
Locally Testable Codes
with constant rate, distance, and locality

Irit Dinur∗1 Shai Evra†2 Ron Livne2 Alexander Lubotzky‡1 Shahar
Mozes§2

1Weizmann Institute, Rehovot, Israel
2Hebrew University, Jerusalem, Israel

November 8, 2021

Abstract

A locally testable code (LTC) is an error correcting code that has a property-
tester. The tester reads q bits that are randomly chosen, and rejects words with
probability proportional to their distance from the code. The parameter q is called
the locality of the tester.

LTCs were initially studied as important components of PCPs, and since then
the topic has evolved on its own. High rate LTCs could be useful in practice: before
attempting to decode a received word, one can save time by first quickly testing if
it is close to the code.

An outstanding open question has been whether there exist “c3-LTCs”, namely
LTCs with constant rate, constant distance, and constant locality.

In this work we construct such codes based on a new two-dimensional complex
which we call a left-right Cayley complex. This is essentially a graph which, in
addition to vertices and edges, also has squares. Our codes can be viewed as a two-
dimensional version of (the one-dimensional) expander codes, where the codewords
are functions on the squares rather than on the edges.

1 Introduction
A locally testable code (LTC) is an error correcting code that has a property-tester.
The tester reads q bits (randomly - but not necessarily uniformly - chosen) from a given
word, and rejects words with probability proportional to their distance from the code.
The parameter q is called the locality of the tester.

A random code has, with high probability, constant rate and distance, but locality
that is proportional to the length. This is true even for random LDPC codes [BHR05],
and a priori the mere existence of codes with constant locality is not obvious. The first
LTCs appear implicitly in works on program checking [BLR90] and on probabilistically

∗I.D. acknowledges support by ERC grant 772839 and ISF grant 2073/21.
†S.E. is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship.
‡A.L. acknowledges support by ERC grant 882751 and a grant from the Institute for Advanced Study

at Princeton.
§S.M. acknowledges support by ISF-Moked grant 2019/19.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 151 (2021)

checkable proofs (PCPs) [BFL91, LFKN92, BFLS91, AS98, ALM+98]. A formal defini-
tion of an LTC appeared simultaneously in several places [BFLS91, RS96, FS13, Aro94]
(see [Gol10] for a detailed history).

Spielman, in his PhD thesis [Spi96], discusses the possibility of having an error-
correcting code that is locally testable (he uses the term ‘checkable code’) and explains
its potential applicability: “A checker would be able to read only a constant number of
bits of a received signal and then estimate the chance that a decoder will be able to correct
the errors, then the checker can instantly request a retransmission of that block, before
the decoder has wasted its time trying to decode the message. Unfortunately all known
codes with local-checkers have rate approaching zero."

Goldreich and Sudan [GS06] initiated a systematic study of LTCs as objects of in-
terest in their own right. Over the years better and better LTCs were constructed
[PS94, GS06, BSVW03, BGH+06, BS05, Din07, KMRS17, GKdO+18], but, neverthe-
less, experts went back and forth on whether “c3-LTCs” (namely, LTCs with constant
rate, constant distance, and constant locality) are likely to exist, compare [Gol05] with
[Gol10, Section 3.3.2].

We construct the first such family of LTCs,

Theorem 1.1. For all 0 < r < 1, there exist δ, κ > 0 and q ∈ N and a polynomial-time
construction of an infinite family of error-correcting codes {Cn} with rate r and distance
δ, such that for all n, Cn is κ-locally testable with q queries.

Namely, every code Cn comes with a randomized local tester that reads at most q bits
from a given word w and then accepts or rejects, such that

– For all w ∈ Cn, P[accept] = 1.

– For all w < Cn, P[reject] > κ · dist(w,Cn).

We remark that [KMRS17, GKdO+18] have shown (see [GKdO+18, Section 1.2]) how
to take an LTC with rate arbitrarily close to 1 and with constant distance, and construct
a new LTC with rate and distance approaching the Gilbert-Varshamov bound, and only
a constant overhead in the locality q. So the theorem above holds for all r, δ > 0 that
satisfy r + h(δ) < 1 where h(·) is the binary entropy function.

Expander codes, one dimension up
The celebrated expander-codes of Sipser and Spielman [SS96] are a family of error-
correcting codes constructed from a single base code C0 ⊆ Fd2 and a family of d-regular
expander graphs Gn = (Vn, En) such that the code corresponding to Gn consists of
functions on En such that for every vertex in Vn, the local view from the neighboring
edges (assuming some arbitrary fixed ordering) is itself in the base code C0,

C =
{
f : En → F2

∣∣ ∀v ∈ Vn, f |edges(v) ∈ C0
}
.

Similarly, our codes will also be defined via a fixed base-code and an infinite family
of expander graphs. Our graphs will have, in addition to vertices and edges, also two-
dimensional faces, called squares, where each square touches four edges and four vertices.

Our codewords are functions on the squares such that for every edge, the bits on the
neighboring squares form a codeword in the base code. It is natural to view our code as
a Tanner code [Tan81] with bits on the squares and constraints on the edges; whereas
the expander-codes have bits on the edges and constraints on the vertices.

Inspecting our code on the set of squares neighboring a fixed vertex, we see an
intermediate code, whose constraints come from the edges neighboring that vertex.

2

We thus have three codes for the three dimensions of links: the base code C1 at the
link of an edge, the intermediate code C0 at the link of a vertex, and the global code C
at the link of the empty face which is the set of all squares.

Left-Right Cayley Complex. Let us describe our construction of a graph-with-squares,
namely a square complex (for a more formal description see Definition 3.1). Let G be a
finite group with two sets of generators A,B. We define the left-right Cayley complex
X = Cay2(A,G,B) as follows

– The vertices are X(0) = G.

– The edges are X(1) = XA(1) tXB(1) where

XA(1) = {{g, ag} | g ∈ G, a ∈ A} , XB(1) = {{g, gb} | g ∈ G, b ∈ B} .

The fact that with A we multiply on the left, and with B we multiply on the right, gives
a local commutativity which generates many four-cycles, namely, squares. Indeed for
every a, g, b the graph has a cycle of length 4 with alternating A and B edges, given by
the walk g, gb, agb, ag, g. We place a square for each of these four-cycles.

– The squares are a set of the following four-cycles in the graph,

X(2) = {(g, gb, agb, ag, g) | g ∈ G, a ∈ A, b ∈ B} .

We denote by [a, g, b] the square containing the edges {g, ag} and {g, gb}. By
changing the ‘root’ of the square we get [a, g, b] = [a−1, ag, b] = [a−1, ab, b−1] =
[a, gb, b−1].

The Code. Fix a left-right Cayley complex X = Cay2(A,G,B), and fix a pair of base
codes CA ⊆ FA2 and CB ⊆ FB2 (assuming |A| = |B| = d we can take both to be isomorphic
to some C1 ⊆ Fd2). Our code is defined to be

C[A,G,B,CA, CB] = {f : X(2)→ F2 | ∀a, g, b, f([·, g, b]) ∈ CA, and f([a, g, ·]) ∈ CB} .

Observe that for a codeword f ∈ C and a fixed vertex g ∈ G, the restriction of
f to the squares touching g is f([·, g, ·]). It is not difficult to check that this word
necessarily belongs to the tensor code CA ⊗ CB , see Lemma 4.1. Thus, by putting the
constraints around each edge, we get an intermediate code on the squares touching a
vertex, which turns out to be a tensor code! Tensor codes have non-trivial dependencies
among the constraints defining them. This often implies local testability of tensor codes
[BS06, DSW06, BV09], and turns out important for showing that our code can be
locally tested by the following simple test:

Local test: Choose a random vertex g, and accept iff f([·, g, ·]) ∈ CA ⊗ CB .

We discuss below the type of local to global propagation that goes into proving that this
test works.

Finally, to complete our construction of locally testable codes and to prove Theorem
1.1, we describe in Section 6 an explicit construction of a family of groups and pairs of
generating sets which give good left-right Cayley complexes, and in Section 5 a matching
choice of base codes CA, CB .

3

Propagation from local to global. Sipser and Spielman proved distance of their expander
codes [SS96] through propagation: expansion of the underlying graph is used to “lift”
the distance of the base code to the distance of the global code. In our codes distance is
shown via a similar argument.

More interestingly, local testability of our codes is also shown through expansion. We
show that if a received word violates only a small amount of constraints, then locally
it can be corrected, as long as the intermediate code CA ⊗ CB is itself robustly locally
testable. We describe an iterative decoding algorithm (Algorithm 1) and prove that
it converges thanks to sufficient expansion of certain edge-to-edge random walks on our
square complex. Conceptually, local local-testability (of the intermediate code CA⊗CB),
implies global local-testability (of the entire code), through expansion.

The existence of many dependencies among the constraints defining our codes is the
point where our codes most clearly differ from expander codes: in expander codes one
can have a single violated constraint that does not propagate, and leads to a word that
is far from the code but no tester can detect it, as proven in [BHR05].

Locally Testable Codes: historical background and techniques
As mentioned earlier, the study of LTCs arose naturally in works on program checking
and PCPs. The Hadamard code was the first code proven to be locally testable in the
work of Blum, Luby, and Rubinfeld on linearity testing [BLR90]. The low (logarithmic)
rate of this code was quickly improved to polynomial rate by moving from linear functions
(codewords of the Hadamard code) to low degree polynomial functions (codewords of the
Reed Muller code). Subsequent works studied “low degree tests” which are in fact proofs
that the Reed-Muller code is locally testable. These works were crucial for progress
leading up to the proof of the PCP theorem. More on the relation between PCPs and
LTCs, as well as the historical development, can be found in Goldreich’s survey [Gol10].

A systematic study of LTCs was initiated by Goldreich and Sudan in [GS06], and a
sequence of works constructed both LTCs and PCPs with improved parameters [GS06,
BSVW03, BGH+06, BS08, Din07], achieving constant locality and distance, but rate
1/poly logn. Some experts believed that low rate is inherently needed and some attempts
to prove upper bounds on the rate have been made [BGK+10, DK11, BSV12, BSS05],
although these lower bounds are in rather restrictive models.

This, perhaps, has triggered works from the other end of the spectrum [KMRS17,
GKdO+18] which focused on constructing error correcting codes with constant rate and
distance, that are locally testable with smallest possible locality. These works achieve
constant rate and quasi-poly-logarithmic distance and locality.

In terms of techniques, many of the earlier constructions of LTCs have two notable
features. Firstly, they are based on the properties of low degree polynomials, and sec-
ondly, they come hand in hand with a PCP constructions, so that both share the same
composition-recursion structure.

The gap amplification technique [Din07] of the first author is a construction of both a
PCP and an LTC that relies on expander graphs and concatenation and departs from the
domain of low degree polynomials. Meir [Mei08] gave a tensor-code-based construction
of LTCs that is neither related to low degree functions nor to PCPs altogether. Further
works [KMRS17, GKdO+18] also construct LTCs without any PCP counterpart.

A feature shared by all previous constructions of LTCs with mildly high rate is
their recursive nature. One first constructs codes with weaker properties and then en-
hances them by concatenation, possibly with different iterations. The overall composed
structure of the code is somewhat complicated and begs for a more direct “one-shot”

4

construction.
A path leading towards a one-shot construction seemed to open up with the connec-

tion to high dimensional expanders.

High Dimensional Expansion
The current paper is mainly elementary and almost self-contained (with the exception
of Section 6 which uses the existence of some Ramanujan Cayley graphs with specific
properties and can be taken as a black box). But it came up as a result of a much longer
and intensive journey. Some interesting open problems were left aside along the way. It
is, therefore, worthwhile to give the story here.

The journey started by the first and fourth authors during a year-long program at the
IIAS (Israeli Institute of Advanced Studies) on high dimensional expanders in 2017: the
hope was to use the Ramanujan complexes (a la [LSV05b, LSV05a]) to construct LTCs as
high-dimensional versions of expander-codes over Ramanujan graphs as explained above.
Although expander codes are typically not locally testable [BHR05] the hope was that
higher dimensional versions would be.

This optimistic belief was inspired by local to global behavior of certain high dimen-
sional complexes that was uncovered already by Garland in his seminal work [Gar73].

In that paper, Garland proved a conjecture of Serre, that the cohomology of co-
compact lattices in high-rank simple p-adic groups vanishes. Equivalently, if X is a finite
simplicial quotient of a Bruhat-Tits building of dimension at least two, its cohomology
vanishes. The proof of Garland is “local-to-global”: he showed that if the links of
relevant cells have a spectral gap, then so does the global Laplacian of X. Namely, if X
is locally an expander, then it is also globally so. (For a purely combinatorial treatment
and generalizations - see [Opp18]). The global spectral gap implies the vanishing of the
cohomology.

This “local to global” approach is a high-dimensional phenomenon that does not
hold for graphs! In graphs, the local structure does not reveal any information about the
global expansion. To illustrate this, the reader may recall the LPS-Ramanujan graphs
[LPS88] which are (p+1)-regular expander graphs with large girth. One can easily get
(p+1)-regular graphs with large girth (and hence locally isomorphic to the LPS ones)
which are far from being expanders. In contrast, the Garland method shows that local
expansion implies global expansion in the high dimensional case.

The local to global approach was also the key ingredient, in [KKL14, EK16] where
Gromov’s overlapping problem was solved using the Ramanjaun complexes.

At this point there was already some interest from the theoretical computer science
community. The fact that high dimensional expansion is related to property testing in
computer science was observed for the first time in [KL14]. The first author and Kaufman
proved that high dimensional expansion implies an efficient agreement-test [DK17], which
is related to both PCPs and LTCs. Anari et al [ALOV19] resolved a conjecture regarding
convergence of certain Markov chains by analyzing the global random walk through local
analysis at the links.

Inspired by all this, the idea was to construct LTC codes by using the local-to-global
behavior of the Ramanujan complexes in an analog to the way [SS96] used Ramanujan
graphs for LDPC codes. For simplicity, we will describe it from now on only in dimension
2, but one can do the same in higher dimensions.

The original idea was as follows: fix a large prime p and take an infinite family
of Ramanujan complexes X, quotients of the Bruhat-Tits building of G = SL(3,Qp).
The complex X is a 2-dimensional complex, the link of every edge of it is in one-to-one

5

correspondence with the projective line P1 over Fp and the link of every vertex is the
graph of lines versus points of the projective plane over Fp. One can define a base code
(“the small code”) C1 on P1 to be a "projective" variant of the Reed-Solomon code. This
code induces a "big code" C as a subspace of the Fp functions on X(2)- the 2-dimensional
cells of X- whose local views at every edge are in the base code of the edge. The goal
was then to propagate the rate, distance, and local-testability of Reed-Solomon codes
from the small code C1 to the big code C.

This turned out to be easier to say than to do. At some point, we were hoping to use
p-adic uniformization. Recall the work of Mumford [Mum79] who used the combinatorial
structure of one such Ramanujan complex to prove a result on algebraic surfaces appear-
ing as locally symmetric quotients of SU(2, 1). We were hoping to go in the opposite
direction and to use the theory of algebraic surfaces to study our combinatorial objects.
The theory of p-adic uniformization was developed in depth by Varshavsky in his thesis
[Var98] (written under the supervision of the 3rd author of the current paper). This is
an opportunity to thank Yakov Varshavsky who gave upon our request a semester-long
course describing this work. While we eventually are not using this, we were fortunate
to be exposed to an amazing chapter of deep mathematics.

Propagating local testability from the small code to the big code when these are
defined over a high dimensional expander is possible. This was proved in [DDFH18] with
the hope that it would serve our original plan. For our codes to fit, the intermediate
code, C0 - the one that is defined on the link of a vertex through the small Reed-Solomon
codes C1 on the edges - needed to be itself locally-testable. Unfortunately we failed to
prove that C0 is locally testable. Here the problem is very concrete: Find C1 inside FP1

p

such that the induced intermediate code C0 on the link of a vertex is locally testable.
Here, the link of a vertex is nothing but the lines versus points graph of the projective
plane.

One can generalize this challenge to get such a code also on higher dimensional
spherical buildings. This is interesting also in higher dimensions: are such spherical
codes locally testable?

We, therefore, changed direction and replaced G = SL(3,Qp) by a product G =
SL(2,Qp)× SL(2,Qq). This time the quotients obtained from congruence lattices in G
give rise to square complexes. These complexes were shown long ago to be Ramanujan
cubical complexes [JL99] and the dynamic of walks along them was studied in [Moz91].
This time the local intermediate code look like tensor codes (since the link of every
vertex is the complete bipartite graph) and there are plenty of tensor codes that are
locally testable as mentioned above. A subtle obstacle arose at this point which does not
exist in the graph codes of [SS96]: one needs to name the squares in such a way that the
function defined on the link of an edge {u, v} will be in or out the code independently if
we look at it from the vertex u or the vertex v. It might be that this challenge can be
overcome, but at that point, we realized that by changing from these square complexes to
the left-right Cayley complexes as defined above, this problem is easily fixed. Moreover,
it became also easier to argue about the rate- making the whole paper much simpler
than we expected!

As explained, our long journey left a number of unsettled issues. We believe they are
interesting in their own right (and in all dimensions) even if not needed anymore for the
concrete goal of locally testable codes.

The left-right Cayley complexes seem objects that are worth studying for their own
sake. It is actually somewhat surprising that in spite of over 100 years of studying Cayley
graphs, these objects, as far as we know, have never been studied before. An immediate

6

curiosity is whether there are higher-dimensional analogs or whether a group “has only
two sides” and hence these exist only in dimension 2. Anyway, it seems that this paper
solves one problem but opens many others.

Acknowledgements
We wish to thank Prahladh Harsha and Avi Wigderson for many interesting discussions
along the way of this project. We also wish to thank Tali Kaufman for her influential
role in connecting LTCs and high dimensional expansion.

This work was presented by the first author on October 6, 2021 at the Simon’s Insti-
tute for the Theory of Computing [Din21a] as part of the lecture series on breakthroughs
in computer science, and at the Institute for Advanced Study in Princeton on October
25-26, 2021 [Din21b]. It was also presented by the 4th author on October 27, 2021 at the
Simon’s HDX21 workshop [Lub21]. The authors are very grateful to these institutions
and for the remarks of the audience which improved the exposition of the paper.

2 Preliminaries
2.1 Expander Graphs
A d-regular graph G is said to be a λ-one-sided expander if it has eigenvalues d = λ1 >
λ2 > ... > λn > −d which satisfy λi 6 λ · d for all i > 1.

The following is a standard lemma by Alon and Chung,

Lemma 2.1 ([AC88]). Let G = (V,E) be a d-regular λ one-sided expander. Let T ⊆ V be
such that the graph induced on T , denoted G(T), has average degree at least δd. Then
|T | > (δ − λ) · |V |, and the number of edges in G(T) is at least (δ − λ)δ · |E|.

This lemma holds in more general situations where instead of a d-regular graph we
have a weighted Markov operator as long as it has a basis of eigenvectors. Let D be any
probability distribution over a finite set V , and define an inner product by

〈·, ·〉D : RV ×RV → R, 〈f, f ′〉D = E
x∼D

[f(x)f ′(x)].

Denote by 1 ∈ RV the constant 1 function.

Lemma 2.2. Let M : RV → RV be a symmetric Markov operator such that M1 = 1, and
such that for all f with 〈f,1〉D = 0, 〈f,Mf〉D 6 λ〈f, f〉D. Let f = 1T be the indicator
of a set T ⊆ V , so that 〈f, f〉D = PD[T]. If 〈f,Mf〉D > δ · 〈f, f〉D then PD[T] > δ − λ,
and 〈f,Mf〉D > δ(δ − λ).

Proof. Denote p = PD[T]. We can write f = p1 + f⊥ with 〈f⊥,1〉D = 0. We get

δ · p 6 〈f,Mf〉D = 〈p1 + f⊥,M(p1 + f⊥)〉D = p2 + λ〈f⊥, f⊥〉D 6 p2 + λp.

which, when rearranging, gives the lemma. �

2.2 Error Correcting Codes
A linear code C ⊂ Fn2 is an F2-linear subspace of Fn2 . The block-length of the code is
n. The rate and distance of the code are the relative dimension of the code and relative

7

Hamming weight of the smallest weight non-zero codeword, respectively, namely,

Rate(C) = 1
n
dim(C) and dist(C) = 1

n
min

w∈C−{0}
| {i ∈ [n] | wi , 0} |.

We recall the definition of locally testable codes from [GS06]. The definition given
here is that of a “strong” LTC, and implies all other definitions of locally testable codes.
See [Gol17, Chapter 13].

Definition 2.3 (Locally Testable Code (LTC)). For κ > 0 and q ∈ N we say that an
error-correcting code C ⊆ Fn2 is κ-locally testable with q queries if there is a distribution
over a collection of q-element subsets S ⊂ [n] such that each subset S is associated with
a set VS ⊂ FS2 of allowed local views, and such that, denoting by f |S the restriction of f
to the set S, the following hold.

– If f ∈ C then for every S, f |S ∈ VS .

– For every f ∈ Fn2 ,
κ · dist(f, C) 6 P

S
[f |S < VS].

Definition 2.4 (Tensor Code). Let n1, n2 ∈ N and let Ci ⊂ {f : [ni] → F2} for i = 1, 2
be two linear codes. Define the tensor code C = C1 ⊗ C2 by

C = {M : [n1]× [n2]→ F2 | ∀i ∈ [n1], j ∈ [n2],M(i, ·) ∈ C2,M(·, j) ∈ C1} .

It is easy to check that dim(C1⊗C2) = dim(C1) · dim(C2), and that dist(C1⊗C2) =
dist(C1) dist(C2). We view the elements of C as n1-by-n2 matrices and write w(i, ·) ∈ Fn2

2
for the i-th row of w, and similarly w(·, j) ∈ Fn1

2 is the j-th column of w.
A natural test for whether a given matrix f ∈ Fn1×n2

2 is in C1 ⊗ C2 is as follows:
Randomly choose a row or a column, and check whether the restriction of f to that

column (or row) is in C1 (or C2).
The quality of the test is measured by the relation between the rejection probability

and the distance of f from the tensor code. Formally, this is captured by the notion of
robust-testability.

Definition 2.5 (Robust testability of tensor codes). Fix Ci ⊆ Fni2 linear error correcting
codes for i = 1, 2. For f : [n1]× [n2]→ F2, let

δcol(f) = dist(f, C1 ⊗ Fn2
2), δrow(f) = dist(f,Fn1

2 ⊗ C2).

and
ρ(f) = (δcol(f) + δrow(f))/2.

The robust testability of C1 ⊗ C2 is defined to be

ρ = min
f<C1⊗C2

ρ(f)
dist(f, C1 ⊗ C2) ,

and we say that C1 ⊗ C2 is ρ-robustly testable.

The robust testability of tensor codes was first studied in [BS06], where it was shown
that for any code C with sufficiently high distance, the d-dimensional tensor code C⊗d is
robustly testable for all d > 3. The requirement d > 3 was puzzling because the tensor of
Reed Solomon codes is known [PS94] to be robustly testable even for d = 2 and this was
considered the prototype for locally testable codes. Surprisingly, Paul Valiant discovered

8

[Val05] that there are codes C for which C⊗C is not robustly testable, see also [GM12].
Quickly after that [DSW06] formulated a notion of smooth codes, broadened later to
‘weakly smooth’ in [BV09], and showed that the tensor product of a smooth code and
any other code is in fact robustly testable. To define smooth codes recall the definition
of LDPC codes,

Definition 2.6 (LDPC code). Let c, d, n ∈ N. A (c, d, n)-LDPC code is given by a
(c, d)-regular bipartite graph ([n], [m], E) (called a factor graph) with n left vertices and
m = nc/d right vertices, called parity checks, such that all right vertices have degree d
and all left vertices have degree c. The code is defined to be

C =

w : [n]→ F2

∣∣∣∣∣∣ ∀j ∈ [m],
∑
i:ij∈E

w(i) = 0 mod 2

 .

Definition 2.7 (Smooth code). Let c, d, n ∈N, α, β, δ > 0. A (c, d, n) LDPC code C ⊂ Fn2
is (α, β, δ)-smooth if for every Y ⊆ [n] with |Y | 6 α · m there is some X ⊆ [n] with
|X| 6 β · n such that the code C(Ȳ)|X̄ has distance at least δ. Here the code C(Ȳ)|X̄ is
the code obtained by removing the constraints in Y and then removing the coordinates
in X.

In Section 5 we show that random low density parity check codes (LDPC) are smooth.

Agreement-Testability. A related testing notion focuses on the agreement between pairs
of overlapping local views. We think of the following situation,

– For each column we are given a codeword of C1, and these are aggregated into
w1 ∈ C1 ⊗ Fn2

2 .

– For each row we are given a codeword of C2, and these are aggregated into w2 ∈
Fn1

2 ⊗ C2.

– We check “agreement”, namely, pick a random pair of row i and column j, and
check whether they agree on their intersection, i.e. whether

w1(i, j) ?= w2(i, j).

Testability is defined to be the ratio between the amount of pairwise disagreement to the
distance from the code. Formally,

Definition 2.8 (agreement-testability). Let κ > 0. Let Ci ⊂ {f : [ni]→ F2} for i = 1, 2.
We say that C1 ⊗C2 is κ-agreement-testable if for every w1 ∈ C1 ⊗Fn2

2 , w2 ∈ Fn1
2 ⊗C2,

there exists w ∈ C1 ⊗ C2 such that

κ · (P
i
[w1(i, ·) , w(i, ·)] + P

j
[w2(·, j) , w(·, j)]) 6 P

i∈[n1],j∈[n2]
[w1(i, j) , w2(i, j)].

In words, given a word w1 whose rows are in C1, and given a word w2 whose columns
are in C2, we say that C1 ⊗ C2 is κ-agreement-testable if the amount of disagreement
between w1 and w2 is an upper-bound for the fraction of rows or columns one needs to
change in order to get to the closest word w ∈ C1 ⊗ C2, times κ.

It is well known (see for example [DH09]) that agreement testability is equivalent to
robust testability:

Lemma 2.9. Let Ci ⊆ Fni2 , and assume δi = dist(Ci) for i = 1, 2.

9

– If C1 ⊗ C2 is ρ-robustly testable then it is κ-agreement testable, for κ−1 = 1
2δ1ρ

+
1+1/(2ρ)

δ2
.

– If C1 ⊗ C2 is κ-agreement testable, then it is ρ-robustly testable for ρ = κ
2(κ+1) .

We prove this lemma in Appendix A.

3 The Left-Right Cayley Complex
We describe a new construction of a Cayley graph that in addition to vertices and edges
also has two-dimensional faces, called squares. Each square contains four edges that
constitute a four-cycle.

Definition 3.1 (Left-Right Cayley Complex). Let G be a finite group with two symmetric
sets of generators A,B, namely, each is closed under taking inverses. We assume that
the identity element of G is neither in A nor in B. Define the Left-Right Cayley Complex
X = Cay2(A,G,B) as follows

– The vertices are X(0) = G.

– The edges are X(1) = XA(1) tXB(1) where

XA(1) = {{g, ag} | g ∈ G, a ∈ A} , XB(1) = {{g, gb} | g ∈ G, b ∈ B} .

– The squares are X(2) = A×G×B/ ∼ where for every a ∈ A, b ∈ B, g ∈ G,

(a, g, b) ∼ (a−1, ag, b) ∼ (a−1, agb, b−1) ∼ (a, gb, b−1),

and denote the equivalence class of (a, g, b) by [a, g, b], so

[a, g, b] = {(a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1)}.

The graph (X(0), XA(1)) is none other than the Cayley graph Cay(G,A). Similary
(X(0), XB(1)) is the Cayley graph Cay(G,B). The fact that with A we multiply on the
left, and with B we multiply on the right, gives a local commutativity which generates
many four-cycles, namely, squares.
Remark 3.2. Given a group G and a set of generators A, the Cayley graph Cayleft(G,A)
with left-multiplication edges is isomorphic to the Cayley graph Cayright(G,A) with right
multiplication edges via the map g 7→ g−1. The left-multiplication edge {g, ag} maps to
the right multiplication edge {g−1, g−1a−1}. This justifies talking about a Cayley graph
without specifying left or right multiplication.
Remark 3.3. The product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a square
complex X = G1 ×G2 defined as follows.

– The vertices are X(0) = V1 × V2.

– The edges are X(1) = E1 × V2 t V1 × E2, where an edge ({u, u′}, v) ∈ E1 × V2
connects (u, v) with (u′, v), and similarly an edge (u, {v, v′}) ∈ V1 × E2 connects
(u, v) with (u, v′).

– The squares X(2) are identified with E1 × E2, so that the square corresponding
to the pair of edges e1 = {u, u′} ∈ E1 and e2 = {v, v′} ∈ E2 is the four-cycle
(u, v)→ (u, v′)→ (u′, v′)→ (u′, v)→ (u, v).

10

The left-right Cayley complex is the quotient of the Cartesian product of GA =
(G,XA(1)) and GB = (G,XB(1)) obtained by identifying the vertex (g, g′) with
(gh, h−1g′) for all h ∈ G. One can check that the map (g, g′) 7→ gg′ gives a homo-
morphism from GA ×GB to Cay2(A,G,B).
Remark 3.4. Left-right Cayley complexes are examples of two-dimensional cubical com-
plexes. Cubical complexes are well-studied, and in particular there are constructions of
Ramanujan cubical complexes [JL99] with bounded degree and any dimension, whose
walk dynamics was studied in [Moz91]. The left-right Cayley complexes have an addi-
tional matching labels feature that other complexes are not known to have.

Definition 3.5 (Links). For each g ∈ G, the link of g is Xg = {[a, g, b] | a ∈ A, b ∈ B}.
There is a natural map (a, b) 7→ [a, g, b].

For every edge e = {g, ag}, the link of e is denoted Xe = {[a, g, b] | b ∈ B}. Similarly
if e = {g, gb} we let Xe = {[a, g, b] | a ∈ A}.

Definition 3.6. A left-right Cayley complex satisfies the total no-conjugacy condition if

∀a ∈ A, b ∈ B, g ∈ G, g−1ag , b. (TNC)

Here are a few easy properties of left-right Cayley complexes.
Claim 3.7. Assuming (TNC), each vertex has exactly |A| + |B| distinct neighbors; and
each square contains exactly four distinct vertices; and the map (a, b) 7→ [a, g, b] is a
bijection from A×B to Xg for each g ∈ G.

Proof. Let a , a′ ∈ A and b , b′ ∈ B. Clearly ag , a′g and gb , gb′. If ag = gb then
g−1ag = b which contradicts (TNC). So g has |A| + |B| distinct neighbors. Next we
show that each square [a, g, b] ∈ X(2) must have four distinct vertices. Clearly g , ag
and g , gb, and we already saw that ag , gb. Now, if g = agb we would contradict
(TNC) because it implies g−1a−1g = b making a−1 ∈ A and b ∈ B conjugates.

Finally, let us see that the map (a, b) 7→ [a, g, b] is a bijection between A × B and
Xg for all g. Assume that [a, g, b] = [a′, g, b′] for some (a, b), (a′, b′) ∈ A × B. This
implies that (a′, g, b′) ∈ {(a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1)}. We have seen
that g , ag, gb, agb so this implies that (a, g, b) = (a′, g, b′) which means that (a, b) =
(a′, b′). �

Remark 3.8. It follows that assuming (TNC)

|X(1)| = |A|+ |B|2 · |G| and |X(2)| = |A||B|4 · |G|.

It will be natural to consider a weighted version of the 1-skeleton of X, where the
weight is distributed evenly between the A and the B edges. When |A| = |B| this is the
usual unweighted graph.

Definition 3.9. Let D1 be the distribution over X(1) given by selecting with probability
half a uniform edge in XA(1), and with probability half a uniform edge in XB(1). (In
case A,B have equal size D1 is the uniform distribution over X(1).)

We define an inner product on functions over X(1) f, f ′ : X(1)→ R by

〈f, f ′〉D1 = E
e∼D1

[f(e)f ′(e)] = 1
2 E
e∈XA(1)

[f(e)f ′(e)] + 1
2 E
e∈XB(1)

[f(e)f ′(e)]. (3.1)

This will be the only inner product we consider for functions over X(1) so we sometimes
omit the subscript and simply write 〈f, f ′〉 = 〈f, f ′〉D1 . As usual we let ‖f‖ = 〈f, f〉.

11

Parallel Random Walk. In addition to the standard random walk on the 1-skeleton of
X, we will be interested in a random walk on the edges called the parallel walk, which
takes an edge e to a random edge e′ that is “parallel” to it.

Definition 3.10 (Labels). For each s ∈ A ∪ B let [s] = {s, s−1}. Let Ã = {[a] | a ∈ A}
and let B̃ = {[b] | b ∈ B}. The label of an edge {g, ag} is defined to be {a, a−1}, and this
is independent of the presentation of the edge as {g, ag} or {(ag), a−1(ag)}. Similarly,
the label of an edge {g, gb} is defined to be {b, b−1}.

Let Ã ∪ B̃ denote the set of labels of the edges in the complex. For any σ ∈ Ã ∪ B̃,
denote by Xσ(1) the set of edges labelled σ.

Claim 3.11. If σ = {c, c−1} ∈ Ã ∪ B̃ and c , c−1, then Xσ(1) has size |G|, otherwise it
has size |G|/2.

Proof. We shall prove the claim for σ = {a, a−1} ∈ Ã, the claim for σ ∈ B̃ is proven
analogously. Observe that every vertex g participates in two edges labelled σ = {a, a−1},
namely {g, ag} and {g, a−1g}. Since every edge is counted twice, from each of its two
endpoints, we get that |G| = |Xσ(1)|. 1

In case a = a−1each vertex participates in only a single edge labelled [a], but still
every edge has two endpoints so after accounting for the double counting we get |Xσ(1)| =
|G|/2. �

Define a Markov operatorM ||σ : RXσ(1) → RXσ(1) on the space of functions on Xσ(1)
by setting, for any f : Xσ(1)→ R,

M
||
[a]f({g, ag}) = E

b
f({gb, agb}), M

||
[b]f({g, gb}) = E

a
f({ag, agb}).

We define a Markov operator M || : RXσ(1) → RXσ(1) on the space of functions on the
entire set of edges X(1) by letting, for any f : X(1)→ R,

M ||f =
∑
σ

M ||σ (f |Xσ(1)). (3.2)

Definition 3.12 (Parallel Random Walk). We define a random walk on the set of edges
X(1) as follows. Starting from an edge e, choose uniformly a square containing e and
then move to the unique edge e′ , e with the same label as e. (If (TNC) doesn’t hold
the square might not contain an edge e′ , e with the same label, in which case the walk
will stay in place).

The Markov operator corresponding to this walk is exactly M ||, because starting at
an edge e = {g, ag}, a random square containing e is [a, g, b] for a uniformly chosen
b ∈ B, and then the only other [a]-labeled edge in this square is the edge e′ = {gb, agb}.

Lemma 3.13. Assume both Cay(G,A) and Cay(G,B) are λ-expanders. Suppose R ⊆
X(1) and assume f = 1R : X(1) → R satisfies 〈f,M ||f〉 > c · 〈f, f〉. Then there exists
some σ ∈ Ã ∪ B̃ such that

|R ∩Xσ(1)| > (c− λ)|G|/2.
1Note also that when a , a−1 the operator M ||[a] on Xσ(1) is isomorphic to the standard random

walk on Cay(G,B), and similarly if b , b−1 then M
||
[b] is isomorphic to Cay(G,A).

12

Proof. We expand 〈f,M ||f〉 according to (3.2), and get

〈f,M ||f〉 = E
σ
E

e∈Xσ(1)
[f(e)M ||σ f(e)],

where the expectation over σ is obtained by choosing, with probability half, a random
label in Ã, and with probability half, a random label in B̃. Clearly also

〈f, f〉 = E
e∼D1

[f(e)2] = E
σ
E

e∈Xσ(1)
[f(e)2].

Plugging these into the inequality 〈f,M ||f〉 − c · 〈f, f〉 > 0 we get

E
σ
E

e∈Xσ(1)

[
f(e)M ||σ f(e)− c · f(e)2

]
> 0

so there must be at least one σ for which

E
e∈Xσ(1)

[f(e)M ||σ f(e)] > c · E
e∈Xσ(1)

[f(e)2]. (3.3)

Fix, say, σ = [a] and define ha : G → R by ha(g) = f({g, ag}). (The case σ = [b] is
analogous and omitted). Now,

c·〈ha, ha〉 = c·E
g

[ha(g)2] = c·E
g

[f({g, ag})2] = c· E
e∈X[a](1)

[f(e)2] 6 E
e∈X[a](1)

[f(e)M ||σ f(e)]

= E
g∈G

[
f({g, ag}) E

b∈B
[f({gb, agb})]

]
= E
g∈G

[
ha(g) E

b∈B
ha(gb)

]
= 〈ha,MBha〉, (3.4)

where MB is the random walk operator on Cay(G,B). We relied here on the fact that
choosing a uniform edge in X [a](1) can be done by choosing a uniform g ∈ G and looking
at {g, ag}. Observe now that ha indicates the set T = {g ∈ G | f({g, ag}) , 0}, so
by Lemma 2.2 applied on the graph Cay(G,B) with the operator MB we deduce that
|T | > (c−λ)|G|. Since every non-zero value for f can cause at most two non-zero values in
ha, we get that |R∩Xσ(1)| = |f−1(1)∩Xσ(1)| > |h−1

a (1)|/2 = |T |/2 > (c−λ) · |G|/2. �

4 Error Correcting Code on a Left-Right Cayley Complex
Let G,A,B and X = Cay2(G,A,B) as in the previous section. Recall that for any vertex
g ∈ X(0) (resp. any edge e ∈ X(1)) we denote by Xg ⊂ X(2) (resp. Xe ⊂ X(2)) the set
of squares inX containing the vertex g (resp. the edge e). Let CA ⊂ FA2 and let CB ⊂ FB2
be two fixed linear error correcting codes with rates ρA = Rate(CA), ρB = Rate(CB) and
distances δA = dist(CA), δB = dist(CB), respectively.

Define the code C = C[G,A,B,CA, CB] as follows. For an edge e = {g, ag} ∈ XA(1)
we define a local code

Ce = {f : Xe → F2 | f([a, g, ·]) ∈ CB} .

Similarly, for an edge e = {g, gb} ∈ XB(1) we define a local code

Ce = {f : Xe → F2 | f([·, g, b]) ∈ CA} .

Note that this definition appears to depend on the choice of g ∈ e but it does not.
Finally, we define a global code

C = {f : X(2)→ F2 | ∀e ∈ X(1), f |Xe ∈ Ce} .

For each vertex g ∈ X(0), define the local tensor code around the vertex g to be

Cg = {f : Xg → F2 | f([·, g, ·]) ∈ CA ⊗ CB} .

13

Lemma 4.1 (C is a lifted tensor-code).

C =
{
f : X(2)→ F2

∣∣ ∀g ∈ X(2), f |Xg ∈ Cg
}
.

Proof. Immediate from the fact that f([·, g, ·]) ∈ CA ⊗ CB for any g ∈ X(0) if and only
if f([a, g, ·]) ∈ CB and f([·, g, b]) ∈ CA for any g ∈ X(0), a ∈ A and b ∈ B.

�

Observe that for the local code at each vertex to be a tensor code, we must make sure
that around every A edge we have the same code CA, and similarly for B. If we choose
different base codes at different edges we might still get a code with rate and distance,
but local testability will probably fail, because we lose the local tensor structure. This
is in contrast to the case of expander codes where the local base code can be chosen
arbitrarily and differently at each vertex.

4.1 Properties of The Code
We now look at the rate, distance and local testability of the code C =
C[G,A,B,CA, CB]. Recall ρA = Rate(CA), ρB = Rate(CB) and δA = dist(CA),
δB = dist(CB)

Lemma 4.2 (Rate). The rate of the code C is bounded from below by

Rate(C) > 2(ρA + ρB)− 3.

Proof. For each e ∈ XA(1), codim(Ce) = codim(CB) = |B| · (1 − ρB). Similarly for
each e ∈ XB(1), codim(Ce) = codim(CA) = |A| · (1 − ρA). The number of linearly
independent constraints on f ∈ C is at most

|XA(1)| · |B|(1− ρB) + |XB(1)| · |A|(1− ρA) = |G||A||B|(1− ρA + ρB
2)

On the other hand, the dimension of the ambient space is the number of squares |X(2)| =
|G||A||B|/4, see Remark 3.8. Subtracting the number of constraints from the number of
bits we get a lower bound on the dimension of the code,

dim(C) > 1
4 |G||A||B|(1− (4− 2(ρA + ρB))) = 1

4 |G||A||B|(2(ρA + ρB)− 3).

�

In fact, we can do a little better. Recall that a vertex cover of a graph is a set of
vertices that touch all of the edges. For example, if the graph is bipartite, then it has a
vertex cover whose size is half the size of the graph.

Lemma 4.3 (Rate - better bound). Suppose the underlying graph of X has a vertex cover
of size ν|G|. Then the rate of the code is at least 4νρAρB + 1− 4ν. In particular, if the
graph is bipartite, then ν = 1

2 and we get that

Rate(C) > 2ρAρB − 1.

It is interesting to mention that in the expander codes of Tanner [Tan81], (whose
distance and decoding was later analyzed in [SS96]), if the local code C0 has rate ρ0 then
the global rate is shown to be at least 2ρ0 − 1. In our code the rate of the local code is
Rate(Cg) = Rate(CA⊗CB) = ρAρB , and in case the graph is bipartite, we get the same
bound of 2(ρAρB)− 1 on the rate of the global code.

14

Proof. Let V ∗ ⊂ G be a vertex cover, namely, a set of vertices that touches every edge.
Then f ∈ C if and only if for every g ∈ V ∗, f |Xg ∈ Cg. The reason is that every edge e
touches some g ∈ V ∗ and the constraint f |Xe ∈ Ce is implied by f |Xg ∈ Cg.

Since Cg is isomorphic to CA ⊗ CB it has |A| · |B|(1 − ρAρA) linearly independent
constraints. The dimension of the code is at least

dim(C) > |G||A||B|14 − |V
∗| · |A| · |B|(1− ρAρA)

>
1
4 |G||A||B| · (1− 4ν(1− ρAρB)) = 1

4 |G||A||B| · (4νρAρB + 1− 4ν). (4.1)

�

Lemma 4.4 (Distance). Suppose that both Cay(G,A) and Cay(G,B) are λ-expanders for
λ < 1. Then the distance of the code C is bounded from below by

dist(C) > δAδB · (min(δA, δB)− λ) .

Proof. Let 0 , f ∈ C. Let g0 ∈ X(0) be some vertex such that wg0 = f |Xg0
, 0 (if they

are all zero then f = 0). Observe that since 0 , wg0 ∈ CA ⊗ CB then wg0 has at least
δA|A| non zero columns and at least δB |B| non-zero rows. Let A1 ⊂ A be the labels of
these columns, and fix a1 ∈ A1. We first show that

P
g,b

[f([a1, g, b]) , 0] > δB(δB − λ). (4.2)

To prove (4.2) consider the graph Cay(G,B) whose vertices are X(0) and the edges
are XB(1), and define a function fa1 : XB(1) → F2 by fa1({g, gb}) = f([a1, g, b]),
observing that fa1 is well defined because for g′ = gb,

fa1({g, g′}) = fa1({g, gb}) = f([a1, g, b]) = f([a1, g
′, b−1]) = fa1({g′, g′b−1}) = fa1({g′, g}).

Since fa1 , 0, it must have large weight because it belongs to the expander code
defined on Cay(G,B) with local code CB . More elaborately, for every vertex g that
touches an edge where fa1 , 0, there must be at least δB |B| non-zero edges touching g.
By Lemma 2.1 we get at least δB(δB − λ)|XB(1)| edges on which fa1 , 0, which proves
(4.2).

For every a ∈ A1, the weight of fa is at least δB(δB − λ), so if we choose a random
a ∈ A and then a random edge in XB(1), the probability that a ∈ A1 is at least δA, and
conditioned on this, the probability that fa(e) , 0 is at least δB(δB − λ), so altogether

P
a,g,b

[f([a, g, b]) , 0] > P
a

[a ∈ A1] · P
g,b

[fa({g, gb}) , 0 | a ∈ A1] > δAδB(δB − λ).

Symmetrically, the weight of f is also at least δBδA(δA− λ), and the lemma follows. �

Theorem 4.5 (Local Testability). Suppose X = Cay2(A,G,B) is a left-right Cayley
complex such that both Cay(G,A) and Cay(G,B) are λ-expanders, and such that (TNC)
holds. Assume CA ⊂ FA2 and CB ⊂ FB2 are error correcting codes with relative distances
δA, δB > 0 respectively and such that CA ⊗ CB is κ0-agreement-testable. If

c = κ0

8 + κ0
·min(δA, δB) > λ (4.3)

then C = C[G,A,B,CA, CB] is κ-locally testable with |A| · |B| queries, for κ−1 =
max(4(1 + |A|+ |B|), 2(|A|+|B|)

c−λ). Namely, for every f : X(2)→ F2

κ · dist(f, C) 6 P
g∈X(0)

[f |Xg < Cg].

15

In words, given some potential codeword f , each vertex g is associated with a local
test that reads f at all of the |A| · |B| squares touching g and checks that these vaues
form a codeword in the base code Cg. The theorem says that the distance of f to the
code is upper bounded by a constant multiple of the fraction of violated local tests.

We prove the theorem in the next section, by describing an iterative correction algo-
rithm that finds a codeword close to f if the probability that the test rejects is not too
large.

4.2 Local Self-Correction Algorithm
In this section we describe a local self-correction algorithm that starts with a given string
f : X(2)→ F2 and either finds a codeword f0 ∈ C or gives up. We denote

ρ(f) = P
g

(f |Xg < Cg),

the fraction of rejecting local tests. We will show that if ρ(f) 6 ρ0 for some constant
ρ0 > 0, then the algorithm finds f0 ∈ C such that dist(f0, f) 6 O(ρ(f)).

For each vertex g, let wg ∈ Cg be a closest codeword to f |Xg (breaking ties arbi-
trarily). We focus on the collection of local views {wg} and whether the local views of
neighboring vertices agree on the common squares.

Definition 4.6. Given a collection of local views w = {wg ∈ Cg | g ∈ G}, we define the
disagreement of the collection to be

E(w) = P
e={g,g′}∈X(1)

[wg|Xe , wg′ |Xe]. (4.4)

Algorithm 1: Iterative decoding algorithm. (input: f : X(2)→ F2)

1. (Initialization:) For each vertex g, let wg ∈ Cg be a closest codeword to f |Xg
(breaking ties arbitrarily).

wg = argminw∈Cg dist(w, f |Xg).

2. (Main loop:) If there is a vertex g and a choice w ∈ Cg that reduces E(w) then
replace wg by w and repeat.

3. (End:) If E(w) > 0 output “far”. Otherwise, E(w) = 0, define f0 : X(2)→ F2 by
choosing for each square s ∈ X(2) an arbitrary vertex g ∈ s and setting
f0(s) = wg(s). Output f0.

Observe that E(w)|X(1)| is a non-negative integer, and this value decreases by at
least 1 every step of the algorithm, so the algorithm must halt.

Proposition 4.7. If the algorithm outputs f0 then f0 ∈ C and

dist(f, C) 6 dist(f, f0) 6 4(1 + |A|+ |B|) · ρ(f).

Let w1 = {w1
g} be the collection of local views initially defined in step 1 of the

algorithm, and let w = {wg} be the final collection, at the end of the algorithm.

16

Proposition 4.8. If the algorithm outputs “far” then E(w) > ε0 = c−λ
|A|+|B| , where c =

κ0
8+κ0

·min(δA, δB) is defined in (4.3).

We will show that this immediately means that ρ(f) > E(w)/2 > c−λ
2(|A|+|B|) and this

in turn means that dist(f, C) 6 1 6 2(|A|+|B|)
c−λ · ρ(f), which will prove the theorem.

Proof of Theorem 4.5. Given f : X(2) → F2, run the algorithm above. The output
is either a function f0, which by Proposition 4.7, satisfies dist(f, C) 6 dist(f, f0) 6
4(1 + |A|+ |B|) ·ρ(f); or the output is “far”, in which case E(w) > ε0 by Proposition 4.8.
We observe that

E(w1) 6 2ρ(f). (4.5)

The reason is that for each edge {g, g′} that contributes to E either f |Xg , w1
g or

f |Xg′ , w1
g′ , otherwise

w1
g|Xgg′ = (f |Xg)|Xgg′ = f |Xgg′ = (f |Xg′)|Xgg′ = w1

g′ |Xgg′ .

So the process of selecting an edge uniformly and then a random endpoint of it will
lead to a rejecting vertex with probability at least E(w1)/2, proving (4.5). Now ρ(f) >
E(w1)/2 > E(w)/2 > ε0/2 = c−λ

2(|A|+|B|) , so we can write

dist(f, C) 6 1 6 2(|A|+ |B|)
c− λ

· ρ(f).

All in all we get,

dist(f, C) 6 max(4(1 + |A|+ |B|), 2(|A|+ |B|)
(c− λ)) · ρ(f) = κ · P

g
(f |Xg < Cg)

as needed. �

Remark 4.9. Algorithm 1 is clearly also a decoding algorithm in the standard sense: if
we know that the given word f is close enough to the code, then the regular structure
of the tester implies that it will be rejected with probability proportional to dist(f, C).
The analysis herein shows that for small enough (constant) distance, the algorithm will
then find the nearest codeword.

The difficulty in our analysis is to show the same without any a priori guarantee on
the distance of f from the code.

We now turn to prove the two propositions.

Proof of Proposition 4.7. By assumption, E(w) = 0. We first observe that the value of
f0(s) does not depend on the choice of g ∈ s because E(w) = 0 implies that wg(s) =
wg′(s) for any g, g′ ∈ s. (Suppose g1, g2 ∈ s disagree. If they are adjacent this means
that wg1 disagrees with wg2 contradicting E(w) = 0. If they are non-adjacent, they have
a common neighbor which cannot agree with both of them). It follows that f0 ∈ C,
because for each g, f0|Xg = wg ∈ Cg. To bound dist(f, f0), let

V0 =
{
g ∈ X(0)

∣∣ f |Xg , w1
g

}
, V1 =

{
g ∈ X(0)

∣∣ w1
g , wg

}
.

So V0 is the set of vertices whose local view doesn’t perfectly satisfy the constraints of
the code, and V1 is the set of vertices g for which wg at the end of the algorithm differs
from its initial value.

17

Observe that g ∈ V0 iff f |Xg < Cg, so by definition,

|V0| = ρ(f) · |X(0)|. (4.6)

Any square s that does not touch V0 ∪ V1 must have for every g ∈ s

f0(s) = wg(s) = w0
g(s) = f(s),

where the second equality is because g < V1 and the third is because g < V0. We bound
|V1| by the number of iterations of the algorithm, which is at most |V1| 6 E(w1) · |X(1)|.
We recall from (4.5) that E(w1) 6 2ρ(f). Thus, we have,

|V1| 6 E(w1) · |X(1)| 6 2ρ(f) · |A|+ |B|2 |X(0)|. (4.7)

Altogether, since every vertex touches |A||B| squares, and since |X(2)| = |A||B||X(0)|/4,
and using (4.6) and (4.7), we get

dist(f, f0) 6 |A||B| · |V0 ∪ V1|
|X(2)| = 4 · |V0 ∪ V1|

|X(0)| 6 4(1 + |A|+ |B|)ρ(f).

�

The interesting part of the proof is to show that if E(w) > 0 after the algorithm ends,
then E(w) > ε0 = c−λ

|A|+|B| .

Proof of Proposition 4.8. Let

R = {e = {g, g′} ∈ X(1) | wg|Xe , wg′ |Xe}

be the set of “dispute” edges. The rest of the proof is aimed towards showing E(w) > ε0
or equivalently, since E(w) = |R|/|X(1)|, that

|R| > c− λ
|A|+ |B| · |X(1)| = c− λ

2 · |G|. (4.8)

First some more notations. For an edge {g, ag} ∈ XA(1) let

E||({g, ag}) =
{
{gb, agb} ∈ XA(1)

∣∣ b ∈ B}
and similarly for an edge {g, gb} ∈ XB(1),

E||({g, gb}) =
{
{ag, agb} ∈ XB(1)

∣∣ a ∈ A} .
For a vertex g, let

EA(g) = {{g, ag} | a ∈ A} , EB(g) = {{g, gb} | b ∈ B} .

We now make two claims on the local structure of R. The first is due to the local
distance, and the second is due to the local testability of tensor codes.
Claim 4.10. Suppose {g, ag} ∈ R, then

|R ∩ EB(g)|+ |R ∩ EB(ag)|+ |R ∩ E||{g, ag}| > δB |B|.

Similarly, suppose {g, gb} ∈ R, then

|R ∩ EA(g)|+ |R ∩ EA(gb)|+ |R ∩ E||{g, gb}| > δA|A|.

18

Proof. Let e = {g, ag} ∈ R, so wg|Xe , wag|Xe . Since wg|Xe ,wag|Xe ∈ Ce, these are two
distinct codewords of Ce, and must disagree on at least δB |B| squares. Let [a, g, b] be
such a square, and look at the three edges of the square that are not e: {g, gb}, {gb, agb}
and {agb, ag}. At least one of the three edges must be in R, because wg,wgb,wagb,wag
cannot all agree on the value of [a, g, b] without contradicting wg([a, g, b]) , wag([a, g, b]).
This implies the first part of the claim, and the second part is proven similarly. �

Recall that we assume CA ⊗ CB is agreement-testable, as per Definition 2.8.
Claim 4.11. Assume CA ⊗ CB is κ0-agreement-testable. For every g ∈ G,

P
a

[{g, ag} ∈ R] + P
b
[{g, gb} ∈ R] 6 κ−1

0 · P
a∈A,b∈B

[{ag, agb} ∈ R or {gb, agb} ∈ R]. (4.9)

Proof. Define w0, w1, w2 : A×B → F2 as follows. First, let w0(a, b) = wg([a, g, b]). Next,
let w1(a, b) = wag([a−1, ag, b]). Similarly let w2(a, b) = wgb([a, gb, b−1]). In words, the
ath row of w1 comes from the “opinion” of wag, and the bth column of w2 comes from
the “opinion” of wgb. Observe that w0 ∈ CA ⊗ CB , w1 ∈ FA2 ⊗ CB , and w2 ∈ CA ⊗ FB2 .
Now observe that w1(a, ·) , w0(a, ·) iff {g, ag} ∈ R, and w2(·, b) , w0(·, b) iff {g, gb} ∈ R.
Finally, w1(a, b) , w2(a, b) implies that the event on the RHS of (4.9) holds, namely,
{ag, agb} ∈ R or {gb, agb} ∈ R.

By the κ0-agreement-testability of CA⊗CB , there is a word w ∈ CA⊗CB such that

P
a

[w(a, ·) , w1(a, ·)] + P
b
[w(·, b) , w2(·, b)] 6 κ−1

0 · P
a,b

[w1(a, b) , w2(a, b)].

Since the iterative algorithm has terminated, we know that

P
a

[w0(a, ·) , w1(a, ·)] + P
b
[w0(·, b) , w2(·, b)] 6 P

a
[w(a, ·) , w1(a, ·)] + P

b
[w(·, b) , w2(·, b)]

otherwise the algorithm would have flipped from wg = w0 to wg = w. Combining the
inequalities the claim follows,

P
a

[{g, ag} ∈ R] + P
b
[{g, gb} ∈ R] = P

a
[w0(a, ·) , w1(a, ·)] + P

b
[w0(·, b) , w2(·, b)]

6 P
a

[w(a, ·) , w1(a, ·)] + P
b
[w(·, b) , w2(·, b)]

6 κ−1
0 · P

a,b
[w1(a, b) , w2(a, b)]

6 κ−1
0 · P

a∈A,b∈B
[{ag, agb} ∈ R or {gb, agb} ∈ R].

�

Let M0 = 1
2MA + 1

2MB . Clearly for any f : X(0) → R such that E[f] = 0,
〈f,M0f〉 = 1

2 〈f,MAf〉+ 1
2 〈f,MBf〉 6 λ〈f, f〉. Recall the distribution D1 over X(1) from

Definition 3.9 and the corresponding inner product 〈·, ·〉D1 . Define D : RX(1) → RX(0),
U : RX(0) → RX(1) to be down and up operators, moving us from functions on edges to
functions on vertices and vice versa. Namely,

∀f1 ∈ RX(1), Df1(g) = E
e∼D1|g

[f1(e)] = 1
2 Ea∈A[f1({g, ag})] + 1

2 Eb∈B[f1({g, gb})]

and
∀f0 ∈ RX(0), Uf0({g1, g2}) = E

g∈{g1,g2}
[f0(g)] = 1

2(f0(g1) + f0(g2)).

Note that these are averaging operators so they never increase norms, e.g. ‖Df‖ 6 ‖f‖
for all f .

19

Claim 4.12. Let M = UM0D : RX(1) → RX(1). Then M has second largest eigenvalue
at most λ.

Proof. We rely on the fact that D1 can be described by first choosing a uniform vertex
g and then a random edge containing g such that with probability half we choose an A
edge and with probability half a B edge. For any f1 : X(1)→ R and f0 : X(0)→ R we
have

〈Df1, f0〉 = E
g

[E
e∼D1|g

[f1(e)] · f0(g)] = E
e∼D1

[f1(e) E
g∈e

[f0(g)]] = 〈f1,Uf0〉D1 .

Now, if 〈f1,1〉 = 0 then 〈Df1,1〉 = 0, so

〈f1,Mf1〉 = 〈f1,UM0Df1〉 = 〈Df1,M0Df1〉 6 λ〈Df1,Df1〉 6 λ〈f1, f1〉.

�

The following lemma is based on Claims 4.10 and 4.11.

Lemma 4.13. Fix γ = κ0
8+κ0

. Let M = UM0D and let f = 1R : X(1)→ R be the indiator
function of the edge set R. Then

〈f, (γM || + (1− γ)M)f〉D1 > γ ·min(δA, δB) · 〈f, f〉D1 .

Proof. We give a combinatorial interpretation to γM ||+ (1− γ)M by observing that for
a fixed e ∈ X(1), (γM || + (1− γ)M)f(e) is the probability that e′ ∈ R in the following
random process.

1. Start from an edge e ∈ X(1).

2. With probability γ, output a uniformly random edge e′ ∈ E||(e) and halt. With
probability 1− γ continue.

3. Choose at random one of the endpoints of the edge, g1 ∈ e.

4. With probability 1
2 let g2 = a1g1 for a random a1 ∈ A, and with probability 1

2 let
g2 = g1b1 for a random b1 ∈ B.

5. With probability 1
2 let e′ = {g2, a2g2} for a random a2 ∈ A, and with probability

1
2 let g2 = g2b2 for a random b2 ∈ B. Output e′.

We will prove the lemma by showing that for every e ∈ R,

(γM || + (1− γ)M)f(e) > γ ·min(δA, δB). (4.10)

So fix some e ∈ R, and for convenience assume e = {g, ag} for some g ∈ G, a ∈ A (if
e = {g, gb} the argument is symmetric). Let

r0 = |R ∩ E||(e)|, r1 = |R ∩ EB(g)|, r2 = |R ∩ EB(ag)|.

By Claim 4.10, r0 + r1 + r2 > δB |B|. With probability γ step 2 outputs a random
e′ ∈ E||(e), and the probability it is in R is r0/|B|.

P[e′ ∈ R] = γ · r0/|B|+ (1− γ) · P[e′ ∈ R | the process entered step 3] (4.11)

Assume we entered step 3. Due to Claim 4.11,

P
a,b

[{ag1, ag1b} ∈ R or {g1b, ag1b} ∈ R] > κ−1
0 · ri/|B| (4.12)

20

where i ∈ {1, 2} depending on whether g1 = g or g1 = ag as chosen in step 3. What is
the probability that e′ is one of the edges {ag1, ag1b} and {g1b, ag1b} considered in the
LHS of (4.12)? This happens exactly if in steps 4 and 5 we will walk in alternating colors
(A,B or B,A). Let EAB be the event that in step 4 we choose an A-edge, i.e. g2 = a1g1
for some a1 ∈ A and then in step 5 we set e′ to be a B-edge, i.e. e′ = {a1g1, a1g1b2}
for some b2 ∈ B. Similarly let EBA be the event that g2 = g1b1 and e′ = {g1b1, a2g1b1}.
Clearly

P[EAB] = P[EBA] = 1
4 .

Now,
P[e′ ∈ R and EAB] = 1

4 · Pa1,b2
[{a1g1, a1g1b2} ∈ R], (4.13)

and
P[e′ ∈ R and EBA] = 1

4 · Pa2,b1
[{g1b1, a2g1b1} ∈ R]. (4.14)

where the probability is taken over the randomness of the random process above condi-
tioned on having entered step 3. Since EAB and EBA are disjoint events,

P[e′ ∈ R] > P[e′ ∈ R and EAB] + P[e′ ∈ R and EBA]

>
1
4 · (Pa,b[{ag1, ag1b} ∈ R] + P

a,b
[{g1b, ag1b} ∈ R])

>
1
4 · Pa,b[{ag1, ag1b} ∈ R or {g1b, ag1b} ∈ R]

>
1
4κ0 · ri/|B| =

riκ0

4|B|

where in the last inequality we have used (4.12). We conclude that if in step 3 we
choose g1 = g, then P[e′ ∈ R] > r1κ0

4|B| , whereas if in step 3 we choose g1 = ag, then
P[e′ ∈ R] > r2κ0

4|B| .
Altogether, recalling (4.11),

P[e′ ∈ R] > γ · r0

|B|
+ (1− γ) · κ0

4|B| (r1 + r2)/2.

Plugging in γ = κ0
8+κ0

we get 1− γ = 8γ/κ0, and recalling that r0 + r1 + r2 > δB |B|,

P[e′ ∈ R] > γ(r0 + r1 + r2)/|B| > γδB .

We have seen that if e = {g, ag} for some a, g is in R, then e′ ∈ R with probability at
least γδB . Symmetrically, if e = {g, gb} for some g, b is in R then we would get that
e′ ∈ R with probability at least γδA. Together this proves (4.10) and completes the proof
of the lemma. �

Recall from (4.3) that c = κ0
8+κ0

· min(δA, δB). By Lemma 4.13, 〈f, (γM || + (1 −
γ)M)f〉 > c · 〈f, f〉 so either

〈f,Mf〉 > c〈f, f〉 (4.15)
or

〈f,M ||f〉 > c〈f, f〉. (4.16)
If (4.15) holds, then by Lemma 2.2, applied with the operator M whose vertex set

is X(1) is endowed with the distribution D1, we get PD1 [R] > c − λ which means that
|R| > |G|2 ·min(|A|, |B|)(c− λ).

21

Otherwise, assume that (4.16) holds. By Lemma 3.13 there exists some σ ∈ Ã ∪ B̃
such that, |R ∩Xσ(1)| > |G|(c− λ)/2.

This completes the proof of Proposition 4.8 showing that if E(w) > 0 then E(w) >
2(c−λ)
|A|+|B| . �

5 A Concrete Construction
In the previous section we have described a code scheme: Given a left-right Cayley
complex Cay2(A,G,B) together with two base codes CA ⊆ FA2 and CB ⊆ FB2 , we get
an error-correcting code C[G,A,B,CA, CB].

In this section we prove our main theorem by showing how to find an infinite family
of left-right Cayley complexes and base codes that yield locally testable codes.

Theorem (Restatement of Theorem 1.1). For all 0 < r < 1, there exist δ, κ > 0, q ∈ N
and an explicit construction of an infinite family of error-correcting codes {Cn}n, such
that for each n, Rate(Cn) > r, dist(Cn) > δ and Cn is κ-locally testable with q queries.

The proof of the theorem relies on the following two lemmas.

Lemma 5.1 (Good base code). For all 0 < r0 < 1, there exist δ0, κ0 > 0 and d0, D0 ∈N,
such that for every integer D > D0 that is divisible by d0, there exists a linear error
correcting code C0 ⊆ FD2 with rate at least r0, distance at least δ0, and such that the
tensor code C0 ⊗ C0 is κ0-agreement testable.

Lemma 5.2 (Good left-right Cayley complexes). Let d0, D0 ∈N. Let q be any odd prime
power such that q > max{2d2

0, D0} and define D = d0 ·b q+1
d0
c. Then there exist an explicit

construction of an infinite family of finite groups Gi = PSL2(qi), with two symmetric
generating subsets Ai, Bi ⊂ Gi, such that for each i, both Ai and Bi are of size D hence
divisible by d0, Ai and Bi satisfy condition (TNC), and the Cayley graphs Cay(Gi, Ai)
and Cay(Gi, Bi) are λ-expanders where λ 6 4D−1/2.

We prove Lemma 5.1 in Subsection 5.1 by showing that random LDPC codes are
smooth. We prove Lemma 5.2 in Section 6 using the known constructions of Ramanujan
graphs by Lubotzky, Samuels and Vishne [LSV05a] and Morgenstern [Mor94].

Let us now deduce Theorem 1.1 from Lemmas 5.1 and 5.2.

Proof of Theorem 1.1. Fix 0 < r < 1 and set r0 = r+3
4 so that r = 4r0 − 3. By Lemma

5.1, given r0, there exist δ0, κ0 > 0 and d0, D0 ∈ N, such that for any D > D0 divisible
by d0, there exists a code C0 ⊂ FD2 with Rate(C0) > r0, dist(C0) > δ0 and such that
C0 ⊗ C0 is κ0-agreement-testable.

Define q0 = max{2D0, 2d2
0, 32

(
κ0+8
κ0δ0

)2
}. For any q > q0 odd prime power denote

D = d0 · b q+1
d0
c. Note that q+ 1 > D > q+ 1−d0 > q− √q > 1

2q. In particular D > 1
2q0,

hence 4D−1/2 <
√

32
q0
6 κ0δ0

8+κ0
, which also implies 4D−1/2 < δ0.

By Lemma 5.2 there exists an explicit construction of an infinite family of groups
Gi = PSL2(qi) together with generating sets Ai, Bi such that for each i ∈ N, |Ai| =
|Bi| = D, conditions (TNC) holds, and both Cay(Gi, Ai) and Cay(Gi, Bi) are λ =
4D−1/2 expanders. In particular, from our choice of D, equation (4.3) holds and λ < δ0.

By Lemma 5.1 there exists a code C0 of length D, with rate at least r0, distance at
least δ0 and such that the tensor code C0 ⊗ C0 is κ0-agreement testable. Since D is a
constant we can, theoretically, enumerate over all possible codes in search of a good one.

22

Define our family of global codes to be Ci = C[Gi, Ai, Bi, C0, C0], i ∈N, and by the
above choices it has the following parameters:

– Block-length 1
4 |Gi|D

2, where |Gi| = 1
2 (q3i − qi).

– Distance at least δ = δ2
0(δ0 − 4D−1/2) > 0, by Lemma 4.4,

– Rate at least r = 4r0 − 3 > 0, by Lemma 4.2,

– It is κ-locally-testable with D2 queries, by Theorem 4.5, for

κ = min
{

1
4 + 8D ,

1
4D

(
δ0κ0

8 + κ0
− 4D−1/2

)}
. (5.1)

�

5.1 Good Base Codes
In this section we prove Lemma 5.1 by relying on the notion of smooth codes from
[DSW06], which was consequently broadened to weakly-smooth codes in [BV09]. These
works showed that the tensor product of a smooth code and any other code is robustly
testable and therefore, by Lemma 2.9, also agreement-testable.

Definition 5.3 (Smooth Code). Let c, d, n ∈ N, α, β, δ > 0. A (c, d, n) LDPC code
C ⊂ Fn2 is (α, β, δ)-smooth if for every Y0 ⊆ Y with |Y0| 6 α|Y | there is some X0 ⊆ X
with |X0| 6 β|X| such that the code C(Ȳ0)|X̄0

has distance at least δ. Here the code
C(Ȳ0)|X̄0

is the code obtained by removing the constraints in Y0 and then removing the
coordinates in X0.

5.1.1 Random LDPC Codes

We will next show that random LDPC codes are smooth. Random LDPC codes, see
Definition 2.6, were famously introduced by Gallager in his PhD thesis [Gal63].

Given a (c, d, n)-LDPC code, let m = nc/d. By counting constraints it is easy to see
that the dimension of an LDPC code is at least n−m = n(1− c

d), so the rate is at least
1− c

d . Spielman described in his thesis [Spi96] the following expansion property,

Definition 5.4. A (c, d)-regular bipartite graph ([n], [m], E) is a (δ, γ)-expander if every
set of left vertices A ⊂ [n] whose size is at most δn, has at least c|A|(1− γ) neighbors.

An LDPC code whose factor graph is a (δ, γ) expander immediately has distance at
least δ, as long as γ < 1

2 [Spi96].
A random (c, d, n)-code is given by selecting a random (c, d)-regular bipartite graph,

which in turn is done by taking a random matching between the nc “half-edges” on the
left and the md “half-edges” on the right, where we assume that nc/d is an integer.
Claim 5.5 (Claim 6.4 in [BHR05]2). For every c > 2, d, any constant γ > 1

c , and
sufficiently large D such that Dc/d is an integer, a random (c, d)-regular bipartite graph
with D left vertices is with high probability a (δ, γ)-expander for any δ satisfying

δ 6
(

2e1+c(1−γ)(d− dγ)cγ
)− 1

cγ−1
. �

2A (δ, γ)-expander here is called a (c(1 − γ), δ)-left-expander in [BHR05].

23

Remark 5.6. It can be extracted from the proof of Claim 6.4 in [BHR05] that the first D
for which such a (c, d)-regular (δ, γ)-expander exists, denote it by D0, is upper bounded
by a function of c, d and γ. More explicitly, if c = 4 and γ = 5

12 , then

D0 6 242d15.

The proof is similar Gallager’s proof [Gal63] that a random LDPC code has constant
distance with high probability. Tensors of these codes are robustly testable,

Theorem 5.7 (Robust testability of expander codes). Let C be a (c, d,D)-code whose
factor graph is a (c, d)-regular (δ, γ)-expander. Let C ′ be any linear code with distance
δ′. Then C ⊗ C ′ is ρ-robustly testable for

– ρ >
δδ′·(1

6−γ)
2d when γ < 1/6 [DSW06], and

– ρ > δδ′·
dlog0.5+γ 0.05 for all γ < 1/2 [BV09].

Finally, we can prove Lemma 5.1, which we restate for convenience,

Lemma (Restatement of Lemma 5.1). For all 0 < r0 < 1, there exist δ0, κ0 > 0 and
d0, D0 ∈ N, such that for every integer D > D0 that is divisible by d0, there exists a
linear error correcting code C0 ⊆ FD2 with rate at least r0, distance at least δ0, and such
that the tensor code C0 ⊗ C0 is κ0-agreement testable.

Proof. We fix γ = 0.15 < 1/6 and set c0 = 7 so that γ > 1/c0. We choose d0 = d 7
1−r0
e

such that c0
d0
6 1− r0. Claim 5.5 guarantees existence of δ0 > 0 and D0 such that for all

D > D0 divisible by d0, a random (c0, d0)-regular bipartite graph with D left vertices is
with high probability a (δ0, γ)-expander.

For each such bipartite graph, we take C0 to be the corresponding (c0, d0, D)-LDPC
code. This code has rate at least r0, distance at least δ0, and by taking C ′ = C0 in
Theorem 5.7, we get that C0⊗C0 is robustly testable with ρ = Ω(δ2

0/d0) = Ω(δ2
0(1−r0)).

By Claim A.1 these codes are κ0-agreement-testable for κ0 = Ω(δ3
0(1− r0)). �

We remark that the divisibility condition on D is not really necessary. For D not
divisible by d0 one can redistribute at most d0 extra edges so that the graph is slightly ir-
regular. The resulting graph is still a (δ, γ)-expander, and one can also prove smoothness,
mutatis mutandis, with a negligible change to the parameters.

6 Good Left-Right Cayley Complexes
In the previous section we showed how to construct good locally testable codes on good
left-right Cayley complexes provided the latter exists. To finish the proof of the main
result of the paper, we should show that such complexes indeed exist and to give explicit
construction. Namely, in this section we prove Lemma 5.2.

More generally, we show that for every λ > 0, there exist k1, k2 ∈ N and an infinite
family of finite groups Gi, with two symmetric subsets of generators Ai, Bi, such that for
each i, |Ai| = k1 and |Bi| = k2, the two sets Ai and Bi satisfies (TNC), and the second
largest eigenvalues of the adjecancy matrices of Cay(Gi, Ai) and Cay(Gi, Bi), denoted
λ(Cay(Gi, Ai)) and λ(Cay(Gi, Bi)), are bounded from above by λ. Moreover, we can
take λ = Θ(k−1/2

1) = Θ(k−1/2
2), making both Cayley graphs quasi-Ramanujan.

There are a number of ways in the literature to find Cayley graphs with small
λ(Cay(G,S)). There are even various methods to give different sets of generators for the

24

same group (see [Lub94], [LSV05a]). The difficulty is to ensure that condition (TNC) is
satisfied. We will show two (actually three) ways to do so. In all of our constructions,
the elements in the sets Bi will be of order 2, while all the elements in Ai will be of order
greater then 2. This ensures that (TNC) is automatically satisfied.

6.1 The Morgenstern Generators, q = 2`

In [Mor94], Morgenstern presented for every prime power q, infinitely many groups Gi =
PGL2(qi) or Gi = PSL2(qi) each with a symmetric set Bi of q+ 1 generators such that
Cay(Gi, Bi) are Ramanujan, i.e., λ(Cay(Gi, Bi)) 6 2√q

q+1 .
The case of q even, i.e., q = 2`, is special in two ways. First of all, here PGL2(qi) =

PSL2(qi), so this is always a simple group. But more importantly, in this case all the
elements of Bi are of order 2 (see Remark 6.3). Assume q is even from now on.

Morgenstern constructed an explicit arithmetic lattice Γ in the group PSL2(Fq((t)))
which is isomorphic to the free product 〈b0〉 ∗ . . . ∗ 〈bq〉, where B = {b0, . . . , bq} is a set
of elements of order 2 (see [Mor94, Section 5]). The above mentioned Cayley graphs
Cay(Gi, Bi) are identified as quotients of this Γ by normal congruence subgroups, where
Bi = φi(B) is the image of B under an epimorphism φi : Γ→ Gi. Note that by [Mor94]
these Cayley graphs are all Ramanujan.

Let us now show how to get another symmetric set of generators Ai forGi = PSL2(qi)
with λ(Cay(Gi, Ai)) small, and such that Ai and Bi satisfy (TNC).

Let Λ be the index 2 subgroup of Γ - the kernel of the homomorphism φ : Γ → C2
(= the cyclic group of order 2) where φ sends each bj to the unique non-trivial element
of C2. One can see easily that Λ is exactly the subgroup of all elements of Γ of even
length w.r.t. B. It is generated by the set A = {btbs | bt, bs ∈ B, t , s} which is of size
k1 = q2 + q. We claim
Claim 6.1. (i) For i > 1, the image Ai = φi(A) of A in Gi generates Gi = PSL2(qi).

(ii) λ(Cay(Gi, Ai)) < 3q−1
q2+q <

3
√
k1−1
k1

.
(iii) For i > 4, the images of the elements of A in Gi are distinct from one another,

and each element in Ai has order > 2.

Proof. (i) Since Λ = 〈A〉 is of index two in Γ then 〈Ai〉 is of index at most two in Gi.
But Gi = PSL2(qi) is simple, hence it has no index 2 subgroup (a subgroup of index 2
must be normal), which implies 〈Ai〉 = Gi .

(ii) Let TB and TA be the (non-normalized) adjacency matrices of Cay(Gi, Bi) and
Cay(Gi, Ai), respectively. Note that T 2

B = TA + (q + 1)I. Hence if µ is an eigenvalue of
TA, then µ = λ2− (q+ 1) for some eigenvalue λ of TB . Since Cay(Gi, Bi) is Ramanujan,
|λ| = q + 1 or |λ| 6 2√q. Therefore µ = q2 + q or µ 6 (2√q)2 − (q + 1) = 3q − 1.

(iii) It suffices to show that each reduced word which is a product of length at most 4
in B is not in the kernel of φi, which is equivalent to the girth of Cay(Gi, Bi) being greater
than 4. By [Mor94, Theorem 5.13 (3)] the girth of Cay(Gi, Bi) is at least 2

3 logq |Gi| > i,
which completes the proof. �

Thus, given λ > 0 by taking q large enough so that 3
√
q2+q−1
q2+q < λ, we get the desired

λ-expanding left-right Cayley complexes with k1 = q2 + q and k2 = q + 1.
We can do slightly better. Note that Λ above, being a normal subgroup of a free

product of finite groups, with trivial intersection with each factor is a free group (see
Section 34 in [Kur55]). In fact, by the Reidemeister-Schreier algorithm applied to the
transversal set {1, b0} of Λ in Γ (or by inspection) one can see that Λ is a free group

25

on the q generators {b0bj : j = 1, . . . , q}. As (b0bj)−1 = bjb0 we deduce that A′ =
{b0bj , bjb0 : j = 1, . . . , q} is a symmetric set of generators of Λ.

We can now look at the image A′i = φi(A′) under the epimorphism φi : Γ → Gi.
Arguing similarly to the proof of Claim 6.1 (i), A′i generates Gi, and by the proof of (iii)
above, the images are all different. Finally:
Claim 6.2. λ(Cay(Gi, A′i)) <

3
√

2q−1
2q .

Proof. Let Vi = {f : Gi → C} and for any element s ∈ Gi, define the s-adjecancy
Ts : Vi → Vi, Tsf(g) = f(gs), and for any multiset S of Gi, define the S-adjecancy
operator TS : Vi → Vi, TS =

∑
s∈S Ts. Note that for any two multisets S, S′ of Gi,

TS∪S′ = TS +TS′ −TS∩S′ and TSTS′ = TSS′ , where SS′ = {ss′ : s ∈ S, s′ ∈ S′} counted
with multiplicities. Therefore TA′

i
= TbTBi +TBiTb−2I, where b = φi(b0). Let f ∈ Vi be

such that f ⊥ 1Gi , i.e.
∑
g∈Gi f(g) = 0. Note that for any s ∈ Gi, then Tsf ⊥ 1Gi and

‖Tsf‖ = ‖f‖. By [Mor94, Theorem 5.11], we have ‖TBif‖ 6 2√q‖f‖ for any f ⊥ 1Gi .
Then

‖TA′
i
f‖ 6 ‖TbTBif‖+ ‖TBiTbf‖+ 2‖f‖ 6 ‖TBif‖+ ‖TBi(Tbf)‖+ 2‖f‖

6 (2√q − 1) ‖f‖+ (2√q − 1) ‖f‖+ 2‖f‖ = 4√q‖f‖ 6 3
√

2q − 1‖f‖

which completes the proof. �

So this time we have a family of λ-expanders left-right Cayley complexes with k1 = 2q
and k2 = q + 1, for any λ > 3

√
2q−1
2q .

Remark 6.3. Everything said above is explicit. In fact the generator set Bi of PSL2(qi)
are given explicitly in [Mor94, equation (21)]. Assume i is even. Let i ∈ Fqi be such that
i < Fq and ε = i2 + i ∈ Fq. Let x ∈ Fqi be such that 1, x, . . . , xei−1 form a basis for Fqi
over Fq. Then the q + 1 elements of Bi are

φi(bj) =
(

1 γj + δj i
x(γj + δj + δj i) 1

)
, j = 0, . . . , q, (6.1)

where (γj , δj) ∈ F2
q are the q + 1 solutions in Fq for γ2 + γδ + δ2ε = 1. One indeed sees

that each of the elements of Bi is of order 2.
We will pass now to a different construction, which will give us Cayley graphs of Gi

w.r.t. Ai and Bi of the same size: |Ai| = |Bi| = q + 1, and both are Ramanujan.

6.2 The LSV Generators, q odd
In [LSV05a], Lubotzky, Samuels and Vishne constructed Ramanujan complexes, based
on an arithmetic lattice Γ, discovered by Cartwright and Steger [CS98], which acts simply
transitively on the Bruhat-Tits building of PGLd(Fq((t))). The special case d = 2 gave
some new Ramanujan graphs. These Ramanujan graphs were highlighted in [KL12], as
edge-transitive Ramanujan graphs which have been used there to construct symmetric
LDPC codes.

The arithmetic group Γ, acting simply transitive on the Bruhat-Tits tree of
PGL2(Fq((t))) (q any odd prime power) is obtained there as a the group generated
by the q + 1 conjugates of a specific element b, conjugated by the non-split torus T of
order q+ 1 in PGL2(Fq). This is a symmetric set of generators A for Γ which generates
a free group on q+1

2 generators. We will present below a different choice for b, this time
b′ - an element of order 2, whose conjugation under T forms a symmetric set B of size

26

q+ 1 and generate a group Γ′ which also acts simply transitive on the Bruhat-Tits tree.
Moreover, Γ and Γ′ are both finite index subgroups of an arithmetic group G(R) - to be
defined below.

In [LSV05a] (see also [KL12]) it was shown that G(R) has infinitely many finite
congruence quotients Gi, under the maps φi : G(R) → Gi, for which Cay(Gi, φi(A))
are Ramanujan (q + 1)-regular graphs. We will observe below that the same holds for
Cay(Gi, φi(B)). For i large enough (see Claim 6.5) the elements of φi(A) are of order
> 2 while φi(B) contains only elements of order 2. Hence we will get two-sided Cayley
square complexes with k1 = k2 = q + 1 and λ 6 2√q

q+1 . By choosing q large enough, they
will be λ-expanders for arbitrarly small λ > 0.

Now, in more details: Let 0 , ε ∈ Fq be a non-square element, let R = Fq[y, 1
y ,

1
1+y]

be the subring of Fq(y), generated by y, 1
y and 1

1+y , and let A(R) be the quaternion
R-algebra,

A(R) = R+Rα+Rz +Rαz : α2 = ε, z2 = 1 + y, zα = −αz. (6.2)

Remark 6.4. We note that our choice of basis for A(R), {1, α, z, αz}, is based on [KL12],
while [LSV05a] used a different basis for A(R), {ξ, ξq, ξz, ξqz}, where {ξ, ξq} forms an
Fq-basis for Fq2 = Fq[α]. The change of bases does not affect any of the following
constructions.

For any ring D, denote by D∗ its group of units. Note that an element of r(y) ∈ R
belongs to R∗ if and only if it is of the form r(y) = cyn(1 + y)m , c ∈ F∗q , n,m ∈ Z, and
that an element a = a1 + a2α + a3z + a4αz ∈ A(R) belongs to A(R)∗ if and only if its
norm N(a) := a2

1 − εa2
2 − (1 + y)a2

3 − ε(1 + y)a2
4 ∈ R belongs to R∗. Note also that R is

the center of A(R) and R∗ is the center of A(R)∗. Then the principal arithmetic group
G(R) is defined to be

G(R) = A(R)∗/R∗ = {a ∈ A(R) : N(a) ∈ R∗} /R∗.

The Cartwright–Steger arithmetic lattice Γ, and the second arithmetic lattice Γ′, are
defined to be the subgroups of G(R), generated by the symmetric sets of size q + 1, A
and B, which are the sets of T conjugates of the elemenets, b and b′, respectively, where
T = Fq[α]∗/F∗q 6 G(R) is a non-split torus of order q + 1, b =

(
1− 1

1+y z
)
R∗ ∈ G(R)

and b′ = αb =
(
α− 1

1+yαz
)
R∗ ∈ G(R), namely,

Γ = 〈A〉 6 G(R), A =
{
tbt−1 : t ∈ T

}
, Γ′ = 〈B〉 6 G(R), B =

{
tb′t−1 : t ∈ T

}
,

T = Fq[α]∗/F∗q , b =
(

1− 1
1 + y

z

)
R∗, b′ = αb =

(
α− 1

1 + y
αz

)
R∗.

Note that b and b′ belongs to G(R), since N
(

1− 1
1+y z

)
= 1− (1 +y) 1

(1+y)2 = y
1+y ∈ R

∗

and N
(
α− 1

1+yαz
)

= N(α) ·N
(

1− 1
1+y z

)
= −ε · y

1+y ∈ R
∗.

Claim 6.5. (i) Every element of A is of infinite order, while every element of B is of order
2.

(ii) For i > 2, every element of Ai = φi(A) is of order > 2, while every element of
Bi = φi(B) is of order 2.

27

Proof. (i) The claim about the elements of A follows from [LSV05a, Corollary 5.4]. For
the claim about the elements of B, since they are all conjugate of one another, it suffice
to show b′2 = 1, or equivalently,

(
α− 1

1+yαz
)2
∈ R∗. This follows from the following

computations,(
α− 1

1 + y
αz

)2
= α2 − 1

1 + y
ααz − 1

1 + y
αzα+ 1

(1 + y)2αzαz = ∗,

and by equation 6.2, as αz = −zα, α2 = ε and z2 = 1 + y, we get

∗ = α2 − 1
(1 + y)2α

2z2 = ε− ε

1 + y
= ε

y

1 + y
∈ R∗.

(ii) This follows from an injectivity radius argument for congruence subgroups, see
for instance [LM07]. �

Let B be the Bruhat-Tits tree of PGL2(Fq((t))), which is a (q + 1)-regular infinite
tree. By [LSV05a, Section 3], Γ, Γ′ and G(R) are subgroups of PGL2(Fq((t))), hence
acts on B. In the notation of [LSV05a], let v0 = [L0] be the fundamental vertex in B,
and let Ω be the set of its neighbors.
Claim 6.6. (i) For each set X = A or X = B, the map g ↔ g.v0 is a bijection between
X and Ω.

(ii) The subgroups, Γ and Γ′, acts simply transitively on the Bruhat-Tits tree.
(iii) Both subgroups, Γ and Γ′, are normal in G(R) and of index 2(q + 1).
(iv) If φ : G(R)→ PSL2(qe) is an epimorphism, then both subsets, φ(A) and φ(B),

are symmetric set of generators for PSL2(qe).
(v) If φ : G(R) → PSL2(qe) is an epimorphism whose kernel is a congru-

ence subgroup G(R,φ) of G(R), then both Cayley graphs, Cay(PSL2(qe), φ(A)) and
Cay(PSL2(qe), φ(B)), are Ramanujan (q + 1)-regular graphs.

Proof. (i) The claim for A is [LSV05a, Proposition 4.3]. The claim for B follows from
the claim for A and the identity tb′t−1.v0 = tαbt−1.v0 = (tα)b(tα)−1(tαt−1).v0. Now,
α ∈ T and T fixes v0, so {tb′t−1.v0|t ∈ T} = {tbt−1.v0|t ∈ T}.

(ii) The transitivity claim for Γ is [LSV05a, Proposition 4.5], which relies solely on
the validity of claim (i) for the generating set A of Γ, hence the same proof works also
for Γ′. Moreover, the same proof can actually show that for any n ∈ N, for any vertex
v of distance n from v0, there exists a reduced word g = s1 · · · sn ∈ Γ (resp. Γ′),
s1, . . . , sn ∈ A (resp. B), such that g.v0 = v. This proves that the action is also simple
since the number of vertices of distance n is equal the number of reduced words of length
n, for any n ∈N.

(iii) The claim for Γ follows from [LSV05a, Propositions 4.9 and 3.5], and the same
proof also works for Γ′. The fact that the index is 2(q+1) follows also from the fact that
Γ′ acts simply transitively on the Bruhat-Tits tree by (ii). Hence the index of Γ′ in G(R)
is equal to the order of the stabilizer of v0 in G(R), which by [LSV05a, Proposition 3.5],
is of size 2(q + 1).

(iv) By (iii) both images, φ(Γ) and φ(Γ′), are normal subgroups of index 6 2(q + 1)
in PSL2(qe), and since PSL2(qe) is a simple group of size > 1

2 (q+ 1)q(q− 1) > 2(q+ 1),
we get that φ(Γ) = PSL2(qe) = φ(Γ′).

(v) The claim for Cay(PSL2(qe), φ(A)) is [LSV05a, Theorem 7.1], and the same
proof holds also for Cay(PSL2(qe), φ(B)). Another way to see this is to observe that
both graphs are isomorphic to G(R,φ)\B and in particular they are isomorphic, so if
one is Ramanujan so is the other. �

28

6.3 Proof of Lemma 5.2 and Degree Reduction
First we use the LSV generators constructed in the previous subsection to prove the
following Lemma.
Claim 6.7. For any odd prime power q there exist an explicit construction of an infinite
family of finite groups Gi = PSL2(qi), with two symmetric generating subsets Ai, Bi of
Gi, such that for each i, |Ai| = |Bi| = q + 1, condition (TNC) holds for Ai and Bi, and
the Cayley graphs Cay(Gi, Ai) and Cay(Gi, Bi) are Ramanujan, in particular they are
λ-expanders with λ 6 2(q + 1)−1/2.

Proof. From Claim 6.6 we get that for any i, there exists two symmetric generating
subsets Ai and Bi of the finite group Gi = PSL2(qi), both sets are of size q+ 1, and the
Cayley graphs Cay(Gi, Ai) and Cay(Gi, Bi) are both Ramanujan. By Claim 6.5, for any
i > 2, the two sets Ai and Bi satisfy condition (TNC). �

Next we prove the following degree reduction trick, which allows us to start with a
λ-expander Cayley graph, and to remove a few elements from the generating set with
only negligible effect on λ.
Claim 6.8. (i) Let G be a finite group, let S′ ⊂ S be two symmetric subset of G,
and denote λ = λ(Cay(G,S)) and λ′ = λ(Cay(G,S′)) the normalized second largest
eigenvalues of the corresponding Cayley graphs. Then

λ′ 6 λ+ |S \ S
′|

|S′|
.

(ii) In particular, if c 6 λ · |S|1/2 6 C, where 0 < c < C, and |S \ S′| 6 1
2 · c · |S|

1/2, then

λ′ 6 2λ 6 2C · |S′|1/2.

Proof. (i) Let M = MA and M ′ = MA′ be the adjacency matrices of Cay(G,S) and
Cay(G,S′), respectively. Since S (resp. S′) generates G, the largest eigenvalue of M
(resp. M ′), which is |S| (resp. |S′|), has multiplicity one, and its eigenvector is the
constant function 1G. By the Courant-Fischer Formula we get that

λ · |S| = max
0,v⊥1G

vtMv

vtv
and λ′ · |S′| = max

0,v⊥1G

vtM ′v

vtv
.

Now the matrix M −M ′ can be considered as the adjacency matrix of the set S \ S′,
which by the Perron-Frobenius Theorem, all of its eigenvalues are bounded in absolute
value by |S \ S′|, and by the Courant-Fischer Formula |S \ S′| = max0,v

vt(M ′−M)v
vtv .

Therefore we get that

λ′ · |S′| = max
0,v⊥1G

vtM ′v

vtv
6 max

0,v⊥1G

vtMv

vtv
+ max

0,v⊥1G

vt(M ′ −M)v
vtv

6 λ · |S|+ |S \ S′|,

and after dividing by |S′| we get the claim.
(ii) follows from (i) together with the fact that

|S \ S′| 6 1
2 · c · |S|

1/2 6
λ|S|
1 + λ

⇒ |S \ S′|
|S|

6 λ.

�

Finally we combine the above two Claims to prove Lemma 5.2.

29

Lemma (Restatement of Lemma 5.2). Let d0, D0 ∈ N. Let q be any odd prime power
such that q > max{2d2

0, D0} and define D = d0 · b q+1
d0
c. Then there exist an explicit

construction of an infinite family of finite groups Gi = PSL2(qi), with two symmetric
generating subsets Ai, Bi ⊂ Gi, such that for each i, both Ai and Bi are of size D hence
divisible by d0, Ai and Bi satisfy condition (TNC), and the Cayley graphs Cay(Gi, Ai)
and Cay(Gi, Bi) are λ-expanders where λ 6 4D−1/2.

Proof of Lemma 5.2. First note that D is by definition the largest integer 6 q+ 1 which
is divisible by d0, and that q + 1−D 6 d0 6

1
2
√
D.

By Claim 6.7, for each i, there exist Ãi, B̃i two symmetric generating subset of Gi =
PSL2(qi), such that Ãi, B̃i are both of size q + 1, they satisfy (TNC) and such that the
corresponding Cayley graphs are Ramanujan, i.e. λ-expandrs for λ 6 2√q

q+1 6 2(q+1)−1/2.
Let Ai ⊂ Ãi and Bi ⊂ B̃i be any two symmetric subsets of size D. Since Ãi and B̃i

satisfy (TNC), any subsets of them must also satisfy (TNC).
By Claim 6.8, we get that for G = Gi, S = Ãi or B̃i, and S′ = Ai or Bi, respectively,

we get that
λ(Cay(G,S′)) 6 2λ(Cay(G,S)) 6 4D−1/2,

which completes the proof of the Lemma. �

References
[AC88] Noga Alon and Fan RK Chung. Explicit construction of linear sized tolerant

networks. Discrete Mathematics, 72(1-3):15–19, 1988. 7

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and intractability of approximation problems. Journal of the ACM,
45(3):501–555, 1998. 2

[ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-
concave polynomials ii: high-dimensional walks and an fpras for counting
bases of a matroid. In Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 1–12, 2019. 5

[Aro94] S. Arora. Probabilistic checking of proofs and the hardness of approximation
problems. PhD thesis, U.C. Berkeley, 1994. Available via anonymous ftp as
Princeton TR94-476. 2

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM, 45(1):70–122, 1998. 2

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.
2

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In Proc. 23rd ACM Symp. on Theory of Computing,
pages 21–31, 1991. 2

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. Robust PCPs of proximity, shorter PCPs and applications to
coding. SIAM Journal on Computing, 36(4):889–974, 2006. In special issue
on Randomness and Computation. 2, 4

30

[BGK+10] Eli Ben-Sasson, Venkatesan Guruswami, Tali Kaufman, Madhu Sudan, and
Michael Viderman. Locally testable codes require redundant testers. SIAM
J. Comput., 39(7):3230–3247, 2010. 4

[BHR05] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF
properties are hard to test. SIAM J. Comput., 35(1):1–21, 2005. 1, 4, 5,
23, 24

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. In Proc. 22nd ACM Symp. on Theory of
Computing, pages 73–83, 1990. 1, 4

[BS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and
query complexity. In Proc. 37th ACM Symp. on Theory of Computing,
pages 266–275, 2005. 2

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and prod-
ucts of codes. Random Structures & Algorithms, 28(4):387–402, 2006. 3,
8

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query com-
plexity. SIAM J. Comput., 38(2):551–607, 2008. 4

[BSS05] László Babai, Amir Shpilka, and Daniel Stefankovic. Locally testable cyclic
codes. IEEE Trans. Inf. Theory, 51(8):2849–2858, 2005. 4

[BSV12] Eli Ben-Sasson and Michael Viderman. Towards lower bounds on locally
testable codes via density arguments. computational complexity, 21(2):267–
309, 2012. 4

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson.
Randomness-efficient low degree tests and short PCPs via epsilon-biased
sets. In Proc. 35th ACM Symp. on Theory of Computing, pages 612–621,
2003. 2, 4

[BV09] Eli Ben-Sasson and Michael Viderman. Tensor products of weakly smooth
codes are robust. Theory of Computing, 5(12):239–255, 2009. 3, 9, 23, 24

[CS98] D.I. Cartwright and T. Steger. A family of Ãn-groups. Israel J. Math.,
103(1):125–140, 1998. 26

[DDFH18] Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean
function analysis on high-dimensional expanders. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, vol-
ume 116 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. 6

[DH09] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs
using decodable PCPs. In Proc. 50th IEEE Symp. on Foundations of Com-
puter Science, 2009. 9

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM,
54(3), 2007. 2, 4

31

[Din21a] Irit Dinur. Breakthroughs - locally testable
codes with constant rate, distance, and locality.
https://simons.berkeley.edu/events/breakthroughs-locally-testable-codes-constant-rate-distance-and-locality,
2021. 7

[Din21b] Irit Dinur. Locally testable codes with constant rate, distance,
and locality. Part I: https://youtu.be/pz2-bEopa-c, Part II:
https://youtu.be/Ydb2OPQ7eqI, 2021. 7

[DK11] Irit Dinur and Tali Kaufman. Dense locally testable codes cannot have
constant rate and distance. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques - 14th International
Workshop, APPROX 2011, and 15th International Workshop, RANDOM
2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages 507–
518, 2011. 4

[DK17] Irit Dinur and Tali Kaufman. Agreement expansion. Work in progress,
2017. 5

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of
tensor products of LDPC codes. In Proc. 10th International Workshop on
Randomization and Computation (RANDOM), 2006. 3, 9, 23, 24

[EK16] Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every
dimension. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 36–48, 2016. 5

[FS13] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests.
CoRR, abs/1307.3975, 2013. 2

[Gal63] R.G̃. Gallager. Low density parity check codes. MIT Press, Cambridge,
Massachusetts, 1963. 23, 24

[Gar73] H. Garland. p-adic curvature and the cohomology of discrete subgroups of
p-adic groups. Annals of Mathematics, 97:375, 1973. 5

[GKdO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-
Zewi, and Shubhangi Saraf. Locally testable and locally correctable codes
approaching the gilbert-varshamov bound. IEEE Trans. Inf. Theory,
64(8):5813–5831, 2018. 2, 4

[GM12] Oded Goldreich and Or Meir. The tensor product of two good codes is
not necessarily robustly testable. Information Processing Letters, 112(8-9),
2012. 9

[Gol05] Oded Goldreich. Short locally testable codes and proofs (survey). ECCC
Technical Report TR05-014, 2005. 2

[Gol10] Oded Goldreich. Short Locally Testable Codes and Proofs: A Survey in Two
Parts, pages 65–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
2, 4

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University
Press, 2017. 8

32

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of
almost-linear length. J. of the ACM, 53(4):558–655, 2006. 2, 4, 8

[JL99] B. Jordan and R. Livne. The Ramanujan property for regular cubical com-
plexes. Duke Mathematical Journal, 105:85–103, 1999. 6, 11

[KKL14] Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Ramanujan com-
plexes and bounded degree topological expanders. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, October 18-21, 2014, pages 484–493, 2014. 5

[KL12] T. Kaufman and A. Lubotzky. Edge transitive Ramanujan graphs and
symmetric LDPC good codes. In Proceedings of the 44th symposium on
Theory of Computing, pages 359–366. ACM, 2012. 26, 27

[KL14] Tali Kaufman and Alexander Lubotzky. High dimensional expanders and
property testing. In Innovations in Theoretical Computer Science, ITCS’14,
Princeton, NJ, USA, January 12-14, 2014, pages 501–506, 2014. 5

[KMRS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-
rate locally correctable and locally testable codes with sub-polynomial query
complexity. J. ACM, 64(2):11:1–11:42, 2017. 2, 4

[Kur55] A.G. Kurosh. The Theory of Groups, vol. 2. Chelsea publishing company,
New York, 1955. 25

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859–868, October
1992. 2

[LM07] A. Lubotzky and R. Meshulam. A Moore bound for simplicial complexes.
Bulletin of the London Mathematical Society, 39(3):353–358, 2007. 28

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinator-
ica, 8:261–277, 1988. 5

[LSV05a] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions
of Ramanujan complexes of type Ãd. European J. Combin., 26(6):965–993,
2005. 5, 22, 25, 26, 27, 28

[LSV05b] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes
of type Ãd. Israel J. Math., 149(1):267–299, 2005. 5

[Lub94] A. Lubotzky. Discrete groups, expanding graphs and invariant measures.
Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 1994. With an ap-
pendix by Jonathan D. Rogawski. 25

[Lub21] Alexander Lubotzky. The c3 problem: Locally
testable codes with constant rate and constant dis-
tance. MPS Conference on High-Dimensional Expanders,
https://www.simonsfoundation.org/event/2021-mps-conference-on-high-dimensional-expanders/,
2021. 7

[Mei08] Or Meir. Combinatorial construction of locally testable codes. In Proc. 40th
ACM Symp. on Theory of Computing, pages 285–294, 2008. 4

33

[Mor94] M. Morgenstern. Existence and explicit constructions of q + 1 regular Ra-
manujan graphs for every prime power q. Journal of Combinatorial Theory,
Series B, 62(1):44–62, 1994. 22, 25, 26

[Moz91] S. Mozes. A zero entropy, mixing of all orders tiling system, symbolic
dynamics and its applications. Contemp. Math, 135:319–325, 1991. 6, 11

[Mum79] David Mumford. An algebraic surface with k ample, (K2) = 9, pg = q = 0.
American Journal of Mathematics, 101, 02 1979. 6

[Opp18] Izhar Oppenheim. Local spectral expansion approach to high dimen-
sional expanders part I: descent of spectral gaps. Discret. Comput. Geom.,
59(2):293–330, 2018. 5

[PS94] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. In
Proc. 26th ACM Symp. on Theory of Computing, pages 194–203, 1994. 2, 8

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomi-
als with applications to program testing. SIAM J. Comput., 25(2):252–271,
1996. 2

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Inform. Theory, 42(6, part 1):1723–1731, 1996. Codes
and complexity. 2, 23

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans.
Inform. Theory, 42(6, part 1):1710–1722, 1996. Codes and complexity. 2,
4, 5, 6, 14

[Tan81] R.M̃. Tanner. A recursive approach to low complexity codes. IEEE Trans.
Inform. Theory, Vol. IT-27,(5):533–547, 1981. 2, 14

[Val05] Paul Valiant. The tensor product of two codes is not necessarily robustly
testable. In APPROX-RANDOM, pages 472–481, 2005. 9

[Var98] Yakov Varshavsky. p-adic uniformization of unitary shimura varieties. Pub-
lications Math ’e matiques of the Institut des Hautes É tudes Scientalités,
87(1):57–119, 1998. 6

A Robust Testability and Agreement Testability
In this section we show the equivalence between the two notions, proving Lemma 2.9
Claim A.1 (Robust-testability implies agreement-testability). Assume δi = dist(Ci) for
i = 1, 2. If C1 ⊗ C2 is ρ-robustly testable then C1 ⊗ C2 is κ-agreement testable, for
κ−1 = 1

2δ1ρ
+ 1+1/(2ρ)

δ2
.

Proof. Suppose w1 ∈ C1 ⊗ Fn2
2 , and w2 ∈ Fn1

2 ⊗ C2. Let f = w1, so δcol(f) = 0, and
observe that since w2(i, ·) ∈ C2 for each j,

δrow(f) = E
i∈[n1]

dist(f(i, ·), C2) 6 E
i∈[n1]

dist(f(i, ·), w2(i, ·)) = dist(w1, w2).

By the robust-testability of C1 ⊗ C2 there is some w ∈ C1 ⊗ C2 such that

dist(w,w1) = dist(w, f) 6 1
ρ
· δ

row(f) + δcol(f)
2 6

1
2ρ · (dist(w1, w2) + 0).

34

By the triangle inequality dist(w,w2) 6 dist(w,w1)+dist(w1, w2) 6 (1+ 1
2ρ) dist(w1, w2).

Next, observe that Pj [w(·, j) , w1(·, j)] · δ1 6 dist(w,w1), and similarly Pi[w(i, ·) ,
w2(i, ·)] · δ2 6 dist(w,w2). Altogether,

P
j
[w(·, j) , w1(·, j)] + P

i
[w(i, ·) , w2(i, ·)] 6 1

δ1
dist(w,w1) + 1

δ2
dist(w,w2)

6 (1
2ρδ1

+ 1 + 1/(2ρ)
δ2

) · dist(w1, w2)

proving the claim with κ−1 = 1
2ρδ1

+ 1+1/(2ρ)
δ2

, or κ = 2ρδ1δ2
δ2+δ1(1+2ρ) . �

Note that in case δ1 = δ2 = δ the statement simplifies slightly to κ = ρδ
ρ+1 . The other

direction, that we don’t need here, is even simpler,
Claim A.2 (Agreement-testability implies robust-testability). If C1 ⊗C2 is κ-agreement
testable, then C1 ⊗ C2 is ρ-robustly testable for ρ = κ

2(κ+1) .

Proof. Assume C1 ⊗ C2 is κ-agreement-testable. Let w ∈ Fn1×n2
2 satisfy ρ(w) = δ. Let

w1 ∈ C1 ⊗ Fn2
2 be such that δcol(w) = dist(w,w1). Let w2 ∈ Fn1

2 ⊗ C2 be such that
δrow(w) = dist(w,w2). By the triangle inequality,

dist(w1, w2) 6 dist(w1, w) + dist(w,w2) = δcol(w) + δrow(w) = 2ρ(w).

By the κ-agreement testability there is some w′ ∈ C1 ⊗ C2 such that

κ·(P
i
[w1(i, ·) , w′(i, ·)]+P

j
[w2(·, j) , w′(·, j)]) 6 P

i,j
[w1(i, j) , w2(i, j)]) = dist(w1, w2) 6 2ρ(w).

But clearly

dist(w1, w
′) + dist(w′, w2) 6 P

i
[w1(i, ·) , w′(i, ·)] + P

j
[w2(·, j) , w′(·, j)] (A.1)

so again by the triangle inequality,

dist(w,w′) 6 1
2(dist(w,w1) + dist(w1, w

′) + dist(w,w2) + dist(w2, w
′))

= 1
2(dist(w,w1) + dist(w,w2) + dist(w1, w

′) + dist(w2, w
′))

6 ρ(w) + κ−1 · ρ(w) = κ+ 1
κ
· ρ(w).

�

35
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

