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Abstract

Statistics of small subgraph counts such as triangles, four-cycles, and s-t paths of short lengths reveal important
structural properties of the underlying graph. These problems have been widely studied in social network analysis.
In most relevant applications, the graphs are not only massive but also change dynamically over time. Most of these
problems become hard in the dynamic setting when considering the worst case. In this paper, we ask whether the
question of small subgraph counting over dynamic graphs is hard also in the average case.

We consider the simplest possible average case model where the updates follow an Erdős-Rényi graph: each
update selects a pair of vertices (u,v) uniformly at random and flips the existence of the edge (u,v). We develop new
lower bounds and matching algorithms in this model for counting four-cycles, counting triangles through a specified
point s, or a random queried point, and st paths of length 3, 4 and 5. Our results indicate while computing st paths
of length 3, and 4 are easy in the average case with O(1) update time (note that they are hard in the worst case), it
becomes hard when considering st paths of length 5.

We introduce new techniques which allow us to get average-case hardness for these graph problems from the
worst-case hardness of the Online Matrix vector problem (OMv). Our techniques rely on recent advances in fine-
grained average-case complexity. Our techniques advance this literature, giving the ability to prove new lower bounds
on average-case dynamic algorithms.
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1 Introduction
It is a broad criticism of worst-case analysis that it is overly pessimistic and this also applies to the worst-case analysis
of dynamic algorithms. For many dynamic graph problems this is not a shortcoming of algorithms designers, rather it is
due to the existence of strong conditional lower bounds that preclude fast algorithms [1, 13]. For example, maintaining
shortest paths in a dynamic graph of n vertices and m edges with subpolynomial query time requires Ω(m1−ε) time per
update operation for any small ε > 0 and even counting s-t paths of length 3 requires an update time of m1/2−o(1) if the
Online Matrix Vector (OMv) conjecture holds [13, 12]. Most real world networks are dynamic in nature. However,
the worst case update sequences that are used to prove the conditional lower bounds are unlikely to arise in practice.
These concerns motivate the study of dynamic algorithms beyond the worst case.

In the static world, the simplest possible average case model to study graph algorithms is Erdős-Rényi graphs
(every possible edge (u,v) is included or excluded iid with probability 1/2). Can we consider such a model in the
dynamic setting? Suppose the adversary can choose when to update and when to query, but cannot control the precise
nature of updates. Every update picks a uniformly random pair of vertices (u,v) and flips the existence of the edge
(u,v). That is if we have a graph G with edge set E and we update (u,v) then we add (u,v) if (u,v) /∈ E and we delete
(u,v) if (u,v) ∈ E. In this model we consider many possible types of queries, in this paper we restrict our attention to
counting small subgraphs. This weakened adversary is similar to an Erdős-Rényi graph for offline problems. Notably,
when the initial graph is Erdős-Rényi and any series of average-case updates are made in our model, the new updated
graph remains drawn from an Erdős-Rényi distribution. This leads to a significantly weakened adversary which should
lead to dynamic algorithms with better running time bounds! In the static setting, many problems become easy on
Erdős-Rényi graphs such as APSP [7], whereas problems like k-clique remain hard [5]. Can such a dichotomy exist in
the dynamic world?

Open question: Which problems become easy in the dynamic average-case model, and which remain hard?

Surprisingly we show that even in this most natural average case model where the adversary is significantly
weaker than the worst-case adversary, some problems remain hard. In this paper, we focus on the problems of counting
small subgraphs such as triangles and four cycles through specified nodes, and s-t paths of length 3,4 and 5. These
problems, especially counting triangles and four cycles are heavily studied in the data mining community, and reveal
important structural properties of the underlying graphs [17, 16, 15]. Counting s-t paths of small length are intrinsically
connected to the fundamental problem of computing shortest paths especially for small-diameter graphs, a property
shared by many real-world networks [6]. We observe an interesting change in hardness when we move from s-t paths
of length 4 to 5: while counting s-t paths of length 4 is easy on average, it becomes hard at length 5. Such a hardness
shift is not known in the worst case.

In the traditional RAM model counting constant size subgraphs has the same complexity in both average-case
Erdős-Rényi and worst case [9, 5]. Another interesting result of our work is that this is not true in the dynamic setting.

It should be noted here that in dynamic algorithm design, a worst case update time is often contrasted with
amortized update time, whereas we use worst case to refer to inputs that do not come from a fixed distribution and can
be arbitrarily hard and whether the analysis uses amortization or not does not matter.

Our work is motivated by the pioneering work of Alberts and Henzinger who define the first ”average” case model
for dynamic graph algorithms and analyzed the performance of dynamic algorithms for a variety of graph problems
in that model [2]. In their model the adversary is somewhat stronger in that the adversary can choose in a worst-case
fashion if they will make an edge deletion, edge insertion, or query. If an edge deletion is made, a uniformly random
edge from the graph is selected and deleted. If an edge insertion is made, then a uniformly random non-edge is selected
and an edge is inserted there. Note that this allows the adversary to keep the graph sparse or dense, and allows the
adversary to change behavior based on what edges exist in the graph. In contrast, our model directly emerges from the
Erdős-Rényi graphs, and is, in some sense, the easiest to design algorithms and hardest to design lower bounds. We
chose this model as our main results in this paper are the lower bounds.

The average-case hardness of dynamic algorithms has not yet been well explored as it used to be difficult to prove
lower-bounds due to the lack of average-case fine-grained lower-bound techniques. However, there has been recent
progress in average-case fine-grained complexity for static graph problems (e.g. [5, 9]). We use and improve upon
this recent progress. Section 1.2 describes the difficulties of applying the prior work to the dynamic setting. We give
tight upper and lower bounds for a variety of dynamic graph problems. Interestingly, our lower bounds are derived
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Average-Case Lower Bound Worst-Case Lower Bound
P(n) U(n) Q(n) P(n) U(n) Q(n)

#s-t 3 path (–)([12]) – – – O(poly(n)) Ω̃(n) O(n2−ε)

#s-t 4 path (-)(S7) – – – O(poly(n)) Ω̃(n) O(n2−ε)

#s-t 5 path (S6)(“) O(n3−ε) Ω̃(n) O(n2−ε) “ “ “
O(n3−ε) O(n1−ε) Ω̃(n2) “ “ “

#4-Cycles (S4)(“) O(n3−ε) Ω̃(n) O(n2−ε) “ “ “
O(n3−ε) O(n1−ε) Ω̃(n2) “ “ “

#s4-Cycles (-)(S7) – – – O(poly(n)) Ω̃(n) O(n2−ε)

#4 Through a Queried O(n3−ε) Ω̃(n) O(n1−ε) “ “ “
Point (S5)(“) O(n3−ε) O(n1−ε) Ω̃(n) “ “ “
#s-4 (-)([13]) – – – O(n3−ε) Ω̃(n) O(n2−ε)

#4 (S5)(“) O(n2−ε) O(nω−2−ε) Ω̃(nω) “ “ “
O(n2−ε) Ω̃(nω−2) O(1) “ “ “

Table 1: Our lower bound results. We use P(n) for preprocessing time, U(n) for update time, and Q(n) for the query
time. Next to the problem name we either give a reference or mark the section in which the lower bound is proven
((S#) denotes section #). The symbol− or (−) indicates that there is no non-trival lower bound as there is an algorithm
with O(1) average time, “ indicates that the worst-case lower bound matches our average-case lower bound. Bounds
in gray cells are from prior work. Our lower bounds in white cells come from the OMv hypothesis, in blue cells from
the k-clique hypothesis when k = 3.

from worst-case hard problems. Specifically, we use the Online Matrix vector (OMv) hypothesis [13] to prove lower
bounds, and show that average case OMv is hard assuming the worst case hypothesis.

DEFINITION 1.1. In OMv, we are given a matrix M ∈ {0,1}n×n then we are given n vectors vi, each in {0,1}n, in an
online fashion. After each vi is given one must return a vector~yi where~yi[`] = min((Mvi) [`],1). The algorithm must
return the correct vector with probability at least 2/3.

Conjecture 1. [ Conjecture 1.1 from [13]] For any constant ε > 0, there is no O(n3−ε)-time algorithm that solves
OMv with error probability at most 1/3 in the word-RAM model with O(logn) bit words.

1.1 Our results We present tight upper and lower bounds for several subgraph counting problems which include
counting triangles that contain a particular node (#s-triangles), or a uniformly random queried node, counting 4-
cycles, and s-t paths of length up to 5. The problem of counting triangles that use a random queried point (#4 through
a queried point) has the following queries: when making a query a uniformly random node u is selected and the
query will return a tuple (u,number of triangles which contain u). So the adversary has no control over which node is
queried, but, they do know which node they receive a count from. We present all of our results in Tables 1 and 2.

There are four interesting result categories:
(1) Average case dynamic upper bound matches the average case conditional lower bound up to a factor of nε .

All our problems except for triangle counting fall into this category. This means we settle the average-case dynamic
complexity for these problems, up to a factor of nε .

(2) Average case dynamic lower bound equals worst-case dynamic lower bound. This means these problems
are equally hard in the worst-case and the average case setting. #s-t 5 paths, #4-cycles, counting triangles through a
random queried point fall in this category.

(3) Average case dynamic upper bound beats worst-case conditional lower bound. This is an interesting category
as for these problems the worst-case conditional lower bound is “overly pessimistic”, i.e., the worst-case sequence is
unlikely to arise in our average-case model. Problems #s-t 3 paths, #s-t 4 paths, #s 4-cycles and #s-triangles fall in this
category. These are all problems for which we give constant time average-case algorithms.

(4) Average case dynamic upper bound beats worst-case upper bound. These are all problems for which we can
give a better analysis knowing that the updated edge is chosen randomly. This is the case for all problems, except
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Average-Case Algorithm Worst-Case Algorithm
P(n) U(n) Q(n) P(n) U(n) Q(n)

#s-t 3 path (S7)([12]) O(n2) O(1) O(1) O(m3/2
0 )) O(m1/2) O(1)

#s-t 4 path (S7)([10]) O(nω) O(1) O(1) O(m0n) O(n2 log3 n) O(p+ logn)
#s-t 5 path (S8)([10]) O(nω) O(n) O(1) O(m0n) O(n2 log3 n) O(p+ logn)

O(nω) O(1) O(nω) O(m0n) O(n2 log3 n) O(p+ logn)
#4-Cycles (S9)([12]) O(m5/3) O(min(n,m2/3)) O(1) O(m5/3

0 ) O(m2/3) O(1)
O(nω) O(1) O(nω) O(m5/3

0 ) O(m2/3) O(1)
#s 4-Cycles (S7)([12]) O(nω) O(1) O(1) O(m5/3

0 ) O(m2/3) O(1)
#4 Through a Queried O(nω) O(n) O(1) O(nω) O(n) O(1)

Point (S11)([12]) O(m3/2
0 ) O(

√
m) O(

√
m) O(m3/2

0 ) O(
√

m) O(
√

m)

#s-4 (S10)([12]) O(n2) O(1) O(1) O(m3/2
0 ) O(m1/2) O(1)

#4 ([14]) ([14]) O(m0 +n) O(m1/2) O(1) O(m0 +n) O(m1/2) O(1)

Table 2: Our upper bound results, where m denotes the current number of edges, m0 the initial number of edges, and p
the number of counted paths. We use P(n) for preprocessing time, U(n) for update time, and Q(n) for the query time.
We mark where the algorithm are from by giving either a reference of the section number (S#) denotes section #). We
have grayed out the cells of all results that come from other work and cite them in the table as ([#]). The papers [12]
and [14] give dynamic algorithms with O(

√
m) time per update, which is O(n) time in the dense Erdős-Rényi graphs

we study.

for #4 (for which we do not give a new algorithm) and #4 Through a Queried Point, if one assumes that the graphs
are dense. Note that the worst-case upper bounds for #s-t 4 paths and #s-t 5 paths follow from the fully dynamic
all-pairs-shortest-path algorithm of Demetrescu and Italiano [10] if one observes that the algorithm actually maintains
a set S of shortest paths (and up to O(logn) additional paths) between any pair of vertices. Testing whether a path of
S still exists and has length 4 (resp. 5) takes time linear in its size, which is O(1). Thus determining the number of s-t
paths of length 4 (resp. 5) takes time linear in their number plus O(logn).

This leads to the following result for all problems we study: There is a clear dichotomy for them: the average-case
dynamic complexity is either constant or the dynamic average-case hardness is equal to worst-case hardness.

There are two other interesting dichotomies we want to point out: (a) For #s-t paths up to length 4 there are
algorithms with constant time per operation in our average-case model. However, the problem of counting paths of
length 5, i.e. #s-t 5 paths, becomes hard, i.e. we give a conditional lower bound showing that there is no fast algorithm
for s-t path in an average-case dynamic graph setting. The reduction is from OMv. We also show that this lower bound
is tight as we present a dynamic algorithm for #s-t 5 path with matching running time. This shows that the switch from
easy to hard happens at exactly paths of length 5. (b) In the traditional RAM model counting constant size subgraphs
has the same complexity in both average case and worst case [7, 9, 5]. However, in the dynamic setting this is not the
case for all problems that are in category (3) above.

1.2 New Techniques To show our results we develop a set of new techniques, namely biased updates, average-case
hardness of parity OMv, dynamic inclusion-edgesclusion, and fast average-case subgraph counting techniques. We
will describe each technique and its use briefly. First, a core challenge to overcome when getting average-case lower
bounds from dynamic problems which are hard in the worst-case is the question of how to “hide” the dynamic updates.
By that we mean that we have to make the update sequence “look” random, even though it originates from a worst-
case sequence. The naive approach would cause us to insert and delete Θ(n2) random edges for every update! This
is far too expensive. We avoid this issue by using the algebraic structure of OMv to efficiently hide the updates as we
describe below.

We also use the problem of OuMv. We give a formal definition in section 2. Informally it is a problem where you
are given an n by n matrix M to pre-compute over. Then, n queries are given each is a single pair of vectors ~ui and
~vi one must return the value ~uT

i ·M ·~vi dynamically for query. They OuMv hypothesis states that the n queries must
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take at least n3−o(1) time. This hypothesis is implied by the OMv hypothesis [13]. See Section 2 for a more formal
discussion.

Average-case hardness for OMv. We present the theorem statements for the average-case hardness of OMv and
OuMv in section 2 and the proofs in section A. To get the above lower bounds we use the average-case hardness of
parity OMv and its variant parity OuMv, whose hardness we prove first. Using the hardness of the parity versions
the core idea is that we can add random matrices and vectors to our worst-case matrices (M) and vectors (~vi) and
use the linearity of XOR to return the M~vi we originally wanted to find. So, for example we are given a worst-case
M ∈ {0,1}n×n and n vectors ~vi ∈ {0,1}n and we are asked to return min((M~vi)[ j],1) for all j ∈ [0,n− 1]. We show
that we can solve OMv with parity OMv, where we are instead asked to return (M~vi)[ j] mod 2 for all j ∈ [0,n− 1].
We can then solve parity OMv with four calls to instances that individually look indistinguishable from uniformly
random {0,1} matrices and vectors using the following observation: Select a uniformly random R ∈ {0,1}n×n and
uniformly random~ri ∈ {0,1}n. Then consider the following queries: (R⊕M)(~vi⊕~ri), (R⊕M)(~ri), (R)(~vi⊕~ri), and
(R)(~ri). These queries are correlated, but each one looks uniformly random. If we have answers to all four queries and
add them mod two, this gives M~vi mod 2. While this is the core idea of the reduction, it is hard to use it to get lower
bounds for graph problems. That is why we developed the idea of a biased updates version, presented next.

Biased updates (Main New Technique) In section 2 we present the biased updates problem. We previously
described average-case OMv with fixed uniformly random M and uniformly random ~vi vectors. However, imagine
trying to use this problem to generate hardness for a graph problem. In our graph problem when we make random
updates we are taking a random pair of nodes (u,v) and flipping the edge between them (deleting it if it already exists
and adding the edge if it doesn’t exist). This introduces two problems.
• First, the standard way to represent a vector~vi in a reduction uses Θ(n) edges whereas M uses Θ(n2) edges. If we

want to do random updates until the edges representing~vi represent a new random vector it will require flipping Ω(n2)
edges in the graph. That is because the probability that any given update flips a vector-representing edge is O(1/n).
Since, we need Ω(n) flips of vector-representing edges to randomize ~vi, we would need at least Ω(n · (1/n)−1) edge
flips before we could hope to randomize ~vi. So we need some way of representing ~vi so that an edge representing ~vi
and M are equally likely to be flipped. To deal with this problem, we represent our vectors in a new way in the graph,
namely by Θ(n2) edges: Each bit of the vector ~vi[ j] is represented with n edges. So, after x random updates to the
graph we expect Θ(x) updates to the vector ~vi. Now when we make a series of Θ(n lg2(n)) updates we effectively
randomize the vector ~vi to a new vector ~vi+1, and make a small number of changes to M. We use this technique in
Sections 5, 4, and 6.
• The second problem is that when we do random edge flips, as mentioned above, some of these will flip the

edges representing M. In the original description of the worst-case OMv we have M to be fixed, but in our average-
case model every edge including the edges representing M can be flipped. To deal with this, we use a technique similar
to the parity idea sketched below:We create three correlated update sequences (that lead to three correlated dynamic
graphs) that correspond to matrices M1 = M⊕ (∆1⊕∆2), M2 = M⊕ (∆2⊕∆3), and M3 = M⊕ (∆3⊕∆1) and ask a
dynamic graph query that in effect returns M j~vi with j = 1,2,3 in each of them. Note that combining these answers
with XOR answers return the original OMv query M~vi mod 2. Note further that each of these update sequences “looks
random” for its data structure, but due to the linearity of XOR, their XOR combination results in the original matrix
M.

We describe next (in a simplified way) how to create ∆1, ∆2, and ∆3 and the random update for ~vi: We want to
generate a series of updates that individually look random, but across all three of our calls are correlated. To do this we
make Θ(n(log2 n)) coin flips where every head counts towards an update for~vi and every tail will become an update for
M. Let βv represent the edge updates corresponding to edges representing~vi, and ∆1, ∆2, and ∆3 each represents half
of the random edge updates corresponding to edges representing M. Now, we generate three edge update sequences.
One involves βv,∆1, and ∆2 corresponding to M1, the second involves βv,∆2, and ∆3 corresponding to M2, and the last
involves βv,∆1, and ∆3 corresponding to M3.

Note that M and βv appear in all three instances. Further note that ∆1,∆2, and ∆3 all appear in exactly two
instances. By XORing we will therefore get back the value M(~vi⊕βv) which we desired.

Dynamic Inclusion-Edgesclusion. As will be evident in most lower bound reductions, we need to create a k-
partite graph. However, we are interested in general Erdős-Rényi graphs with no restrictions on edges. To deal with
this issue we introduce in section 3 a generalization of the inclusion-edgesclusion technique of [9] which now works
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for dynamic graphs. Most of our reductions happen in two steps. First, we prove the problem is hard on a k-partite
graph (where we restrict some edges to not exist and not be randomly updated). Then, we use our Dynamic Inclusion-
Edgesclusion theorem from section 3 to show hardness for the dynamic Erdős-Rényi setting. Note that the technique
of [9] cannot be applied directly because it would need to be run on each update and it requires Θ(n2) time, which is
far too slow in the dynamic setting. Additionally, we generalize the allowed graphs to include those with fixed nodes
(e.g. s-t paths and s triangles).

The core idea of dynamic inclusion-edgesclusion is that we can take k-partite Erdős-Rényi graphs and make them
look fully Erdős-Rényi by adding random edges. We can solve counting problems on k-partite Erdős-Rényi graphs
with algorithms that run on Erdős-Rényi graphs via multiple calls to correlated graphs by exploiting the linearity of
XOR. We present a small illustrative example for s-t three paths in section 3 to help build intuition. This concept is
used in all of our lower bounds in sections 5, 4, and 6.

Fast Average-Case Subgraph Counting. For the upper bound we use a simple idea from [2] to get faster
algorithms: construct data structures that are fast for likely updates and can be slow for unlikely updates. Specifically,
if we want to count the number of subgraphs containing a fixed vertex s then the key observation is that updates of
edges incident to s will be unlikely, and can thus be slow, while updates of all other edges are likely and the data
structure needs to be fast to process them. Assume, for example, we want to maintain the number of length-2 paths
from a fixed node s to any other node v, where v is given as query parameter. This problem is conditionally hard in
the worst-case (from OMv no less), however, as we sketch now, it is easy on average. Given O(n2) preprocessing time
we can complete updates in expected O(1) time and answer queries in expected amortized O(1) time. Simply keep at
each node v 6= s the count c(v) of length-2 paths to s and also a bit indicating whether v is a neighbor of s. Note that
the update of an edge (u,v) only effects the counts of numbers of two paths from u and v to s, and not for any other
nodes, and updating these counts takes O(1) worst-case time. It takes O(n) worst-case time to update counts when we
add or remove an edge (s,u). However, this happens with probability 1/n resulting in expected amortized time O(1).
The data structures for the problems in Table 2 are more refined, but all are based on this idea. They are represented
in Sections 10, 7, 8, and 9.

2 Average-Case OMv, OuMv, and Biased Updates
In this paper we show hardness for average-case problems based on the popular dynamic OMv conjecture, which is a
conjecture for the worst-case complexity. To turn the worst-case complexity bound into an average-case complexity
bound we first show the hardness of parity OMv and parity OuMv given the worst-case hardness of traditional OMv.
In this section we present the theorems and lemmas but defer all proofs except for the proof of our biased updates
Theorem to Appendix A. The core idea of all proofs in the section is that we can make several correlated calls and use
the linearity of XOR to solve the worst-case problem.

OMv and OuMv Definitions First we will define the problems of OMv and OuMv.

DEFINITION 2.1. (OMV) In OMv we are given a matrix M ∈ {0,1}n×n then we are given n pairs of vi each in {0,1}n

in an online fashion. After each vi is given one must return a vector~yi where~yi[`] = min((Mvi) [`],1). The algorithm
must return the correct vector with probability at least 2/3. The OMv hypothesis is that OMv requires at least n3−o(1)

time. (Conjecture 1.1 from [13])
In parity OMv one must instead return Mvi mod 2 with probability at least 2/3. The parity OMv hypothesis is

that parity OMv requires at least n3−o(1) time.
We define input distribution to average-case OMv, DOMv, as the distribution where M is drawn uniformly at

random from {0,1}n×n and each ~vi is drawn uniformly at random and iid from all possible {0,1}n vectors. The
problem of (uniform) average-case OMv then asks for a solution of OMv. The problem of (uniform) average-case
parity OMv requires solving parity OMv on inputs drawn from DOMv.

DEFINITION 2.2. (OUMV) In OuMv we are given a matrix M ∈ {0,1}n×n then we are given n pairs of (ui,vi) each
in {0,1}n in an online fashion. After each (ui,vi) is given we must return the value min

(
uT

i Mvi,1
)

with probability at
least 2/3. The OuMv hypothesis is that OuMv requires at least n3−o(1) time. (Definition 2.6 from [13])

In parity OuMv one must instead return uT
i Mvi mod 2 with probability at least 2/3. The parity OuMv hypothesis

is that parity OuMv requires at least n3−o(1) time.
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We define input distribution to average-case OuMv, DOuMv, as the distribution where M is drawn uniformly at
random from {0,1}n×n and each~vi and~ui is drawn uniformly at random and iid from all possible {0,1}n vectors. The
problem of (uniform) average-case OuMv requires solving parity OMv on inputs drawn from DOuMv. Note that M is
randomly chosen at the beginning but remains unchanged in the average-case parity OMv and OuMv.

Note that Theorem 2.7 from [13] shows that the OMv hypothesis implies the OuMv hypothesis. We will show in
Lemma 2.1 that parity OuMv and parity OMv are also hard. The omited proofs of this section are all in Appendix A.

LEMMA 2.1. With x calls to parity OMv we can answer an instance of OMv with probability at least 1−2−x ·n. With
x calls to parity OuMv we can answer an instance of OuMv with probability at least 1−2−x ·n. Thus for x≥ log(3n)
the parity OMv hypothesis and the parity OuMv hypothesis are implied by the OMv hypothesis.

We now present a lemma that the hardness of worst case parity OuMv implies the hardness of uniform average-
case parity OuMv. This proof is an “online version” of the Blum, Luby, and Rubinfeld proof that matrix multiplication
is hard on average [4]. We can show that parity OMv and parity OuMv (see definitions 2.1 and 2.2) are hard on average
with this inclusion/exclusion technique.

LEMMA 2.2. An algorithm for (uniform) average-case parity OuMv (resp. OMv) that succeeds with probability 1−ε

in time T (n) implies a worst-case algorithm for parity OuMv (resp parity OMv) in time O(T (n)) that succeeds with
probability 1−8ε (resp. 1−4ε).

Now, we can consider what a fast algorithm for the (uniform) average-case parity OuMv problem implies about
worst-case OuMv. Note that OMv and OuMv are defined with n vectors or pairs of vectors, so we can encapsulate all
of the updates and query times into a single running time for all operations.

THEOREM 2.1. Given a dynamic algorithm A , for (uniform) average-case parity OuMv (resp. parity OMv) which
succeeds with probability at least 16/17 and runs in time T (n) we can solve worst-case OuMv (resp. OMv) with
probability at least 1−2−Ω(lg2(n)) in time Õ(T (n)).

2.1 Biased Updates Now we are going to prove, as described in our new techniques section, our biased updates
theorem. We will show that biased OuMv (defined below) is hard from the worst-case OMv hypothesis via (uniform)
average-case parity OuMv. In Appendix A we present proofs for biased OMv.

DEFINITION 2.3. (BIASED AVERAGE-CASE OUMV) We call the following problem biased average-case OuMv. Let
n be a positive integer. The initial matrix M0 and vectors ~u0 and~v0 are chosen uniformly at random from all possible
such n-dimensional Boolean vectors and n×n-dimensional Boolean matrices. Now, Mi+1,~ui+1,~vi+1 are created from
Mi,~ui,~vi by flipping n lg2(n) bits. Each bit flip that occurs has the following distribution: each bit in Mi is flipped
with probability 1

3n2 , each bit in ~ui and ~vi is flipped with probability 1
3n . In the biased average-case OuMv problem

for 1 ≤ i ≤ n lg4(n) right after the construction of Mi,~ui,~vi we must return a one if (~uT
i Mi~vi) is non-zero and a zero

otherwise. In the biased average-case parity OuMv problem for 1 ≤ i ≤ nn lg4(n) right after the construction of
Mi,~ui,~vi we must return (~uT

i Mi~vi) mod 2.
Note that in biased average-case problems the matrix M used for producing the output can change. In a similar

way we can define biased average-case parity OMv, see Appendix A Definition A.1. In the rest of the paper we only
make use of biased average-case parity OuMv and biased average-case parity OMv.

We use the total variation distance (TVD) to describe how different some of our distributions are.

DEFINITION 2.4. (TOTAL VARIATION DISTANCE (TVD)) Let D and D′ be two probability distributions, and let X
be the complete set of possible outcomes from both distributions, that is the union of the supports of both distributions.
Then the total variation distance is

∑
x∈X
|(PrY∼D[Y = x])− (PrY∼D′ [Y = x]) |.

The TVD can be thought of as a bound on the probability with which one can distinguish the distributions. If
TVD is δ , then intuitively 1−δ of the time the sample is from the overlap of the distributions.
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Both biased average-case parity OuMv [OMv] and average-case parity OuMv [OMv] start with random matrices
and vectors. We have two differences to overcome. First, the matrix M of biased average-case OuMv [OMv] changes
and second, all changes are made with bit flips (instead of freshly random vectors). For the first challenge we are going
to create three instances of biased OuMv [OMv], use the linearity of XOR, and a clever set of updates. For the second
challenge we use the fact that enough random bit flips of a vector creates a vector that has a very small TVD from a
uniformly random vector.

THEOREM 2.2. If a dynamic algorithm A solves biased average-case parity OuMv (resp. parity OMv) in time U(n)
per update and Q(n) per query with probability at least 59/60 then worst-case OuMv (resp. OMv) can be solved in
time U(n)n2+o(1)+Q(n)n1+o(1)+n2+o(1).

Proof. We use the reduction of Theorem 2.1 from worst-case OuMV to (uniform) average-case parity OuMv problem
and, thus, assume that we are given an instance of (uniform) average-case parity OuMv with matrix M fixed and the
sampled vectors (~ui,~vi) from i = 0,1, . . . ,n given in an online manner. We will show how to turn this into three parity
OuMv problems S1, S2, and S3, each with the same set of vectors (~u′i,~v′i) but with different but correlated i-th matrices
such that the XOR of their individual answers gives the answer for the given instance of the (uniform) average-case
parity OuMv problem. Each Sk with k = 1,2,3 will have a small TVD from a biased average-case parity OuMv
problem. We will use Lemma C.1 to show that this implies a high probability of success on the biased average-case
parity OuMv distribution.

The initial matrix and vectors M0, ~v0, and ~u0 are also the initial matrix and vectors for each Sk. Now for
0 ≤ i ≤ n− 1 given the vector (~u′ j,~v′ j) and (~ui,~vi) (where ~ui,~vi) is the next vector pair we have a query on) from
the uniform average-case parity OuMv we produce many vector pairs (~u′ j,~v′ j) and the j-th matrices for each Sk as
follows. We first need to determine the three numbers su, sv, and sM , where su, resp. sv corresponds to the number of
flipped bits that will be applied to (~u′ j−1,~v′ j−1) to generate (~u′ j,~v′ j) and sM will be used for constructing the three
matrices. They are generated as follows: Initially set su, sv, and sM all to 0. Then n lg2(n) times increment one of su,
sv, and sM , each with equal probability. Then perform a check described below. We use a different random procedure
to sample the vectors if it succeeds vs fails.

Recall that we are give a (uniform) random sampled ~ui. Additionally, we will maintain the invariant that ~u′ j−1

is sampled from a distribution that has a TVD of at most 2−Ω(n2) from uniform vectors (See Lemma C.2. Let bu be
the number of indices where ~u′ j−1 and ~ui+1 differ. Let bv be defined analogously. We call su (resp. sv) valid for bu
(resp. bv) if (a) su ≥ bu and (b) the parity of su equals the parity of bu. With probability 1/4 su and sv will match the
parity constraints and su < bu or sv < bv happens with probability at most 2−ω(1), i.e., with probability 1/4− 2−ω(1)

both are valid. We will sample an S and describe slightly different procedures bellow depending on if S is valid or
not. Our goal is that individually, each of S1,S2,S3 are series of updates sampled from a distribution with a TVD of
zero from the biased updates distribution. Additionally, whenever we sample a valid S we will answer the query of
(~ui,~vi) and we can increment i to solve the next vector pair. When S is invalid we will effectively be solving a random
problem unrelated to our query. Note that after sampling su and sv at most lg4(n) times they are valid for both bu and
bv with probability at least 1−2− lg3(n).

In the case where we have selected valid su and sv, we create the actual updates for ~u′ j−1 and ~v′ j−1 to create
~u′ j =~ui and ~v′ j =~vi. Consider ~u′ j−1 and the set of indices that change when going to ~u′i. On each of those indices
of ~ui we will generate an odd number of flips and on all other indices we will generate an even number of flips. We
sample a set of updates to the indices of~ui conditioned on having su and respecting the transformation from~ui to~ui+1
as follows: we add one flip for each index that changes between ~ui and ~ui+1, and then we sample (su−bu)/2 indices
in [1,n] uniformly at random and add two bit flips at the sampled indices. Finally, we randomize the order of the flips
in βu. Applying these bit flips to~ui gives the vector ~u′i+1. We denote the set of updates for~ui by βu. Then, we perform
the same procedure for v to generate βv creating vector ~v′i+1. Finally to create the list of updates for both, we merge
the lists βu and βv and randomize the order of updates between them. Call this list of updates βu,v.

In the case where S was invalid (either su or sv was invalid, instead sample su uniformly random updates iid and
them to βu. Sample sv uniformly random updates iid and them to βv. Note that regardless of what S we sample we use
it and fill S with flips.

Now we will analyze the TVD of the flips we perform in βu to the uniformly sampled flips. We will use Binµ [x]
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to refer to the Binomial distribution where a success happens with probability µ and there are x samples. First, by
Lemma C.2 we have that a vector that results from the sequence of Bin1/3[n lg2(n)] bit flips on ~ui and a uniformly

random vector have TVD of at most 2−Ω(lg2(n)). Note that (1) we can use the linearity of XOR here to start from ~ui
instead of the empty vector and (2) the length of a sequence of Bin1/3[n lg2(n)] bit flips on~ui has the same distribution
as the number su picked by one iteration of the above procedure. This is relevant for the case where S is valid. In
the case where S is invalid we are sampling flips in a distribution that is indistinguishable from the biased updates
distribution we describe. So, the distribution of the vectors ~u′i+1 and ~v′i+1) that result from the above procedure and
the distribution over two uniform random vectors have TVD of at most 3 ·2−Ω(lg2(n)) = 2−Ω(lg2(n)). Additionally, the
distribution over updates to achieve these outcomes is has a TVD of at most 2−Ω(lg2(n)).

Now we need to sample the bit flips in M. We have two cases based on whether sM is even or odd. If the number of
samples is even then sample sM/2 iid uniformly random updates to M three times, call these possible updates ∆i

a, ∆i
b,

and ∆i
c. We will additionally define the set Fi to be the empty set of updates for the even case. If sM is odd then sample

bsM/2c entries for ∆i
a, ∆i

b, and ∆i
c. We additionally sample as single bit flip in the matrix M and let Fi be the set of just

this flip in the odd case. We create three sampled flips f1 = ∆i
a⊕∆i

b⊕Fi, f2 = ∆i
a⊕∆i

c⊕Fi, and f3 = ∆i
b⊕∆i

c⊕Fi, to
be used by S1, resp. S2, resp. S3, one per instance. Note that no matter whether sM is even or odd, we produced three
instances with n lg2(n) uniformly random samples.

Now we show that if we make calls to the three biased updates instances and sum their outputs we will get
~ui+1M~vi+1. Note that the matrix used by the first instance for operation i+ 1 is M⊕

⊕i+1
j=1(∆

j
a⊕∆

j
b⊕Fi), for the

second it is M⊕
⊕i+1

j=1(∆
j
a⊕∆

j
c⊕Fi), and for the third it is M⊕

⊕i+1
j=1(∆

j
b⊕∆

j
c⊕Fi). Thus,

~ui+1(M⊕
i+1⊕
j=1

(∆ j
a⊕∆

j
b⊕Fi))~vi+1⊕~ui+1(M⊕

i+1⊕
j=1

(∆ j
b⊕∆

j
c⊕Fi))~vi+1⊕~ui+1(M⊕

i+1⊕
j=1

(∆ j
c⊕∆

j
a⊕Fi))~vi+1 =

3~ui+1M~vi+1⊕2(~ui+1

i+1⊕
j=1

(∆ j
a⊕∆

j
b⊕∆

j
c)~vi+1)⊕3~ui+1(

i+1⊕
j=1

Fi)~vi+1 =

(~ui+1M~vi+1⊕~ui+1(
i+1⊕
j=1

Fi)~vi+1) mod 2.

We will save the values of all sampled Fi, these have between zero and one entries each and each such entry
consist of a 0 or a 1 and a location in M. Computing c =~ui+1(

⊕i+1
j=1 Fi)~vi+1 takes O(i) time in the following way. We

initialize c to be zero at the beginning of the reduction and whenever the j-th vector pair of the uniform average-case
parity OuMv instance arrives and we have determined the new Fj then we perform the following operation: If Fj is
non-empty and has location M[a][b] then we XOR our current value of c with ~ui+1[a]~vi+1[b]. We can then return the
value ~ui+1M~vi+1 mod 2 by XORing c to the value (~ui+1M~vi+1⊕~ui+1(

⊕i+1
j=1 Fi)~vi+1) received by XORing the query

answers of S1, S2, and S3. Computing c for all n OuMv queries requires O(n2) time across all n pairs (~ui+1,~vi+1). This
shows the correctness of our reduction.

Lemma C.1 shows that if two distributions have TVD ε then an algorithm that succeeds on one distribution with
probability p must succeed on the other with probability at least p− ε . We will use this to overcome the distance of
our problem from the TVD of at most 2−Ω(lg2(n)) from the uniform distribution. Assume we have an algorithm for
biased average-case parity OuMv with failure probability at most 1/60. If we apply it to one of the instances Sk, it has
failure probability at most 1/60+2−Ω(lg2(n)). Thus, the total failure probability of the algorithm when applied to S1,
S2, and S3 is at most 3/60+3 ·2−Ω(lg2(n)), which is a smaller probability of failure than 1/3. Thus, the algorithm could
be used to answer the given (uniform) average-case parity OuMv problem with probability at least 2/3. Our reduction
uses O(n2 logn) = O(n2+o(1)) updates and n queries. Combined with Theorem 2.1 the result follows.

We restate the above proof and give the proof for biased average-case parity OMv in Appendix A.

It follows that any dynamic algorithm for biased average-case parity OuMv or OMv with update time n1−ε and query
time n2−ε for any small ε > 0 would contradict the worst-case OMv conjecture.
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3 Dynamic Inclusion-Edgesclusion
We extend the idea of inclusion-edgesclusion from [9], which uses inclusion-exclusion based techniques on the edge
sets of graphs. This allows us to use an algorithm for counting unlabeled subgraphs to count labeled subgraphs. In [9]
they used the technique to move from a k-partite Erdős-Rényi graph into a fully connected Erdős-Rényi graph. We
show here how to achieve this in the dynamic setting. This is not straightforward because the version presented in
[9] has a step which takes O(m) time, which is not acceptable in the dynamic setting. The original reduction uses
recursion over subgraphs of H down to trees and uses a O(m) step on these trees. We will avoid this issue by making
our base case a two node graph with a single edge between them. We can track the number of edges between two
partitions efficiently with a dynamic algorithm. All of the recursive calls in our reduction can be made by having
several copies of dynamic algorithms with different (still random looking) input graphs. The final change we make is
that we allow the subgraph H to contain fixed points, which enables us to count st paths, s triangles, etc (see definition
3.1). Let us start first with some definitions.

DEFINITION 3.1. Given a graph G = (V,E), let H be a subgraph of G with k nodes and e edges. We call H labeled
if we label the nodes as v1, . . . ,vk. We say H has fixed nodes if we take a given labeled vertex vi and identify it with a
particular node s∈V in G. (For example if H is an st three path with nodes v1−v2−v3−v4 we are identifying v1 ∈H
with s ∈ G and v4 ∈ H with t ∈ G. To notate an st three path as HS then set S is {(v1,s),(v4, t)}. Note that the unfixed
nodes v2 and v3 don’t appear in S.) We denote a subgraph H with fixed nodes {vi1 , . . . ,vi f } ⊂ {v1, . . . ,vk} where we
fix vi j = s j by H{(vi1 ,s1),...,(vi f ,s f )} or as HS where S = {(vi1 ,s1), . . . ,(vi f ,s f )}, is called the set of identified nodes of H.

DEFINITION 3.2. We say a graph G is HS-partite if we can partition the vertices of G into k sets V1, . . .Vk such that:
(1) For all (vi j ,s j) ∈ S the set Vi j = {s j}, i.e., the partitions that correspond to fixed vertices consist of just that vertex
alone. (2) If there is no edge between vi and v j in HS then there are no edges between nodes a and b whenever a ∈Vi
and b ∈Vj. (3) There are no edges between a and b whenever a ∈Vi and b ∈Vi.

We call a graph G a labeled Erdős-Rényi HS-partite graph if given the labeling of G and HS all permitted edges
have a 1/2 chance of existing.

We call a set of updates to a graph G dynamic HS-partite Erdős-Rényi updates given the labeling of G and HS and
the set of updates are sampled from permitted edges. We call updates dynamic Erdős-Rényi updates if they sample
their flips from all available edges (no restrictions).

For our lower bounds, the graph is initialized as a HS-partite Erdős-Rényi graph. For our upper bounds the initial
graph can either be empty or an Erdős-Rényi graph. Finally, we will define the counting problems for HS.

DEFINITION 3.3. The HS counting problem in a graph G returns the numbers of tuples of vertices (u1, . . . ,uk) such
that ui j = s j for all (vi j ,s j) ∈ S and such that if (va,vb) ∈ H then (ua,ub) is in the edge set for G. The average-case
HS counting problem is the same problem but where G is drawn from the distribution of Erdős-Rényi graphs. The
dynamic average-case HS counting problem is a HS counting problem where the updates for G are dynamic Erdős-
Rényi updates. The graph is initialized by drawing a random Erdős-Rényi graph.

The unlabeled counting HS problem counts the number of copies of HS that exist in G where all identified nodes
(vi j ,s j) ∈ S are in fact matched. However, all nodes that are not identified need not have their label in HS match the
partition they are a part of.

We define HS and HS counting the way we do to encapsulate, for example, st-5-path counting. We want to
capture the notion of counting st-5-paths when they move through the partitions in our ‘desired’ order with labeled HS
counting. We want to capture the notion of counting st-5-paths with only the restriction of starting at s and ending at t
with unlabeled HS counting.

We will show the following: Assuming that counting labeled copies of HS in a dynamic HS-partite Erdős-
Rényi graph is hard, then counting the same subgraph HS in dynamic Erdős-Rényi graphs is also hard. So, we allow
ourselves to add ‘fake’ edges to turn a dynamic HS-partite Erdős-Rényi graph into a dynamic Erdős-Rényi graphs
and use the linearity of XOR to return the value we actually care about. Note that it can be difficult to prove that
counting labeled subgraphs HS is hard, even in dynamic HS-partite Erdős-Rényi graphs. We prove this result for
various subgraphs in sections 4, 5, and 6 using the biased updates theorem for OMv and OuMv.

Our result generalizes the previous work in two ways. First, we make the technique work dynamically. This
primarily involves a change to the base case and some changes to the recursive argument. Secondarily, we allow fixed
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labeled points. Notably, this allows us to use this inclusion-edgesclusion argument for things like counting st paths of
length 5.

Small Illustrative Example Assume we want to count st paths of length 3 in a graph G = (V,E) with
V = A∪B∪ {s, t} with A∩B = /0 and |A| > 0 and |B| > 0 and E consisting of randomly sampled edges between
EsA, EAB, and EBt (see Figure 1). Note that G doesn’t look like an Erdős-Rényi graph. It is missing edges in EsB and
EtA and also within the partition A and within the partition B. Imagine adding to G random ‘bad’ edges of this sort. We
will now use the notation of xyzw to indicate the four vertices in order that form a fourpath. For example saat would
refer to a path from s to some node in A to some node in A to the node t. We still want to count all paths of the form
sabt, however, a naive count will also include: saat, sbbt, and sbat. The inclusion-exclusion-based techniques that
exist in the literature allow us to count just the paths that use exactly one vertex from each partition, so we can count
all sabt and sbat paths. However, the question remains how to count c, the number of sabt paths.

Our idea is as follows: Create a random edge sets EsB and EAt with edges between EAt and EsB, as well as
ĒsB = {(s,b)|(s,b) /∈EsB} and ĒtA = {(t,a)|(t,a) /∈EtA}. Now consider graphs G1 =E∪EsB∪EAt , G2 =E∪ ĒsB∪EAt ,
G3 = E ∪EsB∪ ĒAt , and G4 = E ∪ ĒsB∪ ĒAt (see Figure 1). We use #Gi to denote the number of length-3 st paths that
exist in graph Gi. The crucial observation is that, by construction, any path sbat for which (b,a) ∈ E exists in exactly
one of the graphs Gi, while every path sabt (that we want to count) appears in each graph Gi. It follows that the sum
#G1 + #G2 + #G3 + #G4 = 4c+ |EAB|. It is easy (statically or dynamically) to count the number of edges that exist
between A and B (|AB|). So, with 4 calls to counting all st paths of length 3 in the (correlated) Erdős-Rényi graphs
G1, . . .G4 we can compute c, the number of sabt paths in the graph G.

Figure 1: We have a graph with edges in EsA, EAB, and EBt drawn in black. Then we have four graphs G1, G2, G3, and
G4 with edges between EsB and EtA added. We show in orange and purple two flipped edge sets for EsB and in cyan
and green two edge sets flipped between EAtS.

Dynamic Inclusion-Edgesclusion We will show how to generalize the idea presented in the above example in
Appendix B. The core concept is flipping each ‘bad’ edge set. With larger subgraphs H there may be larger subraphs
that remain, however, we can count those as well using a recursive algorithm. We will now state the dynamic inclusion-
edgesclusion theorem (proof in Appendix B).

THEOREM 3.1. Imagine we are given a dynamically updated graph with random updates, where some edges are
marked as not-allowed. The graph will be split into k partitions and edges with ‘disallowed’ updates must be the
complete edge sets between two partitions. These edges will not be randomly updated by the random updates. We use
this structure to make our proofs easier in the body of the paper.

Let HS be a graph with k nodes. Assume that the problem of counting HS in a graph with random updates among
the allowed edges in an HS-partite graph requires 2(

k
2)+kU(n) time per update and 2(

k
2)+kQ(n) time per query as long

as at most O(2(
k
2)+k(n2 +P(n))) time is spent preprocessing and gives correct answers to queries with probability
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1− δ . If the allowed edges are a constant fraction of all edges then the average-case HS counting problem requires
at least Ω(U(n)) time per update or at least Ω(Q(n)) time per query as long as at most O(P(n)) time is spent

preprocessing. This new algorithm will give correct answers to queries with probability at least 1−δ2(
k
2)+k.

4 Lower Bounds for Counting 4-Cycles
In this section we will get a lower bound for the update time, U(n) and query time, Q(n) of average-case four cycle
counting from biased average-case parity OuMv. These lower bounds will apply for any polynomial preprocessing.
More specifically, we show that nU(n) + Q(n) = Ω(n2−o(1)) if the OMv hypothesis holds. Before we show that
counting 4-cycles is hard in general graphs where all updates are flips of random edges, we will show that counting
4-cycles is hard on special 4-partite graphs where the edges between two of the parts are complete and all other
edges are set by random flips. Given a sequence of (Mi,~ui,~vi) for 0 ≤ i ≤ n of a biased average-case parity
OuMv problem with dimension n we construct a graph with 4n nodes, n each in A, B, C, and D, and edges
E ⊆ A×B ∪ B×C ∪ C×D ∪ D×A. The edges between A and B represent M in the natural way (edge (ai,b j)
exists iff M[i][ j] = 1), the edges between D and A (resp. B and C) represent~u (resp.~v) as described next, and there is a
complete graph between C and D.

To represent ~u we use the O(n2) edges between A and D as follows: For any fixed j with 1≤ j ≤ n, let the parity
of the number of edges (di,a j) that exist for 1≤ i≤ n be equal to~u[ j]. The edges in this graph are, of course, randomly
updated. Additionally, they start as random. Note that when the edges start as random the parity of the number of
(di,a j) edges that exist is odd or even each with probability 1/2. Further note that if we randomly update an edge
between D and A this corresponds to randomly flipping a bit in~u. So, we are representing~u as an XOR over n2 edges,
~v is represented in the same way by representing ~v[ j] by edges between B and C. We are using an XOR because we
want random flips of edges to flip bits in our vector. See Figure 2 for a visual depiction.

For 1 ≤ i ≤ n let the vector ~p j be the vector such that ~p j[i] = 1 iff the edge (d j,ai) exists in the graph (where d j
is the jth node in D and ai is defined similarly) and zero otherwise. Define ~q j similarly as the vector s.t. ~q j[i] = 1 iff
(c j,bi) exists and zero otherwise. Note that we will set these edges such that~u =

⊕
j∈[1,n]~p j and let~v =

⊕
j∈[1,n]~q j.

Figure 2: In this graph we depict a 4-partite graph constructed from an OuMv instance.

First let us explain why blowing up the representations of ~u and ~v are necessary. We need n2 edges to represent
M, and the most efficient representation of ~u and ~v could involve only n edges. However, if we make O(n lg2(n))
updates the expected number of updates that will flip edges representing~u and~v in their efficient representation is only
O(lg2(n)) bit flips as the chance of picking an edge representing them is only Θ(1/n). This is not enough to randomize
our vectors. However, if we represent the vectors ~u and~v as the XOR over n representations of the vectors (e.g. the n
vectors ~p j) we expect to make O(n lg2(n)) random flips in the vectors ~u and~v. Of course, we also expect to flip some
bits in M when doing this. So, to prove that 4-cycle counting in our 4-cycle graph is hard when three of the parts are
randomly updated we need to rely on Theorem 2.2. This biased model of edge flips captures our situation.

We explain next why the edge set between C and D is complete. Let ~U =∑ j∈[1,n]~p j and let~V =∑ j∈[1,n]~q j and note
that for each 1 ≤ i ≤ n, ~u[i] = ~U [i] mod 2 and~v[i] = ~V [i] mod 2. Let EC,D be the edge set of C,D. For convenience
let (i, j) ∈ EC,D mean there is an edge between ci and d j. We want to compute ~uM~v but when counting the number of
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4-cycles that have one node from each partition we actually count

∑
(i, j)∈EC,D

(~p jM~qi) .

If EC,D is complete then this sum simplifies to~uM~v mod 2. Now we will formally prove that in this restricted setting,
the four cycle counting problem is hard. We will later show how to remove this restriction by simulating this setting
through mutiple calls to actual Erdős-Rényi graphs. That will complete the proof.

LEMMA 4.1. We are given a graph with 4 sets of nodes with n nodes each in A,B,C,D. We allow edges between
AB, BC, CD, and DA. We enforce that CD is a complete bipartite graph. Let H be a 3-path and consider dynamic
H-partite Erdős-Rényi updates where D−A−B−C are the parts that are associated with the edge updates. Every
update is therefore selected uniformly at random from D×A∪A×B∪B×C.

Consider a dynamic algorithm A that correctly counts the number of 4-cycles with exactly one node from each
of the parts A,B,C,D with probability 59/60 per query. Each update is a random update as described above. If
A has preprocessing time P(n) = n3−ε for some ε > 0 then if the OuMv hypothesis (or OMv) holds we have that
n2U(n)+nQ(n) = Ω(n3−o(1)).

Proof. We sample an instance of biased average-case OuMv. Let M0,~v0,~u0 be the uniformly random vectors at the
start. Let β i be the sequence of all biased updates in the ith set of n lg2(n) biased random updates. Let β i

M , β i
u, and β i

v
be the subsets of β i that flip bits in Mi,~ui, and~vi respectively.

For convenience of notation let a j be the jth node in the set A. Similarly define b j,c j, and d j. For initializing the
graph we sample M0 and add the edge (a j,bk) iff M0[ j][k] = 1. Note that the edges in A×B will now look Erdős-
Rényi (each edge exists iid with probability 1/2). Now for D×A we start by sampling n− 1 random n bit Boolean
vectors ~p j. Then iff ~p j[k] = 1 we add the edge (d j,ak). We set the last vector ~pn = ~u0⊕

⊕n−1
j=1 ~p j. Note that this

means ~u0 =
⊕n

j=1~p j. Further note that because ~u0 is a uniformly randomly sampled Boolean vector, the bits of ~pn
are sampled iid 1/0 with probability 1/2 conditioned on all ~p j j < n. Now iff ~pn[k] = 1 we add the edge (dn,ak). For
B×C we do a similar procedure where we sample n−1 random vectors~q j and then sample~qn =~v0⊕

⊕n−1
j=1~q j. Then

iff ~q j[k] = 1 we add the edge (c j,bk). Now note that all edges in A×B and B×C are included or excluded iid with
probability 1/2. So D×A∪A×B∪B×D is a three-path-partite Erdős-Rényi graph.

Now we will explain how to make an update in the graph given an update from each of β i
M , β i

u, and β i
v to generate

n lg2(n) updates in our graph. For all bit flip updates M[ j][k] ∈ β i
M we flip the edge (a j,bk). For all bit flip updates

~u[k] ∈ βu we sample a uniformly random j ∈ [1,n] and flip the edge (d j,ak). For all bit flip updates ~v[k] ∈ βv we
sample a uniformly random j ∈ [1,n] and flip the edge (c j,bk). Every edge in A×B (similarly in D×A and in B×C)
has a probability of being flipped of ( 1

3n2 ). All updates in biased updates are independent. We take each update in β i

in order and apply the appropriate procedure (depending on if it is from β i
M , β i

u, or β i
v). So we are sampling n lg2(n)

updates iid across all allowed edges uniformly at random as promised.
Now we explain why counting four cycles in the produced graph solves OuMv on the associated vectors and

matrices. Note that the number of four cycles that exist for every edge (d j,c`) is equal to ~p jM~q`. Now consider the
sum over all (d j,c`):

∑
j∈[0,n−1]

(
∑

`∈[0,n−1]
~p jM~q`

)
=

(
∑

j∈[0,n−1]
~p j

)
M

(
∑

`∈[0,n−1]
~q`

)
= ~UM~V

Note further that ~UM~V mod 2 =~uM~v mod 2.
So, counting all the ABCD four cycles after n lg2(n) updates and returning their parity gives the answer for

~(u)iMi
~(v)i for each 1 ≤ i ≤ n, solving the biased average-case parity OuMv problem with a total number of

O(n2 log2(n) updates and O(n) queries. Let U(n) be the time for updates and Q(n) be the time for queries. Then we
have that n2 lg2(n)U(n)+nQ(n) = Ω(n3−o(1)) by Theorem 2.2. This shows hardness from OMv as well by Theorem
2.7 from [13] which states that the OMv hypothesis implies the OuMv hypothesis.

We now use our dynamic inclusion-edgeclusion principle to establish the hardness.
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THEOREM 4.1. In the average-case dynamic model counting 4-cycles requires n1−o(1) time per update or n2−o(1) time
per query if the pre-processing time is at most n3−ε for some ε > 0 if the OMv hypothesis is true.

Proof. From Lemma 4.1 we know that this counting problem with probability 59/60 requires n2U(n) + nQ(n) =
Ω(n3−o(1)) time for updates (U(n)) and queries (Q(n)) if edge sets DA, AB, and BC are updated dynamically at
random, CD is complete, and all other edge sets are empty. Call this graph G.

Now consider picking a random set of edges in D×C of size 1/2, call this edge set F and denote the set of
remaining edges in D×C by F̄ . When a dynamic update is made to the edges between D and C flip the edges in both
F and F̄ , so we maintain the property that every edge (c,d) appears in exactly one of F and F̄ . Further note that both
edge sets are indistinguishable from random. Let G′ be the graph with edge sets DA, AB, BC and F , whereas G′′ is the
graph with edge sets DA, AB, BC and F̄ . We will run the dynamic algorithm on both G′ and G′′ and sum their answers
for the number of ABCD 4-cycles. The total number of ABCD 4-cycles between both graphs G′ and G′′ is equal to the
number of ABCD 4-cycles in G. So, given a graph with random dynamic updates on AB, BC, CD, and DA it is hard
to count ABCD 4-cycles with probability 119/120. It requires n2U(n)+ nQ(n) = Ω(n3−o(1)) time for updates and
queries from biased updates parity OuMv. Note that biased updates parity OuMv is hard from the OMv hypothesis.

So we have shown that counting labeled 4-cycles is hard in a dynamically updated 4-cycle-partite Erdős-
Rényi dynamic graphs from OMv. Then, by Theorem 3.1 we can then say that counting 4-cycles in graphs with
fully random dynamic updates (so no restrictions to specifics edge sets) requires n2U(n)+ nQ(n) = Ω(n3−o(1)) for
updates and queries if the success probability is at least 719/720.

5 Lower Bounds for Counting Triangles
We will present lower bounds for counting triangles in this section. We will present counting triangles generically
from worst-case offline triangle counting. Then, in this section we will give a lower bound for counting triangles
through a queried point in average-case dynamic graphs. Note that it is different from a fixed point s (we present a fast
algorithm for s-triangle counting in section 10). We get this lower bound from OMv.

5.1 Lower Bound from Worst-Case Offline Triangle Counting First we will present the lower bound for counting
triangles in Erdős-Rényi graphs. We get this lower bound from the worst-case offline 3-clique hypothesis.

DEFINITION 5.1. The 3-clique hypothesis states that detecting a 3-clique in a worst-case graph requires nω−o(1) time
where ω is the matrix multiplication constant.

Now we can use this to say that counting triangles requires super constant time if ω > 2.

THEOREM 5.1. Let A be a dynamic algorithm which solves average-case triangle counting in Erdős-Rényi graphs
with probability 1−2−10 with P(n) preprocessing time, Q(n) query time , and U(n) update time. Then if the 3-clique
hypothesis holds we have that

P(n)+Q(n)+n2+o(1)U(n) = Ω(nω−o(1)).

Therefore, if P(n)+Q(n) = nω−o(1)−ε for some ε > 0 we have that U(n) is at least nω−2−o(1).

Proof. From Theorem 2 in [11] counting 3-cliques mod 2 with probability 1−2−9 in time T (n) we can count 3-cliques
in a worst-case graph with probability at least 2/3 in time O(T (n))1.

Given an Erdős-Rényi graph we will produce a series of random updates. Given a starting Erdős-Rényi graph G
and an ending Erdős-Rényi G′ we will make a matrix of differences D. We set D[u][v] = 0 if (u,v) either exists in
both G and G′ or doesn’t exist in both. We set D[u][v] = 1 if (u,v) exists in one of G or G′ but not both. Let G be
the initial graph for our dynamic algorithm. Let G′ be the static Erdős-Rényi graph we have sampled. We will now
describe a procedure to generate random updates that produce G′. We will first determine how many updates we will
make to each edge, then we will randomize the order of these updates. We will save the number of updates in a matrix
∆. We will have an odd number of updates on each edge (u,v) where D[u][v] = 1 and an even number of updates when
D[u][v] = 0. We initialize ∆ = D. Let cD be the number of ones in D. If we want xn updates we sample a uniformly
random edge (u,v) (xn− cD)/2 times and then increment ∆[u][v] by two. Now we make a sequence of updates by

1Note that a similar result is proved in [5] with a slightly different probability.
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randomizing the order of the updates represented in ∆. Further note that conditioned on the graph going from G to G′

these sampled updates are drawn from uniform distribution.
Now consider starting from any graph and making xn2 random updates to random edges. The resulting graph has

a TVD from a Erdős-Rényi graph of at most n2(1−1/n2)xn2
< n2e−x. So our sampling procedure above has TVD at

most n2e−x.
Consider running the algorithm A with xn2 random updates and one query, if A succeeds with probability p.

This implies a success probability of 1− p− n2e−x for counting cliques in a Erdős-Rényi graph. Consider setting
x = lg2(n). Now, if p = 2−10 we have an algorithm for counting 3-cliques in an Erdős-Rényi graph that succeeds with
probability greater than 1−2−9, which implies a worst-case algorithm with a success probability of at least 2/3. This
algorithm involves the prepossessing of A , lg2(n)n2 updates, and one query. So, we have that given an algorithm
A we have a worst-case clique counting algorithm which runs in time P(n)+Q(n)+ n2+o(1)U(n). By the 3-clique
hypothesis

P(n)+Q(n)+n2+o(1)U(n) = Ω(nω−o(1)).

This gives us our desired result.

5.2 Lower Bound for Counting Triangles Through a Queried Point Let #4a be the count of the number of
triangles that go through the node a. Recall that in our model of average-case algorithms our adversary is allowed to
pick when updates and queries are made, but not what those queries or updates are. Recall that random update flips
a random edge. Additionally, for this problem of counting triangles through a queried point our queries are of the
form #4a for a randomly selected node a. We will show that with n2+o(1) updates and n2+o(1) queries we can answer
n vector queries on a Mv instance with a n by n matrix and n vectors of length n. This will let us prove that for the
counting triangles through a queried point problem we require that U(n)+Q(n) takes at least n1−o(1) time.

In this section we will use the OMv hypothesis. We will create a tripartite graph with node sets A, B, and C. We
will represent M as the edges between A and B. Specifically (ai,b j) ∈ E if M[i][ j] = 1. We will represent ~v as the
edges between B and U . Specifically if~v[ j] = 1 then an odd number of edges (b j,uk) exist and if~v[ j] = 0 then an even
number of edges (b j,uk) exist. We will make two calls to graphs with opposite edge sets for A and U so that we can
extract a count as if the edge set was complete. See figure 3 for a visual of this reduction. Note that with this setup
the number of triangles (in both graphs) through ai is equal to (M~v)[i]. Now, we aren’t allowed to query any specific
point. However, after Θ(n lg(n)) queries for the number of triangles through a point we will get answers for all points
with constant probability. So, with Θ(n lg3(n)) queries we will get answers for all points with high probability. With
the answers though ai for all i ∈ [1,n] we can reproduce the whole vector M~v.

Figure 3: Two graphs with the edge sets flipped between A and U . If we count triangles in both graphs we get a count
equal to the count in a single graph where all edges between A and U exist.

Before doing any of that, we will need to demonstrate that n2 lg3(n) random updates to a graph produce a graph
where each edge appears flipped with probability 1/2 up to a very small total variation distance.

LEMMA 5.1. We are given a graph G with n nodes where you allow some subset E of edges where one is picked
uniformly at random across all edges to be flipped n2 lg2(n) times. The resulting graph G has TVD at most 2−Θ(lg2(n))
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from a graph where all the edges E exist or don’t iid with probability 1/2.

Proof. Note |E| ≤ n2. Consider any given edge (u,v) ∈ E what is the chance that it is ‘on’ vs ’off’? Well we flip it
with probability p = 1/|E| each time we do a random edge flip. Let qi be the probability (u,v) is included after i flips.
Without loss of generality let q0 = 0. Now define qi = 1/2+δi. Now note that

qi+1 = qi(1− p)+(1−qi)p = (1/2+δi)(1− p)+(1/2−δi)p = 1/2+(1−2p)δi = 1/2+δi+1.

So δi = (1−2p)i/2. When i = n2 lg2(n) we have that (1− p)i/2≤ e− lg2(n). We can bound the TVD via union bound
over the |E| edges to get at most n2e− lg2(n) TVD from the uniformly random graph where every edge is included or
excluded with probability 1/2 iid.

Now we will use this lemma and our average-case OMv results to show that triangle counting is hard.

LEMMA 5.2. Let H be a triangle. We are given an H-partite Erdős-Rényi graph, G with three partitions of vertices
A, B, and U each with n nodes. The updates to G are dynamic H-partite Erdős-Rényi. A random query is made to a
random vertex x uniform across all vertices #4x.

Let U(n) be the time per update and Q(n) be the time per query. If at most n3−ε time is spent pre-processing for
ε > 0 and if the algorithm answers correctly with probability at least 1− 1

n2240 then n2U(n)+n2Q(n) = Ω̃(n3).

Proof. We are given an instance of biased average-case parity OMv. Let M0 and ~v0 be the initial matrix and vector.
Let β i be the n lg2(n) updates to go from Mi−1 and ~vi−1 to Mi and ~vi. Let β i

M be the subset of the updates in βi that
update Mi−1. Let β i

v be the subset of the updates in βi that update~vi−1.
We wll spin up two instances of the dynamic algorithm A . Call these instances D1 and D2.
We will describe how to sample an initial H-partite Erdős-Rényi graph for D1 and then how we perform updates.

For the edges in A×U we simply include each edge iid with probability 1/2. For The edges in A×B we include the
edge (a j,bk) iff M0[ j][k] = 1. For edges in B×U we start by sampling n−1 uniformly random Boolean n bit vectors
~p j. Then we set ~pn =~v0⊕

⊕n−1
j=1 ~p j. Now we add an edge between (u j,bk) iff ~p j[k] = 1. This initializes the graph to

random three-partite Erdős-Rényi graph. Now, for updates. We will generate a series of updates αi from βi. For each
update with probability 1/3 we flip a random edge in A×U and add that update to αi. With probability 2/3 we instead
take the next random update from βi. If the update was to M[ j][k] we flip edge (a j,bk) and add that update to αi. If the
update was to~vi−1[ j] we sample a uniformly random value k ∈ [1,n] and flip the edge (b j,uk) and add that update to αi.
When we run out of updates from βi we will make a series of queries. Notice that all edges in A×B∪B×U ∪U ×A
are flipped with the same probability of 1/(3n2). Additionally, each update is independent of the others.

Flip all edges between AU to generate the initial graph for D2. We apply the same updates, αi, from D1 to D2 we
apply to both graphs. Note that this will keep the invariant that D1 and D2 have the same edge sets between AB and
BU and have opposite edge sets between AU .

Next we will use Lemma 2.2. Note that after each set of updates αi we will have made the requisite n lg2(n)
updates to A× B∪ B×U required by Lemma 2.2. Roughly one third of all updates happen to AU however, as
previously mentioned this maintains our invariant. Now we will make n lg3(n) random queries in between each set of
updates αi and αi+1. For any given node the chance it is picked at least once is at least

1− (1− 1
3n

)n lg2(n) > 1− 1
e

lg2(n)/3
.

So, the chance that we get the answers for all the vector entries is at least 1− n 1
e

lg2(n)/3
. We repeat this process

n times to get all n queries M~v1, . . . ,M~vn. So, if A succeeds with probability 1− δ per query then after Õ(n2)

queries and updates we will solve an instance of OMv with probability at least 1− 2n2δ − 3n 1
e

lg2(n)/3
. We need

2n2δ +3n 1
e

lg2(n)/3
< 1/60 which happens if δ < 1

n2240 .
So, if the OMv hypothesis is true, and we spend n3−ε time preprocessing for ε > 0 then n2U(n)+n2Q(n) = Ω̃(n3).
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THEOREM 5.2. We are given an algorithm A which runs in graphs with Erdős-Rényi dynamic random graph updates
and uniformly random queries across all nodes of #4a which succeeds with probability at least 1− 1

n21680 and has
preprocessing time n3−ε for ε > 0. Let A ’s update time be U(n) and A ’s query time be Q(n). Then if the OMv
hypothesis holds n2U(n)+n2Q(n) = Ω̃(n3).

Proof. Consider taking a random sequence of updates that produces a graph as described by Lemma 5.2, lets call the
series of updates that produces this graph G. We randomly intersperse updates within the partitions A, B and U . There
are 3

(n
2

)
internal edges and 3n2 edges between partitions. So, with probability

(n
2

)
/(
(n

2

)
+ n2) we update a random

edge inside a partition, and the rest of the time we use the updates from G. Call this new series of updates G′. Now, we
will maintain a few different versions of G′. We maintain versions with just the nodes in a single partition G′A,G

′
B,G

′
U .

We also maintain versions with the nodes of two partitions G′AB,G
′
BU ,G

′
UA. We will run A on all of these graphs. To

determine the number of triangles through a node x in G we can simply take the count from G′ and subtract the counts
from G′AB,G

′
BU , and G′UA and then finally add the counts from G′A,G

′
B, and G′U . Note that all of these graphs look

like uniformly randomly updated graphs. We can union bound across all 7 of these graphs to get our probability of
1− 1

n21680 .

So, we have our first lower bound in our standard model of average-case dynamic graph updates. Note that small
changes to our problem statement have drastically changed how hard this problem is. When we are counting the
triangles through a fixed point s the problem is easy. When we are counting triangles through a queried point a this
problem is hard. We will now move on to the problem of counting four cycles.

6 Lower Bounds for Path Counting
In this section we will show the hardness of counting st paths of length 5. This is equivalent to counting st paths
of length at most 5 (we can count all paths of length 1,2,3, and 4 with O(1) update and query time so we can add
or remove these counts efficiently). We will demonstrate this hardness via reduction from OuMv. This will give us
hardness from the OMv hypothesis.

Figure 4: In our reduction the number of paths from s to A to B to C to D to t will be equal to ~uM~v if sA is complete
and Dt is complete. As in our previous reductions we represent ~u and ~v with n2 edges instead of n edges. The extra
edges once again make the random edge flips change the vectors with a high enough proportion.

We will first show that the problem is hard when sA and Dt are complete. We will then show the problem of
counting st 5-paths is hard in a st-5-path-partite Erdős-Rényi graph. So, we will show that we can make the edge sets
sA and Dt look random instead of complete.

LEMMA 6.1. Let HS be a 5-path with two fixed points s and t are the endpoints. Consider the problem of counting
the number of HS graphs in a graph produced by randomly flipping allowed edges in a HS-partite graph. Call this
problem st5-partite st-5-path counting.
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A dynamic algorithm for st5-partite st-5-path counting which has a pre processing time of n3−ε for ε > 0 must
have an update time U(n) and query time Q(n) that respect n2+o(1)U(n) + no(1)Q(n) = Ω̃(n3) if they produce the
correct answer per query with probability at least 239/240 if the OMv hypothesis is true.

Proof. The reduction is depicted in Figure 4. We have a single node s then sets A, B, C, and D and finally we have
a single node t. Additionally we have that |A| = |B| = |C| = |D| = n. We restrict n to being even (this is for later
convenience). We will use the same trick we have used in previous lemmas where we start by treating some edge sets
as complete and then create both that edge set and its inverse and track graphs with both the edge set and the flipped
edge set to return the count in the complete graph. Let the nodes ai be the nodes in A where i ∈ [1,n]. Define the nodes
bi,ci, and di similarly.

We will now describe how we sample edges in A×B∪B×C∪C×D. We will call the sequence of updates to these
edges in particular α`. We sample an instance of biased average-case OuMv. Let M0,~v0,~u0 be the uniformly random
vectors at the start. Let β ` be the sequence of all biased updates in the ith set of n lg2(n) biased random updates. Let
β `

M , β `
u , and β `

v be the subsets of β ` that flip bits in M`,~u`, and~v` respectively.
So, first consider the case where all edges between s and A exist and also all edges between D and t exist and these

edges can’t be flipped when random updates occur. After we justify the hardness in this case we will demonstrate how
to return to the case we want to consider. For convenience of notation let a j be the jth node in the set A. Similarly
define b j,c j, and d j. For initializing the graph we sample M0 and add the edge (a j,bk) iff M0[ j][k] = 1. Note that
the edges in A×B will now look Erdős-Rényi (each edge exists iid with probability 1/2). Now for D×A we start by
sampling n− 1 random n bit Boolean vectors ~p j. Then iff ~p j[k] = 1 we add the edge (d j,ak). We set the last vector
~pn =~u0⊕

⊕n−1
j=1 ~p j. Note that this means~u0 =

⊕n
j=1~p j. Further note that because~u0 is a uniformly randomly sampled

Boolean vector, the bits of ~pn are sampled iid 1/0 with probability 1/2 conditioned on all ~p j j < n. Now iff ~pn[k] = 1
we add the edge (dn,ak). For B×C we do a similar procedure where we sample n− 1 random vectors ~q j and then
sample~qn =~v0⊕

⊕n−1
j=1~q j. Then iff~q j[k] = 1 we add the edge (c j,bk). Now note that all edges in A×B and B×C are

included or excluded iid with probability 1/2. So D×A∪A×B∪B×D is a three-path-partite Erdős-Rényi graph.
Now we will explain how to make an update in the graph given an update from each of β `

M , β `
u , and β `

v to generate
n lg2(n) updates in our graph. For all bit flip updates M[ j][k] ∈ β `

M we flip the edge (b j,ck). For all bit flip updates
~u[k]∈ βu we sample a uniformly random j ∈ [1,n] and flip the edge (a j,bk). For all bit flip updates~v[k]∈ βv we sample
a uniformly random j ∈ [1,n] and flip the edge (c j,dk). Every edge in A×B∪B×C∪C×D has a probability of being
flipped of 1/(2n2). All updates in biased updates are independent. We take each update in β ` in order and apply the
appropriate procedure (depending on if it is from β `

M , β `
u , or β `

v ). Call this set of updates α`.
The number of paths from s to t of length 5 is going to be the number of paths s− ai1 − bi2 − ci3 − di4 − t. Let

~pi be the vector where ~pi[ j] = (ai,b j). Define ~q similarly as the vector where ~qi[ j] = (di,b j). Now consider that the
number of paths through ai and d` will be equal to ~piM~q`. So the total number of paths will be:

∑
i∈[1,n]

∑
`∈[1,`]

~piM~q` = ∑
i∈[1,n]

~piM

(
∑

`∈[1,`]
~q`

)
= ∑

i∈[1,n]
~piM~v =~uM~v.

So, we can solve the biased average-case parity OuMv problem with a dynamic five path counting algorithm when we
make sA and Dt complete and have no updates to these edge sets. We will now explain how to make these edge sets
random. We will make four calls to dynamic algorithms to do this.

For notation we will define EsA as the edge set between sA and EDt as the edge set between D and t in our ‘first’
dynamic algorithm call. We will also define ĒsA and ĒDt as the inverses of these edge sets (so if (s,ai) ∈ EsA then
(s,ai) /∈ ĒsA and vice versa). Finally, as slight abuse of notation, let E be the set of edges between A and B, B and C,
and finally C and D. We make calls to our dynamic st five path counting algorithm on four sets of updates where by
the time of the first query and for all updates after that we maintain that the first call has a graph, G1 made up of edges
EsA ∪E ∪EDt , the second graph, G2 has edges ĒsA ∪E ∪EDt , for G3 we have EsA ∪E ∪ ĒDt , and finally the fourth
graph, G4 is ĒsA∪E ∪ ĒDt . Now note that if we get graphs into this configuration at the start then every future update
(flipping a random edge (x,y)) will maintain this structure. If we flip an edge in EsA and ĒsA then they will continue to
be opposite edge sets. Now, note that if we count st five paths in all four graphs G1, G2, G3, and G4 the sum of all of
these counts will equal~uM~v. Any path s−ai1 −bi2 − ci3 −di4 − t that existed in the graph with complete edge sets sA
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and Dt will exist in exactly one of the four graphs (specifically the graph where (s,ai1) and (di4 , t) exist). Now when
we make updates to the graph we sample an edge in sA or Dt to flip with probability 2n/(2n+3n2) and we make an
update from α` with probability 3n2/(2n+3n2). We need one finally thing. We need to justify that after ≈ lg2(n)n2

updates we can generate a random edge set E and also random edge sets EsA,∪EDt , ĒsA, and ĒDt .
To get the edge sets simply sample an Erdős-Rényi st5path-partite graph and then flip our edge sets sA and/or Dt.

Note that the flipped edge set is just as likely to occur as the unflipped version and are thus indistinguishable from the
Erdős-Rényi st5path-partite distribution.

So, in total, with four calls to our dynamic solver for the counting st five path problem we can solve biased
average-case parity OuMv. So, by union bound if we get the correct answer at least 239/240 of the time for the five
path problem we will answer the biased average-case parity OuMv problem correctly with probability 59/60 which
gives us our bound on updates and queries. Note that by Theorem 2.2 the solving the parity biased updates problem
with probability 59/60 is hard from OMv.

We will now use this lemma and our theorem 3.1 to get our result.

THEOREM 6.1. Consider the problem of answering the number of st-5 paths in a graph produced by the average-
case dynamic update model with probability at least 1−10−10. Call this problem average-case dynamic counting st-5
paths.

If an algorithm has n3−ε pre-processing time for some constant ε > 0 then if its update time is U(n) and the query
time is Q(n) we have that n2U(n)+nQ(n) = Ω̃(n3) if the OMv hypothesis is true.

Proof. Let HS be a five path with two fixed points s and t are the endpoints.
In Lemma 6.1 we show that the problem of counting HS graphs is hard in an uniformly randomly updated HS-

partite graph. We will now use Theorem 8.1 to show that counting HS in randomly updated graphs with no HS partite
restriction are hard. Our value of k is 5 so we have an overhead of 225 from Theorem 8.1. From an algorithmic
perspective this washes out as a constant. We do need to track this for the probability. We bound the probability as
follows 1− (60 ·4 ·225)−1 < 1−10−10.

7 Counting the number of s-t paths of length 1,2,3, and 4
In this section we will give fast algorithms for dynamically counting s− t paths of length 1, 2, 3, and 4 in Erdős-
Rényi dynamic graphs. First we note the obvious, that paths of length 1 and 2 can be counted in O(1) time dynamic.
Next, we will show that there is a fast algorithm even for s-t paths of length 3 and 4! You might wonder, where does
it stop? What about s-t five paths in random graphs? In section 6 we showed that counting s-t paths of any constant
length greater than 5 requires Ω(n) time per update or Ω(n2) time per query.

We will start with the trivial results counting paths of length 1 and 2.

LEMMA 7.1. With preprocessing time O(min(n,m)) counting the number of st paths of length 1 and 2 in a graph with
dynamic updates of edge insertion and deletion requires O(1) time in the worst-case (and thus also the average-case).

Proof. For paths of length 1 we simply check if there is an edge between s and t in time O(1), if there is the answer is
1 otherwise the answer is 0. We only need to maintain the existence of single edge, so we can ignore all other updates.

For paths of length 2 we preprocess the graph to get a count of the number of two length paths, call this count
c. This can be done in O(n) time (simply iterate over all nodes u that could be the center node in the two length path
s−u− t). If there are at most m edges we can instead do this in O(m) time. For every edge (s,u) that exists we check
if (u, t) also exists. If an edge is added or deleted with no endpoint of s or t we ignore it. If an edge is added or deleted
with one endpoint in {s, t} and the other endpoint is some other node v /∈ {s, t} then we will do an update. If we add
(s,v) for example we then query in O(1) time for (v, t). If (v, t) exists in the graph then increment the count by 1. If
we were deleting (s,v) and (v, t) existed in the graph we would decrement the count by 1. If we add or delete (t,v) we
do the same process with s and t switched. So we check for the edge (v,s). This takes O(1) time per update.

Next we consider paths of length 3. The extra difficulty here is that (u,v) edges now matter. When adding a (u,v)
edge it is easy to update our count, simply check if (s,u), (s,v), (u, t), and (v, t) exist. However, what can we do when
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we add (s,u) for example? We need to know the number of two length paths from u to t. To do this we will now show
that in average-case graphs we can maintain this information efficiently.

LEMMA 7.2. Let G be a graph that is updated in an average-case dynamic fashion. G has a fixed vertex set V .
Counting the number of length two paths from a fixed point s and all points u ∈ V can be tracked in O(1) time
dynamically in the average-case dynamic setting with preprocessing time O(n2). A query is a given point u and we
must return the number of two length paths to s.

Proof. The preprocessig process will save the counts of all two length paths between s and all points u ∈V in variable
cu. To compute these values we can take O(1) time for all pairs of nodes v,u to check if the path s−v−u exists. If the
path exists then we increment cu.

Now, if we add or delete the edge (u,v) we may need update the counts of two length paths from s to u and from
s to v. If (s,u) exists and we added the edge increment cv if we deleted the edge then decrement cv. If (s,v) exists and
we added the edge increment cu if we deleted the edge decrement cu. All of these operations take O(1) time.

If we add the edge (s,u) we may need to spend O(n) time to update nodes v adjacent to u. However, the chance
we update an edge adjacent to s is 1/n. This gives an overall expected time of O(1).

So all updates take expected time O(1).

Now we can count the number of paths from s to t of length 3.

LEMMA 7.3. Counting the number of length three paths between s and t can be done in O(1) update and query time
in the average-case dynamic model with preprocessing time O(n2).

Proof. We will track the count of three length paths in c. Let ws,u be the count of the number of length two paths from
s to u. Let wu,t be the count of the number of length two paths from t to u. We will maintain these values using Lemma
2.2. We need to initialize c to do this we take O(1) time for all pairs of nodes u and v and check if s−u− v− t exists.
If the path exists we increment c. This will initialize c to the correct value.

If we add the edge (u,v) increment c if (s,u) and (s, t) exist. If we delete (u,v) decrement c if (s,u) and (s, t)
exist.

If we add the edge (s,u) (or symmetrically (t,u)) we now want to increment c by the number of two length paths
from u to t. So we increment by wu,t which we have been tracking with the algorithm from Lemma 7.2. If we delete
the edge (s,u) (or symmetrically (t,u)) we now want to decrement c by ws,u. All of these operations take O(1) time.
Reading the count c takes O(1) time.

We now want to count paths from s to t of length 4. Note that now if we add or delete (u,v) we need to check if
s−u− v−w− t paths exist. We can almost do this by checking if (s,u) exists and adding the count of all two length
paths from v to t. However, to get an accurate count we must decrement by the number of two length paths where w
is actually u, because, s− u− v− u− t is not a length four path. If we add an edge (s,u) then we need to count the
number of three length paths from u to t. We do this last step in O(n) time and here we use the fact that the probability
of adding or deleting an edge adjacent to s or t is 1/n. So, the additional complexity for this problem will come from
wanting to avoid paths with multiple instances of the same vertex and the difficulty of tracking length 3 paths from all
nodes to s and t.

LEMMA 7.4. Counting the number of length four paths between s and t can be done in expected time O(1) update
and query time in average-case dynamic graphs where every edge is ‘flipped’ with equal probability on each update.
This algorithm uses preprocessing time O(n) when started on an empty graph, and O(nω) otherwise.

If you simultaneously maintain all four-paths between s and all nodes in the graph using n copies of this data
structure then the updates can be maintained in expected time O(n). The queries, (s,v), take O(1) time to return the
number of paths between s and v for any vertex v in the graph. This algorithm requires preprocessing time O(n2) when
starting on an empty graph and O(nω) otherwise.

Proof. Once again we will track the count of our paths in c. We will use Lemma 7.2 once again. For pre-processing
we will want the count for all nodes v and v′ the number of two length paths between them. We can do this by taking
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the adjacency matrix A and squaring it using fast matrix multiplication in nω time. We also need to pre-process the
number of four paths. We can similarly count this with fast matrix multiplication. We count the number of four walks
from s to t with A4 and then we need to remove the walks that repeat nodes. There are three such walks to remove
s−u−v−u− t, s−u− s−v− t and s−u− t−v− t (note a walk could fall in two categories by being s−u− s−u− t
for example). We can count all s−u−v−u−t walks in O(n) time. We can count all s−u−s−v−t and s−u−t−v−t
in linear time. We can count the double counted paths s−u− s−u− t and s−u− t−u− t in O(n) time. So we can
count all the valid paths in O(nω) time.

We have two cases. In the first we add (or delete) an edge (u,v) in the second we add or delete the edge (s,u) or
(u, t). Let ws,u be the number of two length paths from s to u and define wt,u similarly as the number of two length
paths from t to u. We track all of these values with Lemma 7.2.

For the first case, where we are adding (u,v) to the graph we add four values to c. First if (s,u) exists then we
add wt,v, we subtract one from this number if (u, t) exists (to remove the count of the path suvut we would otherwise
be counting). Second if (s,v) exists then we add wt,u, we subtract one from this number if (u, t) exists. Third, if (t,u)
exists then we add ws,v, we subtract one from this number if (u,s) exists. Fourth, if (t,v) exists then we add ws,u, we
subtract one from this number if (v,s) exists. If we are deleting the edge (u,v) subtract the amount we would have
added had we added (u,v). This process takes O(1) time.

For the second case, consider adding the edge (s,u). Now for all nodes v /∈ {s, t,u} check if (u,v), if it does add
wt,v to the count. We need to remove paths counted here of the form suvut, so once again, we decrease c by one if (u, t)
exists. We did this process for every node v so this takes O(n) time. However, the probability that we have flipped an
edge adjacent to either s or t is O(1)/n, for an expected time per update of O(1). For deleting the edge (s,u) decrease
c by the amount we would have added if we added (s,u). If you add or delete the edge (t,u) do the same procedure as
above, but switch s and t.

This gives us an expected time of O(1) for updates and queries.
Next we will consider the version where we make n copies of this data structure and track the number of four length

paths between s and u for all u ∈ v. To pre-process the lemma 7.2 data structures we take nω time, we simply want to
maintain the same thing for all entries. The count of two paths between all points is shared across all instances. By
putting A4 we count four walks between all pairs of points, including all pairs (s,u). For the rest of the pre-processing
as we mention earlier all types of walks can be removed in O(n) time, so we can do this for all (s,u) pairs in O(n2)
time. This gives a total of O(nω +n2) time which is O(nω). We track four paths for each pair (s,u) separately, but can
use a shared data structure for two paths. Now when updates occur we simply call the earlier described data structure
for all entries, with a shared access to the data structure for all pairs of points. When a query occurs we simply read
off the count of four paths.

We will now present a quick proof that worst-case st four path requires m1/2 time per update. We present this
lower-bound to note the differences between worst-case and average-case algorithms.

LEMMA 7.5. Given a graph with n nodes and edge updates (both insertions and deletions) an algorithm for
dynamically counting st four paths requires m1/2−o(1) time per update from the OMv hypothesis.

Proof. From [12] we have that counting st three paths requires m1/2−o(1) time per update. Now consider inserting a
node s′ and adding a single edge from s′ to s. Now ask for s′t four paths. Four paths from s′ to t are three paths from s
to t. So, st four path must take at least as long.

Now, you might hope for an efficient algorithm in the average-case with O(1) update time for paths of length
5. However, in section 6 we will show that no efficient algorithm exists for counting paths of length 5 if OMv holds
in the worst-case. This will give us a tight understanding of the transition of hardness based on path length in the
average-case from constant to linear update times.

Counting s4-cycles Finally we will address the question of counting four cycles with a fixed point. We will
present this here because we get our algorithms through our path algorithms.

COROLLARY 7.1. Counting the number of four cycles with a fixed point s paths can be done in expected time O(1)
update and query time when in the average-case dynamic model. This algorithm uses preprocessing time O(nω).

Copyright © 20XX
Copyright for this paper is retained by authors



Proof. Use Lemma 7.4 but set s and t to be the same point. This is a four cycle with a fixed point s.

Finally we will note the lower bound in the worst-case for this problem (as opposed to the average-case).

LEMMA 7.6. Given a graph with n nodes and arbitrary edge updates (both insertions and deletions) an algorithm for
dynamically counting s four cycles requires m1/2−o(1) time per update from the OMv hypothesis.

Proof. From [12] we have that counting st three paths requires m1/2−o(1) time per update. Now consider inserting an
edge from s to t, all three paths from s to t are now counted by an algorithm for counting four cycles. However we
are also, potentially, counting some cycles we would like to remove. We will now discuss how to remove all of these
undesirable counts efficiently.

First we want to remove the count of all four cycles that don’t involve both s and t. To do this we maintain three
additional dynamic graphs. Let G be the original graph. Consider the same graph but with t removed, call this Gt . Let
the count of the number of four cycles in G be cG. Let the number of four cycles in Gt be cGt . The number of four
cycles involving both s and t is cG− cGt .

There is one more bad case. we want to count for cycles where s and t are adjacent. That is, we want to count four
cycles where the edges are (s,u)(u,v)(v, t)(t,s). There can also exist four cycles where t and s are opposite each-other
(s,u)(u, t)(t,v)(v,s). We can use Lemma 7.1 to count all two paths from s to t. Call this count c2. The number of these
bad four cycles where s and t are opposite is equal to

(c2
2

)
where we define

(0
2

)
=
(1

2

)
= 0. So, if we return the value

cG−−cGt − c2 we will return the number of length three st paths.

8 Counting the Number of s-t Paths of Length 5
In this section we will present an algorithm for st five path. This algorithm is tight to the lower bound we presented
earlier.

We present two algorithms. One algorithm minimizes query time. The other algorithm minimizes update time.
These algorithms address both parts of the lower bound we will later present (n2U(n) + nQ(n) = Ω̃(n3)). So, we
present one algorithm that hits the bound for the update time and one that hits the update time for the query.

THEOREM 8.1. Let the average-case st-5-path counting problem be the problem of dynamically counting five paths
starting at s and ending at t where every update picks two nodes uniformly at random and flips the edge between those
two nodes.

There exists an algorithm for average-case st-5-path counting with preprocessing time O(nω), update time O(1),
and query time O(nω) (recall that ω is the matrix multiplication constant).

There exists an algorithm for average-case st-5-path counting with preprocessing time O(n2) when started on a
empty graph and O(nω) otherwise , update time O(n), and query time O(1).

Proof. We will use lemma 7.2 to track all length two paths from s and t. Let u be an arbitrary node and let ws,u be the
number of length 2 paths from s to u. According to lemma 7.2 both the updates and queries take both O(1) time while
using only O(n2) preprocessing. Thus, using this data structure only adds a constant amount of time to the update and
query time. To initialize all the saved values ws,u we simply square the adjacency matrix, A, to count all two length
paths from s to all nodes u, i.e. we take the entry A2[s][u], which takes time O(nω). We will initialize the count of five
paths using the following method (we also use it for the version with fast updates and slow queries).

First we will describe how to count st five paths in O(nω) time using the above data structure. This gives the
algorithm with constant update and O(nω) query time. We will use E to refer to the edge set at the time of the query
(or during preprocessing). The idea is to (1) first count all walks (i.e., node repetitions are allowed) from s to t of
length 5 and then (2) subtract out all length-5 walks that are not paths. (1) We will count all length-5 walks from s to t
in O(|E|) time by running a BFS and counting for each node the number of length 1 walks to s, then running another
layer of the BFS to count the number of length 2 walks to s by using the length-1 counts of the neighbors’, etc, until
we have counted all the length-5 walks. Let C be the resulting number. (2) Now we simply need to subtract out the
number of walks that are not paths. As there are no self-loops in the graph, there are three possible ways that the same
node u can appear on a s-t path: in the second and fifth locations (su??ut)2, the second and forth locations (su?u?t), and

2We use the question mark to indicate arbitrary nodes.
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the third and fifth locations (s?u?ut). Note that the both of the last two patterns can occur at the same time (suvuvt).
We now explain how to count the number of each pattern that occurs.
First (su??ut): Let us name the central nodes (suxyut). Note that u, x, and y forms a triangle in the walk. Thus, by
determining the number of triangles of nodes that are incident to both s and t we can subtract out all these types of
walks. More specifically, we cube the adjacency matrix A using matrix multiplication in O(nω) time. This will give
a count of all triangles through each node. Let S be the set of all nodes u that have edges to both s and t. We can
compute S in O(n) time by checking every vertex. Summing up the triangle count for each node in S1 gives exactly
the number of paths of the first pattern. Call this count C2,5. Note that there is no double counting between two nodes
u and v because they are mutually exclusive as a path can have only one node as the second node in its path.
Second (su?u?t): Let us name the unspecified nodes (suxuyt). Notice that x can be any node in the neighborhood of
u, Nu. Notice that the number of possible nodes y is simply wut , which we have been tracking using the data structure
of lemma 7.2. So the number of paths of the second pattern going through u is simply |Nu|wut . We can compute the
maintain the in and out degrees of all nodes in O(1) time per update , and compute all these multiplied in O(n) time
after that. As before there is no double counting between two nodes u and v because they are mutually exclusive.
Summing |Nu|wut over all nodes u gives the desired count, which we call C2,4.
Third (s?u?ut): Let us name the unspecified nodes (sxuyut). This pattern is handled symmetrically to the second
pattern by replacing t with s, i.e., it just requires to sum up |Nu|wsu over all u. Let us call the resulting count C3,5. It
takes time O(n2) to determine the resulting value.

Now notice that our counts for C2,4 and C3,5 both count one kind of walk twice, namely the suvuvt walk. We want
to count the number of these so we can subtract it off to remove the double counting. For all edges (u,v) such that
(s,u) and (v, t) both exist we have one such path. Similarly if (s,v) and (u, t) both exist we have another path. Thus,
each edge (u,v) can contribute to zero, one, or two double counted suvuvt walks and we can determine in O(n2) time
this number for all edges. Call this count summed over all edges C2,3,4,5. Now the number of length-5 s-t paths is
C−C2,5−C2,4−C3,5 +C2,3,4,5.

Second we will present the version with O(n) update time and constant-time queries. Let G be the random graph
with vertex set V and let Gs be the graph with s removed. Now consider running n− 2 copies of the algorithm from
Lemma 7.4, A7.4, one for each node u ∈ V \ {s, t}, that counts the number wu,t of length-4 paths from u to t in Gs.
When started on an empty graph all these data structures can be initialized in time O(n2), otherwise it takes time
O(nω). When receiving an update, we pass the update to all n−2 copies, except if the updated edge is incident to s.
This takes O(1) time per graph for O(n) time total to run the algorithm for all n−2 copies. Then we add up the 4-path
counts wu,t for each neighbor u of s and store the result C. This takes time O(n) as well. Now when queried we can
simply return C in O(1) time. So, with O(n2), resp. O(n1+ω) preprocessing, O(n) time updates, and O(1) time queries
we can solve the average-case five path problem.

9 Counting Four Cycles
The main idea to count the number of four cycles is to track the number wu,v of length-2 paths between any pair u, v
of nodes in the graph. Note that the number of four cycles with u and v on opposite corners of the cycle (u,x,v,y) is
equal to

(wu,v
2

)
, where we define

(1
2

)
= 0 for our purposes. The sum C of these values for all node pairs (u,v) counts

every cycle four times: Consider the abcd four cycle we will count this in wa,b, wb,a, wb,d , and wd,b. Thus we simply
return C/4 as query answer.

We show below how to implement this algorithm so as to match our lower bound for counting average-case four
cycles.

THEOREM 9.1. Let the worst-case four-cycle counting problem be the problem of dynamically counting four cycles
where every update is a deletion or insertion of an edge.

There exists an algorithm for worst-case four cycle counting with preprocessing time O(nω), worst-case update
time O(n) and worst-case query time O(1).

There exists an algorithm for average-case four cycle counting with preprocessing time O(nω), worst-case update
time O(1) and worst-case query time O(nω) (note ω is the matrix multiplication constant).

Proof. We first present an algorithm with O(n) update and O(1) query time. In a data structure we maintain (1) the

Copyright © 20XX
Copyright for this paper is retained by authors



degree, i.e., the size of the neighborhood, of every node as well as (2) the number wu,v of length-2 paths between any
pair u, v of nodes in the graph, and (3) the sum C∗ := ∑u,v∈V,u6=v

(wu,v
2

)
. Note that C∗ := ∑u,v∈V,u 6=v

(wu,v
2

)
equals four

times the total number of four cycles: Think of each
(wu,v

2

)
as counting all four cycles where the first vertex is u and the

third is v. Thus, at each query we return C∗/4. Next we describe how to initialize and maintain each of these values.
(1) The degree of every node can be trivially initialized in O(n2) total time and maintained after an update in

constant time per operation.
(2) When starting we can set all wu,v values in O(nω) time. Maintaining all of these for every node takes O(n)

time per update as only the endpoints of the updated edge and their neighbors can be affected. Specifically, if edge
(u,w) was updated then only the counts wu,v for every neighbor v of w and the counts wx,w for every neighbor x of u
needs to be updated.

(3) During preprocessing we need to count all four cycles in the initial graph. We can do this in O(nω) time by
taking the adjacency matrix A to the fourth power to count all length-4 walks from all nodes u back to u. Let C be the
total number of length-4 walks. This counts some non-cycles specifically (a) u−v−w−v−u and (b) u−v−u−w−u.
Pattern (a) consists of a path of length 2 originating at u and pattern (b) consists of two neighbors v and w of u. With
the above information we can determine the number Ca and Cb of these two patterns for each node u in O(n) time for
a total of O(n2) time for all nodes. Note that walks with pattern u−v−u−v−u, called pattern (c), is counted in both
Ca and Cb of these, and there are as many such walks for u as its degree. Thus, we can determine the number Cc of
all walks of pattern (c) inO(n) time. It follows that C−Ca−Cb +Cc equals ∑u,v∈V,u6=v

(wu,v
2

)
, and it can be computed

in total time O(nω). Note that in the same time we can even keep a per-node count, i.e. the number of four-cycles
containing a node u per node u.

Now consider an update operation. If an edge (u,v) is updated, it can change the values of wu,x, wx,u, wx,v, and
wv,x for all possible nodes x and the above data structure will provide these values. When updating a value wu,x, let
oldu,x be the old value and wu,x be the new value. When doing this update we will update C∗ by

(wu,x
2

)
−
(oldu,x

2

)
. As at

most 4n w-values changed, need to make at most O(n) such updates to C∗, and these take O(1) time to compute. This
gives us our O(n) update and O(1) query time algorithm.

We next present an algorithm with update time O(1) and query time O(nω). Updates simply update the graph, no
further data structure is kept. At query time we run the following static four cycle counting algorithm which run in
time nω as follows: We start by determining the number C of all length-4 walks that start at a node u and return to u in
time nω for all nodes u by taking the adjacency matrix to the fourth power. We count some four cycles we shouldn’t
in this way, specifically, u−a− v−a−u for any neighbor a of u and neighbor v 6= u of a. The number C′ of these is
∑a ∈V |Na|(|Na|−1), where Na is the neighborhood of a. We can compute C′ in n2 time from scratch. Thus, C−C′

gives the number of four cycles and it can be computed a in O(nω) time.

We will now note that there is a faster algorithm when the graph is sparse.

COROLLARY 9.1. There is an average-case algorithm for counting four cycles dynamically when the graph starts
out empty that takes preprocessing P(n) = m5/3, amortized update time U(n) = O(min(n,m2/3)), and query time
Q(n) = O(1).

Proof. First note that m2/3 < n when m < n3/2. So, we can start by using the worst-case algorithm of Hanauer,
Henzinger and Hua [12]. This algorithm counts four cycles with O(m5/3) preprocessing time, O(m2/3) update time
and O(1) query time. When we have at least n3/2 edges we will then run the algorithm from Theorem 9.1. This
takes O(nω) pre-processing time. We can amortize this cost across all n3/2 prior updates for a total amortized time of
O(nω−3/2 +n) per update. Note that ω < 2.37 [3], so the amortized time is O(n).

10 Counting s-triangles in a fully dynamic random graph
We next show that the number of triangles through a fixed node s can be counted even more efficiently.

THEOREM 10.1. Fix a node s. Let the average-case s-triangle counting problem be the problem of dynamically
counting the number of triangles containing s where every update picks two nodes uniformly at random and flips the
edge between those two nodes.

There exists an algorithm for average-case s-triangle counting algorithm with preprocessing time O(n2), update
time O(1), and query time O(1).
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Proof. Let C be the number of triangles containing s. During preprocessing we spend O(n2) time to compute C. We
next describe the update operation. In the following we say update a counter by a value a to mean that the counter is
incremented by a if the update was an insertion and the counter is decremented by a if the update was a deletion.

Case 1: An edge (u,v) with u 6= s and v 6= s is updated. To update C check whether both the edges (u,s) and (v,s)
exist and if so, update C by 1.

Case 2: An edge (u,s) was updated. To update C determine the intersection of the neighbors of u and of s. Let a
be this number. Update C by a.

The correctness of the algorithm follows immediately. Note that the worst-case running time in Case 1 is O(1)
and in Case 2 it is O(n). Furthermore the probability that Case 2 occurs is 2/n. Thus the expected time per update
operation is constant.

11 Counting the Number of Triangles Through a Queried Point
Here we will present an algorithm for counting triangles through a node that is given as query parameter, i.e., not a
fixed node. These algorithms will all work in the worst-case as well.

THEOREM 11.1. Given a graph with n nodes where updates may delete or add an edge and queries ask for the
number of triangles that go through a point u (#4u) then there are two algorithms.

There exists an algorithm with preprocessing time O(nω), update time O(n), and query time O(1).
There exists an algorithm with preprocessing time O(n2), update time O(1), and query time O(n2).

Proof. For our first algorithm we start by creating an array C where C[u] contains a count of all triangles through u.
We populate this array by taking the adjacency list A of the graph and cubing it as the entry A3[u][u] contains a count
of all triangles through u. When edge (u,v) is updated, we maintain A in O(1) time by updating the two associated
entries. Additionally we will update the counts in O(n) time by checking for all x if x,u,v is a triangle. If x,u,v was a
triangle before the edge was deleted we decrement C[x],C[u], and C[v]. If x,u,v is a triangle after the edge is inserted
we increment C[x],C[u], and C[v]. This takes O(1) time per node x and thus takes O(n) time overall. Our queries take
O(1) time looking up the entry in our table C.

For our second algorithm we do no preprocessing, we simply create the adjacency matrix A. We do nothing but
keep A updates for each update, thus taking O(1) time. For every query for the triangles through x we simply check
for all u and v if x,u,v is a triangle. This takes O(1) time per pair (u,v) and thus takes O(n2) time.
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[5] Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case complexity of counting cliques in
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A Proofs About OMv and OuMv
In this paper we want to work with average-case problems. OMv is a popular dynamic conjecture. We present the
average-case hardness of a parity variant of OMv given the worst-case hardness of traditional OMv. We do the same
with OuMv.
REMINDER OF LEMMA 2.1 Let x ≥ logn be an integer. With x calls to parity OuMv we can answer an instance of
OuMv with probability at least 1−n2−x. Thus the parity OuMv hypothesis is implied by the OMv hypothesis.

With x calls to parity OMv we can answer an instance of OMv with probability at least 1−n2−x. Thus the parity
OMv hypothesis is implied by the OMv hypothesis.

Proof. Consider an instance of OuMv with M and n tuples (ui,vi). Recall that the input is defined over zero one
matrices and vectors. We want to know if uT

i Mvi > 0. To solve this problem with parity OuMv we will make calls
with x randomly altered matrices R j with 1 ≤ j ≤ x. Let DM be a distribution over {0,1}n×n matrices defined as
follows: R j is created by flipping each one to zero with probability 1/2. We will show first that this defines DM such
that if R j ∼ DM then R j[k][`] = 0 if M[k][`] = 0. However, if M[k][`] = 1 then R j[k][`] is 0 with probability 1/2 and 1
with probability 1/2 iid for each entry.

Consider a specific value i where uT
i Mvi = 0, note that uiR jvi = 0 with probability 1 in this case. The probability

is 1 because R j has a strict subset of the 1s in M and all entries are zero or one. So, uiR jvi can only decrease in value
Now consider a specific value i where uT

i Mvi ≥ 1. Now note that this sum is

∑
k s.t. ui[k]=1

(
∑

` s.t. vi[`]=1
M[`][k]

)
.
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Further note that uT
i R jvi is

∑
k s.t. ui[k]=1

(
∑

` s.t. vi[`]=1
R j[`][k]

)
.

Now note that every value of M[`][k] in the first sum that is a 1 is in R j a one or zero with probability 1/2. Consider
the parity of uT

i R jvi. Note that we can pick some particular value of M[`][k] included in the first sum which is a one.
Regardless of the parity of the rest of the sum, this last value is summed into it and is a one with probability 1/2 and a
zero with probability 1/2. So, if R j ∼ DM then the parity of uT

i R jvi is 1 with probability 1/2 if uT
i Mvi ≥ 1.

Consider just one R j gives us a procedure with one sided error, namely when uT
i Mvi ≥ 1. However, we produced

x instances R1, . . . ,Rx where R j ∈ DM and run the parity OuMv algorithm for each of them. Now, if for any j we
have uT

i R jvi ≡ 1 mod 2 then we know uT
i Mvi ≥ 1. By combining answers of all these x calls we get a correct answer

for our original OuMv problem (consisting of n queries) with probability at least 1−n2−x. The OuMv hypothesis is
implied by the OMv hypothesis by Theorem 2.7 from [13].

We will now prove the reduction from OMv to parity OMv. We will be using broadly the same techniques. Given
a M and vi we will produce the randomly altered matrices R j with 1≤ j≤ x as above. We will make a series of queries
to parity OMv to R jvi and use this to produce the desired output of OMv. Now note that the value of (Mvi)[k] is

∑
` s.t. vi[`]=1

M[`][k].

Further note that R jvi is

∑
` s.t. vi[`]=1

R j[`][k].

Now once again if (Mvi)[k] is zero then (R jvi)[k] is zero with probability 1. Next note that if (Mvi)[k] is non-zero (thus
we want to return a vector with a one in the kth position) then there is a 1/2 chance that (R jvi)[k] = 1 mod 2, i.e. that
it returns the correct answer. So, for each position in the vector after x calls the chance it is wrong is at most 2−x we
have n indexes into our vector for a total probability of correctness of at least 1−n2−x.

Note that if we pick x = lg2(n) in the above theorem, we give the correct answer with high probability.
We now present a proof that the hardness of worst case parity OuMv implies the hardness of uniform average-

case OuMv. This proof is basically an “online version” of the Blum, Luby, and Rubinfeld proof that matrix
multiplication is hard on average [4]. We can show that parity OuMv and parity OMv are both hard on average
with the inclusion/exclusion technique explained below.

REMINDER OF LEMMA 2.2 An algorithm for uniform average-case parity OuMv that succeeds with probability
1− ε in time T (n) implies a worst-case algorithm for parity OuMv in time O(T (n)) that succeeds with probability
1−8ε .

An algorithm for uniform average-case parity OMv that succeeds with probability 1− ε in time T (n) implies a
worst-case algorithm for parity OMv in time O(T (n)) that succeeds with probability 1−4ε .

Proof. Use Lemma 2.1 it suffices to show that worst-case parity OuMv implies hardness for the uniform average-case
of OuMv. Thus, consider an instance of worst-case parity OuMv, a matrix M with n tuples (ui,vi) given in an online
manner. Now consider drawing a random matrix R from the uniform distribution of {0,1}n×n. Additionally consider
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drawing random vectors xi and yi uniformly at random from {0,1}n. Now consider the following problems:

(ui⊕ xi)
T (M⊕R)(vi⊕ yi) =a(A.1)

(ui⊕ xi)
T (M⊕R)(yi) =b(A.2)

(ui⊕ xi)
T (R)(vi⊕ yi) =c(A.3)

(ui⊕ xi)
T (R)(yi) =d(A.4)

(xi)
T (M⊕R)(vi⊕ yi) =e(A.5)

(xi)
T (M⊕R)(yi) = f(A.6)

(xi)
T (R)(vi⊕ yi) =g(A.7)

(xi)
T (R)(yi) =h(A.8)

Now note that a⊕ b⊕ c⊕ d⊕ e⊕ f ⊕ g⊕ h = uT
i Mvi, which is the value we want to extract. Further note that

each problem we list above is a uniform average-case parity OuMv problem (by itself, obviously there are correlations
between any two of the above instances). So, an algorithm for uniform average-case parity OuMv which succeeds
with probability 1− ε implies an algorithm for worst case parity OuMv that succeeds with probability at least 1−8ε

by the union bound.
We will now make the same argument for OMv, which is slightly easier. We will generate uniformly random Ri

and yi as described above and then produce the following problem:

(M⊕R)(vi⊕ yi) =~a(A.9)

(M⊕R)(yi) =~b(A.10)
(R)(vi⊕ yi) =~c(A.11)

(R)(yi) =~d(A.12)

We will now note that ~a+~b+~c+ ~d = Mvi, which is the value we want to compute. Now note that once again each
problem looks individually random (but there are correlations between the problems). So an algorithm for uniform
average-case OMv that succeeds with probability 1−ε will succeed with probability at least 1−4ε by the union bound
(we get 4 here instead of the previous 8 because we only need to make 4 calls).

Now, we can consider what a fast algorithm for the uniform average-case OuMv problem implies about worst-case
OuMv.
REMINDER OF THEOREM 2.1 Given a dynamic algorithm A for uniform average-case parity OuMv which
succeeds with probability at least 16/17 and runs in time T (n) we can solve worst-case OuMv with probability at
least 1−2−Ω(lg2(n)) in time Õ(T (n)).

Given a dynamic algorithm A ′ for uniform average-case parity OMv which succeeds with probability at least
16/17 and runs in time T (n) we can solve worst-case OMv with probability at least 1−2−Ω(lg2(n)) in time Õ(T (n)).

Proof. By Lemma 2.2 A implies an algorithm for worst-case parity OuMv that succeeds with probability 9/17 and
runs in time O(T (n)). If we run this algorithm for worst-case parity OuMv lg4(n) times and take the most common
answer, we will get the correct answer with probability at least 1− 2−Ω(lg3(n)) in time Õ(T (n)). We call this new
algorithm B.

Now consider Lemma 2.1, by making x calls to B we can solve OuMv with probability at least 1− n2−x −
x2−Ω(lg3(n)). Now consider x = lg3(n). In this case, we succeed with probability at least 1−2−Ω(lg2(n)) while running
in time Õ(T (n)). This proves the first half of our theorem statement.

We proceed analogously for the OMv case. By Lemma 2.2 A ′ implies an algorithm for worst-case parity OMv
that succeeds with probability 9/17 and runs in time O(T (n)). Now note that we can run this algorithm for worst-case
parity OMv lg4(n) times and take the most common answer, with probability at least 1− 2−Ω(lg3(n)) we will get the
correct answer in time Õ(T (n)), call this new algorithm B′.
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Now consider Lemma 2.1, by making x calls to B′ we can solve OMv with probability at least 1− n2−x −
x2−Ω(lg3(n)). Now consider x = lg3(n). In this case, we succeed with probability at least 1−2−Ω(lg2(n)) while running
in time Õ(T (n)). This proves the second half of our theorem statement.

All proofs above assumed that we are given a fixed uniformly random M and a series of n random vectors ~ui and
~vi. However, in our actual setting when we transform the random vectors ~ui and ~vi into ~ui+1 and ~vi+1 we will make
Θ(n lg2(n)) random updates to not just ~ui and~vi but also M. Thus, we need to show that this problem with changing
M is still hard. That is, we want to show that we can compute~ui+1M~vi+1 using an M′ with a small number of changes.
We can generalize this. We want to show that if we make Θ(n lg2(n)) random updates to ~ui, ~vi, and M we can still
solve the original problem. We will start with the definition of the OuMv and OMv version of biased updates.
REMINDER OF DEFINITION 2.3 We call the following problem biased average-case OuMv. Let n be a positive
integer. The initial matrix M0 and vectors ~u0 and ~v0 are chosen uniformly at random from all possible such n-
dimensional Boolean vectors and n×n-dimensional Boolean matrices. Now, Mi+1,~ui+1,~vi+1 are created from Mi,~ui,~vi
by flipping n lg2(n) bits. Each bit is flipped with the following distribution: each bit in Mi is flipped with probability

1
3n2 , each bit in ~ui and~vi is flipped with probability 1

3n . In the biased average-case OuMv problem for 1≤ i≤ n lg3(n)
right after the construction of Mi,~ui,~vi we must return (~uiMi~vi) with Boolean multiplication. In the biased average-case
parity OuMv problem for 1≤ i≤ n lg3(n) right after the construction of Mi,~ui,~vi we must return (~uiMi~vi) mod 2.

DEFINITION A.1. We call the following problem biased average-case OMv. Let n be a positive integer. The initial
matrix M0 and vector ~v0 are chosen uniformly at random from all possible such n-dimensional Boolean vectors and
n× n-dimensional Boolean matrices. Now, Mi+1,~vi+1 are created from Mi,~vi by flipping n lg2(n) bits. Each bit is
flipped with the following distribution: each bit in Mi is flipped with probability 1

2n2 , each bit in ~vi is flipped with
probability 1

2n . In the biased average-case OMv problem for 1 ≤ i ≤ n lg3(n) right after the construction of Mi,~vi we
must return (Mi~vi) with Boolean multiplication. In the biased average-case parity OMv problem for 1 ≤ i ≤ n lg3(n)
right after the construction of Mi,~vi we must return (Mi~vi) mod 2.

REMINDER OF THEOREM 2.2 If a dynamic algorithm A solves biased average-case OuMv in time U(n) per
biased update and Q(n) per query with probability at least 59/60 then worst-case OuMv can be solved in time
U(n)n2+o(1)+Q(n)n.

If a dynamic algorithm A ′ solves biased average-case OMv in time U(n) per biased update and Q(n) per query
with probability at least 59/60 then worst-case OMv can be solved in time U(n)n2+o(1)+Q(n)n.

Proof. We use the reduction of Theorem 2.1 from worst-case OuMV to (uniform) average-case parity OuMv problem
and, thus, assume that we are given an instance of (uniform) average-case parity OuMv with matrix M fixed and the
sampled vectors (~ui,~vi) from i = 0,1, . . . ,n given in an online manner. We will show how to turn this into three parity
OuMv problems S1, S2, and S3, each with the same set of vectors (~u′i,~v′i) but with different but correlated i-th matrices
such that the XOR of their individual answers gives the answer for the given instance of the (uniform) average-case
parity OuMv problem. Each Sk with k = 1,2,3 will have a small TVD from a biased average-case parity OuMv
problem. We will use Lemma C.1 to show that this implies a high probability of success on the biased average-case
parity OuMv distribution.

The initial matrix and vectors M0, ~v0, and ~u0 are also the initial matrix and vectors for each Sk. Now for
0 ≤ i ≤ n− 1 given the vector (~u′ j,~v′ j) and (~ui,~vi) (where ~ui,~vi) is the next vector pair we have a query on) from
the uniform average-case parity OuMv we produce many vector pairs (~u′ j,~v′ j) and the j-th matrices for each Sk as
follows. We first need to determine the three numbers su, sv, and sM , where su, resp. sv corresponds to the number of
flipped bits that will be applied to (~u′ j−1,~v′ j−1) to generate (~u′ j,~v′ j) and sM will be used for constructing the three
matrices. They are generated as follows: Initially set su, sv, and sM all to 0 and then n lg2(n) times increment one
of them, each of them with equal probability. Then perform a check described below. We use a different random
procedure to sample the vectors if it succeeds vs fails.

Recall that we are give a (uniform) random sampled ~ui. Additionally, we will maintain the invariant that ~u′ j−1

is sampled from a distribution that has a TVD of at most 2−Ω(n2) from uniform vectors (See Lemma C.2. Let bu be
the number of indices where ~u′ j−1 and ~ui+1 differ. Let bv be defined analogously. We call su (resp. sv) valid for bu
(resp. bv) if (a) su ≥ bu and (b) the parity of su equals the parity of bu. With probability 1/4 su and sv will match the
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parity constraints and su < bu or sv < bv happens with probability at most 2−ω(1), i.e., with probability 1/4− 2−ω(1)

both are valid. We will sample an S and describe slightly different procedures bellow depending on if S is valid or
not. Our goal is that individually, each of S1,S2,S3 are series of updates sampled from a distribution with a TVD of
zero from the biased updates distribution. Additionally, whenever we sample a valid S we will answer the query of
(~ui,~vi) and we can increment i to solve the next vector pair. When S is invalid we will effectively be solving a random
problem unrelated to our query. Note that after sampling su and sv at most lg4(n) times they are valid for both bu and
bv with probability at least 1−2− lg3(n).

In the case where we have selected valid su and sv, we create the actual updates for ~u′ j−1 and ~v′ j−1 to create
~u′ j =~ui and ~v′ j =~vi. Consider ~u′ j−1 and the set of indices that change when going to ~u′i. On each of those indices
of ~ui we will generate an odd number of flips and on all other indices we will generate an even number of flips. We
sample a set of updates to the indices of~ui conditioned on having su and respecting the transformation from~ui to~ui+1
as follows: we add one flip for each index that changes between ~ui and ~ui+1, and then we sample (su−bu)/2 indices
in [1,n] uniformly at random and add two bit flips at the sampled indices. Finally, we randomize the order of the flips
in βu. Applying these bit flips to~ui gives the vector ~u′i+1. We denote the set of updates for~ui by βu. Then, we perform
the same procedure for v to generate βv creating vector ~v′i+1. Finally to create the list of updates for both, we merge
the lists βu and βv and randomize the order of updates between them. Call this list of updates βu,v.

In the case where S was invalid (either su or sv was invalid, instead sample su uniformly random updates iid and
them to βu. Sample sv uniformly random updates iid and them to βv. Note that regardless of what S we sample we use
it and fill S with flips.

Now we will analyze the TVD of the flips we perform in βu to the uniformly sampled flips. We will use Binµ [x]
to refer to the Binomial distribution where a success happens with probability µ and there are x samples. First, by
Lemma C.2 we have that a vector that results from the sequence of Bin1/3[n lg2(n)] bit flips on ~ui and a uniformly

random vector have TVD of at most 2−Ω(lg2(n)). Note that (1) we can use the linearity of XOR here to start from ~ui
instead of the empty vector and (2) the length of a sequence of Bin1/3[n lg2(n)] bit flips on~ui has the same distribution
as the number su picked by one iteration of the above procedure. This is relevant for the case where S is valid. In
the case where S is invalid we are sampling flips in a distribution that is indistinguishable from the biased updates
distribution we describe. So, the distribution of the vectors ~u′i+1 and ~v′i+1) that result from the above procedure and
the distribution over two uniform random vectors have TVD of at most 3 ·2−Ω(lg2(n)) = 2−Ω(lg2(n)). Additionally, the
distribution over updates to achieve these outcomes is has a TVD of at most 2−Ω(lg2(n)).

Now we need to sample the bit flips in M. We have two cases based on whether sM is even or odd. If the number of
samples is even then sample sM/2 iid uniformly random updates to M three times, call these possible updates ∆i

a, ∆i
b,

and ∆i
c. We will additionally define the set Fi to be the empty set of updates for the even case. If sM is odd then sample

bsM/2c entries for ∆i
a, ∆i

b, and ∆i
c. We additionally sample as single bit flip in the matrix M and let Fi be the set of just

this flip in the odd case. We create three sampled flips f1 = ∆i
a⊕∆i

b⊕Fi, f2 = ∆i
a⊕∆i

c⊕Fi, and f3 = ∆i
b⊕∆i

c⊕Fi,
to be used by S1, resp. S2, resp. S3, one per instance. Note that no matter whether sM is even or odd, we produced
three instances with n lg2(n) uniformly random samples. So, the produced updates in M are indistinguishable (in each
instance) from uniformly random samples.

Now we show that if we make calls to the three biased updates instances and sum their outputs we will get
~ui+1M~vi+1. Note that the matrix used by the first instance for operation i+ 1 is M⊕

⊕i+1
j=1(∆

j
a⊕∆

j
b⊕Fi), for the

second it is M⊕
⊕i+1

j=1(∆
j
a⊕∆

j
c⊕Fi), and for the third it is M⊕

⊕i+1
j=1(∆

j
b⊕∆

j
c⊕Fi). Thus,

~ui+1(M⊕
i+1⊕
j=1

(∆ j
a⊕∆

j
b⊕Fi))~vi+1⊕~ui+1(M⊕

i+1⊕
j=1

(∆ j
b⊕∆

j
c⊕Fi))~vi+1⊕~ui+1(M⊕

i+1⊕
j=1

(∆ j
c⊕∆

j
a⊕Fi))~vi+1 =

3~ui+1M~vi+1⊕2(~ui+1

i+1⊕
j=1

(∆ j
a⊕∆

j
b⊕∆

j
c)~vi+1)⊕3~ui+1(

i+1⊕
j=1

Fi)~vi+1 =

(~ui+1M~vi+1⊕~ui+1(
i+1⊕
j=1

Fi)~vi+1) mod 2.

Copyright © 20XX
Copyright for this paper is retained by authors



We will save the values of all sampled Fi, these have between zero and one entries each and each such entry
consist of 0 or 1 and a location in M. Computing c = ~ui+1(

⊕i+1
j=1 Fi)~vi+1 takes O(i) time in the following way. We

initialize c to be zero at the beginning of the reduction and whenever the j-th vector pair of the uniform average-case
parity OuMv instance arrives and we have determined the new Fj then we perform the following operation: If Fj is
non-empty and has location M[a][b] then we XOR our current value of c with ~ui+1[a]~vi+1[b]. We can then return the
value ~ui+1M~vi+1 mod 2 by XORing c to the value (~ui+1M~vi+1⊕~ui+1(

⊕i+1
j=1 Fi)~vi+1) received by XORing the query

answers of S1, S2, and S3. Computing c for all n OuMv queries requires O(n2) time across all n pairs (~ui+1,~vi+1). This
shows the correctness of our reduction.

Lemma C.1 shows that if two distributions have TVD ε then an algorithm that succeeds on one distribution with
probability p must succeed on the other with probability at least p− ε . We will use this to overcome the distance of
our problem from the TVD of at most 2−Ω(lg2(n)) from the uniform distribution. Assume we have an algorithm for
biased average-case parity OuMv with failure probability at most 1/60. If we apply it to one of the instances Sk, it has
failure probability at most 1/60+2−Ω(lg2(n)). Thus, the total failure probability of the algorithm when applied to S1,
S2, and S3 is at most 3/60+3 ·2−Ω(lg2(n)), which is a smaller probability of failure than 1/3. Thus, the algorithm could
be used to answer the given (uniform) average-case parity OuMv problem with probability at least 2/3. Our reduction
uses O(n2 logn) = O(n2+o(1)) updates and n queries. Combined with Theorem 2.1 the result follows.

We restate the above proof and give the proof for biased average-case parity OMv in Appendix A.
For OMv we will have a similar procedure. Let sM be the number of all flips in M. We will generate ∆i

a, ∆i
b, ∆i

c,
and Fi in the same way as before. Now our equation for these changes with delta is:

((M+
i+1⊕
j=1

(∆ j
a⊕∆

j
b⊕Fi))~vi+1⊕ (M+

i+1⊕
j=1

(∆ j
b⊕∆

j
c⊕Fi))~vi+1⊕ (M⊕

i+1⊕
j=1

(∆ j
c⊕∆

j
a⊕Fi))~vi+1) mod 2 =(A.13)

M~vi+1⊕
i+1⊕
j=1

Fi~vi+1 mod 2.(A.14)

Now, the time to compute~c =
⊕i+1

j=1 Fi~vi+1 is O(n). We will form the n bit vector~c by initializing it to zero. Then if Fi

is empty we do nothing to~c. If Fi contains a flip at M[a][b] we set~c[a] to~c[a]⊕~vi+1[b]. Note that i+n = O(n). Once
again we can subtract off the value of~c to get out our desired answer. We do O(n) computation O(n) times for a total
of O(n2) computation.

So, we can use the biased updates approach for OMv as well. The math on the probabilities of failure remain the
same and we solve OMv if we have a success probability of at least 1−1/60.

B Inclusion Edgesclusion Proofs
In this section we prove Theorem 3.1. It shows the following: Assuming that counting labeled copies of HS in a
dynamic HS-partite Erdős-Rényi graph is hard, then counting the same subgraph unlabeled HS in dynamic Erdős-
Rényi graphs is also hard. This reduction has an overhead that grows as 2k2

for subgraphs HS with k nodes. As a
result, this reduction is fully efficient when k = O(1). This reduction becomes inefficient when k = Ω(

√
lg(n)). In

this paper we look at graphs with k ≤ 6, so this reduction is efficient for our purposes.
First we make a notational comment: In this section we are counting the number of copies/occurrences of a small

graph HS in a larger graph G. To do this we will count subgraphs L of HS recursively. Unfortunately, the problem of
counting the number of occurrences of HS in a larger graph is often called ‘subgraph counting’. To avoid confusion
we will use the phrase ‘counting copies of HS in G’ to refer to the problem of counting occurrences of HS and reserve
the term subgraphs for proper subgraphs of HS. This will make the section clearer.
REMINDER OF THEOREM 3.1 Imagine we are given a dynamically updated graph with random updates, where
some edges are marked as not-allowed. The graph will be split into k partitions and edges with ‘disallowed’ updates
must be the complete edge sets between two partitions. These edges will not be randomly updated by the random
updates. We use this structure to make our proofs easier in the body of the paper.

Let HS be a graph with k nodes. Assume that the problem of counting HS in a graph with random updates among
the allowed edges in an HS-partite graph requires 2(

k
2)+kU(n) time per update and 2(

k
2)+kQ(n) time per query as long
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as at most O(2(
k
2)+k(n2 +P(n))) time is spent preprocessing and gives correct answers to queries with probability

1− δ . If the allowed edges are a constant fraction of all edges then the average-case HS counting problem requires
at least Ω(U(n)) time per update or at least Ω(Q(n)) time per query as long as at most O(P(n)) time is spent

preprocessing. This new algorithm will give correct answers to queries with probability at least 1−δ2(
k
2)+k.

B.1 High Level Idea and Definitions To prove the theorem we will show the contrapositive: If one can efficiently
count the number of unlabeled copies of HS in dynamic Erdős-Rényi graphs, then one can efficiently count the number
of labeled copies of HS in dynamic HS-partite Erdős-Rényi graphs. The problem of counting labeled copies of HS
(when HS has k nodes) in G requires that we are given a partition of the vertices of G into k sets V1, . . . ,Vk. Throughout
this section we will assume that the graph G has such a partition (it isn’t necessarily k-partite, it simply has these
marked sets). The proof proceeds in two steps: (A) First (Section B.2) we use the inclusion-edgesclusion technique
to argue that if one can efficiently count the number of unlabeled copies of HS in dynamic ErdRen graphs, then one
can efficiently count the number of unlabeled copies of HS with exactly one vertex per partition in dynamic Erdős-
Rényi graphs. (B) Then (Section B.3 and Lemma B.5) we show if one can efficiently count the number of unlabeled
copies of HS with exactly one vertex per partition in dynamic Erdős-Rényi graphs, then one can efficiently count the
number of labeled copies of HS in dynamic HS-partite Erdős-Rényi graphs.

The high level idea of our approach is this. Given two non-overlapping sets of nodes A and B. A and B won’t
necessarily be the whole graph. If you randomly choose the edges between A and B, then both the random edge set
you chose and its inverse are equally likely! So EAB and ĒAB look just as plausible. Additionally, consider two graphs
G and G′ such that G has the edges between A and B defined by EAB and G′ has the edges between A and B defined
by ĒAB. Now imagine counting some subgraph HS in G and G′ and returning the sum over both graphs. We will use
the inclusion-exclusion technique to count only versions of HS that have exactly one node in each set of nodes A and
B. This sum will include twice the counts of all subgraphs HS that use no edge between A and B, as well as a count
of all subgraphs HS that use any single edge between A and B. (Note that it cannot include subgraphs with multiple
edges between A and B as it can include only exactly one node of A and B.) So, if we wanted to count all subgraphs
HS that don’t use an edge between A and B we could (1) ask for the counts ct and ct ′ over G and G′, (2) compute the
number ct− of subgraphs HS that use any edge (a,b), and (3) return (ct +ct ′−ct−)/2. Note that (2) requires basically
counting for each edge (a,b) over subgraphs H ′ that have one fewer edge, namely HS \ (a,b) . It turns out this general
approach can be used recursively. Note that we can use the standard inclusion exclusion technique to force exactly
one vertex of our counted subgraphs to be in each partition so we only need to handle cases where there are zero or
one edges between partitions.

In the following we consider the graph G and then consider for each edge set, Vi, all possibilities of the edge set
being on and off. We are able to recurse down to a point of considering just the count of how many edges exist between
the partitions. We will be using the same general approach as [9], however, we cannot use their lemmas off the shelf
as they do not address the dynamic setting nor the setting where some partitions are single fixed nodes (like st-path).

To do this we need to define the various edge-set flipped graphs. We will borrow the definition from [9].

DEFINITION B.1. (SLIGHTLY ALTERED DEFINITION 3 FROM [9]) Let G be a Erdős-Rényi graph with every edge
included with probability 1/2 (note G can also be the outcome of many random edge flips). Let G have vertex partitions
V1, . . . ,Vk and the edges between partitions are called Ei, j ∀i, j ∈ [1,k] where i < j. Note that in the case of fixed nodes
we will allow some of the edge partitions to be single nodes.

For i 6= j label all |Vi| · |Vj| possible edges between Vi and Vj with numbers in [1,2] as follows. Edges that exist in
G are labeled 1. The rest of the edges are labeled 2. For ` ∈ [1,2], let E`

i, j be the set of all edges of label `.

Let G
(`1)(`2)...(`(k

2)
)

be the graph formed by choosing edge sets E`1
1,2, E`2

1,3, . . . ,E
`
(k
2)

k−1,k. Let XG be the set of all possible

2(
k
2) graphs G

(`1)(`2)...(`(k
2)
)
.

Thus for each pair of vertex sets Vi, Vj with i 6= j each graph in XG either contains all of the edges between that
vertex pair in G or all edges that are not in G. We will use XG to build our recursive step. Furthermore we will use the
following notion of a labeled subgraph of HS for our recursion.

DEFINITION B.2. Recall that HS with k nodes is labeled if the nodes are given the labels v1, . . . ,vk. A labled subgraph,
L, of HS is a subgraph of k′ nodes of HS that retain the same labels as the original nodes in HS.
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For example say HS were an st 5 path, v1− v2− v3− v4− v5− v6 where S = {(v1,s),(v6, t)}. Then L might be
a two-path v1− v2− v3 and the disconnected edge v5− v6. But, L could also be the distinct labeled subgraph of a
two-path v1− v2− v3 and the disconnected edge and v4− v5.

B.2 Traditional Inclusion Exclusion The first step in our reduction will involve ensuring that we are only counting
unlabeled subgraphs HS that have exactly one vertex per set. This concept originates from Daniel da Silva in 1854 [8].
This technique used in [9] (see Lemma 5.5) and [5] (see Lemma 3.10). This is a standard technique. With 2k calls on
a graph with k nodes you can count all copies of that graph that appear with exactly one vertex in each partition of a
larger graph. We will present a version specific to our problem here.

THEOREM B.1. Let G be a graph with k sets of vertices V1, . . . ,Vk that partition the vertices (G is not necessarily
k-partite). Let Ti be the set of all subgraphs G′ formed by the union of i of the vertex sets. (So T2 when k = 3 has three
graphs with vertex sets V1 ∪V2, V2 ∪V3 and V3 ∪V1.) Let fHS(G

′) be the number of unlabeled copies of a graph HS
in G where HS has k nodes. Let CHS(Ti) = ∑G′∈Ti fHS(G

′). That is, CHS(Ti) is the count of all instances of HS in all
graphs that are formed by the union of i of G’s vertex sets. Note that CHS(Tk) = fHS(G).

Then the number of unlabeled copies of HS is equal to ∑
k−1
j=0(−1) jCHS(Tk).

Proof. Consider a specific copy of HS, say that it has nodes in exactly ` partitions Vi1 , . . . ,Vi` . Let us determine how
many times it is counted and with what signs.

The first case is `= k, note that such an HS must have exactly one vertex per partition as HS has exactly k nodes.
Now, such an HS is counted in CHS(Tk) once and appears in no other counts.

Next, consider an ` ∈ [1,k−1] (note that `= 0 is nonsensical, HS has k nodes and must appear in some partition).
A given copy of HS appears only in CHS(Ti) for i ≥ `. How many graphs in Si does this HS appear in? Any versions
where all its ` partitions are selected and the remaining i−` partitions are selected from the remaining k−` partitions.
The parity of the counts of the Si values flip, so in the final sum this individual HS is counted

±
k

∑
i=`

(−1)i
(

k− `

i− `

)
=±

k−`

∑
p=0

(−1)p
(

k− `

p

)
= 0

times. So, the count ∑
k−1
j=0(−1) jCHS(Tk) returns only HS that have at least one node in each partition, which implies

exaclty one node per partition.

Now, for intuition lets discuss why this isn’t enough. If HS were a clique, we would be done. However, if HS is not
a clique, the count we return after inclusion exclusion still includes many HS that fail to follow the labeling. This is not
surprising as we counted only unlabeled subgraphs. Intuitively, we are counting subgraphs HS which use edges that do
not fulfill the labeling requirement. For example, if HS were an st 3-path, v1− v2− v3− v4 where S = {(v1,s),(v4, t)}
we might be counting a path v1− v3− v2− v4 which is an st three path, but, isn’t the kind of st three path we want to
count.

In worst-case graphs we can use inclusion-exclusion along with empty edge sets between some pairs of partitions
to count the desired labeled subgraphs with only a unlabeled subgraph counting algorithm and inclusion-exclusion.
However, this idea won’t work in the average-case, because empty edge partitions are very far from an Erdős-
Rényi graph. However, in the average-case we can’t do this. The graph wouldn’t look Erdős-Rényi! The name
for a graph where all the ‘disallowed’ edge sets (i.e. edge sets that do not appear in HS) are empty but all other edge
sets look Erdős-Rényi is a Erdős-Rényi HS-partite graph. So our crucial observation here is that an unlabeled counter
for HS in Erdős-Rényi HS-partite graphs can be used to count labeled HS in Erdős-Rényi HS-partite graphs. The reason
is as follows: As unlabeled subgraphs that we counted in these graphs have exactly one vertex per partition and Erdős-
Rényi HS-partite graphs contain no edges between pairs of partitions that have no edge in the corresponding labeling
of HS, every counted unlabeled subgraph must fulfill the labeling of HS. Thus the count of unlabeled subgraphs with
exactly one vertex per partition in Erdős-Rényi HS-partite graphs equals the count of labeled subgraphs in Erdős-Rényi
HS-partite graphs.

In the next section we will prove that an algorithm for counting unlabeled copies of HS with exactly one vertex
per partition in Erdős-Rényi graphs can be used to count labeled copies of HS in HS-partite Erdős-Rényi graphs, which
is our goal (B).
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B.3 Unlabeled to Labeled Counting Consider a labeled graph HS. We want to count the number of labeled copies
of HS in an Erdős-Rényi HS-partite graphs. For this we will use a counter of unlabeled copies of HS in Erdős-
Rényi graphs which are not HS-partite. Recall that if the graph were HS-partite traditional inclusion-exclusion would
trivially solve our problem.

Our proof works by recursion. During the recursive proof we use L to denote the labeled subgraph of HS whose
occurrences we want to count in G. The base case of the recursion consists of graphs L that consist of only one edge.
As we show next this base case is easy to track both dynamically and statically.

LEMMA B.1. (BASE CASE LEMMA) We are given a graph G with k partitions A1, . . . ,Ak (some of them may be single
nodes) with n nodes and m edges. We can update the stored counts of the number of edges between all pairs of Ai
and A j with i 6= j in O(1) time per edge insertion/deletion dynamically, given that we use O(k2) space to store the
information. In the static setting we can return counts of the number of edges between all pairs of either Ai and A j in
O(m) time.

Proof. In a dynamic algorithm we track the number of edges between all O(k2) pairs of partitions Ai and A j in a table
of size k2. Every edge inserted or deleted updates the count of the sets containing its endpoints in constant time.

In the static case we can scan over all edges and count the number of edges between all possible pairs of partitions.

Note that this allows us to track the number of occurrences of any labeled subgraph L that consists of exactly one
edge.

Recursion We will devote the rest of the section to explain the recursion up from the base-case. Let us briefly
discuss the idea behind the recursion. The first idea is that we sum the counts of unlabeled HS across multiple graphs
in XG where between some subset of edge sets Vi` and Vj` we include all possible combinations of the graphs using the
edges sets E1

i`, j` or E2
i`, j` . This sum will, metaphorically, make the edge set between Vi` and Vj` complete. We can use

this to efficiently count the unlabeled HS copies that don’t match our desired labels (because we want to subtract that
count out) as long as we know the counts of all the smaller labeled subgraphs of HS. We recurse on this idea, to get
the count of some labeled subgraph L of HS. We use the unlabeled counts of HS in many graphs in XG and the counts
of labeled subgraphs of L that are smaller than L in G.

We first define the subgraphs of HS. Note that HS consists of k labeled vertices v1, . . .vk.

DEFINITION B.3. Let ZHS(`,e) be the set of labeled subgraphs of HS with ` nodes and e edges.
If J ∈ ZHS(`,e) and L ∈ ZHS(`

′,e′) then J ⊂ L (in words J is a subgraph of L) if every labeled vertex v j ∈ J also
appears in L with the same label and every edge (vi,v j) ∈ J also appears in L.

Outline. The lemma below show how to count the number of subgraphs using double recursion, once on the
number of vertices, and once on the number of edges. More specifically, to show the claim for a graph HS with v nodes
and e edges, we will first recurse on all subgraphs with fewer than v vertices (vertex recursion). We use their counts
to count all subgraphs with v nodes and at most v−2 edges. We use this result as the base case for a second recursion
(edge recursion), where we count all subgraphs with v nodes and e+1 > v−2 edges. In the latter recursion we recurse
on subgraphs with v nodes and at most e edges.

Vertex recursion. First observe that the recursion on subgraphs with fewer vertices is trivial if the graph to count
is disconnected.

LEMMA B.2. Let G be a graph with n nodes, m edges and k labeled partitions of the vertices V1, . . . ,Vk (recall that G
is not necessarily k-partite). If we have the counts of all labeled subgraphs of HS in G with exactly one vertex in each
partition of the graph of size less than s vertices, then we can compute the number of labeled subgraphs in G that are
the union of two disconnected, vertex-disjoint labeled subgraphs of HS of total size s or less.

Proof. Let one be labeled subgraph LŜ and the other be labeled subgraph L′
Ŝ′

. Given that they share no vertices, we
can simply multiply the number of subgraphs LŜ and L′

Ŝ′
.

Next we show how to use this fact in our vertex recursion. More specifically, given a count of all subgraphs of fewer
than v vertices we use it to count all subgraphs with v vertices and up to v−2 edges.
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LEMMA B.3. Let G be a graph with n nodes, m edges and k labeled partitions of vertices V1, . . . ,Vk (some partitions
may be single nodes). Given the count of all labeled subgraphs of HS in all graphs in XG with exactly one vertex in
each partition of the graph with less than v vertices, we can count all labeled subgraphs with v vertices and at most
v−2 edges in Õ(m) time.

Proof. A subgraph of v vertices and at most v− 2 edges must be disconnected. Thus, we can use Lemma B.2 to
compute the count of the subgraph by multiplying the counts of its connected components.

Edge recursion. Next we show how to count subgraphs with v vertices and e+1 edges, assuming we know the
counts for all subgraphs with v vertices and up to e edges 3.

Figure 5: Full lines represent edges in the graph G, so edge sets labeled with 1 e.g. E1
i, j. The dashed lines represent the

edges in the inverse of the edge sets (i.e. E2
i, j). The first graph G represents G with no changes made. The second copy

has edges in black which we don’t flip when trying to count copies of L. In the second copy green edges represent
the edges that exist in the original G (that is E1

i, j edge sets) but which exist in between partitions that we flip when
learning the count of L. In Lemma B.4 we take unlabeled counts of subgraphs in all input graphs in XG where edges
in G between partitions that correspond to edges in L are set to E1

i, j. In our picture, this is the black (thin line) edges.
Then, in our example there are four pairs of vertices in L (which correspond to partitions in G) that do not have an
edge between them in L. All 24 possible choices of four tuples of edge sets between these partitions will appear in XG.

LEMMA B.4. Let G be a graph with the partitions of the vertices into k sets and let L be a labeled subgraph of the
labeled graph HS such that there is at most one node per partition with v vertices and e+1 edges for any v > 0 and
e ≥ 0. Assume we are given the counts of the number of unlabeled subgraphs of HS which have exactly one vertex in
each partition in all graphs in XG (see Definition B.1). Additionally, assume that we are given the counts of all labeled
subgraphs of HS consisting of less than or equal to v vertices with [0,e] edges in G.

Using both of these counts we can count the number of not-necessarily induced copies of the labeled subgraph L
in G in time O((k!+ k logn) ·2k2

).

3Basically, we will use Lemma 5.7 from [9], but we need to reprove it as [9] requires that there are exactly n vertices in a partition and our graphs
might not fulfill this requirement.
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Proof. Let HS have vH = k vertices and eH ≥ e+1 edges. Let the subgraph L be given as a list of v≤ k vertices labeled
as being in partitions i1, . . . , iv and e+1 edges between these partitions in total. Let SL be the set of all pairs (x,y) such
that there is an edge between partition ix and iy in L, let S̄L be the set of all pairs with an edge in HS but not in SL, and
let R be the remaining pairs in [1,k]× [1,k]. Note that this gives a partition of [1,k]× [1,k] such that SL∪ S̄L equals the
edge set of HS. Thus, |R|=

(k
2

)
− eH and |R∪ S̄L|=

(k
2

)
− e−1.

Our general approach is that we (1) first overcount by determining the number of unlabeled copies of HS in a
suitable subset of XG and then (2) we correct that count by subtracting out all copies of HS in graphs G′ where the
vertex assignment of vertices of HS to vertices in G′ does not agree with the labeling of L. We describe each of these
steps next in detail.

(1) Consider the subset of instances in XG where the edges between partitions in SL (for example Ei1,i2 ) are all set
to be the version labeled (1) (E(1)

i1,i2
). Call this subset SG[L]. What graph instances are in SG[L]? These are all graphs

that contain E(1)
i1,i2

for every (i1, i2) in SL, but for all (i1, i2) ∈ R∪ S̄L the graphs contains either E(1)
i1,i2

or E(2)
i1,i2

. Note that

there are 2(
k
2)−e−1 many such graphs.

We can enumerate all graphs in SG[L] in time O(2k2
) and for each graph G′ retrieve the number of unlabeled

copies of HS in G′ as each G′ belongs to XG. Let us call their sum cSG[L]. Note that each unlabeled copy of HS in a
graph G′ of SG[L] corresponds to a labeling of HS as each vertex of the copy is assigned to a vertex partition of G′.
This is the reason why we count different labelings of HS in the rest of the proof.

What will the count cSG[L] contain? It will count the number of labelings of HS that appear if the graph G were to
have a complete bipartite graph between all pairs of partitions in R∪ S̄L, but, note that each labeling of HS is counted
with multiplicity equal to the number of graphs in SG[L] in which it appears. But this depends on how many of its

edges belong to R∪ S̄L: If ` of its edges belong to R∪ S̄L, it is counted 2(
k
2)−e−1−` times as for

(k
2

)
− e− 1− ` many

pairs of partitions in R∪ S̄L the edge label (1) or (2) is not fixed. Thus we showed the following proposition.

PROPOSITION B.1. If ` of edges of HS belong to R∪ S̄L, then each labeling of HS is counted in 2(
k
2)−e−1−` graphs of

SG[L].

Given that L is a labeled subgraph of HS, at least one labeling of HS will share all e+1 edges and v vertices of L.
So our count cSG[L] will include a count of the labeled subgraphs L, but we must subtract from cSG[L] all labelings of
HS that do not agree with the labeling of L. The resulting number will be the number of copies of L in G. We describe
next how to do this.

(2) Given the counts in G of all small subgraphs we can count how many labelings of HS exist that match up
only partially with L and remove these from the count cSG[L]. Our approach is as follows: There are O(2k2

) labeled
subgraphs L′ of L. For each of them we determine first how often it appears in G. As L′ is labeled, we can get this
count cL′ recursively by the assumption of the lemma. For each such occurrence L′G of L′ we need to determine in how
many ways it can be “extended” into a labeling of HS, i.e. how many labelings of HS exist that agree with the labeling
of L′ on all its vertices. We do this in two steps:

(a) Let JL,L′ be a complete graph on k vertices where all edges in L−L′ are excluded and let cJL,L′ be the count
of the number of labelings of HS that exist in JL,L′ . Note that we can compute this in time O(k!) by exhaustive search
over all possible labelings of HS that embed in JL,L′ .

(b) Next we determine for each labeling of HS embedded in JL,L′ (i) in how many graphs of SG[L] it occurs and
(ii) what its count is in these graphs. Let eL′ ≤ e be the number of edges and vL′ ≤ v be the number of vertices in
L′. (i) Note that by construction eH − eL′ of edges of HS belong to R∪ S̄L and, thus, by Proposition B.1 each labeling
is counted in 2(

k
2)−e−1−eH+eL′ graphs of SG[L]. All these graphs have edges between all the partitions for which HS

has edges. (ii) Given one of these graphs G′ we are left with counting how often the labeling of HS is counted, i.e.,
how many different occurrences of HS there are in G′. Recall that each such occurrence HS,G′ needs to use exactly the
edges of the occurrence of L′G in G′ for the vertex partitions for which L′ contains an edge, i.e., for each edge (i1, i2)
of HS ∩L′ there is only one choice of edge for HS,G′ , namely it must use exactly the same edge as L′G. However, for
all remaining edges of HS all possible combinations of choices of vertices in the partitions not appearing in L′ are
possible. More precisely, let Vj1 , . . . ,Vjk−vL′

be the partitions of G′ that correspond to labels of vertices of HS that do
not appear in L′. Each choice of one vertex from each of these partitions gives rise to a different occurrence HS,G′ of
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HS in G′. Thus, there are ML′ := Π
k−vL′
x=1 |Vjx |many such occurrences in G′. Said differently, there are exactly ML′ many

labelings of HS that agree with the labeling of L′ in G′. Note that ML′ only depends on k, on the labeling of L′, and on
the sizes of different sets Vj of the partition, but not the specific structure of HS, which makes it easy to compute M in
time O(logML′) = O(k logn). Combining (i) and (ii) it follows that each labeling of HS embedded in JL,L′ contributes

2(
k
2)−e−1−eH+eL′ ·ML′ to cSG[L].

As there are cL′ many subgraphs L′ in G and for each of them there are cJL,L′ many possible labelings of HS such
that HS contains all edges of L′ but none of L\L′ we need to subtract

cL′ · cJL,L′ ·ML′ ·2(
k
2)−e−1−(eH−eL′ )

from the count cSG[L].

So, for all O(2k2
) labeled subgraphs of L we can compute their contribution to cSG[L] and subtract out this

contribution. This leaves only a count of labelings of HS that overlap with L exactly. Let Vj1 , . . . ,Vjk−v be the partitions
of G′ that correspond to labels of vertices of HS that do not appear in L and let ML := Π

k−v
x=1|Vjx |. To compute the

number of subgraphs L we simply divide this number by cGL,L ·ML ·2(
k
2)−eH .

The total time for this computation is O(2k2 · k!+2k2 · k logn).

Note that if k = o(
√

lg(n)), then the running time O((k!+k logn) ·2k2
) is sub-polynomial. We now use this lemma

to count the labeled copies of HS in Erdős-Rényi HS-partite graphs as follows. Specifically, our base case are single
vertices (sizes of partitions) and labeled edges (number of edges between two partitions). We can then count all one-
edge three-node labeled subgraphs using Lemma B.3. Then we can count all three-node two-edge labeled subgraphs
using Lemma B.4. In general given that we have counted all subgraphs with v− 1 or less vertices and all subgraphs
with v vertices and at most e− 1 edges we use Lemma B.4 until we have counted all subgraphs with v vertices and
at most

(v
2

)
edges. Then we use Lemma B.3 to count subgraphs with v+1 vertices and at most v−2 edges. We can

repeat this procedure to count all labeled subgraphs of HS, including labeled HS itself.
Now, let us recall our goal: we want to say that an algorithm A for counting unlabeled HS graphs (dynami-

cally/statically) in Erdős-Rényi graphs implies an algorithm D for counting labeled HS graphs (dynamically/statically)
in HS-partite Erdős-Rényi graphs. Our lowest level recursive steps work for this (they simply count the number of edges
in between two partitions which can be done efficiently dynamically and statically). However, our more involved re-
cursion step, Lemma B.4, requires that we have the unlabeled counts of HS in all graphs XG. Statically, this is easy,
we simply produce all graphs in XG in time O(n22(

k
2)). Dynamically, we proceed as follows. We maintain two types

of data structures: (1) We dynamically maintain the number of edges between any pair of vertex sets in the partition
(i.e. the base case data structure from Lemma B.1. (2) Let X∗G be the set of graphs consisting of each graph G′ of XG
and some suitable subgraphs of G′ (explained below in the proof of Theorem 3.1). We run an instance of algorithm
A for each graph G′ of X∗G. All such graphs are generated during preprocessing and an instance of A is initialized on
each of them. Whenever there is an update in G, we perform the same update in A for each graph in X∗G. Note that
this guarantees that at each point in time the graphs on which A is run are exactly the graphs in X∗G.

For each update in G we perform k2 updates in the type-(1) data structures, each taking constant time, and |X∗G|
many updates in the type-(2) data structures, each taking as much time as an update in A . The preprocessing time is
O(n2|X∗G|) plus |X∗G| times the preprocessing time of A .

Now at query time we run the recursive algorithm sketched above and stated formally in the following lemma.
During the recursion it requires to know the unlabeled count of subgraphs HS which is given by the type-(2) data
structures and the number of edges between any pair of vertex sets, given by the type-(1) data structures.

LEMMA B.5. Let HS have e edges and k vertices. Let B be an average-case algorithm for counting unlabeled copies
of HS that have exactly one vertex per partition in dynamic Erdős-Rényi graphs with Q(n) query time which gives the

correct with probability at least 1− ε/
(

2(
k
2)
)

.
There is an algorithm to determine the number of labeled copies of HS in Erdős-Rényi dynamic graphs with edge

probability 1/2 with query time O(2(
k
2)Q(n)). It will give the correct answer with probability at least 1− ε .
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Proof. To count the number of labeled copies of HS in a HS-paritie Erdős-Rényi graphs we will make queries into all
graphs G′ ∈ XG. We will ask that an instance of B be run on all G′ ∈ XG. We are not analyzing the preprocessing time
here, we do that analysis in Theorem 3.1. Here we will analyze how, given a dynamically updated count of unlabled
copies of HS with one node per partition we can count unlabled copies of HS.

First we use the base case from Lemma B.1, recall that this has O(1) update time dynamically. Then, as described
in the lemmas above we will recurse upwards. Let [v,e] be an abuse of notation for the set of all counts of labeled
subgraphs with v vertices and e edges. The base case gives us [1,0] and [2,1]. We can produce [2,0] using Lemma B.2.
From here if we have [v,e] and e <

(v
2

)
we will produce [v,e+ 1] using Lemma B.4. If e =

(v
2

)
then we will produce

[v, i] for all i < v− 2 using Lemma B.3. Note that if there are no labeled subgraphs with certain [v,e] pairs, then this
case is trivial as we have nothing to return. We can recurse upwards using this until we have counts for all labeled
subgraphs HS. This solves the question at hand.

We now analyze the running time. The recursion procedures take O(2k2 · (Q(n)+2k2
)) time per query. We make

a query into each graph in XG and we do computation for each subgraph L of HS and there are at most 2k2
subgraphs

L of HS.
Now, for probability of correctness. If B succeeds with probability at least 1− ε/2(

k
2) then by union bound we

give the correct answer with probability at least 1− ε .

Note that we never needed to store anything other than the base case values of the number of edges between pairs
of vertex sets in the vertexpartitions (which is easy to maintain dynamically, see Lemma B.1). Our recursive calls
simply require the information about the counts of copies of HS in all graphs in XG, but no history of information other
than that. This makes dynamically maintaining the count very easy: We maintain two data structures, namely (1) the
number of edges between pairs of partitions. If we keep track of the number of edges between partitions in G then we
simply need to use a dynamic algorithm to give counts of copies of unlabeled HS in all graphs in XG. This allows us to
count the labeled copies of HS in G.

Now we are able to proof Theorem 3.1. We will re-state the theorem again.
REMINDER OF THEOREM 3.1 Imagine we are given a dynamically updated graph with random updates, where
some edges are marked as not-allowed. The graph will be split into k partitions and edges with ‘disallowed’ updates
must be the complete edge sets between two partitions. These edges will not be randomly updated by the random
updates. We use this structure to make our proofs easier in the body of the paper.

Let HS be a graph with k nodes. Assume that the problem of counting HS in a graph with random updates among
the allowed edges in an HS-partite graph requires 2(

k
2)+kU(n) time per update and 2(

k
2)+kQ(n) time per query as long

as at most O(2(
k
2)+k(n2 +P(n))) time is spent preprocessing and gives correct answers to queries with probability

1− δ . If the allowed edges are a constant fraction of all edges then the average-case HS counting problem requires
at least Ω(U(n)) time per update or at least Ω(Q(n)) time per query as long as at most O(P(n)) time is spent

preprocessing. This new algorithm will give correct answers to queries with probability at least 1−δ2(
k
2)+k.

Proof. In this proof we will show that given a fast algorithm A for counting unlabeled HS in Erdős-Rényi graphs we
can produce a fast algorithm for counting labeled HS in HS-partite Erdős-Rényi graphs. Assume P′(n), U ′(n), and
Q′(n) are the preprocessing, update, and query time of algorithm A . First we will use Theorem B.1 which makes 2k

calls to an algorithm for counting unlabeled HS to produce an algorithm B for counting unlabeled HS with exactly one
vertex per partition. To apply these techniques we need not just the counts of unlabeled copies of HS in graphs XG, but
also these counts in a larger set of graph which we denote as X∗G which is defined as follows.

First recall that G, and thus also G′ the set of vertices V is partitioned into k set V1,V2, . . . ,Vk. For every subset
T ⊂ [1,k], T 6= /0, let G′T be the subgraph of G′ induced by the vertex set ∪i∈TVi. We also need to run A on all

subgraphs G′T of G with T 6= /0. As there are 2k subgraphs of G′, there are 2(
k
2)+k graphs on which A is run. Let

X∗G denote the set of all these graphs. Note that all of them Erdős-Rényi dynamic graphs. For the inclusion-exclusion
technique we need to run an instance of A on every graph of X∗G which counts unlabeled copies of HS and use it to
count unlabeled HS which have exactly one vertex per partition. As described before every edge update to G triggers
at most |X∗G|= 2(

k
2)2k edge updates to maintain the graphs for all 2(

k
2)+k instances of A . Note that 2(

k
2)+k < 2k2+k.

Now we can use Lemma B.5, which requires (1) a dynamic algorithm for the base cases, which is given in
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Lemma B.1, and (2) an instance of algorithm B for each graph X∗G. These are exactly the type-(1) and type-(2)

data structures described above that can be maintained in time 2(
k
2)+kU ′(n)+ k2 per update with preprocessing time

2(
k
2)+k(n2+P′(n))+k2. Every time there is a query we execute the recursion from lemma B.5 from scratch. This allows

us to count the number of labeled copies of HS in an HS-partite Erdős-Rényi graph dynamically in time 2(
k
2)+kQ′(n) for

the following reason: At query time the algorithm of lemma B.5 calls algorithm B 2(
k
2) times, algorithm B calls A 2k

times, and each call to A takes time Q′(n). As the calls to A dominate the running time, the total time for answering

a query is 2(
k
2)+kQ′(n). If A succeeds with probability 1− δ then B succeeds with probability at least 1− δ2k by

a union bound. By Lemma B.5 our final algorithm succeeds with probability at least 1− 2(
k
2)ε if B succeeds with

probability 1− ε . So the success probability of query is at least 1−2(
k
2)+k

δ . Let us denote the resulting algorithm by
D .

So assume that A has preprocessing time P′(n) = O(P(n)), update time U ′(n) = o(U(n)) and query time

Q′(n) = o(U(n)). Then D would take O(2(
k
2)+k(n2 + P(n))) preprocessing time, o(2(

k
2)+kU(n)) update time and

o(2(
k
2)+kQ(n)) query time which is a contradiction, as in our theorem statement we state that D requires at least

2(
k
2)+kU(n) time per update and 2(

k
2)+kQ(n) time per query as long as at most O(2(

k
2)+k(n2 +P(n))) time is spent

preprocessing.

Let us quickly summarize what we did in this section. We used a recursive calls to count larger and larger labeled
subgraphs of HS in a graph G using only an unlabeled counter. We then use those counts to count labeled HS graphs
using an unlabeled HS counter. In the worst-case this reduction is very easy. However, in the average-case we need to
maintain the property that the edge sets ‘look random’. We solve this problem by making repeated calls to graphs that
each individually look indistinguishable from random because

C Total Variation Distance and Algorithms
In this appendix we will explain how you can use TVD to use the success probability of any algorithm on one
distribution on a very similar different distribution. We will then bound the difference between two distributions
we use in our biased updates proof.

LEMMA C.1. We are given algorithm A and two distributions D and D′ over inputs to A . Let ε be the TVD from D
to D′. If A has success probability p on inputs drawn from the distribution D then A has a success probability of at
least p− ε on inputs drawn from D′.

Proof. Let SD be the support of D and let SD′ be the support of D′. Let Ŝ = SD∪SD′ . Let F be the subset of Ŝ on which
A fails.

Now let f = 1− p, the failure probability of A on the distribution D. Let q be the success probability of A on
inputs drawn from D′. Let f ′ = 1−q the failure probability of A on inputs drawn from D′.

Now recall that TVD between D and D′ is defined as the sum:

∑
x∈Ŝ

|(Pry∼D[y = x])−
(
Pry∼D′ [y = x]

)
|.

Further note that f − f ′ is the sum:

∑
x∈F

(Pry∼D[y = x])−
(
Pry∼D′ [y = x]

)
.

Now note that F ⊆ Ŝ so:

f ′− f = ∑
x∈F

(
Pry∼D′ [y = x]

)
− (Pry∼D[y = x])≤ ∑

x∈Ŝ

|(Pry∼D[y = x])−
(
Pry∼D′ [y = x]

)
|= ε.

So f ′− f ≤ ε which tells us that p−q≤ ε . So the success probability of A on D′ is at least p− ε .
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Now onto bounding the TVD between distributions in our biased updates proof. We start by proving random
updates and random vectors are similar. We will use Binµ [x] to refer to the Binomial distribution where a success
happens with probability µ and there are x samples.

LEMMA C.2. Let D be the uniform distribution over n bit Boolean vectors. Let Tp be the distribution of random
vectors formed by making Binp[n lg2(n)] bit flips on uniformly random locations in the vector starting from the all
zeros vector.

When p is constant the TVD of D and T1/2 is 2−Ω(lg2(n)). When p is constant the TVD of D and T1/3 is also

2−Ω(lg2(n)).

Proof. Consider~u∼ Tp. Now consider one given bit in this vector,~u[ j]. After f flips call the probability that~u[ j] = 0
by q f and call the TVD for that bit δ f . Note that q f = 1/2+δ f . Now note that q0 = 1 and δ0 = 1/2. Next note that
the probability that~u[ j] = 0 after i flips will be equal to:

(probability j not flipped in ith flip)(qi−1)+(probability j flipped in ith flip)(1−qi−1)

We can write this as

qi = (1− p/n)(1/2+δi−1)+ p/n(1/2−δi−1) = 1/2+(1−2p/n)δi−1 = 1/2+δi.

So δi+1 = (1−2p/n)δi = (1−2p/n)i+1. So after n lg2(n) flips we have that δn lg2(n) ≤ e−p lg2(n) = 2−Ω(lg2(n)).

Finally we will address the parities of βu and βv from Theorem 2.2.

LEMMA C.3. Let x ∼ Binp[n lg2(n)] and y ∼ Binp[n lg2(n)] (so x and y are sampled from the same binomial
distribution). Let A be the probability distribution over tuples (x mod 2,y mod 2).

Let B be the probability distribution over over tuples (a mod 2,b mod 2).
The TVD of A and B when p = 1/2 is zero. The TVD of A and B when p = 1/3 is 2−Ω(n lg2(n)).

Proof. For distribution Binp[n lg2(n)] mod 2 note that we can make a similar argument to Lemma C.2. We start with a
parity of zero with probability 1. Let qi = 1/2+δi be the probability of a zero for the distribution Binp[i] mod 2. Then
note that qi+1 = (1− p)qi+ p(1−qi). So δi+1 = (2p−1)δi. When p= 1/2 δi goes to zero immediately. When p= 1/3
we have that δi = 1/2(−1/3)i. So when f = n lg2(n) we will have a probability of zero of q f = 1/2+1/2(−1/3)n lg2(n).
The distribution A will have probability q2

f for (0,0), q f (1−q f ) for (0,1) and (1,0), and finally (1−q f )
2 for (1,1).

For distribution B we will start by analyzing L. Note that L is the same distribution as D (the xor of two random
vectors is a random vector). Now note that C is one with probability 1/2 and zero with probability 1/2. Each index
has a 1/2 chance of being a 1 iid, when you XOR a random variable that is zero and one each with probability 1/2
with another such variable the probability is still 1/2. So the distribution B is simply uniformly 1/4 probability across
all four of these tuples: (0,0), (0,1), (1,0), and (1,1).

Recall that the definition of TVD is the sum of the absolute value of the difference in probability distribution on
all outcomes. So, the TVD of these distributions is the sum of the differences in probability across the four outcomes
(0,0), (0,1), (1,0), and (1,1). So the TVD between these is |q2

f − 1/4|+ 2|q f (1− q f )− 1/4|+ |(1− q f )
2− 1/4|.

Recall q f = 1/2+1/2(−1/3)n lg2(n) so the TVD of A and B is at most 2−Ω(n lg2(n)).
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