
Explicit Binary Tree Codes with

Sub-Logarithmic Size Alphabet

Inbar Ben Yaacov* Gil Cohen� Tal Yankovitz �

November 10, 2021

Abstract

Since they were first introduced by Schulman (STOC 1993), the construction of

tree codes remained an elusive open problem. The state-of-the-art construction by

Cohen, Haeupler and Schulman (STOC 2018) has constant distance and (log n)e

colors for some constant e > 1 that depends on the distance, where n is the depth

of the tree. Insisting on a constant number of colors at the expense of having

vanishing distance, Gelles, Haeupler, Kol, Ron-Zewi, and Wigderson (SODA 2016)

constructed a distance Ω(1
logn) tree code.

In this work we improve upon these prior works and construct a distance-δ tree

code with (log n)O(
√
δ) colors. This is the first construction of a constant distance

tree code with sub-logarithmic number of colors. Moreover, as a direct corollary

we obtain a tree code with a constant number of colors and distance Ω
(

1

(log logn)2!

)
,

exponentially improving upon the above-mentioned work by Gelles et al.

*Department of Computer Science, Tel Aviv University, Israel. Funded by the Azrieli Faculty Fellow-
ship. inbarb1@mail.tau.ac.il

�Department of Computer Science, Tel Aviv University, Israel. Supported by ERC starting grant
949499 and by the Israel Science Foundation (grant number 1569/18). gil@tauex.tau.ac.il

�Department of Computer Science, Tel Aviv University, Israel. Supported by ERC starting grant
949499. talyankovitz@mail.tau.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2021)

Contents

1 Introduction 1

1.1 Our results . 3

2 Proof overview 3

2.1 An alternative definition of a tree code . 4

2.2 The parameters of the CHS construction 4

2.3 Proof strategy - improving the dependence on the depth 5

2.4 The transformation . 6

3 Preliminaries 11

3.1 Error-correcting block-codes . 11

3.2 Tree codes . 12

4 The γ-reducing transformation 13

4.1 Some preparations . 13

4.2 The γ-reducing transformation . 16

5 Proof of main result 24

A From finite to infinite tree codes 27

B The CHS constructions 29

B.1 The CHS tree code over the integers . 29

B.2 CHS’s tree code with smaller number of colors 30

C Proof of Lemma 3.8 34

D Online codes with suffix distance 35

1 Introduction

Coding theory addresses the problem of communication over an imperfect channel. In

the classic setting [Sha48, Ham50], Alice wishes to communicate a message to Bob over

a channel that may introduce errors. The question then is: how should Alice encode

her message so that if the amount of errors is not excessive, Bob can recover her mes-

sage? To this end the notion of an error-correcting code was introduced. A function

C : Σk → Σn is an error-correcting code with distance δ if for every distinct x, y ∈ Σk,

the respective images C(x), C(y) have relative Hamming distance at least δ. The rate of

information transmission ρ = k
n
and the fraction of errors corrected (roughly δ

2
) are com-

peting quantities. Among the most basic questions in coding theory is to obtain explicit

asymptotically good codes, that is, codes over fixed Σ with constant distance δ > 0 and

constant rate ρ > 0. By “explicit” we mean that C can be evaluated in time poly(n).

Justensen [Jus72] was the first to devise such an explicit construction. Since then, several

explicit constructions have appeared, e.g., [TVZ82, SS96].

While error-correcting codes can be used to solve the problem of sending a single

message from Alice to Bob over an imperfect channel, in some settings, the two parties

interact with each other, sending multiple messages where a message depends on previous

messages that were exchanged. Interactive coding addresses the subtler problem of en-

abling such dynamic interaction over an imperfect channel. In this far more challenging

setting, standard codes do not offer a satisfactory solution. We refer the interested reader

to the excellent survey by Gelles [Gel17] but do not discuss interactive coding schemes

further.

Tree codes are powerful combinatorial structures, defined by Schulman [Sch93, Sch96]

as key ingredients for achieving interactive coding schemes. They play a role analogous

to the one error-correcting codes take in the single message setting. Tree codes, as their

name suggests, are trees with a certain distance property. To give the formal definition,

we set some notation. Let T be the infinite complete rooted binary tree that is endowed

with an edge coloring from some ambient color set, or alphabet, Σ. For vertices u, v of

equal depth let w be their least common ancestor and denote the distance, in edges, from

u to w by ℓ. Let pu, pv ∈ Σℓ be the sequences of colors on the path from w to u and to

v, respectively. We define h(u, v) to be the relative Hamming distance between pu and

pv. Informally, h(u, v) measures the distance between the two color sequences obtained

by following the paths from the root to each of u and v, excluding the “non-interesting”

common prefix. A tree code is any coloring that has a lower bound on this quantity.

1

Formally,

Definition 1.1 (Tree codes [Sch93]). Let T be the complete infinite rooted binary tree.

The tree T , together with an edge-coloring of T by a color set Σ is called a binary tree code

with distance δ if for every pair of vertices u, v with equal depth, it holds that h(u, v) ≥ δ.

A second definition of tree codes in the literature refers not to one infinite tree but

rather to a family (Tn)n∈N where Tn is a depth n rooted complete binary tree. The family

is called a tree code with distance δ if every Tn has distance δ as defined above. It is clear

that an infinite tree code with distance δ induces such a family with the same distance,

simply by truncating the infinite tree at the different depths. Unless stated otherwise,

when referring to a tree code we mean a single infinite tree.

A priori, it is not at all clear that there exists a tree code with distance δ > 0. Three

different proofs were provided by Schulman, showing that for any constant δ < 1 there

exists a tree code with alphabet size |Σ| = Oδ(1) achieving distance δ. More recently,

based on Schulman’s ideas, it was shown that there is a tree code with only four colors and

positive distance (in particular, distance δ > 0.136) [CS20] and, moreover, three colors do

not suffice to guarantee distance δ > 0. All of these proofs rely on the probabilistic method

and thus are non-explicit. The problem of constructing tree codes has drawn substantial

attention [Sch94, Bra12, MS14, Pud16, GHK+16, CHS18, NW20, BH20, BYCN20], but

has endured as a difficult challenge.

Given this difficulty, it is natural to construct, for a given constant distance parameter

δ > 0, a tree code with number of colors c = c(n) that may depend on the depth n. The

goal is to obtain an asymptotically slowly-growing function c. Note that constructing a

tree code with c(n) = 2n colors is trivial. Indeed, having so many colors at our disposal,

we can encode the entire path leading to a vertex on the edge preceding it, yielding

distance δ = 1. In an unpublished manuscript, Evans, Klugerman and Schulman [Sch94]

constructed a tree code with c(n) = nOδ(1) colors. The first improvment was obtained

a couple of years ago by Cohen, Haeupler and Schulman [CHS18] who achieved c(n) =

(log n)e where e > 1 is some function of ′delta. See [NW20] for alternative constructions

achieving the same parameters as well as decoding algorithms, and [BH20] for an account

relating [CHS18] and [Pud16]. Two explicit constructions with a constant number of colors

c = Oδ(1) were suggested [MS14, BYCN20] though their correctness relies on unproven,

yet seemingly plausible, conjectures.

The analog question of constructing a tree code family with a constant number of

colors and a slowly deteriorating distance was first considered by Gelles, Haeupler, Kol,

2

Ron-Zewi, and Wigderson [GHK+16]. The authors gave an explicit family of tree codes

(Tn)n∈N where the number of colors in every tree in the family is bounded by a universal

constant c and the distance δ(n) of Tn satisfies δ(n) = Ω(1
logn

).

1.1 Our results

The CHS construction, as well as the variants suggested by [NW20], require ω(log n)

colors. More precisely, the number of colors takes the form (log n)1+f(δ) where f is a strictly

positive function that vanishes as δ → 0. Hence, prior to this work, no construction with

sub-logarithmic number of colors was known, for any constant distance δ > 0. The main

result of this work is a construction that beats this logarithmic threshold.

Theorem 1.2 (Main result). There exists a universal constant δ0 > 0 such that the

following holds. For every δ ≤ δ0 there exists an explicit binary tree code with distance δ

and (log n)O(
√
δ) colors at depth n.

The following is an immediate corollary.

Corollary 1.3. There exists an explicit family of binary tree codes (Tn)n∈N with a constant

number of colors such that Tn has distance Ω
(

1

(log logn)2
!

)
.

Corollary 1.3 improves exponentially upon the construction by Gelles et al. [GHK+16]

who, recall, obtained an explicit tree code family with a constant number of colors and

distance guarantee Ω(1
logn

).

Before we present the ideas that go into the proof of Theorem 1.2 (see Section 2) we

describe another minor but useful contribution of this work. As mentioned, tree codes are

defined in two different ways: either as a single infinite tree or as an infinite family of finite

trees. As mentioned, it is well-known that the first definition implies the latter. More

precisely, an infinite tree code induces a tree code family. To the best of our knowledge,

prior to this work the converse was not known to hold, and indeed the distinction was

made explicit in several prior works. As a side contribution, we give in Appendix A a

very simple argument for the converse. This allows us to consider only finite tree codes,

and as a consequence, makes our construction and analysis somewhat simpler.

2 Proof overview

In this section we give an informal overview of our tree code construction that is given

by Theorem 1.2. To this end we first give an alternative, equivalent, definition of a tree

3

code as was used by [CHS18] (see Section 2.1), and in Section 2.2 we recall some facts

about the CHS construction. Starting from Section 2.3 we present our construction and

its analysis.

2.1 An alternative definition of a tree code

Tree codes, as their name suggests, are trees with a certain distance property. However,

in this paper, we use an equivalent definition of tree codes that we find more convenient

to work with. We start by giving some basic definitions. First, a function f : Σn
in → Σn

out

is said to be online if for every i ∈ [n] and x ∈ Σn
in, f(x)i is determined by x1, . . . , xi.

Second, for x, y ∈ Σn we denote by dist(x, y) the Hamming distance between x and y.

Third, for a pair of distinct x, y ∈ Σn, we define split(x, y) as the least integer s ∈ [n]

such that xs ̸= ys. We turn to give the alternative definition of a tree code. Given our

reduction from infinite to finite tree codes, we focus on the latter.

Definition 2.1. An online function TC : Σn
in → Σn

out is a tree code with distance δ if for

every distinct x, y ∈ Σn
in, with s = split(x, y), and every ℓ ∈ {0, 1, . . . , n− s},

dist
(
TC(x)[s,s+ℓ],TC(y)[s,s+ℓ]

)
≥ δ(ℓ+ 1).

We refer to n as the depth of TC, and to Σin,Σout as the input alphabet and output

alphabet, respectively.

The equivalence between Definition 1.1 and Definition 2.1 can be easily verified. We

point out that the terms “depth” and “split” are coming from the original point of view on

tree codes, namely, Definition 1.1. Indeed, the depth is simply the depth of the tree and

the split is the level at which the pair of paths diverge. We borrow this terminology even

though we do not explicitly view tree codes as trees from this point on. Note further that

|Σout| corresponds to the number of colors used by the tree. A tree code TC : Σn
in → Σn

out

is called binary if Σin = {0, 1}. We say that TC is explicit if it can be evaluated on every

input x ∈ Σn
in in polynomial time in the bit complexity of x.

2.2 The parameters of the CHS construction

To construct their binary tree code, in [CHS18] the authors first construct a large arity

tree code, namely taking Σin large. Then, in the second step, they reduce the alphabet to

binary. More precisely, in the first step, a depth ℓ tree code with arity 2m is constructed

4

with roughly 22m+ℓ colors and distance 1
2
. This by itself is a very wasteful binary tree

code. Indeed, setting m = 1 the tree code requires more than 2ℓ colors at depth ℓ which,

as mentioned, can be obtained trivially by recording the entire path leading to a node.

Nonetheless, the advantage of this construction is that m, ℓ are, in some sense, decou-

pled. Indeed, for comparison, the ideas in [Sch94] can be used to yield a construction with

ℓO(m) colors. Although the latter has a much better dependence on ℓ, only for constant ℓ is

the number of colors polynomial in 2m. Taking advantage of this property, to construct a

depth n binary tree code, [CHS18] split the n bits to ℓ =
√
n consecutive blocks of length

m =
√
n each and apply the 2m-arity tree code, identifying each block with a symbol from

a 2m-size alphabet. Of course, each output symbol can only be recorded at the location

of the next block. Sweeping some issues under the rug, for every bit read, one writes
2m+ℓ
m

= 3 bits. However, a “lag” of length m =
√
n is incurred which is resolved by a

recursive construction applied to each block. As there are log2 log n levels of recursion,

and since we write 3 bits per level, the number of colors required is (log n)3. Again, this

discussion ignores some issues that further increase the number of colors. For example,

when “transforming” the 2m-size alphabet symbol into bits one needs to apply an error

correcting code so that a nonzero symbol from the 2m-size alphabet will contribute many

nonzero bits.

2.3 Proof strategy - improving the dependence on the depth

The number of bits written per m bits read in the CHS construction is 2m + ℓ. The

first summand, 2m, is “natural” in that it encodes the fact that one writes two bits for

every bit read. The second summand is “unnatural” and it is an artifact of the [CHS18]

construction. Indeed, computational aspects aside, one does not have a dependence on

the tree code’s depth.

Our strategy is thus very natural - improve the dependence on ℓ, up to the point of

eliminating it entirely. Towards this end, we show how to significantly improve the depen-

dence on ℓ while slightly deteriorating the dependence on m and, importantly, without

any distance deterioration. First, we break up the different components that effect the

number of colors. Specifically, we say that a depth-ℓ tree code over {0, 1}m is an (α, β, γ)

tree code if it writes at most (1 + α)m + βℓγ bits per (m-bit) symbol read. That is, the

tree code takes the form

TC : ({0, 1}m)ℓ →
(
{0, 1}(1+α)m+βℓγ

)ℓ
.

5

Our key technical contribution is devising an efficient way of transforming an (α, β, γ)

tree code to an (α+O(
√
δ), β +O(

√
δ), γ

2+γ
) tree code. The emphasis is on the improved

γ parameter, and in particular on the fact that the “new” γ is at most half the original

one. A slight drawback of our transformation is that it does not work over every alphabet

size (and, in particular, it does not work for binary tree codes), however, it is guaranteed

to work in the regime m = Ω(log ℓ). This turns out to be a sufficiently small alphabet so

that binary tree codes can be obtained with little cost and effort.

The initial tree code to which we apply our transformation is CHS which, in our

notations, is a (1, 1, 1) tree code. In fact, before doing so, we observe that one can tweak

the CHS construction, so when aiming to have distance δ it is in fact a (δ, δ, 1) tree

code. Applying our transformation once to the latter already gives an (O(
√
δ), O(

√
δ), 1

3
)

tree code with distance δ. Applying the transformation to the resulted tree code gives

an (O(
√
δ), O(

√
δ), 1

7
) tree code, again, with distance δ, where the hidden constants get

larger. Continuing in this manner, applying the transformation iteratively, for r times,

each time to the previously computed tree code yields an (O(r
√
δ), O(r

√
δ), 1

2r+1−1
) tree

code with distance δ. For eliminating the dependence on ℓ altogether we set r ≈ log log ℓ

and obtain a distance-δ tree code of the form

TC : ({0, 1}m)ℓ →
(
{0, 1}O(

√
δ·log log ℓ)m

)ℓ

.

Finally, for reducing the alphabet to binary we use a simple and well-known transformation

that has almost no cost in parameters as long as m = O(log ℓ). Luckily, as mentioned,

our transformation works in the regime m ≥ c · log n for some universal constant c.

2.4 The transformation

We now sketch how to transform an (α, β, γ) tree code to an (α+O(
√
δ), β+O(

√
δ), γ

2+γ
)

tree code. Concretely, we would like to obtain a depth-ℓ tree code over the alphabet

{0, 1}m. Denote by x = (x1, . . . , xℓ) ∈ ({0, 1}m)ℓ the message to be encoded. Write

ℓ = ℓ1ℓ2 for some parameters ℓ1, ℓ2 to be chosen later on. We think of the message x

written in matrix form with row length ℓ1 (and thus ℓ2 rows) row by row, from left to

right. That is, the first row consists of x(1) = (x1, . . . , xℓ1), recorded from left to right;

the second row consists of the next ℓ1 symbols x(2) = (xℓ1+1, . . . , x2ℓ1), and so forth until

the last row x(ℓ2).

The transformation starts by applying the (α, β, γ) tree code that is given as input to

6

the transformation,

TCrow : ({0, 1}m)ℓ1 → ({0, 1}m1)ℓ1

which is assumed to have distance δ, to each row r so as to obtain y(r) = TCrow

(
x(r)

)
∈

({0, 1}m1)ℓ1 , where m1 = (1 + α)m + βℓγ1 . This by itself guarantees that from the split

until the end of its row, the relative distance is δ. However, as TCrow is applied to each

row without taking into account the information from prior rows, there is no distance

guarantee in future rows.

Tensoring? By inspecting the literature on other types of codes, in particular locally

testable and locally decodable codes, one can see that tensoring is a natural way to

overcome this issue of the distance effecting only a single row. Viewing y(1), . . . , y(ℓ2) as

the ℓ2 rows of an ℓ2× ℓ1 matrix over {0, 1}m1 , let w(1), . . . , w(ℓ1) be this matrix’s columns.

By tensoring we mean applying a second tree code TCcol : ({0, 1}m1)ℓ2 → ({0, 1}m2)ℓ2

to each column w(c). Intuitively, this should take care of the distance in future rows.

However, as the tree codes we consider perform better when there is a large symbol-

size-to-depth ratio, it turns out that despite some advantages entailed by tensoring, it

is significantly better to consider each row as one large symbol. Moreover, unlike with

tensoring, we can work with the original message and not with the (more expensive)

output of the code TCrow when applied to each row of the message.

Thus, at the second step we view each row of the message x(r), r = 1, . . . , ℓ2, as a

symbol in {0, 1}mℓ1 . Let

TCcol : ({0, 1}mℓ1)ℓ2 → ({0, 1}m2ℓ1)ℓ2

be an (αcol, βcol, γcol) tree code with distance δcol, and let zr = TCcol(x)r for r = 1, . . . , ℓ2.

Of course, we wish to reduce these large symbols back to length ℓ1 strings, and we want

the transformation to have the property that a large nonzero symbol will correspond to

a string with many nonzeros. To this end, let C : ({0, 1}m2)ℓ1 → ({0, 1}m3)ℓ1 be a block

code with distance δC. Note that we use a somewhat nonstandard code type in which

the block length is equal to the message length and it is the output alphabet size that is

larger than the input alphabet size. However, such a code can be easily obtained from

standard codes.

Of course, we cannot output C(zr) = C(TCcol(x)r) at row r as TCcol is online only in

the “resolution” of full rows. Further, C itself is not online. Instead, we output C(zr) in

7

row r + 1. To summarize, the construction so far is defined by

TC(x)r,c =
(
TCrow

(
x(r)

)
c
,C

(
TCcol(x)r−1

)
c

)
. (2.1)

2.4.1 Analyzing the redundancy so far

Although TC as defined in Equation (2.1) is not yet a tree code as we have no sufficient

bound on its distance (as we explain, and resolve, in Section 2.4.2), it is instructive to

analyze its redundancy already at this point. First, we need to choose TCcol. There are

two natural candidates: CHS or the tree code that was obtained in the previous iteration.

However, it turns out that if we wish to maintain the distance then, between these two

options, we are forced to take CHS. Thus, TCcol is a (δcol, δcol, 1) tree code with distance

δcol. As we apply TCrow to obtain the first component in the output of TC, we write

m1 = (1 + α)m+ βℓγ1

bits in the first component. As for the second component, by the choice of TCcol, we get

m2ℓ1 = (1 + αcol)mℓ1 + βcolℓ
γcol
2 = (1 + δcol)mℓ1 + δcolℓ2,

and so m2 = (1 + δcol)m+ δcol
ℓ2
ℓ1
. The application of C then gives

m3 = (1 + δC)m2 ≲ (1 + δcol + δC)m+ (1 + δC)δcol
ℓ2
ℓ1
,

where we used the fact that the code C, when set with distance δC, adds δC redundant

symbols. Note that here we allow ourselves to ignore constant factors.

As in TC we outputm1+m3 bits perm bits read, the concern that may come up is that

the redundancy deteriorates by at least a factor of two (as, in particular, m1+m3 ≥ 2m).

However, by using a systematic code C and systematic tree codes TCrow,TCcol, we have

that for every m bit read, TC outputs roughly

(1 + α + δcol + δC)m+ (1 + δC)δcol
ℓ2
ℓ1

+ βℓγ1

bits. Now, by taking ℓ1, ℓ2 such that ℓγ1 = ℓ2
ℓ1

(recall also that ℓ = ℓ1ℓ2) we deduce that

TC outputs

(1 + α + δcol + δC)m+ (β + 2δcol)ℓ
γ

2+γ

8

bits per m bits read. It is worth mentioning that the use of a systematic code so as to

“pay” only for the redundant part entails some technical problems. Indeed, the redundant

part of the code C is only recorded in the consecutive row, and so the redundancy is placed

somewhat far from the systematic part.

As for the distance, although TC is not a tree code yet, we know that within a row the

guaranteed distance is δ on the account of TCrow. As we do not want the transformation to

deteriorate the distance, we must make sure that this is the bottleneck. When considering

“sufficiently many” rows from the split, the fraction of nonzero output symbols of TCcol

is roughly δcol and each contributes a δC-fraction of nonzero symbols after applying C.

Thus, the distance cannot be better than min(δ, δcol · δC). By setting δcol = δC =
√
δ the

latter equals to δ, and we have that TC outputs at most

(1 + α + 2
√
δ)m+ (β + 2

√
δ)ℓ

γ
2+γ

bits per m bits read. To summarize, the α, β components deteriorate by an additive

O(
√
δ) and, on the positive side, the dependence on γ improves by a factor of two (and,

in fact, slightly better).

2.4.2 Fixing the transformation

To see the problem with the transformation as given so far by Equation (2.1), consider

the case in which the split appears near the end of its row, say d entries before the end of

the row. Then TCrow will guarantee the existence of δd nonzeros within that row after the

split. However, TCcol and the code applied to it, C, are not guaranteed to output nonzeros

at the beginning of the consecutive row, and it could be the case that all (or most) of the

nonzero entries are recorded towards the end of that row. Hence, we have no meaningful

guarantee on the distance.

A typical solution in such case is to use two tree codes in a “brick wall” like manner,

namely, applying TCrow twice - once on the rows as we have done so far, and a second time

in which we apply TCrow from the midpoint of a row to the midpoint of the next row. The

first problem with this approach is that concatenating the two outputs will double the

dependence on α. Here the use of a systematic tree code does not help as we cannot even

afford the redundancy to double! A second problem with this simple approach is that the

distance deteriorates by a factor of 2 and we cannot afford this lose. Indeed, recall that

for constructing our tree code, we compose the transformation with itself for ≈ log log n

times. Hence, a deterioration by a factor of 2 in the distance each time will result with a

9

tree code having distance ≈ 1
logn

.

Thus, we are forced to come up with a different solution. The first idea that goes

into our solution is to make sure that the smaller d (as defined above) is, the “faster”

nonzero symbols are outputted at the next row, thus preventing the undesired phenomena

described above of nonzero entries clustered towards the end of the row. To this end, we

identify {0, 1}m with the finite field of size 2m, F2m , in an arbitrary manner, and for row

r, we define the polynomial gr(T) ∈ F2m [T] by

gr(T) =

ℓ1∑
i=1

x
(r)
i T ℓ1−i.

Then, at row r+1 we output, on top of the symbols that are given by Equation (2.1), the

evaluations of gr at arbitrary distinct elements of F2m . Note that for this we need that

2m ≥ ℓ1 which is the reason why our transformation only works over sufficiently large

alphabet. As we are shooting for low deterioration on α, we do not output the evaluation

at every entry but rather only every c entries, for some parameter c, and “spread” every

evaluation over c consecutive blocks.

Let r be the row of the split. The point of this construction is that deg gr = d and

so, the smaller d is, the less zeros gr has and, in particular, every prefix of the symbols

outputted in row r + 1 has at most d zeros. The worst case scenario is that the d zeros

happen to be the first d field elements we evaluate at. These, recall, occupy the length cd

prefix of row r + 1 due to the above mentioned spread. In this case, the distance when

considering a length d+ cd interval from the split is δd
(c+1)d

= δ
c+1

. In fact, we also need to

apply an error correcting code to the evaluations but we ignore this issue in this informal

proof overview.

This seems to get us nowhere since, as already mentioned, we cannot afford to lose a

constant factor in the distance. A key observation here is that for the above analysis we

did not need the full-fledged tree code guarantee. Indeed, in the above calculation, we

only considered the number of nonzeros at the end of row r which we bounded below by

δd. Therefore, our second idea is to introduce a mechanism that guarantees that at the

end of each row, the relative distance is ∆, for some parameter ∆ > δ. This can be done

using error correcting codes in a fairly simple manner and by paying O(∆) in redundancy.

Having done so, the above bound can be improved to ∆d
(c+1)d

. By choosing c ≈ 1√
δ
and

∆ ≈
√
δ we guarantee no loss in distance as ∆d

(c+1)d
≥ δ. In terms of the redundancy, the

α component deteriorates by another additive O
(
1
c
+∆

)
= O(

√
δ) term.

10

To summarize, taking into account the contribution of TCrow,TCcol and the code C

applied to the latter, as well as the evaluation of the polynomials (gr) and the mechanism

that guarantees suffix distance ∆ in each row, we have that at the expense of an additive

O(
√
δ) deterioration of the α, β parameters, the dependence on the γ parameter improves

by (slightly more than) a factor of two, and further, the distance δ remains as is.

3 Preliminaries

All log are taken base 2. For positive integers ℓ,m, n such that ℓ ≤ m and ℓ < n,

we define the intervals [m] = {1, . . . ,m}, [ℓ,m] = {ℓ, . . . ,m}, [ℓ, n) = {ℓ, . . . , n− 1}, and
[ℓ,∞) = {ℓ, ℓ+ 1, ℓ+ 2, . . .}. Let i, j, k be integers such that 0 ≤ i ≤ j ≤ n and i < k ≤ n,

and let Σ be some set. In contrast to the informal Section 2, from here on our indices will

start from 0. Given a string x = (x0, . . . , xn−1) ∈ Σn, we denote by xi ∈ Σ the ith symbol

of x and notate x[i,j] = (xi, . . . , xj), x[i,k) = (xi, . . . , xk−1). For two strings x, y we denote

their concatenation by x ◦ y. We refer to the natural numbers as N = {0, 1, 2, . . .} .

Definition 3.1 (Hamming distance). For two strings x, x′ ∈ Σn, the Hamming distance

between x and x′ is defined to be |{ i ∈ [0, n) | xi ̸= x′i }|, and we denote it by dist(x, x′).

Further, the relative distance between x and x′ is defined by 1
n
· dist(x, x′).

Definition 3.2 (Split). For two strings x, x′ ∈ Σn, x ̸= x′, we define the split of x and

x′ to be the minimal index i for which xi ̸= x′i, and we denote it by split(x,x′).

Definition 3.3 (Systematic function). Let k, n be positive integers and let Σin,Σout be

some sets. We say that a function f : Σk
in → Σn

out (f : ΣN
in → ΣN

out) is systematic if there

exist indices i1, . . . , ik ∈ [0, n) ({it}t∈N ⊆ N) and indices j1, . . . , jk ∈ [0, |Σout|) ({jt}t∈N ⊆
[0, |Σout|)) such that for every x ∈ Σk

in (x ∈ ΣN
in), it holds that (f(x)i1)j1 , . . . , (f(x)ik)jk = x

(((f(x)it)jt)t∈N = x).

Definition 3.4 (Explicit function). A function f : Σn
in → Σn

out (f : ΣN
in → ΣN

out) is said to

be explicit if for every i ∈ [0, n) (i ∈ N), f(x)i can be computed in time poly(log |Σin|, n)
(poly(log |Σin|, i+ 1)).

3.1 Error-correcting block-codes

Definition 3.5 (Error-correcting codes). A set C ⊆ Σn is called a (ρ, δ)-error-correcting

code if log|Σ| |C| ≥ ρn and for any distinct x, y ∈ C, dist(x, y) ≥ δn. The maximal

11

ρ, δ ∈ [0, 1] for which C is a (ρ, δ)-error-correcting code are called the rate and the relative

distance of the code, respectively.

Definition 3.6 (Reed-Solomon codes). Let m, k, n ∈ N such that k ≤ n ≤ 2m. Let F2m

be the field with 2m elements and let α : F2m → Fm
2 be some F2-linear bijection. We define

the (m, k, n)-Reed-Solomon code to be the following code RS(m,k,n) ⊆ (Fm
2)

n,

RS(m,k,n) = { (α(f(γ1)), . . . , α(f(γn))) | f ∈ F2m [X], deg(f) ≤ k − 1 },

where γ1, . . . , γn ∈ F2m are distinct. We define the (m, k, n)-Reed-Solomon encoding,

EncRS(m,k,n) : (Fm
2)

k → (Fm
2)

n to be any fixed systematic encoding of RS(m,k,n), i.e.,

a function which satisfies that Img(EncRS(m,k,n)) = RS(m,k,n) and that for every x ∈
(Fm

2)
k, EncRS(m,k,n)(x)[0,k) = x.1 We define the (m, k, n)-Reed-Solomon redundancy func-

tion to be the following function RedRS(m,k,n) : (Fm
2)

k → (Fm
2)

n−k, RedRS(m,k,n)(x) =

EncRS(m,k,n)(x)[k,n).

Fact 3.7. For every m, k, n ∈ N such that k ≤ n ≤ 2m, and c, c′ ∈ RS(m,k,n), c ̸= c′, it

holds that dist(c, c′) ≥ n− k + 1.

Throughout the paper we make use of length-preserving systematic codes. These

can be obtained from standard codes in a fairly straightforward manner, however, for

completeness, we give the proof of the following lemma in Appendix C.

Lemma 3.8. For every positive integers m, k such that k ≤ 2m−1 and every τ such that
1
m

≤ τ ≤ 1, there exists a systematic error-correcting code

C : ({0, 1}m)k → ({0, 1}m × {0, 1}τm)k

with relative distance ≥ τ
4
.

3.2 Tree codes

Definition 3.9 (Online function). A function f : Σn
in → Σn

out (f : ΣN
in → ΣN

out) is said to

be online if for every x ∈ Σn
in (x ∈ ΣN

in) and i ∈ [0, n) (i ∈ N), f(x)i is determined by

x0, . . . , xi.

1Note that as Reed-Solomon is an MDS code, an encoding function that satisfies these properties
exists.

12

Definition 3.10 (Tree code). An online function TC : Σn
in → Σn

out (TC : ΣN
in → ΣN

out) is

a depth-n (infinite) tree code with distance δ if for every distinct x, y ∈ Σn
in (x, y ∈ ΣN

in)

such that s = split(x,y) and every ℓ ∈ [0, n− s), (ℓ ∈ N),

dist
(
TC(x)[s,s+ℓ],TC(y)[s,s+ℓ]

)
≥ δ(ℓ+ 1).

A tree code is explicit if TC is explicit according to Definition 3.4. A tree code is a binary

tree code if Σin = {0, 1}.

In our proof we will make use of the following standard fact.

Fact 3.11 (Reduction to binary alphabet). There exist universal constants cdist ∈ (0, 1),

crate > 1 for which the following holds. Let TC : Σn → (Σr)n be an explicit tree code with

distance δ ∈ (0, 1). Then TC can be transformed to a binary tree code

TCbin : {0, 1}log |Σ|n → ({0, 1}crater)log |Σ|n

with distance cdistδ such that evaluating TCbin can be done in time poly(n, |Σ|). In partic-

ular, if |Σ| = poly(n) then TCbin is explicit.

4 The γ-reducing transformation

In this section we present the transformation that improves upon the dependence on

the γ component of a tree code as was informally discussed in Section 2. To this end,

in Section 4.1 we introduce some preliminary definitions and assert some claims that we

use in our transformation. Then, in Section 4.2 we present our transformation and its

analysis.

4.1 Some preparations

For our transformation, it is essential to break down the number of colors a tree code uses

to three components in terms of the tree’s arity and depth. This enables us to divert the

dependence of the number of colors between the three components.

Definition 4.1 (An (α, β, γ) tree code). Let α, β, γ ≥ 0 and let m, k, ℓ be positive integers.

We say that a systematic tree code TC : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

)ℓ

is an (α, β, γ)

tree code if k ≤ αm+ βℓγ.

13

4.1.1 The CHS construction

In [CHS18], the authors provide a construction of a systematic tree code over the integers.

For our transformation, we use a variation of their construction that has better dependence

on α (and, less importantly, on β). An extended description of the CHS construction

together with a proof for Claim 4.2 can be found in Appendix B.

Claim 4.2. (A variation of the CHS construction with a better dependence on α) For

every positive integers b, c,m, ℓ such that b ≤ c ≤ 2
m+ℓ
b , there exists an explicit and

systematic tree code

TCb,c
m,ℓ : ({0, 1}

m)
ℓ →

(
{0, 1}m × {0, 1}

m+ℓ
b

)ℓ

with distance c−b
2c2
.

Corollary 4.3. For every positive integers b,m, ℓ such that b ≤ 2
m+ℓ
b

−1, there exists an

explicit and systematic tree code

TCb,2b
m,ℓ : ({0, 1}

m)
ℓ →

(
{0, 1}m × {0, 1}

m+ℓ
b

)ℓ

with distance 1
8b
.

Proof. Follows trivially from Claim 4.2 by setting c = 2b.

4.1.2 More definitions and claims

For our transformation we make use of a tree code that, in addition to its regular notion

of distance, has a stronger bound on its “suffix-distance”. Here we define this property

and argue for the existence of an efficient transformation that equips a tree code with

any desired suffix-distance that is smaller than 1
8
, while preserving its (regular) distance

and slightly increasing its alphabet size. We describe the transformation and prove its

properties in Appendix D.

Definition 4.4 (Suffix distance). Let f : Σn
in → Σn

out be an online function and let ∆ ∈
(0, 1). We say that f has suffix-distance ∆ if for every distinct x, x′ ∈ Σn

in it holds that

dist
(
f(x)[s,n), f(x

′)[s,n)
)
≥ ∆(n− s), where s = split(x,x′).

Definition 4.5 (Tree code with distance (δ,∆)). For δ,∆ ∈ (0, 1), we say that a tree

code TC : Σn → Πn has distance (δ,∆) if it has distance δ (as in the regular notion for

tree codes) and suffix distance ∆.

14

Claim 4.6 (Tree code transformation to obtain suffix-distance). Let ∆ ∈
(
0, 1

8

]
, δ ∈ (0, 1),

α, β, γ ≥ 0, and let k,m, ℓ be positive integers such that ℓ ≤ 2m. Then, every systematic

(α, β, γ) tree code

TC : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

)ℓ

with distance δ can be efficiently transformed to a systematic (α + 8∆, β, γ) tree code

TC∆ : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

′
)ℓ

with distance (δ,∆). We refer to TC∆ as the ∆-suffix-distance tree code of TC.

Lastly, we introduce some notions we require.

Definition 4.7 (Row-major matrix). Let m, ℓ1, ℓ2 be positive integers and set ℓ = ℓ1ℓ2.

Let x ∈ ({0, 1}m)ℓ be a string and let Mx be an ℓ2× ℓ1 matrix whose entries are elements

in {0, 1}m. We say that Mx is the ℓ2 × ℓ1 row-major matrix of x if the entries of Mx

hold x’s symbols ordered by rows from left to right, top to bottom. That is, for every

i ∈ [0, ℓ2) , j ∈ [0, ℓ1) ,

Mx(i, j) = xi·ℓ1+j.

Definition 4.8 (Spread). For integers n,m, n′ such that n′ | nm we define a function

sprn′ : (Σm)n →
(
Σ

nm
n′
)n′

as follows. For every x ∈ (Σm)n, sprn′(x) is defined to be the

string (y0, . . . , yn′−1) ∈
(
Σ

mn
n′
)n′

which satisfies that y0 ◦ · · · ◦ yn′−1 = x0 ◦ · · · ◦ xn−1 as

elements in Σmn.

Claim 4.9. For every x, x′ ∈ (Σm)n and n ≤ n′, n′ | nm,

dist(sprn′(x) , sprn′(x′)) ≥
1

2
· dist(x, x′) .

Proof. Setm′ = nm
n′ and note thatm′ ≤ m. Further set d = dist(x, x′) and let j1 < · · · < jd

be indices in [0, n) that satisfy xji ̸= x′ji . Let t1, . . . , td ∈ [0,m) be indices for which

(xji)ti ̸= (x′ji)ti . For every i ∈ [d] set

ℓi =

⌊
mji + ti
m′

⌋
. (4.1)

That is, ℓi is the index of the block of sprn′(x) in which (xji)ti resides. We have that

sprn′(x)ℓi ̸= sprn′(x′)ℓi for every i ∈ [d]. Note that it follows from Equation (4.1) using

that m′ ≤ m, that if i, i′ ∈ [d] satisfy i < i′ and ℓi = ℓi′ then it must be that ji′ = ji + 1,

15

which in turn implies i′ = i + 1. It immediately follows that |{ℓ1, . . . , ℓd}| ≥ d
2
and so

dist(sprn′(x) , sprn′(x′)) ≥ d
2
, as required.

Claim 4.10. Let k, n, n′,m be positive integers such that k < n ≤ n′ and n′ | (n − k)m,

and let Σ be some set. Then, for every x, x′ ∈ (Σm)n

dist
(
x[0,k), x

′
[0,k)

)
+ dist

(
sprn′

(
x[k,n)

)
, sprn′

(
x′[k,n)

))
≥ 1

2
dist(x, x′) .

Proof. Follows trivially from Claim 4.9.

4.2 The γ-reducing transformation

Equipped with the definitions and claims from Section 4.1, we turn to describe our trans-

formation. The main result proved in this section is the following.

Theorem 4.11. There exist a constant δ0 ∈ (0, 1) and a transformation that given a

systematic (α, β, γ) tree code

TCin : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

)ℓ

(4.2)

with distance δ, such that m ≥ max
{
2 log ℓ, 2

δ
log 1

δ

}
, transforms it to a systematic(

α + 267
√

min {δ, δ0}, β + 161
√

min {δ, δ0}, γ
2+γ

)
tree code

TCout : ({0, 1}m)ℓ
2+γ

→
(
{0, 1}m × {0, 1}kout

)ℓ2+γ

with distance δout ≥ min {δ, δ0}. Moreover, if TCin is explicit then so is TCout.

Proof. Let TCin be the tree code from Equation (4.2), let ℓ′ be a positive integer to

be determined later, and set ℓout = ℓ · ℓ′. We use the following notations. For every

x ∈ ({0, 1}m)ℓout , set Mx to be the ℓ′ × ℓ row-major matrix of x (see Definition 4.7). For

every (i, j) ∈ [0, ℓ′)× [0, ℓ) , we denote the symbol in the (i, j)th entry of Mx by x̄i,j, and

the length-ℓ substring that lies in the ith row of Mx by x̄i.

Let F be the field of 2m elements, and let φ : {0, 1}m → F, ψ : {0, . . . , 2m − 1} → F
be some bijections. For every i ∈ [1, ℓ′) we define a polynomial gx,i ∈ F [Z] by

gx,i(Z) =
ℓ−1∑
j=0

φ (x̄i−1,j)Z
ℓ−j−1. (4.3)

16

Namely, the coefficients of gx,i are the field elements corresponding to the symbols that

lie in the (i− 1)st row of Mx, taken from right to left. For i = 0 we set gx,i to be the zero

polynomial.

4.2.1 Ingredients

Let ∆ ∈
(
0, 1

8

]
and let b be a positive integer such that b ≤ 2

m
b
−1. We set ∆, b later on

(see Equation (4.4)). We use the following ingredients to construct TCout.

� The ∆-suffix-distance tree code of TCin,

TC∆
in : ({0, 1}m)ℓ →

(
{0, 1}m × {0, 1}k × {0, 1}8∆m

)ℓ

,

which is obtained by Claim 4.6.

� A systematic
(
1
b
, 1
b
, 1
)
tree code

TCcol :
(
{0, 1}mℓ

)ℓ′

→
(
{0, 1}mℓ × {0, 1}k

′
)ℓ′

with distance 1
8b
, given by Corollary 4.3. Observe that the existence of TCcol is

implied by the constraint b ≤ 2
m
b
−1, that we impose on b.

� An explicit and systematic error-correcting code

C1 :

(
{0, 1}

mℓ+k′
ℓ

)ℓ

→
(
{0, 1}

mℓ+k′
ℓ × {0, 1}ρ1·

mℓ+k′
ℓ

)ℓ

set with relative distance δ1 = ρ1
4
. The code C1 exists per Lemma 3.8 per our

assumption m ≥ 2 log ℓ. The parameter δ1 (and therefore also ρ1) will be set later

on.

� The
(
m
b
, b, 2b

)
-Reed-Solomon encoding

C2 :
(
{0, 1}

m
b

)b

→
(
{0, 1}

m
b

)2b

with relative distances δ2 =
1
2
, given by Definition 3.6.

� The second component projections

Rcol : {0, 1}mℓ × {0, 1}k
′
→ {0, 1}k

′
,

17

and

RC1 : {0, 1}
mℓ+k′

ℓ × {0, 1}ρ1·
mℓ+k′

ℓ → {0, 1}ρ1·
mℓ+k′

ℓ .

� Finally, the set of polynomials { gx,i | i ∈ [0, ℓ′) } as defined in Section 4.2.

4.2.2 The transformation

Let x ∈ ({0, 1}m)ℓout be a message to be encoded. Let t ∈ [0, ℓout) and set (i, j) ∈
[0, ℓ′)× [0, ℓ) to be the indices corresponding to t, with respect to the row-major ordering

as described in Definition 4.7. From now on, we identify t with its corresponding ma-

trix indices. At time (i, j) the output of the resulting tree code TCout : ({0, 1}m)ℓout →(
{0, 1}m × {0, 1}kout

)ℓout
consists of the following three parts.

� The first part of the output is taken to be

TC∆
in(x̄i)j ∈ {0, 1}m × {0, 1}k × {0, 1}8∆m ,

namely, the jth symbol of TC∆
in , when evaluated on the ith row of Mx.

� For the second part, we compute

ai−1 = TCcol(x)i−1 ∈ {0, 1}mℓ × {0, 1}k
′
,

where for the case of i = 0 we define a−1 = (0mℓ, 0k
′
). Then, we apply C1 to the

result, where we interpret ai−1 as a string of length ℓ over {0, 1}
mℓ+k′

ℓ , and consider

the redundancies

qi−1 = Rcol(ai−1) ∈ {0, 1}k
′

ri−1,j = RC1

(
C1(ai−1)j

)
∈ {0, 1}ρ1·

mℓ+k′
ℓ .

Lastly, the second part of TCout(x)i,j is taken to be
(
sprℓ(qi−1)j , ri−1,j

)
.

� For the third part, we apply gx,i to the field element vj = ψ
(⌊

j
2b

⌋)
. Note that this

is well-defined due to the assumption m ≥ 2 log ℓ. Then, we map the evaluation

to {0, 1}m to obtain wj = φ−1 (gx,i (vj)) , where wj is reinterpreted as a string in(
{0, 1}

m
b

)b

. Then, we take the third part of TCout(x)i,j to be C2 (wj)j mod 2b ∈
{0, 1}

m
b .

18

To summarize, at time (i, j) ∈ [0, ℓ′)× [0, ℓ) we output

TCout(x)i,j =
(
TC∆

in(x̄i)j ,
(
sprℓ(qi−1)j , ri−1,j

)
,C2 (wj)j mod 2b

)
.

Observe that by the fact that TCcol is online, for every i ∈ [1, ℓ′) , j ∈ [0, ℓ) , qi−1, ri−1,j

and wj are determined by elements that lie in rows 0 to i − 1, and in the case of i = 0,

they are set to be the respective zero strings. Thus, and since TC∆
in is online, TCout is

an online function. In addition, TCout is systematic as TC∆
in is systematic. Further, since

TC∆
in ,TCcol,C1,C2,Rcol and RC1 all are explicit, we have that TCout is explicit.

4.2.3 Distance analysis

We turn to analyze the distance pf TCout. Let x, y ∈ ({0, 1}m)ℓout be distinct messages,

set s = split(x,y), and let d ∈ [0, ℓout − s). We use the ℓ′ × ℓ row-major matrices Mx and

My to analyze the distance. We denote the entry indices that hold the split symbols,

xs, ys, by (s1, s2), and the entry indices that hold the “test” symbols, xs+d, ys+d, by (t1, t2).

That is, Mx(s1, s2) = xs, Mx(t1, t2) = xs+d, and similarly for My. We proceed by a case

analysis.

The case t1 = s1.

In this case, the split index and the “test” index are in the same row. Observe that

TC∆
in(x̄s1)[s2,t2] and TC∆

in(ȳs1)[s2,t2] are embedded in TCout(x)[s,s+d],TCout(y)[s,s+d], respec-

tively. By Claim 4.6, TC∆
in has distance δ. Hence,

dist
(
TCout(x)[s,s+d] ,TCout(y)[s,s+d]

)
≥ δ(d+ 1).

This Concludes the case t1 = s1. For the remaining cases, define

τ =

t1 − 1 if t2 = ℓ− 1

t1 − 2 otherwise.

Namely, τ is the maximal row index that holds a codeword symbol of TCcol that is fully

written. In addition, set σ = τ − s1 + 1. Note that σ equals to the number of codewords

symbols of TCcol that are fully written.

19

The case t1 = s1 + 1 and σ = 0.

In this case the test index is in the consecutive row to the split and t2 < ℓ − 1. Define

s3 = ℓ− s2 − 1, that is, s3 is the column of the split when we read the row from right to

left. Note that

gx,t1(Z) = gx,s1+1(Z) =
ℓ−1∑
j=0

φ (x̄s1,j)Z
ℓ−j−1

gy,t1(Z) = gy,s1+1(Z) =
ℓ−1∑
j=0

φ (ȳs1,j)Z
ℓ−j−1

are polynomials of degree (exactly) s3, and recall that F is a field of at least ℓ elements.

Hence, by a direct corollary of the fundamental theorem of algebra,

|{ e ∈ F | gx,t1 (e) = gy,t1 (e) }| ≤ s3.

Furthermore, since φ is bijective, there are at most s3 field elements e for which φ−1 (gx,t1 (e)) =

φ−1 (gy,t1 (e)) . Since C2 is an error-correcting code with relative distance 1
2
, we get that

for every e ∈ F for which gx,t1(e) ̸= gy,t1(e),

dist
(
C2

(
φ−1 (gx,t1 (e))

)
,C2

(
φ−1 (gy,t1 (e))

))
≥ 1

2
· 2b = b,

where we identify {0, 1}m with
(
{0, 1}

m
b

)b

in the natural way. Further observe that for

every z ∈
{
0, . . . ,

⌊
t2+1
2b

⌋
− 1

}
, the entire codewords

C2

(
φ−1 (gx,t1 (ψ (z)))

)
,C2

(
φ−1 (gy,t1 (ψ (z)))

)
are embedded in TCcol(x)[s,s+d] and TCcol(y)[s,s+d] , respectively. Hence, if s3 +1 ≤ t2+1

2(∆+b)
,

1

d+ 1
· dist

(
TCout(x)[s,s+d] ,TCout(y)[s,s+d]

)
≥
b
(⌊

t2+1
2b

⌋
− s3

)
d+ 1

≥
b
(
t2+1
2b

− 1− s3
)

s3 + 1 + t2 + 1

≥
b
(

t2+1
2b

− t2+1
2(∆+b)

)
t2+1

2(∆+b)
+ t2 + 1

=
∆

2∆+ 2b+ 1
.

20

Otherwise, s3 +1 > t2+1
2(∆+b)

. Recall that TC∆
in has suffix-distance ∆ and that TC∆

in(x̄s1)[s2,ℓ)
and TC∆

in(ȳs1)[s2,ℓ) are embedded in TCout(x)[s,s+d] and TCout(y)[s,s+d], respectively. Hence,

1

d+ 1
· dist

(
TCout(x)[s,s+d],TCout(y)[s,s+d]

)
≥ ∆(ℓ− s2)

d+ 1

=
∆(s3 + 1)

s3 + 1 + t2 + 1

>
∆(s3 + 1)

s3 + 1 + 2(s3 + 1)(∆ + b)

=
∆

2∆ + 2b+ 1
.

The case σ ≥ 1.

As s is the split index of x, y when interpreted as strings in ({0, 1}m)ℓout , s1 is their split

index when interpreted as strings in
(
{0, 1}mℓ

)ℓ′

. Since TCcol has relative distance 1
8b

we

get that

dist
(
TCcol(x)[s1,τ] ,TCcol(y)[s1,τ]

)
≥ 1

8b
(τ − s1 + 1) =

1

8b
σ.

Since C1 has relative distance δ1, for every i ∈ [s1, τ] for which TCcol(x)i ̸= TCcol(y)i we

have that

dist
(
C1(TCcol(x))i ,C1(TCcol(y))i

)
≥ δ1ℓ,

where we interpret TCcol(x)i and TCcol(y)i as strings in

(
{0, 1}

mℓ+k′
ℓ

)ℓ

. Hence,

∑
i∈[s1,τ]

dist
(
C1

(
TCcol(x)i

)
,C1

(
TCcol(y)i

))
≥

∑
i∈[s1,τ] s.t.

TCcol(x)i ̸=TCcol(y)i

δ1ℓ

≥ 1

8b
σδ1ℓ.

Observe that x[s,s+d] is embedded in the first entries of TCout(x)[s,s+d], and in addition, for

every i ∈ [s1, τ] and j ∈ [0, ℓ) ,(
sprℓ(Rcol(TCcol(x)i))j ,RC1

(
C1(TCcol(x)i)j

))
is embedded in TCout(x)[s,s+d]. Thus, we get that the spread of the entire encoding

C1

(
TCcol(x)s1

)
, . . . ,C1(TCcol(x)τ)

21

is embedded in different but fixed parts of TCout(x)[s,s+d]. Similarly, the entire encoding

C1

(
TCcol(y)s1

)
, . . . ,C1(TCcol(y)τ)

is embedded in the corresponding parts of TCout(y)[s,s+d]. Therefore, using Claim 4.10,

TCout(x)[s,s+d] and TCout(y)[s,s+d] differ in at least 1
2
· 1
8b
σδ1ℓ symbols. Hence,

1

d+ 1
· dist

(
TCout(x)[s,s+d] ,TCout(y)[s,s+d]

)
≥ 1

16b
· δ1σℓ
d+ 1

≥ 1

16b
· δ1σℓ

(σ + 2)ℓ

≥ δ1
48b

where the last inequality follows as σ ≥ 1.

Denote the distance of TCout by δout. By the above case analysis, we conclude that

δout ≥ min

{
δ,

∆

2∆+ 2b+ 1
,
δ1
48b

}
.

By setting δ0 =
1
11
, δmin = min {δ, δ0} and taking

∆ =
2

5

√
δmin, b =

1

100
√
δmin

, δ1 =
12

25

√
δmin, (4.4)

we get that ∆ ∈
(
0, 1

8

]
, δ1 ≤ 1

4
(hence 1

m
≤ ρ1 ≤ 1), and δout ≥ δmin as desired.

4.2.4 Analyzing the redundancy

Let x ∈ ({0, 1}m)ℓout and let (i, j) ∈ [0, ℓ′)× [0, ℓ) . For a ∈ {1, 2, 3}, set k(a)out be the number

of bits we output in the ath entry of TCout(x) at any given time, excluding the systematic

part that appears in the first entry.

� The first part of the output is TC∆
in(x̄i)j . Since TCin is an (α, β, γ) tree code,

Claim 4.6 implies that TC∆
in is an (α + 8∆, β, γ) tree code. Thus, for every m bits

read, we output for the first part (α + 8∆)m+ βℓγ redundant bits.

� For the second part, we output a 1
ℓ
fraction of the redundant part of a symbol of

TCcol(x)i−1 concatenated with the redundant part of C1

(
TCcol(x)i−1

)
. Since TCcol is

22

a
(
1
b
, 1
b
, 1
)
tree code, for the second part we output

k
(2)
out =

k′

ℓ
+
ρ1(mℓ+ k′)

ℓ

=
(1 + ρ1)k

′ + ρ1mℓ

ℓ

≤
(1 + ρ1)

(
mℓ
b
+ ℓ′

b

)
+ ρ1mℓ

ℓ

=

(
1

b
+
ρ1
b
+ ρ1

)
m+

(1 + ρ1)ℓ
′

bℓ
.

� In the third part, for every input symbol read, we output a codeword symbol of C2

and therefore k
(3)
out =

m
b
.

Putting it all together, the number of redundant bits we output per (m bit) symbol read

is

kout = k
(1)
out + k

(2)
out + k

(3)
out

≤ (α + 8∆)m+ βℓγ +

(
1

b
+
ρ1
b
+ ρ1

)
m+

(1 + ρ1)ℓ
′

bℓ
+
m

b

=

(
α + 8∆+

2

b
+
ρ1
b
+ ρ1

)
m+ βℓγ +

(1 + ρ1)ℓ
′

bℓ
.

Since ρ1 = 4δ1 =
48
25

√
δmin, ∆ = 2

5

√
δmin, b =

1
100

√
δmin

, and by setting ℓ′ = ℓ1+γ (which im-

plies that ℓout = ℓ2+γ), we obtain a tree code TCout : ({0, 1}m)ℓout →
(
{0, 1}m × {0, 1}kout

)ℓout

such that

kout ≤
(
α + 4

√
δmin + 200

√
δmin + 200δmin + 2

√
δmin

)
m+ βℓ

γ
2+γ

out + 100
√
δmin

(
1 + 2

√
δmin

)
ℓ

γ
2+γ

out

=
(
α + 206

√
δmin + 200δmin

)
m+

(
β + 100

√
δmin + 200δmin

)
ℓ

γ
2+γ

out

≤
(
α + 267

√
δmin

)
m+

(
β + 161

√
δmin

)
ℓ

γ
2+γ

out (4.5)

where Equation (4.5) holds by δmin ≤ 1
11
.

To summarize, we obtain an
(
α +O

(√
δmin

)
, β +O

(√
δmin

)
, γ
2+γ

)
tree code with dis-

tance δout ≥ δmin, arity 2m, and depth ℓout = ℓ2+γ.

23

5 Proof of main result

Equipped with our transformation as given in Section 4, we are ready to prove Theo-

rem 1.2. Its worth noting that we take a bottom up approach in contrast to the top down

point of view that was taken in the proof overview (see Section 2).

Proof of Theorem 1.2. We first note that we might as well assume that δ ≥ 1
(log logn)2

as

for that distance, the theorem already guarantees a tree code with a constant number

of colors. Let n ∈ N and set δ0 to be the constant from Theorem 4.11. Let δ ∈ (0, δ0],

m = max
{
4 log n, 2

δ
log 1

δ

}
, and for every i ∈ N define ℓi = 22

i+1−1. Set r = ⌈log log n⌉
where, recall, all logarithms are taken base 2. We define a sequence of functions

TC(i) : ({0, 1}m)ℓi →
(
{0, 1}m × {0, 1}ki

)ℓi

for i = 0, . . . , r where k0, . . . , kr will be determined later on.

The first function, corresponding to i = 0, is defined to be the identity map. More

precisely, we set k0 = 0 and define TC(0) : ({0, 1}m)ℓ0 → ({0, 1}m)ℓ0 (where we identify

{0, 1}m × {0, 1}0 with {0, 1}m in the natural way). Note that, as ℓ0 = 2, TC(0) is a tree

code with distance 1
2
. With our notation, TC(0) is a (0, 0, 0) tree code, in particular, TC(0)

is an (α0, β0, γ0) tree code with α0 = 0, β0 = γ0 = 1.

For i ≥ 0 we define TC(i+1) to be the (αi+1, βi+1, γi+1) tree code obtained by the

transformation that is given by Theorem 4.11, set with distance δ, when applied to the

(αi, βi, γi) tree code TC(i). As m ≥ 2
δ
log 1

δ
by definition and since the transformation

preserves the distance, to verify that the hypothesis of Theorem 4.11 holds, namely,

m ≥ max
{
2 log ℓi,

2
δ
log 1

δ

}
, it suffices to show that m ≥ 2 log ℓi for i = 0, . . . , r − 1. As

the sequence (ℓi)i increases with i, it suffices to consider i = r − 1. One can easily verify

that ℓr−1 ≤ n2 and by our choice of m, we have that m ≥ 4 log n ≥ 2 log ℓr−1 as required.

Note that, by the way the transformation is defined, the sequences (ℓi)i, (γi)i satisfy

the recursive relations

ℓi+1 = ℓ2+γi
i ,

γi+1 =
γi

2 + γi
.

We wish to verify that this agrees with our definition of the sequence (ℓi)i. Indeed, a

simple induction can be used to show that γi =
1

2i+1−1
where we use the fact that γ0 = 1.

24

As we defined ℓi = 22
i+1−1, we have that

ℓ2+γi
i =

(
22

i+1−1
)2+γi

=
(
22

i+1−1
) 2i+2−1

2i+1−1
= 22

i+2−1 = ℓi+1.

We turn to bound the size of the output alphabet of TC(r). Using Theorem 4.11,

a straightforward inductive argument shows that αi, βi = O(i
√
δ). After applying the

transformation for r iterations, we get

TC(r) : ({0, 1}m)ℓr →
(
{0, 1}m × {0, 1}kr

)ℓr

where m + kr = (1 + αr)m + βrℓ
γr
r . Note that ℓγrr = 2 (which formalizes the key idea of

eliminating the dependence on the tree’s depth altogether) and so

m+ kr ≤ (1 +O(
√
δ · log log n))m. (5.1)

By a careful inspection, TC(0) is indeed explicit and since the transformation applied to

each TC(i) is efficient (in ℓi, and so in particular in n), and since we apply the transfor-

mation for r = O(log log n) iterations, we have that TC(r) is explicit.

We define

TC′ : ({0, 1}m)
n
m → ({0, 1}m+kr)

n
m

to be the truncation of TC(r) to the length n
m

prefix. Indeed, n
m

≤ ℓr as can be easily

verified. In addition, by the properties of TC(r), TC′ is explicit and has distance δ. Finally,

we define the binary tree code that is asserted by the theorem to be the binary tree code

with distance cdist ·δ that is given by Fact 3.11 when fed with TC′ as input, where crate, cdist

are the constants from the statement of Fact 3.11. Namely,

TCbin : {0, 1}n →
(
{0, 1}crate

m+kr
m

)n

.

By Fact 3.11, the running time required for evaluating TCbin is poly(n, 2
m) = poly(n). To

conclude the proof, we bound the number of colors used by TCbin:

2crate
m+kr

m = 2O(1+
√
δ log logn) = 2O(

√
δ log logn) = (log n)O(

√
δ),

where the first equality follows by Equation (5.1), and the second holds per our assumption

δ ≥ 1
(log logn)2

.

25

References

[BH20] Siddharth Bhandari and Prahladh Harsha. A note on the explicit con-

structions of tree codes over polylogarithmic-sized alphabet. arXiv preprint

arXiv:2002.08231, 2020.

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceed-

ings of the 3rd Innovations in Theoretical Computer Science Conference, pages

161–167. ACM, New York, 2012.

[BYCN20] Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate

tree codes via pascal determinant cubes. In Electron. Colloquium Comput.

Complex., volume 27, page 141, 2020.

[CHS18] Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. Explicit binary

tree codes with polylogarithmic size alphabet. In STOC’18—Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages

535–544. ACM, New York, 2018.

[CS20] Gil Cohen and Shahar Samocha. Palette-alternating tree codes. In The 35th

Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2020.

[Gel17] Ran Gelles. Coding for interactive communication: a survey. Found. Trends

Theor. Comput. Sci., 13(1-2):front matter, 1–157, 2017.

[GHK+16] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigder-

son. Towards optimal deterministic coding for interactive communication. In

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-

crete Algorithms, pages 1922–1936. ACM, New York, 2016.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. Bell System

Tech. J., 29:147–160, 1950.

[Jus72] Jorn Justesen. Class of constructive asymptotically good algebraic codes.

IEEE Transactions on Information Theory, 18(5):652–656, 1972.

[MS14] Cristopher Moore and Leonard J. Schulman. Tree codes and a conjecture on

exponential sums. In ITCS’14—Proceedings of the 2014 Conference on In-

novations in Theoretical Computer Science, pages 145–153. ACM, New York,

2014.

26

[NW20] Anand Kumar Narayanan and Matthew Weidner. On decoding Cohen-

Haeupler-Schulman tree codes. In Proceedings of the Fourteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1337–1356. SIAM, 2020.

[Pud16] Pavel Pudlák. Linear tree codes and the problem of explicit constructions.

Linear Algebra Appl., 490:124–144, 2016.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication.

In Proceedings of the 25th annual ACM Symposium on Theory of Computing,

pages 747–756, 1993.

[Sch94] Leonard J. Schulman. Postscript of 21 september 2003 to cod-

ing for interactive communication. http://users.cms.caltech.edu/ schul-

man/Papers/intercodingpostscript.txt, 1994.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Trans.

Inform. Theory, 42(6, part 1):1745–1756, 1996. Codes and complexity.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System

Tech. J., 27:379–423, 623–656, 1948.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions

on Information Theory, 42(6):1710–1722, 1996.

[TVZ82] Michael A. Tsfasman, Serge G. Vladut, and Thomas Zink. Modular curves,

Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound.

Mathematische Nachrichten, 109(1):21–28, 1982.

A From finite to infinite tree codes

In this section we show how to efficiently transform a family of finite tree codes to one

infinite tree code with comparable parameters.

Lemma A.1. Assume that for every i ∈ N, there exists a finite tree code TC2i : Σ
2i

in → Σ2i

out

with distance δ. Then, there exists an infinite tree code TC : ΣN
in → (Σ3

out)
N with distance

δ
2
. Furthermore, given that the tree codes (TC2i)i∈N are explicit, then so is TC.

Proof. We start the proof by a somewhat informal description, for ease of readability, and

then formalize the argument. We describe how the infinite tree code TC is constructed

27

using (TC2i)i∈N. The idea behind the construction is that at each time we encode the input

symbol using two tree codes, which can be denoted by TCcurrent and TCnext. The depth

of TCcurrent is 2i, for some i, and the depth of TCnext is always double that of TCcurrent.

We will use TCcurrent and TCnext for a period of length 2i−1 starting from time 2i−1, after

which they will be switched to the next pair of tree codes. For every j in that period, we

output 3 symbols: one symbol that corresponds to the output of TCcurrent on x[0,2i) at time

j, and two symbols of TCnext. The two symbols of TCnext that we output correspond to

simulating TCnext on the entire x[0,2i). Note that after a period of length 2i−1, the entire

output of TCnext on x[0,2i) is written. After this period is over, TCnext is set to be TCcurrent

and TCnext is set to be a tree code of a double length, and the process infinitely continues

in this manner.

We turn to formally describe the construction and its analysis. Let ⊥ be any fixed

symbol of Σout. On input x ∈ ΣN
in, at time j = 0, the jth output is defined by

TC(x)0 =
(
TC1

(
x[0,0]

)
0
,TC2

(
x[0,1]

)
0
,⊥

)
.

At time j > 0, the jth output is

TC(x)j =

(
TC2⌈log(j+1)⌉

(
x[0,2⌈log(j+1)⌉)

)
j
,

TC2⌈log(j+1)⌉+1

(
x[0,2⌈log(j+1)⌉+1)

)
2(j−2⌈log(j+1)⌉−1)

,

TC2⌈log(j+1)⌉+1

(
x[0,2⌈log(j+1)⌉+1)

)
2(j−2⌈log(j+1)⌉−1)+1

)
.

We turn to analyze the properties of TC. First note that TC is indeed online, which

follows from that every TC2i is online, and for every j, TC(x)j only depends on values

TC2i
(
x[0,2i)

)
j′
for j′ ≤ j. Further note that indeed the output alphabet of TC is Σ3

out.

Thirdly, if (TC2i)i are explicit, then by the definition of TC(x)j, the time to compute

TC(x)j is

poly
(
log |Σin|, 2⌈log(j+1)⌉+1

)
= poly (log |Σin|, j + 1) ,

and so TC is explicit.

Lastly, we argue that TC is a tree code with distance at least δ
2
. Given any two inputs

x, x′ ∈ ΣN
in, x ̸= x′ such that s = split(x,x′) and ℓ ∈ N, we need to show that

dist
(
TC(x)[s,s+ℓ],TC(x

′)[s,s+ℓ]

)
≥ δ

2
(ℓ+ 1). (A.1)

28

By assumption, for i = ⌈log(s+ ℓ+ 1)⌉, we have that

dist
(
TC2i

(
x[0,2i)

)
[s,s+ℓ]

,TC2i
(
x′[0,2i)

)
[s,s+ℓ]

)
≥ δ(ℓ+ 1),

and by construction, the elements of TC2i
(
x[0,2i)

)
[s,s+ℓ]

are embedded in TC(x)[s,s+ℓ], where

each element of TC(x)[s,s+ℓ] contains at most two elements of TC2i
(
x[0,2i)

)
[s,s+ℓ]

. The

same holds for TC2i
(
x′[0,2i)

)
[s,s+ℓ]

and TC(x′)[s,s+ℓ]. On account of this, Equation (A.1)

immediately follows, as required.

B The CHS constructions

In [CHS18], the authors present a construction of an explicit, systematic tree code over

the integers. Here we present a variation of their construction that has a small dependence

on α.

B.1 The CHS tree code over the integers

Theorem B.1 ([CHS18] Theorem 1.3). There exists an explicit and systematic tree

code TCZ : ZN → (Z× Z)N with distance 1
2
. Moreover, for every z ∈ ZN and t ∈ N,

|(TCZ(z)t)1| ≤ 2t ·max {|z0| , . . . , |zt|} .

We give a sketch of their construction and analysis. To construct their tree code,

[CHS18] make use of the Newton basis.

Definition B.2 (The Newton basis). For every k ∈ N, define the univariate real polyno-

mial
(
X
k

)
∈ R[X] by (

X

k

)
=

1

k!

k−1∏
i=0

X − i.

Observe that for every d ∈ N, the set
{ (

X
k

) ∣∣ k ∈ [0, d]
}

forms a basis for the space of

univariate real polynomials of degree at most d. This basis is called the Newton basis.

[CHS18]’s construction of TCZ is as follows. Given a message z ∈ ZN and t ∈ N, set
f (t) : N → Z to be the polynomial of least degree such that for every i ∈ [0, t], f (t)(i) = zi.

By [CHS18] Lemma 3.8, one can expand f (t) in the Newton basis to obtain

f (t)(T) =
t∑

i=0

λi

(
T

i

)

29

where for every i ∈ [0, t], λi ∈ Z and is determined by z0, . . . , zi. Then, the resulted tree

code is defined by TCZ(z)t = (zt, λt) , t ∈ N. Note that for every t ∈ N,

f (t)(T) = f (t−1)(T) + λt

(
T

t

)
and therefore TCZ is well defined. The authors prove that TCZ has distance 1

2
using their

sparsity lemma.

Lemma B.3 (The sparsity lemma, [CHS18] Lemma 1.4). Let f ∈ R[X] be a nonzero

polynomial of sparsity s ≥ 1, expanded in the Newton basis. Let a ∈ N be the least integer

for which f(a) ̸= 0. Then, f has at most s− 1 distinct roots in [a,∞) ∩ Z.

B.2 CHS’s tree code with smaller number of colors

We use the infinite tree code from Theorem B.1 to deduce an explicit finite tree code over

a finite alphabet. The following corollary is similar to Corollary 6.1 in [CHS18], only that

here m and ℓ are decoupled.

Corollary B.4. For every positive integers m, ℓ, there exists an explicit and systematic

tree code

TCm,ℓ : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}m+ℓ

)ℓ

with distance 1
2
.

For our transformation, we make use of Claim 4.2 that generalizes Corollary B.4.

We give a proof sketch for Corollary B.4 for completeness and provide a formal proof

for Claim 4.2 in Section 4.

Proof sketch. Let TCZ : ZN → (Z× Z)N be the tree code given by Theorem B.1 and let

x = (x0, . . . , xℓ−1) ∈ ({0, 1}m)ℓ be a message to be encoded. We define

f(T) =
ℓ−1∑
i=0

λi

(
T

i

)

to be the polynomial of least degree such that for every t ∈ [0, ℓ) , f(t) = xt, where

we identify {0, 1}m with {0, . . . , 2m − 1} in an arbitrary but fixed way. By Lemma 3.8

in [CHS18], f(T) ∈ Z[T] and for every t ∈ [0, ℓ) , λt is determined by x0, . . . , xt. Then,

we define

TCm,ℓ(x)t = (xt, λt) .

30

For analyzing the output alphabet size, let t ∈ [0, ℓ). Note that |xt| ≤ 2m−1 − 1 when

represented as an integer. By [CHS18] Lemma 3.8,

λt =
t∑

i=0

(−1)t−i

(
t

i

)
xi

and therefore

|λt| ≤ max
i∈[0,t]

{|xi|}
t∑

i=0

(
t

i

)
≤

(
2m−1 − 1

)
2t ≤ 2m+ℓ−1 − 1. (B.1)

Thus, we can represent TCm,ℓ(x)t by 2m + ℓ bits (including the sign of λt, which can be

encoded in an arbitrary but fixed way). Moreover, observe that one can think of TCm,ℓ as

a truncated version of TCZ over a subset of its input alphabet. Therefore, by Lemma B.3

and by a very similar analysis to the one provided for concluding the distance of TCZ,

TCm,ℓ has distance
1
2
.

In our notations, TCm,ℓ is a (1, 1, 1) tree code. The only drawback with using this

construction for our aims is that the dependence on m (namely, α) is too large for our

needs. This prevents our transformation from achieving the sublogarithmic alphabet size.

Thus, we need to reduce the dependence onm while not deteriorating the other parameters

too much. For this task, we make use of a variation of the above construction which is

a
(
1
b
, 1
b
, 1
)
tree code for a positive integer b, in which the choice of b affects the resulted

distance.

Claim B.5 (Claim 4.2, restated). For every positive integers b, c,m, ℓ such that b ≤ c ≤
2

m+ℓ
b , there exists an explicit and systematic tree code

TCb,c
m,ℓ : ({0, 1}

m)
ℓ →

(
{0, 1}m × {0, 1}

m+ℓ
b

)ℓ

with distance c−b
2c2
.

Proof. Let b, c,m, ℓ be positive integers that satisfy the above constraints and set

EncRS :
(
{0, 1}

m+ℓ
b

)b

→
(
{0, 1}

m+ℓ
b

)c

to be the error-correcting code provided by Definition 3.6. It follows from Fact 3.7 that

31

EncRS has relative distance ≥ 1− b
c
. Given a string x = (x0, . . . , xℓ−1) ∈ ({0, 1}m)ℓ , set

fx(T) =
ℓ−1∑
i=0

λi

(
T

i

)

to be the polynomial of least degree such that for every t ∈ [0, ℓ), fx(t) = xt, where we

identify {0, 1}m with {0, . . . , 2m − 1}. By [CHS18], Lemma 3.8, for every t ∈ [0, ℓ), λt is

an integer that is determined by x0, . . . , xt. At time t ∈ [0, ℓ) , define the output of TCb,c
m,ℓ

by

TCb,c
m,ℓ(x)t =

(
xt,EncRS

(
λ⌊ t

c⌋c
)
t mod c

)
where λt is interpreted as a string of length b over {0, 1}

m+ℓ
b (this can be done by Equa-

tion (B.1)). Observe that we can think of TCb,c
m,ℓ as a punctured version of the tree code

TCm,ℓ from Corollary B.4, such that we calculate a coefficient once per every c symbols

read, encode it, and spread the result over c output symbols. Hence, TCb,c
m,ℓ is online, and

by the explicitness of TCm,ℓ and EncRS, TCb,c
m,ℓ is explicit.

As for the redundancy, note that for every t ∈ [0, ℓ) one can represent TCb,c
m,ℓ(x)t by

m+ m+ℓ
b

bits. For analyzing the distance, let x, y ∈ ({0, 1}m)ℓ be distinct strings, set

fx(T) =
ℓ−1∑
i=0

λi

(
T

i

)
, fy(T) =

ℓ−1∑
i=0

µi

(
T

i

)

to be their respective polynomials over Z, and define g(T) = fx(T) − fy(T) ∈ Z[T]. Set
a = split(x,y), let d ∈ [0, ℓ− a) , and define I = [0, a+ d] . Consider two cases. If d ≥ 2c,

set

g(a+d−1)(T) =
a+d−1∑
i=0

νi

(
T

i

)
to be the polynomial of least degree such that for every t ∈ [0, a+ d), g(a+d−1)(t) = xt−yt.
Set s to be the sparsity of g(a+d−1). By [CHS18], Lemma 3.8, for every t ∈ I the tth

coefficient of g(a+d−1) and g only depends on g(a+d−1)(0), . . . , g(a+d−1)(t) and g(0), . . . , g(t)

respectively. Moreover, since for every t ∈ I, g(a+d−1)(t) = g(t), we can bound the number

of zeros of g(a+d−1) in I and conclude a bound for g. In particular, we have that νt = λt−µt

and so g(a+d−1)(T) ∈ Z[T].
Now, since x ̸= y, we have that g(a+d−1) is a nonzero polynomial. Thus, by [CHS18]

Lemma 1.4, it has at most s− 1 distinct roots in [a,∞) ∩ Z and therefore TCb,c
m,ℓ(x)[a,a+d]

and TCb,c
m,ℓ(y)[a,a+d] differ in at least d+ 1− (s− 1) symbols, when considering only their

32

first entries (i.e., the entries that hold the message symbols). Define

I =
{
t ∈ I

∣∣∣ λt ̸= µt and EncRS(λt) is fully embedded in TCb,c
m,ℓ(x)[a,a+d]

}
.

Observe that

|I| ≥ s− 2− c− 1

c
(d+ 1).

This bound holds since at most two coefficients may appear only partially in I, and since

we output one coefficient for every c symbols read. Set ε = 1− b
c
. By Definition 3.6, for

every t ∈ I, EncRS(λt) and EncRS(µt) differ in at least εc symbols. Hence, the number of

entries in which TCb,c
m,ℓ(x)[a,a+d] and TCb,c

m,ℓ(y)[a,a+d] differ as a tuple is at least

max

{
d+ 1− (s− 1), εc

(
s− 2− c− 1

c
(d+ 1)

)}
.

If the first factor dominates, then

d+ 1− (s− 1) ≥ εc

(
s− 2− (c− 1)(d+ 1)

c

)
,

and therefore

d+ ε(c− 1)(d+ 1) + 2εc+ 2

εc+ 1
≥ s.

Hence

d+ 1− (s− 1) ≥ d+ 2− d+ ε(c− 1)(d+ 1) + 2εc+ 2

εc+ 1

=
ε

εc+ 1
(d− c+ 1)

≥ ε

εc+ 1

(
d

2
+ 1

)
(B.2)

≥ ε

2c
(d+ 1) (B.3)

where Equation (B.2) is due to d ≥ 2c and Equation (B.3) is due to c ≥ 1
1−ε

. Otherwise,

d+ ε(c− 1)(d+ 1) + 2εc+ 2

εc+ 1
< s,

33

hence,

εc

(
s− 2− (c− 1)(d+ 1)

c

)
≥ ε

2(εc+ 1)
(d+ 1) ,

and therefore, in case of d ≥ 2c,

dist
(
TCb,c

m,ℓ(x)[a,a+d] ,TC
b,c
m,ℓ(y)[a,a+d]

)
≥ ε

2c
(d+ 1).

Otherwise, d < 2c. By definition, xa ̸= ya and therefore TCb,c
m,ℓ(x)a ̸= TCb,c

m,ℓ(y)a as a

tuple. Hence, the fraction of symbols for which TCb,c
m,ℓ(x)[a,a+d] and TCb,c

m,ℓ(y)[a,a+d] differ

is at least
1

d+ 1
≥ 1

2c
.

Therefore

dist
(
TCb,c

m,ℓ(x) ,TC
b,c
m,ℓ(y)

)
≥ ε

2c
(d+ 1).

Hence, TCb,c
m,ℓ has distance at lest

ε

2c
=

1− b
c

2c
=
c− b

2c2
.

C Proof of Lemma 3.8

Proof. Set n = (1+ τ)k. Let EncRS : ({0, 1}m)k → ({0, 1}m)n be the systematic encoding

of Reed-Solomon with respect to m, k, n and set RedRS : ({0, 1}m)k → ({0, 1}m)n−k
to

be the Reed-Solomon redundancy function (see Definition 3.6). We define the encoding

C : ({0, 1}m)k → ({0, 1}m × {0, 1}τm)k as follows. For every given message x ∈ ({0, 1}m)k

and every t ∈ [0, k), define

C(x)t = (xt, sprk(RedRS(x))t) .

Note that the length of C(x)t in bits is

m+
m(n− k)

k
= (1 + τ)m.

34

We turn to analyze the distance. Let x ̸= y ∈ ({0, 1}m)k and set d = dist(x, y) .

By Fact 3.7,

dist(EncRS(x) ,EncRS(y)) ≥ n− k + 1

and thus

dist(RedRS(x) ,RedRS(y)) ≥ n− k + 1− d.

Further, since 1
m

≤ τ ≤ 1, we have that n−k ≤ k ≤ m(n−k) and therefore, by Claim 4.9,

dist(sprk(RedRS(x)) , sprk(RedRS(y))) ≥
n− k + 1− d

2
.

Thus,

dist(C(x) ,C(y)) ≥ max

{
d,
n− k + 1− d

2

}
≥ n− k + 1

4
≥ τk

4
.

D Online codes with suffix distance

Claim D.1. For every m,n ∈ N such that 1 ≤ n ≤ 2m, m ≥ 1, and ∆ ∈
(
0, 1

8

]
, there

exists an online function f : ({0, 1}m)n →
(
{0, 1}m × {0, 1}8∆m

)n
with suffix-distance ∆.

Proof. Before we explicitly describe an encoding f that meets the requirements we set up

some notations. We set

k = ⌊log(n+ 1)⌋

and

r = n− 2k + 1. (D.1)

Note that

r ≤ n

2
≤ 2k − 1. (D.2)

For every x ∈ ({0, 1}m)n we set k0 = r and n0 = r + 8∆2k−1, and define

z0(x) = RedRS(m,k0,n0)

(
x[0,r)

)
∈ ({0, 1}m)8∆2k−1

,

where RedRS is as defined in Definition 3.6. Further define

y0(x) = spr2k−1(z0(x)) ∈
(
{0, 1}8∆m

)2k−1

.

35

For every i ∈ [k] we set ki = 2k−i, ni = (1 + 4∆)2k−i, and define

zi(x) = RedRS(m,ki,ni)

(
x[r+2k−2k−i+1,r+2k−2k−i)

)
∈ ({0, 1}m)4∆2k−i

,

where RedRS(m,ki,ni) is as defined in Definition 3.6, and define

yi(x) = spr2k−i−1(zi(x)) ∈
(
{0, 1}8∆m

)2k−i−1

.

In words, for each i ∈ [k], yi(x) is the result of the (m, ki, ni)-Reed-Solomon redundancy

function applied to x[r+2k−2k−i+1,r+2k−2k−i), resized from a length of ni − ki = 4∆2k−i to a

string of length 2k−i−1.

With the definitions set up, we can now describe the output of f on each input

x ∈ ({0, 1}m)n. For each time t ∈ [0, r), we set the tth output to be

f(x)t = (xt, 0̄) .

For each time t ∈ [r, n), it can be verified by inspection that there is exactly one pair

i ∈ [k], j ∈ [2k−i] such that t = r + 2k − 2k−i+1 + j − 1, and let i, j be that pair. We set

the tth output symbol to be

f(x)t =
(
xt, yi−1(x)j−1

)
.

To see that the described encoding f meets the requirements, we first note that it

is online. Indeed, for t ∈ [0, r), the tth output symbol of f(x) is xt paired with 0̄. For

t ∈ [r, n), t = r + 2k − 2k−i+1 + j − 1, the tth output symbol of f(x) is
(
xt, yi−1(x)j−1

)
,

and yi−1(x) is determined by zi−1(x), which is in turn determined by x[0,r), in the that

case i = 1, and indeed r − 1 < t. In the case that i > 1, zi−1(x) is determined by

x[r+2k−2k−i+2,r+2k−2k−i+1) and we have that

r + 2k − 2k−i+1 − 1 < t = r + 2k − 2k−i+1 + j − 1,

as j ≥ 1.

Secondly, we turn to analyze the suffix distance of f . To this end, let x, x′ ∈ ({0, 1}m)n,
x ̸= x′, and s = split(x,x′). We start by bounding dist

(
f(x)[s,n), f(x

′)[s,n)
)
from below.

If s ∈ [0, r), set i = 0, a = 0 and b = r − 1. Otherwise, let i ∈ [k], j ∈ [2k−i] be the

unique pair for which s = r + 2k − 2k−i+1 + j − 1, and set a = r + 2k − 2k−i+1 and

b = r + 2k − 2k−i − 1. We have that s ∈ [a, b] and so x[a,b] ̸= x′[a,b]. Furthermore, x[a,b]

36

is embedded in f(x)[a,b] and x′[a,b] is embedded in f(x′)[a,b]. If we have that i = k, then

s = n− 1, and it holds trivially that

dist
(
f(x)[s,n), f(x

′)[s,n)
)
= 1 ≥ ∆(n− s) = ∆.

So, we proceed under the assumption that i ≤ k − 1. We further set c = r + 2k − 2k−i

and d = r+2k − 2k−i−1 − 1. By the definition of zi, we have that x[a,b] ◦ zi(x) ∈ RS(m,ki,ni)

and x′[a,b] ◦ zi(x′) ∈ RS(m,ki,ni), and as the two are distinct, by Fact 3.7,

dist
(
x[a,b], x

′
[a,b]

)
+ dist(zi(x), zi(x

′)) ≥ ni − ki + 1 = 4∆2k−i + 1.

Notice that by the definition of yi and by Claim 4.9, dist(yi(x), yi(x
′)) ≥ 1

2
·dist(zi(x), zi(x′)),

and that in the construction we have that yi(x), yi(x
′) are embedded in f(x)[c,d], f(x

′)[c,d],

respectively. We can thus conclude that

dist
(
f(x)[s,n), f(x

′)[s,n)

)
≥ dist

(
f(x)[a,d], f(x

′)[a,d]

)
= dist

(
f(x)[a,b], f(x

′)[a,b]

)
+ dist

(
f(x)[c,d], f(x

′)[c,d]

)
≥ dist

(
x[a,b], x

′
[a,b]

)
+ dist

(
f(x)[c,d], f(x

′)[c,d]

)
≥ dist

(
x[a,b], x

′
[a,b]

)
+

1

2
dist(zi(x), zi(x

′))

≥ 2∆2k−i + 1,

where the first inequality holds trivially as, for any time t before s, xt = x′t. To conclude

the proof, it only remains to bound n − s from above. If it is the case that i = 0, then

we have that n− s ≤ n, and so by Equation (D.2), n− s ≤ 2k+1 = 2k−i+1. Otherwise we

have that i ≥ 1. Thus s = r + 2k − 2k−i+1 + j − 1 and so, together with Equation (D.1),

we get n− s = 2k−i+1 − j ≤ 2k−i+1. We conclude that

dist
(
f(x)[s,n), f(x

′)[s,n)

)
· 1

n− s
≥ 2∆2k−i + 1

2k−i+1

=
2∆2k−i + 1

2 · 2k−i

> ∆,

as required.

Claim D.2 (Claim 4.6, restated). Let ∆ ∈
(
0, 1

8

]
, δ ∈ (0, 1), α, β, γ, k ≥ 0, and let m, ℓ

37

be positive integers such that ℓ ≤ 2m. Then, every systematic (α, β, γ) tree code

TC : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

)ℓ

with distance δ can be efficiently transformed to a systematic (α + 8∆, β, γ) tree code

TC∆ : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}k

′
)ℓ

with distance (δ,∆). We refer to TC∆ as the ∆-suffix-distance tree code of TC.

Proof. Let

S : ({0, 1}m)ℓ →
(
{0, 1}m × {0, 1}8∆m

)ℓ

be the online function with suffix-distance ∆ that is given by Claim D.1, and set RS :

{0, 1}m × {0, 1}8∆m → {0, 1}8∆m to be the projection onto the second coordinate of S’s

output symbols. For a string x ∈ ({0, 1}m)ℓ and t ∈ [0, ℓ) , we define TC∆ : ({0, 1}m)ℓ →(
{0, 1}m × {0, 1}k × {0, 1}8∆m

)ℓ

by

TC∆(x)t = (TC(x)t,RS(S(x)t)) .

Observe that TC∆ is online and systematic and that, by definition, it is an (α+8∆, β, γ)

tree code. Moreover, if TC is explicit then so is TC∆.

We turn to prove that TC∆ has distance (δ,∆). Let x, y ∈ ({0, 1}m)ℓ be distinct

messages with s = split(x,y) and let d ∈ [0, n− s). It trivially holds that

dist
(
TC∆(x)[s,s+d] ,TC

∆(y)[s,s+d]

)
≥ δ(d+ 1).

Further, since TC is systematic, for every t ∈ [0, ℓ), xt and RS(S(x)t) are embedded

in TC∆(x)t. Hence, the entire encoding S(x)[s,ℓ) is embedded in TC∆(x)[s,ℓ). Similarly,

S(y)[s,ℓ) is embedded in TC∆(x)[s,ℓ). Thus

dist
(
TC∆(x)[s,ℓ) ,TC

∆(y)[s,ℓ)

)
≥ ∆(ℓ− s) .

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

