-bit string w and a permutation σ : [n]→ [n], we use wσ to denote the string such that the
σ(i)-th bit of wσ is exactly the i-th bit of w. For two strings x, y we use x ◦ y to denote the concatenation
of x and y.

Definition 1.3. Let X1 be a (n, k1)-source, X2 be a (n, k2)-source independent of X1 and σ : [2n] → [2n]
be a permutation. Then (X1 ◦ X2)σ is a (n, k1, k2)-interleaved sources, or a (n, k1)-interleaved sources if
k1 = k2.

Such sources naturally arise in a scenario that the bits of the input source come remotely from two
independent sources in an unknown but fixed order. Furthermore, Raz and Yehudayoff [RY11] showed that
an explicit extractor for such sources implies a lower bound for best-partition communication complexity.

Raz and Yehudayoff [RY11] constructed an extractor for (n, (1 − β)n)-interleaved sources with 2−Ω(n)

error for a small constant δ > 0. Subsequently, Chattopadhyay and Zuckerman [CZ16] constructed an
extractor for (n, (1 − γ)n,O(log(n)))-interleaved sources with error n−Ω(1) for a small constant γ > 0. A
recent work by Chattopadhay and Li [CL20] gave an extractor for (n, (2/3 + δ)n)-interleaved sources with

error 2−n
Ω(1)

, where δ is an arbitrarily small constant. In summary, all prior works required at least one of
the sources to have min-entropy at least 0.66n.

Observe that interleaved sources is a special case of sumset sources, as (X1◦X2)σ = (X1◦0n)σ+(0n◦X2)σ.
With our extractors for sum of two sources, we obtain the first extractors for interleaved two sources with
polylogarithmic entropy.

Corollary 1.4. There exists a universal constant C such that for every k ≥ logC(n), there exists an explicit
extractor Ext : {0, 1}n → {0, 1}m for (n, k)-interleaved sources with error n−Ω(1).

Corollary 1.5. For every constant ε > 0, there exists a constant Cε and an explicit extractor Ext : {0, 1}n →
{0, 1} with error ε for (n, k)-interleaved sources where k = Cε log(n) log log(n) log log log3(n).

We note that the above results easily extend to the setting when the two interleaved sources are of
different lengths. In particular, this captures the following natural setting of “somewhere independence”:
suppose we have a source X on n bits such that for some (unknown) i, the sources X≤i (first i bits of X) and
X>i (the last n− i bits of X) are independent and each have entropy at least k. As long as k ≥ poly(log n),
we can use our sumset extractor to extract from such sources.

1.1.2 Small-space Sources

Kamp, Rao, Vadhan and Zuckerman [KRVZ11] first studied extractors for sources sampled by algorithms
with limited memory. We define such small-space sources more formally as follows.

Definition 1.6. A space-s sampling procedure A with n-bit output is defined as follows. For every (i, j)
s.t. i ∈ Z, 0 ≤ i < n and j ∈ {0, 1}s, let Di,j be a distribution over {0, 1} × {0, 1}s. Then A maintains an
internal state state ∈ {0, 1}s, which is initially 0s, and runs the following steps for time step i from 0 to
n− 1:

3

1. Sample (xi+1, nextstate) ∈ {0, 1} × {0, 1}s from Di,state.

2. Output xi+1, and assign state := nextstate.

Furthermore, the distribution X of the output (x1, . . . , xn) is called a space-s source.

Equivalently, a space-s source is sampled by a “branching program” of width 2s (see Section 3.4 for the
formal definition). In [KRVZ11] they constructed an extractor for space-s source with entropy k ≥ Cn1−γsγ

with error 2−n
Ω(1)

, for a large enough constant C and a small constant γ > 0. Chattopadhyay and Li [CL16b]

then constructed an extractor with error n−Ω(1) for space-s source with entropy k ≥ s1.12log0.51(n) based on
their sumset source extractors. Recently, based on a new reduction to affine extractors, Chattopadhyay and
Goodman [CG21] improved the entropy requirement to k ≥ s · polylog(n) (or k ≥ s log2+o(1)(n) if we are
only interested in constant error and one-bit output).2

With our new extractors for sum of two sources and the reduction in [CL16b], we can get extractors
for space-s source with entropy s log(n) + polylog(n), which is already an improvement over the result in
[CG21]. In this work we further improve the reduction and obtain the following theorems.

Theorem 3. There exists a universal constant C such that for every s and k ≥ 2s+logC(n), there exists an
explicit extractor Ext : {0, 1}n → {0, 1}m with error n−Ω(1) and output length m = (k − 2s)Ω(1) for space-s
sources with entropy k.

Theorem 4. For every constant ε > 0, there exists a constant Cε such that there exists an explicit extractor
Ext : {0, 1}n → {0, 1} with error ε for space-s sources with entropy 2s+ Cε log(n) log log(n) log log log3(n).

Interestingly, the entropy requirement of our extractors has optimal dependence on the space s, since
[KRVZ11] showed that it is impossible to construct an extractor for space-s source with entropy ≤ 2s.
Moreover, the entropy in Theorem 4 almost matches the non-constructive extractor in [KRVZ11] which
requires entropy 2s+O(log(n)).

1.2 Affine Correlation Breakers

One of the important building blocks of our sumset source extractors is an affine correlation breaker. While
such an object has been constructed in previous works [Li16, CL16b, CGL21], in this paper we give a new
construction with slightly better parameters. The main benefit of our new construction is that it is a black-
box reduction from affine correlation breakers to (standard) correlation breakers, which are simpler and more
well-studied. We believe this result is of independent interest.

First we define a (standard) correlation breaker. Roughly speaking, a correlation breaker takes a source X
and a uniform seed Y, while an adversary controls a “tampered source” X′ correlated with X and a “tampered
seed” Y′ correlated with Y. The goal of the correlation breaker is to “break the correlation” between (X,Y)
and (X′,Y′), with the help of some “advice” α, α′. One can also consider the “multi-tampering” variant
where there are many tampered sources and seeds, but our theorem only uses the single-tampering version
which is defined as follows.

Definition 1.7. CB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is a correlation breaker for entropy k with error
ε (or a (k, ε)-correlation breaker for short) if for every X,X′ ∈ {0, 1}n, Y,Y′ ∈ {0, 1}d, α, α′ ∈ {0, 1}a such
that

� X is a (n, k) source and Y is uniform

� (X,X′) is independent of (Y,Y′)

� α 6= α′,

it holds that
(CB(X,Y, α),CB(X,Y′, α′)) ≈ε (Um,CB(X,Y′, α′)) .

2Here we focus on the small-space extractors which minimize the entropy requirement. For small-space extractors with
negligible error, see [CG21] for a survey.

4

The first correlation breaker was constructed implicitly by Li [Li13] as an important building block of
his independent-source extractor. Cohen [Coh16a] then formally defined and strengthened this object, and
showed other interesting applications. Chattophyay, Goyal and Li [CGL20] then used this object to construct
the first non-malleable extractor with polylogarithmic entropy, which became a key ingredient for the two-
source extractor in [CZ19]. Correlation breakers have received a lot of attention and many new techniques
were introduced to improve the construction [Coh16c, CS16, CL16a, Coh16b, Coh17, Li17, Li19].

Affine correlation breakers were first introduced by Li in his construction of affine extractors [Li16], and
were later used in [CL16b] to construct sumset source extractors. An affine correlation breaker is similar to
a (standard) correlation breaker, with the main difference being that it allows X and Y to have an “affine”
correlation, i.e. X can be written as A + B where A is independent of Y and B is correlated with Y. The
formal definition is as follows.

Definition 1.8. AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is a t-affine correlation breaker for entropy
k with error ε (or a (t, k, ε)-affine correlation breaker for short) if for every distributions X,A,B ∈ {0, 1}n,
Y,Y1, . . . ,Yt ∈ {0, 1}d and strings α, α1, . . . , αt ∈ {0, 1}a such that

� X = A + B

� H∞(A) ≥ k and Y is uniform

� A is independent of (B,Y,Y1, . . . ,Y[t])

� ∀i ∈ [t], α 6= αi,

it holds that (
AffCB(X,Y, α), {AffCB(X,Yi, αi)}i∈[t]

)
≈γ
(
Um, {AffCB(X,Yi, αi)}i∈[t]

)
.

We say AffCB is strong if(
AffCB(X,Y, α),Y, {AffCB(X,Yi, αi),Yi}i∈[t]

)
≈γ
(
Um,Y, {AffCB(X,Yi, αi),Yi}i∈[t]

)
.

The first affine correlation breaker in [Li16] was constructed by adapting techniques from the correlation
breaker construction in [Li13] to the affine setting. Chattopadhyay, Goodman and Liao [CGL21] then
constructed an affine correlation breaker with better parameters based on new techniques developed in more
recent works on correlation breakers [Coh16a, CS16, CL16a, Li17].

While the techniques for standard correlation breakers can usually work for affine correlation breakers,
it requires highly non-trivial modification, and it is not clear whether the ideas in the standard setting can
always be adapted to the affine setting. In fact, the parameters of the affine correlation breaker in [CGL21] do
not match the parameters of the state-of-the-art standard correlation breaker by Li [Li19], because adapting
the ideas in [Li19] to the affine setting (without loss in parameters) seems to be difficult. Moreover, it is
likely that more improvements will be made in the easier setting of standard correlation breakers in the
future, so a black-box reduction from affine correlation breakers to standard correlation breakers without
loss in parameters will be very useful. In this work, we prove the following theorem.

Theorem 5. Let C be a large enough constant. Suppose that there exists an explicit (d0, ε)-strong correlation

breaker CB : {0, 1}d × {0, 1}d0 × {0, 1}a → {0, 1}C log2(t+1) log(n/ε) for some n, t ∈ N. Then there exists an
explicit strong t-affine correlation breaker AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m with error O(tε) for
entropy k = O(td0 + tm+ t2 log(n/ε)), where d = O(td0 +m+ t log3(t+ 1) log(n/ε)).

As a corollary, by applying this black-box reduction on Li’s correlation breaker [Li19], we get an affine
correlation breaker with parameters slightly better than those of [CGL21]. (See Theorem 5.5 for more details.)
As a result, our extractor in Theorem 2 only requires O(log(n) log log(n) log log log3(n)) entropy, while using
the affine correlation breaker in [CGL21] would require O(log(n) log log(n) log log log6(n)) entropy.

In fact, if one can construct an “optimal” standard correlation breaker with entropy and seed length
O(log(n)) when t = O(1), a = O(log(n)), ε = n−Ω(1), which would imply a two-source extractor for entropy
O(log(n)), by Theorem 5 this also implies a sumset source extractor/affine extractor for entropy O(log(n)).

5

1.3 On Sumset Sources with Small Doubling

Finally we briefly discuss why a standard probabilistic method cannot be used to prove existence of extractors
for sumset sources, and show some partial results about it.

Suppose we want to extract from a source A+B, where A and B are independent (n, k)-sources. Without
loss of generality we can assume that A is uniform over a set A, and B is uniform over another set B, such
that |A| = |B| = K, where K = 2k. A simple calculation shows that there are at most 22nK choices of
sources. In a standard probabilistic argument, we would like to show that a random function3 is an extractor
for A + B with probability at least 1 − δ, where δ � 2−2nK , and then we could use union bound to show
that a random function is an extractor for (n, k, 2)-sources. However, this is not always true. For example,
when A = B is a linear subspace, then A + B is exactly A, which has support size K. In this case we can
only guarantee that a random function is an extractor for A + B with probability 1− 2−βK for some β < 1.
In general, if the “entropy” of A + B is not greater than k by too much, then the probabilistic argument
above does not work.

Remark 1.9. Note that the “bad case” is not an uncommon case that can be neglected: if we take A,B to
be subsets of a linear space of dimension k+ 1, then |Supp(A + B)| ≤ 2k+1, which means a random function
is an extractor for A + B with probability at most 1 − 2−2K . However, there are roughly 24K choices of A
and B, so even if we consider the bad cases separately the union bound still does not work.

Nevertheless, we can use techniques from additive combinatorics to prove that the bad cases can be
approximated with affine sources. With this result we can show that a random function is in fact a disperser4

for sumset sources. To formally define the bad cases, first we recall the definition of sumsets from additive
combinatorics (cf. [TV06]).

Definition 1.10. For A,B ⊆ Fn2 , define A + B = {a + b : a ∈ A, b ∈ B}. For A,B s.t. |A| = |B| we say
(A,B) has doubling constant r if |A+B| ≤ r |A|.

It is not hard to see that a random function is a disperser for A+B with probability exactly 1−2−|A+B|+1.
Therefore we can use union bound to show that a random function is a disperser with high probability for
every sumset source A + B which satisfies |A+B| > 3n |A|. When |A+B| ≤ 3n |A|, a celebrated result
by Sanders [San12] shows that A + B must contain 90% of an affine subspace with dimension log(|A|) −
O(log4(n)). With the well-known fact that a random function is an extractor for affine sources with entropy
O(log(n)), we can conclude that a random function is a disperser for sumset source with entropy O(log4(n)).

Note that Sanders’ result only guarantees that A+B almost covers a large affine subspace, but this affine
subspace might only be a negligible fraction of A + B. Therefore, while a random function is an extractor
for affine sources, Sanders’ result only implies that it is a disperser for sumset source with small doubling
constant. In this paper, we prove a “distributional variant” of Sanders’ result. That is, a sumset source
A + B with small doubling constant is actually statistically close to a convex combination of affine sources.

Theorem 6. Let A,B be uniform distribution over A,B ⊆ Fn2 s.t. |A| = |B| = 2k and |A+B| ≤ r |A|.
Then A + B is ε-close to a convex combination of affine sources with entropy k −O(ε−2 log(r) log3(r/ε)).

Then we get the following corollary which says that an affine extractor is also an extractor for sumset
source with small doubling.

Corollary 1.11. Let A,B be uniform distribution over A,B ⊆ Fn2 s.t. |A| = |B| = 2k and |A+B| ≤ r |A|.
If AffExt : {0, 1}n → {0, 1}m is an extractor for affine sources with entropy k− log4(r), then AffExt(A + B)
is O(1)-close to Um.

We remark that while Corollary 1.11 implies that a random function is an extractor for sumset sources
with small doubling, this does not mean a random function is an extractor for sumset sources in general.
This is because a lower bound on |A+B| is not sufficient for us to show that a random function is an
extractor by probabilistic argument. (See Appendix B for more discussions.)

3A random function is sampled uniformly at random from all the possible choices of Boolean functions on n input bits.
4A disperser for a class of source X is a boolean function f which has non-constant output on the support of every X ∈ X .

6

1.4 Open Problems

In this paper we construct improved extractors for interleaved two sources and small-space sources based
on our extractors for sum of two sources. Can we use our construction to get improved extractors for other
classes of sources? More specifically, both of the applications require only an extractor for interleaved two
sources, which is only a special case of sumset sources. Can we further exploit the generality of sumset
sources?

Another interesting open problem is whether a random function is an extractor for sum of two sources.
In this paper we prove that sumset sources have a “structure vs randomness dichotomy”: the sumset source
is either close to an affine source, or has high enough entropy. In both cases a random function is a disperser.
However our result does not seem strong enough to show that a random function is an extractor for sum of
two sources.

2 Overview of Proofs

In this section we give a high-level overview of our proofs. The overview includes some standard notations
which can be found in Section 3.

2.1 Construction of Sumset Extractors

In this section we give an overview of construction of our sumset source extractors. Similar to [CL16b], our
extractor follows the two-step framework in [CZ19]. First, we convert the sumset source into a non-oblivious
bit-fixing (NOBF) source. Roughly speaking, a t-NOBF source is a string such that most of the bits are
t-wise independent. (See Definition 3.19 for the formal definition.) Second, we apply known extractors for
NOBF sources [Vio14, CZ19, Li16, Mek17] to get the output. In the rest of this section, we focus on the
first step, which is the main contribution of this work.

2.1.1 Reduction from Two Sources

To see how our reduction works, first we recall the transformation from two independent sources to NOBF
sources in [CZ19]. Given two (n, k)-source X1,X2, first take a t-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d1 → {0, 1} with error ε1, enumerate all the seeds and output a string R1 := {nmExt(X1, s)}s∈{0,1}d1

with D1 = 2d1 bits. We do not give the exact definition of non-malleable extractors here, but we need the
following property proved in [CZ19]: except for

√
ε1 fraction of “bad bits”, every (t+ 1) “good bits” in R1

are
√
ε1-close to uniform. With this property it might seem like R1 is close to a (t + 1)-NOBF source, but

unfortunately this is not true. While R1 is guaranteed to be Dt+1
1

√
ε1-close to a NOBF source by a result in

[AGM03], this bound is trivial since D1 = poly(1/ε1). To get around this problem, [CZ19] used the second
source X2 to sample D2 � D1 bits from R1 and get R2. Now R2 is guaranteed to be Dt+1

2

√
ε1-close to a

NOBF source, and the error bound Dt+1
2

√
ε1 can be very small since D2 is decoupled from ε1. We note that

Li [Li15] also showed a reduction from two independent sources to NOBF sources, and the sampling step is
also crucial in Li’s reduction.

Chattopadhyay and Li [CL16b] conjectured that a similar construction should work for sumset sources.
However, in the setting of sumset sources, it is not clear how to perform the sampling step. For example, if
one replaces both X1 and X2 in the above construction with a sumset source X = X1+X2, then the sampling
step might not work because the randomness we use for sampling is now correlated with R1. Therefore, they
adopted an idea in [Li13] which requires the given source X to be the sum of C > 2 independent sources.
In this paper, we show that we can actually make the sampling step work with a (n,polylog(n), 2)-sumset
source. As a result we get an extractor for sum of two independent sources.

2.1.2 Sampling with Sumset Source

As a warm up, first we assume that we are sampling from the output of a “0-non-malleable extractor”, i.e.
a strong seeded extractor. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1} be a strong seeded extractor with error
ε1. First observe that the sampling method has the following equivalent interpretation. Note that Ext and

7

the source X1 together define a set of “good seeds” such that a seed s is good if Ext(X1, s) is
√
ε1-close to

uniform. Since Ext is a strong seeded extractor, (1−√ε1) of the seeds should be good. In the sampling step
we apply a sampler Samp on X2 to get some samples of seeds {Samp(X2, i)}i∈{0,1}d2 . Then we can apply
the function Ext(X1, ·) on these sampled seeds to get the output R2 = {Ext(X,Samp(X, i))}i∈{0,1}d2 which

is 2d2
√
ε1-close to a 1-NOBF source.

Now we move to the setting of sumset sources and replace both X1,X2 in the above steps with X =
X1 + X2. Our goal is to show that we can still view this reduction as if we were sampling good seeds with
X2 and using these seeds to extract from X1. Consider the i-th output bit, Ext(X,Samp(X, i)). Our main
observation is, if Samp(·, i) is a linear function, then we can assume that we compute Ext(X,Samp(X, i)) in
the following steps:

1. First sample x2 ∼ X2.

2. Use x2 as the randomness of Samp to sample a “seed” s := Samp(X2, i).

3. Output Ext′x2,i(X1, s) := Ext(X1 + x2, s+ Samp(X1, i)).

First we claim that Ext′x2,i is also a strong seeded extractor. To see why this is true, observe that if we fix

Samp(X1, i) = ∆, then Ext′x2,i(X1,U) = Ext(X1 +x2,U + ∆). As long as X1 still has enough entropy after
fixing Samp(X1, i), Ext works properly since X1 + x2 is independent of U + ∆, X1 + x2 still has enough
entropy and U + ∆ is also uniform. Therefore, we can use Ext′x2,i and X1 to define a set of good seeds s

which make Ext′x2,i(X1, s) close to uniform, and most of the seeds should be good. Then we can equivalently

view the sampling step as if we were sampling good seeds for Ext′x2,i using X2 as the randomness.

There are still two problems left. First, the definition of Ext′x2,i depends on x2, which is the randomness
we use for sampling. To solve this problem, we take Ext to be linear, and prove that (1−√ε1) fraction of the
seeds s are good in the sense that Ext′x2,i(X1, s) is close to uniform for every x2. Second, Ext′x2,i depends
on i, which is the index of our samples. Similarly we change the definition of good seeds so that a seed s is
good if Ext′x2,i(X1, s) is good for every x2 and i, and by union bound we can show that (1−2d2

√
ε1) fraction

of the seeds are good. As long as ε1 � 2−2d2 , most of the seeds should be good. Now the definition of good
seeds is decoupled from the sampling step, and hence we can show that most of the sampled seeds are good.

2.1.3 Sampling with Correlation Breakers

Next we turn to the case of t-non-malleable extractors. Similar to how we changed the definition of good
seeds for a strong seeded extractor, we need to generalize the definition of good seeds for a non-malleable
extractor in [CZ19] to the sumset source setting. First, we say a seed s is good with respect to x2 and a set
of indices T = {i1, . . . , it+1} if for every s1, . . . , st ∈ {0, 1}d1 ,

(nmExt(X1 + x2, s+ Samp(X1, i1)) ≈√ε1 U1) | {nmExt(X1 + x2, s
j + Samp(X1, ij+1))}j∈[t].

Based on the proof in [CZ19] and the arguments in the previous section, if X1 has enough entropy when
conditioned on {Samp(X1, i)}i∈T , then 1 −√ε1 of the seeds are good with respect to x2 and T . If we can
prove that most of the seeds we sample using x2 ∼ X2 are good with respect to x2 and every set of indices
T , then the we can conclude that the output R2 = {nmExt(X,Samp(X, i))}i∈{0,1}d2 is Dt+1

2

√
ε1-close to a

NOBF source.
Next we need to show that most of the seeds are good with respect to every x2 and T , so that the

sampling step is decoupled from the definition of good seeds. To deal with the dependence on T , we take the
union bound over T , and we can still guarantee that 1 −Dt+1

2

√
ε1 of the seeds are good. To deal with the

dependency on x2, it suffices to replace the non-malleable extractor with a strong affine correlation breaker.
Although the correlation breaker needs an additional advice string to work, here we can simply use the
indices of the samples as the advice. Our final construction would be {AffCB(X,Samp(X, α), α)}α∈{0,1}d2 .

Finally, we note that in order to make the extractor work for almost logarithmic entropy (Theorem 2),
we need to replace the sampler with a “somewhere random sampler” based on the techniques in [BDT19],
and the construction and analysis should be changed correspondingly. We present the details in Section 5.

8

2.2 Reduction from Small-Space Sources to Sumset Sources

In this section we give an overview of our new reduction from small-space sources to sumset sources. As in
all the previous works on small-space source extractors, our reduction is based on a simple fact: conditioned
on the event that the sampling procedure is in state j at time i, the small-space source X can be divided
into two independent sources X1 ∈ {0, 1}i,X2 ∈ {0, 1}n−i, such that X1 contains the bits generated before
time i, and X2 contains the bits generated after time i. Kamp, Rao, Vadhan and Zuckerman [KRVZ11]
proved that if we pick some equally distant time steps i1, . . . , i`−1 and condition on the states visited at
these time steps, we can divide the small-space source into ` independent blocks such that some of them
have enough entropy. However, such a reduction does not work for entropy smaller than

√
n (cf. [CG21]).

Chattopadhyay and Li [CL16b] observed that with a sumset source extractor we can extract from the
concatenation of independent sources with unknown and uneven length. They then showed that with a
sumset source extractor, we can “adaptively” pick which time steps to condition on and break the

√
n

barrier. Chattopadhyay and Goodman [CG21] further refined this reduction and showed how to improve
the entropy requirement by reducing to a convex combination of affine sources. The reductions in [CL16b]
and [CG21] can be viewed as “binary searching” the correct time steps to condition on, so that the given
source X becomes the concatenation of independent blocks (X1, . . . ,XO(log(n))) such that some of them have
enough entropy. However, even though with our extractors for sum of two sources we only need two of the
blocks to have enough entropy, the “binary search-based” reduction would condition on at least log(n) time
steps and waste s log(n) entropy.

A possible way to improve this reduction is by directly choosing the “correct” time step to condition on so
that we only get two blocks X1 ◦X2 both of which have enough entropy. However this is not always possible.
For example, consider a distribution which is a convex combination of Un/2 ◦ 0n/2 and 0n/2 ◦Un/2. This
distribution is a space-1 source and has entropy n/2, but no matter which time step we choose to condition
on, one of the two blocks would have zero entropy.

To resolve these problems, we carefully define the event to condition on as follows. For ease of explanation
we view the space-s sampling procedure as a branching program of width 2s. (Unfamiliar readers can consult
Section 3.4.) First, we define a vertex v = (i, j) to be a “stopping vertex” if the bits generated after visiting v
has entropy less than some threshold. Then we condition on a random variable V which is the first stopping
vertex visited by the sampling process. Note that V is well-defined since every state at time n is a stopping
vertex. Besides, conditioning on V only costs roughly s+ log(n) entropy since there are only n · 2s possible
outcomes.

Now observe that the event V = (i, j) means the sampling process visits (i, j) but does not visit any
stopping vertex before time i. Let “first block” denote the bits generated before time i and “second block”
denote the bits generated after time i. It is not hard to see that the two blocks are still independent
conditioned on V = v. Then observe that the first block has enough entropy because the second block does
not contain too much entropy (by our definition of stopping vertex). Next we show that the second block
also has enough entropy. For every vertex u, let Xu denote the bits generated after visiting u. The main
observation is, if there is an edge from a vertex u to a vertex v, then unless u→ v is a “bad edge” which is
taken by u with probability < ε, the entropy of Xv can only be lower than Xu by at most log(1/ε). If we take
ε� 2−sn−1, then by union bound the probability that any bad edge is traversed in the sampling procedure
is � 1. Since we take V to be the first vertex such that XV has entropy lower than some threshold, the
entropy of XV can only be log(1/ε) ≈ s+ log(n) lower than the threshold. In conclusion, if we start with a
space-s source with entropy roughly 2s+ 2 log(n) + 2k, and pick the entropy threshold of the second block
to be roughly k + s+ log(n), we can get two blocks both having entropy at least k.

2.3 From Affine to Standard Correlation Breaker

Next we briefly discuss our black-box reduction from affine correlation breakers to standard correlation
breakers. To reduce an affine correlation breaker to a standard correlation breaker, our main idea is similar
to that of [CGL21]: to adapt the construction of a correlation breaker from the independent-source setting
to the affine setting, we only need to make sure that every function on X is linear, and every function on
Y works properly when Y is a weak source. However, instead of applying this idea step-by-step on existing
constructions, we observe that every correlation breaker can be converted into a “two-step” construction
which is easily adaptable to the affine setting. First, we take a prefix of Y as the seed to extract a string

9

Z from X. Next, we apply a correlation breaker which treats Y as the source and Z as the seed. This
construction only computes one function on X, which is a seeded extractor and can be replaced with a linear
one. Furthermore, the remaining step (i.e. the correlation breaker) is a function on Y, which does not need
to be linear. Finally, we note that if the underlying standard correlation breaker is strong, we can use the
output as the seed to extract from X linearly and get a strong affine correlation breaker.

A drawback of this simple reduction is that the resulting affine correlation breaker has a worse dependence
on the number of tampering t. Recall that the state-of-the-art t-correlation breaker [Li19] requires entropy

and seed length O(t2d) where d = O
(

log(n) · log log(n)
log log log(n)

)
, assuming the error is 1/ poly(n) and the advice

length is log(n). With the reduction above we get a t-affine correlation breaker with entropy and seed length
O(t3d), while the affine correlation breaker in [CGL21] has entropy and seed length O(t2 log(n) log log(n)).
Since the construction of sumset source extractors requires t to be at least Ω(log log log2(n)), O(t3d) is
actually worse than O(t2 log(n) log log(n)). To improve the parameters, we first apply the reduction above
to get a 1-affine correlation breaker, and then strengthen the affine correlation breaker to make it work for
t tampering. Our strengthening procedure only consists of several rounds of alternating extractions, which
requires poly(t) · O(log n) entropy. Therefore by plugging in the correlation breaker in [Li19] we end up
getting a t-affine correlation breaker with entropy and seed length O(td + poly(t) · log(n)), which is better
than O(t2 log(n) log log(n)).

The strengthening procedure works as follows. Observe that the 1-affine correlation breaker outputs a
string R which is uniform conditioned on every single tampered version of R. (Note that R might not be
uniform when conditioned on all t tampered versions simultaneously.) Then we apply alternating extractions
to merge the independence of R with itself. Based on the “independence merging lemma” in [CGL21] (see
Lemma 3.26), after one round of alternating extraction, we get a string R′ which is uniform conditioned on
every two tampered R′. By repeating this step for log(t) times we get a t-affine correlation breaker.

2.4 Sumset Sources with Small Doubling

Finally we briefly sketch how to prove that a sumset source with small doubling is close to a convex combina-
tion of affine sources. Let A,B ⊆ Fn2 be sets of size K = 2k and let A,B be uniform distributions over A,B
respectively. A seminal result by Sanders [San12] showed that there exists a large affine subspace V such
that at least 1− ε fraction of V is in A+ B. We adapt Sanders’ proof to show that for every distinguisher
with output range [0, 1], the sumset source A + B is indistinguishable from a convex combination of affine
sources (with large entropy). Then by an application of von Neumann’s minimax theorem (Corollary 3.42)
we can find a universal convex combination of affine sources which is statistically close to A + B.

To see more details, first we briefly recall the outline of Sanders’ proof. Consider A′, B′ ⊆ Fm2 such that
|A′| , |B′| ≥ |Fm2 | /r, and let A′,B′ be uniform distributions over A′, B′ respectively. Let 1A′+B′ denote
the indicator function for A′ + B′. Based on the Croot-Sisask lemma [CS10] and Fourier analysis, Sanders
showed that for arbitrarily small constant ε > 0 there exists a distribution T ⊆ Fm2 and a linear subspace V
of co-dimension O(log4(r)) s.t.

E [1A′+B′(A
′ + B′)] ≈ε E [1A′+B′(T + V)] ,

where V is the uniform distribution over V . Then Sanders’ original result follows directly by taking T = t
which maximizes E [1A′+B′(t+ V)].

A closer inspection at Sanders’ proof shows that 1A′+B′ can be replaced with any function f : Fm2 → [0, 1].
(Note that the distributions T,V depend on the function f .) This implies that A′ + B′ is indistinguishable
from a convex combination of affine sources by f . With our minimax argument we can conclude that A′+B′

is statistically close to a convex combination of affine sources.
However, the result above only works for dense sets A′, B′. To generalize the result to sets A,B with small

doubling, a standard trick in additive combinatorics is to consider a linear Freiman homomorphism φ : Fn2 →
Fm2 , which is a linear injective function on `A+ `B for some constant `, and consider A′ = φ(A), B′ = φ(B).
By considering the function f ◦ φ−1 we can still show that

E [f(A + B)] = E
[
f(φ−1(A′ + B′))

]
≈ E

[
f(φ−1(T + V))

]
.

10

However, it is not clear whether φ−1(T + V) is a also a convex combination of affine sources in Fn2 . To solve
this problem, we adapt Sanders’ proof to show that there exist T,V which satisfy

E [1A′+B′(A
′ + B′)] ≈ε E [1A′+B′(T + V)] (1)

and
E
[
f(φ−1(A′ + B′))

]
≈ε E

[
f(φ−1(T + V))

]
(2)

simultaneously. This relies on a variant of the Croot-Sisask lemma which shows that there exists a large
set of “common almost period” for 1A′+B′ and f ◦ φ−1. Then (1) guarantees that with probability at least
1− 2ε over t ∼ T, φ−1(t+ V) is an affine source in Fn2 with entropy k −O(log4(r)). Therefore φ−1(T + V)
is 2ε-close to a convex combination of affine sources. Finally (2) shows that A + B is indistinguishable from
φ−1(T + V) by f , which implies our claim.

Organization. In Section 3 we introduce some necessary preliminaries and prior works. In Section 4 we
show a new reduction from small-space sources to sum of two sources which has optimal dependence on the
space parameter, and prove Theorem 3 and Theorem 4. In Section 5 we show how to construct the extractors
for sum of two sources in Theorem 1 and Theorem 2, assuming access to an affine correlation breaker. In
Section 6 we show how to construct the affine correlation breaker we need based on a black-box reduction
to a standard correlation breaker (Theorem 5). Finally, we prove Theorem 6 in Section 7.

3 Preliminaries

In this section we introduce some preliminaries. We note that Section 3.4 is only used in Section 4, Section 3.5
to 3.9 are only used in Section 5 and 6, and Section 3.10 to 3.12 are only used in Section 7.

3.1 Notations

Basic notations. The logarithm in this paper is always base 2. For every n ∈ N, define [n] = {1, 2, . . . , n}.
In this paper, {0, 1}n and Fn2 are interchangeable, and so are {0, 1}n and [2n]. We use x ◦ y to denote the
concatenation of two strings x and y. We say a function is explicit if it is computable by a polynomial time
algorithm. For x, y ∈ R we use x ≈ε y to denote |x− y| ≤ ε and x 6≈ε y to denote |x− y| > ε. For every
function f : X → Y and set A ⊆ X , define f(A) = {f(x) : x ∈ A}. For a set A ⊆ X we use 1A : X → {0, 1}
to denote the indicator function of A such that 1A(x) = 1 if and only if x ∈ A.

Distributions and random variables. We sometimes abuse notation and treat distributions and random
variables as the same. We always write a random variable/distribution in boldface font. We use Supp(X)
to denote the support of a distribution. We use Un to denote the uniform distribution on {0, 1}n. When
Un appears with other random variables in the same joint distribution, Un is considered to be independent
of other random variables. Sometimes we omit the subscript n of Un if the length is less relevant and is
clear in the context. When there is a sequence of random variables X1,X2, . . . ,Xt in the context, for every
set S ⊆ [t] we use XS to denote the sequence of random variables which use indices in S as subscript, i.e.
XS := {Xi}i∈S . We also use similar notation for indices on superscript.

Linear algebra. For a set A ⊆ Fn2 , we use span(A) to denote the linear span of A, and A⊥ to denote the
orthogonal complement of span(A), i.e. A⊥ := {y ∈ Fn2 : ∀x ∈ A, 〈y, x〉 = 0}. For every affine subspace A of
Fn2 we use dim(A) to denote the dimension of A. Note that if A is uniform over A, then H∞(A) = dim(A).
Therefore we use “dimension” and “entropy” interchangeably when discussing affine sources.

11

3.2 Statistical Distance

Definition 3.1. Let D1,D2 be two distributions on the same universe Ω. The statistical distance between
D1 and D2 is

∆ (D1; D2) := max
T⊆Ω

(
Pr [D1 ∈ T]− Pr [D2 ∈ T]

)
=

1

2

∑
s∈Ω

|D1(s)−D2(s)| .

We say D1 is ε-close to D2 if ∆(D1; D2) ≤ ε, which is also denoted by D1 ≈ε D2. Specifically, when there
are two joint distributions (X,Z) and (Y,Z) such that (X,Z) ≈ε (Y,Z), we sometimes write (X ≈ε Y) | Z
for short.

We frequently use the following standard properties.

Lemma 3.2. For every distribution D1,D2,D3 on the same universe, the following properties hold:

� For any distribution Z, ∆ ((D1,Z); (D2,Z)) = Ez∼Z [∆ (D1|Z=z; D2|Z=z)].

� For every function f , ∆ (f(D1); f(D2)) ≤ ∆ (D1; D2).

� ∆ (D1; D3) ≤ ∆ (D1; D2) + ∆ (D2; D3). (triangle inequality)

3.3 Conditional Min-entropy

Definition 3.3 ([DORS08]). For a joint distribution (X,Z), the average conditional min-entropy of X given
Z is

H̃∞(X | Z) := − log
(

E
z∼Z

[
max
x

(Pr [X = x | Z = z])
])
.

The following lemma, usually referred to as the chain rule, is frequently used in this paper.

Lemma 3.4 ([DORS08]). Let X,Y,Z be (correlated) random variables. Then

H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− log(Supp(Y)).

When we need to consider worst-case conditional min-entropy, we use the following lemma.

Lemma 3.5 ([DORS08]). Let X,Z be (correlated) random variables. For every ε > 0,

Pr
z∼Z

[H∞(X|Z=z) ≥ H∞(X | Z)− log(1/ε)] ≥ 1− ε.

Note that the above two lemmas imply the following:

Lemma 3.6 ([MW97]). Let X,Z be (correlated) random variables. For every ε > 0,

Pr
z∼Z

[H∞(X|Z=z) ≥ H∞(X)− log(Supp(Z))− log(1/ε)] ≥ 1− ε.

Lemma 3.7 ([DORS08]). Let ε, δ > 0 and X,Z be a random variables such that H̃∞(X | Z) ≥ k+ log(1/δ).
Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-seeded extractor. Then

(Ext(X,Ud) ≈ε+δ Um) | Z.

3.4 Branching Programs

The following definition is equivalent to Definition 1.6 in the sense that each layer corresponds to a time
step and each vertex in a layer corresponds to a state in a certain time step.

Definition 3.8. A branching program B of width w and length n (for sampling) is a directed (multi)-graph
with (n + 1) layers L0, L1, . . . , Ln and has at most w vertices in each layer. The first layer (indexed by 0)
has only one vertex called the start vertex, and every vertex in Ln has no outgoing edge. For every vertex v
in layer i < n, the set of outgoing edges from v, denoted by Ev, satisfies the following.

12

� Every edge e ∈ Ev is connected to a vertex in Li+1.

� Each edge e ∈ Ev is labeled with a probability, denoted by Pr [e], so that
∑
e∈Ev Pr [e] = 1.

� Each edge e ∈ Ev is labeled with a bit be ∈ {0, 1}, and if two distinct edges e1, e2 ∈ Ev are connected
to the same vertex w ∈ Li+1 then be1 6= be2 . (Note that this implies |Ev| ≤ 2w.)

The output of B is a n-bit string generated by the following process. Let v0 be the start vertex. Repeat the
following for i from 1 to n: sample an edge ei ∈ Evi−1 with probability Pr [ei], output bei and let vi be the
vertex which is connected by ei. We say (v0, e1, v1, . . . , en, vn) is the computation path of B. We say a
random variable X ∈ {0, 1}n is a space-s source if it is generated by a branching program of width 2s and
length n.

We also consider the subprograms of a branching program.

Definition 3.9. Let B = (L0, L1, . . . , Ln) be a branching program of width w and length n and let v be a
vertex in layer i of B. Then the subprogram of B starting at v, denoted by Bv, is the induced subgraph of
B which consists of ({v}, Li+1, . . . , Ln). Note that Bv is a branching program of width w and length n − i
which takes v as the start vertex.

We need the following simple fact from [KRVZ11].

Lemma 3.10 ([KRVZ11]). Let X be a space-s source sampled by a branching program B, and let v be a
vertex in layer i of B. Then conditioned on the event that the computation path of X passes v, X is the
concatenation of two independent random variables X1 ∈ {0, 1}i, X2 ∈ {0, 1}n−i. Moreover X2 is exactly
the source generated by the subprogram Bv.

3.5 Seeded Extractors

Definition 3.11. Ext : {0, 1}n × {0, 1}d → {0, 1}m is a seeded extractor for entropy k with error ε (or
(k, ε)-seeded extractor for short) if for every (n, k) source X, and every Y = Ud,

Ext(X,Y) ≈ε Um.

We call d the seed length of Ext. We say Ext is linear if Ext(·, y) is a linear function for every y ∈ {0, 1}d.
We say Ext is strong if

(Ext(X,Y) ≈ε Um) | Y.

Lemma 3.12 ([GUV09]). There exists a constant c3.12 and a constant β > 0 such that for every ε > 2−βn

and every k, there exists an explicit (k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m s.t.
d = c3.12 log(n/ε) and m = k/2.

We also need the following extractor from [CGL21] which is linear but has worse parameters.

Lemma 3.13. There exists a constant c3.13 such that for every t,m ∈ N and ε > 0, there exists an
explicit (c3.13(m + log(1/ε)), ε)-linear strong seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m s.t. d =
O(mt + log(n/ε) + log2(t) log(m/ε)).

Note that when m = t log(n/ε) the seed length is bounded by O
((

log2(t) + 1
)

log(n/ε))
)
.

3.6 Samplers

First we define a sampler. We note that the our definition is different from the standard definition of
averaging samplers [BR94] in the following sense: first, we need the sampler to work even when the given
randomness is only a weak source. Second, we only care about “small tests”.

Definition 3.14. Samp : {0, 1}n×[D]→ {0, 1}m is a (ε, δ)-sampler for entropy k if for every set T ⊆ {0, 1}m
s.t. |T | ≤ ε2m and every (n, k)-source X,

Pr
x∼X

[
Pr

y∼[D]
[Samp(x, y) ∈ T] > 2ε

]
≤ δ.

We say Samp is linear if Samp(·, y) is linear for every y ∈ [D].

13

Zuckerman [Zuc97] showed that one can use a seeded extractor as a sampler for weak sources.

Lemma 3.15 ([Zuc97]). A (k + log(1/δ), ε)-seeded extractor is also a (ε, δ)-sampler for entropy k.

The following is a relaxation of a sampler, which is called a somewhere random sampler.

Definition 3.16. Samp : {0, 1}n × [D] × [C] → {0, 1}m is a (ε, δ)-somewhere random sampler for entropy
k if for every set T ⊆ {0, 1}m s.t. |T | ≤ ε2m and every (n, k)-source X,

Pr
x∼X

[
Pr

y∼[D]
[∀z ∈ [C] Samp(x, y, z) ∈ T] > 2ε

]
≤ δ.

We say Samp is linear if Samp(·, y, z) is linear for every y ∈ [D], z ∈ [C].

The following lemma is implicit in [BDT19]. For completeness we include a proof in Appendix A.

Lemma 3.17 ([BDT19]). If there exists an explicit (ε, δ)-sampler Samp : {0, 1}n × [D0] → {0, 1}m for
entropy k, then for every constant γ < 1 there exists an explicit (D−γ , δ)-somewhere random sampler Samp′ :

{0, 1}n × [D]× [C]→ {0, 1}m for entropy k with D = D
O(1)
0 and C = O

(
log(D0)
log(1/ε)

)
. Furthermore if Samp is

linear then Samp′ is also linear.

By Lemma 3.13, Lemma 3.15 and Lemma 3.17 we can get the following explicit somewhere random
smapler.

Lemma 3.18. For every constant γ < 1, and every δ > 0, t < 2
3
√

log(n) there exists an explicit (D−γ , δ)-linear
somewhere random sampler Samp : {0, 1}n × [D] × [C] → {0, 1}t log(n) for entropy O(t log(n)) + log(1/δ),
where D = nO(1) and C = O(log2(t)).

Proof. By Lemma 3.13 and Lemma 3.15, there exists an explicit (ε, δ)-linear sampler Samp′ : {0, 1}n×[D0]→
{0, 1}t log(n) for entropy O(t log(n)) + log(1/δ) where ε = 2− log(n)/ log2(t) and D0 = nO(1). The claim follows
by applying Lemma 3.17 on Samp′.

3.7 Non-Oblivious Bit-Fixing Sources

Definition 3.19. A distribution X = (X1,X2, . . . ,Xn) on {0, 1}n is called t-wise independent if for every
subset S ⊆ [n] of size t we have XS = Uq.

Lemma 3.20 ([AGM03]). Let X = (X1,X2, . . . ,Xn) be a distribution on {0, 1}n. If for every S ⊆ [n] s.t.
|S| ≤ t, ⊕

i∈S
Xi ≈γ U1,

then X is 2ntγ-close to a t-wise independent distribution.

Definition 3.21. A distribution X = (X1,X2, . . . ,Xn) on {0, 1}n is called a (q, t)-non-oblivious bit-fixing
(NOBF) source if there exists a set Q s.t. |Q| ≤ q and X[n]\Q is t-wise independent.

In this paper we need the following extractors for NOBF sources.

Lemma 3.22 ([CZ19, Li16]). There exists an explicit function BFExt : {0, 1}n → {0, 1}m for (q, t)-NOBF
sources with error n−Ω(1) where m = nΩ(1), q = n0.9 and t = (m log(n))C3.22 for some constant C3.22.

Lemma 3.23 ([Vio14]). For every ε > 0, the majority function Maj : {0, 1}n → {0, 1} is an extractor for
(q, t)-NOBF sources with error ε+O(n−0.1) where q = n0.4 and t = O(ε−2 log2(1/ε)).

14

3.8 Markov Chain

In this paper we usually consider the scenario that we have two sources X,Y which are independent condi-
tioned on a collection of random variables Z. We use Markov chain as a shorthand for this.

Definition 3.24. Let X,Y,Z be random variables. We say X ↔ Z ↔ Y is a Markov chain if X and Y
are independent conditioned on any fixing of Z.

We frequently use the following fact.

Lemma 3.25. If X↔ Z↔ Y is a Markov chain, then for every deterministic function f , let W = f(X,Z).
Then

� (X,W)↔ Z↔ Y is a Markov chain.

� X↔ (W,Z)↔ Y is a Markov chain.

We use “W is a deterministic function of X (conditioned on Z)” to refer to the first item, and “fix W” to
refer to the second item.

3.9 Independence Merging

The following lemma is from [CGL21] and is based on the ideas in [CL16a]. Basically it says that if Y
is independent of some tampered seeds YS , and X has enough entropy when conditioned some tampered
sources XT , then a strong seeded extractor can “merge” the independence of Y from YS and X from XT .

Lemma 3.26 (independence-merging lemma). Let (X,X[t])↔ Z↔ (Y,Y[t]) be a Markov chain, such that
X,X[t] ∈ {0, 1}n, Y,Y[t] ∈ {0, 1}d. Moreover, suppose there exists S, T ⊆ [t] such that

� (Y ≈δ Ud) | (Z,YS)

� H̃∞(X | (XT ,Z)) ≥ k + tm+ log(1/ε)

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be any (k, ε)-strong seeded extractor, let W = Ext(X,Y) and Wj =
Ext(Xj ,Yj) for every j ∈ [t]. Then

(W ≈2ε+δ Um) | (WS∪T ,Y,Y[t],Z).

3.10 Basic Properties in Additive Combinatorics

Definition 3.27. For every two sets A,B ⊆ Fn2 , we define A+B = {a+b : a ∈ A, b ∈ B}. For b ∈ Fn2 we use
A+b as the shorthand for A+{b}. For every ` ∈ N and every A ⊆ Fn2 , define 1A = A and `A = A+(`−1)A
recursively.

Lemma 3.28 ([Plü61, Ruz99]). For every A,B ⊆ Fn2 s.t. |A| = |B| and |A+B| ≤ r |A|, |kA+ `B| ≤
rk+`+1 |A| for every k, ` ∈ N.

Definition 3.29. We say a function φ : Fn2 → Fm2 is a s-Freiman homomorphism of a set A ⊆ Fn2 if for
every a1, . . . , as, a

′
1, . . . , a

′
s ∈ A,

φ(a1) + . . .+ φ(as) = φ(a′1) + . . .+ φ(a′s)⇒ a1 + . . .+ as = a′1 + . . .+ a′s.

The following property is easy to verify.

Lemma 3.30. If φ is a linear s-Freiman homomorphism, then φ is injective on sA + v for every v ∈ Fn2 .
Further, for x ∈ 2sA we have φ(x) = 0⇔ x = 0.

The following lemma can be used to obtain a linear Freiman homomorphism with small image.

Lemma 3.31 ([GR07]). For every set A ⊆ Fn2 there exists a linear s-Freiman homomorphism φ : Fn2 → Fm2
of A such that φ(2sA) = Fm2 .

15

3.11 Fourier Analysis

First we recall some basic definitions and properties in Fourier analysis.

Definition 3.32. Let f : Fn2 → R be a function. The Fourier coefficients of f , denoted by f̂ : Fn2 → R, are

f̂(α) := E
x∼Fn2

[
f(x) · (−1)〈α,x〉

]
.

Lemma 3.33 (Parseval-Plancherel identity). For every functions f, g : Fn2 → R,

E
x∼Fn2

[f(x)g(x)] =
∑
α∈Fn2

f̂(α)ĝ(α).

Definition 3.34. The convolution of functions f, g : Fn2 → R, denoted by f ∗ g : Fn2 → R, is defined as

f ∗ g(x) := E
y∼Fn2

[f(y)g(x− y)] .

Lemma 3.35. For every functions f, g : Fn2 → R and every α ∈ Fn2 ,

f̂ ∗ g(α) = f̂(α)ĝ(α).

Next we define a density function.

Definition 3.36. For every A ⊆ Fn2 , define the density function of A to be µA := 2n

|A| ·1A. For a distribution

A on Fn2 , the density function of A, denoted by µA, is defined as µA(x) = 2n Pr [A = x].

We need the following three facts about density functions.

Lemma 3.37. Let f : Fn2 → R be a function and let A be a distribution on Fn2 . Then

E [f(A)] = E
x∼Fn2

[µA(x)f(x)] .

Lemma 3.38. Let A,B be two distributions on Fn2 . Then µA+B = µA ∗ µB.

Lemma 3.39. If V ⊆ Fn2 is a linear subspace, then µ̂V (α) = 1 if α ∈ V ⊥ and µ̂V (α) = 0 otherwise.

Finally we need Chang’s lemma.

Lemma 3.40 ([Cha02]). For X ⊆ Fn2 , define Specγ(X) = {α ∈ Fn2 : |µ̂X(α)| ≥ γ}. Define β = |X| / |Fn2 |.
Then

dim(span(Specγ(X))) ≤ 2γ−2 ln(1/β).

3.12 Minimax Theorem

Lemma 3.41 (minimax theorem [vN28]). Let X ⊆ Rn,Y ⊆ Rm be convex sets. Then for every bilinear
function g : X × Y → R,

min
x∈X

max
y∈Y

g(x, y) = max
y∈Y

min
x∈X

g(x, y).

Corollary 3.42. Let Ω be a finite set, X be a convex set of distributions on Ω, and Y be a distribution on
Ω. If for every function f : Ω → [0, 1] there exists Xf ∈ X such that E [f(Xf)] − E [f(Y)] ≤ ε, then there
exists X∗ ∈ X such that Y ≈ε X∗.

Proof. Let F denote the set of all the functions from Ω to [0, 1]. Note that a distribution X can be represented
by a vector in R|Ω|, where the coordinate indexed by s ∈ Ω is Pr [X = s]. A function f : Ω→ [0, 1] can also
be represented by a vector in R|Ω|, where the coordinate indexed by s ∈ Ω is f(s). Observe that F is convex.
Define the function g : X × F → R to be

g(X, f) := E [f(X)]− E [f(Y)] =

(∑
s∈Ω

Pr [X = s] · f(s)

)
− E [f(Y)] .

16

Observe that g is bilinear. By minimax theorem,

min
X∈X

max
f∈F

g(X, f) = max
f∈F

min
X∈X

g(X, f) ≤ max
f∈F

(E [f(Xf)]− E [f(Y)]) ≤ ε.

That is, there exists X∗ ∈ X such that for every function f : Ω → [0, 1], E [f(X∗)] − E [f(Y)] ≤ ε. If we
take f = 1T for some T ⊆ Ω, then E [f(X∗)] − E [f(Y)] is exactly Pr [X∗ ∈ T] − Pr [Y ∈ T]. Therefore by
definition of statistical distance, X∗ ≈ε Y.

4 Improved Reduction for Small-Space Sources

In this section we prove the following lemma.

Lemma 4.1. For every integer C ≥ 2, every space-s source on n-bit with min-entropy

k′ ≥ Ck + (C − 1) (2s+ 2 log(n/ε))

is (3Cε)-close to a convex combination of (n, k, C)-sumset sources.

Note that by taking C = 2 in Lemma 4.1, we can prove that the sumset source extractor in Theorem 1 and
Theorem 2 are also small-space source extractors which satisfy the parameters in Theorem 3 and Theorem 4
respectively. In the rest of this section we focus on proving Lemma 4.1. First we show how to prove
Lemma 4.1 based on the following lemma.

Lemma 4.2. Every space-s source X ∈ {0, 1}n with entropy at least k = k1 +k2 +2s+2 log(n/ε) is 3ε-close
to a convex combination of sources of the form X1 ◦X2 which satisfy the following properties:

� X1 is independent of X2

� H∞(X1) ≥ k1, H∞(X2) ≥ k2

� X2 is a space-s source

Proof of Lemma 4.1. By induction, Lemma 4.2 implies that a space-s source with entropy Ck+(C−1)(2s+
2 log(n/ε)) is 3Cε-close to a convex combination of sources of the form X1◦X2◦· · ·◦XC such that X1, . . . ,XC

are independent, and for every i ∈ [C], H∞(Xi) ≥ k. Let `1, `2, . . . , `C denote the length of X1,X2, . . . ,XC

respectively and define pi =
∑i−1
j=1 `i and si =

∑n
j=i+1 `j (note that p1 = 0 and sC = 0). Then observe that

X1 ◦ · · · ◦XC =

C∑
i=1

0pi ◦Xi ◦ 0si ,

which implies that X = X1 ◦ · · · ◦XC is a (n, k, C)-sumset source.

To prove Lemma 4.2, first we need the following lemma.

Lemma 4.3. Let B be a branching program of width 2s and length n for sampling. Let e be an edge in
B connected from u to v and let Xu,Xv be the output distributions of the subprograms Bu, Bv respectively.
Then H∞(Xv) ≥ H∞(Xu)− log(1/Pr [e]).

Proof. Let x∗ = arg maxx Pr [Xv = x]. Note that H∞(Xv) = − log(Pr [Xv = x∗]) by definition. Observe
that Pr [Xu = be ◦ x∗] ≥ Pr [e] · Pr [Xv = x∗]. Therefore,

H∞(Xu) ≤ − log
(

Pr [Xu = be ◦ x∗]
)
≤ − log

(
Pr [e] · Pr [Xv = x∗]

)
≤ H∞(Xv) + log(1/Pr [e]).

Next we prove Lemma 4.2.

17

Proof of Lemma 4.2. Let B denote the branching program which samples X. For every v, define Xv to be
the source generated by the subprogram Bv. Define v to be a stopping vertex if H∞(Xv) ≤ k2 +s+log(n/ε).
Observe that every vertex u in the last layer is a stopping vertex since H∞(Xu) = 0, so there is always a
stopping vertex in the computation path. We define an edge e in B to be a bad edge if Pr [e] ≤ ε/(n · 2s).
Now define a random variable V as follows:

� V = ⊥ if the computation path of X visits a bad edge before visiting any stopping vertex,

� otherwise, V = v where v is the first stopping vertex in the computation path.

Observe that Pr [V = ⊥] ≤ 2ε, since in each step of B there are at most 2s+1 edges starting from the current
vertex, and there are n steps in total. Define

BAD = {v ∈ Supp(V) : H∞(X|V=v) ≤ k − s− log(n/ε)}.

Then Pr [V ∈ BAD] ≤ ε by Lemma 3.6. We claim that if v 6∈ BAD and v 6= ⊥, then conditioned on V = v,
the source X can be written as X1 ◦ X2 which satisfies the properties stated in Lemma 4.2. The claim
directly implies Lemma 4.2 because Pr [v ∈ BAD ∨ v = ⊥] ≤ 3ε by union bound. Next we prove the claim.
Let E1 denote the event “the computation path contains v”, and E2 denote the event “the computation path
does not contain any bad edge or stopping vertex before the layer of v”. Observe that V = v is equivalent to
E1 ∧ E2. Conditioned on E1, by Lemma 3.10,X can be written as X1 ◦X2 where X1 is independent of X2

and X2 = Xv. Now observe that E2 only involves layers before v, so conditioned on E1, X2 is independent
of E2. Therefore, conditioned on V = v, we still have X2 = Xv, which is a space-s source, and X1 is still
independent of X2. Next observe that

H∞(X1) = H∞(X|V=v)−H∞(X2) ≥ (k − s− log(n/ε))− (k2 + s+ log(n/ε)) ≥ k1.

It remains to prove that H∞(X2) ≥ k2. Assume for contradiction that H∞(Xv) < k2. Let e be the edge in
the computation path which connects to v, and suppose e is from u. Now consider the following two cases.

� If e is not a bad edge, then H∞(Xu) ≤ H∞(Xv) + log(1/Pr [e]) < k2 + s+ log(n/ε), which means u is
also a stopping vertex. Therefore v cannot be the first stopping vertex.

� If e is a bad edge, then V = ⊥.

In both cases V 6= v, which is a contradiction. In conclusion we must have H∞(X2) ≥ k2.

5 Extractors for Sum of Two Sources

In this section we formally prove Theorem 1 and Theorem 2. The construction of our extractors relies on
the following lemma:

Lemma 5.1 (main lemma). For every constant γ < 1 and every t ∈ N, there exists N = nO(1) and an
explicit function Reduce : {0, 1}n → {0, 1}N s.t. for every (n, k, 2)-sumset source X, where

k = O

(
t3 log (n) ·

(
log log(n)

log log log(n)
+ log3(t)

)
·
(
log log log4(n) + log4(t)

))
,

Reduce(X) is N−γ-close to a (N1−γ , t)-NOBF source.

Before we prove Lemma 5.1, first we show how to prove Theorem 1 and Theorem 2 based on Lemma 5.1.

Proof of Theorem 1. Let Reduce : {0, 1}n → {0, 1}N be the function from Lemma 5.1 by taking γ = 0.1.
Note that N = poly(n). Let BFExt : {0, 1}N → {0, 1}m be the NOBF-source extractor from Lemma 3.22.
Let X be a (n, k, 2)-source, where k is defined later. If Reduce(X) is N−Ω(1)-close to a (N0.9, t)-NOBF
source where t = (m log(N))C3.22 , then

Ext(X) := BFExt(Reduce(X))

is n−Ω(1)-close to uniform. By Lemma 5.1 it suffices to take k = O(t3 log7(t) log(n)) ≤ (m log(n))1+3C3.22 .

18

Proof of Theorem 2. Let Reduce : {0, 1}n → {0, 1}N be the function from Lemma 5.1 by taking γ = 0.6.
Note that N = poly(n). Let Maj : {0, 1}N → {0, 1} be the NOBF-source extractor from Lemma 3.23, i.e.
the majority function. Let X be a (n, k, 2)-source, where k is defined later. If Reduce(X) is (ε/2)-close to a
(N0.4, t)-NOBF source where t = O(ε−2 log2(1/ε)) = O(1), then

Ext(X) := Maj(Reduce(X))

is ε-close to uniform. By Lemma 5.1 it suffices to take k = O(log(n) log log(n) log log log3(n)).

Next we prove Lemma 5.1. First we recall the definition of a strong affine correlation breaker. To simplify
our proof of Lemma 5.1, here we use a definition which is slightly more general than Definition 1.8.

Definition 5.2. AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m is a (t, k, γ)-affine correlation breaker if for
every distribution X,A,B ∈ {0, 1}n, Y,Y[t] ∈ {0, 1}d, Z and string α, α[t] ∈ {0, 1}a s.t.

� X = A + B

� H̃∞(A | Z) ≥ k

� (Y,Z) = (Ud,Z)

� A↔ Z↔ (B,Y,Y[t]) is a Markov chain

� ∀i ∈ [t], α 6= αi

It holds that
(AffCB(X,Y, α) ≈γ Um) |

(
{AffCB(X,Yi, αi)}i∈[t],Z

)
.

We say AffCB is strong if

(AffCB(X,Y, α) ≈γ Um) |
(
{AffCB(X,Yi, αi)}i∈[t],Y,Y[t],Z

)
.

To prove Lemma 5.1, we need the following lemma, which is an analog of [CZ19, Lemma 2.17]. Roughly
speaking, we show that even if the seeds of the correlation breaker are added by some leakage from the
source, most of the seeds are still good.

Lemma 5.3. For every error parameter γ > 0 the following holds. Let

� AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m be a (t, k, ε)-strong affine correlation breaker

� L : {0, 1}n × {0, 1}a → {0, 1}d be any deterministic function, which we call the leakage function

� α, α[t] be any a-bit advice s.t. α 6= αi for every i ∈ [t]

� A be a (n, k + (t+ 1)`)-source

For every b ∈ {0, 1}n, y ∈ {0, 1}d, define

Rb,y := AffCB(A + b, y + L(A, α), α)

and for every i ∈ [t] define
Ri
b,y := AffCB(A + b, y + L(A, αi), αi).

Define

BADα,α[t] :=
{
y ∈ {0, 1}d : ∃b, y[t] s.t. (Rb,y 6≈γ Um) | {Ri

b,yi}i∈[t]

}
,

which denotes the “bad seeds” of AffCB determined by A, L and α, α[t]. Then

Pr
y∼Ud

[
y ∈ BADα,α[t]

]
≤ ε

γ
.

19

Proof. Define deterministic functions f1, . . . , f t : {0, 1}d → {0, 1}d and g : {0, 1}d → {0, 1}n s.t. for every
y ∈ BADα,α[t] , (

Rg(y),y 6≈γ Um

)
|
(
{Ri

g(y),fi(y)}i∈[t]

)
.

For y 6∈ BADα,α[t] the values of f1(y), f2(y), . . . , f t(y), g(y) are defined arbitrarily. Note that the existence

of f1, . . . , f t, g is guaranteed by the definition of BADα,α[t] . Let W := Ud and δ := Pr
[
W ∈ BADα,α[t]

]
.

Observe that
(Rg(W),W 6≈γδ Um) | ({Ri

g(W),fi(W)}i∈[t],W).

Now define Y := W + L(A, α), Yi := W + L(A, αi) for every i ∈ [t] and B := g(W). Let Z :=
(L(A, α), L(A, α1), . . . , L(A, αt)). Note that Z ∈ {0, 1}(t+1)` is a deterministic function of A. With these
new definitions the above equation can be rewritten as

(AffCB(A + B,Y, α) 6≈γδ Um) | ({AffCB(A + B,Yi, αi}i∈[t],W). (3)

Next, observe that the following conditions hold:

� H̃∞(A | Z) ≥ k (by Lemma 3.4)

� (Y,Z) = (Ud,Z).

� A↔ Z↔ (B,Y,Y[t]) is a Markov chain.

Note that the last condition holds because Z is a deterministic function of A, which implies A ↔ Z ↔
(B,W), and Y,Y[t] are deterministic functions of (Z,W). By the definition of AffCB we have

(AffCB(A + B,Y, α) ≈ε Um) | ({AffCB(A + B,Yi, αi}i∈[t],Y,Z)

which implies
(AffCB(A + B,Y, α) ≈ε Um) | ({AffCB(A + B,Yi, αi}i∈[t],W) (4)

since W = Y − L(A, α) and L(A, α) is a part of Z. By (3) and (4) we get δ ≤ ε/γ.

Next we prove the following lemma, which directly implies Lemma 5.1 by plugging in proper choices of
somewhere random samplers and affine correlation breakers.

Lemma 5.4. For every ε, δ > 0 the following holds. Let AffCB : {0, 1}n × {0, 1}d × [AC] → {0, 1} be a
(Ct − 1)-strong affine correlation breaker for entropy k1 with error A−2tC−1εδ, and let Samp : {0, 1}n ×
[A] × [C] → {0, 1}d be a (ε, δ)-somewhere random sampler for entropy k2. Then for every n-bit source
X = X1 + X2 such that X1 is independent of X2, H∞(X1) ≥ k1 + Ctd and H∞(X2) ≥ k2, the source

Reduce(X) :=

⊕
z∈[C]

AffCB (X,Samp(X, α, z), (α, z))

α∈[A]

is 3δ-close to a convex combination of (2εA, t)-NOBF source.

Proof. Consider Lemma 5.3 by taking X1 as the source, A−tδ as the error parameter and L(x, (α, z)) :=
Samp(x, α, z) as the leakage function. For every non-empty subset T ⊆ [A] of size at most t and every
z∗ ∈ [C], define a set BAD′T,z∗ as follows. Let α∗ denote the first element in T . Let β = (α∗, z∗) and

β′ = {(α, z)}α∈T,z∈[C]\{β}.

Note that β′ contains at most 2ct− 1 advice which are all different from β. Then we define

BAD′T,z∗ := BADβ,β′ ,

20

where BADβ,β′ is defined as in Lemma 5.3. Observe that by definition of BAD′T,z∗ , for every x2 ∈ {0, 1}n, if

Samp(x2, α
∗, z∗) 6∈ BAD′T,z∗ , then⊕

α∈T

⊕
z∈[C]

AffCB (X1 + x2,Samp(X1, α, z) + Samp(x2, α, z), (α, z))

 ≈A−tδ U1.

By the linearity of Samp, we know that for every fixing X2 = x2, if Samp(x2, α
∗, z∗) 6∈ BAD′T,z∗ , then⊕

α∈T

⊕
z∈[C]

AffCB (X,Samp(X, α, z), (α, z))

 ≈A−tδ U1. (5)

By Lemma 5.3 we know that Pry∼Ud

[
y ∈ BAD′T,z∗

]
≤ A−tC−1ε. Now define BAD′ to be the union of

BAD′T,z∗ for all possible choices of T, z∗. Since there are at most At choices of T and C choices of z∗, by

union bound we know that Pry∼Ud

[
y ∈ BAD′

]
≤ ε. Therefore, by definition of somewhere random sampler,

Pr
x2∼X2

[∣∣{α ∈ [A] : ∀z Samp(x2, α, z) ∈ BAD′}
∣∣ ≤ 2εA

]
≥ 1− δ.

In other words, with probability at least 1−δ over the fixing X2 = x2, there exists a set Q ⊆ [A] of size at most
2εA which satisfies the following: for every α ∈ [A]\Q, there exists zα such that Samp(x2, α, zα) 6∈ BAD′,
which also implies Samp(x2, α, zα) 6∈ BAD′T,zα . By Equation (5), for every T ⊆ [A]\Q s.t. 1 ≤ |T | ≤ t,⊕

α∈T

⊕
z∈{0,1}c

AffCB(X,Samp(X, α, z), (α, z))

 ≈A−tδ U1.

By Lemma 3.20 this implies that with probability 1− δ over the fixing of X2,

Reduce(X) =

 ⊕
z∈{0,1}c

AffCB(X,Samp(X, α, z), (α, z))

α∈[A]

is 2δ-close to a (2εA, t)-NOBF source. Therefore Reduce(X) is 3δ-close to a convex combination of (2εA, t)-
NOBF source.

To get Lemma 5.1, we need the following affine correlation breaker, which we construct in Section 6.

Theorem 5.5. For every m, a, t ∈ N and ε > 0 there exists an explicit strong t-affine correlation breaker
AffCB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m with error ε for entropy k such that the seed length is

d = O
(
t log

(
n
ε

)
·
(

log(a)
log log(a) + log3(t)

))
and k = O

(
tm+ t log

(
n
ε

)
·
(

log(a)
log log(a) + t

))
.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let Samp : {0, 1}n × [N] × [C] → {0, 1}d be a (N−γ/2, N−γ/3)-somewhere random
sampler from Lemma 3.18, where N = nO(1). We want to choose proper parameters d,C so that there
exists a (Ct − 1)-strong affine correlation breaker AffCB : {0, 1}n × {0, 1}d × [NC] → {0, 1} with error
N−2(t+γ)C−1/6. Then Lemma 5.4 would imply Lemma 5.1. Observe that we need to guarantee

d ≥ K1

(
Ct2 log (n) ·

(
log log(n)

log log log(n)
+ log3(Ct)

))
and

C ≥ K2 log2

(
d

log(n)

)

21

for some fixed constants K1,K2. It suffices to take C = O(log log log2(n) + log2(t)) for some large enough
constant factor. Then the entropy requirement of AffCB would be

k1 = O

(
Ct2 log (n) ·

(
log log(n)

log log log(n)
+ Ct

))
,

and the entropy requirement of Samp would be k2 = O(d + log(Nγ)) = O(d + log(n)). To make Reduce
work, the entropy of the given sumset source should be at least

k = max{k1 + Ctd, k2} = O

(
C2t3 log (n) ·

(
log log(n)

log log log(n)
+ log3(t)

))
.

Finally, observe that the running time of Reduce is N times the running time of AffCB and Samp, which is
also poly(n).

6 Construction of Affine Correlation Breakers

In this section we prove Theorem 5, which we restate below.

Theorem 6.1 (Theorem 5, restated). Let C be a large enough constant. Suppose that there exists an explicit

(d0, ε)-strong correlation breaker CB : {0, 1}d×{0, 1}d0×{0, 1}a → {0, 1}C log2(t+1) log(n/ε) for some n, t ∈ N.
Then there exists an explicit strong t-affine correlation breaker AffCB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m
with error O(tε) for entropy k = O(td0 + tm+ t2 log(n/ε)), where d = O(td0 +m+ t log3(t+ 1) log(n/ε)).

We note that it is possible to get different trade-off between the entropy k and the seed length d. Here
we focus on minimizing min(k, td), which corresponds to the entropy of our extractors. With Theorem 5 we
directly get Theorem 5.5 by plugging in the following (standard) correlation breaker by Li [Li19].

Theorem 6.2 ([Li19]). There exists an explicit (standard) correlation breaker {0, 1}n × {0, 1}d × {0, 1}a →
{0, 1}m for entropy d with error ε, where d = O

(
m+ log(n/ε) · log(a)

log log(a)

)
.

Proof of Theorem 5. Consider any A,B ∈ {0, 1}n,Y,Y[t] ∈ {0, 1}d,Z ∈ {0, 1}∗ such that

� A↔ Z↔ (B,Y,Y[t]) forms a Markov chain

� H̃∞(A | Z) ≥ k

� (Y,Z) = (U,Z),

and any α, α[t] ∈ {0, 1}a such that α 6= αi for every i ∈ [t]. Let X = A + B. Our goal is to construct an
algorithm AffCB and prove that

(AffCB(X,Y, α) ≈O(tε) Um) | ({AffCB(X,Yi, αi)}i∈[t],Y,Y[t]). (6)

For readability, first we explain some conventions in our proof. First we note that whenever we define a
new random variable V := f(X,A,B,Y) using some deterministic function f , we also implicitly define
Vi := f(X,A,B,Yi) for every i ∈ [t]. In each step of the proof, we consider a Markov chain (A,R) ↔
Z′ ↔ (B,Y,Y[t],S) for some random variables R,Z′,S, where R is a deterministic function of (A,Z′), and
S is a deterministic function of (B,Y,Y[t],Z′). Initially Z′ = Z. When we say “R is ε-close to uniform”
it means (R ≈ε U) | Z′, and similarly “S is ε-close to uniform” means (S ≈ε U) | Z′. When we say R is
independent of S it implicitly means R ↔ Z′ ↔ S is a Markov chain. Then when we say “fix f(R,Z)” for
some deterministic function f , we consider the Markov chain (A,R) ↔ (Z′, f(R,Z′)) ↔ (B,Y,Y[t],S) in
the next step. Similarly when we say “fix g(S,Z)” for some deterministic function g, we consider the Markov
chain (A,R)↔ (Z′, g(S,Z′))↔ (B,Y,Y[t],S) in the next step. To make the notations cleaner, sometimes
we only specify a Markov chain R↔ Z′ ↔ S where R,S are the random variables used in the current step of
argument (e.g. when we apply Lemma 3.26), but it should always be true that (A,R)↔ Z′ ↔ (B,Y,Y[t],S)
is a Markov chain.

22

The algorithm AffCB consists of two phases. First, let r = (t + c3.13 + 10) · c3.12 log(n/ε), and let
LExt0 : {0, 1}n×{0, 1}d′0 → {0, 1}d0 and LExtr : {0, 1}n×{0, 1}dx → {0, 1}r be strong linear seeded extractors
in Lemma 3.13 with error ε. It suffices to take d′0 = O(d0 + log(n/ε)) and dx = O(log2(t + 1) log(n/ε)).
Therefore if the constant C in the theorem statement is large enough, we can also take the output length of
CB to be dx. The first phase of AffCB(X,Y, α) consists of the following steps.

1. Let S1 := Prefix(Y, d′0).

2. Compute R1 := LExt0(X,S1).

3. Compute S2 := CB(Y,R1, α).

4. Output R2 := LExtr(X,S2).

Furthermore, define R1,A := LExt1(A,S1), R1,B := LExt1(B,S1), R2,A := LExt2(A,S2) and R2,B =

LExt2(B,S2), and let Z0 = (Z,S1,S
[t]
1 ,R1,B,R

[t]
1,B,R1,R

[t]
1 ,S2,S

[t]
2). First we prove that for every i ∈ [t],

(R2,A ≈5ε U) | (Ri
2,A,Z0,R2,B,R

[t]
2,B), (7)

and
(A,R2,A,R

[t]
2,A)↔ Z0 ↔ (B,R2,B,R

[t]
2,B,Y,Y[t]) forms a Markov chain. (8)

Note that this means if we output R2 we already get a 1-affine correlation breaker. To prove (7) and

(8), first note that by definition of LExt0, we get (R1,A ≈ε Ud0
) | (Z,S1,S

[t]
1). Fix (S1,S

[t]
1). Since

(R1,A,R
[t]
1,A) are deterministic functions of (A,S1,S

[t]
1), and (R1,B,R

[t]
1,B) are deterministic functions of

(B,S1,S
[t]
1), (R1,A,R

[t]
1,A) are independent of (R1,B,R

[t]
1,B). Fix (R1,B,R

[t]
1,B). Then R1,A is still close to

uniform. Because R1 = R1,A + R1,B, this implies

(R1 ≈ε Ud0
) | (Z,S1,S

[t]
1 ,R1,B,R

[t]
1,B).

Moreover, H̃∞(Y | Z,S1,S
[t]
1 ,R1,B,R

[t]
1,B) ≥ d−O(t(d0 + log(n/ε))) ≥ d0 + log(1/ε). Because

(R1,R
[t]
1)↔ (Z,S1,S

[t]
1 ,R1,B,R

[t]
1,B)↔ (Y,Y[t])

is a Markov chain, and because CB is a strong correlation breaker, for every i ∈ [t] we have

(S2 ≈3ε Udx) | (Si2,Z,S1,S
[t]
1 ,R1,B,R

[t]
1,B,R1,R

i
1).

Note that after fixing R1, S2 becomes independent of R
[t]
1 . Therefore

(S2 ≈3ε Udx) | (Si2,Z,S1,S
[t]
1 ,R1,B,R

[t]
1,B,R1,R

[t]
1).

Fix R1,R
[t]
1 . Because A are independent of S2,S

[t]
2 , by Lemma 3.26 we can conclude that

(R2,A ≈5ε Ur) | (Ri
2,A,Z,S1,S

[t]
1 ,R1,B,R

[t]
1,B,R1,R

[t]
1 ,S2,S

[t]
2)

which is exactly
(R2,A ≈5ε Ur) | (Ri

2,A,Z0). (9)

Finally, fix S2,S
[t]
2 . Since (R2,A,R

[t]
2,A) are independent of (R2,B,R

[t]
2,B), we get (8). Then because R2 =

R2,A + R2,B, by (8) and (9) we get (7).
Next we move to the second phase. Let dy = c3.12 log(n/ε). Moreover, let Ext : {0, 1}d × {0, 1}dy →

{0, 1}dx be a strong seeded extractor from Lemma 3.12, and LExtm : {0, 1}r×{0, 1}dx → {0, 1}dy be a linear
strong seeded extractor from Lemma 3.13. Define W0,A := R2,A,W0,B := R2,B,W0 := R2 and h = dlog te.
Then repeat the following steps for i from 1 to h:

1. Let Wp,i−1 := Prefix(Wi−1, dy).

23

2. Compute Qm,i−1 := Ext(Y,Wp,i−1).

3. Compute Vi := LExtm(Wi−1,Qm,i−1).

4. Compute Qr,i := Ext(Y,Vi).

5. Compute Wi := LExtr(X,Qr,i).

Note that Step 1−3 are the “independence merging” steps, which computes Vi that is independent of every
2i tampered versions. Since the length of Vi is shorter than Wi, we use Step 4−5 to recover the length and
get Wi s.t. |Wi| = r. We claim that each of Wi,Qm,i,Vi,Qr,i is independent of every min(2i, t) tampered

versions, and in particular (Wh,W
[t]
h) ≈ (Ur,W

[t]
h).

Formally, for every i from 1 to h, let Wp,i−1,A := Prefix(Wi−1,A, dy), Wp,i−1,B := Prefix(Wi−1,B, dy),
Vi,A := LExtm(Wi−1,A,Qm,i−1), Vi,B := LExtm(Wi−1,B,Qm,i−1), Wi,A := LExtr(A,Qr,i) and Wi,B :=
LExtr(B,Qr,i). Moreover, for every i ∈ [h], let

Zi :=
(
Zi−1,Wp,i−1,B,W

[t]
p,i−1,B,Wp,i−1,W

[t]
p,i−1,Qm,i−1,Q

[t]
m,i−1,Vi,B,V

[t]
i,B,Vi,V

[t]
i ,Qr,i,Q

[t]
r,i

)
.

We want to prove the following claims for every i ∈ [h] by induction:

� For every T ⊆ [t] s.t. |T | = 2i,

(Wi,A ≈(13·2i−8)ε Ur) | (WT
i,A,Zi). (10)

� The following is a Markov chain:

(A,Wi,A,W
[t]
i,A)↔ Zi ↔ (B,Wi,B,W

[t]
i,B,Y,Y[t]). (11)

Note that by (7) and (8), the conditions above hold for i = 0. Now assume by induction that (10) and
(11) hold for i − 1, and we want to prove (10) and (11) for i. First, observe that because Wp,i−1 =
Wp,i−1,A + Wp,i−1,B, by (10) and (11) for every T1 ⊆ [t] of size 2i−1,

(Wp,i−1 ≈(13·2i−1−8)ε Ur) | (WT1
p,i−1,Zi−1,Wp,i−1,B,W

[t]
p,i−1,B).

Fix (Wp,i−1,B,W
[t]
p,i−1,B). Note that

(Wp,i−1,W
[t]
p,i−1)↔ (Zi−1,Wp,i−1,B,W

[t]
p,i−1,B)↔ (Y,Y[t])

is a Markov chain. By Lemma 3.26 (similarly we omit the entropy requirement for Y for now and will verify
it in the end), for every T1 ⊆ [t] of size 2i−1,

(Qm,i−1 ≈(13·2i−1−6)ε Udx) | (QT1
m,i−1,Zi−1,Wp,i−1,B,W

[t]
p,i−1,B,Wp,i−1,W

[t]
p,i−1).

Next, fix (Wp,i−1,W
[t]
p,i−1). Now consider any T ⊆ [t] s.t. |T | = min(2i, t), and any T1, T2 s.t. |T1| = |T2| =

2i−1 and T1 ∪ T2 = T . By (10) there exists W′
i−1,A = Ur s.t.

(Wi−1,A ≈(13·2i−1−8)ε W′
i−1,A) | (WT2

i−1,A,Zi−1,Wp,i−1,B,W
[t]
p,i−1,B,Wp,i−1,W

[t]
p,i−1)

and
H̃∞

(
W′

i−1,A |W
T2

i−1,A,Zi−1,Wp,i−1,B,W
[t]
p,i−1,B,Wp,i−1,W

[t]
p,i−1

)
≥ r − (t+ 1)dy.

Let Z′i−1 :=
(
Zi−1,Wp,i−1,B,W

[t]
p,i−1,B,Wp,i−1,W

[t]
p,i−1,Qm,i−1,Q

[t]
m,i−1

)
. By Lemma 3.26,

(Vi,A ≈(13·2i−14)ε Udy) |
(
VT
i,A,Z

′
i−1

)
.

24

Fix (Qm,i−1,Q
[t]
m,i−1). Note that Z′i−1 consists of exactly the random variables we have fixed so far. Because

Vi = Vi,A + Vi,B and (Vi,A,V
[t]
i,A)↔ Z′i−1 ↔ (Vi,B,V

[t]
i,B) forms a Markov chain,

(Vi ≈(13·2i−12)ε Udy) |
(
VT
i ,Z

′
i−1,Vi,B,V

[t]
i,B

)
.

Next we fix (Vi,B,V
[t]
i,B). Since (Vi,V

[t]
i)↔ (Z′i−1,Vi,B,V

[t]
i,B)↔ (Y,Y[t]), again by Lemma 3.26,

(Qr,i ≈(13·2i−10)ε Udx) |
(
QT

r,i,Z
′
i−1,Vi,B,V

[t]
i,B,Vi,V

[t]
i

)
.

Next, fix (Vi,V
[t]
i). Since A↔ (Z′i−1,Vi,B,V

[t]
i,B,Vi,V

[t]
i)↔ (Qr,i,Q

[t]
r,i), by Lemma 3.26

(Wi,A ≈(13·2i−8)ε Ur) |
(
Z′i−1,Vi,B,V

[t]
i,B,Vi,V

[t]
i ,Qr,i,Q

[t]
r,i

)
,

which is exactly (10). Fix (Qr,i,Q
[t]
r,i). Because (Wi,A,W

[t]
i,A) are deterministic functions of (A,Qr,i,Q

[t]
r,i)

and (Wi,B,W
[t]
i,B) are deterministic functions of (B,Qr,i,Q

[t]
r,i), we get (11). Finally we need to verify that

whenever we apply Lemma 3.26, X and Y have enough conditional entropy. Observe that every time we
apply Lemma 3.26 on A, we condition on some random variables in Zh, take an extractor from Lemma 3.13
with error ε and output at most r bits. The conditional entropy of A is at least

H̃∞(A | Zh) ≥ H̃∞(A | Z)− (t+ 1) ·O(d0 + log(n/ε) + h(dx + dy)) ≥ (t+ c3.13)r + log(1/ε),

which satisfies the requirement in Lemma 3.26. Every time we apply Lemma 3.26 on Y, we condition on
some random variables in Zh, take an extractor from Lemma 3.12 with error ε and output at most dx bits.
The conditional entropy of Y is at least

H̃∞(Y | Zh) ≥ d− (t+ 1) ·O(d0 + log(n/ε) + h(dx + dy)) ≥ (t+ 2)dx + log(1/ε),

which satisfies the requirement in Lemma 3.26.
Since Wh = Wh,A + Wh,B, (10) and (11) together imply

(Wh ≈(13t−8)ε Ur) | (W[t]
h ,Y,Y[t]).

Therefore if m ≤ r, it suffices to output AffCB(X,Y, α) = Prefix(Wh,m). If m > r, we can do one more
round of alternating extraction to increase the output length. Let LExtout : {0, 1}n×{0, 1}dout → {0, 1}m be
a linear strong seeded extractor with error ε from Lemma 3.13 and Extout : {0, 1}d × {0, 1}r → {0, 1}dout be
a seeded extractor from Lemma 3.12. It suffices to take dout = O

(
m
t + log2(t+ 1) log(nε)

)
. Then

1. Compute Qout := Extout(Y,Wh).

2. Output Wout := LExtout(X,Qout).

Since (Wh ≈ U) | (Zi,Wh,B,W
[t]
h,B), (Wh,W

[t]
h) ↔ (Zi,Wh,B,W

[t]
h,B) ↔ (Y,Y[t]) forms a Markov chain

and

H̃∞(Y | Zi,Wh,B,W
[t]
h,B) ≥ d− (t+ 1) ·O(d0 + log(n/ε) + h(dx + dy)) ≥ (t+ 2)dout + log(1/ε),

by Lemma 3.26

(Qout ≈(13t−6)ε Udout) | (Q
[t]
out,Zi,Wh,B,W

[t]
h,B,Wh,W

[t]
h).

And because A is independent of (Qout,Q
[t]
out) conditioned on (Zi,Wh,B,W

[t]
h,B,Wh,W

[t]
h), and

H̃∞(A | Zi,Wh,B,W
[t]
h,B,Wh,W

[t]
h) ≥ k − (t+ 1) ·O(d0 + log(n/ε) + h(dx + dy)) ≥ (t+ 2)dout + log(1/ε),

again by Lemma 3.26 we can conclude that

(Wout,A ≈(13t−4)ε Um) | (W[t]
out,A,Zi,Wh,B,W

[t]
h,B,Wh,W

[t]
h ,Qout,Q

[t]
out).

25

Since Wout = Wout,A + Wout,B and (Wout,A,W
[t]
out,A) are independent of (Y,Y[t],Wout,A,W

[t]
out,A) condi-

tioned on (Zi,Wh,B,W
[t]
h,B,Wh,W

[t]
h ,Qout,Q

[t]
out), we can conclude that

(Wout ≈(13t−4)ε Um) | (W[t]
out,Z,Y,Y[t]),

which means AffCB(X,Y, α) = Wout is a strong t-affine correlation breaker with error O(tε).

7 Sumset Sources with Small Doubling

In this section we show that a sumset source with small doubling constant is close to a convex combination
of affine sources, as stated in Theorem 6. To prove this result, first we need Lemma 7.1, which is a variant
of the Croot-Sisask lemma [CS10]. For the proof of Lemma 7.1 we follow the exposition by Ben-Sasson,
Ron-Zewi, Tulsiani and Wolf [BRTW14] which is more convenient for our setting.

Lemma 7.1. Let A ⊆ Fn2 be a set which satisfies |A| ≥ |Fn2 | /r. Then for every ε > 0 and every pair of
functions f, g : Fn2 → [0, 1] there exists t = O(log(r/ε)/ε2) and a set X of size at least |Fn2 | /2rt such that for
every set B s.t. |B| ≥ |Fn2 | /r and every x ∈ X,

E
a∼A,b∼B

[f(a+ b)] ≈ε E
a∼A,b∼B

[f(a+ b+ x)]

and
E

a∼A,b∼B
[g(a+ b)] ≈ε E

a∼A,b∼B
[g(a+ b+ x)] .

Proof. Let t = 8 ln(128r/ε)/ε2. By Chernoff-Hoeffding bound, for every b ∈ Fn2 ,

Pr
(a1,...,at)∼At

[
1

t

t∑
i=1

f(ai + b) ≈ ε
4

E
a∼A

[f(a+ b)]

]
≥ 1− ε

16r

and

Pr
(a1,...,at)∼At

[
1

t

t∑
i=1

g(ai + b) ≈ ε
4

E
a∼A

[g(a+ b)]

]
≥ 1− ε

16r
.

Then by union bound and by averaging over b ∼ Fn2 ,

Pr
(a1,...,at)∼At

b∼Fn2

[
1

t

t∑
i=1

f(ai + b) ≈ ε
4

E
a∼A

[f(a+ b)] and
1

t

t∑
i=1

g(ai + b) ≈ ε
4

E
a∼A

[g(a+ b)]

]
≥ 1− ε

8r
.

Define

BAD(a1,...,at) :=

{
b :

1

t

t∑
i=1

f(ai + b) 6≈ ε
4

E
a∼A

[f(a+ b)] or
1

t

t∑
i=1

g(ai + b) 6≈ ε
4

E
a∼A

[g(a+ b)]

}
.

By Markov inequality, there exists S ⊆ At such that |S| ≥ |A|t /2 and for every (a1, . . . , at) ∈ S,∣∣BAD(a1,...,at)

∣∣ ≤ ε

4r
|Fn2 | .

Now classify the elements in S by (a2−a1, a3−a1, . . . , at−a1). By averaging there exists a subset X ′ ⊆ S
and a (t − 1)-tuple (y2, . . . , yt) such that |X ′| ≥ |S| / |Fn2 |

t−1 ≥ |Fn2 | /2rt, and for every (a1, . . . , at) ∈ X ′

we have ai − a1 = yi for every 2 ≤ i ≤ t. Let (a∗1, . . . , a
∗
t) be an element in X ′. Observe that for every

(a1, . . . , at) ∈ X ′, a1 − a∗1 = · · · = at − a∗t . Define

X = {x = a1 − a∗1 : (a1, . . . , at) ∈ X ′}.

26

Note that |X| = |X ′| ≥ |Fn2 | /2rt. It remains to prove that for every x ∈ X,

E
a∼A,b∼B

[f(a+ b)] ≈ε E
a∼A,b∼B

[f(a+ b+ x)]

and
E

a∼A,b∼B
[g(a+ b)] ≈ε E

a∼A,b∼B
[g(a+ b+ x)] .

Let (a1, . . . , at) = (a∗1 + x, . . . , a∗t + x). Since (a1, . . . , at) is an element in S,∣∣∣∣∣ E
a∼A,b∼B

[f(a+ b)]− E
b∼B

[
1

t

t∑
i=1

f(ai + b)

]∣∣∣∣∣ ≤ ε

4
+ Pr
b∼B

[
b ∈ BAD(a1,...,at)

]
≤ ε

2
.

Similarly, since (a∗1, . . . , a
∗
t) is an element in S,∣∣∣∣∣ E

a∼A,b∼B
[f(a+ b+ x)]− E

b∼B

[
1

t

t∑
i=1

f(a∗i + b+ x)

]∣∣∣∣∣ ≤ ε

4
+ Pr
b∼B

[
(b+ x) ∈ BAD(a∗1 ,...,a

∗
t)

]
≤ ε

2
.

Finally, observe that

E
b∼B

[
1

t

t∑
i=1

f(ai + b)

]
= E
b∼B

[
1

t

t∑
i=1

f(a∗i + x+ b)

]
.

By triangle inequality we can conclude that

E
a∼A,b∼B

[f(a+ b)] ≈ε E
a∼A,b∼B

[f(a+ b+ x)] .

Similarly we can prove that

E
a∼A,b∼B

[g(a+ b)] ≈ε E
a∼A,b∼B

[g(a+ b+ x)] .

Next we prove the following lemma. The proof is along the lines of [San12, Theorem A.1]. (See also the
survey by Lovett [Lov15].)

Lemma 7.2. Let A,B ⊆ Fn2 be sets which satisfy |A| , |B| ≥ |Fn2 | /r. Let A,B be the uniform distributions
over A,B respectively. Then for every ε > 0 and every pair of functions f, g : Fn2 → [0, 1] there exists a
linear subspace V of co-dimension O(log3(r/ε) log(r)/ε2) and a distribution T ∈ Fn2 such that

E [f(A + B)] ≈ε E [f(T + V)]

and
E [g(A + B)] ≈ε E [g(T + V)] ,

where V is the uniform distribution over V .

To prove Lemma 7.2, first we need the following corollary of Lemma 7.1.

Corollary 7.3. Let A ⊆ Fn2 be a set which satisfies |A| ≥ |Fn2 | /r. Then for every ε > 0 and every pair of
functions f, g : Fn2 → [0, 1] there exists t = O(log(r/ε)/ε2) and a a set X of size at least |Fn2 | /2rt such that
for every set B s.t. |B| ≥ |Fn2 | /r and every (x1, . . . , x`) ∈ X`,

E
a∼A,b∼B

[f(a+ b)] ≈`ε E
a∼A,b∼B

[f(a+ b+ x1 + · · ·+ x`)]

and
E

a∼A,b∼B
[g(a+ b)] ≈`ε E

a∼A,b∼B
[g(a+ b+ x1 + · · ·+ x`)] .

27

Proof. Assume by induction that

E
a∼A,b∼B

[f(a+ b)] ≈(`−1)ε E
a∼A,b∼B

[f(a+ b+ x1 + · · ·+ x`−1)] .

Since |B + x1 + · · ·+ x`−1| = |B| ≥ |Fn2 | /r, by Lemma 7.1 we get

E
a∼A,b∼B

[f(a+ b+ x1 + · · ·+ x`−1)] ≈ε E
a∼A,b∼B

[f(a+ b+ x1 + · · ·+ x`)] .

Then the claim follows by triangle inequality. The proof for the case of g is exactly the same.

Proof of Lemma 7.2. Define ` = log(2r/ε). By Corollary 7.3 there exists t = O(`3/ε2) and a set X of size
|Fn2 | /2rt s.t. for every (x1, x2, . . . , x`) ∈ X`,

E [f(A + B)] ≈ε/2 E [f(A + B + x1 + · · ·+ x`)] (12)

and
E [g(A + B)] ≈ε/2 E [g(A + B + x1 + · · ·+ x`)] .

Let X1, . . . ,X` be independent uniform distributions over X. Let V = Spec1/2(X)⊥ and V be uniform
distribution over V . Note that by Chang’s lemma (Lemma 3.40), V has dimension at least k′ = m −
O(log(r) log3(r/ε)/ε2) ≥ k −O(log(r) log3(r/ε)/ε2). By Lemma 3.38, 3.37 and 3.33,

E [f(A + B + X1 + · · ·+ X`)] =
∑
α∈Fn2

µ̂A(α)µ̂B(α)(µ̂X(α))`f̂(α)

and
E [f(A + B + X1 + · · ·+ X` + V)] =

∑
α∈Fn2

µ̂A(α)µ̂B(α)(µ̂X(α))`µ̂V (α)f̂(α).

Define T = A + B + X1 + · · ·+ X`. Then

∣∣∣E [f(T)]− E [f(T + V)]
∣∣∣ =

∣∣∣∣∣∣
∑
α6∈V ⊥

µ̂A(α)µ̂B(α)(µ̂X(α))`f̂(α)

∣∣∣∣∣∣ (by Lemma 3.39)

≤ 2−`
∑
α 6∈V ⊥

∣∣∣µ̂A(α)µ̂B(α)f̂(α)
∣∣∣ (by definition of Spec1/2(X))

≤ 2−`
∑
α 6∈V ⊥

|µ̂A(α)µ̂B(α)| (since
∣∣∣f̂(α)

∣∣∣ ≤ 1)

≤ 2−` ·

√√√√√
∑
α∈Fn2

µ̂A(α)2

∑
α∈Fn2

µ̂B(α)2

 (by Cauchy-Schwarz)

≤ 2−` · r = ε/2. (by Parseval’s identity (Lemma 3.33))

By triangle inequality and (12) we get E [f(A + B)] ≈ε E [f(T + V)]. The exact same proof can also show
that E [g(A + B)] ≈ε E [g(T + V)].

Finally, to prove Theorem 6, we need the following lemma.

Lemma 7.4. Let X ⊆ Fn2 be a set, φ : Fn2 → Fm2 be a linear Freiman 3-homorphism of X, and φ−1 : Fm2 → Fn2
be a inverse of φ such that φ−1(φ(x)) = x for every x ∈ 3X. (Such a φ−1 exists because φ is injective on
3X.) Then for every affine subspace V ⊆ Fm2 such that |V ∩ φ(X)| > |V | /2, φ−1 is injective on V and
φ−1(V) ⊆ Fn2 is also an affine subspace.

28

Proof. Let t be an element in X such that φ(t) ∈ V . Note that t must exist because V ∩ φ(X) is non-
empty. Since V is an affine subspace, for every v ∈ V and v1 ∈ V ∩ φ(X), v + φ(t) − v1 ∈ V . Because
|V ∩ φ(X)| > |V \φ(X)|, for every v ∈ V there must exist v1 ∈ V ∩ φ(X) s.t. v + φ(t) − v1 ∈ V ∩ φ(X).
In other words, for every v ∈ V there exist v1, v2 ∈ V ∩ φ(X) such that v = v1 + v2 − φ(t). This means
V ⊆ φ(2X − t) ⊆ φ(3X). Because φ−1 is injective on φ(3X), this implies that φ−1 is injective on V . Next
we prove that φ−1(V) is also an affine subspace. It suffices to prove that for every u, v ∈ V ,

φ−1(u) + φ−1(v)− t = φ−1(u+ v − φ(t)),

because φ−1(u+ v − φ(t)) ∈ φ−1(V). Observe that

φ(φ−1(u) + φ−1(v)− t− φ−1(u+ v − φ(t))) = u+ v − φ(t)− (u+ v − φ(t)) = 0,

because φ is linear, and for every y ∈ {u, v, u+v−φ(t)} we have y ∈ V ⊆ φ(3X), which means φ(φ−1(y)) = y.
Moreover, because φ−1(u), φ−1(v), φ−1(u+ v − φ(t)) ∈ φ−1(V) ⊆ 2X − t,

φ−1(u) + φ−1(v)− t− φ−1(u+ v − φ(t)) ∈ 6X.

By Lemma 3.30, φ−1(u) + φ−1(v)− t− φ−1(u+ v − φ(t)) = 0.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Consider any function f : Fn2 → [0, 1]. Let φ : Fn2 → Fm2 be the 3-Freiman homomor-
phism of A+B guaranteed in Lemma 3.31, and let φ−1 : Fn2 → Fm2 be a inverse of φ such that φ−1(φ(x)) = x
for every x ∈ 3A + 3B. By Lemma 3.30, φ is injective on A and B since A ⊆ 3(A + B) + b for any b ∈ B
and B ⊆ 3(A + B) + a for any a ∈ A. Let A′ = φ(A), B′ = φ(B),A′ = φ(A),B′ = φ(B). Observe that
A′,B′ are exactly the uniform distributions over A′, B′ respectively. By Lemma 3.31 and Lemma 3.28, we
get |Fm2 | = |φ(6A+ 6B)| ≤ |6A+ 6B| ≤ r13 |A|, which implies |A′| = |B′| = |A| ≥ |Fm2 | /r13. By Lemma 7.2,
there exists a distribution T ∈ Fm2 and a linear subspace V of entropy k′ = m−O(log(r) log(r/ε)3/ε2) such
that

E [1A′+B′(A
′ + B′)] ≈ε/3 E [1A′+B′(T + V)]

and
E
[
f(φ−1(A′ + B′))

]
≈ε/3 E

[
f(φ−1(T + V))

]
, (13)

where V is the uniform distribution over V . Now observe that since E [1A′+B′(A
′ + B′)] = 1,

E [1A′+B′(T + V)] ≥ 1− ε/3.

By Markov’s inequality,

Pr
t∼T

[
E [1A′+B′(t+ V)] > 1/2

]
≥ 1− 2ε/3.

In other words,

Pr
t∼T

[
|φ(A+B) ∩ (t+ V)| > 1

2
|t+ V |

]
≥ 1− 2ε/3.

By Lemma 7.4,
Pr
t∼T

[
φ−1(t+ V) is an affine source of entropy k′

]
≥ 1− 2ε/3.

Therefore φ−1(T + V) is (2ε/3)-close to a convex combination of affine sources (denoted by W) of entropy
k′. Since A+B ⊆ 3A+3B, φ−1(A′+B′) = φ−1(φ(A+B)) is exactly A+B. Therefore by (13) and triangle
inequality,

E [f(A + B)] ≈ε E [f(W)] .

Since the proof above works for every function f : Fn2 → [0, 1], by Corollary 3.42, A+B is ε-close to a convex
combination of affine sources.

29

References

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus k-wise
independence. Inf. Process. Lett., 88(3):107–110, 2003.

[BDT19] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from two-
source to nonmalleable extractors: achieving near-logarithmic min-entropy. SIAM Journal on
Computing, pages STOC17–31, 2019.

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 276–287. IEEE Computer Society, 1994.

[BRTW14] Eli Ben-Sasson, Noga Ron-Zewi, Madhur Tulsiani, and Julia Wolf. Sampling-based proofs of
almost-periodicity results and algorithmic applications. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, volume 8572 of Lecture Notes in Computer Science, pages 955–966. Springer, 2014.

[BS94] Antal Balog and Endre Szemerédi. A statistical theorem of set addition. Combinatorica,
14(3):263–268, 1994.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988.

[CG21] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space sources. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, 2021. To appear.

[CGH+85] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Roman Smolen-
sky. The bit extraction problem of t-resilient functions (preliminary version). In 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985,
pages 396–407. IEEE Computer Society, 1985.

[CGL20] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Nonmalleable extractors and codes, with their
many tampered extensions. SIAM J. Comput., 49(5):999–1040, 2020.

[CGL21] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost loga-
rithmic entropy. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, 2021. To appear.

[Cha02] Mei-Chu Chang. A polynomial bound in Freiman’s theorem. Duke mathematical journal,
113(3):399–419, 2002.

[Cha20] Eshan Chattopadhyay. Guest column: A recipe for constructing two-source extractors. SIGACT
News, 51(2):38–57, 2020.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source extractors,
and almost optimal privacy amplification protocols. In Irit Dinur, editor, IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 158–167. IEEE Computer Society, 2016.

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 299–311. ACM, 2016.

[CL20] Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret sharing for inter-
leaved tampering and composition of tampering. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages
584–613. Springer, 2020.

30

[Coh16a] Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers.
SIAM J. Comput., 45(4):1297–1338, 2016.

[Coh16b] Gil Cohen. Making the most of advice: New correlation breakers and their applications. In Irit
Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 188–196. IEEE
Computer Society, 2016.

[Coh16c] Gil Cohen. Non-malleable extractors - new tools and improved constructions. In Ran Raz,
editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, volume 50 of LIPIcs, pages 8:1–8:29. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016.

[Coh17] Gil Cohen. Towards optimal two-source extractors and Ramsey graphs. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 1157–1170. ACM, 2017.

[CS10] Ernie Croot and Olof Sisask. A probabilistic technique for finding almost-periods of convolutions.
Geometric and functional analysis, 20(6):1367–1396, 2010.

[CS16] Gil Cohen and Leonard J. Schulman. Extractors for near logarithmic min-entropy. In Irit
Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 178–187. IEEE
Computer Society, 2016.

[CZ16] Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources. In Ran
Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1,
2016, Tokyo, Japan, volume 50 of LIPIcs, pages 7:1–7:28. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient func-
tions. Annals of Mathematics, 189(3):653–705, 2019.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the method of
multiplicities, with applications to kakeya sets and mergers. SIAM J. Comput., 42(6):2305–2328,
2013.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

[Gow01] William T Gowers. A new proof of Szemerédi’s theorem. Geometric & Functional Analysis
GAFA, 11(3):465–588, 2001.

[GR07] Ben Green and Imre Z Ruzsa. Freiman’s theorem in an arbitrary abelian group. Journal of the
London Mathematical Society, 75(1):163–175, 2007.

[GRS06] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing sources by
obtaining an independent seed. SIAM J. Comput., 36(4):1072–1094, 2006.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. J. ACM, 56(4):20:1–20:34, 2009.

[Kar71] Anatolii Alekseevich Karatsuba. On a certain arithmetic sum. In Doklady Akademii Nauk,
volume 199, pages 770–772. Russian Academy of Sciences, 1971.

[Kar91] Anatolii Alekseevich Karatsuba. Distribution of values of Dirichlet characters on additive se-
quences. In Doklady Akademii Nauk, volume 319, pages 543–545. Russian Academy of Sciences,
1991.

31

[KRVZ11] Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[Li13] Xin Li. Extractors for a constant number of independent sources with polylogarithmic min-
entropy. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26-29 October, 2013, Berkeley, CA, USA, pages 100–109. IEEE Computer Society, 2013.

[Li15] Xin Li. Non-malleable condensers for arbitrary min-entropy, and almost optimal protocols for
privacy amplification. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptog-
raphy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages 502–531.
Springer, 2015.

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 168–177.
IEEE Computer Society, 2016.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source ex-
tractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1144–1156. ACM, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.
In Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20,
2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 28:1–28:49. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[Lov15] Shachar Lovett. An exposition of Sanders’ quasi-polynomial Freiman-Ruzsa theorem. Theory
Comput., 6:1–14, 2015.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extractors: optimal up to
constant factors. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA,
pages 602–611. ACM, 2003.

[Mek17] Raghu Meka. Explicit resilient functions matching Ajtai-Linial. In Philip N. Klein, editor, Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1132–1148. SIAM, 2017.

[MW97] Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, vol-
ume 1294 of Lecture Notes in Computer Science, pages 307–321. Springer, 1997.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[Plü61] Helmut Plünnecke. Eigenschaften und Abschätzungen von Wirkungsfunktionen. Number 22.
Gesellschaft für Mathematik u. Datenverarbeitung, 1961.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual IEEE
Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages
95–101. IEEE Computer Society, 2009.

[Ruz99] Imre Ruzsa. An analog of Freiman’s theorem in groups. Astérisque, 258(199):323–326, 1999.

32

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-
sources extractors. J. Comput. Syst. Sci., 77(1):167–190, 2011.

[San12] Tom Sanders. On the Bogolyubov-Ruzsa lemma. Analysis & PDE, 5(3):627–655, 2012.

[SSV05] Benny Sudakov, ENDRE SZEMERedi, and Van H Vu. On a question of Erdős and Moser. Duke
Mathematical Journal, 129(1):129–155, 2005.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distributions. In 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA, pages 32–42. IEEE Computer Society, 2000.

[TV06] Terence Tao and Van H. Vu. Additive combinatorics, volume 105. Cambridge University Press,
2006.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672, 2014.

[vN28] John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320,
1928.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory Comput., 3(1):103–128, 2007.

A Proof of Lemma 3.17

To prove Lemma 3.17, we need the following disperser by Zuckerman [Zuc07].

Definition A.1. We say a function Γ : [N]× [D]→ [M] is a (K, ε)-disperser if for every set X ⊆ [N] with
|X| ≥ K, the set Γ(X) := {Γ(x, y) | x ∈ X, y ∈ [D]} satisfies

|Γ(X)| ≥ εM.

Lemma A.2 ([Zuc07]). For every constant γ > 0 and ε = ε(n) > 0, there exists an efficient family of
(K = Nγ , ε)-disperser Γ : [N = 2n]× [D]→ [M] such that D = O(n

log(1/ε)) and M =
√
K.

Proof of Lemma 3.17. Let Γ : [D]× [C]→ [D0] be a (D1−γ , 3ε)-disperser from Lemma A.2, where D
2/γ
0 and

C = O(log(D)/ log(1/δ)) = O(log(D0)/ log(1/ε)). Observe that by definition of sampler, for every X s.t.
H∞(X) ≥ k and every T ⊆ {0, 1}m s.t. |T | ≤ ε2m,

Pr
x∼X

[
Pr

y∼[D0]
[Samp(x, y) ∈ T] > 2ε

]
≤ δ.

Define Samp′(x, y, z) = Samp(x,Γ(y, z)). We claim that for every x s.t. Pry∼[D] [∀z Samp(x, y, z) ∈ T] >
2D−γ , it is also true that Pry∼[D0] [Samp(x, y) ∈ T] > 2ε. This would imply

Pr
x∼X

[
Pr

y∼[D]
[∀z Samp(x, y, z) ∈ T] > 2D1−γ

]
≤ Pr
x∼X

[
Pr

y∼[D0]
[Samp(x, y) ∈ T] > 2ε

]
≤ δ,

which means Samp′ is a somewhere random sampler as required. To prove this, for every x define

Rx := {y ∈ [D0] : Samp(x, y) ∈ T}.

Then define
Lx := {y ∈ [D] : ∀z Γ(y, z) ∈ Rx}.

Observe that Γ(LX) ⊆ Rx. Therefore, by definition of Γ, if |Rx| < 3εD0 then |Lx| < D1−γ . In other words,
Pry∼[D] [∀z Samp(x, y, z) ∈ T] > 2D−γ > D−γ implies Pry∼[D0] [Samp(x, y) ∈ T] ≥ 3ε > 2ε.

33

B On Random Functions and Extractors for Sumset Sources

In this section, first we show that a random function is an extractor for sumsets with low additive energy.
Similar to the size of a sumset, the additive energy is also an intensively studied property in additive
combinatorics [TV06]. Then we briefly discuss why this result is not sufficient to prove that a random
function is an extractor for sumset sources with Theorem 6.

For two sets A,B ⊆ Fn2 , define γA,B(x) = |{(a, b) : a ∈ A, b ∈ B, a+ b = x}|. Observe that if A is the

uniform distribution over A and B is the uniform distribution over B, then Pr [A + B = x] =
γA,B(x)
|A||B| .

Definition B.1. The additive energy between A,B is defined as E(A,B) :=
∑
x∈A+B γA,B(x)2.

Without loss of generality, in the rest of this section we consider a “flat” sumset source A + B such
that A,B are uniform distributions over A,B of size K = 2k. We note that E(A,B) satisfies K2 ≤
E(A,B) ≤ K3, and 4k− log(E(A,B)) is exactly the “Rényi entropy” of A+B, which is defined as H2(X) =

− log(
∑
x∈Supp(X) Pr [X = x]

2
). In the following lemma we show that if E(A,B) is low (i.e. if H2(A + B) is

high), then a random function is an extractor for A + B with high probability.

Lemma B.2. For a random function f : Fn2 → {0, 1}, f(A + B) is ε-close to U1 with probability 1 −
2e−2ε2K4/E(A,B).

Proof. Observe that E [f(A + B)] = 1
K2

∑
x∈A+B γA,B(x) · f(x). Because the terms {γA,B(x) · f(x)}x∈A+B

are independent random variables, and each γA,B(x) · f(x) is in the range [0, γA,B(x)], the lemma is directly
implied by Hoeffding’s inequality.

Since the total number of subsets A,B of size K is at most
(

2n

K

)2
≤ 22nK , by union bound we get the

following theorem.

Theorem B.3. With probability 1 − 2−0.88nK , a random function is an extractor with error ε for sumset

sources A + B which satisfy E(A,B) ≤ K3

n/ε2 .

In other words, a random function is an extractor for flat sumset sources A+B which satisfy H2(A+B) ≥
k + log(n/ε2). However, Theorem 6 only shows how to extract from A + B when the “max-entropy”
H0(A + B) := log(|Supp(A + B)|) is close to k. Because H0(A + B) ≥ H2(A + B), it is possible that
H2(A + B) ≈ k and H0(A + B)� k, and in this case neither of our analysis works.

In additive combinatorics this corresponds to sets with “large doubling” and “large energy”, and can be
obtained with the following example. Suppose A = B = V ∪ R, where V is a linear subspace of dimension
k−1, and R is a random set of size K/2. Then E(A,B) ≥ E(V, V) ≥ K3/8, and |A+B| ≥ |R+R| ≈ K2/4.

Finally we remark that a well known result in additive combinatorics called the ‘Balog-Szémeredi-Gowers
theorem” [BS94, Gow01, SSV05] states that if E(A,B) ≥ K3/r then there must exist A′ ⊆ A, B′ ⊆ B of size
K/poly(r) such that |A′ +B′| ≤ poly(r) · |A|. However, if we apply this theorem on the cases which do not
satisfy Theorem B.3, we can only guarantee that there exist small subsets A′, B′ of size K/poly(n) which
have small doubling. Because Pr [A ∈ A′ ∧B ∈ B′] ≈ 1/poly(n), with Theorem 6 we can only prove that a
random function is an extractor for A′, B′ with error 1/2− 1/poly(n), which is comparable to a disperser.

34
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

