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Abstract. In this paper, we show how one may (efficiently) construct two types of extremal

combinatorial objects whose existence was previously conjectural.

• Panchromatic Graphs: For fixed k ∈ N, a k-panchromatic graph is, roughly speaking, a

balanced bipartite graph with one partition class equipartitioned into k colour classes in which

the common neighbourhoods of panchromatic k-sets of vertices are much larger than those

of k-sets that repeat a colour. The question of their existence was raised by Karthik and

Manurangsi [Combinatorica 2020].

• Threshold Graphs: For fixed k ∈ N, a k-threshold graph is, roughly speaking, a balanced

bipartite graph in which the common neighbourhoods of k-sets of vertices on one side are much

larger than those of (k+1)-sets. The question of their existence was raised by Lin [JACM 2018].

Concretely, we provide probability distributions over graphs from which we can efficiently sample

these objects in near linear time. These probability distributions are defined via varieties cut

out by (carefully chosen) random polynomials, and the analysis of these constructions relies on

machinery from algebraic geometry (such as the Lang–Weil estimate, for example). The technical

tools developed to accomplish this might be of independent interest.

As applications of our constructions, we show the following conditional time lower bounds on the

parameterized set intersection problem where, given a collection of n sets over universe [n] and a

parameter k, the goal is to find k sets with the largest intersection.

• Assuming ETH, for any computable function F : N→ N, no no(k)-time algorithm can approxi-

mate the parameterized set intersection problem up to factor F (k). This improves considerably

on the previously best-known result under ETH due to Lin [JACM 2018], who ruled out any

no(
√
k) time approximation algorithm for this problem.

• Assuming SETH, for every ε > 0 and any computable function F : N → N, no nk−ε-time

algorithm can approximate the parameterized set intersection problem up to factor F (k). No

result of comparable strength was previously known under SETH, even for solving this problem

exactly.

Both these time lower bounds are obtained by composing panchromatic graphs with instances of

the coloured variant of the parameterized set intersection problem (for which tight lower bounds

were previously known).
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1. Introduction

Over the last five decades, a symbiotic relationship has developed between the areas of extremal

combinatorics and complexity theory (broadly construed); see the wonderful book of Jukna [Juk11]

or one of the surveys of Alon [Alo03, Alo08, Alo16, Alo20] for various applications of extremal

combinatorial objects to proving lower bounds in theoretical computer science. In particular,

this synergistic exchange with extremal combinatorics can be explicitly seen in subareas such as

circuit/formula lower bounds [BGK+96, JS13], communication complexity [CFL83, KN97, GKR16],

error correcting codes [Spi96, ABV01, GUV09], and derandomization [AGHP92, NSS95, Coh16,

CZ19].

In this paper, our first goal is to prove the existence of certain extremal bipartite graphs, namely

threshold graphs and panchromatic graphs. The question of their existence was motivated by

applications in hardness of approximation, and our second goal is to prove, using these graphs,

conditional time lower bounds on the parameterized set intersection problem. Our constructions

will rely crucially on random polynomials, and our third goal here is to prove various results, likely

of independent interest, about the common zeroes of random polynomials over finite fields. Before

we can state our results, it will help to have some background, to which we now turn.

Over the last few years, a new area in theoretical computer science, namely hardness of approxi-

mation in P, has benefited significantly from some of the deep results in extremal combinatorics.

Hardness of approximation in P, roughly speaking, maybe treated as the union of two subareas,

namely, hardness of approximation in parameterized complexity1 and hardness of approximation in

fine-grained complexity.

In parameterized complexity, one studies the computational complexity of problems with respect

to multiple parameters of the input or output. For example, in the k-SetIntersection problem, we

are given a collection of n sets over the universe [n] and a parameter k as input, and the goal is

to find k sets in the collection which maximize the intersection size. A problem (with inputs of

size n, along with a parameter k) is said to be fixed parameter tractable if it can be solved by an

algorithm running in time T (k) · poly(n) for some computable function T . In many interesting

cases, including for the k-SetIntersection problem, assuming the W[1]6=FPT hypothesis, it is possible

to show that no such algorithm exists i.e., that the problem is not fixed parameter tractable. In

light of this, one could then ask for approximation algorithms. In the case of k-SetIntersection, the

task would then be to design an approximation algorithm running in time T (k) · poly(n) that can

find k sets in the collection whose intersection size is at least 1/F (k) of the intersection size of

the optimal solution for some pair of computable functions T and F . Inapproximability results in

parameterized complexity aim to typically rule out such algorithms (under the W[1]6=FPT hypothesis)

for various classes of functions F ; a notion particularly relevant to this paper is that of total FPT

inapproximability, in which we rule out F (k)-approximation algorithms running in T (k) · poly(n)

time for all computable functions T and F . We refer the reader to the textbooks [DF13, CFK+15]

for an excellent introduction to the area.

In fine-grained complexity, one aims to refine the Cobham–Edmonds thesis [Edm65, Coo70] by

trying to understand the exact time required to solve problems in P, by basing their conditional

1We only consider the computational problems contained in the complexity class XP while making this statement

and also think of the parameter as fixed/constant.
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time lower bounds on several plausible (and popular) conjectures such as SETH and ETH (see

Section 2 for definitions). For example, k-SetIntersection can be näıvely solved by exhaustive search,

i.e., by computing the intersection sizes of all k-tuples of sets from the given collection of n sets;

can we do any better? For instance, is there an algorithm running in time no(k) that can solve

k-SetIntersection? Or even less ambitiously, is there an algorithm running in time nk−0.1 that can

solve k-SetIntersection? The theory of fine-grained complexity aims to rule out such algorithms,

and inapproximability results in this area aim to prove the same conditional time lower bounds,

but now against approximation algorithms. We should emphasise that the area of fine-grained

complexity is not simply about proving tighter running time lower bounds for problems considered in

parameterized complexity; fine-grained complexity has been successful in explaining the complexity

of problems such as closest pair in a point-set [AW15, Rub18, DKL19, KM20], edit distance between

strings [BI18, AHWW16], and all pairs shortest paths [WW18], amongst others, all examples of

problems usually considered without any fixed parameters. We direct the interested reader to two

recent surveys [RW19, FKLM20] on hardness of approximation in P for a detailed overview of the

area.

A major difficulty addressed by results in hardness of approximation in P is that of generating

a gap2, i.e., one must start with a hard problem with no gap (for which the time lower bound

is only against exact algorithms) and reduce it to a problem of interest while generating a non-

trivial gap in the process. One of the main approaches to generate the aforementioned gap, and

the motivation behind our construction of threshold graphs, is the Threshold Graph Composition

(TGC) framework introduced in the breakthrough work of Lin [Lin18] to show the total FPT

inapproximability of the k-SetIntersection problem. This technique was later used to prove the first

non-trivial inapproximability result for the k-SetCover problem [CL19], and in the proof of the

current state-of-the-art inapproximability result for the same [Lin19]. Moreover, the result on the

k-SetIntersection problem in [Lin18] was used by Bhattacharyya et al. [BBE+21] as the starting

point to prove inapproximability results for problems in coding theory such as the k-Minimum

Distance problem (a.k.a. k-Even Set problem) and the k-Nearest Codeword problem, and for lattice

problems such as the k-Shortest Vector problem and the k-Nearest Vector problem.

At a very high level, in TGC, we compose an instance of the input problem that has no gap,

with an extremal combinatorial object called a threshold graph (see Section 1.1.1 for definitions), to

produce a gap instance of the desired problem. The two main challenges in using this framework

are to construct the requisite threshold graph, and to find the right way to compose the input and

the threshold graph. Our construction of threshold graphs will address the first of these challenges.

Another key issue that often arises in proving conditional time lower bounds for problems in

P is the following. When trying to prove time lower bounds for a particular problem, it is often

natural (and sometimes seemingly necessary) to first prove the lower bound for a coloured version

of the same problem, and then reduce it to the uncoloured version of the problem. For instance,

if we would like to prove lower bounds based on SETH for a problem Ψ, then it is almost always

2There are many results in parameterized and fine-grained inapproximability under gap assumptions such as the

Gap Exponential Time Hypothesis [MR16, Din16] and Parameterized Inapproximability Hypothesis [LRSZ20]. In

these results the gap is inherent in the assumption, and the challenge is to construct gap-preserving reductions. These

results are not the focus of this paper and we shall not elaborate further on them, and the interested reader may see

the recent survey [FKLM20] for more details.
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the case that we first divide the variable set of size n (of the SAT formula arising from the SETH

assumption) into k equal parts and reduce the problem of deciding SAT to a problem in P where,

given as input k collections each containing 2n/k partial assignments to the subset of n/k variables

in that part, we would like to find one partial assignment from each collection that, when stitched

together, forms a full satisfying assignment to the original SAT instance. From this problem (in P),

if we would like to reduce to Ψ, it is often convenient (and sometimes imperative) to first reduce

to a k-coloured version of Ψ, and then reduce this coloured version to Ψ itself. This final task is

sometimes easy, such as for problems like k-SetCover or k-OrthogonalVectors, but often non-trivial,

such as for k-SetIntersection or closest pair in a point-set. It is worth reiterating here that in the

other direction, reducing the uncoloured problem to its coloured version is almost always easy;

typically, one can reduce the uncoloured variant to its coloured counterpart via the celebrated colour

coding technique of Alon, Yuster and Zwick [AYZ95].

In [DKL19, KM20], the authors proposed the Panchromatic Graph Composition (PGC) framework

to address this issue, and this serves as the motivation behind our construction of panchromatic

graphs (see Section 1.1.1 for definitions). In particular, they outlined how these panchromatic

graphs, assuming that they exist, can be composed with the coloured version of a problem to reduce

it to the uncoloured version of the same problem. Also, it is worth noting that the same issue arises

in proving time lower bounds against approximation algorithms as well, i.e., it is often easier to

prove hardness of approximation results for coloured versions of problems than for their uncoloured

counterparts. With this in mind, it is desirable to have panchromatic graphs with certain additional

gap properties so that we can design gap preserving reductions between problems. Our construction

of panchromatic graphs will address all of these challenges.

In summary, the role of extremal combinatorial objects in the existing literature on hardness

of approximation in P is twofold: threshold graphs are used in the TGC framework to generate

gaps in hard problem instances, and panchromatic graphs are used in the PGC framework to

reduce hard instances of coloured variants of various computational problems to their uncoloured

(computationally easier) counterparts.

1.1. Our Contributions. Our contributions are primarily twofold. First, in Section 1.1.1, we show

how to efficiently construct threshold graphs and panchromatic graphs; even the existence of such

graphs was previously conjectural. Second, in Section 1.1.2, we demonstrate some applications of

these graphs (with panchromatic graphs featuring more prominently) to prove tight conditional time

lower bounds under ETH and SETH for approximating k-SetIntersection. Finally, in Section 1.1.3

we briefly detail how our results fit into the bigger picture of hardness of approximation in P.

1.1.1. Constructions of Panchromatic and Threshold Graphs. Here, we describe our main combina-

torial results that demonstrate the existence of the aforementioned extremal bipartite graphs.

We start with panchromatic graphs.

Definition 1.1 (Panchromatic Graphs; Informal version of Definition 3.1). An (n, k, t, s)-panchromatic

graph is a bipartite graph G(A,B) where A is partitioned into k parts, say A1, . . . , Ak, with

|A1| = · · · = |Ak| = |B| = n satisfying the following pair of conditions.
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Completeness: Every k-set {a1, . . . , ak} with ai ∈ Ai for i ∈ [k] has at most t common neighbours

in B, and a positive fraction (depending only on k) of such k-sets have exactly t common

neighbours in B.

Soundness: For every set X ⊂ A of size k for which Ai ∩X is empty for some i ∈ [k], the number

of common neighbours of X in B is at most s.

In [KM20], the authors studied panchromatic graphs3 when k = 2. Using (non-trivial) density

properties of Reed–Solomon codes and Algebraic-Geometric codes, they were able to show that

(n, 2, t, to(1))-panchromatic graphs exist for t = 2(logn)1−o(1)
, and that they can be constructed

efficiently. They then raised the natural question of existence for general k, indicating that if such

graphs exist, they could then potentially be used to improve hardness and inapproximability results

for k-SetIntersection. We resolve this open problem from [KM20] and prove the following result.

Theorem 1.2 (Informal restatement of Theorem 3.3). For each k ∈ N and any integer λ > 1, there

exist (n, k, t, t/λ)-panchromatic graphs for infinitely many n ∈ N, where t = t(k, λ) > 0 depends only

on k and λ.

In [KM20], the authors note that their technique to construct panchromatic graphs is limited to

the case of k = 2, and remark that one needs to construct objects with more structure than just

maximum distance separable codes in a certain sense4. Our construction, detailed in Section 1.2.1,

does just this, introducing new ideas that go beyond standard coding-theoretic properties.

On a different note, it is natural to ask if the requirement in the completeness condition that

a positive fraction (depending on k) of k-sets have exactly t-sized common neighbourhoods can

be strengthened to demand the same of every such k-set. It turns out that our result is in

fact best-possible in the following sense: as n → ∞ and for any t = t(k), there do not exist

(n, k, t, t − 1)-panchromatic graphs in which a (1− 1/t)-fraction of the panchromatic k-sets have

exactly t-sized common neighbourhoods; this may be shown using the Kövári—Sós—Turán theorem

and Hölder’s inequality, but we omit the details here.

Next, we turn our attention to threshold graphs.

Definition 1.3 (Threshold Graphs; Informal version of Definition 3.2). An (n, k, t, s)-threshold

graph is a bipartite graph G(A,B) with |A| = |B| = n satisfying the following pair of conditions.

Completeness: For every k-set of vertices X ⊂ A, the number of common neighbours of X in B

is at least t.

Soundness: For every (k+ 1)-set of vertices X ⊂ A, the number of common neighbours of X in B

is at most s.

These graphs are closely related to constructions for Turán-type problems in extremal graph

theory. Indeed, if the completeness condition above is weakened to only require that a positive

3The term ‘panchromatic graph’ was not introduced in [KM20]. There, the authors constructed dense balanced

bipartite graphs with low contact dimension, but that construction can be reinterpreted as construction of panchromatic

graphs when k = 2; see Section 8 in [KM20].
4To quote [KM20], “The issue in constructing this graph is that we are now concerned about agreements of more

than two vectors, which does not correspond to error-correcting codes anymore and some additional tools are needed to

argue for this more general case.”
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fraction (depending on k) of k-sets X ⊂ A have at least t common neighbors in B, then the

celebrated norm-graphs of [KRS96, BGK+96] achieve these weakened requirements.

Lin [Lin18] raised the question5 of the existence of threshold graphs, and noted that if threshold

graphs exist, then there is a very short proof6 of the total FPT inapproximability of k-SetIntersection.

However, since the existence of threshold graphs was previously unknown, the argument showing

total FPT inapproximability of k-SetIntersection in [Lin18] is rather delicate. We resolve this open

problem from [Lin18] and show that threshold graphs exist, obtaining a very short proof of the total

FPT inapproximability of k-SetIntersection as a byproduct.

Theorem 1.4 (Informal restatement of Theorem 3.4). For each k ∈ N and for infinitely many

n ∈ N, there exist (n, k, nΩ(1/k), kO(k))-threshold graphs.

The parameters in this result match the parameters obtainable via norm-graphs, but crucially,

our construction also achieves the stronger completeness property discussed earlier. It is possible to

improve the kO(k) to 2O(k) using the arguments in [Buk21], but we avoid the extra complexity of

that approach.

1.1.2. Applications to Parameterized Set Intersection Problem. Here, we describe our conditional

time lower bounds for the k-SetIntersection problem. In order to set the context for the complexity

of this problem, we briefly recall its complexity in the world of NP.

In the world of complexity, SetIntersection is well-known as a notorious problem to prove any kind

of hardness of approximation result for; that said, there is a general belief that it is a hard problem

as no non-trivial polynomial time approximation algorithms for this problem are known. However,

to this date, even ruling out a PTAS under the standard P 6=NP hypothesis remains open!7 The best

inapproximability result for this problem is based on assuming that SAT problems of size n cannot

be solved by randomized algorithms in time 2n
ε
, under which Xavier [Xav12] shows that there is no

polynomial time algorithm which can approximate SetIntersection up to polynomial factor. It is

worth noting that to prove this inapproximability result, the author indirectly relies on the highly

non-trivial and celebrated quasi-random PCP construction of Khot [Kho06].

Given this context, it was truly a breakthrough when Lin [Lin18], introducing some novel tech-

niques, proved the total FPT inapproximability of k-SetIntersection (under W[1] 6= FPT hypothesis).

Of course, using our construction of threshold graphs (Theorem 1.4), we now have a very short

proof of this powerful result (see footnote 6). Lin [Lin18] further refined his inapproximability result

and showed, assuming ETH, that for sufficiently large k ∈ N, no randomized no(
√
k)-time algorithm

can approximate k-SetIntersection to a factor n1/Ω(
√
k). Clearly, this result is stronger than ruling

out F (k) approximation algorithms (for some function F ), but the running time lower bound is

far from tight. The following result, the first application of our constructions, shows that we can

5To quote [Lin18], “However, at the moment of writing, I do not know how to do that, even probabilistically.”
6Starting with an instance G0(V0, E0) of the canonical W[1]-hard k-clique problem on n vertices, we combine it

with a (n, k, t, s)-threshold graph G(V0, B) to yield an instance of
(
k
2

)
-SetIntersection with |E0| sets on the universe B,

where for every edge e = (u, v) ∈ E0, we include the element b ∈ B in the set associated with this edge if and only if b

is a common neighbor of u and v in G. It then follows that if there is a k-clique in G0, then there are
(
k
2

)
sets whose

intersection size is at least t, and if there is no k-clique in G0, then every
(
k
2

)
sets have intersection size at most s.

7In contrast, it is fairly straightforward to show that the exact version of the problem is NP-hard [Xav12].
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improve on Lin’s result and obtain tight running time lower bounds under ETH (albeit for weaker

approximation factors).

Theorem 1.5 (Informal restatement of Theorem 6.4). Let F : N→ N be any computable function.

Assuming (randomized) ETH, for sufficiently large k ∈ N, no randomized no(k)-time algorithm can

approximate k-SetIntersection to a factor F (k).

In the world of fine-grained complexity, it is also of interest to prove, under stronger assumptions

than ETH, even tighter running time lower bounds than the no(k) bound above. In particular, one

would like to rule out nk−0.1-time algorithms for k-SetIntersection under SETH, essentially showing

that the näıve exhaustive search algorithm for k-SetIntersection is optimal. To the best of our

knowledge, it was not known earlier if one could even rule out exact algorithms for k-SetIntersection

running in nk−0.1-time under SETH. We remedy this situation; the following strong inapproximability

result under SETH is the second application of our constructions.

Theorem 1.6 (Informal restatement of Theorem 6.2). Let F : N→ N be any computable function.

Assuming (randomized) SETH, for every ε > 0 and integer k > 1, no randomized nk(1−ε)-time

algorithm can approximate k-SetIntersection to a factor F (k).

Both of these results are crucially reliant on our construction of panchromatic graphs; a broad

outline is given in Section 1.2.2. It is worth noting that for the coloured variant of k-SetIntersection,

one can easily show tight running time lower bounds under ETH and SETH against exact algorithms,

and by using non-trivial gap creating techniques, these tight running time lower bounds were extended

against near polynomial factor approximation algorithms for the coloured variant in [KLM19]. The

situation (for the coloured variant) is similar in the world of NP as well; see [CP11]. Finally, we

remark that by using the hardness of approximation results in [KLM19] under the k-SUM hypothesis,

we can use the PGC framework to rule out randomized nk(1/2−ε)-time F (k)-factor approximation

algorithms for k-SetIntersection under the k-SUM hypothesis.

1.1.3. Bigger Picture: Reverse Colour Coding. We conclude this discussion of our results by briefly

highlighting a broader implication. For many computational problems, it is often natural to define

and study a coloured variant. For some problems, the coloured variant turns out to be even more

natural; for example, any k-CSP (i.e., constraint satisfaction problems of arity k) on k variables can

be seen as a coloured version of the maximum edge biclique problem. Establishing computational

equivalences between coloured and non-coloured variants of problems is thus a basic question

worthy of exploration. As noted earlier, for some problems, there is a straightforward equivalence

between the two versions. However, there are many important problems for which this equivalence

is nontrivial (and potentially not true). The celebrated colour coding technique of Alon, Yuster and

Zwick [AYZ95] provides an efficient way for a problem to be reduced to its coloured variant. Our

construction of panchromatic graphs (when combined with PGC, as will be described in Section 1.2.2)

now gives us a rather general method to reverse the colour coding technique.

1.2. Our Techniques. Our main technical contribution is the constructions of panchromatic graphs

and threshold graphs which we describe in Section 1.2.1. We also provide an overview of how these

are used to prove Theorems 1.5 and 1.6 in Section 1.2.2
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1.2.1. Constructions of Panchromatic and Threshold Graphs. To motivate our approach, we start

by explaining, briefly, why a natural first attempt at constructing threshold graphs fails. It is

natural to consider a random bipartite graph where each edge is included independently with an

appropriately chosen probability p. Indeed, it is easy to see that such a construction can ensure that

most k-sets of vertices on one side have fewer common neighbours than most (k + 1)-sets. However,

it is essentially impossible to avoid some exceptional k-sets and (k + 1)-sets at the relevant edge

density p. Without getting into the details, the reason for this is simple: the size of the common

neighbourhoods in this probability space have long, smoothly-decaying tails, and since there are

many sets to consider, it is overwhelmingly likely that exceptional sets exist. For more on this issue,

we refer the reader to [Buk15].

When it comes to panchromatic graphs, while there is no immediate natural candidate construc-

tion, it seems clear that assuming one wishes to construct such objects randomly, one needs to

introduce some level of correlation between different edges, while simultaneously preserving enough

independence to allow us to analyse the resulting random graph, a delicate task from a purely

probabilistic perspective.

It turns out that there is a natural way to circumvent all the obstacles outlined above, namely,

by considering random graphs in which adjacency is determined by a randomly chosen algebraic

variety. Concretely, our approach, which works over the finite field Fq for any prime power q ∈ N, is

as follows.

(1) We construct threshold graphs as follows. We build A by independently sampling qk+1

random polynomials of degree d from Fq[X1, . . . , Xk+1] for a suitable d = d(k). Then, with

B = Fk+1
q , we define a bipartite graph G between A and B by joining f ∈ A to x ∈ B if

f(x) = 0.

(2) To construct panchromatic graphs, we proceed as follows. First, we independently choose

random polynomials w1, . . . , wk of degree D from Fq[X1, . . . , Xk] for a suitable D = D(k).

Next, for i ∈ [k], we take Ai to be a set of qk random polynomials of the form wi + p, where

each such p is an independently sampled random polynomial of degree d from Fq[X1, . . . , Xk]

for a suitable d = d(k). Finally, with B = Fkq , we define a bipartite graph G between A and

B by joining f ∈ A to x ∈ B if f(x) = 0.

While the random algebraic graphs above are quite easy to describe, their analysis is far from

simple; in particular, to prove our main results, we shall rely on Lang–Weil estimate [LW54], which

is a consequence of the Riemann hypothesis for function fields (but see [Sch76] for a relatively

elementary proof). Along the way, we shall prove a several results about the zero sets of random

polynomials over finite fields that may be of independent interest. An illustrative example is the

following probabilistic analogue of Bézout’s theorem over finite fields.

Theorem 1.7. For k, d ∈ N and a prime power q ∈ N, let Z be the (random) number of common

roots over Fkq of k independently chosen k-variate random Fq-polynomials of degree d. Then, as

q →∞, we have

P[Z = dk] ≥ 1− o(1)

(dk)!
,

as well as

P[Z > dk] = O(q−d).
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To place these techniques in context, it is worth mentioning that the first traces of this random

algebraic method go back some way, to work of Matoušek [Mat97] in discrepancy theory, but it is

the variant originating in [Buk15] and developed further in [BC18, Con21] that we shall build upon

in this paper.

1.2.2. Hardness of Approximating k-SetIntersection. The common starting point for both Theo-

rems 1.5 and 1.6 is the Unique k-MaxCover problem defined in [KLM19]. We refrain from defining it

here, but it is immediate from its definition (see Section 2) that it can be easily reformulated as the

coloured version of k-SetIntersection (see Proposition 2.3), hereafter panchromatic k-SetIntersection.

In panchromatic k-SetIntersection, we are given k collections, each consisting of n subsets of the

universe [n], and the goal is to choose one set from each collection such that their intersection

size is maximized. From [KLM19], it follows that assuming SETH (respectively ETH), there is no

nk−ε-time (respectively no(k)-time) algorithm that can approximate panchromatic k-SetIntersection

to an F (k) factor for any computable function F .

It is easier to describe the PGC technique in terms of graphs, so we reformulate the panchromatic

k-SetIntersection problem as follows: given a bipartite graph H(X,Y ) where X = X1∪̇ · · · ∪̇Xk

corresponds to the k collections of sets and Y corresponds to the universe (so |X1| = · · · = |Xk| =
|Y | = n), the goal is to find (x1, . . . , xk) ∈ X1 × · · · × Xk which has the largest sized common

neighbourhood in Y . We also consider a (n, k, t, t/λ)-panchromatic graph G(X,B) as guaranteed by

our Theorem 1.2. Now, given G and H as above, the PGC technique, roughly speaking, boils down

to analyzing the graph H∗(X,Y ×B) where if (x, b) ∈ Xi ×B is an edge in G and (x, y) ∈ Xi × Y
is an edge in H, then we have the edge (x, (y, b)) ∈ Xi × Y ×B in H∗.

In the completeness case, if the maximum panchromatic common neighbourhood size in H was

c, then the same set of vertices would have a common neighbourhood of size t · c in H∗, whereas

in the soundness case, if the maximum panchromatic common neighbourhood size in H was s,

then the maximum common neighbourhood size is at most t · s in H∗. From the soundness of the

panchromatic graph, we know that if we pick k vertices in X not all from different colour classes,

then their common neighbourhood is of size at most (t/λ) · |Y |. The results we desire then follow

by setting λ appropriately, and importantly noting that |Y | = O(c) in the hard instances given

by [KLM19]; recall that the common neighbourhood problem on H∗ where we ignore the colour

classes is the k-SetIntersection problem.

Our composition technique using panchromatic graphs strictly improves on the techniques intro-

duced in [DKL19, KM20]. The PGC technique described above also improves the inapproximability

results of [KM20], albeit only in the lower order terms, and also simplifies their hardness of

approximation proof for the Monochromatic Maximum Inner Product problem.

1.3. Organization of Paper. In Section 2, we formally define the problems and hypotheses of

interest in this paper. In Section 3, we carefully define panchromatic and threshold graphs and

state our main results about them. In Section 4, we prove some important intermediate results that

will be used to analyze our constructions of panchromatic and threshold graphs. In Section 5, we

give the constructions of panchromatic graphs and threshold graphs. In Section 6, we prove our

fine-grained inapproximability results for k-SetIntersection. Finally, in Section 7 we highlight a few

important open problems and research directions.
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2. Preliminaries

2.1. Notations. For any set X we denote by 2X , the power set of X. We use the notation Ok(·)
(resp. Ωk(·)) to mean F (k) ·O(·) (resp. F (k) · Ω(·)) for some function F .

2.2. Problems and Hypotheses. In this subsection, we formally define all the problems and

hypotheses used in the paper.

First, we define the `-SAT problem and then define the two popular fine-grained hypotheses

concerning this problem.

`-SAT. In the `-SAT problem, we are given a CNF formula ϕ over n variables x1, . . . xn, such that

each clause contains at most ` literals. Our goal is to decide if there exist an assignment to x1, . . . xn
which satisfies ϕ.

In this paper, we require a fine-grained notion (of algorithms) in the complexity class RP and

a fine-grained notion of Reverse Unfaithful Random (RUR) reductions [Joh90, MG02]. An FPT

notion of such algorithms and reductions was introduced in [BBE+21] and the notion of randomized

fine-grained reduction was introduced in [CGI+16]. A promise problem Π is a pair of languages

(ΠYES,ΠNO) such that ΠYES ∩ ΠNO = ∅. A Monte Carlo algorithm A is said to be a (one-sided)

randomized algorithm for a (promise) problem Π if the following holds:

• (YES) For all x ∈ ΠYES, Pr[A(x) = 1] ≥ 1/2.

• (NO) For all x ∈ ΠNO, Pr[A(x) = 0] = 1.

Moreover, we say that A runs in time T if the running time of A on every randomness is upper

bounded by T .

Hypothesis 2.1 ((Randomized) Exponential Time Hypothesis (ETH) [IP01, IPZ01, Tov84]). There

exists an ε > 0 such that no Monte Carlo (one-sided) randomized algorithm can solve 3-SAT on

n variables in time O(2εn). Moreover, this holds even when restricted to formulae in which each

variable appears in at most three clauses.

We will also recall a stronger hypothesis called the Strong Exponential Time Hypothesis (SETH):

Hypothesis 2.2 ((Randomized) Strong Exponential Time Hypothesis (SETH) [IP01, IPZ01]). For

every ε > 0, there exists ` = `(ε) ∈ N such that no Monte Carlo (one-sided) randomized algorithm

can solve `-SAT in O(2(1−ε)m) time where m is the number of variables. Moreover, this holds even

when the number of clauses is at most c(ε)m where c(ε) denotes a constant that depends only on ε.

In this paper, we prove tight running time lower bounds for k-SetIntersection (to be formally

defined later in this section) assuming ETH (resp. SETH) by providing a fine-grained RUR reduction

from 3-SAT (resp. `-SAT) to k-SetIntersection, such that YES instances of 3-SAT (resp. `-SAT)

map to YES instances of k-SetIntersection with high probability and NO instances of 3-SAT (resp.

`-SAT) always map to NO instances of k-SetIntersection. We remark that using standard techniques,

fine-grained RUR reductions can be used to transform Monte Carlo one-sided randomized algorithms

for k-SetIntersection to Monte Carlo one-sided randomized algorithms for SAT (for example, see

Lemma 3.7 in [BBE+21]).

Next, we recall the MaxCover problem introduced in [CCK+20] which turned out to be the

centerpiece of many results in parameterized inapproximability.
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k-MaxCover problem. The k-MaxCover instance Γ consists of a bipartite graph G = (V ∪̇W,E) such

that V is partitioned into V = V1∪̇ · · · ∪̇Vk and W is partitioned into W = W1∪̇ · · · ∪̇W`. We

sometimes refer to Vi’s and Wj ’s as left super-nodes and right super-nodes of Γ, respectively.

A solution to k-MaxCover is called a labeling, which is a subset of vertices v1 ∈ V1, . . . vk ∈ Vk.
We say that a labeling v1, . . . vk covers a right super-node Wi, if there exists a vertex wi ∈Wi which

is a joint neighbor of all v1, . . . vk, i.e., (vj , wi) ∈ E for every j ∈ [k]. We denote by MaxCover(Γ)

the maximal fraction of right super-nodes that can be simultaneously covered, i.e.,

MaxCover(Γ) =
1

`

(
max

labeling v1,...vk

∣∣{i ∈ [`] |Wi is covered by v1, . . . vk
}∣∣) .

Given an instance Γ(G, c, s) of the k-MaxCover problem as input, our goal is to distinguish

between the two cases:

Completeness: MaxCover(Γ) ≥ c.
Soundness: MaxCover(Γ) ≤ s.

We define Unique MaxCover to be the MaxCover problem with the following additional structure:

for every labeling S ⊆ V and any right super-node Wi, there is at most one node in Wi which is a

neighbor to all the nodes in S.

Next, we define the two central computational problems of attention in this paper, k-SetIntersection

and its coloured variant, panchromatic k-SetIntersection.

k-SetIntersection problem. The k-SetIntersection instance Γ consists of a collection C of n subsets

of a universe U (typically synonymous with [n]) and integer parameters c, s (c > s). In the

k-SetIntersection problem, given input Γ(C, c, s), the goal is to distinguish between the two cases:

Completeness: There exists k sets Si1 , . . . , Sik in C such that

∣∣∣∣ ∩r∈[k]
Sir

∣∣∣∣ ≥ c.
Soundness: For every k sets Si1 , . . . , Sik in C we have

∣∣∣∣ ∩r∈[k]
Sir

∣∣∣∣ ≤ s.
Panchromatic k-SetIntersection problem. The panchromatic k-SetIntersection instance Γ consists of k

collections C1, . . . Ck each containing n subsets of a universe U and integer parameters c, s (c > s). In

the panchromatic k-SetIntersection problem, given input Γ(C1, . . . Ck, c, s), the goal is to distinguish

between the two cases:

Completeness: There exists k sets Si1 , . . . , Sik in C1 × · · · × Ck such that

∣∣∣∣ ∩r∈[k]
Sir

∣∣∣∣ ≥ c.
Soundness: For every k sets Si1 , . . . , Sik in C1 × · · · × Ck we have

∣∣∣∣ ∩r∈[k]
Sir

∣∣∣∣ ≤ s.
We define an important quantity for instances of panchromatic k-SetIntersection, which we call the

monochromatic number of Γ and is defined to be the following quantity:

max
X⊆C1∪···∪Ck
|X|=k

∣∣∣∣∣ ⋂
S∈X

S

∣∣∣∣∣
Additionally, we make the following connection between Unique k-MaxCover and panchromatic

k-SetIntersection.
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Proposition 2.3. Every Unique MaxCover instance

Γ(V := V1∪̇ · · · ∪̇Vk,W := W1∪̇ · · · ∪̇W`, E, c, s)

is also a panchromatic k-SetIntersection instance Γ′(C1, . . . , Ck, c′, s′) over universe U with monochro-

matic number z where we have (i) |U| = |W |, (ii) ∀i ∈ [k], |Ci| = |Vi|, (iii) c′ = c · `, (iv) s′ = s · `,
and (v) z ≤ |W |.

Proof. For every w ∈ W we create a universe element uw ∈ U . For every v ∈ Vi we create a set

Sv ∈ Ci and we include uw in Sv if there is an edge between w and v in Γ. Note that w is a common

neighbor of (v1, . . . , vk) ∈ V1 × · · ·Vk if and only if uw is in ∩i∈[k]Svi . Furthermore note that since

Γ is an instance of Unique k-MaxCover, we have that the quantity ` · (MaxCover(Γ)) is simply the

number of common neighbors of any k vertices in V when we pick one vertex from each Vi. The

theorem statement then follows. �

Finally, we define a contrapositive version of k-SetIntersection problem as this variant comes in

handy to describe a gap creation approach in Appendix A.

k-MinCoverage problem. The k-MinCoverage instance Γ consists of a collection C of n subsets of [n]

and integer parameters c, s (c < s). In the k-MinCoverage problem, given input Γ(C, c, s), the goal

is to distinguish between the two cases:

Completeness: There exists k sets Si1 , . . . , Sik in C such that

∣∣∣∣ ∪r∈[k]
Sir

∣∣∣∣ ≤ c.
Soundness: For every k sets Si1 , . . . , Sik in C we have

∣∣∣∣ ∪r∈[k]
Sir

∣∣∣∣ ≥ s.
Panchromatic k-MinCoverage problem. The panchromatic k-MinCoverage instance Γ consists of

k collections C1, . . . Ck each containing n subsets of [n] and integer parameters c, s (c < s). In

the panchromatic k-MinCoverage problem, given input Γ(C1, . . . Ck, c, s), the goal is to distinguish

between the two cases:

Completeness:: There exists k sets Si1 , . . . , Sik in C1 × · · · × Ck such that

∣∣∣∣ ∪r∈[k]
Sir

∣∣∣∣ ≤ c.
Soundness:: For every k sets Si1 , . . . , Sik in C1 × · · · × Ck we have

∣∣∣∣ ∪r∈[k]
Sir

∣∣∣∣ ≥ s.
3. Panchromatic and Threshold Graphs: Definitions and Results

Here, we define panchromatic and threshold graphs a little more carefully, and also state precisely

what our constructions accomplish.

We start with panchromatic graphs.

Definition 3.1 ((n,m, k, t, s, p)-panchromatic graph). A bipartite graph G(A,B) where A is parti-

tioned into k parts A1, . . . , Ak with |A1| = · · · = |Ak| = n and |B| ≤ m satisfying the following pair

of conditions.

Completeness: For a p-fraction of the k-sets {a1, a2, ...., ak} with ai ∈ Ai for i ∈ [k], the number

of common neighbours of {a1, a2, ...., ak} in B is exactly t, and every k-set {a1, a2, ...., ak}
with ai ∈ Ai for i ∈ [k] has at most t common neighbours in B.
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Soundness: For every set X ⊂ A of size k for which Ai ∩X is empty for some i ∈ [k], the number

of common neighbours of X in B is at most s.

Next, we turn to threshold graphs.

Definition 3.2 ((n,m, k, t, s, p)-threshold graph). A bipartite graph G(A,B) with |A| = n and

|B| ≤ m satisfying the following pair of conditions.

Completeness: For a p-fraction of k-sets of vertices {a1, a2, ...., ak} ⊂ A, the number of common

neighbours of {a1, a2, ...., ak} in B is at least t.

Soundness: For every (k + 1)-set of vertices {a1, a2, ...., ak+1} in A, the number of common

neighbours of {a1, a2, ...., ak+1} in B is at most s.

We show that both types of graphs may be constructed with reasonable dependencies between

the various parameters involved. Both constructions are easy to describe, with the edge sets of the

graphs in question coming from the varieties cut out by (carefully chosen) random polynomials; the

analysis of these constructions is far from trivial however, and relies on some amount of machinery

from algebraic geometry.

For panchromatic graphs, we have the following result which, in particular, ensures that such

graphs exist.

Theorem 3.3. For each k ∈ N and any integer λ > 1, there is a strictly increasing sequence

{ni ∈ N}i∈N such that for every i ∈ N, there exists a distribution Dk,λ,ni
over bipartite graphs on

(k + 1)ni vertices with the following properties.

(1) A graph can be sampled from Dk,λ,ni
in Ok(n

2
i ) time using Ok(ni log ni) random coins.

(2) For G ∼ Dk,λ,ni
, writing D = λ(k2 + 2), we have

P
(
G is a (ni, ni, k,D

k, Dk/λ, (4(Dk)!)−1)-panchromatic graph
)
≥ (4(Dk)!)−1.

Moreover, for every n ∈ N, there exists i ∈ N such that n ≤ ni ≤ 2k · n.

For threshold graphs, we have the following analogous result, which again, in particular, ensures

that such graphs exist.

Theorem 3.4. For each k ∈ N, there is a strictly increasing sequence {ni ∈ N}i∈N such that for

every i ∈ N, there exists a distribution Dk,ni
over bipartite graphs on 2ni vertices with the following

properties.

(1) A graph can be sampled from Dk,ni
in Ok(n

2
i ) time using Ok(ni log ni) random coins.

(2) For G ∼ Dk,ni
, writing d = (k + 1)2 + 1, we have

P
(
G is a (ni, ni, k, n

1/(k+1)
i /2, dk+1, 1)-threshold graph

)
≥ 1− o(1).

Moreover, for every n ∈ N, there exists i ∈ N such that n ≤ ni ≤ 2k · n.

4. Zero sets of Random Polynomials

The aim of this section is to collect together the requisite tools from algebraic geometry that

we require to prove Theorems 3.3 and 3.4. While we have attempted to keep the presentation
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self-contained for the most part, some of the arguments (unavoidably) assume some familiarity with

algebraic geometry; for more background, we refer the reader to [Sha77, Ful84].

A variety over an algebraically closed field F is a set of the form

V = {x ∈ Fk : f1(x) = · · · = ft(x) = 0}

for some collection of polynomials f1, . . . , ft : F
k → F; when we wish to make these polynomials

explicit, we write V (f1, . . . , ft) for V . A variety is said to be irreducible if it cannot be written as

the union of two proper subvarieties. The dimension dimV of a variety V is then the maximum

integer d such that there exists a chain of irreducible subvarieties of V of the form

∅ ( V0 ( V1 ( V2 ( · · · ( Vd ⊂ V,

where V0 consists of a single point. The degree of an irreducible variety of dimension d is the number

of intersection points of the variety with d hyperplanes in general position, and for an arbitrary

variety V , we define its degree deg V to be the sum of the degrees of its irreducible components.

We need Bézout’s theorem in the following form; for a proof, see [Ful84, p. 223, Example 12.3.1],

for example.

Lemma 4.1. For a collection of polynomials f1, . . . , fk : Fk → F, if the variety

V = {x ∈ Fk : f1(x) = · · · = fk(x) = 0}

has dimV = 0, then

|V | ≤
k∏
i=1

deg(fi).

Moreover, for a collection of polynomials f1, . . . , ft : F
k → F, the variety

V = {x ∈ Fk : f1(x) = · · · = ft(x) = 0}

has at most
∏t
i=1 deg(fi) irreducible components.

In what follows, we let q be a prime power and work with polynomials over Fq, where Fq is

the finite field of order q. All varieties below are over A, where A = Fq is the algebraic closure of

Fq, unless explicitly specified otherwise. We let Fq[X1, . . . , Xk]≤d be the subset of Fq[X1, . . . , Xk]

of polynomials in k variables of degree at most d, i.e., the set of linear combinations over Fq
of monomials of the form Xa1

1 . . . Xak
k with

∑k
i=1 ai ≤ d. Let us note that one may sample a

uniformly random element of Fq[X1, . . . , Xk]≤d by taking the coefficients of the monomials above to

be independent random elements of Fq.
The first lemma we state estimates the probability of a randomly chosen polynomial passing

through each of m distinct points; see [Buk15, Con21] for similar statements.

Lemma 4.2. Suppose that q >
(
m
2

)
and d ≥ m − 1. Let f be a uniformly random k-variate

polynomial chosen from Fq[X1, . . . , Xk]≤d.

(1) If x1, . . . , xm are m distinct points in Fkq , then

P (f(xi) = 0 for all i = 1, . . . ,m) = q−m.
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(2) If x1, . . . , xm are m distinct points in Fkq , then

P (f(xi) = 0 for all i = 1, . . . ,m) ≤ q−m.

Proof. We prove the first statement below, and later outline the proof of the second statement.

Let xi = (xi,1, . . . , xi,k) for each i = 1, . . . ,m. We choose elements a2, . . . , ak ∈ Fq such that

xi,1 +
∑k

j=2 ajxi,j is distinct for all i = 1, . . . ,m. To see that this is possible, note that there are

exactly
(
m
2

)
equations

xi,1 +
k∑
j=2

ajxi,j = xi′,1 +
k∑
j=2

ajxi′,j ,

each with at most qk−2 solutions (a2, . . . , ak). Therefore, since the total number of choices for

(a2, . . . , ak) is qk−1 and qk−1 > qk−2
(
m
2

)
, we can make an appropriate choice.

We now consider Fq[Z1, . . . , Zk]≤d, the set of polynomials of degree at most d in the variables

Z1, . . . , Zk, where Z1 = X1 +
∑k

j=2 ajXj and Zj = Xj for all 2 ≤ j ≤ k. Since this change

of variables is an invertible linear map, Fq[Z1, . . . , Zk]≤d is identical to Fq[X1, . . . , Xk]≤d. It will

therefore suffice to show that a randomly chosen polynomial from Fq[Z1, . . . , Zk]≤d passes through

all of the points z1, . . . , zm corresponding to x1, . . . , xm with probability exactly q−m. For this, we

will use the fact that, by our choice above, zi,1 6= zi′,1 for any 1 ≤ i < i′ ≤ m.

For any f in Fq[Z1, . . . , Zk]≤d, we may write f = g + h, where h contains all monomials of the

form Zj1 for j = 0, 1, . . . ,m− 1 and g contains all other monomials. For any fixed choice of g, there

is, by Lagrange interpolation, exactly one choice of h with coefficients in Fq such that f(zi) = 0

for all i = 1, . . . ,m, namely, the unique polynomial of degree at most m− 1 which takes the value

−g(zi) at zi,1 for all i = 1, 2, . . . ,m, where uniqueness follows from the fact that the zi,1 are distinct.

Since this is out of a total of qm possibilities, we see that the probability of f passing through all of

the zi is exactly q−m, as required.

For the second statement, we may argue identically, now working over Fq and noting that the

unique polynomial of degree at most m−1 which takes the value −g(zi) at zi,1 for all i = 1, 2, . . . ,m

may now have coefficients in Fq as opposed to Fq, whence we get an inequality as opposed to the

equality in the first statement. �

The next result we prove allows us to upper bound the size of the Fq-variety cut out by multiple

random polynomials.

Theorem 4.3. Fix t, k ∈ N with t ≤ k, and fix positive integers d1, . . . , dt ∈ N. Independently for

each i ∈ [t], sample fi from Fq[X1, . . . , Xk]≤di uniformly at random. Then

P (dimV (f1, . . . , ft) > k − t) ≤ Ctq−min(d1,...,dt) (1)

for some constant Ct = Ct(d1, . . . , dk) > 0. In particular, if t = k, then

P

(∣∣∣V (f1, . . . , fk) ∩ Fkq
∣∣∣ > k∏

i=1

di

)
≤ Cq−min(d1,...,dk)

for some constant C = C(d1, . . . , dk) > 0.
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Proof. For terminology not defined here, and standard facts about dimension that we call upon

without proof, see the first and the sixth chapter of [Sha77].

To establish (1) it suffices show that

P (dimV (f1, . . . , ft−1, ft) > k − t | dimV (f1, . . . , ft−1) = k − t+ 1) ≤ q−dt
t−1∏
i=1

di (2)

since (1) follows from (2) by induction on t.

Now, sample polynomials f1, . . . , ft−1, and assume that the variety U = V (f1, . . . , ft−1) is of

dimension d−t+1. By Lemma 4.1, U has at most d1 · · · dt−1 components, which we name U1, . . . , Um.

Note that since dimUi ≤ dimU = d− t+ 1, and Ui is intersection of t− 1 hypersurfaces, each Ui is

of dimension exactly d− t+ 1. For each Ui, pick dt distinct points xi,1, . . . , xi,dt on Ui.

Since ft is a random polynomial of degree dt, from Lemma 4.2 we infer that

P (Ui ⊂ V (ft)) ≤ P (ft(xi, j) = 0 for all j = 1, . . . , dt) ≤ q−dt

for each 1 ≤ i ≤ m. Hence, by the union bound

P (dimV (f1, . . . , ft−1, ft) > k − t) ≤
m∑
i=1

P (Ui ⊂ V (ft)) ≤ q−dt
t−1∏
i=1

di.

proving (2), and hence (1).

If t = k, then

P

(∣∣∣V (f1, . . . , fk) ∩ Fkq
∣∣∣ > k∏

i=1

di

)
≤ P

(
|V (f1, . . . , fk)| >

k∏
i=1

di

)
≤ P(dimV (f1, . . . , fk) > 0)

≤ Ckq−min(d1,...,dk),

where the first inequality is trivial, the second is a consequence of Lemma 4.1, i.e., Bézout’s theorem,

and the third is just (1) for t = k. �

Finally, we need a way to lower bound the size of the Fq-variety cut out by multiple random

polynomials, and the following result gives us what we need. While the arguments thus far have

been mostly elementary, this result is more involved.

Theorem 4.4. Fix positive integers k, d1, . . . , dk ∈ N. Independently for each i ∈ [k], sample fi
from Fq[X1, . . . , Xk]≤di uniformly at random. Then

P

(∣∣∣V (f1, . . . , fk) ∩ Fkq
∣∣∣ =

k∏
i=1

di

)
≥ 1− cq−1/2(∏k

i=1 di

)
!

for some constant c = c(d1, . . . , dk) > 0.

Proof. For terminology not defined here, and standard results that we quote without proof, see the

first three chapters of [Sha77].

We set ri =
(
k+di
k

)
for 1 ≤ i ≤ k, write ~r = (r1, . . . , rk) and |~r| for r1 + · · ·+ rk. For 1 ≤ i ≤ k,

we identify Ari with A[X]≤di , i.e., the space of polynomials in k variables of degree at most di
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with coefficients in A. For brevity, we write A~r in place of Ar1 × · · · × Ark (and F~rq in place of

Fr1q × · · · × Frkq ), and to distinguish the space where we evaluate our polynomials from these spaces

of polynomials themselves, we set Y = Ak.
Also, for f = (f1, . . . , fk) ∈ A~r, we abbreviate the variety V (f1, . . . , fk) ⊂ Y by V (f). Now, set

t = d1 · · · dk and call f ∈ F~rq good if the variety V (f) is zero-dimensional and has t distinct points

that are defined over Fq. In this language, note that we are trying to show, for large q, that roughly

1/t! of all the points in F~rq are good. To this end, we set

W = {(f , y1, . . . , yt) ∈ A~r × Y t : yj ∈ V (f) for all j = 1, . . . , t},

and deduce the result from the following claim.

Claim 4.5. Suppose that (f∗,y∗) is a simple point of W such that f∗ is good and the coordinates

of y∗ = (y∗1, . . . , y
∗
t ) are all distinct, and that for generic f , the variety V (f) is zero-dimensional of

degree t. Then there are at least

1− cq−1/2

t!
q|~r|

good points in F~rq , for some constant c = c(d1, . . . , , dk) > 0.

Proof. Since (f∗,y∗) is simple, the irreducible component of W containing it is unique. Let W1

be the irreducible component of W containing (f∗,y∗) and note that dimW1 = dimW . Since the

variety V (f) is generically zero-dimensional of degree t, the fibres Wf = {y ∈ Y t : (f ,y) ∈W} of W

are generically finite, whence we get dimW1 = dimW = |~r|.
Let {W1, . . . ,Wm} be the orbit of W1 under the action of the Frobenius endomorphism. Since W

is defined over Fq, and hence invariant under this action, each such Wi is an irreducible component

of W . Note that (f∗,y∗) ∈Wi for each i ∈ [m], so if m > 1, this contradicts the uniqueness of the

component containing (f∗,y∗). Thus, m = 1, i.e., W1 is defined over Fq.
Since (f∗,y∗) ∈W1, the variety W1 is not contained in

U =
⋃
i 6=j
{(f ,y) : yi = yj}.

Hence, W1 ∩ H is a proper subvariety of W1, and therefore contains OdegW1(q|~r|−1) points by

the Schwartz–Zippel lemma for varieties [BT12, Lemma 14]. Since W1 is defined over Fq and is

irreducible over A, the Lang–Weil estimate [LW54] implies that W1 contains at least

qdimW1

(
1−OdegW1(q−1/2)

)
points defined over Fq. Hence, W1 \H contains at least

q|~r|
(

1−OdegW1(q−1/2)−OdegW1(q−1)
)

= q|~r|
(

1−OdegW1(q−1/2)
)

points defined over Fq as well. Since each good point f corresponds to exactly t! points of W1 \H
defined over Fq, the result follows. �

To finish, it remains to show that the simplicity and genericity hypotheses in Claim 4.5 are

satisfied.
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For 1 ≤ i ≤ k, pick an arbitrary set Ai ⊂ Fq of size di. Define f∗ = (f∗1 , . . . , f
∗
k ) by setting

f∗i =
∏
a∈Ai

(Xi − a) for 1 ≤ i ≤ k and let y∗ be the vector of length d1 · · · dk whose coordinates are

all the elements of A1 × · · · ×Ak.
To prove that (f∗,y∗) is simple, consider the tangent space of W at (f∗,y∗), which we denote

T∗W . An element (δf , δy) ∈ A~r × Y t is in T∗W if it is a solution to the system of equations

δfi(y
∗
j ) +

∂fi
∂xi

(y∗j )(δyj)i = 0

for all i ∈ [k] and j ∈ [t]. From these equations, it is clear that for every δf ∈ A~r there is a unique

δy such that (δf , δy) is in the tangent space. Hence dimT∗W = dimA~r = dimW , so it follows that

(f∗,y∗) is simple.

Next, the statement that for generic f , the variety V (f) (is zero-dimensional and) has at most

t = d1 · · · dk points is the generalized Bézout’s theorem. The construction of (f∗,y∗) above shows

that V (f) generically has at least t points as well.

We have established the hypotheses under which Claim 4.5 applies; the result follows. �

5. Constructions of Panchromatic Graphs and Threshold Graphs

First, we give the construction of panchromatic graphs using random polynomials.

Proof of Theorem 3.3. Let q be a prime power, and let Fq be the finite field of order q. We shall

assume that k ∈ N and λ > 1 are fixed, and that q is sufficiently large as a function of k. Finally,

let us fix d = k2 + 2, D = λd and n = qk. In the rest of the proof, all asymptotic notation will be in

the limit of q →∞.

We shall construct a panchromatic graph between two sets A and B as follows. First, choose

polynomials w1, . . . , wk ∈ Fq[X1, . . . , Xk]≤D independently and uniformly at random. Next, for i ∈
[k], let Ai be a set of n vertices each associated with a polynomial wi+p, where p ∈ Fq[X1, . . . , Xk]≤d
is chosen uniformly at random and independently for each vertex; note here that the distribution of

the resulting polynomial wi + p is also uniform on Fq[X1, . . . , Xk]≤D. Let A be the disjoint union

∪̇ki=1Ai, and set B = Fkq , so that |A| = kqk and |B| = qk. Finally, let G be the (random) graph

between A and B where a polynomial f ∈ A is joined to a point x ∈ B if f(x) = 0. We shall show

that G has the requisite properties with probability at least (4(Dk)!)−1.

First, we count the number of k-sets U = {f1, f2, . . . , fk} with fi ∈ Ai for which the size of the

common neighbourhood N(U) in G exceeds Dk. For such a set U , observe that N(U) is the set

of Fq-solutions of k polynomials from Fq[X1, . . . , Xk]≤D chosen independently and uniformly at

random, so by Theorem 4.3, we have

P(|N(U)| > Dk) = O(q−D).

Writing B1 for the number of such k-sets, we get

E[B1] = O
(
nkq−D

)
= O

(
qk

2
q−λ(k2+2)

)
= O(q−2) ≤ 1/q. (3)

Next, we count the number of k-sets U = {f1, f2, ...., fk} with fi ∈ Ai for i ∈ [k] for which size

of the common neighbourhood N(U) in G is exactly Dk. As above, for such a set U , observe that
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|N(U)| is distributed as the number of Fq-solutions of k polynomials from Fq[X1, . . . Xk]≤D chosen

independently and uniformly at random, so by Theorem 4.4, we have

P(|N(U)| = Dk) ≥ (2(Dk)!)−1.

Writing B2 for the number of such k-sets, we get

E[B2] ≥ nk(2(Dk)!)−1. (4)

Finally, we count the number of k-sets U ⊂ A with Ai ∩ U being empty for some i ∈ [k] for

which the size of the common neighbourhood N(U) in G exceeds dDk−1 = Dk/λ. For such a set

U , observe that |N(U)| is distributed as the number of Fq-solutions of a collection of k random

polynomials. To understand the distribution of this random collection of polynomials, for each

i ∈ [k] for which U ∩Ai 6= ∅, we pick one element U ∩Ai and subtract that from every other element

of U ∩Ai; observe that by doing so, we get a set {g1, . . . , gk} of independent random polynomials,

each uniform over either Fq[X1, . . . Xk]≤d or Fq[X1, . . . , Xk]≤D, and at least one of which is uniform

over Fq[X1, . . . Xk]≤d. Since |N(U)| is then number of Fq-solutions of {g1, . . . , gk}, we deduce from

Theorem 4.3 that

P(|N(U)| > dDk−1) = O(q−d).

Writing B3 for the number of such k-sets, we get

E[B3] = O
(

(kn)kq−d
)

= O
(
qk

2
q−k

2−2
)

= O(q−2) ≤ 1/q. (5)

We combine (3), (4) and (5) as follows. Clearly, E[B1 +B3] = o(1), so by Markov’s inequality,

both B1 and B2 are zero with probability 1 − o(1). Finally, since B2 is trivially at most nk and

E[B2] ≥ nk(2(Dk)!)−1, it is easily checked that

P
(
B2 ≥ nk(4(Dk)!)−1

)
≥ (2(Dk)!)−1.

By the union bound, we see that G is a (n, n, k,Dk, Dk/λ, (4(Dk)!)−1)-panchromatic graph with

probability at least (4(Dk)!)−1, completing the proof. �

Next, we give the construction of threshold graphs, once again using random polynomials.

Proof of Theorem 3.4. As before, let q be a prime power, and let Fq be the finite field of order

q. We shall assume that k ∈ N is fixed, and that q is sufficiently large as a function of k. Let

d = (k + 1)2 + 1 and n = qk+1. We shall construct a threshold graph between two sets A and B

both of size qk+1. In the rest of the proof, all asymptotic notation will be in the limit of q →∞.

We construct A by sampling qk+1 random polynomials from Fq[X1, . . . , Xk+1]≤d uniformly and

independently, set B = Fk+1
q , and define a (random) bipartite graph G between A and B by joining

f ∈ A to x ∈ B if f(x) = 0. We shall show that G has the requisite properties with probability

1− o(1).

First, we consider the soundness properties of G. Fix a set U ⊂ A of size k + 1. The size of its

common neighbourhood N(U) in G is distributed as the number of Fq-solutions of k+ 1 polynomials

from Fq[X1, . . . Xk+1]≤d chosen independently and uniformly at random, so by Theorem 4.3, we

have

P(|N(U)| > dk+1) = O(q−d).
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Call a set of k + 1 vertices of G bad if their common neighbourhood has more than dk+1 vertices.

The number B1 of bad (k + 1)-sets then satisfies

E[B1] = O

((
n

k + 1

)
q−d
)

= O

((
qk+1

k + 1

)
q−(k+1)2−1

)
= O(q−1) = o(1). (6)

Next, we turn to the completeness properties of G. Fix a set U ⊂ A of size k. For v ∈ B, put

I(v) = 1 if f(v) = 0 for all f ∈ U , and I(v) = 0 if f(v) 6= 0 for some f ∈ U . For 1 ≤ m ≤ d and

distinct v1, . . . , vm ∈ B, we have

P (I(v1) · · · I(vm) = 1) =
∏
f∈U

P (f(vj) = 0 for all j = 1, . . . ,m) = q−mk,

where the first equality is by independence, and the second is by Lemma 4.2. Small moments of the

random variable Z = |N(U)| are now easily computed: for 1 ≤ m ≤ d, we have

E [Zm] = E

[(∑
v∈B

I(v)

)m]

= E

 ∑
v1,...,vm∈B

I(v1) · · · I(vm)


=

∑
v1,...,vm∈B

E[I(v1) · · · I(vm)]

=
m∑
r=1

(
qk+1

r

)
Mr,mq

−rk, (7)

where Mr,m is the number of surjective functions from an m-element set onto an r-element set.

Combining (7) and some standard identities for the Stirling numbers of the second kind, we get that

E
[
(Z − E[Z])d

]
= O(q) and E[Z] = q,

whence it follows that

P(Z < q/2) ≤ P(|Z − E[Z]| < q/2) ≤
E
[
(Z − E[Z])d

]
(q/2)d

= O
(
q1−d

)
.

Call a set of k vertices of G bad if their common neighbourhood has fewer than q/2 vertices. The

number B2 of bad k-sets then satisfies

E[B2] = O

((
n

k

)
q1−d

)
= O

((
qk+1

k

)
q−(k+1)2

)
= O(q−1−k) = o(1). (8)

Combining (6) and (8), we see that

E[B1 +B2] = o(1);

it follows from Markov’s inequality that B1 + B2 = 0 (and hence B1 = B2 = 0) with probability

1− o(1), so G is a (qk+1, qk+1, k, q/2, dk+1, 1)-threshold graph with probability 1− o(1), completing

the proof. �
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A quantitatively weaker version of Theorem 3.4 can alternately be proved utilising less randomness

by building a bipartite graph between two copies of Fk+1
q by choosing a single random polynomial f in

2k + 2 variables of degree 2k2 and joining pairs of points x, y ∈ Fk+1
q for which f(x, y) = 0; however,

the analysis of this construction relies on more machinery, and furthermore, yields ineffective

parameter dependencies.

6. Conditional Time Lower Bounds for k-SetIntersection

In this section we prove the formal versions of Theorems 1.5 and 1.6 in Sections 6.3 and 6.2

respectively. But first, we describe in Section 6.1, the PGC framework.

6.1. Panchromatic Graph Composition. Given a panchromatic problem and a panchromatic

graph, we would like to compose them in some way such that we obtain a monochromatic version of

the panchromatic problem having the property that every optimal solution of the monochromatic

version can be traced back to an optimal solution of the panchromatic version. When we say

the PGC technique, we use it as an umbrella name for this composition operation. Typically the

composition would be a product operation as is the case below for the k-SetIntersection problem.

Theorem 6.1 (Panchromatic Graph Composition). There is an algorithm that given as input

(1) an instance Γ(C1, . . . , Ck, c, s) of panchromatic k-SetIntersection over universe U with monochro-

matic number z, and

(2) an (n,m,k,t,w,p)-panchromatic graph H(A := (A1∪̇ · · · ∪̇Ak), B),

then outputs an instance Γ′(C′, ct,max(st, zw)) of k-SetIntersection over universe U ′ such that the

following hold :

Size: |C′| = |C1|+ · · ·+ |Ck| and |U ′| = |U| · |B|.
Completeness: If there exists a k tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck such that∣∣∣∣∣∣

⋂
r∈[k]

Sir

∣∣∣∣∣∣ ≥ c,
then with probability p there exists k sets S′i1 , . . . , S

′
ik

in C′ such that∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≥ ct.
Soundness: If for every k tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck we have∣∣∣∣∣∣

⋂
r∈[k]

Sir

∣∣∣∣∣∣ ≤ s,
then for every k sets S′i1 , . . . , S

′
ik

in C′ we have∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≤ max(st, zw).

Running Time: The reduction runs in Õ(|C′| · |U ′|) time.
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Proof. We define U ′ := U ×B. For every r ∈ [k], let πr : Cr → Ar be a uniformly random one-to-one

mapping. Moreover, for every r ∈ [k], let ζr : Cr → 2U
′

be a function which maps a set in Cr to a

subset of U ′ in C′ in the following way: For every S ∈ Cr, we include ζr(S) in C′, where (u, b) ∈ U ×B
is contained in ζr(S) if and only if u ∈ S and (πr(S), b) ∈ E(H).

Let us suppose that there exists a k tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck such that∣∣∣∣∣∣
⋂
r∈[k]

Sir

∣∣∣∣∣∣ ≥ c,
then consider the k-tuple of vertices (π1(Si1), . . . , πk(Sik)) in A1 × · · · ×Ak. Since π1, . . . , πk were

picked uniformly and independently at random, the aforementioned k-tuple of vertices in A are

k uniform random vertices and thus from the completeness of the panchromatic graph, we have

that with probability p there exists a set of t vertices in B, denoted by B′, which are all common

neighbors of (π1(Si1), . . . , πk(Sik)). Let u ∈
⋂
r∈[k]

Sir and b ∈ B′. It follows that (u, b) ∈ ζr(Sir). In

other words, we have: ∣∣∣∣∣∣
⋂
r∈[k]

ζr(Sir)

∣∣∣∣∣∣ ≥ c · |B′| ≥ ct.
On the other hand let us suppose that for every k tuple of sets (Si1 , . . . , Sik) in C1 × · · · × Ck we

have ∣∣∣∣∣∣
⋂
r∈[k]

Sir

∣∣∣∣∣∣ ≤ s.
For the sake of contradiction, let there be k sets S′i1 , . . . , S

′
ik

in C′ such that∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ > max(st, zw).

By construction of C′, we have that for every r ∈ [k], there exists `r ∈ [k] and Sir ∈ C`r such that such

that ζ`r(Sir) = S′ir . Let D := {`r | r ∈ [k]}. Suppose that |D| = k, i.e., for every distinct r1, r2 ∈ [k]

we have that Sir1 and Sir2 are both not in the same collection Cr (for some r ∈ [k]). Without

loss of generality, we will assume `r = r. Consider the k-tuple of vertices (π1(Si1), . . . , πk(Sik)) in

A1 × · · · ×Ak. From the completeness of the panchromatic graph, we have that the set of common

neighbors of (π1(Si1), . . . , πk(Sik)) in B, denoted by B′, is of size at most t. Thus, we have the

following contradiction: ∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
r∈[k]

Sir

∣∣∣∣∣∣ · |B′| ≤ st.
Next, we suppose that |D| < k. Without loss of generality, we assume that `1 = `2. Let

X := {π`r(Sir) | r ∈ [k]} ⊆ A. By the soundness of the panchromatic graph, we have that the set

of common neighbors of X in B, denoted by B′ is at most size w. Thus, we have the following

contradiction: ∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
r∈[k]

Sir

∣∣∣∣∣∣ · |B′| ≤ zw,
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where z is the monochromatic number of Γ. Finally, from the construction of Γ′, the claim on the

runtime follows immediately. �

6.2. SETH-based Time Lower Bound. In this subsection, we prove the following result.

Theorem 6.2. Let F : N → N be some computable increasing function. Assuming randomized

SETH, for every ε > 0 and integer k > 1, no randomized O(nk(1−ε))-time algorithm can decide an

instance Γ(C, c, c/F (k)) of k-SetIntersection over universe [n1+o(1)], where |C| = n.

Our proof builds on the following SETH based lower bound for gap k-MaxCover proved in [KLM19].

Theorem 6.3 ([KLM19]). Let F : N→ N be some computable increasing function. Assuming SETH,

for every ε > 0 and integer k > 1, no randomized O(nk(1−ε))-time algorithm can decide an instance

Γ(G = (V ∪̇W,E), 1, 1/F (k)) of Unique k-MaxCover. This holds even in the following setting :

• V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.

• W := W1∪̇ · · · ∪̇W`, where ` = (log n)Ok(1) and ∀i ∈ [k], |Wi| = Ok,ε(1).

Proof Sketch. The proof of the theorem statement is by contradiction. Suppose there is a randomized

O(nk(1−ε))-time algorithm that can decide every instance Γ(G = (V ∪̇W,E), 1, 1/F (k)) of k-MaxCover

for some fixed constant ε > 0 and integer k > 1. All the references here are using the labels

in [KLM19]. First we apply Proposition 5.1 to Theorem 6.1 with z = log2(F (k)) to obtain an

(m/α,Ok(log2m), Ok,ε(1), 1/F (k))-efficient protocol for k-player Disjm,k in the SMP model. The

proof of the theorem then follows by plugging in the parameters of the protocol to Corollary 5.3.

To note that the instance constructed is that of Unique k-MaxCover, see the remarks in Appendix

B. �

We now return to the proof of Theorem 6.2.

Proof of Theorem 6.2. Fix F : N → N. Suppose there is a randomized O(nk(1−ε))-time algorithm

that can decide every instance Γ(C, c, c/F (k)) of k-SetIntersection over universe [n1+o(1)] (where

|C| = n) for some fixed constant ε > 0 and integer8 k > 2. We claim that the algorithm can be used

to solve every hard instance Γ′(G = (V ∪̇W,E), 1, 1/F (k)) of k-MaxCover, as given in Theorem 6.3,

in time O(nk(1−ε)) where

• V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.

• W := W1∪̇ · · · ∪̇W`, where ` = (log n)Ok(1) and ∀i ∈ [k], |Wi| = Ok,ε(1).

This would then contradict Theorem 6.3.

Fix Γ′(G = (V ∪̇W,E), 1, 1/F (k)). By applying Proposition 2.3 to Γ′ we obtain an instance

Γ′′(C1, . . . , Ck, `, `/F (k)) of panchromatic k-SetIntersection over universe of size Oε((log n)Ok(1)) with

monochromatic number also bounded above by ck,ε · ` for some constant ck,ε depending only on k

and ε.

Let m :=
√
n. In Theorem 3.3, let i∗ ∈ N be such that m ≤ ni∗ ≤ 2k · m. We sample

w := Ω̃(4(Dk)!) many graphs G1, . . . , Gw from Dk,ck·F (k),ni∗ in time Ok(n). By Theorem 3.3, we know

that one of these graphs is a (ni∗ , ni∗ , k,D
k, Dk/(ck ·F (k)), (4(Dk)!)−1)-panchromatic graph with high

8The case k = 2 can be easily handled here by standard input subdividing tricks used previously in [Rub18, KM20].

At the same time the case k = 2 was already proved in [KM20].
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probability and we find it in time w ·nk+1
i∗ = Ok(n

k
2

+1). Let G∗ be one of the sampled graphs which is

a (ni∗ , ni∗ , k,D
k, Dk/(ck ·F (k)), (4(Dk)!)−1)-panchromatic graph. We randomly delete ni∗−m many

vertices in each colour class of G∗ to obtain a (m,ni∗ , k,D
k, Dk/(ck ·F (k)), (4(Dk)!)−1)-panchromatic

graph.

For every i ∈ [k], arbitrarily equipartition Ci into C1
i , . . . , Cmi . Given Γ′′(C1, . . . , Ck, `, `/F (k)) we

show how to construct nk/2 instances

{Γ(t1,...,tk)(C, c, c/F (k))}(t1,...,tk)∈[m]k ,

of k-SetIntersection over universe [n
1
2

+o(1)] (where |C| = mk). For every (t1, . . . , tk) ∈ [m]k, define

an instance Γ′′(t1,...,tk)(C
t1
1 , . . . , C

tk
k , `, `/F (k)) of panchromatic k-SetIntersection over universe of size

Oε((log n)Ok(1)) with monochromatic number also bounded above by ck,ε · `.
Fix (t1, . . . , tk) ∈ [m]k. We apply Theorem 6.1 to Γ′′(t1,...,tk) by using G∗. We thus obtain an

instance Γ(t1,...,tk)(C, c := ` ·Dk,max((`/F (k)) ·Dk, ` ·Dk/F (k)) of k-SetIntersection over universe

U in time Õ(n1+o(1)) where |U| = m · (log n)Ok(1). Also note that |C| = mk.

Thus, if Γ′ was in the completeness case then there exists (t1, . . . , tk) ∈ [m]k such that Γ′′(t1,...,tk)

is also in the completeness case, and consequently, Γ(t1,...,tk) is in the completeness case. On the

other hand, if Γ′ was in the soundness case then for every (t1, . . . , tk) ∈ [m]k we have that Γ′′(t1,...,tk)

is also in the soundness case, and consequently, Γ(t1,...,tk) is in the soundness case too. The total

runtime of the algorithm would be nk/2 ·
(
nk(1−ε)/2 + n1+o(1)

)
+ n

k
2

+1 = O(nk(1− ε
2

)). �

6.3. ETH-based Time Lower Bound. In this subsection, we prove the following result.

Theorem 6.4. Let F : N → N be some computable increasing function. Assuming randomized

ETH, for sufficiently large integer k, no randomized no(k)-time algorithm can decide an instance

Γ(C, c, c/F (k)) of k-SetIntersection over universe [n1+o(1)], where |C| = n.

Our proof builds on the following ETH based lower bound for gap k-MaxCover proved in [KLM19].

Theorem 6.5 ([KLM19]). Let F : N → N be some computable increasing function. Assuming

ETH, for sufficiently large integer k, no randomized no(k)-time algorithm can decide an instance

Γ(G = (V ∪̇W,E), 1, 1/F (k)) of Unique k-MaxCover. This holds even in the following setting :

• V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.

• W := W1∪̇ · · · ∪̇W`, where ` = (log n)Ok(1) and ∀i ∈ [k], |Wi| = Ok(1).

Proof Sketch. Suppose there is a randomized no(k)-time algorithm that can decide every instance

Γ(G = (V ∪̇W,E), 1, 1/F (k)) of k-MaxCover for every k ∈ N. All the references here are using the

labels in [KLM19]. First we apply Proposition 5.1 to Theorem 7.1 with z =
(

log2
−1
1−δ

)
log2(F (k))

to obtain a (0, Ok(log2m), Ok(t), 1/F (k))-efficient protocol for k-player MultEqm,k,t in the SMP

model. The proof of the theorem then follows by plugging in the parameters of the protocol to

Corollary 5.4. To note that the instance constructed is that of Unique k-MaxCover, see the remarks

in Appendix B. �

We now return to the proof of Theorem 6.4.
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Proof of Theorem 6.4. Fix F : N → N. Suppose there is a randomized no(k)-time algorithm that

can decide every instance Γ(C, c, c/F (k)) of k-SetIntersection over universe [n1+o(1)] (where |C| = n)

for every k ∈ N. Notice that such an algorithm can also be used to device a search that finds a

witness in the YES case by making nk calls to the decision algorithm.

We claim that then this search algorithm can be used to solve (with high probability) every

instance Γ′(G = (V ∪̇W,E), 1, 1/F (k)) of k-MaxCover in time O(no(k)) where

• V := V1∪̇ · · · ∪̇Vk, where ∀j ∈ [k], |Vj | = n.

• W := W1∪̇ · · · ∪̇W`, where ` = (log n)Ok(1) and ∀i ∈ [k], |Wi| = Ok(1).

This would then contradict Theorem 6.5.

Fix Γ′(G = (V ∪̇W,E), 1, 1/F (k)). By applying Proposition 2.3 to Γ′ we obtain an instance

Γ′′(C1, . . . , Ck, `, `/F (k)) of panchromatic k-SetIntersection over universe of size (log n)Ok(1) with

monochromatic number also bounded above by ck · `, for some constant ck only depending on k.

In Theorem 3.3, let i∗ ∈ N such that n ≤ ni∗ ≤ 2k · n. We sample w := Ω̃(4(Dk)!) many graphs

G1, . . . , Gw from Dk,ck·F (k),ni∗ in time Ok(n
2). By Theorem 3.3, we know that one of these graphs

is a (ni∗ , ni∗ , k,D
k, Dk/(ck · F (k)), (4(Dk)!)−1)-panchromatic graph with high probability. Next, in

each of these w many graphs, we randomly delete ni∗ − n vertices in each colour class. Note that in

every (ni∗ , ni∗ , k,D
k, Dk/(ck · F (k)), (4(Dk)!)−1)-panchromatic graph if we randomly delete ni∗ − n

vertices in each colour class then we obtain a (n, ni∗ , k,D
k, Dk/(ck ·F (k)), (4(Dk)!)−1)-panchromatic

graph.

Let i ∈ [w]. For each Gi we apply Theorem 6.1 to Γ′′ by using Gi. If Gi is a (n, ni∗ , k,D
k, Dk/(ck ·

F (k)), (4(Dk)!)−1)-panchromatic graph then we obtain an instance Γ(C, c := ` ·Dk,max((`/F (k)) ·
Dk, ` ·Dk/F (k)) of k-SetIntersection over universe U in time O(n2+o(1)) where |U| = n · (log n)Ok(1).

Also note that |C| = nk.

On the other hand, if Gi was not a (n, ni∗ , k,D
k, Dk/(ck ·F (k)), (4(Dk)!)−1)-panchromatic graph

then we still obtain some instance of k-SetIntersection and the search algorithm would then output a

witness if we are in the YES case of k-SetIntersection, which would not yield any meaningful solution

to Γ′, and so we can discard it. �

7. Open Problems

In this section, we highlight a few open problems.

Closest Pair. In [KM20], the authors constructed two kinds of panchromatic graphs9. First

they constructed (n,m := polylog(n), 2, t := mΩ(1), t/ log n, 1/no(1))-panchromatic graphs by using

the density and distance properties of low degree univariate polynomials. They also constructed

(n,Θ(log n), 2, t := Ω(log n), t(1− ε), 1/
√
n)-panchromatic graphs (for some small constant ε > 0)

by using the density and distance properties of algebraic-geometric codes. The latter was used

to prove conditional hardness of approximation results for the closest pair problem, where we

are a set of n points in Rd and we would like the closest pair of points in the `p-metric. Using

the latter panchromatic graph, the authors showed that assuming SETH, no algorithm running

in n1.5−δ(ε) time can approximate the closest pair problem to (1 + ε)-factor. If there existed a

9See footnote 3.
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(n,m := no(1), 2, t := Ω(m), t(1−ε), 1/no(1))-panchromatic graph then it could prove the subquadratic

time inapproximability result for the closest pair problem10.

Hardness of k-MinCoverage. In Theorem 6.4 we obtain tight running time lower bound for

k-SetIntersection under ETH but our inapproximability factor is weaker than the one ruled out by

Lin [Lin18]. In Appendix A we show a gap creating reduction for k-SetIntersection which starts from

an instance of k-MinCoverage and reduces it to gap k-SetIntersection matching the inapproximability

factors of [Lin18]. Also, a tight running time lower bound is known for exact panchromatic k-

MinCoverage under ETH [KN21]. Is it possible to tweak our PGC technique and use our construction

of panchromatic graphs or design new panchromatic graphs or both, in order to reduce panchromatic

k-MinCoverage to k-MinCoverage? If yes, then we could obtain a tight running time lower bound

for k-SetIntersection under ETH with inapproximability factors matching [Lin18].

Biclique. Using a more intricate composition technique and weaker objects than our threshold

graphs, Lin [Lin18] showed that k-Biclique problem is W[1]-hard; in the k-Biclique problem, we are

given as input a balanced bipartite graph on n vertices and the goal is to determine if it contains a

Kk,k. Lin further showed that under ETH, no no(
√
k) time algorithm can decide k-Biclique. However,

if (n, n, k, t := O(k)), t− 1, 1/n)-threshold graphs exist then we could obtain the tight time lower

bound for k-Biclique under ETH. Do such threshold graphs exist?

Derandomization. In this paper, we provide distributions from which we can efficiently sample

panchromatic and threshold graphs. A natural derandomization question is to ask for explicit

panchromatic and threshold graphs.

Other Applications of Our Threshold Graphs. Norm-graphs have various applications in

theoretical computer science such as proving lower bounds for span-programs [BGK+96, Gál01],

rectifier networks [Juk13], circuit lower bounds [JS13], and so on. But in each of these cases our

threshold graph match the lower bound obtained by using norm-graphs. Is there an application in

TCS where the stronger completeness property of threshold graphs comes in handy? Also, somewhat

speculatively, can our construction of (adjacency) matrices yield (semi-explicit) rigid matrices? If

yes, this would be an excellent followup to [GT18].

Other Applications of Our Panchromatic Graphs. Our Panchromatic Graph Composition

technique might be relevant with appropriate modifications to resolve various important complexity

theoretic questions, such as the dichotomy conjecture of [Gro07] whose coloured variant was shown

in [CGL17].
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Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even

set and shortest vector problem. J. ACM, 68(3), March 2021. 3, 10

[BC18] B. Bukh and D. Conlon. Rational exponents in extremal graph theory. J. Eur. Math.

Soc. (JEMS), 20:1747–1757, 2018. 9
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Extremal bipartite graphs and superpolynomial lower bounds for monotone span

programs. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM

Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24,

1996, pages 603–611. ACM, 1996. 2, 6, 26

[BI18] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. 3

[BT12] B. Bukh and J. Tsimerman. Sum-product estimates for rational functions. Proc. Lond.

Math. Soc., 104:1–26, 2012. 17

[Buk15] B. Bukh. Random algebraic construction of extremal graphs. Bull. Lond. Math. Soc.,

47:939–945, 2015. 8, 9, 14

[Buk21] Boris Bukh. Extremal graphs without exponentially-small bicliques, 2021. 6

27



[CCK+20] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin

Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-

inapproximability: Clique, dominating set, and more. SIAM J. Comput., 49(4):772–810,

2020. 10

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.

Springer, 2015. 2

[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In

David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp,

Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and

Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on Theory of

Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 94–99. ACM, 1983.

2

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan

Paturi, and Stefan Schneider. Nondeterministic extensions of the strong exponential

time hypothesis and consequences for non-reducibility. In Madhu Sudan, editor,

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer

Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–270. ACM, 2016. 10

[CGL17] Yijia Chen, Martin Grohe, and Bingkai Lin. The hardness of embedding grids and

walls. In Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic

Concepts in Computer Science - 43rd International Workshop, WG 2017, Eindhoven,

The Netherlands, June 21-23, 2017, Revised Selected Papers, volume 10520 of Lecture

Notes in Computer Science, pages 180–192. Springer, 2017. 26

[CL19] Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized

dominating set problem. SIAM J. Comput., 48(2):513–533, 2019. 3

[Coh16] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved ramsey

graphs. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,

USA, June 18-21, 2016, pages 278–284. ACM, 2016. 2

[Con21] David Conlon. Some remarks on the Zarankiewicz problem, 2021. 9, 14

[Coo70] Stephen A. Cook. Alan cobham. the intrinsic computational difficulty of functions. logic,

methodology and philosophy of science, proceedings of the 1964 international congress,

edited by yehoshua bar-hillel, studies in logic and the foundations of mathematics,

north-holland publishing company, amsterdam 1965, pp. 24–30. Journal of Symbolic

Logic, 34(4):657–657, 1970. 2
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Appendix A. From exact k-MinCoverage to gap k-SetIntersection via TGC

technique

In this section, we generalize a gap creation technique first appearing in [Lin18].

Theorem A.1 (Generalization of Lin’s Gap Creation technique from [Lin18]). There is an algorithm

that given as input

(1) an instance Γ(C, c, s) of k-MinCoverage over universe [n], and

(2) an (n,m,c,t,r,1)-threshold graph H(A,B), with |A| = n and |B| ≤ m,

then outputs an instance Γ′(C′, t, r) of k-SetIntersection over universe U such that the following hold :

Size: |C′| = |C| and |U| = |B|.
Completeness: If there exists k sets Si1 , . . . , Sik in C such that∣∣∣∣∣∣

⋃
r∈[k]

Sir

∣∣∣∣∣∣ ≤ c,
then there exists k sets S′i1 , . . . , S

′
ik

in C′ such that∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≥ t,
Soundness: If for every k sets Si1 , . . . , Sik in C we have∣∣∣∣∣∣

⋃
r∈[k]

Sir

∣∣∣∣∣∣ ≥ s,
then for every k sets S′i1 , . . . , S

′
ik

in C′ we have∣∣∣∣∣∣
⋂
r∈[k]

S′ir

∣∣∣∣∣∣ ≤ r,
Running Time: The reduction runs in Õ(n2m) time.

Proof. We need to first define the edge set E of the output bipartite graph G. Let σ : C′ → C and

π : [n] → A be some canonical one-to-one mappings. We include in S′ ∈ C′ the universe element

u ∈ U = B if and only if for every element ij in σ(S′) := {i1, . . . , id} ⊂ [n], there is an edge between

π(ij) and u ∈ B in the graph graph H.

We analyze the completeness case by assuming there exists k sets Si1 , . . . , Sik in C such that∣∣∣∣∣∣
⋃
r∈[k]

Sir

∣∣∣∣∣∣ ≤ c.
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We claim that the k sets σ−1(Si1), . . . , σ−1(Sik) in C′ have at least intersection size of t. Let

S := ∪
r∈[k]

Sir (where |S| ≤ c). Let Ŝ := {π(i) | i ∈ S} ⊂ A. Let T ⊂ B be the set of common

neighbors of Ŝ in H.

From the threshold graph property of H, we have that |T | ≥ t. We claim that every element in T

is contained in every set in {σ−1(Si1), . . . , σ−1(Sik)}. To see this, fix u ∈ T and j ∈ [k]. Since u is a

common neighbor of Ŝ in H, it is also a common neighbor of every subset of Ŝ in H. Thus, u is

contained in {π(i) | i ∈ Sj}.
Next consider the soundness case by assuming that for every k sets Si1 , . . . , Sik in C we have∣∣∣∣∣∣

⋃
r∈[k]

Sir

∣∣∣∣∣∣ ≥ s.
Consider any k sets S′1, . . . , S

′
k in V and fix an arbitrary universe element u ∈ U .

We have that u is contained in the all the sets in {S′1, . . . , S′k} if and only if u is a common

neighbor of σ(S′j) (and then applying π on each of elements of σ(S′j)) in H for every j ∈ [k]. In

other words, u is a common neighbor of ∪
j∈[k]

π ◦ σ(S′j) in H. But we know from the soundness case

assumption that ∣∣∣∣∣∣
⋃
j∈[k]

π ◦ σ(S′j)

∣∣∣∣∣∣ ≥ s ≥ c+ 1.

From the threshold graph soundness property of H we then have that ∪
j∈[k]

π ◦ σ(S′j) can have at

most r common neighbors in H. Thus, {S′1, . . . , S′k} have at most intersection size of r. �

Finally, we note that an instance Γ(C, k, k+ 1) of k-MinCoverage over universe [n] is W[1]-hard to

decide (follows from a straightforward reduction from the k-Clique problem).
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