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Abstract

The hardness vs. randomness paradigm aims to explicitly construct pseudorandom generators
G : {0, 1}r → {0, 1}m that fool circuits of size m, assuming the existence of explicit hard
functions. A “high-end PRG” with seed length r = O(logm) (implying BPP=P) was achieved in
a seminal work of Impagliazzo andWigderson (STOC 1997), assuming the high-end hardness
assumption: there exist constants 0 < β < 1 < B, and functions computable in time 2B·n that
cannot be computed by circuits of size 2β·n.

Recently, motivated by fast derandomization of randomized algorithms, Doron et al. (FOCS
2020) and Chen and Tell (STOC 2021), construct “extreme high-end PRGs” with seed length
r = (1 + o(1)) · logm, under qualitatively stronger assumptions.

We study whether extreme high-end PRGs can be constructed from the following scaled
version of the assumption which we call the extreme high-end hardness assumption, and
in which β = 1− o(1) and B = 1 + o(1). We give a partial negative answer:

� Doron et al. compose a PEG (pseudo-entropy generator) with an extractor. The PEG
is based on a hardness assumption for MA-type circuits. We show that black-box PEG
constructions from the extreme high-end hardness assumption must have large seed
length (and so cannot be used to obtain extreme high-end PRGs by applying an extractor).

To prove this, we establish a new property of (general) black-box PRG constructions from
hard functions: it is possible to fix many output bits of the construction while fixing few bits
of the hard function. This property distinguishes PRG constructions from typical extractor
constructions, and this may explain why it is difficult to design PRG constructions.

� Chen and Tell compose two PRGs: G1 : {0, 1}(1+o(1))·logm → {0, 1}r2=mΩ(1)

and G2 :
{0, 1}r2 → {0, 1}m. The first PRG is based on the extreme high-end hardness as-
sumption, and the second PRG needs to run in time m1+o(1), and is based on one way
functions. We show that in black-box proofs of hardness amplification to 1

2 +1/m, reduc-
tions must make Ω(m) queries, even in the extreme high-end. Known PRG constructions
from hard functions are black-box and use (or imply) hardness amplification, and so cannot
be used to construct a PRG G2 from the extreme high-end hardness assumption.

The new feature of our hardness amplification result is that it applies even to the extreme
high-end setting of parameters, whereas past work does not. Our techniques also improve
recent lower bounds of Ron-Zewi, Shaltiel and Varma (ITCS 2021) on the number of
queries of local list-decoding algorithms.
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1 Introduction

1.1 Background

The hardness vs. randomness paradigm (initiated in [Yao82, BM84, NW94] and followed up by
a long sequence of work [BFNW93, Imp95, IW97, STV01, KvM02, MV05, ISW99, ISW06, SU05,
Uma03, Uma09, SU06, AIKS16, DMOZ20, CT21b, CT21a]) aims to explicitly construct pseudo-
random generators (PRGs) from explicit hard functions.

Definition 1.1 (PRGs). A function G : {0, 1}r → {0, 1}m is an ϵ-PRG for a function D : {0, 1}m →
{0, 1}, if

|Pr[D(G(Ur)) = 1]− Pr[D(Um) = 1]| ≤ ϵ.

G is an ϵ-PRG for a class D of functions D : {0, 1}m → {0, 1}, if for every D in D, G is an ϵ-PRG
for D. If we omit ϵ or D, the default choices are ϵ = 1/10, and D is the class of circuits of size m.

Explicit pseudorandom generators have many applications in computer science. The signature
application of PRGs is to derandomize randomized algorithms (by running the algorithm using all
outputs of the PRG). This is quantitatively specified in the proposition below.

Proposition 1.2 (standard). If G : {0, 1}r → {0, 1}m is a PRG, then every randomized algorithm
running in time m can be simulated by a deterministic algorithm in time Timeall(G)+2r ·m, where
Timeall(G) is the time it takes to compute the output of G on all 2r inputs, and is obviously upper
bounded by 2r · Time(G), where Time(G) is the time it takes to compute G on a given input.

High-end PRGs that imply BPP=P. A corollary of Proposition 1.2 is that a PRG G :
{0, 1}r=O(logm) → {0, 1}m with Time(G) = poly(m) implies that BPP=P.1

Such PRGs are often referred to as “high-end PRGs”. Historically, this name aims to distinguish
them from weaker ”low-end PRGs” which have r = mo(1), and Time(G) = 2O(r), which in turn
imply the weaker conclusion that BPP is in subexponential time, see [ISW06, SU05] for a discussion.

Extreme high-end PRGs and fast derandomization. Recently, Doron et al. [DMOZ20]
asked whether it is possible to obtain a faster derandomization. Here, the goal is to show that a
randomized algorithm running in time m can be simulated by a deterministic algorithm running in
time O(mc) for the smallest possible constant c.

The time of the deterministic simulation of Theorem 1.2 depends on both the seed length r,
and Timeall(G). Note that even if we take r to the extreme2, and have a PRG with r = 1 · logm,
then the time of the simulation is at least 2r ·m = m2. This time can be achieved if furthermore,
Timeall(G) = O(2r · m) = O(m2) (which follows if Time(G) = O(m)). This means that we can
hope to achieve c = 2 (that is, a quadratic time simulation) if we have such PRGs, which we will
call “extreme high-end” PRGs.

Definition 1.3 (Extreme high-end PRGs). G : {0, 1}r → {0, 1}m is an extreme high-end PRG if:

1Note that in this range of parameters there is no reason to distinguish between Time(G) and Timeall(G), as
Timeall(G) = poly(m) if and only if Time(G) = poly(m), and this is why past work is stated in terms of Time(G)
and not Timeall(G).

2A PRG must have r ≥ logm−O(log logm) as otherwise, a circuit of size m could be hardwired with prefixes of
length r + 1 for all 2r pseudorandom strings, and distinguish a uniform string from a pseudorandom string.
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Pseudorandomness: G is a PRG with seed length r = (1 + o(1)) · logm.
Explicitness: Timeall(G) = m2+o(1) (which follows if Time(G) = m1+o(1)).

These parameters are chosen so that an extreme high-end PRG implies that randomized algo-
rithms running in time m can be simulated deterministically in time m2+o(1).

There are reasons to think that this quadratic slowdown is the best possible if one seeks the
smallest possible c such that every randomized algorithm running in time m can be simulated deter-
ministic time mc. More precisely, the problem of “univariate identity testing” is in BPTIME(Õ(n))
but not in DTIME(n2−o(1)), under certain assumptions on “fine grained complexity” introduced by
Carmosino et al. [CGI+16]. See [DMOZ20] for details and a discussion.

We remark that this lower bound still allows a deterministic simulation that runs in time
O(m · n) (where n is the input length) and a simulation that approaches this time bound was
obtained by Chen and Tell [CT21b] under certain hardness assumptions. See [CT21b] for details
and a discussion.

Hardness implied by PRGs. PRGs immediately imply circuit lower bounds that are beyond
our current ability. Consequently, constructing explicit PRGs, requires circuit lower bounds (namely
the existence of explicit functions that cannot be computed by small circuits). In particular, high-
end PRGs imply the existence of functions f : {0, 1}ℓ → {0, 1} which cannot be computed by
circuits of size 2Ω(ℓ), and Time(f) = 2O(ℓ).3

1.1.1 The Impagliazzo-Wigderson (high-end) hardness assumption

The goal of the hardness vs. randomness program is to construct PRGs based on lower bounds
that are as strong (or almost as strong) as the ones implied by the PRG. A major milestone in this
program was achieved by Impagliazzo and Wigderson [IW97].

Theorem 1.4 ([IW97]). A high-end PRG follows from the following assumption:

The high-end hardness assumption: There exist constants 0 < β < 1 < B, and a function
f : {0, 1}ℓ → {0, 1} that satisfies:
Hardness: f cannot be computed by circuits of size 2β·ℓ.
Explicitness: Time(f) ≤ 2B·ℓ.

Theorem 1.4 converts hardness into pseudorandomness at close to the “correct rate” (as in the
converse direction) if one does not care about the precise values of the constants β,B, and the
constant hidden in the O(·) notation in the seed length of the high-end PRG.

1.1.2 Scaling the Impagliazzo-Wigderson assumption to the extreme high-end

In the case of extreme high-end PRGs, we insist on seed length r ≈ 1 · logm and the constants
β,B from the The high-end hardness assumption do matter. Assuming that we don’t expect
to “improve” the hardness of the assumed explicit hard function, we must have β ≥ 1 − o(1) and

3More specifically, Impagliazzo, Shaltiel and Wigderson [ISW99] showed that if G : {0, 1}r → {0, 1}m is a PRG
then for ℓ = r+1, there is a function f : {0, 1}ℓ → {0, 1} (defined by checking whether an input of length ℓ is a prefix
of an output of G) such that f cannot be computed by circuits of size m, and Timeall(f) ≈ Timeall(G). Note that
Timeall(f) = 2O(ℓ) iff Time(f) = 2O(ℓ).
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B ≤ 1 + o(1). Thus, imitating the approach of Impagliazzo and Wigderson [IW97] for the extreme
high-end, leads to the following open problem.

Open Problem 1.5. Show that an extreme high-end PRG follows from the following assumption:

The extreme high-end hardness assumption: There exists a function f : {0, 1}ℓ → {0, 1}
that satisfies:

Hardness: f cannot be computed by circuits of size 2(1−o(1))·ℓ.
Explicitness: Time(f) ≤ 2(1+o(1))·ℓ.4

The proof techniques of Impagliazzo and Wigderson [IW97] (as well as of later works [STV01,
SU05, Uma03]) do not solve Open Problem 1.5. As we explain in Section 1.2.4, these proofs rely on
the “hybrid argument” of [Yao82, GM84], and even assuming the extreme high-end hardness
assumption, one can at best obtain a PRG G : {0, 1}r → {0, 1}m with seed length r ≥ A · logm,
where A > 3, and actual proofs do worse.

Recent work on extreme high-end PRGs. Recently, Doron et al. [DMOZ20], and Chen
and Tell [CT21b] gave conditional constructions of extreme high-end PRGs, however, in both cases
the assumption used is stronger than the extreme high-end hardness assumption. We will
elaborate on these results later on.5 An incomparable assumption was very recently used by Chen
and Tell [CT21a] for constructing “targeted PRGs” (which are weaker than PRGs and yet suffice
for derandomizing randomized algorithms).

Goals of this paper. In this paper, we investigate the problem of constructing explicit PRGs
from explicit hard functions, focusing on open problem 1.5. More specifically, we investigate the
power of “black-box proofs” that convert explicit hard functions into PRGs and related objects.
We show limitations on certain recent approaches to solve Open Problem 1.5, and hope that this
may help to point us in the direction of better constructions. A secondary goal of this paper is to
survey recent work and point out the relationship between parameters, and potential barriers for
improvement.

1.2 Black-box proofs

1.2.1 Black-box proofs for PRG constructions and hardness amplification

A black-box proof that converts hard functions into PRGs consists of two parts:

� A construction map. This is a map that given a candidate function f : {0, 1}ℓ → {0, 1}
produces a candidate PRG Con(f). (To avoid clutter, we will denote the function Con(f) by
Conf : {0, 1}r → {0, 1}m).

4In the case of the extreme high-end, it does make sense to distinguish between Time(f) and Timeall(f), and one
can consider starting from a weaker explicitness condition in which it is required that Timeall(f) ≤ 2(2+o(1))·ℓ.

5Both these papers aim for a slightly weaker goal. Rather than requiring a single PRG with seed length r =
(1 + o(1)) · logm and explicitness m1+o(1) as in Definition 1.3, their constructions show that for every γ > 0 there
exists a PRG with seed length r = (1 + γ) · logm and explicitness m1+γ . We will not distinguish these two goals in
the informal discussion in the introduction.
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� A reduction establishing the correctness of the construction. This is an oracle procedure Red(·)

which given oracle access to an adversary D that breaks the security of Conf , implements an
adversary C that breaks the security of f .

As we explain in Section 1.2.3, because of their combinatorial properties, reductions of this type
must be nonuniform and receive a “nonuniform advice string” α (that may depend on the candidate
function f and the adversary D). This is reflected in the formal definition below.

We will consider “black-box A⇒ B proofs” for several other choices of primitives A,B (and not
just hard functions and PRGs). One such primitive is functions that are hard on average (meaning
that small circuits cannot compute f correctly with high probability on a uniformly chosen input).
Such functions can serve both as A and B in black-box A ⇒ B proofs. In order to capture all
various scenarios in one definition, we will use a terminology that will describe a primitive by what
it means to “break the security” of the primitive.

Definition 1.6. Let Fn,m denote the set of all functions from n bits to m bits.

� For G ∈ Fr,m and D ∈ Fm,1, we say that D ϵ-PRG-breaks G, if G is not an ϵ-PRG for D.
� For f, C ∈ Fℓ,1, we say that C ρ-hard-function-breaks f , if Prx←Uℓ

[C(x) = f(x)] ≥ ρ. We say
that C hard-function-breaks f if C 1-hard-function-breaks f (meaning that C = f). We say
that f is a ρ-hard-function for C if C does not ρ-hard-function-breaks f .

A ρ-hard-function for circuits of a certain size, is an average-case hard function, and the case
where ρ = 1 captures the previously considered notion of worst-case hard functions.

We now formally define black-box ρ-hard-function⇒ ϵ-PRG, and ρ-hard-function⇒ ρ′-hard-function
proofs.

Definition 1.7 (Black-box proofs). Given parameters ℓ, r,m, a, ρ, ϵ (resp. ℓ, ℓ′, a, ρ, ρ′) a black-box
ρ-hard-function⇒ ϵ-PRG proof (resp. a black-box ρ-hard-function⇒ ρ′-hard-function proof) is a pair
(Con,Red) of:

� A construction map Con : Fℓ,1 → Fr,m (resp. Con : Fℓ,1 → Fℓ′,1). (We use Conf to denote
the function Con(f)).

� An oracle procedure Red(·)(x, α) such that:

For every f ∈ Fℓ,1 and for every D ∈ Fm,1 such that D ϵ-PRG-breaks Conf
(resp. for every D ∈ Fℓ′,1 such that D ρ′-hard-function-breaks Conf ),

there exists α ∈ {0, 1}a, such that the function C ∈ Fℓ,1 defined by C(x) = RedD(x, α),
ρ-hard-function-breaks f .

If we omit ρ, we mean ρ = 1. If we omit ϵ, we mean ϵ = 1/10. We say that Red makes q queries,
if for every D ∈ Fm,1, α ∈ {0, 1}a, and x ∈ {0, 1}ℓ, RedD(x, α) makes at most q oracle queries.

1.2.2 Parameters of black-box proofs

To the best of our knowledge all hardness vs. randomness proofs of PRG constructions are black-
box (or rely on components which are black-box). In a black-box proof, the advice length a and
the number of queries q determine the “hardness loss” in the tradeoff. More specifically:
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Proposition 1.8 (Number of queries determines hardness loss in black-box proofs). Let (Con,Red)
be a black-box hard-function ⇒ PRG (resp. hard-function ⇒ ρ′-hard-function) proof in which Red
makes q queries, and has advice length a. If we start from a function f : {0, 1}ℓ → {0, 1} that
cannot be computed by circuits of size s, and apply the black-box proof, one can at best obtain that
Conf is a PRG (resp. ρ′-hard-function) for circuits of size m ≤ s−a

q ≤
s
q .

Loosely speaking, Proposition 1.8 follows because, when measuring the size s of the circuit
C = RedD(·, α) that is implied by the reduction for a circuit D of size m, then this circuit is of size
q ·m+ a. This gives that s ≥ q ·m+ a, implying the proposition.

Every function f : {0, 1}ℓ → {0, 1} has circuits of size 2ℓ. This means that in order for reductions
to be useful in transforming hard-functions into PRGs (or average case hard functions) they must

make q ≤ s−a
m ≤ 2ℓ−a

m queries, and are useless for this purpose, if q ≥ 2ℓ. Moreover, in the extreme

high-end, m = 2(1−o(1))·ℓ and so it is critical that q ≤ s
m ≤

2ℓ

m = 2o(ℓ) = mo(1) ≪ m.

Our notion of black-box does not guarantee explicitness. We place no limitation on the
map Con, and so, the notion of black-box that we use, does not enforce that if f can be computed
efficiently, then Conf can be computed efficiently. This notion of black-box does not imply the
explicitness of the constructed function Conf . We make this choice, because we want to show
impossibility results on black-box proofs, and this choice makes our results stronger.6 We also
remark that the terms ”black-box” and “non-black-box” are used to mean many different things in
the literature.7

Parameters for black-box proofs for the extreme high-end. As a consequence of Propo-
sition 1.8, if we assume the extreme high-end hardness assumption, to obtain an extreme
high-end PRG (as in Open Problem 1.5) using a black-box hard-function ⇒ PRG proof, we first
need to solve the following open problem:

Open Problem 1.9. Does there exist a black-box hard-function⇒ PRG proof with:

Seed length: r = (1 + o(1)) · ℓ. (Any black-box proof must have r ≥ ℓ).
Output length: m = 2(1−o(1))·ℓ. (Any black-box proof must have m ≤ 2ℓ).
Advice string length: a = m1+o(1) = 2(1−o(1))·ℓ. (Any black-box proof must have a ≥ m).
Number of queries: q = mo(1) = 2o(ℓ).

We stress again that a positive answer to Open Problem 1.9 is a necessary condition for using a
black-box proofs to construct an extreme high-end PRG from the extreme high-end hardness
assumption, however, it is not a sufficient condition.

We do not know whether black-box hard-function⇒ PRG proofs as in Open Problem 1.9 exist.8

In Section 1.3 we show obstacles on certain approaches to design a black-box hard-function⇒ PRG

6One way to preserve efficiency is to require that there is an oracle machine A(·) (in some complexity class) such
that for every f ∈ Fℓ,1, A

f implements Conf . See e.g., [Vio05].
7For example, sometimes the term “non-black-box” is used to denote a deterministic simulation of randomized

algorithms that is tailored for the specific input supplied to the algorithm. This notion is used for example in the
recent work of Chen and Tell [CT21a] which constructs “targeted-PRGs” that are targeted to the given input, and
is unrelated to the notion of “black-box” used here.

8In fact, the only known lower bound on black-box ρ-hard-function ⇒ ϵ-PRG proofs by Shaltiel, Grinberg and
Viola [GSV18] shows that if a ≤ 2ν·ℓ for some constant ν > 0, and ρ < 1 − 2−ℓ is sufficiently larger than 1

2
+ ϵ

then q ≥ Ω( log(1/(1−ρ))

ϵ2
). In the case of interest where ρ = 1 and ϵ is constant, this gives a weak bound of q ≥ Ω(ℓ),
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proof, meeting the parameters of Open Problem 1.9. More specifically, we show that certain
approaches cannot yield reductions with few queries. Before we describe our results, we give more
background on black-box proofs.

1.2.3 Black-box proofs as codes, extractors, and other applications

Black-boxness is often helpful in PRG constructions (as demonstrated in [NW94, KvM02, MV05,
SU05]) as such proofs readily extend to other computational models (e.g, bounded depth circuits,
or nondeterministic circuits). There are other motivations to study black-box proofs (in addition
to PRG constructions and hardness amplification). In fact, in the connections and applications
below, the “black-boxness” of the proofs is crucial and helpful.

List-decodable codes. Following Sudan, Trevisan and Vadhan [STV01], a Black-box hard-function⇒
ρ′-hard-function proof (Con,Red) yields a “list-decodable code” E : {0, 1}2ℓ → {0, 1}2ℓ

′
, defined

by E(f)y = Conf (y). A consequence of lower bounds on the rate of such codes is that ℓ′ ≥
ℓ + 2 · log(1/ρ′), and that a ≥ 2 · log(1/ρ′). Viewing the reduction as a “list” of 2a procedures
(one for every advice string α ∈ {0, 1}a) yields a variant of a “local list-decoding algorithm” for
the defined code, with the same number of queries. Techniques developed for black-box proofs
[SV10, GSV18, AASY16] have been useful in proving lower bounds on the number of queries of
such codes [RSV21].

Randomness Extractors: Following Trevisan [Tre01], a black-box hard-function⇒ ϵ-PRG proof

(Con,Red) yields a “randomness extractor” E : {0, 1}2ℓ × {0, 1}r → {0, 1}m, defined by E(f, y) =
Conf (y), and extracting randomness from sources with min-entropy k = a + log(1/ϵ) + O(1). A
consequence of lower bounds on extractors [RTS00] is that r ≥ ℓ + 2 · log(1/ϵ), and that a ≥
m+ log(1/ϵ)−O(1). Continuing the analogy of the previous item, the reduction can be viewed as
a local list-decoding algorithm for an “extractor-code” [TZ04]. Local list-decoding algorithms for
(standard) codes, and for extractor-codes are closely related to “hard-core bits” for cryptographic
primitives (see e.g. [RSV21] for a discussion).

Other applications. In recent years, black-box hard-function⇒ PRG proofs have found numer-
ous applications in areas that are not directly related to pseudorandomness, and rely on “black-
boxness”. Some examples are: Learning and compression algorithms (Carmosino et al. [CIKK16]
and subsequent work), worst-case to average-case reductions within NP (Hirahara [Hir18] and sub-
sequent work), and Kolmogorov Complexity (Allender et al. [ABK+06] and subsequent work).

1.2.4 Black-box proofs and the hybrid argument

The hybrid argument cannot be used in the extreme high-end. Most known black-box
hard-function ⇒ PRG proofs in the literature rely on hardness amplification in order to use the
hybrid argument of [Yao82, GM84]. That is, to achieve an ϵ-PRG, the construction is a sequence of
two black-box proofs: hard-function⇒ (12 + ϵ

m)-hard-function⇒ ϵ-PRG. Thus, even for constant ϵ,

and even this does not apply in the extreme high-end where a = 2(1−o(1))·ℓ. Moreover, if we start from average-case
hardness, it is open to prove that q > 1 for a black-box ρ-hard-function ⇒ ϵ-PRG proofs with ρ ≤ 1

2
+ ϵ, even for

small a.
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hardness amplification must be performed to ρ′ ≤ (12 + 1
m). By the bounds in Section 1.2.3, in

the first step, a function f1 with input length ℓ must be transformed into a function f ′ with input
length ℓ′ ≥ ℓ + 2 · log 1

ρ′ ≥ ℓ + 2 logm. The final PRG construction will have seed length r ≥ ℓ′ ≥
ℓ+2 logm ≥ 3 logm. This is too large in the extreme high end, where we want r = (1+o(1)) · logm.

The hybrid argument suffices for the high-end. We remark that taking ℓ′ = O(ℓ + logm)
and r = O(ℓ′) does suffice for the (non-extreme) high-end, and this is how known constructions for
the high-end [IW97, STV01, SU05, Uma03] are achieved.9

1.3 Our Results

We show that certain approaches cannot yield a black-box hard-function ⇒ PRG proof with the
parameters of Open Problem 1.9, and therefore cannot be used to solve Open Problem 1.5. Our
results are summarized in Table 1 and Table 2.

Table 1: Black-box proofs for PRGs and PEGs

Result Type Range Condition Bound

[GSV18] hard-function⇒ ϵ-PRG a ≤ 2ν·ℓ q ≥ Ω( ℓ
ϵ2 )

Thm 1.11 hard-function⇒ ϵ-PRG, constant ϵ a ≤ ν · 2ℓ ∃j = o( 2
ℓ

ℓ ) : Fixj(Con) > a+ j · ℓ) q ≥ 2ℓ

Thm 1.14 hard-function⇒ ϵ-PEG, constant ϵ a ≤ ν · 2ℓ r < ℓ− log ℓ−O(1) q ≥ 2ℓ

[IW97] hard-function⇒ ϵ-PRG, constant ϵ a ≤ 2ν·ℓ q ≤ mΘ(1)

Table 2: Black-box proofs for hardness amplification

Result Type Range Bound

[GSV18] hard-function⇒ ( 12 + ϵ)-hard-function a ≤ 2ν·ℓ q ≥ Ω( ℓ
ϵ2 )

Thm 1.15 hard-function⇒ ( 12 + ϵ)-hard-function a ≤ ν · 2ℓ q ≥ Ω( 1ϵ )

Thm 1.15 hard-function⇒ ( 12 + ϵ)-hard-function, constant ϵ a ≤ ν · 2ℓ q ≥ Ω(ℓ− log(2a))

[IW97, STV01] hard-function⇒ ( 12 + ϵ)-hard-function a ≤ ν · 2ℓ q ≤ poly( ℓϵ )

In both tables above the first three lines are lower bounds, while the last line is an upper bound, and
0 < ν ≤ 1

2 is some constant.

1.3.1 Limitations on constructions of black-box hard-function⇒ PRG proofs

We show that for any black-box hard-function⇒ PRG proof (Con,Red), if Red makes q ≤ 2ℓ queries,
then Con must be structured in a way that allows “fixing many outputs, with small information
cost”. More precisely, we introduce a measure Fixj(Con) defined to be the minimal number h, so

9More specifically, hardness amplification can be performed (by a black-box proof) using “local list-decodable
codes” [STV01], and the second ( 1

2
+ ϵ

m
)-hard-function ⇒ PRG step is done using the Nisan-Wigderson generator

[NW94], which is a black-box proof. Shaltiel and Umans [SU05] and Umans [Uma03] gave an alternative direct
transformation from worst-case hard function into PRGs which achieves a better seed length in the “low-end”.
However, as it also relies on the hybrid argument (and implies hardness amplification), it cannot achieve the extreme
high-end.
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that when F is chosen at random from Fℓ,1, it is possible to fix j outputs of ConF , while reducing
the information about F by only h bits of information.

Definition 1.10 (The cost of fixing j outputs). Given Con : Fℓ,1 → Fr,m we define Fixj(Con) to
be the minimal number h such that there exist j distinct outputs z1, . . . , zj ∈ {0, 1}m such that:

Pr
F←Fℓ,1

[∀i ∈ [j] : ∃yi ∈ {0, 1}r s.t. ConF (yi) = zi] ≥ 2−h.

We show that if Red makes a small number q of queries, then for every j that is not too large,
Fixj(Con) ≤ a+ j · (log q +O(1)). Loosely speaking, this means that after a “fixed cost” of a bits
of information, a large number of outputs of ConF can be fixed at the cost of roughly log q bits of
information about F , per m-bit output. This is stated formally below:

Theorem 1.11. There exists a constant ν > 0 such that for every ρ-hard-function⇒ ϵ-PRG proof
(Con,Red) with parameters ℓ, r,m, a ≤ ν · 2ℓ, ϵ ≤ 1 − 2r−m, ρ > 0.51, if Red makes q ≤ 2ℓ queries,

then for every j ≤ ν · 2ℓℓ ,

Fixj(Con) ≤ a+ j · (log q +O(1)) ≤ a+ j · (ℓ+O(1)).

Previous limitations on the number of queries for reductions in black-box proofs (of any type)
do not apply when a ≥ 2ℓ/2 and therefore are unapplicable in the extreme high-end

We stress that Theorem 1.11 is unrelated to the “hybrid argument” and applies even for con-
structions where the correctness of the reduction does not rely on the hybrid argument. Moreover,
the result applies for the whole range of parameters, and regardless of the choices of seed length
and output length. See Section 3.1 for a more general statement and a discussion.

In the next section we use Theorem 1.11 to show limitations on the “PEG + extractor” approach
of [DMOZ20].

Distinction between black-box PRGs and typical extractors. Following Trevisan [Tre01]
(see discussion in Section 1.2.3) we know that construction maps for black-box hard-function⇒ PRG
proofs are extractors (regardless of the number of queries used by the reduction). In fact, extractors
and black-box proofs are essentially equivalent if we do not restrict the number of queries made by
the reduction.

It is standard that if we choose a construction map Con at random, it will be an extractor.
Nevertheless, we show that it is unlikely that a random construction map Con will have Fixj(Con) ≤
a+ j · ℓ (for relevant values of j). This implies that:

Theorem 1.12 (informal). It is unlikely that a random construction map (which is an extractor
w.h.p) will have a “useful” reduction with q < 2ℓ.

More details, and a precise statement is given in Section 3.1.2. This demonstrates that requiring
a construction to have q < 2ℓ and be useful for PRGs (and not just for extractors) places limitations
on the structure of the construction.

Our interpretation. Our interpretation of Theorem 1.11 is that in order to enable the reduction
to make few queries, the construction must “create a backdoor” and introduce correlations between
different outputs. These correlations are “slightly harmful” to the goal of being an extractor. More
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precisely, having low Fixj(Con) means that there is a source distribution with min-entropy that
is very high (only lacking Fixj(Con) bits of information) on which j outputs of the extractor are
fixed. This will violate the extractor guarantee if j is close to 2r (but is possible for j ≪ 2r which
is the case in Theorem 1.11).

Theorems 1.11 and 1.12 suggest that it is more difficult to design PRG constructions than ex-
tractors. In Section 3.1.3 we review the known hard-function⇒ PRG constructions in the literature
(the Nisan-Wigderson PRG [NW94] and the Shaltiel-Umans PRG [SU05, Uma03]) observing how
they achieve low Fixj(Con) in the high-end, and why they do not achieve this in the extreme high-
end. We hope that understanding conditions that hard-function⇒ PRG constructions must satisfy,
may point us to new constructions that may be applicable in the extreme high-end.

Technique. We consider a “distinguisher” Df : {0, 1}m → {0, 1} that answers one iff its input
is an output of Conf . For every function f ∈ Fℓ,1, as Df PRG-breaks Conf , by Definition 1.7,
there must exist α ∈ {0, 1}a such that the function C(x) = RedDf (x, α) satisfies C = f . However,
Df only answers one on 2r out of the possible 2m queries. If Red does not ask such “interesting
queries”, then it obtains no information on f , and cannot hope to reconstruct every f ∈ Fℓ,1.

How does Red know to ask interesting queries? The advice string α (that depends on f) may
give Red information about interesting queries. However, the information in the advice string is
limited by its length a, and we show that if Red is able to find interesting queries for many choices
of f ∈ Fℓ,1 and x ∈ {0, 1}ℓ, then after this “fixed cost” of a bits of information, it is still difficult
for Red to find interesting queries, unless the construction Con is set up so that many interesting
queries (that is, outputs of Conf ) have low information, giving that Fixj(Con) ≤ a+j ·(log q+O(1))
for many values of j). The precise details are given in Section 3.

1.3.2 Limitations on the “PEG + Extractor” approach of [DMOZ20]

Doron et al. [DMOZ20] showed how to construct extreme high end PRGs from a strengthening of
the extreme high-end hardness assumption of Open Problem 1.5. More specifically, rather
than only assuming that f cannot be computed by circuits of size 2(1−o(1))·ℓ, it is assumed that
this holds even for circuits that are allowed to use nondeterminism and randomness (and can be
thought of as a nonuniform analog of the class MA). This assumption is significantly stronger then
the extreme high-end hardness assumption (although, still plausible).

The PEG + extractor approach. The approach of [DMOZ20] is to construct a pseudo-entropy
generator (PEGs) (for a specific notion of “computational entropy” suggested in [BSW03]). This
type of PEG can be thought of as a weak notion of PRGs, that is only guaranteed to fool tests
that accept a very small fraction of the 2m inputs:

Definition 1.13 (PEGs). A function G : {0, 1}r → {0, 1}m is a (k, ϵ)-PEG for a function D :
{0, 1}m → {0, 1}, if Pr[D(Um) = 1] ≤ 2k−m then Pr[D(G(Ur)) = 1]− Pr[D(Um) = 1] ≤ ϵ. We say
that D (k, ϵ)-PEG-breaks G, if G is not an ϵ-PEG for D.10

10We remark that the requirement that Pr[D(G(Ur)) = 1] − Pr[D(Um) = 1] ≤ ϵ is sometimes replaced by the
stronger requirement that Pr[D(G(Ur)) = 1] ≤ ϵ, or following [BSW03], by the requirement that Pr[D(G(Ur)) =
1] ≤ Pr[D(Um) = 1] · 2m−k + ϵ which is stronger still, if we replace ϵ by ϵ′ = ϵ/2 and k by k′ = k+ log(1/ϵ′). We are
interested in proving limitations on PEG and so taking a weak definition only makes our results stronger (especially
as we are interested in constant ϵ and k ≪ m and the distinction between k, ϵ and k′, ϵ′ is immaterial).
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More specifically, when given a function f : {0, 1}ℓ → {0, 1} (which is hard against the stronger
model of circuits equipped with nondeterminism and randomness) the construction of [DMOZ20]
works in two steps:

1. PEG: Use the hard function to construct a PEG PEG : {0, 1}rPEG=o(ℓ) → {0, 1}mPEG=2(1−o(1))·ℓ

for kPEG = 2(1−o(1))·ℓ.
2. Extractor: Use an explicit extractor EXT : {0, 1}mPEG×{0, 1}rEXT=(1+o(1))·ℓ → {0, 1}m=2(1−o(1))·ℓ

with entropy threshold kPEG (such explicit constructions are known unconditionally).

The final PRG G : {0, 1}r=rPEG+rEXT → {0, 1}m is obtained by interpreting a string y ∈ {0, 1}r as
two strings y1 ∈ {0, 1}rPEG and y2 ∈ {0, 1}rEXT , and setting G(y) = EXT(PEG(y1), y2).

The seed length of a PEG. The final seed length of G is r = rPEG+rEXT. Using lower bounds
on the seed length of extractors [RTS00], it follow that rEXT ≥ log(mPEG − kPEG) ≥ (1− o(1)) · ℓ.
Therefore, in order to achieve r = (1+ o(1)) · ℓ (as is the case in the extreme high-end) it is crucial
to use a PEG with seed length rPEG = o(ℓ). (We note that unlike PRGs, PEGs can potentially
achieve r = o(logm), whereas, as noted earlier, PRGs must have r ≥ logm−O(log logm)).

Summing up, the construction of Doron et al. [DMOZ20] relies on the observation that PEGs
are weaker objects than PRGs (and are therefore easier to construct) and that PEGs may have
seed length that is significantly shorter than PRGs, so that summing the two seed lengths can still
yield an almost optimal seed length.

Impossibility for black-box hard-function ⇒ PEG proofs. We show an obstacle on this ap-
proach when starting from the extreme high-end assumption of Open Problem 1.5. More
specifically, we show that black-box hard-function ⇒ PEG proofs with r < ℓ − log(ℓ) that make
q ≤ 2ℓ queries, do not exist.

This means that the seed length of each of the two steps must be roughly ℓ and so the total
seed length of a PEG + extractor must be at least

rPRG = rPEG + rEXT ≥ (ℓ− o(1)) + (ℓ− o(1)) = 2ℓ− o(1) > (2− o(1)) · logm,

showing an obstacle for achieving extreme high-end PRGs with this approach. This is stated
formally in the next theorem.

Theorem 1.14 (Impossibility of black-box PEGs with r < logm). There exists a constant ν > 0
such that for every black-box ρ-hard-function ⇒ (k, ϵ)-PEG proof (Con,Red) with parameters ℓ, r <
k,m, a ≤ ν · 2ℓ, ϵ ≤ 1− 2r−m, ρ ≥ 0.51 such that Red makes q ≤ 2ℓ queries, it follows that:11

r ≥ ℓ− log ℓ−O(1).

Summing up, Theorem 1.14 shows that black-box proofs cannot be used to solve Open Prob-
lem 1.5 using the PEG + extractor approach of Doron et al. [DMOZ20].12

11We have not yet formally defined the notion of ρ-hard-function ⇒ (k, ϵ)-PEG proof. However, this definition is
obtained by simply replacing “PRG-break” with “PEG-break” in Definition 1.7. For completeness, we give the full
definition in Section 3.2.

12In light of Theorem 1.14 one may ask how Doron et al. [DMOZ20] construct their PEG. Is their proof non-
black-box? The answer is that their proof is black-box, but it allows the reduction Red to use nondeterminism and
randomness (and it is this ability that enables the reduction to make few queries). The cost of using these resources
is that the reduction only contradicts the hardness of f if it is assumed to be hard even for circuits equipped with
these resources. See e.g., Applebaum et al. [AASY16] for a discussion on nondeterministic reductions.
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Consequences of Theorem 1.14 for “quantified derandomization”. The notion of PEGs
in Definition 1.13 is closely related to “quantified derandomization” (introduced by Goldreich and
Wigderson [GW14], see survey article by Tell [Tel21]). Quantified derandomization is concerned
with derandomizing algorithms that err on very few (say less than 2k) of the possible 2m values of
their m random bits. This means that PEGs are exactly the type of PRGs that are suitable for
this derandomization (see [DMOZ20, Tel21] for a discussion).

Consequently, Theorem 1.14 can also be viewed as a limitation on black-box proofs that obtain
PRGs with very short seed for quantified derandomization, starting from the extreme high-end
hardness assumption.

Technique. Theorem 1.14 follows from Theorem 1.11 (noting that Theorem 1.11 also applies
to PEGs). Loosely speaking, if r is small, then the number of outputs of Con is small, and it is
impossible for Fixj(Con) to be small for large values of j, ruling out black-box proofs in which r is
small.

1.3.3 Lower bounds on black-box hardness amplification at the extreme high-end

Grinberg, Shaltiel and Viola [GSV18] (continuing a line of previous work [Vio06, SV10, AS14])
proved a lower bound of q ≥ Ω( ℓ

ϵ2
) on the number of queries in reductions for black-box hard-function⇒

(12 + ϵ)-hard-function proofs (a.k.a. hardness amplification). By Proposition 1.8, such bounds imply
that using black-box proofs to convert a function f on ℓ bits, that cannot be computed by size s
into one that is average case hard for circuits of size m, one must have m ≤ s−a

q ≤
s
q which means

that such transformation “lose a factor q in the hardness”.
In this paper we prove a lower bound of q ≥ Ω(1ϵ ), which is quantitatively weaker than that

of [GSV18], but unlike [GSV18] it applies in the extreme high-end. That is, our result allows
a = 2(1−o(1))·ℓ whereas [GSV18] (as well as all previous bounds) only works if a ≤ 2ν·ℓ for some
constant ν > 0. (It is open to match the bound of [GSV18] for large a).

Theorem 1.15 (Lower bounds on black-box hardness amplification at the extreme high-end). Let
(Con,Red) be a hard-function⇒ (12 + ϵ)-hard-function proof with parameters ℓ, ℓ′, a, ρ = 1, ρ′ = 1

2+ϵ.

If ϵ ≤ 1
10 , ℓ

′ ≥ log(1/ϵ) + Ω(1) and a ≤ 2ℓ

10 then Red must make at least q queries for

q ≥ max

(
Ω

(
1

ϵ

)
,Ω (ℓ− log(2a))

)
.

To the best of our knowledge, Theorem 1.15 is the first bound on the number of queries in
black-box hardness amplification that applies for a ≥ 2ℓ/2 and to the extreme high-end.

Using Proposition 1.8, Theorem 1.15 implies that even if one starts from the extreme high-
end hardness assumption, then to obtain a (12 + 1

m)-hard-function for circuits of size m (and
apply the hybrid argument as explained in Section 1.2.4) there must be a “hardness loss”, and

m ≤ 2ℓ

q ≤
2ℓ

m , implying that m ≤ 2ℓ/2.

Note that this limitation applies regardless of the length ℓ′ of the input length of Conf . This
means that a black-box hard-function ⇒ PRG proof that relies on hardness amplification and the
hybrid argument (that is: hard-function⇒ (12 + 1

m)-hard-function⇒ PRG) must have m ≤ 2ℓ/2, and
this holds even if the seed length r of the PRG is large.

In the next section we show that a similar argument also gives limitations on using hardness
amplification together with the “PRG composition” approach of Chen and Tell [CT21b].
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Technique. The work of [GSV18] (as well as previous work in this area) relied on information
theoretic techniques that break down for large a. Indeed, the proof of Theorem 1.15 uses a different
argument. This argument builds on ideas of Applebaum et al. [AASY16] which connect the number
of queries required by a reduction (or in the case of [RSV21] a local list-decoding algorithm) to
the success that small size, constant depth circuits have in solving the “coin problem” (that is
distinguishing a sequence of independent tosses of an unbiased coin from a sequence of independent
tosses of a slightly biased coin). The proofs of [AASY16, RSV21] do not work for a ≥ 2ℓ/2 and our
results are obtained by proving tighter bounds on depth 3 circuits for specific versions of the coin
problem that come up in the argument. The proof is given in Section 4. As a consequence, we
also improve the bounds of [RSV21] on the number of queries of local list-decoding algorithms, see
Section 5 for details.

1.3.4 The hybrid argument and the “PRG composition” approach of [CT21b]

Chen and Tell [CT21b] construct extreme high end PRGs if, in addition to the extreme high-end
hardness assumption of Open Problem 1.5, one also assumes the existence of one-way functions
(OWFs). The existence of OWFs is a standard and widely believed assumption in cryptography.
Nevertheless, OWFs (or more generally cryptography) are not known to be implied by extreme
high-end PRGs (or other PRGs in complexity theory). Assuming OWFs does not seem necessary.

The PRG composition approach. Chen and Tell [CT21b] start from a hard function f :
{0, 1}ℓ → {0, 1} given by the extreme high-end hardness assumption. Their PRG G :

{0, 1}(1+o(1))·ℓ → {0, 1}2(1−o(1))·ℓ
is obtained by PRG composition, namely G(y) = G2(G1(y)) where:

1. G1 : {0, 1}(1+o(1))·ℓ → {0, 1}m1=2Ω(ℓ)
is a PRG against circuits of size 2(1−o(1))·ℓ that is con-

structed from the extreme high-end hardness assumption using hardness amplification,
the Nisan-Wigderson PRG, and the hybrid argument.13

2. G2 : {0, 1}m1=2Ω(ℓ) → {0, 1}m=2(1−o(1))·ℓ
is a PRG with modest stretch (polynomial rather

than exponential) that suffices to push the output length from m1 = 2Ω(ℓ) to m = 2(1−o(1))·ℓ.
Nevertheless, for the composition to be a PRG, it is crucial that G2 can be computed in time
2(1−o(1))·ℓ (that is in almost linear time in its output length m).14 Such PRGs indeed follow
from the existence of OWFs [HILL99].

A natural question is whether it is possible to construct the PRG G2 from the extreme
high-end hardness assumption. This will remove the need for OWFs.

PRGs with polynomial stretch follow from this assumption (and even from weaker versions like
the high-end hardness assumption or “low-end” versions). This is good news, as it shows that
hardness amplification and the hybrid argument can yield sufficient stretch in this case.

13More precisely, the cost of the hybrid argument (explained in Section 1.2.4) is measured in terms of the output
length m (even if the PRG fools circuits of larger size, as is the case here). This means, that the goal of fooling circuits
of size 2(1−o(1))·ℓ can be achieved by known black-box proofs (in the same manner explained in Section 1.2.4) from
the extreme high-end hardness assumption for PRGs that output m1 = 2Ω(ℓ) bits, rather than m = 2(1−o(1))·ℓ

bits.
14This requirement is necessary as in the composition one needs to consider a distinguisher for G1 that runs G2 as

a procedure, and G1 cannot fool circuits of size larger than 2ℓ. We also remark that in contrast to cryptography, in
hardness vs. randomness, efficiency of components is rarely used in proving security of the final primitive, and this
is one such rare instance.
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The issue is that the PRGs constructed by these methods do not run in time that is nearly
linear in their output length m (and instead run in time mc where c > 2). This means that they
are unsuitable for the PRG composition approach (and this is why [CT21b] relies on OWFs).

Our results. Theorem 1.15 implies that PRGs (even with modest stretch) cannot run in nearly
linear time, if they are obtained using black-box hardness amplification and the hybrid argument,
assuming the extreme high-end hardness assumption. This implies that if we only assume
the extreme high-end hardness assumption (and do not assume the existence of OWFs)
then current techniques cannot yield the PRG G2 required by the PRG composition.

More precisely, we have already seen in Section 1.3.3 that in order to do a hybrid argument
for output length m, one needs a hardness amplification result that amplifies to below 1

2 +
1
m , and

that Theorem 1.15 implies that m ≤ 2
ℓ
2 . This holds in the extreme high-end, regardless of the

relationship between r and m. In particular, it also holds when trying to construct PRGs with
modest stretch like G2, assuming the extreme high-end hardness assumption. On the other
hand, assuming that computing the average-case hard function Conf takes at least the time it takes
to compute the worst-case hard function f , and recalling that f cannot be computed by circuits
of size 2(1−o(1))·ℓ, we conclude that Conf cannot be computed in time 2(1−o(1))·ℓ (which is at least
m2−o(1)).

Summing up, after performing hardness amplification, there must be at least a quadratic gap
between the time it takes to compute Conf , and the circuit size for which it is hard on average.
This gap is inherited by the final PRG G2. Consequently, G2 cannot run in time smaller than
m2−o(1), and in particular, there is in obstacle for obtaining PRGs that run in time nearly linear
in m, using these techniques (even if the stretch is modest).

This shows an obstacle for using current techniques (that rely on hardness amplification and
the hybrid argument) to apply the PRG composition approach of [CT21b] assuming only the
extreme high-end hardness assumption. This partially explains why [CT21b] need the addi-
tional assumption that OWFs exist in order to construct the PRG G2.

1.4 Organization of this paper

In Section 2 we define some notation, and cite some previous work that we use. In Section 3 we
prove our results on black-box proofs for PRGs and PEGs (Theorem 1.11 and Theorem 1.14). In
Section 4 we prove our results on hardness amplification (Theorem 1.15). In Section 5 we use
the methodology devised for Theorem 1.15 to improve the lower bounds of Ron-Zewi, Shaltiel and
Varma [RSV21] on the number of queries of decoders for locally decodable codes. In Section 6 we
mention some open problems.

2 Preliminaries

Distributions and Random Variables. We use X ← D to denote the experiment in which
X is chosen from distribution D. For a set A we use X ← A to denote the experiment in which
X is chosen uniformly from A. Two distributions X,Y over the same finite domain are ϵ-close if
for every event A, |Pr[X ∈ A] − Pr[Y ∈ A]| ≤ ϵ. For a distribution X over {0, 1}n, we define
H∞(X) = minx∈{0,1}n log

1
Pr[X=x] .
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For 0 ≤ p ≤ 1, we use Up
n to denote the distribution of n i.i.d. random variables, where each one

has probability p to be one. We use Un to denote U
1/2
n (the uniform distributions on n bit strings).

Hamming distance and weight. For two strings x, y ∈ {0, 1}n we use dist(x, y) to denote the
relative Hamming distance between x and y, namely, dist(x, y) = | {i ∈ [n] : xi ̸= yi} |/n. We use
weight(x) to denote the absolute Hamming weight, namely weight(x) = | {i ∈ [n] : xi ̸= yi} |.

Restrictions. We use the standard notion of random restrictions. Namely, a restriction ρ : [n]→
{0, 1, ∗} restricts some of the variables of a function f : {0, 1}n → {0, 1}.

We use Select(ρ) to denote the subset of free variables, Free(ρ) to denote the number of free
variables, and Assign(ρ) to be the value of the assigned variables. This is stated formally in the
next definition.

Definition 2.1 (Restrictions). A restriction of n variables is a function ρ : [n] → {0, 1, ∗}. We
define Select(ρ) = {i : ρ(i) = ∗}, Free(ρ) = | Select(ρ)|, and Assign(ρ) ∈ {0, 1}n−Free(ρ) by enumer-
ating the fixed elements (i1 < . . . < in−Free(ρ)) = [n] \ Select(ρ) and defining Assign(ρ)j = ρ(ij).

Given a function f : {0, 1}n → {0, 1} and a restriction ρ : [n] → {0, 1, ∗}, and x ∈ {0, 1}Free(ρ)
we define Fillρ(x) ∈ {0, 1}n as follows: Let i1 < . . . < iFree(ρ) be the indices on which ρ outputs ‘∗’,

Fillρ(x)i =

{
xj , ∃j s.t. i = ij
ρ(i), otherwise

Given f : {0, 1}n → {0, 1}, we define fρ : {0, 1}Free(ρ) → {0, 1} by

fρ(x) = f(Fillρ(x)).

We use Rn
p to denote the set of restrictions with p ·n unrestricted variables. A formal definition

is given below.

Definition 2.2 (The class Rn
p ). For 0 ≤ p ≤ 1, let Rn

p denote the set of restrictions ρ : [n]→ {0, 1, ∗}
with Free(ρ) = p · n.

We use the following switching lemma due to Hastad [H̊as86]. The specific version used here,
appears in Beame’s primer [Bea94].

Theorem 2.3. [H̊as86, Bea94] Let C be a q-CNF over n variables. For every 0 ≤ p ≤ 1, the
probability over choosing ρ ← Rn

p that Cρ does not have a decision tree of height h is at most

(7 · p · q)h.

3 Limitations on black-box proofs for PRGs and PEGs

In this section we discuss our main results on black-box proofs for PRGs and PEGs (Theorem 1.11
and Theorem 1.14). In Section 3.1 we discuss Theorem 1.11, and in Section 3.2 we discuss Theorem
1.14. The proofs of both these Theorems is given in Section 3.3.
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3.1 Limitations on constructions of black-box hard-function⇒ PRG proofs

In this section we restate Theorem 1.11 and discuss its consequences and interpretation. In Section
3.1.1 we restate Theorem 1.11 and discuss its interpretation. In Section 3.1.2 we show that a corol-
lary of Theorem 1.11 is that PRG constructions must differ from typical extractor constructions,
giving a precise statement of Theorem 1.12. In Section 3.1.3 revisit the Nisan-Wigderson PRG
[NW94] and the Shaltiel-Umans PRG [SU05, Uma03] and discuss them from the perspective of
Theorem 1.11.

3.1.1 A general statement of Theorem 1.11

Review of the setup of Theorem 1.11. Theorem 1.11 shows that for any black-box hard-function⇒
PRG proof (Con,Red), if Red is useful, and makes q ≤ 2ℓ queries, then Con must be structured in a
way that allows “fixing many outputs, with small information cost”. This is measured by Fixj(Con)
from Definition 1.10, which defines Fixj(Con) to be the minimal number h, so that when F is cho-
sen at random from Fℓ,1, it is possible to fix j outputs of ConF , while only reducing h bits of
information about F .

Theorem 1.11 shows that in order for Red to be useful and have q ≤ 2ℓ, it must be that for
many sufficiently large choices of j, Fixj(Con) ≤ a + j · (log q + O(1)). This means that after a
“fixed cost” of a bits of information, a large number of outputs of ConF can be fixed at the cost of
log q +O(1) bits of information about F , per output.

A more general statement. The following theorem is a generalized version of Theorem 1.11
which also allows the parameter ρ (measuring how hard on average is the function we start from)
to be very close to 1

2 , and then the amortized cost log q +O(1), is replaced by log q

ρ− 1
2

.

Theorem 3.1. Let (Con,Red) be a black-box ρ-hard-function⇒ ϵ-PRG proof for parameters ℓ, r,m, a, ϵ, ρ
such that Red makes at most q ≤ 2ℓ queries. If ρ = 1

2 + η, η ≥ 2−ℓ, ϵ ≤ 1− 2r−m, and a ≤ ν · η2 · 2ℓ

for some sufficiently small constant ν > 0, then for jmax = ν · η
2·2ℓ
ℓ , and every j ≤ jmax,

Fixj(Con) ≤ a+ j · (log q + log
4

η
).

Theorem 1.11 immediately follows from Theorem 3.1 by setting ρ = 0.51. Theorem 3.1 is proven
in Section 3.3.

A discussion of the parameters of Theorem 3.1. The parameters in Theorems 1.11 and
Theorem 3.1 are applicable even for very large a, and therefore Theorem 3.1 applies in the extreme
high-end (where a = 2(1−o(1))·ℓ) as well as in less challenging ranges such as the high-end (where
a = 2ν·ℓ for a constant ν > 0) and the low-end (where a = poly(ℓ)). We stress that to the best
of our knowledge, previous limitations on the number of queries of a black-box reduction (of any
kind) did not apply for a ≥ 2ℓ/2 and in particular, for the extreme high-end. See Section 4 for
a discussion on past lower bounds on the number of queries by reductions for black-box hardness
amplification proofs.

Furthermore, Theorems 1.11 and Theorem 3.1 make no assumption on the stretch (namely, the
relationship between r and m) of the constructed PRG, and apply even when the stretch is very
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small, and m is only slightly larger than r. In addition, the theorem applies even when ϵ is very
large, and approaches one (rather than zero).

Finally, Theorem 3.1 applies even when η = 1
2 − ρ is very small (say η = 2−Ω(ℓ)) and even for

black-box hard-function ⇒ PRG proofs like the Nisan-Wigderson PRG, which are only known to
work when η is very small. See Section 3.1.3 for a discussion of the Nisan-Wigderson PRG.

3.1.2 black-box PRGs are different than typical extractors

In this section we prove Theorem 1.12 which loosely states that a random construction Con for a
black-box hard-function ⇒ PRG proof is likely to be an extractor, but unlikely to be useful when
transforming hard functions into PRGs.

Formal connection between extractors and black-box hard-function ⇒ PRG proofs. It
is well known following Trevisan’s breakthrough construction [Tre01] (and as explained in Section
1.2.3) that black-box hard-function⇒ PRG proofs, are closely related to randomness extractors. Let
us formally specify this connection. We start with a formal definition of randomness extractors.

Definition 3.2 (extractors). A function E : {0, 1}n × {0, 1}r → {0, 1}m is a (k, ϵ)-extractor if for
every distribution X over {0, 1}n, with H∞(X) ≥ k, E(X,Ur) is ϵ-close to Um.

In order to compare function E : {0, 1}n × {0, 1}r → {0, 1}m to functions Con : Fℓ,1 → Fr,m we
use the following notation.

Definition 3.3 (Constructions and extractors). A string f ∈ {0, 1}n can be viewed as a function
f : {0, 1}logn → {0, 1} by f(i) = fi. This also applies in the other direction, allowing a function

f : {0, 1}ℓ → {0, 1} to be viewed as a string f ∈ {0, 1}2ℓ.
Given a function E : {0, 1}n × {0, 1}r → {0, 1}m, we define ℓ = log n, and ConE : Fℓ,1 → Fr,m

where ConEf : {0, 1}r → {0, 1}m is defined by ConEf (y) = E(f, y). This also applies in the other

direction, where a function Con : Fℓ,1 → Fr,m induces a function E : {0, 1}n=2ℓ ×{0, 1}r → {0, 1}m
by E(f, y) = Conf (y).

With this notation, extractors and black-box hard-function⇒ PRG proofs, are essentially equiv-
alent. This is stated in the following standard proposition which shows that the two notions are
roughly equivalent for a ≈ k.

Proposition 3.4 (Extractors are essentially equivalent to black-box hard-function⇒ PRG proofs).
Let E : {0, 1}n × {0, 1}r → {0, 1}m, and let ℓ = log n.

1. If ConE can be matched with an oracle procedure Red(·) such that the pair (ConE ,Red) is a
black-box hard-function⇒ ϵ-PRG proof with advice length a, then E is a (k, 2ϵ)-extractor, for
k = a+ log(1/ϵ) + 1.

2. If E is a (k, ϵ)-extractor then there exists an oracle procedure Red(·) such that the pair
(ConE ,Red) is a black-box hard-function⇒ ϵ-PRG proof with advice length a = k + 1.
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Reductions must make few queries to be useful. Note however, that in order to be useful
for PRG construction, a black-box hard-function ⇒ PRG proof must have a reduction Red that
make few queries. In particular, as can be seen in Proposition 1.8, the reduction is useless if it
makes q ≥ 2ℓ queries (and even if it makes q ≥ 2ℓ−a

m queries).
The equivalence of Proposition 3.4 does not mention the number of queries (which can be as

large as 2m). In other words, a black-box hard-function ⇒ PRG proof is an extractor even when
the number of queries is very large, but it must have q ≪ 2ℓ in order to be useful when converting
hard functions into PRGs.

A typical extractor is not a useful PRG construction. We now show that for a wide range
of parameters ℓ, r,m and a (and in particular for the parameters that correspond to the high-end
and the extreme high-end) if we choose a function E : {0, 1}n × {0, 1}r → {0, 1}m uniformly at
random then:

� It is unlikely that construction ConE (associated with E) has small Fixj(Con
E), and therefore,

by Theorem 1.11, it is unlikely that ConE can be matched with a reduction Red that makes
q ≤ 2ℓ queries.

� However, a standard argument shows that it is likely that E is an extractor, and therefore,
by Proposition 3.4, it is likely that ConE can be matched with a reduction Red (although Red
may make q = 2m queries).

As explained in Section 1.3.1, this can be interpreted as saying that PRG constructions must be
quite different than typical extractor constructions in order to allow the existence of a reduction
that makes few queries.

A formal and quantitative version of this is stated in the next definition and theorem.

Definition 3.5 (Random construction). Let E ← RndEℓ,r,m denote the experiment in which a

function E : {0, 1}n=2ℓ × {0, 1}r → {0, 1}m is chosen uniformly from the set of all such functions.

Theorem 3.6. Let ℓ, r,m, a, ϵ be parameters such that m ≥ 2r and the following holds:

Parameters that allow E to be an extractor: r ≥ ℓ+2 log(1/ϵ)+O(1), 2ℓ ≥ a ≥ m+2 log(1/ϵ)+O(1),
and ϵ ≤ 1

2 .

Parameters that prevent fixing seeds: a+ j · ℓ ≤ min(j · (m− r)−O(1), 2
ℓ

2 ).

In the experiment E ← RndEℓ,r,m the following items hold:

� For every j > 4, the probability that Fixj(Con
E) ≤ a+ j · ℓ is smaller than 2−2

2ℓ/2
.

Consequently (by Theorem 1.11) the probability that ConE can be matched with an oracle

procedure Red(·) that makes q < 2ℓ queries, is smaller than 2−2
2ℓ/2

.

� The probability that E is an (a+O(1), ϵ) extractor is larger than 1− o(1). Consequently (by
Proposition 3.4) the probability that ConE can be matched with an oracle procedure Red(·) with
advice length a+O(1) is larger than 1− o(1).
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The parameters in Theorem 3.6. We stress that Theorem 3.6 applies for a wide range of
parameters including the extreme high-end, and the high-end. Furthermore, Theorem 3.6 does not
require that m is much larger than r and applies even when the stretch is small. Furthermore, the

probability in the first item is 2−2
2ℓ/2

which is quite small. We also note that the requirement that
a+ j · ℓ is small are very mild in the following sense:

� For every j it is obvious that Fixj(Con) ≤ j ·m, as the amount of information in j outputs is
at most j ·m. We are only requiring that a+ j · ℓ ≤ j · (m− r)−O(1) which is quite close to
the obvious bound.

� The total amount of information in f is at most 2ℓ. We are only requiring that a+ j · ℓ ≤ 2ℓ

2
which is quite close to the obvious bound.

Proof. (of Theorem 3.6) The second item is a standard calculation which can be found for example
in [RTS00]. Therefore, we will only prove the first item. Within this proof, unless otherwise
specified, all probabilities are regarding the experiment E ← RndEℓ,r,m.

For a fixed set S ⊆ {0, 1}n of size K = 2n−(a+j·ℓ) and a sequence z̄ = (z1, . . . , zj) of distinct
elements in {0, 1}m, let AS,z̄ denote the event that for every f ∈ S, there exist y1, . . . , yj ∈ {0, 1}r
such that for all i ∈ [j], E(f, yi) = zi. This definition is made so that:

Pr[Fixj(Con
E) ≤ a+ j · ℓ] ≤

(
2n

K

)
· 2m·j · Pr[AS,z̄],

where the latter expression is obtained by a union bound over all choices of S and z̄. For every
such S and z̄, and for every f ∈ S, let AS,z̄,f denote the event that there exist y1, . . . , yj ∈ {0, 1}r
such that for all i ∈ [j], E(f, yi) = zi. For every f ∈ S, by a union bound over all choices of
y1, . . . , yj ∈ {0, 1}r,

Pr[AS,z̄,f ] ≤ 2r·j · 2−m·j .
These events are independent for the K different choices of f ∈ S, and therefore, the probability
of their conjunction is the product of their individual probabilities.

Pr[AS,z̄] ≤
(
2r·j · 2−m·j

)K
= 2−j·K·(m−r).

We conclude that:

Pr[Fixj(Con
E) ≤ a+ j · ℓ] ≤

(
2n

K

)
· 2m·j · 2−j·K·(m−r)

≤
(
2n · e
K

)K

· 2m·j · 2−j·K·(m−r)

Let v = 22
ℓ/2. In order to show that this probability is smaller than 2−v it is sufficient to show

that:

1.
(
2n·e
K

)K · 2−j·K·(m−r) ≤ 2−2v, and

2. 2m·j ≤ 2v.

These two conditions follow by the requirements of the theorem. More specifically, the requirement
that a + j · ℓ ≤ 2ℓ

2 gives that K ≥ 22
ℓ/2 ≥ v. This gives that the first condition follows if

a+ j · ℓ ≤ j · (m− r)−O(1) which is one of the requirements of the theorem.

The second condition follows because by our requirement j ≤ 2ℓ

2 and m ≤ 2ℓ. Therefore for

sufficiently large ℓ, m · j ≤ 22
ℓ/2 = v,

18



3.1.3 Revisiting the Nisan-Wigderson PRG and the Shaltiel-Umans PRG

As surveyed in Section 1.2.4 there are only two known constructions of black-box hard-function⇒
PRG proofs in the literature, where Red is useful and makes q queries, for q that can be significantly
less than 2ℓ. These are the Nisan-Wigderson PRG [NW94] and an additional construction is due
to Shaltiel and Umans [SU05] and Umans [Uma03].

The former is more versatile, and has many additional applications, mainly because its reduction
requires less computational resources, and makes less queries. The latter has advantages over the
Nisan-Wigderson PRG as it allows to achieve r = O(ℓ) even for small values of a (like a = poly(ℓ),
which corresponds to “low-end” PRGs).

Nevertheless, as explained in Section 1.2.4, both these approaches rely on hardness amplification
and the hybrid argument, preventing them from achieving the extreme high-end.

Theorem 1.11 and 3.1 show that in any black-box proof with q ≤ 2ℓ, even one that does not
rely on the hybrid argument, Fixj(Con) must be small. Let us review how the known PRGs achieve
this.

The Nisan-Wigderson PRG. The Nisan-Wigderson PRG is a black-box (12 + ϵ
m)-hard-function⇒

ϵ-PRG proof (ConNW ,RedNW ) with parameters ℓ, r,m, a, ρ = 1
2 + ϵ

m and ϵ, such that Red makes
a single query. This means that the Nisan-Wigderson PRG is applicable in the extreme high-end,
when starting from a (12 +

ϵ
m)-hard-function. As explained in Section 1.3.3 current hardness ampli-

fication techniques are not applicable for m ≥ 2ℓ/2. This means that they cannot be used in the
extreme high-end, even if we are willing to allow large seed length r.

By Theorem 3.1, we have that:

Fixj(Con
NW ) ≤ a+ j · (logm+O(1)),

for constant ϵ > 0, and many values of m and j. Let us review how ConNW achieves this.
The construction ConNW is defined using a “design”, namely a collection S1, . . . , Sm ⊆ [r] such

that for every i ∈ [m], |Si| = ℓ, and then for every f ∈ Fℓ,1, Con
NW
f : {0, 1}r → {0, 1}m is defined

by
ConNW

f (x) = f(x|S1), . . . , f(x|Sm).

Another version that is often considered is a “seed extending” version Con
NW
f (x) = x,ConNW

f (x)
that outputs m+ r bits. The analysis of [NW94] shows that the parameter a is determined by the
sizes of pairwise intersections of sets in the design. More specifically, using an improved analysis by
Raz, Reingold and Vadhan [RRV02] (for a condition called “weak design”) it follows that taking

a =
∑
i∈[m]

∑
i′ ̸=i

2|Si′∩Si| ≤ m · 2maxi ̸=i′ |Si∩Si′ |,

suffices to obtain a reduction RedNW which makes a single query.
The weak design property can be used to show that for every 1 ≤ j ≤ 2ℓ,

Fixj(Con
NW

) ≤ a+ j.

Loosely speaking, this is because the NW proof shows that for every i, after fixing a bits of
information about f , we have that for every value of x|[r]\Si

, all m − 1 output bits of the form
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f(x|Si′ ) for i
′ ̸= i are completely determined as a function of x|Si . This means that for every value

of x|Si , the only output bit that is not yet fixed is f(x|Si), which can be fixed paying only one bit
of information.

If we were to beat the hybrid argument, and construct a new black-box hard-function ⇒ PRG
proof that works directly from worst-case hard functions, we would have to come close to this behav-
ior, and we hope that understanding this property may point us to new constructions, potentially
utilizing the ability to ask a small number of queries (but more than just one query).

The Shaltiel-Umans PRG. The Shaltiel-Umans PRG is a black-box hard-function ⇒ PRG
proof (ConSU ,RedSU ) with parameters ℓ, r,m, a, ρ = 1 and ϵ = 1

10 , such that Red makes q = mO(1)

queries.
Unlike the Nisan-Wigderson PRG, the Shaltiel-Umans PRG is stated for ρ = 1 (starting from

worst-case hard functions). Nevertheless, the Shaltiel-Umans PRG builds on the hardness amplifi-
cation techniques of Sudan, Trevisan and Vadhan [STV01] and makes q ≥ m queries. Furthermore,
it implies hardness amplification to 1

2 + 1
m . This means that it is not applicable at the extreme

high-end.
By Theorem 3.1, we have that:

Fixj(Con
SU ) ≤ a+ j · (O(logm)),

for many values of m and j.
Let us review how ConSU achieves this. The construction ConSUf relies on (a carefully cho-

sen) black-box hard-function⇒ (12 + 1
m)-hard-function proof (which has additional structure). This

hardness amplification construction converts the worst-case hard function f : {0, 1}ℓ → {0, 1} into
an average case hard function f ′ : {0, 1}ℓ′ → {0, 1}.

The PRG construction is then defined by setting r = ℓ′ and defining:

ConSUf (x) = f ′(x), f ′(g(x)), f ′(g(g(x))), . . . , f ′(g(m−1)(x),

where g : {0, 1}ℓ′ → {0, 1}ℓ′ is some specific function. Another version that is often considered is a

“seed extending” version Con
SU
f (x) = x,ConSUf (x) that outputs m+ r bits.

This means that for every seed x ∈ {0, 1}ℓ′ if we consider the ℓ “consecutive” seeds,

g(x), g(g(x)), . . . , g(m−1)(x),

all the outputs of ConSUf on these seeds, depend only on the values of f ′ on g(x), g(g(x)), . . . , g(2m)(x).

This means that m outputs of ConSUf can be fixed at the cost of fixing 2m bits of f ′. In particular,
for j = a we get that j = a outputs of Conf can be fixed at the total cost of 2a = a + j · 1 bits
of information about f . This means that after paying a fixed cost of a, a outputs can be fixed at
amortized cost of one bit of information per output. This can be used to show that:

Fixa(Con
SU

) ≤ a+ a · 1.

Again, if we were to beat the hybrid argument, and construct a new black-box hard-function⇒ PRG
proof that works directly from worst-case hard functions, we may hope to take this understanding,
hoping to somehow avoid paying the price of hardness amplification to extremely hard on average
functions.
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3.2 Limitations on the “PEG + Extractor” approach of [DMOZ20]

In this section we restate Theorem 1.14 and discuss its consequences and interpretation.

3.2.1 Limitation on black-box hard-function⇒ PEG constructions with short seed

Review of the setup of Theorem 1.14. Theorem 1.11 shows that for any black-box hard-function⇒
PEG proof (Con,Red), if Red is useful, and makes q ≤ 2ℓ queries, then r ≥ (1 − o(1)) · ℓ ≥
(1− o(1)) · logm. As explained in Section 1.3.2, this shows that the “PEG + extractor” approach
of [DMOZ20] cannot be used to obtain an extreme high-end PRG from the extreme high-end
hardness assumption if the PEG is constructed by a black-box hard-function⇒ PEG proof.

Formal definition of black-box hard-function⇒ PEG proofs. In the introduction, we did not
give a formal definition of black-box hard-function ⇒ PEG proofs (and only explained how these
are defined in relation to black-box hard-function⇒ PRG proofs. We therefore start with a formal
definition.

Definition 3.7 (Black-box hard-function⇒ PEG proof). Given parameters ℓ, r,m, a, k, ϵ, ρ a black-
box ρ-hard-function⇒ (k, ϵ)-PEG proof is a pair (Con,Red) of:

� A construction map Con : Fℓ,1 → Fr,m.

� An oracle procedure Red(·)(x, α) such that for every f ∈ Fℓ,1 and for every D ∈ Fm,1 such that
D (k, ϵ)-PEG-breaks Conf , there exists α ∈ {0, 1}a such that the function C ∈ Fℓ,1 defined by
C(x) = RedD(x, α), ρ-hard-function-breaks f .

If we omit ρ, we mean ρ = 1. If we omit ϵ, we mean ϵ = 1/10. We say that Red makes q queries,
if for every D ∈ Fm,1, α ∈ {0, 1}a, and x ∈ {0, 1}ℓ, RedD(x, α) makes at most q oracle queries.

A more general statement. The following Theorem is a generalized version of Theorem 1.14
which also allows the parameter ρ (measuring how hard on average is the function we start from)
to be very close to 1

2 .

Theorem 3.8. There exists constants ν > 0 and c > 1 such that for every black-box ρ-hard-function⇒
(k, ϵ)-PEG proof (Con,Red) with parameters ℓ, r,m, a, k, ϵ, ρ such that

r < ℓ− log ℓ− 2 · log 1

η
− c.

If ρ = 1
2 + η, η ≥ 2−ℓ, k > r, ϵ ≤ 1− 2r−m, and a ≤ ν · η2 · 2ℓ, then Red must make at least q > 2ℓ

queries.

A discussion of the parameters of Theorem 3.8. The parameters in Theorems 1.14 and
Theorem 3.8 are applicable even for very large a, and therefore Theorem 3.1 applies in the extreme
high-end (where a = 2(1−o(1))·ℓ) as well as in less challenging ranges such as the high-end (where
a = 2ν·ℓ for a constant ν > 0) and the low-end (where a = poly(ℓ)). We stress once again that to
the best of our knowledge, no known lower bound on the number of queries of a black-box reduction
(of any kind) applies in the extreme high-end. See Section 4 for a discussion on past lower bounds
on the number of queries by reductions for black-box hardness amplification proofs.
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We also note that the requirements on the parameters in Theorem 3.8 are quite mild. We allow
ϵ to approach one (rather than zero) and k to approach r (rather than m). For ρ = 1 (namely,
starting from a worst-case hard functions) we have that η = 1

2 and the theorem works even for
a = Ω(2ℓ).

3.3 Proofs of Theorem 3.1 and Theorem 3.8

In this section we prove Theorem 3.1 and Theorem 3.8 (which in turn imply Theorem 1.11 and
Theorem 1.14). Both Theorems will follow from the following theorem (which can be seen as a
version of Theorem 3.1 for PEGs).

Theorem 3.9. There exists a constant ν > 0 such that for every black-box ρ-hard-function ⇒
(k, ϵ)-PEG proof (Con,Red) with parameters ℓ, r,m, a, k, ϵ, ρ such that Red makes at most q ≤ 2ℓ

queries. If ρ = 1
2 + η, η ≥ 2−ℓ, k > r, ϵ ≤ 1 − 2r−m, and a ≤ ν · η2 · 2ℓ, then for jmax = ν · η

2·2ℓ
ℓ ,

and every j ≤ jmax,

Fixj(Con) ≤ a+ j · (log q + log
4

η
).

The proof of Theorem 3.9 is given in Section 3.3.1.

Theorem 3.1 follows from Theorem 3.9. Loosely speaking, this follows because any PRG
is also a PEG, and therefore limitations on PEGs also hold for PRGs. More formally, any
black-box ρ-hard-function ⇒ ϵ-PRG proof (Con,Red) in which ϵ = 1 − 2r−m is also a black-box
ρ-hard-function⇒ (k, ϵ)-PEG proof for k = r. Theorem 3.9 applies for the latter, and therefore also
applies for the former, proving Theorem 3.1.

Theorem 3.8 follows from Theorem 3.9. The conditions in Theorem 3.8 satisfy the conditions
of Theorem 3.9 except for the requirement made in Theorem 3.9 that q ≤ 2ℓ. Therefore, under
the conditions of Theorem 3.9 we can apply Theorem 3.9 and conclude that either q > 2ℓ or

the conclusion of Theorem 3.9 holds and for jmax = ν · η
2·2ℓ
ℓ , and every j ≤ jmax, Fixj(Con) ≤

a+ j · (log q+ log 4
η ). However, the latter option cannot happen. This is because by the restriction

on r, we get that 2r < jmax. As the number of outputs of Conf is 2r < jmax, it is impossible to fix
jmax distinct outputs, and so Fixj(Con) is undefined and can be viewed as infinity. Consequently,
it can’t be the case that Fixj(Con) is smaller than some finite quantity. We conclude that q > 2ℓ.

3.3.1 Proof of Theorem 3.9

In this section we prove Theorem 3.9. We assume the assumption of Theorem 3.9, namely that
(Con,Red) is a black-box ρ-hard-function ⇒ (k, ϵ)-PEG proof that satisfies the conditions of The-
orem 3.9. We first define a simple distinguisher that answers one iff its input is a pseudorandom
string.

Definition 3.10 (The simple distinguisher). For every f ∈ Fℓ,1 we define Df : {0, 1}m → {0, 1}
by:

Df (z) =

{
1, ∃y ∈ {0, 1}r s.t. Conf (y) = z
0, otherwise

Claim 3.11. There exists α′ ∈ {0, 1}a and A0 ⊆ Fℓ,1 such that:
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1. PrF←Fℓ,1
[F ∈ A0] ≥ 2−a.

2. For every f ∈ A0, the function Cf : {0, 1}ℓ → {0, 1} defined by Cf (x) = RedDf (x, α′), satisfies
that Cf ρ-hard-function-breaks the function f .

Proof. For every f ∈ Fℓ,1, Pr[Df (Conf (Ur)) = 1] = 1, and Pr[Df (Um) = 1] ≤ 2r−m. Therefore,
Df (k, ϵ) − PEG-breaks Conf if k > r and ϵ ≥ 1 − 2r−m, which is assumed in the statement of
Theorem 3.9. By the definition of black-box ρ-hard-function ⇒ (k, ϵ)-PEG proof, we have that
for every f ∈ Fℓ,1, as Df (k, ϵ)-PEG-breaks Conf , there exists α ∈ {0, 1}a such that the function
C ∈ Fℓ,1 defined by C(x) = RedD(x, α), ρ-hard-function-breaks f . Therefore, by averaging, there
exists α′ ∈ {0, 1}a that works for a 2−a fraction of the functions f ∈ Fℓ,1, and let A0 denote the
subset of all functions f ∈ Fℓ,1 for which α′ works.

We will now define a function C : {0, 1}ℓ → {0, 1} (that does not depend on f) with the hope
of showing that if the conclusion of Theorem 3.9 does not hold, then C(x) simulates RedDf (x, α′)
quite well for “some” choices of f ∈ Fℓ,1 and x ∈ {0, 1}ℓ.

Definition 3.12. For every x ∈ {0, 1}ℓ, we define zx1 , . . . , z
x
q ∈ {0, 1}m as follows: We consider an

invocation of Red(·)(x, α′) in which all queries are answered by zero, and for 1 ≤ i ≤ q, let zxi denote
the j’th query made by Red(x, α′) in this invocation. Let C(x) denote the output of Red(x, α′) in
this invocation.

Note that zx1 , . . . , z
x
q ∈ {0, 1}m do not depend on the choice of the function D given to Red as

oracle. We will be interested in the case that Red gets oracle access to the function Df , for some
f ∈ Fℓ,1. Note that for every f ∈ Fℓ,1, z

x
1 is the first query made by RedDf (x, α′), and for i > 1, zxi

may be different than the i’th query made by RedDf (x, α′)), as the reduction is allowed to make
adaptive queries. Nevertheless, the following obviously holds:

Claim 3.13. For every f ∈ Fℓ,1 and every x ∈ {0, 1}ℓ, if Df (z
x
1 ) = . . . = Df (z

x
q ) = 0 then

C(x) = RedDf (x, α′).

By definition, for every f ∈ Fℓ,1, we have that the number of z ∈ {0, 1}m on which Df answers
one is small (at most 2r). We will say that a z ∈ {0, 1}m is weak with respect to some A ⊆ Fℓ,1, if
it is likely that Df (z) = 1 when f is chosen uniformly in A.

Definition 3.14. We say that z ∈ {0, 1}m is t-weak with respect to a set A ⊆ Fℓ,1 if

Pr
F←A

[DF (z) = 1] ≥ 2−t.

We will now consider an iterative process in which we will iteratively fix outputs z of Con that
are weak.

More precisely, we set t = log 4·q
η and consider the following iterative process. We start with

the set A0 that we already obtained, and W0 = ∅. We will maintain the following invariant:

Invariant: At step j we maintain that:

1. PrF←Fℓ,1
[F ∈ Aj ] ≥ 2−(a+jt).

2. Aj ⊆ A0.
3. |Wj | = j.
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4. For every z ∈Wj and every f ∈ Aj , Df (z) = 1.

Note that this invariant indeed holds for j = 0. At step 0 < j < jmax we do the following:
If there does not exist a z ̸∈ Wj−1 that is t-weak with respect to Aj−1 then the process stops.
Otherwise, if there exists z ̸∈Wj−1 that is t-weak with respect to Aj−1, we define:

� Wj = Wj−1 ∪ {z}.
� Aj = {f ∈ Aj−1 : Df (z) = 1}.

We observe that the invariant is indeed kept throughout this process.

Claim 3.15. For every j ≤ jmax for which the process has not yet stopped, the invariant above
holds.

Proof. This is obvious for the second, third and fourth items. The first item follows because for
every j if the process did not stop before step j, then Aj exists, and we have that:

Pr
F←Fℓ,1

[F ∈ Aj ] = Pr
F←Fℓ,1

[F ∈ Aj |F ∈ Aj−1] · Pr
F←Fℓ,1

[F ∈ Aj−1]

≥ Pr
F←Aj−1

[F ∈ Aj ] · 2−(a+(j−1)·t)

≥ 2−t · 2−(a+(j−1)·t)

≥ 2−(a+j·t),

where the third line is using t-weakness.

Claim 3.16. If the process stops at some j∗ < jmax, then there exists A ⊆ A0 such that:

1. PrF←Fℓ,1
[F ∈ A] ≥ 2−(a+j∗·t)+1.

2. PrF←A,X∈{0,1}ℓ [C(X) = F (X)] ≥ 1
2 + η

2 .

Proof. If the process stopped at some j∗ < jmax, then there does not exist a z ̸∈Wj∗ that is t-weak
with respect to Aj∗ . This in particular means that for every x ∈ {0, 1}ℓ, zx1 , . . . , zxq are not t-weak
with respect to Aj∗ and therefore, by a union bound:

Pr
F←Aj∗

[∃i ∈ [q] : DF (z
x
i ) = 1] ≤ q · 2−t ≤ η

4
,

which means that:
Pr

F←Aj∗
[∀i ∈ [q] : DF (z

x
i ) = 0] ≥ 1− η

4
,

by Claim 3.13 we conclude that for every x ∈ {0, 1}ℓ,

Pr
F←Aj∗

[C(x) = RedDF (x, α′)] ≥ 1− η

4
.

For every x ∈ {0, 1}ℓ, let Vx denote the random variable (over the probability space of F ← Aj∗)
defined by:

Vx =

{
1, C(x) ̸= RedDF (x, α′)
0, otherwise
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Let V =
∑

x∈{0,1}ℓ Vx. It follows that EF←Aj∗ [V ] ≤ 2ℓ · η4 . By Markov’s inequality we have that:

Pr
F←Aj∗

[V > 2ℓ · η
2
] <

1

2
.

Let A =
{
f ∈ Aj∗ : V ≤ 2ℓ · η2

}
. It follows that:

Pr
F←Fℓ,1

[F ∈ A] ≥ 1

2
· Pr
F←Fℓ,1

[F ∈ Aj∗ ] ≥ 2−(a+j∗·t)+1.

For every f ∈ A, we have that the fraction of inputs x ∈ {0, 1}ℓ on which Vx(f) = 1 (meaning that

C(x) ̸= RedDf (x, α′)) is V (f)
2ℓ
≤ η

2 . This means that when we choose both F ← A and X ← {0, 1}ℓ
independently, we have that:

Pr
F←A,X←{0,1}ℓ

[C(X) ̸= RedDF (X,α′)] ≤ η

2
.

On the other hand, as A ⊆ Aj∗ ⊆ A0, by Claim 3.11 we have that for every f ∈ A, the function
Cf : {0, 1}ℓ → {0, 1} defined by Cf (x) = RedDf (x, α′), satisfies that Cf ρ-hard-function-breaks the
function f . This means that for every f ∈ A,

Pr
X←{0,1}ℓ

[RedDf (X,α′) = f(X)] ≥ ρ.

This means that when we choose both F ← A and X ← {0, 1}ℓ independently, we have that:

Pr
F←A,X←{0,1}ℓ

[RedDF (X,α′) = F (X)] ≥ ρ.

Putting things together, we have that:

Pr
F←A,X←{0,1}ℓ

[C(X) = F (X)] ≥ ρ− η

2
=

1

2
+

η

2
.

However, the next claim shows that if A is a large set, it is unlikely that a single function C is
a good approximation to F ← A.

Claim 3.17. For every A ⊆ Fℓ,1, and every function C : {0, 1}ℓ → {0, 1}, if PrF←Fℓ,1
[F ∈ A] ≥

2−∆ then

Pr
F←A,X←{0,1}ℓ

[C(X) = F (X)] =
1

2
+O

(√
∆+ ℓ

2ℓ

)
.

Proof. For the purpose of contradiction we will set λ = Ω
(√

∆+ℓ
2ℓ

)
, and assume that

Pr
F←A,X←{0,1}ℓ

[C(X) = F (X)] ≥ 1

2
+ λ.

By an averaging argument, it follows that:

Pr
F←A

[
Pr

X←{0,1}ℓ
[C(X) = F (X)] ≥ 1

2
+

λ

2

]
≥ λ

2
.
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Let A′ ⊆ A be the subset defined as follows:

A′ =

{
f ∈ A : Pr

X←{0,1}ℓ
[C(X) = f(X)] ≥ 1

2
+

λ

2

}
.

It follows that |A′| ≥ λ
2 · |A|. For every function C ∈ Fℓ,1, the number of f ∈ Fℓ,1 such that

PrX←{0,1}ℓ [C(X) = f(X)] ≥ 1
2 + λ

2 is bounded by the size of a Hamming ball in {0, 1}2ℓ that is

of radius (12 −
λ
2 ) · 2

ℓ. The latter quantity is bounded by 2H( 1
2
−λ/2)·2ℓ ≤ 2(1−O(λ2))·2ℓ where H(·) is

Shannon’s binary entropy function, and using the fact that H(12 − λ) = 1 − O(λ2). We conclude
that there exists a constant c > 1 such that:

|A| ≤ 2

λ
· |A′| ≤ 2

λ
· 2(1−c·λ2)·2ℓ = 2log(

1
λ
)+1+(1−c·λ2)·2ℓ = 22

ℓ−(c·λ2·2ℓ−log(1/λ)−1).

We also have that |A| ≥ 22
ℓ−∆, and so we conclude that ∆ > c · λ2 · 2ℓ − log(1/λ)− 1. This gives a

contradiction if λ = Ω
(√

∆+ℓ
2ℓ

)
.

Putting Claim 3.16 and Claim 3.17 together, we get that:

Claim 3.18. The iterative process does not stop until j = jmax.

Proof. By Claim 3.16 and Claim 3.17, we conclude that if the process stops at some j∗ < jmax then
there exists a constant c > 1 such that:

1

2
+ c ·

√
a+ j∗ · t+ ℓ

2ℓ
≥ 1

2
+

η

2
,

Recalling that t = log 4q
η this gives that:

q ≥ η

4
· 2

2ℓ·η2
4c −a−ℓ

j∗

≥ η

4
· 2

2ℓ·η2
5c
j∗

> 2ℓ,

where the first inequality follows because we have that a ≤ ν · η2 · 2ℓ, and we can choose the
constant ν > 0 to be sufficiently small. The second inequality follows because η ≥ 2−ℓ, and

j∗ ≤ jmax ≤ ν · η
2·2ℓ
ℓ , and we can choose ν > 0 to be sufficiently small.

Therefore, as we are assuming that q ≤ 2ℓ, it is a contradiction if the process stops at some
j∗ < jmax.

As the process did not stop at any j < jmax, then for every j ≤ jmax, the sets Aj ,Wj are
defined, and by Claim 3.15 they maintain the invariant.

By the invariant, for every j ≤ jmax we conclude that for every z ∈ Wj and every f ∈ Aj ,
Df (z) = 1 (meaning that there exists y ∈ {0, 1}r such that z is an output of Conf ). By the
invariant, we know that |Wj | = j therefore, if we denote the elements of Wj by z1, . . . , zj ∈ {0, 1}m
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we conclude that for every f ∈ Aj , and every i ∈ [j] there exists yi ∈ {0, 1}r (that may depend on
f) such that Conf (yi) = zi. From the invariant, we also have that:

Pr
F←Fℓ,1

[F ∈ Aj ] ≥ 2−(a+j·t) = 2
−(a+j·(log q+log 4

η
))
.

Putting everything together we get that:

Pr
F←Fℓ,1

[∀i ∈ [j] : ∃yi ∈ {0, 1}r s.t. ConF (yi) = zi] ≥ 2
−(a+j·(log q+log 4

η
))
,

which gives that for every j ≤ jmax, Fixj(Con) ≤ a+ j · (log q + log 4
η ). This proves Theorem 3.9.

4 Limitations on black-box hardness amplification at the extreme
high-end

In this section we prove Theorem 1.15 showing that reductions for black-box hard-function ⇒
(12 + ϵ)-hard-function proofs must make many queries, even at the extreme high-end. Theorem 1.15
is a combination of two lower bounds, stated next:

Theorem 4.1 (Lower bound in terms of ϵ). If (Con,Red) is a hard-function⇒ (12 + ϵ)-hard-function

proof with parameters ℓ, ℓ′, a, ρ = 1, ρ′ = 1
2 + ϵ, satisfying a ≤ 2ℓ

10 and ℓ′ ≥ log 1
ϵ2

+ Ω(1) then Red
must make at least q = Ω(1ϵ ) queries.

Theorem 4.2 (Lower bound in terms of ℓ). If (Con,Red) is a hard-function⇒ (12 + ϵ)-hard-function
proof with parameters ℓ, ℓ′, a, ρ = 1, ρ′ = 1

2 + ϵ, satisfying ϵ ≤ 1
10 , and ℓ′ ≥ log 1

ϵ2
+ Ω(1) then Red

must make at least q ≥ ℓ−log(2a)
3 queries

A quantitatively better lower bound of q = Ω( ℓ
ϵ2
) was proven by Grinberg, Shaltiel and Viola

[GSV18] for the case that a ≤ 2ν·ℓ for some constant ν > 0. Theorems 4.1 and Theorem 4.2 achieve
a smaller bound on q, but apply in the extreme high-end (where a = 2(1−o(1))·ℓ) all the way up to

a = 2ℓ

10 . This is especially significant in the case of Theorem 4.1 which (as we explained in detail in
Section 1.3.4) can be used to show limitations on the PRG composition of Chen and Tell [CT21b].

Roadmap for this section. Both Theorem 4.1 and Theorem 4.2 will be proven by first connect-
ing a black-box reduction to a depth 3 circuit for a version of the “coin problem”. This connection
is stated and proven in Section 4.1. The proofs of Theorem 4.1 and Theorem 4.2 show that such a
depth 3 circuit must have large q. These proofs are given in Section 4.2 and Section 4.3.

4.1 Reductions as depth 3 circuits

The proof of Theorem 4.1 and Theorem 4.2 rely on the following lemma, which is inspired by an
argument of Applebaum et al. [AASY16] (see also [RSV21]) and relates black-box reductions to
constant depth circuits.

Lemma 4.3 (Reduction to circuit). Let (Con,Red) be a black-box hard-function⇒ (12 + ϵ)-hard-function
proof with parameters ℓ, ℓ′, a, ρ = 1, ρ′ = 1

2+ϵ, such that Red makes q queries. For every α ∈ {0, 1}a,
there exists a q-CNF Cα with 2q+ℓ clauses, over n = 2ℓ

′
variables, such that for C =

∨
α∈{0,1}a C

α,
we have that:
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� Pr[C(Un)] ≤ 2−(2
ℓ−a).

� For every x ∈ {0, 1}n such that weight(x) ≤ (12 − ϵ) · n, C(x) = 1.

Proof. We will view a string z of length n = 2ℓ
′
, as a function z ∈ Fℓ′,1 and vice-versa, by

z(y) = zy. The proof of [AASY16] (and the proof presented here) makes use of an idea originating in
[Vio06, SV10] (and credited to Madhu Sudan) that the reduction must succeed if given oracle access
to Conf ⊕ z for a string z with weight(z) ≤ n · (12 − ϵ) (as such an oracle (12 + ϵ)-hard-function-breaks
Conf ), but cannot succeed when given oracle access to Conf ⊕ z for z ← Un (as z “wipes out” the
information in Conf ). This will translate into the two conditions in the lemma. Details follow:

For every f ∈ Fℓ,1, α ∈ {0, 1}a and x ∈ {0, 1}ℓ, we define Cf,α,x : {0, 1}n → {0, 1} as follows:

Cf,α,x(z) = 1 iff RedConf⊕z(x, α) = f(x).

We have that Red makes at most q queries, and this implies that for every f and α, the function
Cf,α can be computed by a decision tree with height q. Therefore, it can be computed by a q-CNF
with 2q clauses. For every f ∈ Fℓ,1, and α ∈ {0, 1}a we define Cf,α : {0, 1}n → {0, 1} as follows:

Cf,α(z) = 1 iff ∀x ∈ {0, 1}ℓ, RedConf⊕z(x, α) = f(x).

By definition for every f and α, Cf,α(x) =
∧

x∈{0,1}ℓ Cf,α,x. This means that Cf,α is an AND of 2ℓ

q-CNFs with 2q clauses, and overall, it can be computed by a q-CNF with 2q+ℓ clauses. For every
f ∈ Fℓ,1, we define Cf : {0, 1}n → {0, 1} as follows:

Cf,α(z) = 1 iff ∃α ∈ {0, 1}a, s.t. ∀x ∈ {0, 1}ℓ, RedConf⊕z(x, α) = f(x).

This gives that for every f ∈ Fℓ,1, Cf is an OR of 2a q-CNFs with 2q+ℓ clauses.
Furthermore, by the definition of black-box hard-function ⇒ (12 + ϵ)-hard-function proof, for

every f ∈ Fℓ,1, if weight(z) ≤ (12 − ϵ) · n, then the function Conf ⊕ z, 1
2 + ϵ-hard-function-breaks

breaks Conf . This in turn implies (by Definition 1.7) that there exists α ∈ {0, 1}a such that for
every x ∈ {0, 1}ℓ, RedConf⊕z(x) = f(x), meaning that Cf (z) = 1. This means that for every choice
of f ∈ Fℓ,1, Cf satisfies the second item.

We will now show that there exists an f ∈ Fℓ,1 such that Cf satisfies the first item. For a
uniformly chosen z ← Un, we have that for every f ∈ Fℓ,1, Conf ⊕ z is distributed uniformly over
{0, 1}n, and contains no information about f . It follows that:

Pr
f←Fℓ,1,z←Un

[Cf (z) = 1] = Pr
F←Fℓ,1,z←Un

[∃α ∈ {0, 1}a, s.t. ∀x ∈ {0, 1}ℓ, RedConf⊕z(x, α) = f(x)]

= Pr
f←Fℓ,1,z←Un

[∃α ∈ {0, 1}a, s.t. ∀x ∈ {0, 1}ℓ, Redz(x, α) = f(x)]

≤ Prf←Fℓ,1
[∃α ∈ {0, 1}a, s.t. ∀x ∈ {0, 1}ℓ, Redz∗(x, α) = f(x)],

for some z∗ ∈ {0, 1}n which maximizes the success probability. We can therefore continue and
obtain that:

Pr
f←Fℓ,1,z←Un

[Cf (z) = 1] ≤ Pr
F←Fℓ,1

[∃α ∈ {0, 1}a, s.t. ∀x ∈ {0, 1}ℓ, Redz∗(x, α) = f(x), ]

≤
∑

α∈{0,1}a
Pr

f←Fℓ,1

[∀x ∈ {0, 1}ℓ, Redz∗(x, α) = f(x)]

≤ 2a · 1

22ℓ
,
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where the penultimate inequality follows by a union bound, and the last inequality follows because
for every x ∈ {0, 1}ℓ,

Pr
f←Fℓ,1

[Redz
∗
(x, α) = f(x)] =

1

2
,

and these events are independent for the 2ℓ choices of x ∈ {0, 1}ℓ. Finally, by averaging, we conclude
that there exists f ∈ Fℓ,1 such that:

Pr
z←Un

[Cf (z) = 1] ≤ 2−(2
ℓ−a).

The final function C will be this function Cf which indeed satisfies the properties in the conclusion
of the lemma.

4.2 Proof of Theorem 4.1

In this section we prove Theorem 4.1. We split the proof into two parts, specified in Lemma 4.4
and Lemma 4.5 below. This splitting will allow us to use Lemma 4.5 in the application to lower
bounds on local list-decoding in Section 5.

Lemma 4.4. Assume the conditions of Theorem 4.1. For every α ∈ {0, 1}a, there exists a q-CNF
Cα over n = 2ℓ

′
variables, such that for C =

∨
α∈{0,1}a C

α, and p = ϵ
10 :

� Pr[C(Un) = 1] ≤ 2−(2
ℓ−a).

� Prρ←Rn
p
[Pr

x←U
1/3
n·p

[C(Fillρ(x)) = 1] ≥ 0.99] ≥ 0.99.

The next lemma shows that under (a weak form) of the conclusion of Lemma 4.4, if a is slightly
smaller than 2ℓ then q = Ω(1ϵ ).

Lemma 4.5. Let C be a circuit such that C =
∨

α∈{0,1}a C
α, where for each α ∈ {0, 1}a, Cα is a

q-CNF over n variables. Let p = ϵ
10 and assume that:

� Pr[C(Un) = 1] ≤ 2−(2
ℓ−a).

� Prρ←Rn
p

[
Pr

x←U
1/3
n·p

[C(Fillρ(x)) = 1] ≥ 0.01
]
≥ 0.01.

� a ≤ 2ℓ

10 .

Then q ≥ 1000
ϵ .

Together, Lemma 4.4 and Lemma 4.5 imply Theorem 4.1. The proofs of Lemma 4.4 and Lemma
4.5 are given in Sections 4.2.1 and 4.2.2.

4.2.1 Proof of Lemma 4.4

We first apply Lemma 4.3 and obtain that for every α ∈ {0, 1}a, there exists a q-CNF Cα over
n = 2ℓ

′
variables, such that:

� Pr[Cα(Un) = 1] ≤ 2−(2
ℓ−a).

� For every x ∈ {0, 1}n such that weight(x) ≤ (12 − ϵ) · n, there exists α ∈ {0, 1}a such that
Cα(x) = 1.
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When choosing ρ ← Rn
p we expect that 1

n · | {i : ρ(i) = 1} | = 1
2 −

p
2 . Therefore, by a Chernoff

bound:

Pr
ρ←Rn

p

[
1

n
· | {i : ρ(i) = 1} | ≥ 1

2
− 0.49 · p]· ≤ 2−Ω(p2·n),

which is smaller than 0.01, by the assumption that ℓ′ ≥ log 1
ϵ2

+ Ω(1), and n = 2ℓ
′
. If this event

occurs, then for every x ∈ {0, 1}n·p,

weight(Fillρ(x)) ≤ (
1

2
− 0.49 · p) · n+weight(x).

This means that if weight(x) ≤ 0.34 · p · n, then

weight(Fillρ(x)) ≤ n · (1
2
− (0.49− 0.34) · p) ≤ n · (1

2
− ϵ),

By our assumption that p ≤ ϵ
10 . Applying a Chernoff bound, we conclude that:

Pr
x←U

1/3
n·p

[weight(x) ≥ 0.34 · p · n] ≤ 2−Ω(pn),

which is smaller than 0.01 by the assumption that ℓ′ ≥ log 1
ϵ2

+Ω(1), and n = 2ℓ
′
.

4.2.2 Proof of Lemma 4.5

We want to show that following a random restriction, each Cα is a low height decision tree.

Claim 4.6. If q < 1000
ϵ then there exists a restriction ρ : [n] → {0, 1, ∗} with Free(ρ) = n · p such

that:

� For every α ∈ {0, 1}a, Cα
ρ is a decision tree of height a.

� Pr[Cρ(Un) = 1] ≤ 2−(2
ℓ−a−10).

� Pr[Cρ(U
1/3
n ) = 1] ≥ 0.01.

Proof. We will show that when choosing ρ← Rn
p there is a positive probability to obtain a ρ that

satisfies all three items. This will follow by a union bound in which we show that the probability
that each of the items does not hold is small.

For the first item, we note that by Theorem 2.3 for every α ∈ {0, 1}a, the probability over
ρ ← Rn

p that Cα
ρ does not have a decision tree of height a, is at most (7 · p · q)a ≤ (7/100)a. By

a union bound over the 2a choices of α ∈ {0, 1}a, the probability over ρ ← Rn
p that there exists

α ∈ {0, 1}a such that Cα
ρ does not have a decision tree of height a, is at most 0.001.

For the second item, we recall that by Lemma 4.4 we have that: Pr[C(Un) = 1] ≤ 2−(2
ℓ−a).

Therefore, by Markov’s in equality we conclude that with probability at least 0.999 over ρ← Rn
p :

Pr[Cρ(Un) = 1] ≤ 1000 · 2−(2ℓ−a) ≤ 2−(2
ℓ−a−10).

Finally, by the second item in Lemma 4.4 we have that with probability at least 0.01 over ρ← Rn
p :

Pr[Cρ(U
1/3
n ) = 1] ≥ 0.01

Overall, by a union bound with probability at least 1− (0.99+ 0.001+ 0.001) > 0 over ρ← Rn
p , we

obtain a ρ that satisfies all three conditions.
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Let ρ be the restriction guaranteed by the claim. We can view Cρ as Cρ =
∨

α∈{0,1}a C
α
ρ . This

means that Cρ is an OR of 2a decision trees of height a. Each such decision tree can be replaced
by an a-DNF with 2a clauses, and overall, we get that Cρ is an a-DNF with 22a clauses. This gives
that:

Claim 4.7. If q < 1000
ϵ then there exists an a-DNF C ′ with p · n variables and 22a clauses such

that:

� Pr[C ′(Up·n) = 1] ≤ 2−(2
ℓ−a−10).

� Pr[C ′(U
1/3
p·n ) = 1] ≥ 0.01.

This means that one of the 22a clauses of C ′ must satisfy the following:

Claim 4.8. If q < 1000
ϵ then there exists a DNF clause C̄ over t ≤ a literals such that:

� Pr[C̄(Ut) = 1] ≤ 2−(2
ℓ−a−10).

� Pr[C̄(U
1/3
t ) = 1] ≥ 0.01

22a
≥ 2−(2a+10).

We are now ready to prove Lemma 4.5. We assume for the purpose of contradiction that
q < 1000

ϵ and show that Claim 4.8 yields a contradiction. This is because a DNF clause over t ≤ a

literals cannot distinguish Ut from U
1/3
t with the parameters stated in Claim 4.8.

More precisely, as under U
1/3
t , every literal evaluates to one with probability that is upper

bounded by 2/3, we conclude that:

Pr[C̄(U
1/3
t ) = 1] ≤

(
2

3

)t

.

Under Ut, every literal evaluates to one with probability half. Therefore,

Pr[C̄(Ut) = 1] =

(
1

2

)t

.

By Claim 4.8 it follows that:(
4

3

)t

=

(
2
3

)t(
1
2

)t ≥ 2−(2a+10)

2−(2ℓ−a−10)
= 22

ℓ−3a−20.

which gives that:

a ≥ t ≥ 2ℓ − 3a− 20

log 4
3

>
2ℓ

10
,

using the assumption that a ≤ 2ℓ

10 , and the lemma follows.

4.3 Proof of Theorem 4.2

In this section we prove Theorem 4.2. We first apply Lemma 4.3 and obtain that for every α ∈
{0, 1}a, there exists a q-CNF Cα with 2q+ℓ clauses, over n = 2ℓ

′
variables, such that for C =∨

α∈{0,1}a C
α, we have that:
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� Pr[C(Un) = 1] ≤ 2−(2
ℓ−a).

� For every x ∈ {0, 1}n such that weight(x) ≤ (12 − ϵ) · n, there exists α ∈ {0, 1}a such that
Cα(x) = 1.

As there are 2a such CNFs, it follows that one of them satisfies:

Claim 4.9. There exists α ∈ {0, 1}a such that:

� Pr[Cα(Un) = 1] ≤ 2−(2
ℓ−a).

� Pr[Cα(U
1/3
n ) = 1] ≥ 2−(a+1).

Proof. The first item follows because the top gate of C is an OR gate. For the second item, by a
Chernoff bound, and our assumption that ϵ ≤ 1

10 :

Pr
x←U

1/3
n

[weight(x) ≤ (
1

2
− ϵ) · n] ≤ 2−Ω(n) ≤ 1

2
,

meaning that:

Pr
x←U

1/3
n

[C(x) = 1] ≥ 1

2
,

and by averaging, there exists α ∈ {0, 1}a such that:

Pr
x←U

1/3
n

[Cα(x) = 1] ≥ 1

2 · 2a
.

Let C0 = Cα that is guaranteed by Claim 4.9. We will start from C0 and will iteratively apply
the following lemma (which is proven in Section 4.3.1).

Lemma 4.10. For every v-CNF D over m variables, if Pr[D(U
1/3
m ) = 1] ≥ 2−w then there exists

a restriction ρ : [m]→ {0, 1, ∗} with Free(ρ) = m′ = m− w · 4v, such that:

� Dρ is a (v − 1)-CNF over m′ variables.
� Pr[Dρ(Um′) = 1] ≤ Pr[D(Um) = 1] · 2w·4v .
� Pr[Dρ(U

1/3
m′ ) = 1] ≥ Pr[D(U

1/3
m ) = 1].

More precisely, at every step i > 0, we apply Lemma 4.10 with w = a + 1 on D = Ci−1, and
set Ci = Dρ. We use mi to denote the input length of Ci. We will maintain the following invariant
(and note that this indeed holds for i = 0).

Invariant: At step i the following hold:

� Ci is a (q − i)-CNF.

� Pr[Ci(Umi) = 1] ≤ 2−(2
ℓ−a−i·(a+1)·4q).

� Pr[Ci(U
1/3
mi ) = 1] ≥ 2−(a+1).

It immediately follows that this invariant holds for every i ≤ q. This means that at the
conclusion of this process, for i = q we have that:
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� Cm is a constant.

� Pr[Cq(Umq) = 1] ≤ 2−(2
ℓ−a−q·(a+1)·4q).

� Pr[Cq(U
1/3
mq ) = 1] ≥ 2−(a+1).

Therefore, by the third item, it must be that Cm is the constant one, and by the second item it
must be that:

2−(2
ℓ−a−q·(a+1)·4q) ≥ 1.

which implies that:

q ≥ ℓ− log(a+ 1)

3
.

4.3.1 Proof of Lemma 4.10

In this section, we prove Lemma 4.10. We first observe that if a v-CNF does not have many clauses
that have disjoint variables, then there must be a small “cover” (namely, a set of variables such
that each clause contains a variable from the cover).

Proposition 4.11. In every v-CNF D, if there does not exist t clauses with disjoint variables,
then there is a subset S of s = (t− 1) · v variables, such that every clause of D contains a variable
in S.

Proof. We go over the clauses one by one, staring with an empty S. Every time the current clause
does not contain a variable from S, we mark the current clause, and add its variables to S. Every
time we mark a clause, its variables are disjoint from all variables of previously marked clauses. By
our assumption, we mark at most t− 1 clauses, and so when we conclude the size of S is at most
(t− 1) · v.

Lemma 4.12. For every v-CNF D over m variables, if Pr[D(U
1/3
m ) = 1] ≥ 2−w then there exists

a set S of size s = w · 4v variables such that every clause of D contains at least one variable in S.

Proof. If there does not exists a set S with the required properties, then by Proposition 4.11, D

has t = s
v clauses that have disjoint variables. Under U

1/3
m , each literal of D has probability at least

1/3 to evaluate to zero. This gives that each clause has probability at most 1 −
(
1
3

)v
to evaluate

to one. Consequently, the probability that t disjoint clauses evaluate to one is at most
(
1−

(
1
3

)v)t
,

implying that:

Pr[D(U1/3
m ) = 1] ≤

(
1−

(
1

3

)v)t

≤ e−3
−v ·t < e−4

−v ·s ≤ 2−w.

and we get a contradiction.

We are ready to prove Lemma 4.10. By Lemma 4.12 there exists a set S of size s = w · 4v
variables such that every clause of D contains at least one variable in S. Let A be the set of all
restrictions that fix the variables in S, while leaving the other variables free. More precisely,

A = {ρ : [m]→ {0, 1, ∗} : ρ(i) ̸= ∗ iff i ∈ S} .

We will show that there exists a ρ ∈ A that satisfies the guarantees of Lemma 4.10 with positive
probability.
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The first item of Lemma 4.10 holds for every ρ ∈ A. This is because every clause of D has a
variable in S and following the restriction, each clause is over at most v − 1 variables.

The second item of Lemma 4.10 also holds for every ρ ∈ A. For every choice y ∈ {0, 1}w·4v of
the restricted bits in ρ, let Eρ,y denote the event

{
X|[n]\Select(ρ) = y

}
. For every ρ ∈ A we have

that:

Pr[Dρ[D(Um′) = 1] = Pr
X←Um

[D(X) = 1|Eρ,y]

≤ PrX←Um [D(X) = 1]

PrX←Um [Eρ,y]

= Pr[D(Um) = 1] · 2w·4v .

The third item follows because by averaging, there exists ρ ∈ A and y ∈ {0, 1}w·4v such that
Assign(ρ) = y and:

Pr
X←U

1/3
m

[D(X) = 1|Eρ,y] ≥ Pr
X←U

1/3
m

[D(X) = 1],

For this choice of ρ and y, we have that

Pr[Dρ(U
1/3
m′ ) = 1] = Pr

X←U
1/3
m

[D(X) = 1|X ∈ Eρ,y]

≥ Pr
X←U

1/3
m

[D(X) = 1]

= Pr[D(U
1/3
m′ ) = 1].

This concludes the proof of Lemma 4.10.

5 Improved lower bounds for local list-decoding algorithms

In this section we show that the techniques developed in Section 4 can be used to get an improved
lower bounds on the number of queries of local list-decoding algorithms. In Section 5.1 we review
the definition of locally list-decodable codes, and local decoding algorithms. In Section 5.2 we state
our improved bound and compare it to previous work. In Section 5.3 we prove the improved bound.

5.1 Definition of locally list-decodable codes

List-decodable codes are a natural extension of (uniquely decodable) error-correcting codes, as it
allows (list) decoding for error regimes where unique decoding is impossible. This is an extensively
studied area; see [Gur06] for a survey. In this paper, we will be interested in list-decoding of binary
codes.

Definition 5.1 (List-decodable code). For a function Enc : {0, 1}k → {0, 1}n, and w ∈ {0, 1}n,
we define

ListEncα (w) =
{
m ∈ {0, 1}k : dist(Enc(m), w) ≤ α

}
.

We say that Enc is (α,L)-list-decodable if for every w ∈ {0, 1}n, |ListEncα (w)| ≤ L.
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The task of algorithmic list-decoding is to produce the list ListEncα (w) on input w ∈ {0, 1}n.
Local unique decoding algorithms are algorithms that given an index i ∈ [k], make few oracle

queries to w, and reproduce the bit mi (with high probability over the choice of their random
coins), where m denotes the unique codeword close to w. This notion of local decoding has many
connections and applications in computer science and mathematics [Yek12].

We will be interested in local list-decoding algorithms that receive oracle access to a received
word w ∈ {0, 1}n, as well as inputs i ∈ [k] and j ∈ [L]. We will require that for everym ∈ ListEncα (w),
with high probability, there exists a j ∈ [L] such that for every i ∈ [k], when Dec receives oracle
access to w and inputs i, j, it produces mi with high probability over its choice of random coins.
This motivates the next definition.

Definition 5.2 (Randomized local computation). We say that a procedure P (i, r) locally computes
a string m ∈ {0, 1}k with error δ, if for every i ∈ [k], Pr[P (i, R) = mi] ≥ 1−δ (where the probability
is over a uniform choice of the “string of random coins” R).

The definition of local list-decoders considers an algorithmic scenario that works in two steps:

� At the first step (which can be thought of as a preprocessing step) the local list-decoder Dec
is given oracle access to w and an index j ∈ [L]. It tosses random coins (which we denote by
rshared).

� At the second step, the decoder receives the additional index i ∈ [k], and tosses additional
coins r.

� It is required that for every w ∈ {0, 1}n and m ∈ ListEncα (w), with probability 2/3 over the
choice of the shared coins rshared, there exists j ∈ [L] such that when the local list-decoder
receives j, it locally computes m (using its “non-shared” coins r). The definition uses two
types of random coins because the coins rshared are “shared” between different choices of
i ∈ [k] and allow different i’s to “coordinate”. The coins r, are chosen independently for
different choices of i ∈ [k].

This is formally stated in the next definition.

Definition 5.3 (Local list-decoder). Let Enc : {0, 1}k → {0, 1}n be a function. An (α,L, q, δ)-
local list-decoder (LLD) for Enc is an oracle procedure Dec(·) that receives oracle access to a word
w ∈ {0, 1}n, and makes at most q calls to the oracle. The procedure Dec also receives inputs:

� i ∈ [k] : The index of the symbol that it needs to decode.

� j ∈ [L] : An index to the list.

� Two strings rshared, r that are used as random coins.

It is required that for every w ∈ {0, 1}n, and for every m ∈ ListEncα (w), with probability at least 2/3
over choosing a uniform string rshared, there exists j ∈ [L] such that the procedure

Pw,j,rshared(i, r) = Decw(i, j, rshared, r)

locally computes m with error δ. If we omit δ, then we mean δ = 1/3.

See [RSV21] for a discussion on the generality of this definition, and on past work in this area.
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5.2 Our Results

Ron-Zewi, Shaltiel and Varma [RSV21] showed lower bounds on the number of queries of local list
decoders. We use our improved techniques to prove the following theorem.

Theorem 5.4 (Improved lower bounds for small ϵ). There exist constants c1, c2 > 1 such that for

every L ≤ 2
k
20 , δ < 1

3 , n ≥
c2
ϵ2
, and every (12−ϵ, L, q, δ)-local list-decoder for Enc : {0, 1}k → {0, 1}n,

we have that q ≥ 1
c1·log(k)·ϵ .

The previous bounds of [RSV21] come in two forms:

� For L ≤ 2k
0.9

and ϵ ≥ 1
kΩ(1) , [RSV21] obtain tight bounds (up to constants), showing that:

q = Ω( log(1/δ)
ϵ2

).
� If these conditions are not met (and in particular, if ϵ is smaller than 1/k), [RSV21] obtain
weaker bounds, showing that if δ < 1

3 , q = Ω( 1√
ϵ·log k )−O(logL).

Theorem 5.4 improves upon the second item above (although it does not match the optimal
bound of the first item). More specifically, Theorem 5.4 replaces

√
ϵ with ϵ, and does not have the

additive term of “−O(logL)”.
Not surprisingly, these improvements directly correspond to “the extreme high-end”. Making

this analogy, (namely, setting L = 2a, and k = 2ℓ) we have that for L = 2k
1−o(1)

, previous work
does not give any bound if ϵ ≥ 1

k1.9
, and in particular for ϵ ≈ 1

k . In contrast, Theorem 5.4 gives a
bound that is Ω( 1

log k·ϵ), which is not far from the known upper bound of O( 1
ϵ2
), and is polynomially

related to the upper bound for ϵ ≤ 1
log2 k

.

5.3 Proof of Theorem 5.4

In this section we prove Theorem 5.4. The proof uses a similar approach as that of [RSV21] (which
is in turn based on [AASY16]) to transform an LLD into a depth 3 circuit for a certain problem.
(We make stronger requirements on the circuit, and therefore, need to redo the reduction, taking
care to obtain these stronger requirements). Once we obtain a depth 3 circuit, we use Lemma 4.5
to show improved lower bounds. Details follow:

We assume that L ≤ 2
k
20 , and n ≥ c2

ϵ2
. Our goal is to prove lower bounds on the number of

queries q of (12−ϵ, L, q, δ)-local list-decoders for δ < 1
3 . It is possible to amplify the error probability

δ from 1/3 to 1/20k as follows: After choosing the random string rshared, we choose e = O(log k)
independent uniform strings r1, . . . , re, and apply Dec(·)(i, j, rℓ, r

shared) for all choices of ℓ ∈ [e].
We then output the majority vote of the individual e outputs. It is standard that this gives a
(12 − ϵ, q′ = O(q · log k), L, 1/20k)-LLD for Enc : {0, 1}k → {0, 1}n.

We plan to reduce to Lemma 4.5, and set p = ϵ
10 (as in that lemma). Our next step is to fix the

random coins of the decoder, and obtain a deterministic decoder Dec which succeeds in a specific
experiment in which: a message m← {0, 1}k is chosen uniformly, and a “noise string” z is chosen

by choosing ρ← Rn
p and filling the unrestricted variables with U

1/3
p·n . Finally, a “received word” w

is obtained by w = Enc(m)⊕ z. This is defined formally below:

Definition 5.5 (The experiment RNSY). We consider the following experiment (which we denote
by RNSY): The experiment works in two steps. The first step (denoted RNSY1) works as follows:

� A message m← {0, 1}k is chosen uniformly.
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� A restriction ρ← Rn
p is chosen uniformly.

The second step is defined for a fixed m ∈ {0, 1}k and ρ ∈ Rn
p . It is denoted by RNSY2(m, ρ) and

works as follows:

� A string z is chosen from U
1/3
p·n .

� We define x = Fillρ(z).
� We define w = Enc(m)⊕ x.

We use (m, ρ, z, w)← RNSY to denote m, ρ, z, w which are sampled by the two steps of this exper-
iment.

The next lemma fixes the coins of the local-decoder, making it deterministic. It is similar in
spirit to Proposition 3.1 in [RSV21], except that the experiment RNSY that we use is different and
more complicated than the one used in [RSV21].

Lemma 5.6. There exists a constant c > 1 such that if n ≥ c
ϵ2

and Dec is a (12 − ϵ, L, q, δ)-local

list-decoder for a function Enc : {0, 1}k → {0, 1}n then there exists an oracle procedure Dec
(·)
(i, j)

receiving i ∈ [k], j ∈ [L], and making q queries to a string w ∈ {0, 1}n, such that with probability at
least 0.51 over choosing (m, ρ)← RNSY1, we have that with probability at least 0.01 over choosing
(z, w)← RNSY2(m, ρ), there exists j ∈ [L] such that

Pr
i←[k]

[Dec
w
(i, j) = mi] ≥ 1− 10 · δ.

Proof. Let Dec denote an LLD for Enc. When choosing ρ← Rn
p we expect that 1

n ·| {i : ρ(i) = 1} | =
1
2 −

p
2 . Therefore, by a Chernoff bound:

Pr
ρ←Rn

p

[
1

n
· | {i : ρ(i) = 1} | ≥ 1

2
− 0.49 · p]· ≤ 2−Ω(p2·n),

which is smaller than 0.01, by our assumption that n is sufficiently larger than 1/ϵ2. If this event
occurs, then for every z ∈ {0, 1}n·p,

weight(Fillρ(z)) ≤ (
1

2
− 0.49 · p) · n+weight(z).

This means that if weight(z) ≤ 0.34 · p · n, then

weight(Fillρ(z)) ≤ n · (1
2
− (0.49− 0.34) · p) ≤ n · (1

2
− ϵ),

By our assumption that p ≤ ϵ
10 . Applying a Chernoff bound, we conclude that:

Pr
z←U

1/3
n·p

[weight(z) ≥ 0.34 · p · n] ≤ 2−Ω(pn),

which is smaller than 0.01 by the assumption that n is sufficiently larger than 1/ϵ2.
Overall, this means that for γ = 0.02, with probability at least 1−γ over choosing (m, ρ, z, w)←

RNSY, we have that dist(Enc(m), w) ≤ 1
2 − ϵ, meaning that m ∈ ListEnc1

2
−ϵ(w). By the definition of
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LLD, this gives that whenever this occurs, with probability at least 2/3 over the choice of rshared,
there exists j ∈ [L] such that the procedure Pw,j,rshared(i, r) = Decw(i, j, rshared, r) locally computes
m with error δ.

Let E1 be the experiment in which (m, ρ, z, w)← RNSY and rshared be an independent uniform
string. It follows that:

Pr
E1

[∃j ∈ [L] : Pw,j,rshared locally computes m with error δ] ≥ 2

3
− γ.

By averaging, there exists a fixed string r̂shared such that:

Pr
RNSY

[∃j ∈ [L] : Pw,j,r̂shared locally computes m with error δ] ≥ 2

3
− γ.

Let S denote the set of quadruples (m, ρ, z, w) in the support of RNSY for which the event
above occurs. For every such quadruple, we have that there exists a j ∈ [L] for which Pw,j,r̂shared

locally computes m with error δ. Let f be a mapping that given a quadruple (m, ρ, z, w) ∈ S,
produces such a j ∈ [L]. This means that:

Pr
RNSY

[Pw,f(m,ρ,z,w),r̂shared locally computes m with error δ] ≥ 2

3
− γ.

Let RNSY′ be the experiment in which (m, ρ, z, w) ← (RNSY |(m, ρ, z, w) ∈ S). Namely, we
choose (m, ρ, z, w) from the experiment RNSY, conditioned on the event that (m, ρ, z, w) ∈ S.

Let E2 be the experiment in which we choose independently a random string r, i ← [k] and
(m, ρ, z, w)← RNSY′. We obtain that:

Pr
E2

[Decw(i, f(m, ρ, z, w), r̂shared, r) = mi] ≥ 1− δ,

since Pw,f(m,ρ,z,w),r̂shared computes correctly each coordinate mi with probability at least 1− δ over
the choice of r.

By averaging, there exists a fixed string r̂ such that:

Pr
(m,ρ,z,w)←RNSY′,i←[k]

[Decw(i, f(m, ρ, z, w), r̂shared, r̂) = mi] ≥ 1− δ.

By Markov’s inequality:

Pr
(m,ρ,z,w)←RNSY′

[
Pr

i←[k]
[Decw(i, f(m, ρ, z, w), r̂shared, r̂) ̸= mi] ≥ 10δ

]
≤ 1

10
.

Let Dec
w
(i, j) = Decw(i, j, r̂shared, r̂). We obtain that:

Pr
(m,ρ,z,w)←RNSY′

[ Pr
i←[k]

[Dec
w
(i, f(m, ρ, z, w)) = mi] > 1− 10δ] >

9

10
.

Which gives that:

Pr
(m,ρ,z,w)←RNSY

[
Pr

i←[k]
[Dec

w
(i, f(m, ρ, z, w)) = mi] > 1− 10δ

]
>

(
2

3
− γ

)
· 9
10

> 0.55.
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Let A denote the event:

A =

{
Pr

i←[k]
[Dec

w
(i, f(m, ρ, z, w)) = mi] > 1− 10δ

}
,

so that we have that:
Pr

(m,ρ,z,w)←RNSY
[A] > 0.55.

By the definition of the two steps of RNSY, and an averaging argument this gives that:

Pr
(m,ρ)←RNSY1

[
Pr

(z,w)←RNSY2(m,w)
[A] > 0.51] > 0.01

]
.

This concludes the proof.

Applying Lemma 5.6 on the (12 − ϵ, q′ = O(q log k), L, 1/20k)-LLD that we have previously
obtained, gives the following corollary:

Claim 5.7. There exists an oracle procedure Dec
(·)
(i, j) receiving i ∈ [k], j ∈ [L], and making

q′ = O(q · log k) queries to a string w ∈ {0, 1}n, such that with probability at least 0.51 over choosing
(m, ρ)← RNSY1, we have that with probability at least 0.01 over choosing (z, w)← RNSY2(m, ρ),
there exists j ∈ [L] such that for every i← [k], Dec

w
(i, j) = mi.

Proof. This follows directly from Lemma 5.6, noticing that a statement of the form:

Pr
i←[k]

[Dec
w
(i, j) = mi] ≥ 1− 1

2k
,

implies that for every i← [k], Dec
w
(i, j) = mi.

We can use this (in a similar way to Lemma 4.3) to argue that:

Claim 5.8. Let a = logL+ 100 and let ℓ = log k. For every α ∈ {0, 1}a, there exists a q-CNF Cα

over n variables, such that for C =
∨

α∈{0,1}a C
α, and p = ϵ

10 :

� Pr[C(Un) = 1] ≤ 2−(2
ℓ−a).

� Prρ←Rn
p
[Pr

z←U
1/3
n·p

[C(Fillρ(z)) = 1] ≥ 0.01] ≥ 0.01.

Proof. The proof is essentially identical to that of Lemma 4.3. More precisely, the message m ∈
{0, 1}k plays the role of f ∈ {0, 1}2ℓ , the index i ∈ [k] plays the role of x ∈ {0, 1}ℓ, and the index
j ∈ [L], plays the role of α ∈ {0, 1}a. The argument in the proof of Lemma 4.3 shows that for every
m ∈ {0, 1}k, there exists a circuit Cm of the required form such that:

� Prm←{0,1}k,x←{0,1}n [Cm(x) = 1] ≤ 2−(2
ℓ−a).

� With probability at least 0.51 over choosing (m, ρ)← RNSY1, we have that with probability
at least 0.01 over choosing (z, w)← RNSY2(m, ρ), we have that Cm(x) = 1, for x = Fillρ(z)
(as in experiment RNSY).

By applying Markov’s inequality on each one of the two items, we can obtain that:
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� Prm←{0,1}k
[
Prx←{0,1}n [Cm(x) = 1] ≤ 2−(2

ℓ−a−100)
]
≥ 1− 2−100.

� With probability at least 0.1 over choosing m ← {0, 1}k, we have that with probability at
least 0.01 over choosing ρ ← Rn

p , we have that with probability at least 0.01 over choosing

(z, w)← RNSY2(m, ρ), we have that Cm(x) = 1, for x = Fillρ(z).

This allows to do a union bound, and obtain that there existsm ∈ {0, 1}k such that setting C = Cm,
meets the conclusion of Claim 5.8.

We are finally ready to prove Theorem 5.4. Using Lemma 4.5 we conclude that assuming
a+ 100 ≤ 2ℓ

10 (which for sufficiently large k, follows by our assumption that L ≤ 2k/20) we get that
q′ ≥ 1000

ϵ which gives that q = Ω( 1
ϵ·log k ), as required.

6 Conclusion and Open Problems

The most interesting open problem is Open Problem 1.5. We hope that Theorem 1.11 may help to
point us to new constructions.

However, it is possible that the answer to Open Problem 1.9 is negative, showing that black-box
proofs cannot be used to solve Open Problem 1.5. Is this the case? If it is, can we show this?

Easier problems towards showing a negative answer to Open Problem 1.9 are:

� Is it true that in any black-box hard-function ⇒ PRG proof, the number of queries q ≥ m or
even q ≥ m2? A positive answer will show that the cost of the hybrid argument (in terms of
the number queries used by the reduction) is unavoidable in black-box hard-function⇒ PRG
proofs.

� We don’t know whether a super-constant number of queries is necessary for constant ϵ. Can
we show a super-constant lower bound on the number of queries of a reduction for a black-box
hard-function⇒ PRG proof?

� In fact, we don’t even know to show a q > 1 lower bound for black-box ρ-hard-function ⇒
ϵ-PRG proof for constant ϵ, and ρ = 1

2 + ϵ. Can we show this?
� In all cases above, the question is open even for small values of a (that do not apply in the
extreme high-end).

Another approach to hardness vs. randomness was very recently suggested by Chen and Tell
[CT21a]. They use an assumption which is less standard, and incomparable to the extreme
high-end hardness assumption to construct “target PRGs” which are weaker than PRGs, but
suffice for fast derandomization of randomized algorithms. It is interesting to investigate the power
of this approach. For more details on this approach and exciting recent developments in this area,
see the survey paper [CT23].

Finally, another open problem is to further improve our lower bounds on the number of queries
for reductions for black-box hardness amplification. More specifically, our improved lower bounds
for hardness amplification apply in the extreme high-end, but are not tight. We only get q ≥
max(Ω(ℓ),Ω(1ϵ )), whereas the known upper bounds give q = O( ℓ

ϵ2
). Can we prove a matching lower

bound that applies in the extreme high-end? (namely, for a = 2(1−o(1))·ℓ). Such lower bounds were
given by [GSV18] for the high-end, namely for a ≤ 2ν·ℓ for a constant ν > 0.
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