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Abstract

We study the complexity of problems solvable in deterministic polynomial time with access to

an NP or Quantum Merlin-Arthur (QMA)-oracle, such as PNP and PQMA, respectively. The former

allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas

the latter characterizes physically motivated problems such as Approximate Simulation (APX-SIM)

[Ambainis, CCC 2014]. In this area, a central role has been played by the classes PNP[log] and

PQMA[log], defined identically to PNP and PQMA, except that only logarithmically many oracle queries

are allowed. Here, [Gottlob, FOCS 1993] showed that if the adaptive queries made by a PNP machine

have a “query graph” which is a tree, then this computation can be simulated in PNP[log].

In this work, we first show that for any verification class C ∈ {NP,MA,QCMA,QMA,QMA(2),

NEXP,QMAexp}, any PC machine with a query graph of “separator number” s can be simulated

using deterministic time exp(s logn) and s logn queries to a C-oracle. When s ∈ O(1) (which

includes the case of O(1)-treewidth, and thus also of trees), this gives an upper bound of PC[log],

and when s ∈ O(logk(n)), this yields bound QPC[logk+1] (QP meaning quasi-polynomial time). We

next show how to combine Gottlob’s “admissible-weighting function” framework with the “flag-qubit”

framework of [Watson, Bausch, Gharibian, 2020], obtaining a unified approach for embedding PC

computations directly into APX-SIM instances in a black-box fashion. Finally, we formalize a simple

no-go statement about polynomials (c.f. [Krentel, STOC 1986]): Given a multi-linear polynomial p

specified via an arithmetic circuit, if one can “weakly compress” p so that its optimal value requires

m bits to represent, then PNP can be decided with only m queries to an NP-oracle.

1 Introduction

The celebrated Cook-Levin Theorem [Coo71; Lev73b] and Karp’s 21 NP-complete problems [Kar72] laid

the groundwork for the theory of NP-completeness to become the de facto “standard” for characterizing

“hard” problems. Indeed, in the decades since, hundreds of decision problems have been identified as

NP-complete (see, e.g., [GJ79]). Yet, despite the success of this theory, it soon became apparent that

finer characterizations were needed to capture the complexity of certain hard problems.

In this direction, Stockmeyer [Sto76] defined the Polynomial Hierarchy (PH), of which the second

level will interest us here. Specifically, one may consider ΣP
2 = NPNP (i.e. an NP-machine with access to

an NP-oracle) or ∆P
2 = PNP (i.e. a P machine with access to an NP-oracle). Here, our focus is on the

latter, defined as the set of decision problems solvable by a deterministic polynomial-time Turing machine

making polynomially many queries to an oracle for (say) SAT. Like NP, PNP has natural complete

problems, such as that shown by Krentel [Kre92]: Given Boolean formula φ : {0, 1}n 7→ {0, 1}, does the

lexicographically largest satisfying assignment x1 · · ·xn of φ have xn = 1?
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Restricting the number of NP queries. In 1982, in pursuit of yet finer characterizations, Papadim-

itriou and Zachos [PZ82] asked: What happens if one considers problems “slightly harder” than NP, i.e.

solvable by a P machine making only logarithmically many queries to an NP-oracle? This class, denoted

PNP[log], contains both NP and co-NP (since the P machine can postprocess the answer of the NP-oracle

by negating said answer), and is thus believed strictly harder than NP. The following decade saw a flurry

of activity on this topic (see Section 1.3); for example, Wagner [Wag87; Wag88] showed that deciding if

the optimal solution to a MAX-k-SAT instance has even Hamming weight is PNP[log]-complete.

This led to the natural question: Is PNP[log] = PNP? If one restricts the PNP machine to make all NP

queries in parallel (i.e. non-adaptively), denoted P‖NP, then Hemachandra [Hem89] and Buss and Hay

[BH91] have shown P‖NP = PNP[log]. Thus, adaptivity appears crucial; so, Gottlob [Got95] next allowed

dependence between queries as follows: One may view PNP as a directed acyclic graph (DAG), whose

nodes represent NP queries, and directed edge (u, v) indicates that query v depends on the answer of

query u. Denote this as the “query graph” of the PNP computation (Definition 3.1). In 1995, Gottlob

showed that any PNP computation whose query graph is a tree can be simulated in PNP[log]. To the best

of our knowledge, this is the current state of the art regarding PNP versus PNP[log].

Developments on the quantum side. A few years later, the complexity theoretic study of “quantum

constraint satisfaction problems” began in 1999 with Kitaev “quantum Cook-Levin theorem” [KSV02],

which states that the problem of estimating the “ground state energy” of a local Hamiltonian (k-LH) is

complete for Quantum Merlin Arthur (QMA, a quantum generalization of NP). Particularly appealing is

the fact that k-LH is physically motivated: It encodes the problem of estimating the energy of a quantum

system when cooled to its lowest energy configuration.

More formally, k-LH generalizes the problem MAX-k-SAT, and is specified as follows. As input, we

are given a (succinct) description of a Hermitian matrix H =
∑
iHi ∈ C2n×2n

, where each Hermitian

Hi is a local “quantum clause” acting non-trivially on at most k qubits (out of the full n-qubit system).

The ground state (i.e. optimal assignment) is then the eigenvector of H with the smallest eigenvalue,

which we call the ground state energy (i.e. optimal assignment’s value). Thus, understanding the low

temperature properties of a many-body system is “simply” an eigenvalue problem for some succinctly

described exponentially large matrix H. Since Kitaev’s work, a multitude of other physical problems

have been shown to be QMA-complete (see, e.g., surveys [Osb12; Boo14; Gha+15]).

The formalisation of PQMA[log]. In 2014, Ambainis tied the study of QMA and PNP[log] together by

discovering the first PQMA[log]-complete problem (PQMA[log] is defined as PNP, but with the NP-oracle

replaced with a QMA-oracle): Approximate Simulation (APX-SIM). To define APX SIM, suppose we wish

to simulate the experiment of cooling down a quantum many-body system, and then performing a local

measurement so as to extract information about the ground state’s properties. Formalized (roughly) as a

decision problem, we must decide, given Hamiltonian H describing the system, observable A describing a

local measurement, and inverse polynomially gapped thresholds α and β, whether there exists a ground

state |ψ〉 of H with expected value 〈ψ|A|ψ〉 below α.

For context, APX-SIM can be viewed as a quantum variation of Wagner’s PNP[log]-complete problem

above [Wag87; Wag88] (does the optimal solution to a MAX-SAT instance have even Hamming weight?),

since both problems ask about properties of optimal solutions to quantum and classical constraint

satisfaction problems, respectively. However, in the quantum setting, APX-SIM has the additional perk of

being strongly physically motivated. This is because often in practice, one is not interested in the ground

state energy, but in properties of the ground state itself (e.g. does it exhibit certain quantum phenomena?
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When does it undergo a phase transition?) [Gha+15]. APX-SIM models the “simplest” experiment

for computing such ground state properties, making no assumptions about additional information the

experimenter might a priori have. (For example, in APX-SIM, although the goal is to probe the ground

state of H, one is not given the corresponding ground state energy as input. This is crucial, both

complexity theoretically1 and physically, since in practice an experimenter does not a priori know the

ground state energy, as it is QMA-complete to compute to begin with!)

PQMA[log] versus PQMA and this paper. This sets up the question inspiring the current work — is

PQMA[log] = PQMA? In 2020, Gharibian, Piddock, and Yirka [GPY20] showed that PQMA[log] = P‖QMA, for

P‖QMA defined as P‖NP but with an NP-oracle. This gave a quantum analogue of P‖NP = PNP[log] [Hem89;

BH91], although it required completely different proof techniques2. In this paper, we thus set our sights

on the next step: Gottlob’s work on PNP computations with trees as query graphs [Got95]. What we are

able to achieve is not just a quantum analogue of [Got95], but a significant strengthening in multiple

directions for both NP and QMA: Our main result considers query graphs of bounded separator number

(which includes bounded treewidth, and hence trees), applies to a host of verification classes including NP

and QMA, and gives non-trivial (quasi-polynomial) upper bounds even beyond the bounded separator

number case. Along the way, we show how to combine the techniques used with the existing work on

APX-SIM and PQMA[log], yielding a unified framework for mapping PQMA-type problems directly to

APX-SIM instances.

1.1 Our results

To state our results, define (formal definitions in Section 2)

QV := {NP,MA,QCMA,QMA,QMA(2),NEXP,QMAexp}, (1)

QV+ := QV ∪ {StoqMA}. (2)

This is the set of classical and quantum verification classes for which our results will be stated. However,

our framework applies in principle to verification classes C beyond these sets; the main properties we

require are for C to allow promise gap amplification3 and classical preprocessing before verification.

Recall now that an NP query graph is a DAG encoding an arbitrary PNP computation, where nodes

correspond to NP queries; denote this an NP-DAG. Replacing NP with any C ∈ QV+, we arrive at the

notion of a C-DAG (Definition 3.1). As expected, deciding whether a given C-DAG corresponds to an

accepting PC computation is itself a PC-complete problem (Lemma 3.6). To thus obtain new upper

bounds on PC computations, in this work, we parameterize a given C-DAG via its separator number, s.

Briefly, a graph G = (V,E) on n vertices has a separator of size s(n) if there exists a set of at

most s(n) vertices whose removal splits the graph into at least two (non-empty) connected components

(Definition 2.9). G has separator number [Gru12] s(n) if, (1) for all subsets Q ⊆ V , the vertex-induced

graph on Q has a separator of size at most s(n), and (2) s(n) is the smallest number for which this holds.

1If the definition of APX-SIM were to be modified so that the ground state energy of H was given as part of the input,
then APX-SIM would be QMA-complete instead of PQMA-complete. This is because once one knows the ground state
energy, a single QMA query and no postprocessing suffices to answer APX-SIM.

2The roadblock quantumly is that unlike NP, QMA is a class of promise problems. Thus, one must account for the
possibility that a (say) PQMA[log] machine may make “invalid” queries, i.e. those violating the promise of the QMA-oracle.
A general survey covering such issues regarding promise problems is [O G06].

3Amplification here means that C with constant promise gap (difference between completeness and soundness parameters)
is equal to C with 1/ poly gap.
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Denote by C-DAGs a C-DAG of separator number s, where we write C-DAG1 for the case of s ∈ O(1).

Note that treewidth upper bounds separator number [Gru12].

1. Deciding C-DAGs. Our main result is the following. For clarity, by “deciding” a C-DAG, we mean

deciding whether it encodes an accepting or rejecting PC computation.

Theorem 1.1. Fix any C ∈ QV and efficiently computable function s : N→ N. Then,

C-DAGs ∈ DTIME
(

2O(s(n) logn)
)C[s(n) logn]

, (3)

for n the number of nodes in G.

In words, any PC computation with a query graph of separator number s can be simulated by a classical

deterministic Turing machine running in time 2O(s(n) logn) and making s(n) log n queries to a C-oracle.

With Theorem 1.1 in hand, we are able to obtain the following sequence of results.

First, by setting s = O(1), we significantly strengthen Gottlob’s [Got95] TREES(NP) = PNP[log] result

to the constant separator number case and broad range of verification classes C:

Theorem 1.2. For any C ∈ QV, C-DAG1 is PC[log]-complete.

In words, any PC computation with a query graph of constant separator number is decidable in PC[log].

Second, an advantage of Theorem 1.1 is that it scales with arbitrary s(n). Thus, to our knowledge,

we obtain the first upper bounds for PC involving quasi -polynomial resources:

Corollary 1.3. For all integers k ≥ 1 and C ∈ QV, C-DAGlogk ∈ QPC[logk+1(n)], where QP denotes

quasi-polynomial time (Definition 2.1).

In words, any PC computation with a query graph of polylogarithmic separator number is decidable in

quasi-poly-time with polylog C-queries. In general, s(n) may scale as O(n), in which case Theorem 1.1

does not yield a non-trivial bound. Whether this can be improved is left as an open question (Section 1.4).

Third, an example of a verification class which is not known to satisfy promise gap amplification is

StoqMA (see, e.g., [AGL20]). Here, we also obtain non-trivial bounds, albeit weaker ones:

Theorem 1.4. Fix C = StoqMA and any efficiently computable function s : N→ N. Then,

C-DAGs ∈ DTIME
(

2O(s(n) log2 n)
)C[s(n) log2 n]

. (4)

Note the extra log factor in the exponents — this prevents Theorem 1.4 from recovering result P‖StoqMA =

PStoqMA[log] [GPY20] (P‖StoqMA corresponds to a StoqMA-DAG with s(n) = 1). Nevertheless, we do

recover and improve on [GPY20] when we instead consider the case of bounded depth query graphs next.

Finally, Gottlob [Got95] also studied query graphs of bounded depth. The next theorem is an extension

of his result. We define C-DAGd as C-DAGs, except now we consider query DAGs of depth (Definition 4.5)

at most d (as opposed to separator number s).

Theorem 1.5. Let d : N → N be an efficiently computable function. For C ∈ {NP,NEXP,QMAexp},
C-DAGd ⊆ PC[d(n) log(n)], and for C ∈ QV+,

C-DAGd ⊆ DTIME
(

2O(d(n) log(n))
)C[d(n) log(n)]

.
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Using this, we obtain that deciding a PC computation with a query graph of constant depth is PC[log]-

complete (Corollary 4.19). This modestly improves upon P‖StoqMA = PStoqMA[log] [GPY20], which is the

case of d = 1 (versus our d ∈ O(1) in Theorem 1.5).

2. A unified framework for embedding PC problems into APX-SIM. To date, there are two

known approaches for embedding QMA-oracle queries (and thus PQMA[log] problems) into APX-SIM: The

“query gadget” construction of Ambainis [Amb14], and the “flag-qubit” framework4 of Watson, Bausch,

and Gharibian [WBG20] . Each of these frameworks has complementary pros and cons: The former

handles adaptive oracle queries, but is difficult to use when strong geometric constraints for APX-SIM

are desired (e.g. the physically motivated settings of 1D and/or translationally invariant Hamiltonians),

whereas the latter requires non-adaptive queries, but is essentially agnostic to the circuit-to-Hamiltonian5

mapping used (and thus easily handles geometric constraints).

Here, we utilize the construction behind our main result, Theorem 1.1, to unify these approaches into

a single framework for embedding arbitrary PC computations into APX-SIM. The crux of the reduction

is the following “generalized lifting lemma”, whose full technical statement (Lemma 5.3) is beyond the

scope of this introduction (below, we state a significantly simplified version6).

Lemma 1.6 ((Informal) Generalized Lifting Lemma (c.f. Lifting Lemma of [WBG20])). Fix C ∈ QV+

and any local circuit-to-Hamiltonian mapping Hw (Definition 5.2). Define Nd := 2O(d(n) logn), and

Ns := 2O(s(n) logn) if C ∈ QV or Ns := 2O(s(n) log2 n) if C = StoqMA. Define N := min(Ns, Nd), and let

G be a C-DAG instance n vertices of separator number s(n) (as in Theorem 1.1) and depth d(n) (as in

Theorem 1.5). Then, there exists a poly(N)-time many-one reduction from G to an instance (H,A) of

APX-SIM, such that H has size poly(N) and satisfies all geometric properties of Hw (e.g. locality of

clauses, 1D nearest-neighbor interactions, etc).

In words, one can embed any PC computation directly into an APX-SIM instance H in poly(N) time,

irrespective of the choice of C or Hw (i.e. the mapping is essentially black-box). For clarity, a lifting lemma

for APX-SIM was first given in [WBG20], which our Lemma 1.6 generalizes as follows: (1) [WBG20]

requires parallel queries to C, whereas Lemma 1.6 allows arbitrary PC computations (parameterized by

separator number s), and (2) [WBG20] requires promise gap amplification for C, which is not known to

hold for StoqMA, whereas Lemma 1.6 allows C = StoqMA.

Next, by applying our lifting lemma for C = QMA and s ∈ O(1), we obtain PQMA[log]-hardness of

APX-SIM (Theorem 5.7). This is not surprising, since our Theorem 1.2 shows C-DAG ∈ PQMA[log], and

APX-SIM is PQMA[log]-hard [Amb14; GY19]. What is interesting, however, is:

1. The map from PC to APX-SIM of Lemma 1.6 is “direct”, meaning we embed all the query

dependencies of the input C-DAG directly into the flag qubit construction.

2. A poly-time reduction from PQMA to APX-SIM for all 1 ≤ s ≤ n would imply PQMA = PQMA[log]

and is therefore unlikely, if one believes PQMA 6= PQMA[log]. However, Lemma 5.3 shows PQMA

can be embedded into APX-SIM, at the expense of blowing up the APX-SIM instance’s size to

N = 2O(s(n) logn).

3. Finally and most interestingly, the construction of [WBG20] is somewhat mysterious, in that it

“compresses” multiple QMA query answers into a single flag qubit, which a priori appears at odds

4This is a significantly generalized version of the “sifter” construction of Gharibian and Yirka [GY19].
5Here, a “circuit-to-Hamiltonian mapping” is a quantum analogue of the Cook-Levin construction, i.e. a map from

quantum verification circuits to local Hamiltonians.
6For example, Lemma 5.3 also takes a separator tree as part of its input; for pedagogical purposes, the informal version

presented here ignores this, as a separator tree is computed in poly(N) time in all our applications of Lemma 5.3 anyway.
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with Holevo’s theorem7. In the present paper, we reveal why this works — our construction utilizes

the “admissible weighting function” framework of [Got95], which Gottlob used to reduce PNP

computations to maximization of a real-valued function, f . But as we discuss in Section 1.2, this is

precisely what the flag qubit framework allows one to simulate (in both [WBG20] and here)!

In fact, we observe that [Amb14] implicitly rediscovers8 a version of Gottlob’s weighting function approach.

Thus, underlying all three works of [Got95; Amb14; WBG20], as well as the current one, is a central

unifying theme worth stressing:

Theme 1.7 (Unifying theme). The reduction of PC to maximizing a single real-valued function.

Finally, for C = StoqMA and s ∈ O(1), application of our lifting lemma is still possible (i.e. utilizing

the Ns term), but the Hamiltonian obtained is now quasi-polynomial in size, since N := 2O(s(n) log2 n)

(Theorem 5.8). Luckily, we can instead utilize the Nd term (i.e. bounded-depth setup) of the lifting

lemma, which yields the desired poly(n)-size output Hamiltonian when d ∈ O(1). This means we recover

the PStoqMA[log]-hardness result of [GPY20] via the flag qubit framework (details in Section 5.4,) resolving

an open question of [WBG20]. For clarity, [GPY20]’s proof of this result is via perturbation theory, which

we do not require here.

3. No-go statement for “weak compression” of polynomials. To further drive home the point

of Theme 1.7, we close with a simple no-go statement purely about polynomials. Roughly, given a

real-valued polynomial f (specified9 via an arithmetic circuit (Definition 6.1)), we define weak compression

as efficiently mapping f to an efficiently computable real-valued function g, such that there exists an

optimal point y∗ at which g is maximized, from which (1) we may efficiently recover an optimal point x∗

maximizing f , and (2) g(y∗) requires fewer bits than f(x∗) to represent (i.e. has been “compressed”).

Lemma 1.8. Fix any function h : R+ → R+. Suppose that given any multi-linear polynomial p (repre-

sented as an arithmetic circuit) requiring B bits for some optimal solution (in the sense of Definition 6.2),

p is weakly compressible to h(B) bits. Then PNP ⊆ PNP[h(B)].

Let us be clear that this statement is not at all surprising for the reader familiar with Krentel’s

work [Kre88a] on OptP (see Section 1.3). Nevertheless, we believe it is worth formalizing, as it uses

complexity theory to give a no-go statement about a purely mathematical concept (non-compressibility

of polynomials). From Lemma 1.8, one obtains:

Corollary 1.9. If any multi-linear polynomial p (represented as an arithmetic circuit) can be weakly

compressed with h(B) = O(logB), then PNP ⊆ PNP[log].

Corollary 1.10. If any multi-linear polynomial p requiring B ∈ O(1) bits for some optimal solution can

be weakly compressed with h(B) = 1, then the Polynomial-Time Hierarchy (PH) collapses to its third level

(more accurately, to PΣp
2 ).

7Roughly, Holevo’s theorem says that n qubits cannot reliably transmit more than n bits of information.
8Like [Got95], [Amb14] uses an exponentially growing weighting function to ensure soundness when simulating adaptive

oracle queries, although the term “admissible weighting function” is not used in the latter.
9Strictly speaking, we do not require arithmetic circuits to specify f . However, the multi-linear polynomials produced

for our statement can have exponentially many terms if expanded fully in a monomial basis. To specify this succinctly,
it suffices not to expand brackets in our polynomial descriptions (i.e. not replace (x + y)(a + b) = xa + xb + ya + yb);
arithmetic cricuits are a natural avenue for formalising this.
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t

Figure 1: Simple example of a graph transformation, where the outputs of u are decoupled by creating
copies w0, w1 with hardcoded inputs. t selects the copy of w depending on the output of u.

1.2 Techniques

1. Techniques for deciding C-DAGs. At a high-level, our approach follows Gottlob’s strategy

for PNP [Got95]: Given10 a C-DAG G, we (1) “compress” G to an equivalent query G′, (2) define an

“admissible weighting function” on G′, (3) define an appropriate verifier V , on which binary search via

C-oracle queries suffices to extract the original C-query answers in G, and thus to decide G itself. The

key steps at which we deviate significantly from [Got95] are (1) and (3), as we now elaborate.

In more detail, in order to decide G, the goal is to compute a correct query string x for G, i.e. a string

of answers to the C-oracle queries asked by G. (Note x is not necessarily unique when C is a promise

class such as QMA.) For this, fix any topological order T on the nodes of G. The clever insight of [Got95]

(rediscovered in [Amb14]), is that by “weighting” queries early in T exponentially larger than queries later

in T , one can force all queries, in order, to be answered correctly. Roughly speaking, such an exponential

weighting scheme ω is called “admissible” (Definition 4.3). The core premise is then to map (G,ω) to a

real-valued function f , so the maximum value of f encodes the query string x. Hence, by conducting binary

search on f via the C-oracle, one can identify f ’s optimal value, thus recovering x. The challenge is that for

arbitrary G, the maximum value of f can scale exponentially in n, the number of nodes in G. Thus, one re-

quires poly(n) queries to extract x, obtaining no improvement over the PC computation G we started with!

Compressing G. To overcome this in our setting of bounded separator number (and beyond), we first

recursively compute separators of G, obtaining a “separator tree” (Section 2.2.1) structure overlaying

G. With this separator tree in hand, we show our main technical lemma, the Compression Lemma

(Lemma 4.7). Roughly, the idea behind the Compression Lemma is to “decouple” dependencies in G by

creating multiple copies of a node. To illustrate, an oversimplified example is given in Figure 1, where the

output node w depends on u, which depends on v. (Each node encodes, say, an NP query.) To remove

the dependency of w on u, we create two copies w0 and w1, where the input from u is hardcoded as 0 or

1, respectively. Then an output node t is added to select the correct copy of w depending on the output

of v.

For clarity, this basic decoupling principle is reminiscent of that employed in [Got95]. However,

whereas the latter maps G to G′ via iterative local transformations (similar to Figure 1, but without the

t node), here we are unable to make such an approach work. Indeed, due to the much stronger coupling

between nodes in our setting, we appear to acquire a carefully orchestrated, global transformation of G to

G′. Roughly, we must carefully exploit the separator tree as a guide to recursively create node copies

10Gottlob’s modeling of query graphs is slightly different, in that nodes of the DAG encode propositional formulae,
whereas here it is more convenient to put verification circuits at nodes.
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and reroute wires, at the end of which we introduce a “conductor11” node t to orchestrate the madness.

For the reader interested in a brief peek at details (Section 4.2), Figure 3 runs through an example

graphically depicting the global compression, and Algorithm 2 is used (e.g.) in t to recursively orchestrate

and compute the final output of the new C-DAG, G′. The upshot of this global transformation is that,

when s ∈ O(1), G′ is “compressed” in such a way that (roughly) we can define an admissible weighting

function of at most poly(n) weight on G′, as we do next.

Designing the verifier V . The second main step (Section 4.3) is to use an admissible weighting function

on G′ to “reduce” G′ to maximization of a real-valued function, t (Theme 1.7); we use (Equation (25))

t(x, ψ1, . . . , ψN ) :=

N∑
i=1

f(vi)
(
xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ

)
, (5)

where intuitively, f(vi) is the weight at node i, and Pr[Qi(zi(x), ψi) = 1] is the probability that C-

verifier Qi at node vi accepts, given incoming wires zi(x) from its parents and proof |ψi〉. Function t is

carefully designed so that (1) any “approximately maximum” value of t encodes a correct query string x

(Lemma 4.16), and (2) we can design a C-verifier V with acceptance probability precisely t(x, ψ1, . . . , ψN )

(up to renormalization) (Lemma 4.15). Thus, binary search via V allows us to extract x from t. Crucially,

by the compression of the previous step, when s ∈ O(1), the maximum value of t is at most poly(n),

meaning O(log n) C-queries suffice in the binary search. Moreover, our V is simple — it simulates a

random Qi (according to the distribution induced by weights f(vi)) on (x, |ψi〉). We exploit this by

defining t over a cross product of proofs |ψi〉 (rather than a tensor product, as is usual); this sleight of

hand avoids complications regarding entanglement across proofs from previous works (e.g. [WBG20]).

2. Techniques for a unified APX-SIM framework. Roughly, [WBG20] embeds a (say) PQMA[log]

computation Π into APX-SIM as follows: (1) Build a “superverifier” circuit V , which verifies each of the

queries of Π in parallel, and conditioned on the output of each subverifier, performs a small rotation on a

shared “flag qubit”, q. The superverifier V is then pushed through an abstract circuit-to-Hamiltonian

mapping Hw, and the encoding of q in the resulting Hamiltonian Hw(V ) is carefully penalized to force

low energy states to correctly answer all queries. The advantage of this setup is that it is oblivious to

the choice of Hw; the disadvantage is that it requires a somewhat involved exchange argument to ensure

soundness against entanglement across parallel proofs.

Recall now that our main construction rolls up an entire arbitrary C-DAG into a single C-verifier, V

(Lemma 4.15). What we next show is that our V can rather simply be substituted for the superverifier V

of [WBG20] in the flag qubit construction. The key reason this works is again Theme 1.7 — since, as

mentioned above, the acceptance probability of our V literally encodes the value of t, we can treat the

output wire of our V as the “new flag qubit” q (thus eliminating the multiple rounds of small rotations

in [WBG20]). As in [WBG20], by then mapping V to Hw(V ), we can now penalize q on the Hamiltonian

side to force all low energy states of Hw(V ) to implicitly maximize t! Finally, we remark that since our V

is naturally robust against entanglement across proofs, our proof of correctness is significantly simpler

than [WBG20].

3. Techniques for “weak compression” of polynomials. This result follows easily by combining

Section 4.3.2 with standard techniques, so we keep the discussion brief. Roughly, given an NP-DAG, we

11Meant in the sense of an “orchestra conductor”.
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(1) apply the Cook-Levin theorem to map each NP verifier to a SAT formula, (2) arithmetize each of these

SAT formula and combine them to simulate Equation (5) on the Boolean hypercube, and (3) linearize

the resulting multi-variate polynomial; denote the output as p. Since p is multilinear, it is maximized on

our domain of interest on a vertex of the hypercube; thus, by design, from the maximum value of p, we

can recover the maximum value of t, from which we can extract the correct query string for the input

NP-DAG. The argument is concluded by observing that to identify the maximum p∗ of p, a binary search

via NP-oracle requires O(log(p∗)) queries. As an aside, the collapse of PH in Corollary 1.10 leverages

Hartmanis’ result that if PNP[2] = PNP[1], then PH = PΣp
2 [Har93].

1.3 Related Work

The classes PNP and PNP[log]. As mentioned above, NP ∪ coNP ⊆ PNP[log] ⊆ Σp
2, and PNP[log] ⊆

PP [BHW89]. It holds that PNP[log] = P‖NP [Hem89; BH91]. Gottlob [Got95] showed that PNP with

a tree for a query graph equals PNP[log] (this also follows from our Theorem 1.2). It is believed that

for any k ∈ O(1), the classes PNP[k], PNP[logk n], and PNP are distinct. For example, PNP[1] = PNP[2]

implies both PNP[1] = PNP[log] and a collapse of PH to ∆p
3 = PΣp

2 [Har93]. However, it is known that

PNP[logk(n)] = P‖NP[logk+1(n)] for all k ≥ 1 [CS92]. Complete problems for PNP[log] include determining

a winner in Lewis Carroll’s 1876 voting system [HHR97], and a PNP[log2 n]-complete problem is model

checking for certain branching-time temporal logics [Sch03].

Closely related to one of the central themes of this work, Theme 1.7, is Krentel’s [Kre88b] work

on OptP. Roughly, OptP[z(n)] is the class of functions (i.e. not decision problems) computable via

maximization of a real-valued function, where the function is restricted to z(n) bits of output precision.

Krentel shows the classes OptP[z(n)] and FPNP[z(n)] are equivalent (FP the set of functions computable

in poly-time). Through this, [Kre88b] obtains (e.g.) that determining whether the length of the shortest

traveling salesperson tour in a graph G is divisible by k is PNP-complete, but that determining if the

size of the max clique in G is divisible by k is only PNP[log]-complete. Before this, Papadimitriou had

shown [Pap82] that deciding if G has a unique optimum traveling salesperson tour is PNP-complete.

QMA, PQMA[log] and related classes. Kitaev’s “quantum Cook-Levin/circuit-to-Hamiltonian” con-

struction showing QMA-completeness for the local Hamiltonian problem has since been greatly extended

to many settings (e.g. [KR03; KKR06; D A+09; DS09]). For QMA(2), Chailloux and Sattath [CS12]

showed the separable sparse Hamiltonian problem is QMA(2)-complete. Fefferman and Lin [FL16] prove

that the local Hamiltonian problem with exponentially small promise gap is PSPACE-complete. See

(e.g.) [Osb12; Gha+15] for surveys and further results.

Ambainis [Amb14] initiated the study of PQMA[log], and showed APX-SIM is PQMA[log]-complete and

SPECTRAL GAP (deciding if the spectral gap of a local Hamiltonian is large or small) is PUQMA[log]-

hard. These results were obtained for log-local observables (APX-SIM) and Hamiltonians (APX-SIM

and SPECTRAL GAP). Gharibian and Yirka [GY19] improve both results to O(1)-local, and show

PQMA[log] ⊆ PP. In contrast to PNP[log], PQMA[log] is not believed to be in PH, since even BQP is

believed outside of PH [S A10; RT19]. Gharibian, Piddock, and Yirka [GPY20] next obtain a complexity

classification of PQMA[log] (along the lines of Cubitt and Montanaro [CM16]) depending on the class of

Hamiltonians employed; this includes, for example, PStoqMA[log]-completeness for APX-SIM on stoquastic

Hamiltonians. They also introduce the “sifter” framework to show the first PQMA[log]-hardness result for

1D Hamiltonians on the line. Watson, Bausch, and Gharibian [WBG20] significantly extend the sifter

framework to develop the flag-qubit framework (also used in Section 5), showing (among other results)

9



that APX-SIM on 1D translation-invariant systems is PQMAexp -complete.

Most recently, Watson and Bausch [WB21] show a PQMAexp-completeness result for approximating

a critical boundary in the phase diagram of a translationally-invariant Hamiltonian. Aharonov and

Irani [AI] and Watson and Cubitt [WC21] simultaneously and independently study variants of the

problem of computing digits of the ground state energy of a translationally invariant Hamiltonian in the

thermodynamic limit. The former shows that the function version of this problem lies between FPNEXP

and FPQMAexp , while the latter shows that a decision version of the energy density problem is between

PNEEXP and EXPQMAexp (for quantum Hamiltonians).

1.4 Open questions

First, can our main result (Theorem 1.1) be extended to further classes of graphs, perhaps by considering

different parameterizations, such as graphs with logarithmic pathwidth (which includes the case of

constant separator number)? Second, Theorem 1.1 gives non-trivial bounds when (say) s ∈ O(1) or

s ∈ O(polylog(n)). For s ∈ Θ(n), however, the DTIME base therein scales as 2n, thus yielding a

trivial upper bound on C-DAGs. Can our bound be improved from DTIME
(
2O(s(n) logn)

)C[s(n) logn]
to

DTIME
(
2O(s(n))

)C[s(n) logn]
(i.e. shave off the extra log factor in the base)? If so, one would immediately

recover the P‖StoqMA ⊆ PStoqMA[log] result of [GPY20] (currently, we rely on Theorem 1.5 to recover this

here), and more generally, our framework would not take a hit when applied to classes C without promise

gap amplification. However, what is unlikely is to show a bound of DTIME
(
2O(s(n))

)C[s(n)]
— since P‖NP

has s ∈ O(1), this would imply P‖NP = PNP[log] ∈ PNP[k] for k ∈ O(1). Third, do our theorems also hold

for complexity classes such as UniqueQMA (UQMA) or QMA1 (QMA with perfect completeness)? Here,

the main difficulty seems to be invalid queries (queries violating the promise), as then the verifier from

Lemma 4.15 does not necessarily have a unique proof or perfect completeness. One could also consider

AM-like complexity classes instead of the MA-like classes we used.

2 Preliminaries

Notation. S =
⋃· i Si denotes a partition of set S into subsets Si. := denotes a definition.

Promise problems. Due to the inherently probabilistic nature of quantum computation, the quantum

complexity classes we are interested in are defined in terms of promise problems. A promise problem Π is

defined by a tuple Π = (Πyes,Πno,Πinv) with Πyes ∪· Πno ∪· Πinv = {0, 1}∗. We call x ∈ Πyes a yes-instance,

x ∈ Πno a no-instance, and x ∈ Πinv an invalid instance.

Definition 2.1 (QP (quasi-polynomial time)). QP =
⋃
k DTIME(nlogk n) is the set of problems accepted

by a deterministic Turing machine in quasi-polynomial time.

2.1 Quantum Complexity Classes

The circuits used by quantum complexity classes belong to polynomial-time uniform quantum circuit

families {Qn}. That means, there exists a Turing machine that on input n outputs a classical description

of a quantum circuit Qn in time poly(n). Qubits are represented by the Hilbert space B := C2.

The arguably most natural quantum analogue of NP (or MA) is QMA, where a BQP-verifier is given

an additional quantum proof.
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Definition 2.2 (QMA). Fix polynomials p(n) and q(n). A promise problem Π is in QMA (Quantum

Merlin Arthur) if there exists a polynomial-time uniform quantum circuit family {Qn} such that the

following holds:

• For all n, Qn ∈ U
(
B⊗nA ⊗ B⊗p(n)

B ⊗ B⊗q(n)
C

)
. The register A is used for the input, B contains the

proof, and C the ancillae initialized to |0〉.
• ∀x ∈ Πyes ∃|ψ〉 ∈ B⊗p(|x|) : Pr[Q|x| accepts |x〉|ψ〉] ≥ 2/3

• ∀x ∈ Πno ∀|ψ〉 ∈ B⊗p(|x|) : Pr[Q|x| accepts |x〉|ψ〉] ≤ 1/3

Here, we say a quantum circuit Qn accepts an input |x〉|ψ〉 if measuring the first qubit of the ancilla

register C in the standard basis results in outcome |1〉. The acceptance probability is then given by

Pr[Q accepts |x〉|ψ〉] =
∥∥∥(IA ⊗ |1〉〈1|C1 ⊗ I)U |x〉A|ψ〉B |0〉⊗q(n)

C

∥∥∥2

2
. (6)

Note that the thresholds c = 2/3 and and s = 1/3 may be replaced with c = 1− ε and s = ε such

that ε ≥ 2− poly(n) [KSV02]. We refer to c as completeness, s as soundness, and c− s as the promise gap.

We also consider special cases of QMA. In QCMA, the proof is classical, i.e. |ψ〉 ∈ {0, 1}p(n). In

QMA(k), the verifier receives k unentangled proofs, i.e. |ψ〉 =
⊗k

j=1|ψj〉). It holds that QMA(2) =

QMA(poly(n)) as shown by Harrow and Montanaro [HM13]. Therefore, probability amplification is

possible. In QMAexp, p(n) and q(n) are allowed to be exponential (i.e. 2poly(n)) and {Qn} is an

exponential-time uniform quantum circuit family. QMAexp can be considered the quantum analogue of

NEXP.

The classical complexity classes NP and MA (Merlin-Arthur) may also be considered special cases of

QMA. Restricting QMA to classical proofs and classical randomized verifiers results in MA. Additionally

requiring perfect completeness and soundness yields NP. Note that NP and MA are usually equivalently

defined as the problems accepted by nondeterministic (randomized) Turing machines.

Next, we define the k-local Hamiltonian problem, which was shown to be QMA-complete in a “quantum

Cook-Levin theorem” by Kitaev [KSV02].

Definition 2.3 (k-local Hamiltonian). A Hermitian operator H ∈ Herm (B⊗n) acting on n qubits is a

k-local Hamiltonian if it can be written as

H =
∑
S⊆[n]
|S|≤k

HS ⊗ I[n]\S . (7)

Additionally, 0 4 HS 4 I holds without loss of generality.

We refer to the minimum eigenvalue λmin (H) as the ground state energy of H and the corresponding

eigenvectors as ground states.

Definition 2.4 (k-LH(H, k, a, b)). Given a k-local Hamiltonian H =
∑
iHi acting on N qubits and real

numbers a, b such that b− a ≥ N−c, for c > 0 constant, decide:

YES. If λmin(H) ≤ a (i.e. the ground state energy of H is at most a).

NO. If λmin(H) ≥ b.

Next, we give formally define the oracle based complexity classes used throughout this paper.

Definition 2.5 (PC). Let C be a complexity class with complete problem Π. PC = PΠ is the class of

(promise) problems that can be decided by a polynomial-time deterministic Turing machine M with the

ability to query an oracle for Π. If M asks an invalid query x ∈ Πinv, the oracle may respond arbitrarily.
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We say Γ ∈ PC if there exists an M as above such that M accepts/rejects for x ∈ Γyes/x ∈ Γno,

regardless of how invalid queries are answered.

For a function f , we define PC[f ] in the same way, but with the restriction that M may ask at most

O(f(n)) queries on input of length n.

For an integer k, we define PC[k], where M may ask at most k queries on each input.

P‖C denotes the class where M must ask all queries at the same time. We call these queries non-

adaptive opposed to the adaptive queries of the above classes, because the queries do not depend on the

results of other queries.

For a function f : {0, 1}∗ → {0, 1}∗, we define Pf and the other classes analogously, except that M

may now query the oracle for values f(x).

The PQMA[log]-complete problem is APX-SIM (approximate simulation). It essentially asks whether a

given Hamiltonian has a ground state with a certain property (e.g., a ground state where the first qubit

is set to |1〉).

Definition 2.6 (APX-SIM(H,A, k, l, a, b, δ) [Amb14]). Given a k-local Hamiltonian H =
∑
iHi acting

on N qubits, an l-local observable A, and real numbers a, b, and δ such that b− a ≥ N−c and δ ≥ N−c′ ,
for c, c′ > 0 constant, decide:

YES. If H has a ground state |ψ〉 satisfying 〈ψ|A|ψ〉 ≤ a.

NO. If for all |ψ〉 satisfying 〈ψ|H|ψ〉 ≤ λmin(H) + δ, it holds that 〈ψ|A|ψ〉 ≥ b.

Ambainis showed completeness for k = Θ(log n) [Amb14]. Gharibian and Yirka [GY19] improved

this to k = 5. Gharibian, Piddock, and Yirka [GPY20] improved this to k = 2 for physically motivated

Hamiltonian models.

Definition 2.7 (StoqMA [BBT06a]). Fix polynomials α(n), β(n), p(n), q(n), r(n) with α(n)− β(n) ≥
1/poly(n). A promise problem Π is in StoqMA (Stoquastic Merlin Arthur) if there exists a polynomial-time

uniform quantum circuit family {Qn} such that the following holds:

• For all n, Qn ∈ U
(
B⊗nA ⊗ B⊗p(n)

B ⊗ B⊗q(n)
C ⊗ B⊗r(n)

D

)
. The register A is used for the input, B

contains the proof, C ancillae initialized to |0〉, and D ancillae initialized to |+〉. Qn only uses X,

CNOT, and Toffoli gates.

• For x ∈ {0, 1}∗, |x| = n, |ψ〉 ∈ B⊗p(n), let |ψin〉 := |x〉A|ψ〉B |0〉⊗q(n)
C |+〉⊗r(n)

D . The acceptance

probability is then given by

Pr[Qn accepts |x〉|ψ〉] = 〈ψin|Q†nΠaccQn|ψin〉, (8)

where Πacc = |+〉〈+|C1 measures the first ancilla in the {|+〉, |−〉} basis.

• ∀x ∈ Πyes ∃|ψ〉 ∈ B⊗p(|x|) : Pr[Q|x| accepts |x〉|ψ〉] ≥ α(n)

• ∀x ∈ Πno ∀|ψ〉 ∈ B⊗p(|x|) : Pr[Q|x| accepts |x〉|ψ〉] ≤ β(n)

Note that the only difference between StoqMA and MA is that StoqMA may perform its final

measurement in the {|+〉, |−〉} basis (i.e. setting Πacc := |0〉〈0|C1 would result in MA) [BBT06a].

It further holds that the StoqMA verifier accepts any state with only nonnegative coordinates with

probability ≥ 1/2. Therefore, we cannot amplify the gap by majority voting as for MA. Recently,

Aharonov, Grilo, and Liu [AGL20] have shown that StoqMA with α(n) = 1 − negl(n) and β(n) =

1− 1/ poly(n) is contained in MA, where negl(n) denotes a function smaller than all inverse polynomials

for sufficiently large n. It is therefore unlikely that such an amplification is possible.
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2.2 Graph Theory

Let G = (V,E) be a directed graph. For a node v ∈ V , we define indeg(v) and outdeg(v) as the

number of incoming and outgoing edges, respectively. The sets parents(v) := {w ∈ V | (w, v) ∈ E}
and children(v) := {w ∈ V | (v, w) ∈ E} denote the parents and children of v, respectively. The set of

ancestors (descendants) of node v is the set of all u ∈ V \ {v}, such that there is a directed path in G

from u to v (v to u). If G contains no directed cycles, we call it a DAG (directed acyclic graph).

Definition 2.8 (Tree decomposition). Let G = (V,E) be an undirected graph. A tree decomposition

T = (VT , ET ) of G is a graph with m nodes labelled by subsets X1, . . . , Xm ⊆ V such that:

• Each node of G is contained in some node Xi of T :
⋃m
i=1Xi = V .

• For all (u, v) ∈ E, there exists an Xi such that u, v ∈ Xi.

• For all v ∈ V , the subtree in T induced by {Xi | v ∈ Xi} is connected.

The width of a tree decomposition T is defined as width(T ) := maxi|Xi| − 1. The treewidth of G, denoted

tw(G), is defined as the minimum width among all possible tree decompositions of G.

Bodlaender [Bod93] has shown that tree decompositions for graphs with bounded treewidth (i.e. tw(G) =

O(1)) can be computed in linear time.

The connection between tree decompositions and separators, which we define next, has a long and

well-studied history (e.g. [RS86; Ree92; Bod+95; Ami10; Bod+13]).

Definition 2.9 (Separator number [Gru12]). Let G = (V,E) be an undirected graph. A set S ⊆ V is a

separator of G if G \S (i.e. the graph induced by the nodes V \S) has at least two connected components

or at most one node. S is balanced if every connected component of G \ S has at most d(|V | − |S|)/2e
nodes. The balanced separator number of G, denoted s(G), is the smallest k such that for every Q ⊆ V ,

the induced subgraph G[Q] has a balanced separator of size at most k.

Lemma 2.10 (Theorem 9 of [Gru12] (see also12 [RS86; Bod+95])). s(G) ≤ tw(G) ≤ O(s(G) · log n).

We define tree decompositions and separator number for a directed graph G on the undirected version of

G. It appears to be an open problem whether tw(G) = Θ(s(G)) holds. However, resolving this question

would not improve our results, since we only use the first inequality.

2.2.1 Separator Trees

The separator number allows us to decompose graphs into separator trees, which we use to evaluate query

graphs more efficiently.

Definition 2.11. A (balanced) separator tree of an undirected graph G = (V,E) is a tree T = (VT , ET ),

with vertices in VT labelled by subsets {S1, . . . , Sm} satisfying
⋃· mi=1 Si = V , and T being rooted in S1.

S1 is a (balanced) separator of G, and the trees rooted in the children of S1 are (balanced) separator

trees of G \ S1. To distinguish vertices/edges of G from vertices/edges of T , we refer to the latter as

supervertices/superedges. A path along superedges is called a superpath. The unique superpath from S1

to any supervertex S is called a branch of the tree.

Unless noted otherwise, throughout this work we assume separators are balanced.

Lemma 2.12. Given an n-vertex graph G = (V,E), a separator tree T of G with separator number

s := s(G) can be computed in time nO(s).

12Proposition 2.5 of [RS86] gives the slightly weaker bound s(G) ≤ tw(G) + 1, which also suffices for our purposes.
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Proof. By Definition 2.9, every induced subgraph of G has a balanced separator of size at most s. Thus,

the brute force approach to build a separator tree is to first brute force search for a separator S of G in

time ns
′

for s′ = s+ 2 (try all
(
n
s

)
subsets of vertices, for each subset check O(n2) edges), remove it, and

recurse on all induced balanced subgraphs on V \ S. (Technically, since we do not know s beforehand,

we can try all values for separator size starting from 2 onwards via brute force; this does not affect the

overall runtime.)

To analyze the runtime of this procedure over all recursive calls, a slight non-triviality is that for a

balanced separator S (Definition 2.9), we have no control over the sizes of each connected component of

G \ S, other than no one component has size more that |V |/2. Thus, the recurrence relation one obtains

scales as T (n) =
(∑k

i=1 T (ni)
)

+ ns
′
, where 2 ≤ k ≤ n,

∑k
i=1 ni ≤ n, ni ≤ n/2 for all i, and for some

s′ = s+ 2. (In particular, this means the standard Master Theorem [BHS80] cannot be applied.) In fact,

the values of the ni can even change between levels of the recurrence.

The analysis, luckily, is simple. Let L = 1 denote the base case of the recurrence, which we view as the

root of a recursion tree (i.e. each node v of the tree is a recursive call, whose children correspond to the

recursive calls made by v). At any level L ≥ 1, we claim the additive cost at a node v (i.e. corresponding

to the “+ns
′
” term) is at least twice the additive cost of its children. This implies the total cost incurred

at level L+ 1 is at most half the cost of level L, giving a total cost for the algorithm via geometric series∑D−1
L=0

ns′

2L ≤ 2ns
′
, for all D denoting the depth of the recursion, as claimed.

To see that the cost at any v is indeed at least twice the cost of its children w1, . . . , wk, let n be the

input size for v and n1, . . . , nk the input sizes for w1, . . . , wk, respectively. Then, the total additive cost

across all children of v is

k∑
i=1

ns
′

i = ns
′
k∑
i=1

ni
n

(ni
n

)s′−1

≤ ns′ max
i

(ni
n

)s′−1

≤ 1

2
ns
′
, (9)

where the first inequality follows since the coefficients ni/n yield a convex combination, and the second

inequality since ni ≤ n/2 for all i and s′ = s+ 2 ≥ 1.

Remark 2.13. Note that the separator tree computed by Lemma 2.12 may contain separators of different

sizes 1 ≤ s′ ≤ s. However, in this work it is convenient to assume without loss of generality that all

separators have size exactly s. This can trivially be achieved by “padding” each separator S of size

1 ≤ s′ < s by adding dummy vertices to S (and hence to G; all dummy vertices are isolated). The number

of dummy vertices added is trivially at most sn (there can never be more than n separators); thus, the

size of G increases by at most sn vertices, which does not affect any of our results.

Additionally, although by definition of balanced separator, a balanced separator tree has O(log n)

depth, at times we may wish to leverage a shorter depth tree if one should exist. For convenience, we

hence state the following lemma.

Lemma 2.14. Given an n-vertex graph G, depth D and separator size s (D and s are specified in unary),

a separator tree of G of depth D with separators of size s can be computed in time nO(Ds), if it exists.

Proof. A brute-force approach similar to Lemma 2.12 is used, except there is a catch: At any level L of

the recursion, for each subset of vertices S we consider, even if S is a separator, it may not lead to a

depth D separator tree, even if such a tree exists. Thus, it does not suffice at level L to simply find a size

s separator S, but rather in the worst case we may need to consider all such O(ns) such separators S.

Thus, the recurrence relation now scales as T (n) = ns
(∑k

i=1 T (ni)
)

+ ns
′
. Running the same argument

as Lemma 2.12 now yields total cost
∑D−1
L=0 n

s′
(
ns

2

)L ∈ nO(Ds), where recall s′ = s+ 2.
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V1 V2

Y1 Y2

X2

v1 v2

Figure 2: Left: A simple example of an NP-DAG for with two nodes, with v2 the output node. Right:
The circuit view represented by the NP-DAG. Each Vi is an NP verifier taking in input in register Xi and
proof in register Yi. Note v1 has in-degree 0, hence V1 has trivial input register X1. The output wire of
V2 carries the output of the NP-DAG.

Algorithm 1 Evaluation procedure for C-DAG

1: function Evaluate(G = (V,E))
2: Sort the nodes of V topologically into v1, . . . , vn.
3: The variable xi ∈ {0, 1} will denote the result of vi’s query.
4: for i = 1, . . . , n do
5: zi ←©vj∈parents(vi) xj . © denotes concatenation (concatenation order is specified by Qi).

6: xi ←


1, if zi ∈ Πi

yes

0, if zi ∈ Πi
no

0 or 1 (nondeterministically), if zi ∈ Πi
inv

7: return xn . Recall vn is the result node.

Finally, we remark that only the size s of the separators in the balanced (or low-depth) separator tree

is relevant for our algorithms. The separator number s(G) is only used to compute separator trees more

efficiently. For a balanced separator tree, we may have s(G) ≥ Ω(s · log(n)).13

3 Query graphs and C-DAG

The main object of study in this work is the concept of a query graph, which we now formally define in

the context of a decision problem, C-DAG.

Definition 3.1 (C-DAG (Figure 2)). Fix any complexity class C ∈ QV+. A C-DAG instance is defined

by an n-node DAG G = (V = {v1, . . . , vn}, E), with structure as follows:

• Vertex vn ∈ V is the unique vertex with outdeg(vn) = 0, denoted the result node.

• Each vi ∈ V is associated with a promise problem Πi ∈ C that determines the output of vi. Formally,

Πi is specified via a poly(n)-sized description14 of a verification circuit Qi with designated input

and proof registers Xi and Yi.15 The input register Xi consists of precisely indeg(vi) bits/qubits, set

to the string on vi’s incoming edges/wires. In order to allow non-trivial Qi for bounded in-degree,

we allow an implicit padding of Xi to poly(n) bits. vi has a single output wire, denoted out-wire[vi],

corresponding to the output of the verifier Qi.

Finally, we say G ∈ C-DAGyes (respectively, G ∈ C-DAGno) if the evaluation procedure EVALUATE

(Algorithm 1) outputs 1 (respectively, 0) deterministically (i.e. regardless of how any invalid queries are

answered).

13Proof: Let G be a complete binary tree on n-nodes with additional edges from each node to its descendants. Then
s(G) = Θ(logn), but G has a separator tree with separators of size 1.

14This description may be implicit to describe exponentially large circuits (e.g., for NEXP).
15For example, if C = NP, then Πi

yes is the set of all strings x on Xi, for which there exists a proof y on Yi, such that NP
verifier Qi accepts (x, y).
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Remark 3.2. Observe that if C is a promise class, then C-DAG is a promise problem (as opposed to a

decision problem) — this is because then Πi
inv is not necessarily empty, and so we must be promised that

Algorithm 1 outputs either 0 or 1 deterministically, regardless of how invalid queries are answered.

Definition 3.3 (Correct query string). Any string x ∈ {0, 1}n that can be produced via Line 6 of

Algorithm 1 is called a correct query string.

Remark 3.4. Intuitively, in Definition 3.3 the bits of x encode a sequence of correct query answers

corresponding to the nodes of G. Note the correct query string need not be unique if C is a promise class

(i.e. invalid queries are allowed). Also, we may view any query string as a function V → {0, 1}.

Remark 3.5. Our notion of C-DAG is similar to the DAGS(NP) formalization of Gottlob (Definition 3.2

of [Got95]), except the latter has node queries encoded by propositional formulae. In contrast, here we

use verification circuits at the nodes to make it easier to abstractly address a variety of verification classes

C. (Alternatively, one might also consider “quantizing” the NP-dags of [Got95] by replacing propositional

formulae with local Hamiltonians.)

Just as Gottlob shows DAGS(NP) (more accurately, DAGS(SAT)) is PNP-complete [Got95], here we

have the more general statement:

Lemma 3.6. For any C ∈ QV+, C-DAG is PC-complete.

Proof. First, C-DAG ∈ PC holds because a PC machine can straightforwardly compute a correct query

string by simulating Algorithm 1 on a C-DAG-instance G. By definition, if G ∈ C-DAGyes, then xn = 1,

and if G ∈ C-DAGno, then xn = 0.

Second, to show PC-hardness of C-DAG, we sketch a poly-time many-one reduction from PC to

C-DAG. Let M be a PC machine receiving input x ∈ {0, 1}∗. Without loss of generality, we may assume

that M always performs m ≤ poly(|x|) queries, so let G be a DAG with m nodes. Node vi represents the

ith query of M and has incoming edges from v1, . . . , vi−1 (i.e. query i depends on all previous queries).

Then, Qi is defined as the circuit that, conditioned on the answers of queries 1 through i − 1, first

computes the C-query φ (e.g. φ could be a SAT formula or a local Hamiltonian) which M would send to

the C-oracle for query i, and simulates the corresponding C-verification circuit on φ, outputting the result

of said verification. (For clarity, note the C-verifier is not actually “run” here; we are simply defining the

action of Qi as part of the query graph for the reduction.) By construction and how YES/NO instances

of C-DAG are defined (Algorithm 1), G ∈ C-DAG if and only if M accepts x.

Remark 3.7. When C is a promise class, PC is also a promise class (despite having P as a base).

This is because, as with the definition of C-DAG (Definition 3.1), a valid PC machine is promised to

deterministically output the same answer regardless of how invalid queries are answered.

Thus, Lemma 3.6 says that on general query graphs G, C-DAG captures all of PC . The primary

aim of this paper is hence to consider graphs G with bounded separator number (which, by Lemma 2.10,

includes the case of bounded treewidth). For this, we introduce the following definition for convenience.

Definition 3.8 (C-DAGs). Let s : N → N be an efficiently computable function. Then, C-DAGs is

defined as C-DAG, except that G has separator number s(G) ∈ O(s(n)), for n the number of nodes used

to specify the C-DAG instance. For brevity, we use C-DAG1 to denote the case of s ∈ O(1).

Thus, the union of C-DAGs over all polynomials s : N 7→ N equals C-DAG.
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4 Query Graphs with Bounded Separator Number

We first state the main technical theorem of this section, Theorem 4.1, followed by the results we obtain

from it as corollaries. The remainder of Section 4 then proves Theorem 4.1. For clarity, throughout this

work, we assume that the full specification of any C-DAG instance G (i.e. the DAG itself, the verification

circuits Qi, etc) scales polynomially with its number of nodes, n.

Theorem 4.1. Fix C ∈ QV. As input, we are given (1) a C-DAG instance G on n nodes, and (2)

a separator tree for G of depth D and separator size s. Then, G can be decided in deterministic time

2O(sD+logn) with O(sD + log n) queries to a C-oracle.

Remark 4.2. The class StoqMA is not included in Theorem 4.1; this is because the proof of the theorem

requires C with a constant promise gap, which StoqMA is not known to have. (See Section 4.4 for the

weaker result we are able to show for StoqMA.)

With Theorem 4.1 in hand, we obtain the following results.

Theorem 1.1. Fix any C ∈ QV and efficiently computable function s : N→ N. Then,

C-DAGs ∈ DTIME
(

2O(s(n) logn)
)C[s(n) logn]

, (3)

for n the number of nodes in G.

Proof. A separator tree of depth D = O(log(n)) and separators of size s = s(G) is computed using

Lemma 2.12 in time nO(s). Applying Theorem 4.1 completes the proof.

In words, this says that PC , with the restriction that the query graph used by the P machine has separator

number f(n), is contained in the class on the right side of Equation (3). When f ∈ O(1), this upper

bound is tight:

Theorem 1.2. For any C ∈ QV, C-DAG1 is PC[log]-complete.

Proof. C-DAG1 ∈ PC[log] is immediate from Theorem 1.1. As for PC[log]-hardness, we use the well-known

fact that PC[log] ⊆ P‖C for general [Bei91]16 C, and observe P‖C -hardness of C-DAG1. Namely, the DAG

G for any input to a problem from P‖C is a star, with all edges directed towards the center of the star,

which is the output node. Thus, G has separator size 1 (i.e. remove the center of the star to isolate all

remaining vertices), i.e. it encodes an instance of C-DAG1.

More generally, we obtain the following general scaling corollary when the separator number is polyloga-

rithmic.

Corollary 1.3. For all integers k ≥ 1 and C ∈ QV, C-DAGlogk ∈ QPC[logk+1(n)], where QP denotes

quasi-polynomial time (Definition 2.1).

Organization of remainder of section. Section 4.1 introduces the notion of weighting functions.

Section 4.2 gives the main graph transformation which “compresses” a C-DAG instance appropriately,

and sets up a corresponding weighting function. This can be roughly thought of as a “hardness proof”,

i.e. that the compressed DAG output by this graph transformation captures the original C-DAG instance.

16Reference [Bei91] actually studies only NP, but the containment proof technique straightforwardly generalizes to other
classes: Namely, instead of making logarithmically many adaptive queries to C, precompute the polynomially many potential
queries the P machine could make, and send these in one parallel round to the C-oracle.
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Section 4.3 gives the matching upper bound — that the compressed DAG, coupled with an appropriate

choice of weighting function, can now be resolved with fewer queries to a C-oracle. Section 4.4 and

Section 4.5 discuss the special cases of StoqMA and bounded depth (beyond the naive log bound)) C-DAG

instances, respectively.

Notation. The remainder of this section introduces a fair amount of notation. For ease of reference, we

collect notation here. Γ(v) := {w | (v, w) ∈ E} is the neighbor set of vertex v. The descendents of vertex

v are denoted Desc(v), i.e. the set of nodes reachable from vertex v via a directed path, excluding v itself.

Analogously, the ancestors of vertex v are denoted Anc(v), i.e. the set of nodes from which there is a

directed path to v, excluding v itself.

4.1 Weighting Functions

We now introduce the concept of weighting functions, which assign a weight to each node in a DAG

G. Weighting functions were first used by Gottlob [Got95] to prove TREES(NP) = PNP[log], and later

implicitly by Ambainis [Amb14] to show PQMA[log]-hardness of the Approximate Simulation (APX-SIM)

problem. We use a modified definition.

Definition 4.3 (Weighting function). Let G = (V,E) be a DAG. An efficiently computable function

f : V → R is called a weighting function. We say f is c-admissible for constant c ∈ R if for all v ∈ V ,

f(v) ≥ 1 + c
∑

w∈Γ(v)

f(w), (10)

where Γ(v) := {w | (v, w) ∈ E} is the (out-going) neighbor set of v. The total weight Wf (G) of G under

weighting function f is

Wf (G) =
∑
v∈V

f(v). (11)

Remark 4.4. Our Definition 4.3 is slightly weaker than Gottlob’s [Got95], which sums over all nodes

in Desc(v) (i.e. nodes reachable from v via a directed path, excluding v itself) instead of Γ(v) in (10).

However, these definitions are equivalent up to a constant factor in c.

Definition 4.5 (Levels of a DAG). Let G = (V,E) be a DAG. We divide G recursively into levels. Level

0 is made up by the nodes without incoming edges. Level i+ 1 contains nodes v that have only inputs w

(i.e. (w, v) ∈ E) with level(w) ≤ i and at least one input w with level(w) = i. We denote the level of

a node v ∈ V by level(v). Nodes on the last level are called terminal nodes. The depth of G, denoted

depth(G) is the maximum level number.

In the next lemma, we extend Gottlob’s [Got95] admissible weighting functions to our definition of

c-admissability (Definition 4.3). For c = 1, the definitions are the same.

Lemma 4.6. For any DAG G = (V,E) and c ≥ 2, the weighting functions ρ and ω below are c-admissible:

ρ(v) = (c|V |)depth(G)−level(v) (12)

ω(v) = (c+ 1)|Desc(v)| (13)

Proof. The proof for ρ is the same as in [Got95], whereas our proof for ω is significantly simplified. To

argue c-admissability of ρ, let v ∈ V . By Definition 4.5, it holds that level(w) > level(v) for all w ∈ Γ(v).
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Therefore,

1 + c
∑

w∈Γ(v)

ρ(w) ≤ c|V |(c|V |)depth(G)−level(v)−1 = (c|V |)depth(G)−level(v) = ρ(v). (14)

For ω, let {u1, . . . , uk} = Γ(v) be topologically ordered (with respect to G). Then |Desc(ui)| ≤ |Desc(v)|−i.
Thus,

1 + c

k∑
i=1

ω(ui) ≤ 1 + c

k∑
i=1

(c+ 1)|Desc(v)|−i (15)

≤ 1 + c

|Desc(v)|−1∑
i=0

(c+ 1)i (16)

= 1 + c
(c+ 1)|Desc(v)| − 1

c
(17)

= (c+ 1)|Desc(v)| (18)

= ω(v). (19)

In Sections 4.2 and 4.3, we assume C ∈ QV+, unless stated otherwise.

4.2 Graph transformation: The Compression Lemma

Ideally, our aim for a given C-DAG instance G is to define a c-admissible weighting function f with Wf (G)

as small as possible. This is because in Section 4.3, we show how to solve arbitrary C-DAG-instances using

O(logWf (G)) C-queries. Unfortunately, for an arbitrary C-DAG-instance G there does not necessarily

exist a c-admissible weighting function f such that Wf (G) is “small”, e.g. subexponential. Thus, in this

section, we show:

Lemma 4.7. As input, we are given a C-DAG instance G, and a separator tree for G of depth D and

separator size s. Fix any constant c ≥ 2. Then, a query graph G∗ = (V ∗, E∗) with |V ∗| ≤ 2O(sD)n,

together with a c-admissible weighting function f∗ and Wf∗(G
∗) ≤ (c+ 1)O(sD)n, can be constructed in

time 2O(sD+logn) such that Evaluate(G) = Evaluate(G∗) (irrespective of nondeterministic choices in

Algorithm 1). As required by the definition of C-DAG (Definition 3.1), each node of G∗ corresponds to a

verification circuit of size poly(|V ∗|).

Combining this with Section 4.3, we will hence be able to decide G∗ with O(sD) queries.

Brief outline. The transformation from G to G∗ proceeds in multiple steps. First, we construct a

graph G′ (Section 4.2.1) where each node v ∈ V ′ has |Desc(v)| ≤ O(sD), where recall Desc(v) is the set

of descendents of v. Roughly, this is achieved by exploiting the structure of separator trees to “hardcode”

dependencies. This leaves two issues. First, for technical reasons G′ is lacking an output node, which

we add in G′′. Second, we have redundant copies of nodes, which simplify the construction, but are

problematic in the presence of invalid queries, as two copies of the same node with the same inputs may

produce different outputs. We merge these redundant nodes to obtain graph G∗, and define a suitable

c-admissible weighting function in the process (Section 4.2.2). Section 4.2.3 shows correctness.
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4.2.1 Basic Construction (G′)

In this section, we construct G′ = (V ′, E′). We begin by formally stating the construction, followed by

giving the intuition, and an illustration via Figure 3b and accompanying discussion.

The graph transformation. Let T = (VT , ET ) be a separator tree (Definition 2.11) of G of depth D and

separator size s. A running example is given in Figure 3a. Let S ∈ VT be an arbitrary supervertex

and S1, . . . , Sd be the unique path along superedges from the root supervertex S1 to Sd := S (define

d := dS ≤ D as the distance from the root plus one). Recall S is labelled by some subset of s vertices,

S = (uS,1, . . . , uS,s), where we assume the sequence in which the uS,i are listed is consistent with some

fixed topological order on all of G. Define sets

VS :=
{
vz1,...,zdS,i

∣∣∣ i ∈ [s], z1, . . . , zd ∈ {0, 1}s
}

(20)

and set V ′ =
⋃
S∈VT

VS . As depicted in Figure 3b, it will be helpful to continue to view VS as a set, even

though VS is not a supervertex (i.e. G′ itself will not be a separator tree). Intuitively, vz1,...,zdS,i in V ′

represents node uS,i in V , but conditioned on “outcome strings” z1, . . . , zd ∈ {0, 1}s in the separators

S1, . . . , Sd. For ease of reference, we define a surjective function preimage : V ′ 7→ V to formalize this

relationship:

∀S, i, z1, . . . , zd, preimage(vz1,...,zdS,i ) = uS,i. (21)

Finally, since T has at most n supernodes, we have |V ′| ≤ 2O(sD)n.

Next, define edges

ES =
{(
vz1,...,zdS,i , v

z1,...,zj
Sj ,k

) ∣∣∣ i ∈ [s], j ∈ [d− 1], uSj ,k ∈ Desc(uS,i)
}
, (22)

where recall uSj ,k ∈ Desc(uS,i) is the set of all descendants of uS,i in the original graph G. In words, each

ES creates, for each copy of uS,i, edges to all copies of descendants uSj which are on a strictly higher

level in the separator tree (due to the j ∈ [d− 1] constraint). In the context of Figure 3a, this means we

“shortcut” paths to descendents, but only via new edges pointing strictly “upwards” towards the root. Set

E′ =
⋃
S∈VT

ES . Observe that |Desc(v)| ≤ O(sD) for all v ∈ V ′.

Assigning queries to G′. We have given a graph theoretic mapping G 7→ G′, but not yet specified

how the queries made at nodes of G are mapped to queries made at nodes of G′. Let us do so now.

Consider any vz1,...,zdS,i ∈ V ′. Roughly, the goal is for the query at vz1,...,zdS,i to simulate the query at

preimage(vz1,...,zdS,i ) = uS,i. However, vz1,...,zdS,i is “conditioned” on bit strings z1, . . . , zd, so the simulation

is not straightforward. To make this formal, we use Algorithm 2 as follows:

Rule 4.8. For each edge (uT,j , uS,i) in G, the result of ComputeOutput(uT,j | z1, . . . , zd) is used as

the corresponding input to vz1,...,zdS,i ∈ V ′.

Intuitively, we may view the conditioning string z1, . . . , zd as specifying a “parallel universe”, where

if (uT,j , uS,i) was an edge in E, then this parent-child relationship is simulated relative to this parallel

universe via the ComputeOuput() function.

Remark 4.9. (1) By definition of a separator tree, all edges (uT,j , uS,i) of G must be in the same branch

as S (i.e. either above or below S in the same branch, but not in a parallel branch of the tree). (2) This

implies there are essentially two cases to consider: When uT,j is closer to the root than uS,i, or vice versa.

In the first case, Line 4 of Algorithm 2 immediately returns the hardcoded bit of z1, . . . , zd corresponding
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u1 u2

v1 v2 w1 w2

x1 x2 y1 y2

(a) Query graph G with separator tree of depth D = 3 and separator size s = 2 shown as an overlay via dashed
lines. Recall from Definition 2.11 that each dashed set (e.g. {u1, u2}) is called a supervertex, and dashed edges
(e.g. between {u1, u2} and {v1, v2}) are superedges. Vertex y2 is underlined to denote it as the output node.

uz11 uz12

vz1,z21 vz1,z22 wz1,z21 wz1,z22

xz1,z2,z31 xz1,z2,z32 yz1,z2,z31 yz1,z2,z32 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

(b) G′ consists of all nodes and edges drawn via solid lines. For clarity, each rectangle denotes a set of nodes VS

(Equation (20)) corresponding to some supervertex S. For example, uz1
1 denotes a set of nodes

{
u00
1 , u01

1 , u10
1 , u11

1

}
,

whose neighbor sets are defined via Equation (22). To move from G′ to G′′, we add node t and all dashed edges.

u∗∗1 u
z1,1∗
2

v∗∗,∗∗1 v
∗∗,z2,1∗
2 wz1,∗∗1 w

z1,z2,1∗
2

x
∗∗,z2,1∗,∗∗
1 x

∗∗,z2,1∗,z3,1∗
2 y∗∗,∗∗,∗∗1 y

z1,z2,z3,1∗
2 ∀z1, z2, z3 ∈ {0, 1}2

∀z1, z2 ∈ {0, 1}2

∀z1 ∈ {0, 1}2

t

(c) Graph G∗ with merged nodes indicated by asterisks in the superscript.

Figure 3: Example of the query graph transformation.

21



Algorithm 2 Compute the output of uS,i, conditioned on results z1, . . . , zm in the separators above.

1: function ComputeOutput(uS,i | z1, . . . , zm) . recall uS,i ∈ S
2: S1, . . . , Sd ← path from the root to S
3: if m ≥ d then . base case of recursion; recursion has computed zd
4: return zd,i . recall zd ∈ {0, 1}s; zd,i encodes answer to uS,i

5: zm+1 ← 0s . initialize answer bits to all zeroes to start
6: for j = 1, . . . , s do . in topological order, set answer bits at current level of recursion

7: zm+1,j ← out-wire
[
u
z1,...,zm+1

Sm+1,j

]
. set bit j of zm+1 using query answers on incoming edges

8: return ComputeOutput(uS,i | z1, . . . , zm+1)

to uT,j . In the second case, when uS,i calls Algorithm 2, Lines 6-8 will recursively compute outputs of

nodes below vz1,...,zdS,i in the same branch. For this, vz1,...,zdS,i will need access to the out-wire functions

(Definition 3.1) of certain nodes below it; this is afforded to vz1,...,zdS,i via the edge set ES (demonstrated

via the “upward” black edges in Figure 3b).

We have now specified the local input/output behavior of any node v ∈ V ′. Two problems remain:

First, we require a designated output node in G′, which implicitly orchestrates the new logic in G′. Second,

observe in Figure 3b that the original output node of G, y2, has been mapped to a new set of nodes

labelled yz1,z2,z32 , all of which are disconnected from the rest of G′. Thus, we require a mechanism to

stitch together these components of G′. To solve both problems simultaneously, we define G′′ by adding

a new output node, t, such that: (1) t has incoming edges from all nodes in V ′, and (2) the output of G′′

is computed by having t call ComputeOutput(v | ε) and return its answer, where ε denotes the empty

string and v is the original output node of G. Both t and these new edges are depicted in Figure 3b via

dashed lines.

Intuition. The construction of G′′, and why it does what we need, is subtle; so let us illustrate via

Figure 3b. For this, recall in Figure 3a that y2 ∈ V is the original output node of G. For concreteness,

assume in this discussion that C = NP and s ∈ O(1), so that Theorem 1.1 states C-DAG1 ⊆ PNP[log].

The intuition is as follows:

1. To apply admissible weighting functions and prove Theorem 4.1, a property we require17 is that

the length of any directed path in G be at most D ∈ O(log n). However, in the separator tree

decomposition of Figure 3a, the longest path can in principle have O(n) edges.

2. To address this, Figure 3b removes all “downward edges” with respect to the separator decomposition

(i.e. edges (v, w) ∈ E such that level(v) < level(w) in the tree). Thus, the longest path now goes

from a leaf to the root t, with each edge followed monotonically decreasing the current level18. Since

our separators are balanced, any such path has length O(log n), as desired.

3. Of course, this breaks the logic of the C-DAG G itself. To correct this, we apply three ideas.

(a) Create node copies. Each node of G (say, x1) is split into multiple copies, each of which is

hardcoded with a distinct possible output value of all its “ancestors” in the separator tree.

In this example, x1 is split into 64 copies of form xz1,z2,z31 , over all z1, z2, z3 ∈ {0, 1}2. Here,

z1 is intended to capture the outputs of u1 and u2, z2 the outputs of v1 and v2, and z3 the

outputs of x1 and x2. Of these, x1 only depends directly on the first bit of z2 according to G;

17While necessary, this property itself is not sufficient; we use it here to ease the discussion. More accurately, we require
that for any v, |Desc(v)| ≤ O(logn). This latter property is trickier to attain, and does not follow from D ∈ O(logn).

18More accurately, the level is non-increasing with each edge followed. This is because the construction allows edges
between pairs of vertices in the same supervertex (Equation (22)). This can incur an overhead in path length scaling with s,
the separator size, which we ignore for this intuitive discussion.
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all other bits in z1, z2, z3 are irrelevant for x1, and are included only to make the construction

systematic. (They will be removed shortly when moving to G∗ in Section 4.2.2.)

(b) Add upward shortcuts. Add new “upward” edges via Equation (22). In words, this roughly

means that if u is an ancestor of v in G, but v occurs closer to the root than u, then we

add upward shortcut edge (u, v) to E′. In our example, we connect xz1,z2,z31 to all (copies of)

descendants of preimage(xz1,z2,z31 ) which are in the same unique superpath from xz1,z2,z31 up

to t (such as vz1,z22 ). The careful reader may notice that xz1,z2,z31 does not have an edge to

xz1,z2,z32 . This is why x2 has superscript z3; this enumerates over all possible outputs it may

have received from x1.

(c) Orchestrate the madness. All copies of all nodes send their output to t via the dashed edges in

Figure 3b. Roughly, t now selects, out of all the possible computation paths created via node

copies, which is the “right” path. In our example, the “right” path can start with any copy

of v1 (e.g. v00,00
1 or v11,10

1 , etc), since v1 has in-degree 0 in G. Thus, all copies of v1 encode

the same NP query. Suppose this NP query outputs b ∈ {0, 1}. Then, the “right” path next

utilizes any copy of x1 of form x
z1,bz2,2,z3
1 (first bit of z2 is b). And so forth. This “selection”

of the “right path” is executed when t calls ComputeOutput(y2 | ε).

An explicit run-through. For concreteness, we now trace through t’s call to ComputeOutput(y2 | ε) for

Figure 3b:

1: ComputeOutput(y2 | ε):
2: z1,1 ← out-wire[u00

1 ]

3: z1,2 ← out-wire[u
z1,10
2 ]

4: return ComputeOutput(y2 | z1):

5: z2,1 ← out-wire[wz1,00
1 ]

6: z2,2 ← out-wire[w
z1,z2,10
2 ]

7: return ComputeOutput(y2 | z1, z2):

8: z3,1 ← out-wire[yz1,z2,00
1 ]

9: z3,2 ← out-wire[y
z1,z2,z3,10
2 ]

10: return ComputeOutput(y2 | z1, z2, z3):

11: return z3,2

Remark 4.10 (Promise gaps). While the size of the verification circuit at any node uS,i ∈ V grows

under the mapping to vz1,...,zdS,i ∈ V ′ (since the latter takes in more wires), the underlying verification

procedures at each uS,i and vz1,...,zdS,i are identical, up to the latter’s use of Rule 4.8 to decide on-the-fly

which input wires to use based on (z1, . . . , zd). Thus, the promise gaps at each uS,i and vz1,...,zdS,i ∈ V ′ are

also identical. When C is a promise class allowing error reduction, this is not of consequence; however,

for StoqMA, which is not known to have error reduction, this observation allows us to keep the exponents

in Theorem 1.4 at O(s(n) log2 n) (versus O(s2(n) log2 n), since the promise gaps at each vz1,...,zdS,i node

still scale as 1/ poly(n) due to this observation, not 1/ poly(|V ′′|).

Remark 4.11 (For StoqMA). ComputeOutput(v | ε) (and thus t) runs in DTIME(poly(V ′′)) to stitch

together the answers of all other nodes of V . Thus, when C = StoqMA, the action of t can also be

viewed as a special case of a StoqMA computation (i.e. the StoqMA “verifier” for t would ignore its

proof, use its classical gates to simulate ComputeOutput(v | ε), and then output either |+〉 or |−〉
depending on whether it wishes to accept or reject, respectively.) Thus, in this case, all nodes of G′′ are

valid C = StoqMA nodes, so G′′ is a valid StoqMA-DAG.
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4.2.2 Merging Nodes (G∗)

Next, we address the issue that G and G′′ are not necessarily equivalent for promise problems, since

copies of the same invalid query could have different outputs. For example, in Figure 3b, if z1,1 = 1,

then u00
1 and u

z1,10
2 depend on different copies of v2, which could lead to inconsistencies if v2 encodes

an invalid query. In addressing this, we will also remove redundant copies of nodes (e.g. v1, which has

in-degree 0 in Figure 3a, encodes the same query in Figure 3b, regardless of how z1 and z2 are set).

To proceed, we construct graph G∗ by merging node copies which have the same hard-coded inputs.

Consider any u := uS,i ∈ V , where as in Algorithm 2, we let d denote the depth of S on the unique

superpath PS := (S1, . . . , Sd = S) from the root S1 to S in the separator tree. Recalling that Anc(u)

denotes the ancestors of u in G, i.e. the set of queries u depends on, define

Du := Anc(u) ∩
d⋃
j=1

Sj , (23)

in words, the ancestors of u in the superpath Pu. For any v := vz1,...,zdS,i ∈ V ′′, define hv : Du → {0, 1}
with action hv(uSj ,k) := zj,k, i.e. hv selects out the hard-coded bit zj,k corresponding to any uSj ,k ∈ Du

(i.e. zj,k is the kth bit of zj in the definition of v). Now, whenever two copies v1, v2 ∈ V ′′ of the same

node (i.e. preimage(v1) = preimage(v2)) satisfy hv1 = hv2 (i.e. hv1 and hv2 have the same truth table;

note Du is in the original graph G in definition hv : Du → {0, 1}), we will merge them. Formally, the

merge is accomplished by Algorithm 3, which simultaneously computes an admissible weighting function.

Henceforth, denote (G∗, f∗) := Merge(G′′).

Algorithm 3 Merge nodes in G′′ to compute G∗.

1: function Merge(G′′ = (V ′′, E′′))
2: G1 ← G′′, V1 ← V ′′, E1 ← E′′, f1 ← ω . for weighting function ω from Lemma 4.6
3: i← 1
4: while ∃v1, v2 ∈ Vi such that preimage(v1) = preimage(v2) and hv1 = hv2 do
5: Choose any such v1, v2 such that v := preimage(w1) is furthest from root in separator tree T .
6: Create copy v∗ of v with hv∗ := hv1 = hv2 .
7: Vi+1 ← Vi \ {v1, v2} ∪ {v∗}
8: Replace out-wire[v1] and out-wire[v2] in the logic of nodes in Vi+1 with out-wire[v∗].

9: Ei+1 ←
{

(r(x), r(y))
∣∣ (x, y) ∈ Ei

}
, where r(x) :=

{
v∗, if x ∈ {v1, v2}
x, else

10: Update fi+1 : Vi+1 → R such that fi+1(x) :=

{
fi(v1) + fi(v2), if x = v∗

fi(x), else

11: return (Gi, fi)

Remark 4.12. When u ∈ V has in-degree 0, then Du = ∅. In this case, for any two copies v1, v2 ∈ V ′′
of u, it is vacuously true that hv1 = hv2 . Thus, all copies of u in V ′′ are merged by Algorithm 3. An

example of this is depicted by v1 in Figure 3a being mapped to v∗∗,∗∗1 in Figure 3c. Intuitively, this

captures the fact that since v1 is in-degree 0 in Figure 3a, the query at all copies vz1,z21 of Figure 3b is

identical, regardless of how z1, z2 are set.

Lemma 4.13. For any constant c ≥ 2, the weighting function f∗ produced by Algorithm 3 is c-admissible

for G∗, and satisfies Wf∗(G
∗) = Wω(G′′) (for ω from Lemma 4.6).

Proof. We prove the lemma inductively on the iteration number, i. By Lemma 4.6, f1 = ω is c-admissible,
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and trivially Wf1(G1) = Wω(G′′). In the induction step, Line 10 of Algorithm 3 straightforwardly

yields Wfi(Gi) = Wfi+1(Gi+1). We show c-admissibility for fi+1, i.e. that f(v) ≥ 1 + c
∑
w∈Γ(v) f(w)

(Equation (10)) holds for all v ∈ Vi+1, where recall Γ(v) is the set of children of v. Since the admissibility

condition only depends on Γ(v), it suffices to consider two cases: v = v∗ and v is a parent of v∗. First, if

v = v∗, we have Γ(v∗) = Γ(v1) ∪ Γ(v2), and thus

fi+1(v∗) = fi(v1) + fi(v2) ≥ 2 + c
∑

u∈Γ(v∗)

fi(u) = 2 + c
∑

u∈Γ(v∗)

fi+1(u) (24)

since fi was c-admissible and since only v∗ is altered in round i. Second, if v is a parent of v∗, then v is a

parent of at least one of v1 or v2 by the construction of Algorithm 3. But by definition of the edge set of

V ′′ (Equation (22)), v is a parent of v1 if and only if v is a parent of v2. Thus, v was a parent of both v1

and v2 in round i. The claim now follows since we set fi+1(v∗) = fi(v1) + fi(v2).

4.2.3 Correctness

We now prove correctness, in the process establishing the Compression Lemma (Lemma 4.7). For this,

we first require the following lemma, which shows how to efficiently map any given correct query string

for G∗ to a correct query string for G. Below, ComputeOutput on G∗ takes into account merged notes,

i.e. it uses v∗ instead of v after merging v1 and v2 in Algorithm 3.

Lemma 4.14. Let x∗ : V ∗ → {0, 1} be a correct query string for G∗. Define ComputeOutput* to be

ComputeOutput, except with each call to out-wire on Line 7 replaced by looking up the corresponding

bit of x∗. Define string x : V → {0, 1} such that bit x(v) := ComputeOutput*(v | ε). Then, x is a

correct query string for G.

Proof. Recall |V | = n, and that by Definition 3.3, a correct query string for C-DAG is defined as any

string producible by Line 6 of Algorithm 1. Throughout, the bits of x are ordered according to the

topological order (v1, . . . , vn) on V fixed by Algorithm 1. We prove the claim inductively for t ∈ (1, . . . , n).

By the topological order, the base case v1 ∈ V has in-degree 0, i.e. takes no inputs. Thus, by

Remark 4.12, there is only a single node in G∗ corresponding to v1, which by construction computes the

same query as v1. Hence, the corresponding bit of x∗ trivially encodes the correct answer for v1 in G.

This bit will then be returned for v1 once Line 4 executes, as desired.

For the inductive case, let t ≥ 2 and assume x1, . . . , xt−1 satisfy the induction hypothesis, i.e. they

could19 be produced by the first t − 1 iterations of Evaluate. We now need to argue that a correct

execution of Evaluate could set xt = ComputeOutput*(vt | ε). By design, ComputeOutput*(vt | ε)
computes z1, . . . , zd and then returns20 x∗(vz1,...,zdt ).

Recall now that Dvt denotes the ancestors of vt in G, which are also along the superpath from the

root of the separator tree down to the supervertex S containing vt. (Formally, Du := Anc(u) ∩⋃dj=1 Sj

in Equation (23).) We claim that z := z1, . . . , zd matches x1 · · ·xt−1 on Dvt . (For clarity, the bits of

z ∈ {0, 1}sd are ordered according to the recursion of ComputeOutput*(,) and may also contain

bits corresponding to vertices not in Dvt .) To see this, fix any u ∈ Dvt = Anc(vt) ∩
⋃d
j=1 Sj , and let

19We say “could” because Evaluate is nondeterministic (due to potential invalid queries when C is a promise class).

20Technically, the algorithm actually returns x∗(v
z1,...,zd−1,z

′
d

t ), where z′d ∈ {0, 1}
s is an “intermediate string” defined as

follows: If node vt was the kth node in the topological order for supervertex S, then the first k − 1 bits of z′d have been
assigned by Line 7 of ComputeOutput*, and the remaining s− k + 1 bits of z′d are still set to the dummy value of 0 from

Line 5. However, this does not affect our analysis. In particular, in G∗ we merged v
z1,...,z

′
d

t and v
z1,...,zd−1,z

′′
d

t for any such
pair z′d and z′′d of “intermediate strings”, since by definition of the topological order, bits k through s of any such z′d cannot
correspond to any vertices in Dvt . Thus, these indices effectively disappear for all copies of vt in G∗.
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i be the supervertex index such that u ∈ Si. For brevity, define notation x(u) and z(u) to mean the

bit of x and z corresponding to u, respectively21. Now, recall ComputeOutput*(vt | ε) recursively

traverses the path S1, . . . , Sd, where u ∈ Si and vt ∈ Sd for 1 ≤ i ≤ d. Thus, the operations performed by

ComputeOutput*(vt | ε) and ComputeOutput*(u | ε) are identical in the first i recursions. Once

m = i (i.e. conditioning strings z1, . . . , zi have been set), z(u) is returned by ComputeOutput*(u | ε)
on Line 4, whereas ComputeOutput*(vt | ε) returns z(vt) if i = d and continues recursively otherwise.

We thus conclude ComputeOutput*(vt | ε) returns x∗(vz1,...,zdt ) with z(u) = x(u) for all u ∈ Dvt .

Recall now by Rule 4.8 that, in order for vz1,...,zdt ∈ V ∗ to simulate the query at vt ∈ V , it computes

the input on any wire u into vt via ComputeOutput*(u | z1, . . . , zd). Since the construction is based

on a separator tree, this incoming wire/edge (u, vt) lies along the same branch of the tree as vt. Thus,

we have only two cases to consider — u ∈ Anc(vt) is above or below vt in said branch. (In Figure 3a,

for example, if vt = w2, the ancestor u2 is above w2 in the tree, whereas ancestor y1 is below w2.) So,

if u ∈ Dvt (i.e. u is above Dvt), then by the argument in the previous paragraph, z(u) = x(u) is used

as input to vt. Moreover, since u ∈ Anc(vt), u comes before vt in any topological order, and thus the

induction hypothesis says x(u) is correct. Otherwise, if u 6∈ Dvt (i.e. ancestor u is below Dvt), then it

again holds that ComputeOutput*(vt | ε) and ComputeOutput*(u | ε) perform exactly the same

operations in the first d recursions. Therefore, both executions compute the same values z1, . . . , zd.

Subsequently, ComputeOutput*(u | ε) = x(u) calls ComputeOutput*(u | z1, . . . , zd) on Line 8

during the dth recursion and returns its value. In other words, x(u) = ComputeOutput*(u | z1, . . . , zd).

But by Rule 4.8, in order to simulate its input on the incoming wire corresponding to u, vz1,...,zdt uses

ComputeOutput*(u | z1, . . . , zd) = x(u). Then, since u ∈ Anc(vt), u comes before vt in any topological

order, and thus by the induction hypothesis, x(u) is correct. We hence conclude all input wires to vz1,...,zdt

must be set correctly, and thus x(vt) is also correct.

We finally restate and prove the main lemma of this section.

Lemma 4.7. As input, we are given a C-DAG instance G, and a separator tree for G of depth D and

separator size s. Fix any constant c ≥ 2. Then, a query graph G∗ = (V ∗, E∗) with |V ∗| ≤ 2O(sD)n,

together with a c-admissible weighting function f∗ and Wf∗(G
∗) ≤ (c+ 1)O(sD)n, can be constructed in

time 2O(sD+logn) such that Evaluate(G) = Evaluate(G∗) (irrespective of nondeterministic choices in

Algorithm 1). As required by the definition of C-DAG (Definition 3.1), each node of G∗ corresponds to a

verification circuit of size poly(|V ∗|).

Proof of Lemma 4.7. G∗ is constructed as in Section 4.2.1 and Section 4.2.2. We have |V ∗| ≤ |V ′′| ≤
2O(sD)n (recall n = |V |), since there are at 2O(sD) choices for conditioning strings z1 · · · zD. Since we

assume the separator tree is given as input, the time to construct G∗ is clearly polynomial in |V ′′|, i.e.

2O(sD+logn). For weighting function ω from Lemma 4.6, we have Wf∗(G
∗) = Wω(G′′) ≤ (c+ 1)O(sD)n,

where the equality is from Lemma 4.13, and the inequality since every node in G′′ has at most O(sD)

descendants. Correctness follows from Lemma 4.14 and the fact that the output of G∗, by definition of

node t, is ComputeOutput(v | ε). Finally, each verification circuit corresponding to a node in V ∗ has

size poly(V ∗); the largest such verification circuit corresponds to node t, which takes in wires from all

other vertices in G∗, and calls ComputeOutput(v | ε) (which takes time poly(|V ∗|)).
21Since x is defined on G, x(u) is clearly defined uniquely. On the other hand, z is defined on G∗, which contains

potentially multiple copies of u; thus, it is slightly more subtle that z(u) is uniquely defined. Indeed, uniqueness holds since
the recursive path followed by ComputeOutput* through G∗ visits precisely one copy of u; which copy is visited depends
on the prefix of z fixed in the recursion before u is encountered.
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4.3 Solving C-DAG via oracle queries

We now show how to decide an N -node C-DAG-instance G with a c-admissible weighting function f

using O(logWf (G)) oracle queries. (We intentionally use N to denote the size of G, to avoid confusion

with the parameter n from Section 4.2.) Recall that at a high level, our aim is to convert the problem of

deciding G into the problem of maximizing a carefully chosen real-valued function t. A binary search via

the oracle C is then conducted to compute the optimal value to t, from which a correct query string from

G can be extracted. This high-level strategy was also used by Gottlob [Got95]; what is different here is

how we define t and how we implement the details of the binary search.

4.3.1 Step 1: Defining the total solution weight function t

Let G = (V = {v1, . . . , vN}, E) be a C-DAG-instance with c-admissible weighting function f . Recall by

Definition 3.1 that each circuit Qi has a proof register Yi. Without loss of generality, we assume Qi receives

a proof |ψi〉 ∈ B⊗m and has completeness α and soundness β. Then, define t : {0, 1}N × (B⊗m)
×N 7→ R

such that

t(x, ψ1, . . . , ψN ) :=

N∑
i=1

f(vi)
(
xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ︸ ︷︷ ︸

g(xi, zi(x), ψi)

)
, (25)

where γ := (α + β)/2, and where zi(x) is defined similar to Line 5 of Algorithm 1, i.e. zi(x) ←
©vj∈parents(vi) xj , for x the input string to t. Two comments are important here: First, defining z(x)

in this manner may break the logic of Algorithm 1 when a prover is dishonest, in that the relationship

between xi and zi of Line 6 may not hold. Nevertheless, in Section 4.3.3, we prove that t is maximized

only when a prover acts honestly. Second, we intentionally define t as taking in a cross product over

spaces B⊗m, as opposed to a tensor product. This simplifies the proofs of this section. Finally, define

T := max
x∈{0,1}N

|ψ1〉,...,|ψN 〉∈B⊗m

t(x, ψ1, . . . , ψN ). (26)

In Section 4.3.2 we show how to approximate T using O(logWf (G)) C-queries and in Section 4.3.3 we

prove that if t(x, ψ1, . . . , ψN ) ≈ T , then x is a correct query string.

4.3.2 Step 2: Approximating T

In order to apply binary search to approximate T (see proof of Theorem 4.1), we now show that the

decision version of approximating T is in C. Namely, define promise problem Πε = (Πyes,Πno) such that

Πyes = {(t, s) | t : {0, 1}N ×
(
B⊗m

)×N 7→ R and T ≥ s} (27)

Πno = {(t, s) | t : {0, 1}N ×
(
B⊗m

)×N 7→ R and T ≤ s− ε}, (28)

for T as in Equation (26), and ε : Z 7→ R≥0 a fixed function of N (i.e. by ε we mean ε(N)).

Lemma 4.15. Let C ∈ QV+. Define W :=
∑N
i=1 f(vi) for weighting function f from Equation (25),

and assume W ≤ poly(N). Then, for any ε ≥ 1/poly(N), Πε ∈ C.

Proof. In the case C ∈ {NP,NEXP}, Πε can easily be solved in C by just computing t(x, ψ1, . . . , ψN )

directly (note that t : {0, 1}N × ({0, 1}⊗m)×N 7→ R in this case).
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For the remaining C, we begin by defining probabilities pi := f(vi)/W and let

t′(x, ψ1, . . . , ψN ) :=
1

W
t(x, ψ1, . . . , ψN ) =

N∑
i=1

pi · g(xi, zi, ψi), (29)

whose maximum over all inputs we denote as T ′. We prove the claim by constructing a C-verifier V such

that

max
proofs |ψ〉

Pr[V outputs 1 | |ψ〉] = T ′. (30)

Thus, when (t, s) ∈ Πyes (resp., (t, s) ∈ Πno), V accepts with probability at least s/W (resp., at most

(s− ε)/W ), where ε/W ≥ 1/poly(N) since W ≤ poly(N) by assumption.22

V has proof space X ⊗ Y1 ⊗ · · · ⊗ YN with X = B⊗N and Yi = B⊗m. A subtle point here is that

function t takes as part of its input a sequence (|ψ1〉, . . . , |ψN 〉), whereas in Equation (30), V takes

in a joint (potentially entangled) proof |ψ〉 across proof registers Y1 ⊗ · · · ⊗ YN . However, due to the

construction of V below, we shall see that without loss of generality, Equation (30) is attained for tensor

product states |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉, which is equivalent to sequence (|ψ1〉, . . . , |ψN 〉), as desired.

Given proof |ψ〉 ∈ X ⊗ Y1 ⊗ · · · ⊗ YN , V acts as follows:

1: Measure X in standard basis to obtain string x.

2: Select random i according to distribution pi.
23

3: if xi = 1 then

4: Run Qi with input zi(x) and proof register Yi.
5: else

6: Output 1 with probability γ.

Since (the POVM corresponding to) V is block diagonal with respect to X , Pr[V outputs 1 | |ψ〉] is

maximized by some |ψ〉 = |x〉X |ψ′〉Y1,...,N
. Then, since we only measure a single local verifier Qi (at

random, Step 4), we have

Pr[V outputs 1 | |ψ〉] = t′(x, σ1, . . . , σN ) where σi := Tr⊗
j 6=i Yj

(|ψ′〉〈ψ′|). (31)

But for any fixed x, this is maximized by choosing pure states σi = |ψi〉〈ψi|. Thus, t′ is optimized by a

tensor product |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψN 〉, and so Equation (30) holds. This completes the proof.

Two final remarks are needed for specific choices of C: (1) For C = QMA(2), separable σi are obtained

by interpreting the first proof register as X ⊗ Y1
1 ⊗ · · · ⊗ Y1

N and the second as Y2
1 ⊗ · · · ⊗ Y2

N (so that

the joint proof is unentangled across this cut by assumption), where proof Yi has the registers Y 1
i and

Y 2
i . (2) For C = StoqMA, V is indeed a stoquastic24 verifier since:

• Via its |+〉 ancillae states and ability to simulate measurement in the standard basis via the principle

of deferred measurement, a stoquastic verifier can execute Steps 1 and 2 in the description of V .

• Each Qi is by definition a stoquastic verifier (see Remark 4.11), and Step 4 of the V simply returns

the output of some Qi without postprocessing, i.e. the output qubit of Qi is simply swapped into

the output qubit of V .

• By definition of StoqMA, 1/2 ≤ γ ≤ 1 with γ requiring (without loss of generality) at most

22For C = QMA(2), we implicitly use the nontrivial error reduction of QMA(2) due to Harrow and Montanaro [HM13].
23This requires being able to sample from the distribution pi, which in general cannot be done efficiently. However, we

can approximate pi ≈ ki/2poly(N), allowing efficient sampling without changing the distribution significantly.
24Briefly, a stoquastic verifier [BBT06b] takes in a poly-size quantum proof and poly many ancillae set to |0〉 and |+〉

states, runs poly many classical gates (i.e. Pauli X, CNOT, and Toffoli gates), and finally applies a single Hadamard gate
to its output qubit just before measuring it in the standard basis.
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logarithmic bits of precision to specify. Thus, Step 6 of V can be simulated by a stoquastic verifier

which, with appropriate conditioning, swaps into its output qubit either an ancillae qubit set to |0〉
(accepted with probability 1/2, due to the final H gate on the measurement qubit of a stoquastic

verifier) or an ancillae qubit set to |+〉 (accepted with probability 1).

Note that Lemma 4.15 says nothing about why we want to approximate T , i.e. what the optimal

argument x buys us. This is the purpose of Section 4.3.3.

4.3.3 Step 3: Correct Query String

We next show that only correct query strings x can attain T (even approximately).

Lemma 4.16. Define η := (α− β)/2, and let f be η−1-admissible. If t(x, ψ1, . . . , ψN ) > T − η, then x

is a correct query string.

Proof. Assume there exists a vi ∈ V such that xi is incorrect. We show that there exist x′, |ψ′1〉, . . . , |ψ′N 〉 ∈
B⊗N such that t(x′, ψ′1, . . . , ψ

′
N ) ≥ t(x, ψ1, . . . , ψN ) + η, obtaining a contradiction. A subtle but useful

fact we exploit is that t takes in a sequence (ψ1, . . . , ψN ); this allows us to locally update each ψi to

some ψ′i as follows. Define x′,|ψ′1〉,. . . ,|ψ′N 〉 such that x′i = xi (i.e. the complement of xi), x
′
j = xj and

|ψ′j〉 = |ψj〉 for j 6= i, and |ψ′i〉 maximizing Pr[Qi(zi(x
′), ψ′i) = 1].

Now, if xi = 0, then

g(xi, zi(x), ψi) = xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ = γ. (32)

Since we assumed xi was incorrect, zi(x) ∈ Πi
yes. Thus, there exists a |ψ′i〉 such that

g(x′i, zi(x
′), ψ′i) = x′i Pr[Qi(zi(x

′), ψ′i) = 1] + (1− x′i)γ = Pr[Qi(zi(x
′), ψ′i) = 1] ≥ α. (33)

Conversely, if xi = 1, we have zi(x) ∈ Πi
no, and thus

g(xi, zi(x), ψi) = xi Pr[Qi(zi(x), ψi) = 1] + (1− xi)γ ≤ β, (34)

whereas for any |ψ′i〉,

g(x′i, zi(x
′), ψ′i) = x′i Pr[Qi(zi(x

′), ψi) = 1] + (1− x′i)γ = γ. (35)

Thus, flipping xi to xi increases the ith term in the sum comprising t by at least η · f(vi) (recall
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γ = (α+ β)/2). Therefore,

t(x′, ψ′1, . . . , ψ
′
N )− t(x, ψ1, . . . , ψN ) (36)

=

N∑
j=1

f(vj)g(x′j , zj(x
′), ψ′j)−

N∑
j=1

f(vj)g(xj , zj(x), ψj) (37)

= f(vi)
(
g(x′i, zi(x), ψ′i)− g(xi, zi(x), ψi)︸ ︷︷ ︸

≥ η

)
+

∑
(vi,vj)∈E

f(vj)
(
g(x′j , zj(x

′), ψj)− g(xj , zj(x), ψj)︸ ︷︷ ︸
≥ −1

)
(38)

≥ η · f(vi)−
∑

(vi,vj)∈E
f(vj) (39)

= η

(
f(vi)− η−1

∑
(vi,vj)∈E

f(vj)

)
(40)

≥ η, (41)

where the second statement holds since g(·) ∈ [0, 1] and since flipping xi to x′i only affects the immediate

children of vi (since each zj function only depends on the direct inputs to node vj), and the last statement

since f is η−1-admissible.

4.3.4 Step 4: Completing the Proof

We now combine everything to show the main technical result of Section 4, Theorem 4.1.

Proof of Theorem 4.1. First, apply the Compression Lemma (Lemma 4.7) to transform G into an equiv-

alent G∗ with |V ∗| ≤ 2O(sD)n and Wf∗(G
∗) ≤ (c + 1)O(sD)n. This takes 2O(sD+logn) time. Second,

define the total solution weight function t as in Equation (25), whose maximum value we denoted T

(Equation (26)). By Lemma 4.16, we know that any query string x satisfying t(x, ψ1, . . . , ψn) > T − η
(for η = (α− β)/2, α and β the completeness/soundness parameters for each C-verifier Qi in the C-DAG,

and for f = f∗ a η−1-admissible weighting function) is a correct query string. So, assume without loss

of generality (since C ∈ {NP,MA,QCMA,QMA,QMA(2)}, where for QMA(2) we use [HM13]) that

α = 2/3 and β = 1/3, so that η−1 = 6. By Lemma 4.13, f∗ is c-admissible for any c ≥ 2, and hence

η−1-admissible. Third, use Lemma 4.15 in conjunction with binary search to approximate T for G∗. Here,

we must be slightly careful. Set N = |V ∗| ≤ 2O(sD)n. Since the precision parameter η ∈ Θ(1), it suffices

to use log(Wf∗(G
∗)) ∈ O(log|V ∗|) ∈ O(sD + log n) C-queries to resolve T within additive error η. Let T̃

denote this estimate of T . Fourth, make a final C-query via Lemma 4.15 to decide whether there exists a

correct query string x and proofs |ψ1〉, . . . , |ψN 〉, such that t(x, ψ1, . . . , ψN ) ≥ T̃ and for which xN = 1,

and return its answer. (Recall that xN , by definition, encodes the output of the C-DAG.)

4.4 The case of StoqMA

We are only able to show a weaker version of Theorem 4.1 for StoqMA, due to the fact that error reduction

for StoqMA is not known (i.e. one cannot assume completeness/soundness 2/3 and 1/3). Specifically,

Lemmas 4.7, 4.15 and 4.16 still hold for C = StoqMA. However, as amplification of StoqMA’s promise

gap is not known (see, e.g. [AGL20]), we cannot assume η = Ω(1) in the proof of Theorem 4.1. If we

instead use η = 1/ poly(n) (note the use of n versus N here; see Remark 4.10), Lemmas 4.15 and 4.16

require a poly(n)-admissible weighting function. However, for any c-admissible weighting function f ,
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Wf (G) ≥ cdepth(G), which is superpolynomial when depth(G) = ω(1) and c = poly(n). Thus, for StoqMA

we can only prove the following weaker analogue of Theorem 1.1:

Theorem 1.4. Fix C = StoqMA and any efficiently computable function s : N→ N. Then,

C-DAGs ∈ DTIME
(

2O(s(n) log2 n)
)C[s(n) log2 n]

. (4)

Proof. This follows analogously to Theorem 1.1, but with c ∈ poly(n) (see Remark 4.10) instead of

c ∈ O(1), which incurs an additional log factor in the exponent.

Akin to Corollary 1.3, it follows that:

Corollary 4.17. For C = StoqMA, C-DAGlogk ∈ QPC[logk+2(n)] for all constants k ∈ N.

4.5 Query Graphs of Bounded Depth

One can ask whether there are other kinds of graphs for which we can apply the techniques developed in

this section. Using the weighting function ρ from Lemma 4.6, we obtain the following results for query

graphs of bounded depth.

Definition 4.18 (C-DAGd). Let d : N → N be an efficiently computable function. Then, C-DAGd is

defined as C-DAG, except that G has depth scaling as O(d(n)), for n the number of nodes used to specify

the C-DAG instance.

We caution that this notation is very close to that of C-DAGs — the d in C-DAGd distinguishes that

here we are considering bounded depth (as opposed to bounded separator number with C-DAGs). The

union of C-DAGd over all polynomials d : N 7→ N equals C-DAG.

The next theorem was shown by Gottlob [Got95] for C = NP and d(n) = logi n, i ∈ N. We strengthen

it for NP and simultaneously extend it to the quantum setting.

Theorem 1.5. Let d : N → N be an efficiently computable function. For C ∈ {NP,NEXP,QMAexp},
C-DAGd ⊆ PC[d(n) log(n)], and for C ∈ QV+,

C-DAGd ⊆ DTIME
(

2O(d(n) log(n))
)C[d(n) log(n)]

.

Proof. Follows analogously to Theorem 1.1, except we do not need to apply the graph transformation.

It suffices to use Lemmas 4.15 and 4.16 directly with the weighting function ρ from Lemma 4.6. For

C ∈ {NP,NEXP,QMAexp}, we do not need to increase the runtime of the base class to the total weight

Wρ(G) because the queries for Lemma 4.15 can be performed exactly or with exponential precision in the

case of QMAexp.

Corollary 4.19. For C ∈ QV+ and d ∈ O(1), C-DAGd is PC[log]-complete.

Proof. Containment in PC[log] is given by Theorem 1.5. That C-DAGd for d ∈ O(1) is PC[log]-hard follows

analogously to Theorem 1.2 (in particular, since PC[log] ⊆ P‖C for general C [Bei91], and since parallel

queries correspond to a constant depth query graph).
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5 Hardness for APX-SIM via a unified framework

We now show how the construction of Section 4 can be embedded directly into the flag-qubit Hamiltonian

construction of [WBG20], thus directly yielding hardness results for the APX-SIM problem (Definition 2.6).

We first give required definitions in Section 5.1. Section 5.2 and Section 5.3 state and prove the main

result of this section, the Generalized Lifting Lemma (Lemma 5.3). Finally, Section 5.4 shows how to

apply the Generalized Lifting Lemma to obtain hardness results for APX-SIM (see Definition 2.6).

5.1 Definitions

The following definitions were introduced in [WBG20] to allow one to abstractly speak about large

classes of circuit-to-Hamiltonian mappings. This allows the Lifting Lemma of [WBG20], as well as its

generalized version shown in Section 5.2 (Lemma 5.3), to be used in a black-box fashion (i.e. agnostic

to the particular choice circuit-to-Hamiltonian construction used). As a result, both Lifting Lemmas

automatically preserve desirable properties of the actual circuit-to-Hamiltonian mappings employed, such

as being 1D or translation invariant.

Definition 5.1 (Conformity [WBG20]). Let H be a Hamiltonian with some well-defined structure S

(such as k-local interactions, all constraints drawn from a fixed finite family, with a fixed geometry such

as 1D, translational invariance, etc). We say a Hermitian operator P conforms to H if H + P also has

structure S.

For example, if H is a 2-local Hamiltonian on a 2D square lattice, then P conforms to H if H + P is also

a 2-local Hamiltonian on a 2D square lattice. Next, define U (X ) as the set of unitary operators acting on

space X .

Definition 5.2 (Local Circuit-to-Hamiltonian Mapping [WBG20]). Let X = (C2)⊗p and Y = (C2)⊗q. A

map Hw : U (X ) 7→ Herm(Y) is a local circuit-to-Hamiltonian mapping if, for any L > 0 and any sequence

of 2-qubit unitary gates U = ULUL−1 · · ·U1, the following hold:

1. (Overall structure) Hw(U) � 0 has a non-trivial null space, i.e. Null(Hw(U)) 6= 0. This null space

is spanned by (some appropriate notion of) “correctly initialized computation history states”, i.e.

with ancillae qubits set “correctly” and gates in U “applied” sequentially.

2. (Local penalization and measurement) Let q1 and q2 be the first two output wires of U (each a single

qubit), respectively. Let Spre ⊆ X and Spost ⊆ Y denote the sets of input states to U satisfying

the structure enforced by Hw(U) (e.g. ancillae initialized to zeroes), and null states of Hw(U),

respectively. Then, there exist projectors M1 and PL, projector M2 conforming to Hw(U), and a

bijection f : Spre 7→ Spost, such that for all i ∈ {1, 2} and |φ〉 ∈ Spre, the state |ψ〉 = f(|φ〉) satisfies

Tr
(
|0〉〈0|i(ULUL−1 . . . U1)|φ〉〈φ|(ULUL−1 . . . U1)†

)
= Tr

(
|ψL〉〈ψL|Mi

)
, (42)

where |ψL〉 = PL|ψ〉/‖PL|ψ〉‖2 is |ψ〉 postselected on measurement outcome PL (we require PL|ψ〉 6=
0). Moreover, there exists a function g : N× N 7→ R such that

‖PL|ψ〉‖22 = g(p, L) for all |ψ〉 ∈ Null(Hw(U)), (43)

Mi = PLMiPL. (44)

The map Hw, and all operators/functions above (M1,M2,PL,f ,g) are computable given U .
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|x〉

V

xN

|ψ1〉 qflag

|ψ2〉
...

|ψN 〉

Figure 4: A depiction of the circuit V constructed in Lemma 4.15, with two minor modifications for our
purposes here. First, the second wire above denotes the output wire of V , and is relabbeled qflag here.

Second, we assume without loss of generality that V outputs the Nth bit of x ∈ {0, 1}N on the first wire
above, labelled xN . For simplicity, we depict the proofs |ψi〉 above in tensor product, but we make no
such a priori assumption in any of our proofs.

To gain intuition about Definition 5.2, consider the simplest case of Kitaev’s 5-local construction applied

to a QMA verification circuit U = UL · · ·U1 [KSV02]. Then25, Hw(U) = Hin + Hprop + Hstab, since

recall the null space of Hw(U) is precisely the set of all correctly initialized history states. (Notably, the

term Hout is omitted.) The sets Spre and Spost correspond to the correctly initialized inputs to U (i.e.

of form |ψ〉A|0 · · · 0〉B for some proof |ψ〉A and the ancilla register B set to all zeroes) and all correctly

initialized history states26 |ψhist〉, respectively. The projector PL = |L〉〈L|C projects onto timestep L in

clock register C, with g(p, L) = 1/(L+ 1). Finally, Mi = |0〉〈0|Ai
(for Ai the ith qubit of register A, and

where the projection onto time step L has already happened due to the use of |ψL〉 in Equation (42)).

5.2 The Generalized Lifting Lemma

Lemma 5.3 (Generalized Lifting Lemma for APX-SIM). Fix C ∈ QV+. As input, we are given a

C-DAG instance G∗ on N nodes, and c-admissible weighting function f∗. Let V , as depicted in Figure 4,

be the verification circuit constructed in Lemma 4.15, given (G∗, f∗). Define shorthand ∆ for ∆(Hw(V )).

Fix a local circuit-to-Hamiltonian mapping Hw, and assume the notation in Definition 5.2. Fix any

function α : N 7→ N such that

α > max

(
4‖M2‖

∆
,

∆

3‖M2‖2
, 1

)
. (45)

Then, the Hamiltonian H := αHw(V ) +M2 satisfies:

• If G is a YES instance, then for all |ψ〉 with 〈ψ|H|ψ〉 ≤ λmin(H) + 1
α2 ,

〈ψ|M1|ψ〉 ≤
1

α

[
W

η

(
1

α
+

12‖M2‖2
∆

)
+

12‖M2‖2
∆

]
. (46)

• If G is a NO instance, then for all |ψ〉 with 〈ψ|H|ψ〉 ≤ λmin(H) + 1
α2 ,

〈ψ|M1|ψ〉 ≥ g(p, L)− 1

α

[
W

η

(
1

α
+

12‖M2‖2
∆

)
− 12‖M2‖2

∆

]
, (47)

for W and η defined in Lemma 4.15 and Lemma 4.16, respectively, and g(p, L) defined in Definition 5.2.

25In [KSV02], Hin checks that all ancillae are set to |0〉 before the verification, Hprop checks that each step i in the
verification follows from step i− 1, Hstab ensures the clock register is correctly encoded, and Hout checks that the verifier
accepts the given proof.

26Kitaev’s history state [KSV02] encodes the history of the verification in superposition, i.e. as |ψhist〉 ∝∑L
t=0 Ut · · ·U1|ψ〉A|0 · · · 0〉B |t〉C , where C is a clock register. This in contrast to the Cook-Levin theorem [Coo71; Lev73b],

which encodes the history in a tableau.
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Proof. The claim follows immediately by defining δ := 1/α2, and then combining Lemma 5.4, Lemma 5.5,

and Lemma 5.6 (all given subsequently in Section 5.3). Roughly, Lemma 5.4 first shows that any low-

energy state of H must be “close” to a history state (formally, a null state of Hw(V ), as per Definition 5.2).

Lemma 5.5 shows that, in turn, any low-energy history state of H must have most of its weight on correct

query strings. Finally, Lemma 5.6 combines the previous two lemmas, along with Definition 5.2, to obtain

the claim, i.e. the ground state of H must encode the full computation represented by G, and thus a

local measurement suffices to decide G.

5.3 Lemmas required for proof of Lifting Lemma

We now give the three lemmas required for the proof of Lemma 5.3, all of which assume the notation for

the latter. The first of these can be stated and proven identically to Lemma 22 of [WBG20], since it does

not leverage any properties of V itself, but only the abstract definition of Hw(U). While the proof is

simple, it uses the Extended Projection Lemma [KKR06; GY19]; for brevity we omit both here.

Lemma 5.4 ([WBG20]). Fix any function α : N 7→ N such that

α > max

(
4‖M2‖

∆
,

∆

3‖M2‖2
, 1

)
, (48)

and any δ ≤ 1/α2. Then, for any |ψ〉 such that 〈ψ|H|ψ〉 ≤ λmin(H) + δ, there exists a uniform history

state |φ〉 ∈ Null(Hw(V )) such that

‖|ψ〉〈ψ| − |φ〉〈φ|‖tr ≤
12‖M2‖
α∆

(49)

and where |φ〉 has energy

〈φ|H|φ〉 ≤ λmin(H) + δ +
12‖M2‖2
α∆

. (50)

For the second lemma, Lemma 5.5, recall V has proof space X ⊗ Y1 ⊗ · · · ⊗ YN with X = B⊗N and

Yi = B⊗m. Henceforth, we denote an arbitrary (potentially entangled) proof in this space as |wXY〉.
We remark Lemma 5.5 is our version of Lemma 23 of [WBG20]; however, our proof is significantly

simplified, despite our lifting lemma allowing arbitrary C-DAGs, due to the specific design of our verifier

V from Lemma 4.15. (In particular, Lemma 23 of [WBG20] requires a somewhat involved argument using

conditional probabilities to obtain soundness against entanglement across proofs.)

Lemma 5.5. Suppose history state |φ〉 ∈ Null(Hw(V )) has preimage |ψin〉 = f−1(|φ〉) (for bijection f

from Definition 5.2), where |ψin〉 has proof |wXY〉 with total amplitude pbad on incorrect query strings in

X . Then,

〈φ|H|φ〉 > λmin(H) + g(p, L)
pbad · η
W

. (51)

Proof. Let |ψout〉 = V |ψin〉. Letting X+ and X− denote the sets of correct and incorrect query strings,

respectively, we may write

|wXY〉 =
∑
x∈X−

αx|x〉X |ψx〉Y +
∑
x∈X+

αx|x〉X |ψx〉Y , (52)

for
∑
x∈X+∪X− |αx|2 = 1, arbitrary unit vectors {|ψx〉}x, and pbad :=

∑
x∈X− |αx|2. Recall from Defini-

tion 5.2 that M2 simulates the projector |0〉〈0|qflag via

Tr
(
|0〉〈0|2(ULUT−1 . . . U1)|ψin〉〈ψin|(ULUT−1 . . . U1)†

)
= Tr

(
|φL〉〈φL|M2

)
, (53)
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(since we assumed in Figure 4 that the second output qubit of V is the flag qubit), where |φL〉 is the

history state |φ〉 projected down onto time step T . We thus have

〈φ|H|φ〉 = 〈φ|M2|φ〉 (54)

= g(p, L)〈φL|M2|φL〉 (55)

= g(p, L) Tr
(
|ψout〉〈ψout| · |0〉〈0|qflag

)
(56)

= g(p, L) Pr[V rejects | |wXY〉], (57)

where the second statement follows from Equation (43) and Equation (44), and the third from Equation (53).

By Equation (26) and Equation (29), there exists a proof |w′XY〉 = |x〉|ψ1〉 · · · |ψN 〉 accepted by V with

probability precisely T/W . Let |ψ′in〉 be an input state containing this optimal proof |w′XY〉. Lemma 4.16

now yields27

〈φ|H|φ〉 > g(p, L)

Pr[V rejects | |w′XY〉] +

 ∑
x∈X−

|αx|2
 η

W

 (58)

= 〈φ′|M2|φ′〉+ g(p, L)
pbad · η
W

(59)

≥ λmin(H) + g(p, L)
pbad · η
W

, (60)

where the first inequality (58) uses the fact that

Pr[V accepts | |wXY〉] ≤ pgood ·
T

W
+ pbad

(
T

W
− η

W

)
=

T

W
− pbad · η

W
. (61)

The second statement uses Equations (43) and (44), with |φ′〉 := f(|ψ′in〉), and the last statement (60)

uses |φ′〉 ∈ Null(Hw(V )) by the definition of f in Definition 5.2.

As a final aside, the proof above is written with the context of quantum verification classes such as

C = QMA in mind. However, the same proof can be applied directly to (say) C = NP by embedding an

NP verifier in the usual manner into a QMA verifier (i.e. the QMA verifier begins by measuring its proof

in the standard basis via the principle of deferred measurement). Of course, even when C = NP, the

construction of this section still yields a genuinely quantum Hamiltonian H (as opposed to a Hamiltonian

H diagonal in the standard basis), due to our use of circuit-to-Hamiltonian mappings Hw.

Finally, the third lemma, Lemma 5.6, is our analog of Lemma 25 of [WBG20]. We follow the same

high-level approach as the latter, but again, our proof here is simplified. This is because Lemma 4.16 can

be directly leveraged to obtain that any history state close enough to the ground space of H must simply

output the correct answer to the input C-DAG on wire xN in Figure 4. (In contrast, [WBG20] needed

the Commutative Quantum Union Bound to argue that all proofs are simultaneously correct.)

Lemma 5.6. Consider any |ψ〉 satisfying 〈ψ|H|ψ〉 ≤ λmin(H) + δ. If δ ≤ 1/α2, then

• if G∗ is a YES instance, then

〈ψ|M1|ψ〉 ≤
W

η

(
δ +

12‖M2‖2
α∆

)
+

12‖M2‖2
α∆

(62)

27We are implicitly using the fact that, as observed in the proof of Lemma 4.15, for any fixed query string x, the acceptance
probability of V is maximized by choosing a product state proof |ψ1〉 · · · |ψN 〉 on Y.
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• if G∗ is a NO instance, then

〈ψ|M1|ψ〉 ≥ g(p, L)− W

η

(
δ +

12‖M2‖2
α∆

)
− 12‖M2‖2

α∆
(63)

Proof. We first use Lemma 5.4 to map, assuming δ ≤ 1/α2, |ψ〉 to a history state |φ〉 ∈ Null(Hw(V ))

such that

‖|ψ〉〈ψ| − |φ〉〈φ|‖tr ≤
12‖M2‖
α∆

and 〈φ|H|φ〉 ≤ λmin(H) + δ +
12‖M2‖2
α∆

. (64)

We next use Lemma 5.5 to obtain that preimage |φin〉 = f−1(|φ〉) contains proof |w1···m〉 (see Equation (52))

with

pbad <
W

g(p, L) · η

(
δ +

12‖M2‖2
α∆

)
, (65)

i.e. the total amplitude pbad of |wXY〉 on incorrect query strings in X is bounded. But by Definition 3.1,

if the query string x1 · · ·xN in X is correct, then xN encodes the correct output of C-DAG G∗. Moreover,

by design, V in Figure 4 always outputs xN on its first wire. Thus,

if G∗ is a YES instance ⇒ Tr
(
|0〉〈0|1V |φin〉〈φin|V †

)
≤ pbad,

if G∗ is a NO instance ⇒ Tr
(
|0〉〈0|1V |φin〉〈φin|V †

)
≥ 1− pbad

Since for |φL〉 = PL|φ〉/‖PL|φ〉‖2,

〈φ|M1|φ〉 = g(p, L)〈φL|M1|φL〉 = g(p, L) Tr
(
|0〉〈0|1V |φin〉〈φin|V †

)
(66)

(by Equation (44), Equation (43), and Equation (42)), we thus have that if G∗ is a YES instance,

〈φ|M1|φ〉 ≤ g(p, L)pbad, and if G∗ is a NO instance, 〈φ|M1|φ〉 ≥ g(p, L)(1− pbad). Combining this with

Equation (65) and Equation (64) via Hölder’s inequality yields the claim.

5.4 Applying the Lifting Lemma

We now give two examples of how to use Lemma 5.3 to obtain hardness results for APX-SIM, for the

cases of C = QMA and C = StoqMA.

Example 1: C = QMA. The theorem below sets N := min(2O(s(n) logn), 2O(d(n) logn)) — the two values

in min(·, ·) correspond to the use of the bounded separator framework (Theorem 1.1) or bounded depth

framework (Theorem 1.5), respectively, in conjunction with Lemma 5.3.

Theorem 5.7 (Hardness of APX-SIM for C = QMA via Lemma 5.3). Fix C = QMA, and let G be

any C-DAG instance on n nodes with separator number and depth scaling as s(n) and d(n), in the

sense of C-DAGs and C-DAGd, respectively. Set N := min(2O(s(n) logn), 2O(d(n) logn)). Then, there exists

a poly(N)-time many-one reduction from G to an instance (H, a, b, δ) of APX-SIM, which satisfies:

(1) H has size poly(N) (i.e. acts on poly(N) qubits/qudits, and has poly(N) local terms), (2) H is

either 5-local acting on qubits or 2-local on a 1D chain of 8-dimensional qudits (depending on which

circuit-to-Hamiltonian mapping is employed), (3) b− a ≥ 1/ poly(N) and δ ≥ 1/ poly(N).

Proof. If N = 2O(d(n) logn), set (G∗, f∗) = (G, ρ) for ρ from Lemma 4.6 and proceed to the next paragraph.

Otherewise, as in Theorem 1.1, apply Lemma 2.12 to G to compute a separator tree of depth D = O(log(n))

with separators of size s = s(G) in time nO(s). This is then fed into Lemma 4.7 to obtain an equivalent

C-DAG G∗ with N = 2O(s(n) logn) nodes, each of which corresponds to a QMA verifier of size poly(N)
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(i.e. with constant promise gap, taking in proof of size poly(N), and running a verification circuit of size

poly(N)), along with weighting function f∗.

Next, invoke Lemma 5.3 on (G∗, f∗). Depending on whether we desire H to be 5-local on qubits

or a 1D chain on qudits, set Hw to be Kitaev’s 5-local construction [KSV02] or Hallgren, Nagaj, and

Narayanaswami’s 1D construction [HNN13], respectively (except in both cases, we omit the Hout term

which penalizes rejected proofs). We then plug Hw(V ) for V from Figure 4 into Lemma 5.3 with

parameters as follows. (Note that by Lemma 4.7 and Lemma 4.15, V has size poly(N), and thus Hw(V )

has size poly(N), by the constructions of [KSV02; HNN13].)

First, M1 and M2 are appropriately encoded 1-local rank-1 projectors onto |0〉〈0| at the last verification

time step on the output and flag qubits, respectively; thus, ‖M2‖ = 1. The spectral gap ∆(Hw(V )) scales

as 1/ poly(N) [GK12; GPY20], and g(p, L) = 1/(1 + L) = 1/ poly(N) in both cases. If N = 2O(d(n) logn),

then the weighting function W = Wf∗ satisfies Wf∗(G
∗) ≤ n(cnd(n)) ∈ poly(N) for any c ∈ poly(n).

Else, by Lemma 4.7, the weighting function W = Wf∗ satisfies Wf∗(G
∗) ≤ (c+ 1)O(sD)n ∈ poly(N), and

η ∈ O(1) (defined in Lemma 4.16, and since in time poly(N), each QMA verifier at a node of G∗ can

be amplified to have constant promise gap). In both cases, we conclude that by setting α to be a large

enough fixed polynomial in N , we obtain a 1/ poly(N) promise gap in lemma 5.3, thus satisfying all

claims regarding a, b, δ. All functions involved (e.g. g(m,T ), ∆), including the reduction itself, run in

time poly(N).

As noted in Section 1.1, combining Theorem 1.1 with Theorem 5.7, we have that C-DAG1 can directly

be embedded into an instance of APX-SIM.

Example 2: C = StoqMA. In Lemma 5.3, when N = 2O(s(n) logn) (i.e. bounded separator number

framework) the promise gap of C directly influences η, which in turn affects W , α, and ∆(Hw(V )).

Thus, we can apply it to obtain hardness for APX-SIM on stoquastic Hamiltonians. The tradeoff is that

due to the extra log factor in Theorem 1.4 (versus Theorem 1.2), the size of the stoquastic APX-SIM

instance obtained still unfortunately grows quasi-polynomially, even for s ∈ O(1). (Recall this extra log

factor is itself due to the lack of error reduction!) However, when N = 2O(d(n) logn) (i.e. bounded depth

framework), no such hit is incurred. As in Lemma 5.3, both frameworks are considered below.

Theorem 5.8 (Hardness of APX-SIM for C = StoqMA via Lemma 5.3). Fix C = StoqMA and any

efficiently computable function s : N→ N, and define N := min(2O(s(n) log2 n), 2O(d(n) logn)). Then, there

exists a poly(N)-time many-one reduction from any instance of C-DAG to an instance (H, a, b, δ) of

APX-SIM for stoquastic H, which satisfies: (1) H has size poly(N) (i.e. acts on poly(N) qubits, and

has poly(N) local terms), (2) H is 2-local, (3) b− a ≥ 1/poly(N) and δ ≥ 1/ poly(N).

Proof. The proof is almost identical to that of Theorem 5.7, except for two differences: (1) Set Hw

as the stoquastic circuit-to-Hamiltonian construction of Bravyi, Bessen, and Terhal [BBT06b], so that

the output Hamiltonian H is indeed stoquastic. (Recall by that V in Figure 4 is indeed stoquastic by

Remark 4.11.) (2) When C = StoqMA and N = 2O(s(n) log2 n), η = 1/ poly(n) (versus η = O(1)), and

so c ∈ poly(n). This means that although the size of G∗ produced by Lemma 4.7 remains unchanged,

the weighting function f∗ now satisfies W ∗f ≤ 2O(s log2 n) (versus W ≤ 2O(s logn)). This, in turn, means

that V (Lemma 4.15 and Figure 4) grows polynomially in size as 2O(s log2 n), implying ∆(Hw(V )) (see

Lemma 5 of [BBT06b]), and thus α, also scale with 2O(s log2 n). (The analysis for the N = 2O(d(n) logn)

case remains unchanged.)
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x x 1
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Figure 5: An example of an arithmetic circuit which computes polynomial p(x) = x2 + 1.

Thus, in the N = 2O(d(n) logn) case (i.e. bounded depth framework), we recover that APX-SIM on

stoquastic Hamiltonians is PStoqMA[log]-hard [GPY20]. For clarity, this follows because PStoqMA[log] =

P‖StoqMA [GPY20], and P‖StoqMA corresponds to a depth-1 StoqMA-DAG.

6 No-go statement for “weak compression” of polynomials

We now make a simple observation that the weighting function approach applied to NP queries (introduced

in [Got95] and used here as well) can be turned upside-down to obtain a no-go statement about a purely

mathematical question: Can arbitrary multi-linear polynomials be “weakly compressed”? Throughout this

section, we consider weighting functions applied to NP-DAGs.

Definitions. To define “weak compression”, recall first the definition of an arithmetic circuit, which is

a standard succinct encoding for polynomials.

Definition 6.1 (Arithmetic circuit). An arithmetic circuit C over field F is given via a DAG as follows.

Each vertex of in-degree 0 is labelled by either a variable xi or a constant from F . Each vertex of in-degree

at least 2 is labelled by either the “+” or “×” operation. Vertices of in-degree 1 are not allowed. There

is a single node of out-degree 0, the output node. The polynomial pC computed by C is obtained by

evaluating the circuit with order of operations dictated by any topological order on C, where the output

node is fixed as the last node in the order.

We now define our notion of weak compression; intuition given subsequently.

Definition 6.2 (Weak compression of polynomials). Let f : [0, 1]m → R+ be a multi-variate polynomial

with rational coefficients, specified via an arithmetic circuit of size M . Assume there exists x∗ ∈ [0, 1]m

maximizing f such that f(x) can be specified exactly28 via B bits, for some (finite) B. We say f is weakly

compressible to B′ bits if there exists an efficiently computable mapping taking f to another function

g : [0, 1]m
′ → R+ such that:

1. For any y ∈ [0, 1]m
′
, g(y) is computable in poly(m) time.

2. (Optimality preserved) For any optimal y∗ maximizing g(y∗) over [0, 1]m
′
, there exists a poly(m)-time

map taking y∗ to an optimal x∗ ∈ [0, 1]m maximizing f(x∗).

3. (Compression) There exists an optimal y∗ requiring at most B′ bits to specify exactly.

Very roughly, Definition 6.2 says we may efficiently reduce the number of bits required to represent the

optimal value f(x∗). More formally, we can efficiently map polynomial f to a new function g such that:

(1) g may deviate from f arbitrarily, except on at least one optimal point x∗ for f , which g must “preserve”

via some g-optimal point y∗. (2) f(y∗) must require fewer (i.e. B′) bits than f(x∗) (i.e. B) to represent.

28For clarity, we are assuming a naive binary expansion of f(x∗).
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Note that g is not required to be a polynomial, nor do we require that g(y∗) = f(x∗).

Sanity checks regarding Definition 6.2. When B′ ≥ B, f is trivially weakly compressible to B′ bits (simply

set g to f). More interestly, one might ask: Given f , why can one not simply divide f by f(x∗), i.e. set

f ′(x) = f(x)/f(x∗)? This would allow B′ = 1. The problem here is that x∗ is not known a priori, and

crucially, f is specified via an arithmetic circuit. Thus, it is not at all clear how one might efficiently

compute f(x∗), given just this circuit description.

We now observe a no-go statement regarding weak compressibility of polynomials (expressed as

arithmetic circuits).

Lemma 1.8. Fix any function h : R+ → R+. Suppose that given any multi-linear polynomial p (repre-

sented as an arithmetic circuit) requiring B bits for some optimal solution (in the sense of Definition 6.2),

p is weakly compressible to h(B) bits. Then PNP ⊆ PNP[h(B)].

The proof, while simple, requires a few ingredients, and is thus given in Section 6.1. It leads to the

following concrete no-go statements.

Corollary 1.9. If any multi-linear polynomial p (represented as an arithmetic circuit) can be weakly

compressed with h(B) = O(logB), then PNP ⊆ PNP[log].

Proof. Immediate from Lemma 1.8 and the fact that in its proof, the admissible weighting function ω

can have at most exponential total weight on an arbitrary NP-DAG, which requires B to scale as a

polynomial in the worst case.

Corollary 1.10. If any multi-linear polynomial p requiring B ∈ O(1) bits for some optimal solution can

be weakly compressed with h(B) = 1, then the Polynomial-Time Hierarchy (PH) collapses to its third level

(more accurately, to PΣp
2 ).

Proof. The proof is similar to Corollary 1.9, except when we start with a PNP[2] computation (i.e. making

2 NP queries). The weighting function ω now has at most O(1) total weight, justifying the choice B ∈ O(1)

in the claim. The claim now follows since if PNP[2] = PNP[1], then PH = PΣp
2 [Har93].

6.1 Proof of Lemma 1.8

We first require the following lemma for encoding correct NP query strings into polynomial optimization.

For concreteness, consider the admissible weighting setup of Section 4.3, specialized to the case of NP

queries. Recall from Section 4.3.2 that the admissible weighting function framework allows us to reduce

the task of identifying a correct NP query string x∗ ∈ {0, 1}m to optimizing a real-valued function

t : {0, 1}poly(m) → R of form (c.f. Equation (25), which also allowed QMA queries)

t(x, y1, . . . , ym) =

m∑
i=1

wi

(
xiVi(x, yi) +

(1− xi)
2

)
, (67)

where wi are the admissible weights (assumed to be rational), the bit xi encodes the claimed answer to

NP verifier Vi in the NP-DAG, and yi is the NP proof to verifier Vi. (Remark: In Equation (25), Vi takes

in zi(x) rather than all of x, where recall zi(x) selects the substring of x corresponding to the input wires

of node Vi. For simplicity, here we assume without loss of generality that the function zi is embedded
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into the definition of Vi itself, so that we can omit writing zi.) Then, by Lemma 4.16, x∗ is simply read

off the optimal (x∗, y∗1 , . . . , y
∗
m) which maximizes t.

We now use standard tricks to encode this setup into optimization of a multi-linear polynomial.

Lemma 6.3. Let t be as in Equation (67), specified using n bits of precision (used to describe weights wi

and verifiers Vi). There exists a polynomial-time Turing machine which, given t, produces an arithmetic

circuit encoding multi-linear polynomial pout : [0, 1]poly(n) → R+ with rational coefficients such that

max
x,y1,...,ym∈{0,1}poly(m)

t(x, y1, . . . , ym) = max
s∈[0,1]poly(m)

pout(s). (68)

(Both f and pout have range [0,
∑
i|wi|] over their respective domains.) Moreover, given an optimal s∗

maximizing pout, one can efficiently compute a correct NP query string for the NP-DAG underlying t.

Proof. The construction applies standard tricks (used, e.g., in the proof of IP = PSPACE [Sha92]). Fix a

topological ordering R := (V1, . . . , Vm) on the vertices of the NP-DAG, and let L denote the maximum

level (Definition 4.5) of any node in R. Throughout, we abuse notation and interchangably refer to Vi as

both nodes in the DAG and NP verifiers Vi. The construction of pout is accomplished by the following

iterative algorithm:

1. Set i = 0.

2. While i ≤ L do:

(a) Let Si denote the set of nodes at level i (with respect to R).

(b) For all V ∈ Si:
i. (Map circuits to 3-SAT formulae) Map V to a 3-SAT formula φV via the Cook-Levin

theorem [Coo72; Lev73a] with a minor modification: Since the input to V is a priori

unknown (it depends on the outputs of the predecessors of V ), omit the constraints in the

Cook-Levin construction which force the input to a fixed string. Note:

• φV (x, yV , zV ) takes in three strings: x (query answers to predecessor queries), yV

(verifier V ’s proof), zV (auxilliary variables introduced by Cook-Levin construction).

• Without loss of generality, all φV throughout this construction are assumed to have

the same number N of variables and M of clauses (via trivial padding arguments).

ii. (Arithmetize each clause of φV ) Let cV,j denote the jth clause of φV , where j ∈ [M ].

Arithmetize each cVj
via rules x 7→ 1 − x and x ∨ y ∨ z 7→ 1 − xyz (with this order of

precedence). For example,

(z1 ∨ z2 ∨ z3) 7→ 1− (1− z1)(z2)(1− z3). (69)

View the right hand side as a multi-linear polynomial rVj
: [0, 1]3 → [0, 1].

iii. (Combine clauses of φV ) For each φV , define polynomial qV : [0, 1]N → [0, 1] as qV :=

ΠM
j=1rVj . Note qV has range [0, 1], but is no longer multi-linear. Also, φV (x, yV , zV ) and

qV (x, yV , zV ) take in the same arguments (although for qV , each coordinate of x, yV , zV

lies in [0, 1]).

(c) Set i = i+ 1.

3. (Combine polynomials to simulate weighting function) Substituting into Equation (67), define

polynomial

p(x, yV1 , . . . , yVm , zV1 , . . . , zVm) :=

m∑
i=1

wi

(
xiqVi(x, yVi , zVi) +

(1− xi)
2

)
. (70)
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Note we define the domain of p as [0, 1]m(2N+1); for brevity, let si for i ∈ [m(2N + 1)] now denote

the ith real parameter of p’s input. Observe p has range [0,
∑
i|wi|], since each qVi has range [0, 1].

4. (Linearize the polynomial) Round p to a multi-linear polynomial pout via the following iterative

process, for which we define p(k) as the polynomial p after round k ∈ {0, . . . ,m(2N + 1)}:
(a) Set k = 1.

(b) While k ≤ m(2N + 1), set

p(k)(s1, . . . , sm(2N+1)) = (1− sk) · fix(p(k−1), k, 0) + sk · fix(p(k−1), k, 1), (71)

where fix(pk−1, k, b) is obtained by fixing sk of pk−1 to b ∈ {0, 1}.
(c) Set k = k + 1.

Observe that for all k ∈ {1, . . . ,m(2N + 1)},

p(k−1)(s1, . . . , sk−1, b, sk+1, . . . sm(2N+1)) = p(k)(s1, . . . , sk−1, b, sk+1, . . . sm(2N+1)) (72)

for any b ∈ {0, 1}. Thus, pout := p(m(2N+1)) satisfies pout(s) = p(s) for all s ∈ {0, 1}m(2N+1)
.

Moreover, by construction pout is multi-linear and has range [0,
∑
i|wi|] (since each iteration of line

4b introduces a convex combination over local assignments).

Finally, we assume all arithmetic operations above are represented implicitly via gates of an arithmetic

circuit (required due to Step 2biii, as expanding qV explicitly in a monomial basis can result in exponentially

many terms). The resulting arithmetic circuit clearly has size poly(n).

Correctness. Since pout is multi-linear, it obtains29 its maximum on an extreme point of the compact

set [0, 1]m(2N+1), i.e.

max
s∈[0,1]m(2N+1)

pout(s) = max
s∈{0,1}m(2N+1)

pout(s). (73)

Thus, we may restrict attention30 to s ∈ {0, 1}m(2N+1)
. But on this set, φV (Cook-Levin output) and qV

(arithmetization of φV ) coincide. We conclude

max
s∈[0,1]m(2N+1)

pout(s) = max
x,y1,...,ym∈{0,1}poly(m)

t(x, y1, . . . , ym) (74)

for t from Equation (67). Moreover, recalling that s = xyV1 · · · yVmzV1 · · · zVm (viewed as a concatenation

of strings), it follows that given the optimal s∗, we may recover the correct NP query string simply by

reading off x.

With Lemma 6.3 in hand, the proof of Lemma 1.8 now follows straightforwardly.

Proof of Lemma 1.8. The proof is similar to that of Theorem 1.1 (and thus Theorem 4.1), except we

need not apply the Compression Lemma (Lemma 4.7) in that the content of Section 4.3 suffices, and now

29Here is a simple proof via exchange argument, for completeness: Let x = (x1, ..., xn) be a point maximizing multi-linear
f : [a, b]n → R for arbitrary a, b ∈ R. Assume without loss of generality x1 6∈ {a, b}. Then, fixing x2, . . . , xn, the resulting
function f(x1) is linear in x1 by definition, and so max(f(a), f(b)) ≥ f(x1). Exchanging arg max(f(a), f(b)) for x1 completes
the claim.

30Note the linearization of Step 4 is necessary to obtain this statement. For example, consider an unsatisfiable 2-SAT
formula φ(x1, x2) = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2). Let q be the multi-variate polynomial produced by
arithmetizing φ as in steps 2(ii) and 2(iii). Then, the maximum value of q over strings is 0, but setting each variable to
1/2 yields value (3/4)4 > 0. With this said, note that for 3-SAT, since a 7/8-approximation ratio is optimal via the PCP
theorem [H̊as97], one can show via AM-GM inequality that for any unsatisfiable φ, optimizing all variables of q over [0, 1]
yields value at most (7/8)m for m clauses. Thus, up to inverse exponential corrections, one could avoid the linearization
step, but the tradeoff is added clutter and the need to assume P 6= NP.
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we use Lemma 6.3 to make the connection to polynomials. Specifically, let Π be any instance of a PNP

problem, and M a PNP machine deciding Π. Map the NP-DAG representing M ’s action directly (i.e.

without utilizing Lemma 4.7) to the function t in Equation (67). For this, the weights wi can be any

c-admissible weighting function which satisfies the preconditions of Lemma 4.16; for concreteness, choose

the 2-admissible function ω(v) = 3|Desc(v)| from Lemma 4.6. Apply Lemma 6.3 to map t to polynomial

pout(x, y1, . . . , ym, z1, . . . , zm). Since pout is efficiently evaluated on any given input, and has an optimal

value pout(x
∗, y∗1 , . . . , y

∗
m, z

∗
1 , . . . , z

∗
m) expressible using B bits of precision31, a binary search using B

queries to an NP-oracle suffices to identify an optimal input (x∗, y∗1 , . . . , y
∗
m, z

∗
1 , . . . , z

∗
m). By Lemma 6.3,

one can now efficiently extract the answers to all NP queries made by M (specifically, this is the string

x∗), and thus efficiently simulate M itself to decide Π.
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