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Abstract

Let Π be a protocol over the n-party broadcast channel, where in each round, a pre-

specified party broadcasts a symbol to all other parties. We wish to design a scheme

that takes such a protocol Π as input and outputs a noise resilient protocol Π′ that

simulates Π over the noisy broadcast channel, where each received symbol is flipped

with a fixed constant probability, independently. What is the minimum overhead in

the number of rounds that is incurred by any such simulation scheme?

A classical result by Gallager from the 80’s shows that non-interactive T -round

protocols, where the bit communicated in every round is independent of the commu-

nication history, can be converted to noise resilient ones with only an O(log log T )

multiplicative overhead in the number of rounds. Can the same be proved for any pro-

tocol? Or, are there protocols whose simulation requires an Ω(log T ) overhead (which

always suffices)?

We answer both the above questions in the negative: We give a simulation scheme

with an Õ(
√

log T ) overhead for every protocol and channel alphabet. We also prove

an (almost) matching lower bound of Ω(
√

log T ) on the overhead required to simulate

the pointer chasing protocol with T = n and polynomial alphabet.
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1 Introduction

We study the noisy broadcast model, a noisy version of the standard broadcast model (a.k.a.,

shared blackboard model). In the noisy broadcast model, a set of n parties, each holding a

private input xi, communicate with the mutual goal of computing f(x1, · · · , xn), for some

function f that is known to all the parties. The communication is carried out in rounds:

In each round, a pre-specified party broadcasts a symbol from some finite alphabet set Γ to

all the other parties. However, the symbol received by each party is randomly flipped with

some fixed constant probability ε > 0, independently for each party and round.

The noisy broadcast model was first suggested by El Gamal [Gam87] in 1984, and later

popularized by Yao [Yao97], as a simple abstraction for studying the effect of noise on highly

distributed wireless systems. El Gamal posted the following challenge: What is the round

complexity of the message exchange function (a.k.a., identity function) f(x1, · · · , xn) =

(x1, · · · , xn) in this noisy broadcast model with binary alphabet and bit inputs? Clearly,

when there is no noise (ε = 0), this function can be computed in n rounds: The parties

simply take turns broadcasting their inputs. An O(n log n)-round protocol over the noisy

broadcast channel is also easy: By a union bound argument, it suffices to have every party

broadcast its input bit O(log n) times as this means that a majority of the bits received by

any other party are correct with high probability.

This simple protocol was shown to be sub-optimal by Gallager [Gal88], who gave an

elegant O(n log log n)-round protocol computing the message exchange function. Gallager’s

protocol was later proved to be optimal by a beautiful paper of [GKS08]. In fact, Gallager’s

protocol extends to any function f that can be computed by a non-interactive T -round

(noiseless) broadcast protocol with an overhead of O(log log T ). By “non-interactive”, we

mean that the symbol communicated in each round of the protocol is independent of the

symbols communicated in all previous rounds1.

Can any function f be computed over the noisy broadcast channel with a similarO(log log T )

blowup in the number of rounds? Prior to our work, only the trivial bound of O(log T ) was

known for general functions.

1.1 Our Result

We show that while a Gallager-like scheme with a blowup of O(log log T ) is impossible

in the general case, it is possible to out-perform the trivial scheme with O(log T ) blowup

mentioned above. Specifically, we give a scheme that compiles any T -round protocol Π over

the (n,Γ)-broadcast channel to a protocol Π′ over the (n, ε,Γ)-noisy broadcast channel with

only Õ(
√

log T ) overhead. Here, n is the number of communicating parties, and Γ is the

channel’s alphabet set. In the noisy channel, the symbol received by each of the parties

in each of the rounds is the symbol broadcast in that round with probability 1 − ε, and a

1In other words, the communicated symbol is only a function of the round number, the input of the
communicating player, and its randomness.
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uniformly random symbol2 with the remaining probability3. Theorem 1.1 below gives an

informal statement of this result. For a formal statement, see Theorem 4.1.

Theorem 1.1 (Upper Bound, Informal). Let n, T > 0 and Γ be an arbitrary non-empty

set. Let Π be a T -round protocol over the (n,Γ)-noisy broadcast channel. For all constant

ε ∈ [0, 1/2], there exists a protocol Π′ that simulates Π over the (n, ε,Γ)-noisy broadcast

channel4, has T · Õ(
√

log T ) rounds, and errs with probability polynomially small in T .

We complement our upper bound result with an almost matching lower bound, at least

for the interesting regime of parameters where T, |Γ| = poly(n) (see additional discussion in

Section 1.5). An informal statement of our lower bound is given in Theorem 1.2 below. For

a formal statement, see Theorem 5.1.

Theorem 1.2 (Lower Bound, Informal). Let n > 0, ε ∈ [0, 1/2], and Γ be a set with

|Γ| ≥ n200. There exists a deterministic n-round protocol Π computing a boolean function

over the (n,Γ)-broadcast channel such that any randomized protocol that simulates Π over

the (n, ε,Γ)-noisy broadcast channel has Ω(n
√

log n) rounds5.

The combination of Theorems 1.1 and 1.2 shows that the optimal overhead of a simulation

scheme for the broadcast channel is Θ̃(
√

log n), at least for protocols of length polynomial

in n. This is unique, as, for other channels, the overhead is either close to Ω(log n) (up to

lower order factors), which is typically the worst possible, or very close to O(1), which is the

best possible. Thus, we show the first channel where the overhead is in the middle of the

two extremes. We also note that the existence of an upper bound significantly better than

the trivial O(log n) makes the lower bound proof very different from other such proofs in the

literature (see Section 2 for a detailed outline).

We mention that Yao [Yao97] (see also [GKS08, New04]) posted the question of whether

any boolean function can be computed by an O(n)-round protocol (note that [GKS08]’s

lower bound is for the message exchange function that has a large output). However, unlike

our setting, in Yao’s setting, each party only has a single input bit and the alphabet set is

binary. In this setting, linear protocols for several basic functions were given, see Section 1.3,

but no lower bounds are known. While Yao’s question is still open, Theorem 1.2 is the first

super-linear lower bound for computing a boolean function in the noisy broadcast model.

2As it is possible for the random symbol to be the same as the sent symbol, each party receives each sent
symbol correctly with probability 1− ε+ ε/|Γ| and receives each of the other |Γ|−1 symbols with probability
ε/|Γ|. In particular, for the binary alphabet (|Γ| = 2), each communicated bit is received correctly by each
party with probability 1− ε/2.

3The choice that the parties receive a uniformly random symbol in the case of noise is made for conve-
nience. Both our upper bound and lower bound work in stronger models, e.g., the lower bound can be made
to work in an erasure based model while the upper bound can be made to work even if the parties receive
an adversarial symbol with probability ε.

4By “Π′ that simulates Π”, we mean that a transcript for Π can be retrieved from a transcript for Π′, see
Section 3.5 for a formal definition.

5In fact, the same lower bound also holds for protocols Π′ that can estimate the boolean function with a
polynomially small advantage over random guessing.
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1.2 Non-Adaptive vs. Adaptive Simulation

Non-adaptive vs. adaptive protocols. In the classical noisy broadcast model, defined

by [Gam87] and assumed by the current work and by prior work [Gal88, Yao97, KM05, FK00,

New04, GKS08, EKPS21], the order of communication in the protocol is predetermined and

is independent of the players’ inputs and the channel’s noise (and therefore also independent

of the received transcripts). Such protocols are called non-adaptive or oblivious protocols.

Non-adaptive protocols are widely studied as they model certain common types of wireless

networks, prevent signaling6, and can trivially ensure that exactly one party is broadcasting

in every round.

Inspired by the radio network models in distributed computing [CK85], in a recent work

[EKS18] we defined an adaptive version of the noisy broadcast model, where a party decides

whether to broadcast or not based on its input and its received transcript. As hinted above,

such a model is prone to collision rounds (where more than one party broadcasts) and

silent rounds (where no party broadcasts). To keep the model as general as possible for

protocol design purposes, we assumed that the communication in collision and silent rounds

is governed by an adversary that can arbitrarily corrupt the symbol received by each party.

Separation of non-adaptive and adaptive simulations. The main result of [EKS18]

is that any protocol over the broadcast channel (which is, by definition, non-adaptive and

noiseless) can be simulated by a protocol in the adaptive noisy broadcast model with only

a constant blowup in the number of rounds. This result circumvents the lower bound of

[GKS08] and gives a separation between adaptive and non-adaptive simulations: For ev-

ery (non-adaptive) broadcast protocol Π, there exists a protocol Π′ over the adaptive noisy

broadcast model that simulates Π with O(1) blowup. However, there exists a (non-adaptive)

broadcast protocol Π such that every (non-adaptive) noisy broadcast protocol that simu-

lates Π has a blowup of Ω(log log n). Our Theorem 1.2 amplifies the gap in this separation

to be O(1) blowup for an adaptive simulation vs. Ω(
√

log n) blowup for a non-adaptive

simulation.

1.3 Additional Related Work

Noise tolerant protocols for specific n-bit functions. Prior works on the noisy broad-

cast model mostly focused on the case where each party has a single input bit and the parties

wish to evaluate a specific n-bit function over the binary noisy broadcast channel. Since Gal-

lager’s result [Gal88] implies an O(n log log n)-round protocol for all such functions (parties

communicate to exchange their inputs and then each evaluates the target function by itself),

linear or near-linear protocols were targeted.

6Signaling is the situation in which information is inferred from whether a certain party has broadcast or
not, rather than from the content of its communicated message.
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For instance, an O(n)-round protocol for computing the majority function (or any other

threshold function) in the related, but stronger, statistical noisy broadcast model7 was given

by [KM05]. An O(n log∗ n)-round protocol for the or function was given by [FK00]. An

improved O(n)-round protocol for the or function and other boolean functions was given

by [New04]. An O(n)-round protocol for the parity function and all other functions whose

value only depends on the Hamming weight of the input was given by [GKS08].

The message exchange function was also considered under variants of the noisy broadcast

model. [GHM18] give an O(n · log∗ n)-round protocol for the message exchange function in

the erasure noisy broadcast model, which is a relaxed model where receptions are randomly

erased (replaced with a ‘?’) instead of flipped. In a recent work [EKPS21], we give a noise

resilient message exchange protocol that works even if an adversary controls a constant

fraction of the parties.

Interactive coding. The field of interactive coding aims to convert (general) protocols

designed to work over noiseless channels to noise resilient protocols. The study of interactive

codes was initiated by a seminal paper of Schulman [Sch92] that considered (non-adaptive)

two-party protocols. The two-party adaptive channel was later studied by [Hae14, GHS14,

AGS16, EKS20a, EKS21]. Interactive codes for multi-party distributed channels were also

studied, including codes for peer-to-peer networks [RS94, ABE+16, BEGH16] and codes

for various adaptive broadcast channels [CHHZ17, EKS18, EKS19, EKS20b, AGL20]. While

the round complexity of some specific functions was studied over the classical (non-adaptive)

noisy broadcast channel, as discussed above, our result is the first to consider general inter-

active coding over this channel.

As mentioned in Section 1.2, in [EKS18], we give a constant rate simulation scheme over

the adaptive broadcast channel. In contrast, for other multi-party channels, an Ω̃(log n)

blowup in the length of the protocol was shown to be unavoidable. One such example is

[BEGH16], proving a near-logarithmic blowup for the peer-to-peer model. Another example

is [EKS19], where we show that a logarithmic blowup is inherent in the case that the parties

are broadcasting over a general network and a message broadcast by a party can only be

received by its neighbors in the network. A similar blowup is also shown for the beeping

channel, which is an adaptive channel that models very basic signal-based communication8

[EKS20b, AGL20]).

1.4 Our Techniques

We next give a very high level survey of our efforts. For a detailed overview, see Section 2.

7In the statistical model, it is assumed that the bit received by every party in every round is incorrect
with probability exactly ε/2 (as opposed to at most ε/2). We mention that our lower bound in Theorem 1.2
holds even in the statistical model.

8In every round of the beeping model, each party may “beep” and a beep is received by all parties if at
least one party beeped. Equivalently, each party communicates a bit in every round and the logical or of
the bits is received by all parties.
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Upper bound. We design our interactive coding scheme by first breaking the protocol

into chunks of length k, for a suitable k, and simulating it chunk-by-chunk. As there are k

rounds in any one chunk, a chunk involves at most k parties. Thus, a straightforward way to

simulate a chunk is to simply repeat each message O(log k) times and have the parties decode

by majority. The error probability of this simulation is 1
poly(k)

, which is exponentially small

in the number of times a single party broadcasts in the simulation. To get our upper bound,

we show a way of simulating one chunk with an error probability that is exponentially small

in the total length of the simulation, which is much smaller than that of the straightforward

simulation above.

In fact, if the chunk being simulated is non-interactive, then the main idea from Gallager’s

protocol [Gal88] can be used to get a simulation scheme with such an error probability. At a

high level, the property of non-interactive chunks used here is that the k parties only need to

know the simulated transcript when they are outputting it at the end of the simulation, and,

in particular, do not need to know it while computing what symbols to broadcast during the

simulation.

However, chunks may be interactive, and we extend Gallager’s protocol to this case by

designing a transformation from interactive to non-interactive chunks. The key observation

is that the party broadcasting the first symbol in the chunk does not need to know the

simulated transcript to compute the symbol it wants to broadcast. Thus, the first symbol in

the chunk is still amenable to a Gallager style argument. To get the remaining symbols, we

re-execute the simulation O(k) times, each time getting an extra symbol of the transcript.

As a small fraction of the executions may be corrupted, we also use ideas from interactive

coding to get that the overall simulation is correct except with probability exponentially

small in the length of the simulation, which is now Õ(k2).

Finally, note that our simulation is O(k) times longer than the noiseless chunk it simu-

lates, but our lower bound shows that this blowup is necessary.

Lower bound. The lower bound proof is more involved and it first reduces the problem to

a problem in the adversarial setting: We observe that if the failure probability of the protocol

over the noisy broadcast channel with error rate 1/2 is at most 2−∆, then the protocol is

also resilient to ∆ adversarial corrupted receptions. The reason is that the probability of

any ∆ corruptions under the noisy broadcast channel is 2−∆. The main ingredient in our

lower bound is an argument showing that if an interactive coding scheme is resilient to ∆

adversarial corruptions, then it must have length at least Ω(n ·
√

∆).

We prove this by contradiction, showing that one can trade rounds against adversarial

resilience in the following sense: For any t > 0 one can either “remove” Ω(n) rounds from the

protocol without degrading the amount of adversarial corruptions it is resilient to by more

than t, or for most i ∈ [n], the last time party i broadcasts is at least t rounds after the last

time party i−1 broadcasts. As the latter implies the length of the protocol is at least Ω(nt),

if t =
√

∆, any protocol of length at most O(n ·
√

∆) must be in the former case. But, if

this happens, we can keep removing rounds from the protocol, and eventually get a protocol
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with no rounds that is resilient to a non-zero number of corruptions, a contradiction.

We wish to take ∆ = log n. However, this by itself only shows that protocols with

length at most O(n
√

log n) are resilient to at most O(log n) adversarial corruptions, or

have a failure probability of at least n−O(1). We now boost the failure probability and show

that there exist Θ̃(n) “disjoint” sets of corruptions that can fail the protocol. As disjoint

corruptions are independent of each other, showing the existence of such sets boosts the

failure probability to be almost 1.

1.5 Discussion and Future Directions

Our work suggests several directions for future work:

Simulating noiseless protocols of large length T . When T � n, our interactive coding

scheme has a blowup of Θ̃(n) (see Theorem 4.1 for an exact statement). At a high level,

this is because one can always get an adaptive simulation with a blowup of O(1) [EKS18],

and simulate the adaptive simulation over the non-adaptive channel round by round with

a blowup of Θ̃(n). It is interesting to see if this blowup can be avoided. Specifically, can

we get an O(poly log n) blowup for every T? A good place to start may be to analyze the

blowup needed by a protocol where the order in which the players broadcast is random.

Adaptive-to-adaptive simulation. Our work shows that the overhead of simulating a

protocol in the non-adaptive noiseless broadcast model over the non-adaptive noisy broad-

cast channel is Θ(
√

log n), at least for polynomial length protocols. Prior work [EKS18]

has shown that if one wants to simulate such a protocol over the adaptive noisy broadcast

channel, then one can do this with a constant overhead. However, both works leave open the

interesting question of simulating adaptive noiseless protocols over the adaptive channel. We

mention that, as both the noiseless and the noisy protocol are more powerful, this question

is incomparable to the current work.

Binary lower bound. Lastly, we mention that the proof of our lower bound (Theorem 1.2)

makes use of the fact that the alphabet of the channel is polynomially large in the number

of parties. This comes in because our lower bound analyses a pointer-chasing type problem

where the input of each party is a large vector, but only one coordinate in the vector is

relevant to the output (and the party does not know which). If all the parties know which is

the relevant coordinate in advance, then a protocol like Gallager’s [Gal88] would be applicable

dashing all hopes of a lower bound. We exploit the large alphabet to easily establish that

none of the parties can guess which is the right coordinate with any significant probability.

This does simplify our argument substantially, but is not crucial to it, as even with a smaller

alphabet (say a large constant), most of the parties will not be able to guess which is the

relevant coordinate. Finding a way to formalize this is an interesting open question.
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2 Overview of Our Protocol

We now overview our main result, highlighting the major ideas. We start by overviewing

the upper bound in Section 2.1. The lower bound (which is more technically involved) is

overviewed later in Section 2.2.

2.1 Upper Bound: Our Interactive Coding Scheme

For the purpose of this section, we shall assume that the channel uses a binary alphabet,

the noise parameter ε = 0.1, the length of the noiseless protocol being simulated is T = n,

and for all i ∈ [n], party i broadcasts in round i of the protocol. To start, observe that

one can always break the protocol into n
k

chunks of k rounds each and simulate each chunk

individually. Thus, if one can simulate k rounds of the noiseless protocol correctly except

with probability polynomially small in n using at most k′ rounds, then, by a union bound, one

can also simulate the entire noiseless protocol correctly except with probability polynomially

small in n using at most n
k
· k′ rounds.

We next show that any chunk of size k = o(n) can be simulated correctly in Õ(k2)

rounds, except with probability exponentially small in k2. Following the above observation,

we choose k = Θ(
√

log n), so that the error probability will be polynomially small in n and

we can union bound over all the chunks.

Simulating chunks of length k = o(n). We seek a simulation scheme that takes a k-

round noiseless protocol and converts it to an Õ(k2)-round noise resilient protocol with a

super-low failure probability of 2−Ω(k2). Indeed, note that this target failure probability is

asymptotically close to the best possible, as the probability that any one party does not

receive any of the messages correctly is at least 2−Õ(k2). We also note that if the target

failure probability was 2−Ω(k) (which we call low), instead of the super-low 2−Ω(k2), then

an O(k2)-round simulation can easily be obtained by repeating each round in the noiseless

protocol O(k) times and having the parties decode by majority9. Putting it differently, we

can easily obtain a simulation whose error probability is exponentially small in the number

of repetitions of a single symbol. However, we wish to design a simulation with error that is

exponentially small in the length of the simulation.

Low error simulation for non-interactive protocols. We first consider a very re-

stricted set of protocols, which we call non-interactive protocols, where the symbol broadcast

in any round of the protocol is independent of the symbols broadcast in the previous rounds.

Implicit in Gallager’s work is the following simulation scheme that achieves low error prob-

ability of 2−Ω(k) with only Õ(k) rounds (cf. O(k2) rounds for the easy protocol above), and

9To see that this works, observe that, as the noise in the channel is independent across different rounds,
the decoding for each player and each round will be correct except with probability 2−Ω(k). We can now
union bound over all k parties and all k rounds and get that the overall simulation is correct except with
probability 2−Ω(k).
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we include its description here for completeness. His simulation consists of repeating every

message only Θ(log k) times and then having the parties jointly broadcast an O(k)-length

encoding of the transcript with an error correcting code, in a way that will be explained

later.

The crucial property of non-interactive protocols that is exploited by this simulation is

that the symbol broadcast in each round of the simulation is always “correct”, in the sense

that even if the transcript received by the communicating party is noisy, this party will

broadcast the same symbol that it would have broadcast in the noiseless protocol, as the

correct symbol does not depend on the received transcript.

Since every message is repeated Θ(log k) times by the simulation, at the end of the

execution, all parties know the correct transcript, except with probability 1
poly(k)

. Moreover,

using the fact that the symbol broadcast by any party is always correct, the event that any

given party does not know the correct transcript is independent of all other parties. As there

are k parties, one can use standard concentration inequalities to conclude that, except with

probability 2−Ω(k), at least 0.99 fraction of the parties have the correct transcript.

Had we known ahead of time of one specific party that is going to have the correct

transcript (call this transcript X), then in order to get all parties to know X, we would just

schedule this party to broadcast C(X) at the end of the simulation, where C is a “good” error

correcting code (say, C has distance and rate of 1/10). Gallager’s hybrid trick allows us to do

something similar without knowing of any party with the correct X: Each party i encodes

its received transcript, Xi, with C. Party 1 broadcasts symbols 1, · · · , 10 of C(X1), party

2 broadcasts symbols 11, · · · , 20 of C(X2), etc. All parties then receive a noisy hybrid of

C(X1), · · · , C(Xk). Since except with probability 2−Ω(k), 0.99 fraction of the parties have the

correct transcript, it holds that except with probability 2−Ω(k), 0.99 fraction of the symbols

broadcast for this hybrid will correspond to the encoding of the correct transcript. In turn,

except with probability 2−Ω(k), 0.9 fraction of the symbols received for this hybrid by any

party will correspond to C(X), the encoding of the correct transcript, and the parties can

all decode correctly.

From low error to super-low error for non-interactive protocols. Given a low error

simulation with Õ(k) rounds, like the above, we can get a super-low error simulation (which is

our goal) with Õ(k2) rounds by repeating the low error simulation O(k) times independently

and taking majority. Indeed, standard concentration inequalities say that a majority of the

repetitions are correct except with probability 2−Ω(k2).

“Reduction” to general protocols. Unfortunately, our low error simulation with Õ(k)

rounds does not extend to general protocols. However, the following observation regarding

the above low error simulation allows us to use it “as-is” to design our target super-low error

simulation for general protocols. The observation is that at the end of an execution of the

above low error simulation, all parties know the symbols broadcast by all other parties. (Of

course, for general protocols, the broadcast symbols may not be the “correct” ones).

8



Equipped with this observation, let us consider what happens when we repeat the low

error simulation to get a super-low error simulation as suggested above: The first out of the

k parties did not need a transcript to compute the symbol it broadcasts. Thus, after the

first execution of the low error protocol, all parties know the symbol of the first party, except

with probability 2−Ω(k). Now, in the next repetition, all parties other than the first one can

continue the simulation conditioned on the high probability event that the first symbol is

correct, and a similar argument would show that, when this event indeed occurs, the second

symbol is correct except with probability 2−Ω(k), and so on.

Interactive coding rewind-if-error mechanism. Thus, if all these high probability

events occur, then after every execution of the low error simulation all parties learn the

symbol of an additional party, and after k executions, the entire transcript of the noiseless

protocol will be known to all10. However, our target failure probability is 2−Ω(k2) � 2−Ω(k)

and to achieve this super-low probability, we implement a simple “rewind-if-error” interactive

coding mechanism inspired by Schulman’s original work [Sch92], that allows a party whose

symbol was received incorrectly in one of the executions to raise a flag during the subsequent

executions11 indicating that an error was made. When this happens, the parties “rewind”

one iteration, erasing one incorrect symbol from their transcript. Otherwise, the parties add

one correct symbol to the transcript.

Overall, one unit of “progress” is made in either case, except with probability 2−Ω(k).

This implies that either the parties will make k units of progress after O(k) executions,

which means that the transcript they output is correct, or there are Ω(k) executions where

progress was not made, an event that can only happen with probability 2−Ω(k2), as desired.

Since the parties make roughly one unit of progress after executing an Õ(k)-round scheme,

the blowup of our scheme is Õ(k), which is shown to be unavoidable by the lower bound.

2.2 Lower Bound: Optimality of Our Scheme

We shall now show that our interactive coding scheme above is essentially optimal by showing

a lower bound of Ω(
√

log n) on the overhead for any interactive coding scheme compiling

protocols of length T = n. We note that this lower bound is much higher than Gallager’s

O(log log n) upper bound for the message exchange function [Gal88], and therefore we at

least need a communication task that is significantly harder.

10We note that we cannot expect to learn (with high probability) the symbol of more than one party in
a single execution of the low error simulation. For example, after the first execution, all parties know the
symbol of the first party with high probability of 1−2−Ω(k). However, this only holds due to the hybrid trick
at the end of this execution, and during the execution, after the first party repeats its symbol Θ(log k) times,
the second party only knows the first party’s symbol with probability 1− 1

poly(k) . Therefore, we cannot count

on the second party to broadcast its correct symbol with high probability.
11We do not have a special symbol for this “flag” in our actual protocol. The party simply broadcasts the

correct symbol, and the remaining parties check if it is the same as what they had in mind.
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The hard communication task. Define m = n200 to be a large enough polynomial

function of n. In our pointer-chasing type communication task, party 1 will have as input a

value f1 ∈ [m], while party i for all 1 < i ≤ n will have function fi : [m]→ [m] mapping the

set [m] to itself. The goal of the parties is to output the value12:

PCn,m = fn(fn−1(· · · (f2(f1)) · · ·)).

Namely, the parties want to output the value of the composed function fn ◦ · · · ◦ f2 on party

1’s input f1. A noiseless protocol over the broadcast channel with alphabet [m] can easily

compute PCn,m in n rounds: In the first round, party 1 will broadcast its input f1. Party 2

can use this value to broadcast f2(f1) in the second round. Party 3 can then broadcast

f3(f2(f1)) in the third round, and so on until party n broadcasts PCn,m in the last round.

Observe that the function PCn,m is much “harder” than the message exchange function in

the sense that the optimal noiseless protocol for PCn,m is fully interactive: When the parties

are computing the identity function, they know exactly what they have to broadcast ahead

of time, whereas if the parties are computing the function PCn,m, only party 1 knows what

it should broadcast ahead of time. All the other parties have as input a function, but only

need its value on one of its m coordinates (and they do not know which). Moreover, as m

is much larger than the total number of communication rounds, it is futile for any party to

broadcast anything about its input unless it has some non-trivial information about which

is the right coordinate13.

A formula for failing a simulation round. Let Π be any protocol in the noisy broadcast

channel that computes the function PCn,m and let T = ‖Π‖. As a randomized protocol is

simply a distribution over deterministic protocols, we can assume Π to be deterministic

without loss of generality. For the rest of this section, fix the inputs for the parties, and thus

also the (noiseless) transcript of Π.

Let T ∈ [m]Tn. We think of T as a (possibly corrupted) transcript for Π (each of the n

parties receives a symbol from [m] in each of the T rounds). We say that T can be obtained

with t errors if an adversary can corrupt t out of the Tn symbols received in Π and ensure

that the transcript of the execution is T . Let r ∈ [T ] and assume that party i broadcasts

in round r of Π. We say that round r fails with t corruptions if there is a transcript T
that can be obtained with at most t corruptions, and conditioned on the transcript that

party i received for the first r− 1 rounds being as in T , each of the m options for the value

PCi−1,m = fi−1(fi−2(· · · (f2(f1)) · · ·)) is (roughly) equally likely. In other words, when party i

12Our lower bound shall hold not only for computing the value PCn,m but also for estimating any single bit
in it with a non-negligible advantage. Thus, our lower bound result also holds for a large family of boolean
functions.

13We mention that this is the only place where we use the fact that the alphabet of the protocol is a
large polynomial. If it were smaller, it is possible that some parties can guess the right coordinate and/or
broadcast the entire function over many rounds. While we do not believe that the function PCn,m is easy for
small m, assuming a large value of m significantly simplifies our already involved analysis.
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rr′ r′′

r − r′′t(r′)

Figure 1: Round r is a round where a party i > 1 broadcasts. The gray rounds are rounds
where party i − 1 broadcasts. Failing any such gray round r′ using t(r′) corruptions, and
then corrupting player i from the next gray round (denoted by r′′) onwards suffices to fail
round r. Thus, t(r) ≤ t(r′) + r − r′′ for all r′. Observe that r′ can be 0, in which case
t(r′) = 0 and can also be the last gray round, in which case r − r′′ = 0.

broadcasts in round r, it has (almost) no information about the coordinate it is supposed to

apply fi to. Finally, let t(r) be the minimum number of corruptions required to fail round r.

(We set t(r) =∞ for all rounds r where party 1 broadcasts, as party 1 always knows f1 and

therefore no amount of corruptions will fail this round.)

We will next show that since the order of turns in Π is pre-specified and since no party

can broadcast anything meaningful in Π till it knows which is the right coordinate, we can

write a “clean” recursive formula for t(r). Let r ∈ [T ] be a round where some party i > 1

broadcasts. Let r′ < r be a round where party i − 1 broadcasts, or 0. Let r′′ be the first

round after r′ where party i − 1 broadcasts, satisfying r′ < r′′ < r (see Fig. 1). (If r′ is

the last round where party i − 1 broadcasts before round r, we set r′′ = r). The main

observation here is that every transcript that fails round r′ (and thus, party i − 1 does not

know its correct coordinate in round r′) and also corrupts all the symbols received by party

i in rounds r′′ through r, also fails round r. Thus, we get the following formula for t(r)14:

t(r) = min
r′
{t(r′) + r − r′′}. (1)

A reduction to an adversarial model. As the symbol received by any party in any

round is corrupted with some constant probability, say 1
2
, by the noisy broadcast channel,

we have by definition of t(·) that, for all rounds r, round r fails with probability at least 2−t(r).

We shall show that if the protocol is short, then, for most of the parties, the last round r

where they broadcast satisfies t(r) ≤ logn
10

. This directly implies that the protocol fails with

probability at least n−0.1 when it is run over the noisy broadcast channel. However, a lower

bound of n−0.1 on the failure probability is rather weak, and we now show how to boost this

all the way to 1− 1
n100 .

Error amplification. In a nutshell, we boost by showing that there are many different

corrupted transcripts that fail round r instead of just one. In more detail, first note that

if t(r) ≤ logn
10

, then there are at most logn
10

parties whose sent symbols were affected by the

noise. Consider now the exact same protocol but with the input of these logn
10

parties fixed.

14Our above argument only shows an upper bound on t(r), but a matching lower bound can also be shown.
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This does not change the length of the protocol and decreases the number of parties only

marginally. Thus, we get that for this protocol with less parties, it is still (roughly) the case

t(r) ≤ logn
10

, implying that there is another disjoint set of (roughly) logn
10

corruptions that

will fail the protocol. Continuing this way, we get that there are at least Θ
(

n
logn

)
disjoint

sets of corruptions that fail the protocol. As the noise of the noisy broadcast channel affects

disjoint sets independently, we can conclude that the protocol fails with probability at least

1− 1
n100 , as claimed.

A lower bound for the adversarial model. We still need to show that if the protocol

is short, then, for most parties i ∈ [n], the last round ri where they broadcast satisfies

t(ri) ≤ logn
10

. We shall show this by showing a stronger form of the contrapositive, namely,

that for all integers t,∆ > 0, if t(ri) > t ·∆ for most parties i ∈ [n], then the length of the

protocol is larger than the minimum of nt
4

and n∆
4

. Plugging t = ∆ =
√

logn
10

shows the lower

bound.

We show this by induction on t. The base case t = 1 is because a protocol needs at

least n rounds to compute PCn,m. For the inductive step, assume that the rounds ri form

an increasing sequence, which can be shown to be without loss of generality. Define r′i to

be the second to last round where party i broadcasts. Assume that t(r) > t · ∆ for most

parties i ∈ [n]. Owing to Eq. (1) applied with r = ri, r
′ = r′i−1 and, by the fact that ri form

an increasing sequence, r′′ = ri−1, it holds that t(r′i−1) + ri − ri−1 > t · ∆ for most parties

i ∈ [n]. This implies that the protocol must satisfy at least one of the following conditions:

1. For at least a quarter of the values of i, we have t(r′i−1) > (t− 1) ·∆.

2. For at least a quarter of the values of i, we have ri − ri−1 > ∆.

As mentioned in Section 1.4, these two cases will allow us to deduce the lower bound

as they imply a tradeoff between rounds and adversarial resilience. More formally, if Item 2

holds, then since the monotonicity of ri implies that the intervals (ri−1, ri] are disjoint, the

protocol is of length at least
∑

i∈[n] ri − ri−1 >
n
4
·∆, and we are done. Assume that Item 1

holds. Observe that Item 1 says that t(r′i−1), the number of corruptions needed to fail the

second to last round where party i− 1 broadcasts, is large for many i’s (this is stronger than

stating the same for the last round where party i−1 broadcasts). Thus, for all these parties,

we can delete the last round where they broadcast from the protocol15, and the induction

hypothesis with t − 1 can be applied to bound the length of the new protocol (i.e., the

protocol after the deletions where r′i−1 is the last time party i− 1 broadcasts). We will get

15This needs to be done carefully, as deleting rounds from the protocol can affect the values of t(·). In
the actual proof, we merely “mark” these rounds and restrict r′ and r′′ in Eq. (1) to be unmarked. We show
that if t(r) > (t − 1) ·∆ for some r before the rounds were marked, then the same holds after the rounds
were marked and also change the induction hypothesis to be that either the number of unmarked rounds is
at least nt

4 or the length of the protocol is at least n
4 ·∆.

Such a careful analysis is also needed while “deleting” players in the error amplification step.
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that the length of the protocol is larger than the minimum of n(t−1)
4

and n
4
· ∆ plus the n

4

deleted rounds, finishing the proof.

3 Preliminaries and Formal Problem Definition

All logarithms in this work are to the base 2, unless specified otherwise. For an integer

n > 0, the notation [n] will denote the set {1, 2, · · · , n}.

3.1 Technical Preliminaries

Throughout this subsection, we use sans-serif letters to denote random variables and reserve

E to denote an arbitrary event. All random variables will be assumed to be discrete and we

shall adopt the convention 0 log 1
0

= 0. All logarithms are taken with base 2.

3.1.1 Entropy

Definition 3.1 (Entropy). The (binary) entropy of X is defined as:

H(X) =
∑

x∈supp(X)

Pr(x) · log
1

Pr(x)
.

The entropy of X conditioned on E is defined as:

H(X | E) =
∑

x∈supp(X)

Pr(x | E) · log
1

Pr(x | E)
.

Definition 3.2 (Conditional Entropy). We define the conditional entropy of X given Y and

E as:

H(X | Y, E) =
∑

y∈supp(Y)

Pr(y | E) ·H(X | Y = y, E).

Henceforth, we shall omit writing the supp(·) when it is clear from context.

Lemma 3.3 (Chain Rule for Entropy). It holds for all X, Y, Z and E that:

H(XY | Z, E) = H(X | Z, E) + H(Y | X,Z, E).

Proof. We have:

H(XY | Z, E) =
∑
z

Pr(z | E) ·H(XY | z, E)

=
∑
z

Pr(z | E) ·
∑
x,y

Pr(x, y | z, E) · log
1

Pr(x, y | z, E)
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=
∑
z

Pr(z | E) ·
∑
x,y

Pr(x, y | z, E) ·
(

log
1

Pr(x | z, E)
+ log

1

Pr(y | x, z, E)

)
= H(X | Z, E) +

∑
x,z

Pr(x, z | E) ·
∑
y

Pr(y | x, z, E) · log
1

Pr(y | x, z, E)

= H(X | Z, E) + H(Y | X,Z, E).

Lemma 3.4 (Conditioning reduces Entropy). It holds for all X, Y, Z and E that:

H(X | Y,Z, E) ≤ H(X | Z, E).

Equality holds if and only if X and Y are independent conditioned on Z, E.

Proof. We have:

H(X | Y,Z, E) =
∑
y,z

Pr(y, z | E) ·H(X | Y = y,Z = z, E)

=
∑
x,y,z

Pr(y, z | E) · Pr(x | y, z, E) · log
1

Pr(x | y, z, E)

=
∑
x,y,z

Pr(x, z | E) · Pr(y | x, z, E) · log
Pr(y, z | E)

Pr(x, z | E) · Pr(y | x, z, E)

≤
∑
x,z

Pr(x, z | E) · log
Pr(z | E)

Pr(x, z | E)
(Concavity of log(·))

=
∑
z

Pr(z | E) ·
∑
x

Pr(x | z, E) · log
1

Pr(x | z, E)

=
∑
z

Pr(z | E) ·H(X | Z = z, E)

= H(X | Z, E).

Lemma 3.5. It holds for all X and E that:

0 ≤ H(X | E) ≤ log(|supp(X)|).

The second inequality is tight if and only if X conditioned on E is the uniform distribution

over supp(X).

Proof. The first inequality is direct. For the second, we have by the concavity of log(·) that:

H(X | E) =
∑
x

Pr(x | E) · log
1

Pr(x | E)
≤ log(|supp(X)|).
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Lemma 3.6. It holds for all X, Y, Z and E that:

H(X | Y,Z, E) ≥ H(X | Z, E)−H(Y | Z, E).

Proof. Using Lemma 3.5 and Lemma 3.3, conclude that H(X | Z, E) ≤ H(XY | Z, E). Use

Lemma 3.3 again to get:

H(X | Z, E) ≤ H(Y | Z, E) + H(X | Y,Z, E).

Rearranging yields the lemma.

3.1.2 KL Divergence

Definition 3.7 (KL Divergence). If µ, ν are two distributions over the same (finite) set Ω,

the Kullback-Leibler (KL) Divergence between µ and ν is defined as:

D(µ || ν) =
∑
ω∈Ω

µ(ω) · log
µ(ω)

ν(ω)
.

For a finite non-empty set S, we shall use U(S) to denote the uniform distribution over

S. We omit S from the notation when it is clear from the context. We use dist(X | E) to

denote the distribution of the random variable X conditioned on the event E.

Lemma 3.8. Let X be a random variable uniformly distributed over a set Ω and S ⊆ Ω be

given:

D(dist(X | X ∈ S) || U) = log
|Ω|
|S|

.

Proof. As X is distributed uniformly, we have:

D(dist(X | X ∈ S) || U) =
∑
x∈S

1

|S|
· log

|Ω|
|S|

= log
|Ω|
|S|

.

Lemma 3.9. It holds for all X and E that:

D(dist(X | E) || U) = log(|supp(X)|)−H(X | E).

Proof. We have:

D(dist(X | E) || U) =
∑

x∈supp(X)

Pr(x | E) · log(Pr(x | E) · |supp(X)|)

=
∑

x∈supp(X)

Pr(x | E) · log Pr(x | E) +
∑

x∈supp(X)

Pr(x | E) · log(|supp(X)|)

= log(|supp(X)|)−H(X | E).
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Lemma 3.10. It holds for all X,Y and E that:

D(dist(XY | E) || U) ≥ D(dist(X | E) || U) + D(dist(Y | E) || U).

Proof. We have:

D(dist(XY | E) || U) = log(|supp(X)|) + log(|supp(Y)|)−H(XY | E) (Lemma 3.9)

≥ log(|supp(X)|) + log(|supp(Y)|)−H(X | E)−H(Y | E)

(Lemma 3.3 and Lemma 3.4)

≥ D(dist(X | E) || U) + D(dist(Y | E) || U). (Lemma 3.9)

3.1.3 Total Variation Distance

Definition 3.11 (Total variation distance). Let µ, ν be two distributions over the same

(finite) set Ω. The total variation distance between µ and ν is defined as:

‖µ− ν‖TV = max
Ω′⊆Ω

∑
ω∈Ω′

µ(ω)− ν(ω).

Fact 3.12 (Pinsker’s inequality). Let µ, ν be two distributions over the same set Ω. It holds

that:

‖µ− ν‖TV ≤
√

1

2
· D(µ || ν).

Corollary 3.13. Let X, E be given and consider a set S ⊆ supp(X). It holds that:∣∣∣∣Pr(X ∈ S | E)− |S|
|supp(X)|

∣∣∣∣ ≤
√

1

2
· D(dist(X | E) || U).

3.2 String Operations

Throughout this section, let Γ be some non-empty alphabet set.

For two strings x, x′ ∈ Γ∗, we denote by x‖x′ their concatenation, and by ‖x‖ the length

of x. Furthermore, if ‖x‖ = ‖x′‖, we denote their Hamming distance by

∆(x, x′) = |{i ∈ [‖x‖] : xi 6= x′i}|.

For a string x ∈ Γ∗ and j ≤ ‖x‖, we denote by x≤j the string x1‖x2‖ · · · ‖xj and by x<j
the string x1‖x2‖ · · · ‖xj−1. For j < j′ ≤ ‖x‖, we denote by x(j,j′] the string xj+1‖xj+2‖ · · ·xj′ .

For two strings x, x′ ∈ Γ∗, we denote by LCP(x, x′) their longest common prefix. More

precisely, let ` = max
(
{0 ≤ j ≤ min(|x|, |x′|) : x≤j = x′≤j}

)
. Then,

LCP(x, x′) = x≤`.
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3.3 Concentration Bounds

We shall use the following version of the Chernoff bound.

Lemma 3.14 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ

2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e−
δµ
3
·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e−
δ2µ

3 , ∀0 ≤ δ ≤ 1.

3.4 Error Correcting Codes

We shall use the following types of codes for our algorithms.

Definition 3.15 (Error-Correcting Codes). Fix δ ∈ (0, 1/2), k,m ∈ Z+, and a non-empty

alphabet Γ. A (δ,Γ, k,m)-error correcting code is a function ECC : Γk → Γmk with the

property that for all z, z′ ∈ Γk, if z 6= z′, then

∆(ECC(z),ECC(z′)) ≥ δmk.

These codes are useful because noisy versions of these codes can still be decoded correctly

with high probability, as will be shown later.

We also consult the literature to show that such codes do exist.

Lemma 3.16. For all Γ with |Γ| ≥ 2 and for all sufficiently large k, there exists a (0.4,Γ, k, 104)-

error correcting code.

Proof. Let f : Γk → Γ104k be a random function. We wish to prove that f is a (0.4,Γ, k, 104)-

error correcting code with non-zero probability. For z, z′ ∈ Γk, let Xz,z′ be the event that

∆(f(z), f(z′)) < 0.4 · 104k. We can then express the event that f is not such a code as

Pr
(
f is not a (0.4,Γ, k, 104)-error correcting code

)
= Pr

⋃
z∈Γk

⋃
z′∈Γk

z′ 6=z

Xz,z′


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≤
∑
z∈Γk

Pr

 ⋃
z′∈Γk

z′ 6=z

Xz,z′


≤
∑
z∈Γk

∑
z′∈Γk

z′ 6=z

Pr(Xz,z′).

We thus have to analyze Pr
(
X z,z′

)
for arbitrary z and z′. Fix z and z′ such that z 6= z′.

For i ∈ [104k], let Zi be the event that fi(z) = fi(z
′). Note that each Zi is independent

for different i, and occurs with probability |Γ|−1. Furthermore, note that Xz,z′ occurs if and

only if at least 0.6 · 104k of the Zi occur.

Now, we will bound the probability Pr(Xz,z′) under two separate cases, depending on |Γ|.

Case 1: |Γ| ≤ 3. Let 1[Zi] be an indicator random variable for Zi. The probability of

Xz,z′ occuring is then bounded as follows:

Pr(Xz,z′) = Pr

(
104k∑
i=1

1[Zi] ≥ 0.6 · 104k

)

= Pr

(
104k∑
i=1

1[Zi] ≥ 0.6|Γ| · |Γ|−1104k

)
≤ e−

(0.6|Γ|−1)2·|Γ|−1104k
2+(0.6|Γ|−1) (Lemma 3.14)

≤ e−
(0.2|Γ|)2·|Γ|−1104k

3 (2 ≤ |Γ| ≤ 3)

= e−
400
3
|Γ|k

≤ |Γ|−100k (ex ≥ x)

≤ |Γ|−50k.

Case 2: |Γ| ≥ 4. Consider Xz,z′ . Note that this occurs if and only if there exists some set

S of size at least 0.6 ·104k such that there Zi is true for all i ∈ S. We then get the following:

Pr(Xz,z′) = Pr

 ⋃
S⊆[104k]
|S|=0.6·104k

⋂
i∈S

Zi


≤

∑
S⊆[104k]
|S|=0.6·104k

Pr

(⋂
i∈S

Zi

)
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=
∑

S⊆[104k]
|S|=0.6·104k

∏
i∈S

Pr(Zi)

=
∑

S⊆[104k]
|S|=0.6·104k

∏
i∈S

|Γ|−1

=
∑

S⊆[104k]
|S|=0.6·104k

|Γ|−0.6·104k

≤
∑

S⊆[104k]

|Γ|−0.6·104k

= 2104k|Γ|−0.6·104k

≤ |Γ|0.5·104k|Γ|−0.6·104k (|Γ| ≥ 4)

= |Γ|−103k

≤ |Γ|−50k.

Thus, in both cases, we see that Pr(Xz,z′) ≤ |Γ|−50k. The rest of the proof continues

identically for both cases. We thus return to our earlier work to get that:

Pr
(
f is not a (0.4,Γ, k, 104)-error correcting code

)
≤
∑
z∈Γk

∑
z′∈Γk

z′ 6=z

Pr(Xz,z′)

≤
∑
z∈Γk

∑
z′∈Γk

z′ 6=z

|Γ|−50k

≤ |Γ|k|Γ|k|Γ|−50k

= |Γ|−25k.

Thus, with probability at least 1−2−25k > 0, for any two distinct z, z′ ∈ Γk, ∆(f(z), f(z′)) ≥
0.4 · 104k. Thus, we see that with non-zero probability, f is a (0.4,Γ, k, 104)-error correcting

code, so there must exist such an error correcting code.

We also state how to decode error correcting codes.

Definition 3.17. Fix δ ∈ (0, 1/2), k,m ∈ Z+, and an alphabet Γ. Given a (δ,Γ, k,m)-error

correcting code ECC : Γk → Γmk, define D-ECC : Γmk → Γk to be the function given by

D-ECC(w) = arg min
z′∈Γk

∆(ECC(z′), w),

with ties broken lexicographically.
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We then claim that this decoding function works correctly in the presence of few corrup-

tions.

Lemma 3.18. Fix δ ∈ (0, 1/2), k,m ∈ Z+, and an alphabet Γ. Let ECC : Γk → Γmk be a

(δ,Γ, k,m)-error correcting code. Then, for any z ∈ Γk and w ∈ Γmk where ∆(ECC(z), w) <
δ
2
mk, D-ECC(w) = z.

Proof. Fix z and w as above. Consider any z′ 6= z. By Definition 3.15, ∆(ECC(z),ECC(z′)) ≥
δmk. Then, we can use a triangle inequality to see that

∆(ECC(z′), w) ≥ ∆(ECC(z),ECC(z′))−∆(ECC(z), w)

> δmk − δ

2
mk

=
δ

2
mk

> ∆(ECC(z), w).

Thus, for any z′ 6= z, ∆(ECC(z′), w) > ∆(ECC(z), w). As such, we see that D-ECC(w) =

arg minz′∈Γk ∆(ECC(z′), w) = z.

3.5 The Noisy Broadcast Model

The noisy broadcast model is defined by a number n > 0 of parties, a noise parameter

ε ∈ [0, 1], and a finite, non-empty alphabet set Γ. When the noise parameter ε = 0, we say

that the broadcast model is noiseless and may drop ε from the notation. A (deterministic)

protocol over the (n, ε,Γ)-noisy broadcast model is defined by a tuple:

Π =
(
T, p,X 1, · · · ,X n,Y ,M1, · · · ,MT , out

)
, (2)

where: (1) T = ‖Π‖ > 0 is a parameter denoting the length of the protocol, (2) p : [T ]→ [n]

is a function that determines which party speaks when (i.e., for all j ∈ [T ], party p(j) is the

unique party speaking in round j), (3) X i for all i ∈ [n] is the input set of party i, (4) Y
is the set of possible outputs of the protocol, (5) For all j ∈ [T ], Mj : X p(j) × Γj−1 → Γ

is a function that computes the message sent in round j based on the input of the party

p(j) speaking in round j and the transcript ∈ Γj−1 received by party p(j) in the first j − 1

rounds, (6) out : ΓT → Y is a function that computes the output from the transcript of

the protocol. We suppress items on the right hand side of Eq. (2) when they are clear from

context. We define a randomized protocol to be a distribution over deterministic protocols.

Execution of a protocol. A protocol Π as defined above starts with all parties i ∈ [n]

having an input xi ∈ X i and proceeds in T rounds, maintaining the invariant that before

round j ∈ [T ], all parties i ∈ [n] have a transcript Πi
<j ∈ Γj−1. For all j ∈ [T ], in round
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j, party p(j) sends the symbol Πj = Mj

(
xp(j),Π

p(j)
<j

)
. All parties i ∈ [n] then receive an

independent noisy copy Πi
j of Πj that is equal to Πj with probability 1− ε and a uniformly

random symbol from Γ with probability ε. They append Πi
j to Πi

<j to obtain a transcript

Πi
≤j = Πi

<j+1 and continue executing the protocol. After T rounds are over, party 1 outputs

out(Π1
≤T ) ∈ Y16.

Observe that the execution of the protocol is determined by the inputsX = (x1, x2, · · · , xn)

and the noise in the channel. For i ∈ [n] and j ∈ [T ], we use Πi
j(X) (respectively, Πj(X)

and Π(X)) to denote the random variable (over the randomness in the channel noise) cor-

responding to the value of Πi
j (resp, Πj and the output) in the execution of the proto-

col Π when the inputs are given by X. We define Πi
≤j(X) =

(
Πi

1(X), · · · ,Πi
j(X)

)
and

Π≤j(X) = (Π1(X), · · · ,Πj(X)), and Πi
<j(X),Π<j(X) are defined similarly.

Channel noise. We now define some helpful notation regarding the noise in the channel.

Consider an execution of a protocol Π as above. For a party i ∈ [n] in round j ∈ [T ], we

denote the noise witnessed by party i in round j by N i
j . Recall that party i can either receive

the symbol sent (by party p(j)) in round j correctly, and event we denote by N i
j = ?, or can

receive a uniformly random symbol from Γ, when we set N i
j to be the symbol received. Using

this notation, we get that
{
N i
j

}
i∈[n],j∈[T ]

are mutually independent and for all i ∈ [n], j ∈ [T ]:

N i
j =

{
?, with probability 1− ε
γ, ∀γ ∈ Γ with probability ε

|Γ|

(3)

We shall use N to denote the tuple N =
(
N i
j

)
i∈[n],j∈[T ]

.

4 The Upper Bound

In this section, we prove the upper bound part of our results. We begin by giving the formal

statement of Theorem 1.1. Most importantly, we prove a stronger result than stated earlier,

getting stronger bounds on the length of the resulting protocol.

We will prove this statement for all deterministic protocols. As a randomized protocol is

a distribution over deterministic protocols, this thus proves it for all randomized protocols

as well. Without loss of generality, we also assume that the output of any noiseless protocol

is simply the transcript that was observed in that protocol.

Theorem 4.1. Let n > 0, ε ∈ [0, 1/2], and Γ be an non-empty set. Let Π be a protocol over

the (n,Γ)-noisy broadcast model of length ‖Π‖ = T . Then, there exists a protocol Π′ over the

16Having only party 1 output (instead of all parties outputting) is without loss of generality, as party 1
can simply encode its output using an error correcting code and broadcast the encoding. This would allow,
except with small probability, all the parties who broadcast at least once in the protocol to know the output
correctly.
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(n, ε,Γ)-noisy broadcast model such that ‖Π′‖ ≤ T · Õ
(
min

{√
log T , n

})
and for all inputs

X ∈ X 1 × · · · X n, we have:

Pr(Π′(X) 6= Π(X)) ≤ 1/T 2,

where the probability is over the noise in the channel.

The crux of this theorem is captured within the following smaller result, which we prove

first. We defer proving Theorem 4.1 until later (in Section 4.1).

Theorem 4.2. Let n ≥ 3k > 0 be large enough and Γ be an arbitrary non-empty set. Let

Π be a protocol over the (n,Γ)-noisy broadcast model of length ‖Π‖ = k. For all constant

ε ∈ [0, 1/2], there exists a protocol Π′ over (n, ε,Γ)-noisy broadcast model such that ‖Π′‖ ≤
1025 · k2 log k and for all inputs X ∈ X 1 × · · · X n, we have:

Pr(Π′(X) 6= Π(X)) ≤ 2−k
2

,

where the probability is over the noise in the channel.

Proof. We assume |Γ| > 1 without loss of generality. We shall define the protocol Π′ over the

(n, 1
10
,Γ)-noisy broadcast model with ‖Π′‖ ≤ 1020 · k2 log k. This then implies Theorem 4.2

due to standard noise reduction techniques. Our protocol shall use a (0.4,Γ, k, 104)-error

correcting code ECC, as given by Lemma 3.16.

As ‖Π‖ = k ≤ n/3, there are at least 2k parties that do not participate in Π. Out of

these non-participating parties, we select one leader Ld and k repeaters, numbered from 1

to k17. We assume without loss of generality that Ld is the party that outputs in Π.

We describe our protocol formally in Algorithm 1 that uses Algorithm 2 as a subroutine.

The claim about ‖Π′‖ is straightforward from these definitions, and we focus on showing

that Π′ indeed simulates Π.

Fix X ∈ X 1 × · · · X n. For a variable var in Algorithms 1 and 2 and t ∈ [105k], we shall

use var(t) to denote the value of var at the end of iteration t. We shall use t = 0 to denote

the values at the start of the protocol.

For every t ∈ [105k], we define the following events for the purposes of our analysis:

• For r ∈ [k], let Ersh-Rpt(t) be the event that during the call to Share in iteration t,

there exists some j ∈ [k] such that at least 1/2 of the broadcasts from player p(j) to

repeater r at Line 14 are affected by noise.

• We define Esh-Rpt(t) to be the event that at least 0.05k of the k different Ersh-Rpt(t)

occurred.

• We define Esh-Ld(t) to be the event that during the call to Share in iteration t, at least

0.15 fraction of the broadcasts from the repeaters to the leader at Line 15 are affected

by noise.

17These repeaters do not have to be distinct from the players, but the algorithm becomes clearer when
they are explicitly listed as distinct.
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Algorithm 1 The protocol Π′.

Input: All parties i ∈ [n] have an input xi ∈ X i.
Output: Ld outputs a transcript πLd ∈ Γk.

1: Ld initializes πLd as the empty string.
2: for t ∈ [105k] do
3: Ld broadcasts ECC(πLd) (after trimming or padding πLd to be in Γk). For i ∈ [n], let

ẼCC
i

be the message received by party i.

4: All parties i ∈ [n] set π̃i ← D-ECC
(

ẼCC
i
)

.

5: For j ∈ [k], party p(j) sets zj ←Mj

(
xp(j), π̃

p(j)
<j

)
.

6: The parties run Share(z1, · · · , zk). Let z̃Ld ←
{
z̃Ldj
}
j∈[k]

denote Ld’s output.

7: if
∥∥LCP

(
πLd, z̃Ld

)∥∥ ≥ min
(
k,
∥∥πLd

∥∥) then . The remainder is executed by Ld.
8: Set πLd ← πLd‖z̃Ld‖πLd‖+1

. Let z̃Ld‖πLd‖+1
be an arbitrary symbol in Γ if

∥∥πLd
∥∥ ≥ k.

9: else
10: Set πLd ← πLd

<‖πLd‖.
11: end if
12: end for
13: Ld outputs πLd trimmed (or padded) to be in Γk.

Algorithm 2 The subroutine Share(z1, · · · , zk).
Input: For all j ∈ [k], party p(j) has a symbol zj ∈ Γ.
Output: For all j ∈ [k], Ld outputs z̃Ldj ∈ Γ.
14: For all j ∈ [k], party p(j) broadcasts zj for 200 log k rounds. Repeaters r ∈ [k] decode

by majority to get z̃rj .
15: Repeaters r ∈ [k] set z̃r ← z̃r1‖ · · · ‖z̃rk and broadcast ECC(104(r−1),104r](z̃

r). Let

ẼCC(104(r−1),104r] be the symbols received by Ld.

16: Leader sets ẼCC ← ẼCC(0,104]‖ẼCC(104,104·2]‖ · · · ‖ẼCC(104(k−1),104k] and outputs

D-ECC
(

ẼCC
)

.
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• We define Esh(t) as Esh-Rpt(t) ∪ Esh-Ld(t).

• We define Eecc(t) as the event that there exists some j ∈ [k] such that at least 0.2

fraction of the broadcasts from the leader to player p(j) at Line 3 in iteration t are

affected by noise.

• Finally, we define E(t) as Esh(t) ∪ Eecc(t).

We now begin to analyse these events. First, note that for all t ∈ [105k], Esh(t) depends

entirely on the noise in the channel during iteration t. In particular, this means that Esh(t)
and Esh(t′) are independent for all t 6= t′. Furthermore:

Lemma 4.3. For all t ∈ [105k], we have:

Pr(Esh(t)) ≤ 2−5k.

Proof. Fix t ∈ [105k]. For the rest of the proof, all variables are taken to have their values

during the execution in round t.

For all j ∈ [k], we let Ersh-Rpt,j be the event that at least half the broadcasts from player

p(j) at Line 14 are affected by noise for repeater r. Thus, Ersh-Rpt = Ersh-Rpt,1 ∪ · · · ∪ Ersh-Rpt,k.

Note that because this event only depends on the noise while player p(j) broadcasts, these

Ersh-Rpt,j are distinct.

Fix r ∈ [k] and j ∈ [k]. For i ∈ [200 log k], let N r
j,i be an indicator random variable for

if the ith broadcast at Line 14 from player p(j) is affected by noise for repeater r. Note

that Ersh-Rpt,j is exactly the event that
∑200 log k

i=1 N r
j,i ≥ 100 log k. Furthermore, note that

the distributions of N r
j,i are independent, and that E

[
N r
j,i

]
= 1/10. This thus bounds the

probability of Ersh-Rpt,j by

Pr
(
Ersh-Rpt,j

)
= Pr

(
200 log k∑
i=1

N r
j,i ≥ 100 log k

)

= Pr

(
200 log k∑
i=1

N r
j,i ≥ (1 + 4) · 0.1 · 200 log k

)
≤ e−

−4·20 log k
3 (Lemma 3.14)

≤ k−26.

We can then apply a simple union bound to see that Pr
(
Ersh-Rpt

)
≤ k · k−26 = k−25.

For r ∈ [k], let 1
[
Ersh-Rpt

]
be an indicator random variable for Ersh-Rpt. Note that Esh-Rpt is

then exactly the event that
∑k

r=1 1
[
Ersh-Rpt

]
≥ 0.05k. Thus, we can analyse the probability

of this event, by considering all possible sets S ⊆ [r] of size 0.05k. We can thus bound the
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probability of Ersh-Rpt by

Pr(Esh-Rpt) = Pr

(
k∑
r=1

1
[
Ersh-Rpt

]
≥ 0.05k

)

= Pr

 ⋃
S⊆[k]
|S|=0.05k

⋂
r∈S

Ersh-Rpt


≤

∑
S⊆[k]
|S|=0.05k

Pr

(⋂
r∈S

Ersh-Rpt

)
(union bound)

=
∑
S⊆[k]
|S|=0.05k

∏
r∈S

Pr
(
Ersh-Rpt

)
≤

∑
S⊆[k]
|S|=0.05k

∏
r∈S

k−25

=
∑
S⊆[k]

|S|=0.05·k

k−25·0.05k

=
∑
S⊆[k]

|S|=0.05·k

k−1.25k

≤
∑
S⊆[k]

k−1.25k

= 2kk−1.25·k

≤ 2−6k.

Now, let us analyse Esh-Ld. For i ∈ [104k], let N ′i be the an indicator random variable for

the event that the ith broadcast at Line 15 is affected by noise for the leader. Note that Esh-Ld

is exactly the event that
∑104k

i=1 N ′i ≥ 0.15 · 104k. Furthermore, note that the distributions of

N ′i are independent, and that E[N ′i ] = 1/10. We can thus analyse the probability of Esh-Ld:

This thus bounds the probability of Esh-Ld by

Pr(Esh-Ld) = Pr

(
104k∑
i=1

N ′i ≥ 0.15 · 104k

)

= Pr

(
104k∑
i=1

N ′i ≥ (1 + 0.5) · 0.1 · 104k

)

≤ e−
1
2 ·

1
10 104k

3 (Lemma 3.14)
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= e−
103

6
k

≤ 2−6k.

Finally, we can use a simple union bound to show that Pr(Esh) ≤ 2−6k + 2−6k ≤ 2−5k.

Similarly, note that for all t ∈ [105k], Eecc(t) depends entirely on the noise in the channel

during iteration t. In particular, this means that Esh(t) and Esh(t′) are independent for all

t 6= t′. Furthermore:

Lemma 4.4. For all t ∈ [105k], we have:

Pr(Eecc(t)) ≤ 2−5k.

Proof. Fix t ∈ [105k]. For the rest of the proof, all variables are taken to have their values

during the execution in round t.

For j ∈ [n], let E jecc be the event that at least 0.2 · 104k of the broadcasts at Line 3 are

affected by noise for player p(j). Note that Eecc = E1
ecc ∪ · · · ∪ Ekecc.

For all j ∈ [n] and i ∈ [104k], let N j
i be an indicator random variable for if player p(j) is

affected by noise during the ith broadcast at Line 3. Now that E jecc is then exactly the event

that
∑104k

i=1 N j
i ≥ 0.2 · 104k. Furthermore, note that the distributions of N j

i are independent,

and that E
[
N j
i

]
= 1/10. This thus bounds the probability of E jecc by

Pr
(
E jecc
)

= Pr

(
104k∑
i=1

N j
i ≥ 0.2 · 104k

)

= Pr

(
104k∑
i=1

N j
i ≥ (1 + 1) · 0.1 · 104k

)
≤ e−

0.1·104k
3

≤ 2−6k.

We can then apply a simple union bound to see that Pr(Eecc) ≤ k · 2−6k ≤ 2−5k.

Combining the results of Lemma 4.3 and Lemma 4.4 using a simple union bound, we

thus see that for each t ∈ [105k], Pr(E(t)) ≤ 2−5k + 2−5k ≤ 2−4k. Furthermore, as E(t) only

depends on the noise in the channel during iteration t, E(t) and E(t′) are independent for

t 6= t′. We can then apply this to determine that:

Lemma 4.5. It holds that:

Pr
(∣∣{t ∈ [105k

]
: E(t)

}∣∣ ≥ k
)
≤ 2−k

2

.

Proof. Consider all possible sets of size S ⊆ [105k] of size k. Then |{t ∈ [105k] : E(t)}| ≥ k if

and only if there is some set S such that E(t) holds for all t ∈ S. Thus, we can use a union
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bound to analyse the probability of this event:

Pr
(∣∣{t ∈ [105k

]
: E(t)

}∣∣ ≥ k
)

= Pr

 ⋃
S⊆[105k]
|S|=k

⋂
t∈S

E(t)


≤

∑
S⊆[105k]
|S|=k

Pr

(⋂
t∈S

E(t)

)
(union bound)

=
∑

S⊆[105k]
|S|=k

∏
t∈S

Pr(E(t))

≤
∑

S⊆[105k]
|S|=k

∏
t∈S

2−4k

=
∑

S⊆[105k]
|S|=k

(
2−4k

)k
≤

∑
S⊆[105k]

2−4k2

= 2105k2−4k2

≤ 2−k
2

.

Now, let us show that E(t) represents an iteration failing, such that if E(t) does not occur,

then our algorithms transmit information successfully.

Lemma 4.6. For t ∈ [105k], if E(t) does not occur, then:

1. For all j ∈ [k], π̃p(j)(t) = πLd(t− 1).

2. For all j ∈ [k], z̃Ldj (t) = zj(t).

Proof. Fix t ∈ [105k]. For the rest of the proof, all variables are taken to have their values

during the execution in round t, with the exception of πLd, which is used to denote πLd(t−1).

Suppose that E = Esh∪Eecc does not occur. We then know that Esh and Eecc do not occur.

We then know that the following things happen:

1. As Eecc does not occur, for each j ∈ [k], less than 0.2 · 104k of the broadcasts by the

leader made at Line 3 are corrupted by noise for player p(j). As such,

∆
(

ẼCC
i
,ECC

(
πLd
))

< 0.2 · 104k.
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Thus, by Lemma 3.18 and because ECC is a (0.4,Γ, k, 104)-error correcting code,

π̃i = D-ECC
(

ẼCC
i
)

= πLd.

2. As Esh does not occur, we know that Esh-Ld and Esh-Rpt do not occur. The latter then

implies that Ersh-Rpt occurs for less than 0.05k of the r ∈ [k].

Let z = z1‖ · · · ‖zk. Note that for each repeater r ∈ [k] such that Ersh-Rpt does not occur,

for every j ∈ [k], we get that z̃rj = zj, as the majority of the broadcasts from player

p(j) to repeater r are not affected by noise. Thus, for all such r, z̃r = z. And as a

result, ECC(104(r−1),104r](z̃
r) = ECC(104(r−1),104r](z).

Let ECC′ = ECC(0,104](z̃
1)‖ECC(104,104·2(z̃2)‖ · · · ‖ECC(104(k−1),104k]

(
z̃k
)
.

Thus, as Eksh-Rpt occurs for less than 0.05k of the r ∈ [k], we thus get that

∆(ECC′,ECC(z)) < 0.05 · 104k.

Now, also note that Esh-Ld does not occur. Thus, we know that

∆
(

ECC′, ẼCC
)
< 0.15 · 104k.

Then, by applying a triangle inequality, we see that

∆
(

ECC(z), ẼCC
)
≤ ∆(ECC(z),ECC′) + ∆

(
ECC′, ẼCC

)
< 0.05 · 104k + 0.15 · 104k

= 0.2 · 104k.

Then, by applying Lemma 3.18, we get that z̃Ld = D-ECC
(

ẼCC
)

= z.

Now, we define a potential function Φ(·) by defining Φ(0) = 0 and, for t ∈ [105k],

Φ(t) =

{∥∥πLd(t)
∥∥, if

∥∥LCP
(
πLd(t),Π(X)

)∥∥ = k

2 ·
∥∥LCP

(
πLd(t),Π(X)

)∥∥− ∥∥πLd(t)
∥∥, if

∥∥LCP
(
πLd(t),Π(X)

)∥∥ < k
. (4)

To get the intuition behind the definition of Φ, imagine that the correct transcript Π(X)

and the simulated transcript πLd(t) match after the first k symbols. Then, one can observe

that the potential Φ corresponds to the length of the correct prefix of the simulated transcript

minus the length of the incorrect part after the prefix, since

2·
∥∥LCP

(
πLd(t),Π(X)

)∥∥−∥∥πLd(t)
∥∥ =

∥∥LCP
(
πLd(t),Π(X)

)∥∥−(∥∥πLd(t)
∥∥− ∥∥LCP

(
πLd(t),Π(X)

)∥∥).
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Moreover, as the leader only appends or removes one symbol from the end of πLd in each

iteration, we get that the value of Φ can change by at most one in each iteration. We shall

use this later to get Corollary 4.8 from Lemma 4.7.

Lemma 4.7. For all t ∈ [105k] where E(t) does not occur, we have:

Φ(t) ≥ Φ(t− 1) + 1.

Proof. Fix some t ∈ [105k], and suppose that E(t) does not occur. Thus, by Lemma 4.6.

π̃p(j)(t) = πLd(t− 1) for all j ∈ [k], and z̃Ldj (t) = zj(t) for all j ∈ [k].

We will consider two cases, depending which of the two cases of Eq. (4) we are in.

Case 1:
∥∥LCP

(
πLd(t− 1),Π(X)

)∥∥ = k: In this case, Φ(t−1) =
∥∥πLd(t− 1)

∥∥. Furthermore,

πLd
≤k(t− 1) = Π(X), as ‖Π(X)‖ = k.

Thus, at Line 5, for all j ∈ [k], every party p(j) sets zj(t) as

zj(t) = Mj

(
xp(j), π̃

p(j)
<j (t)

)
= Mj

(
xp(j), πLd

<j(t− 1)
)

= Mj

(
xp(j),Π<j(X)

)
= Πj(X)

= πLd
j (t− 1).

Then, the leader will receive z̃Ldj (t) = zj(t) = πLd
j (t − 1). Therefore, we get that∥∥LCP

(
πLd(t− 1), z̃Ld(t)

)∥∥ = k, so the leader will extends πLd in Line 8 by some arbitrary

symbol. Therefore,
∥∥LCP

(
πLd(t),Π(X)

)∥∥ = k as well, but
∥∥πLd(t)

∥∥ = ‖πLd(t−1)‖+1. Thus,

Φ(t) = Φ(t− 1) + 1.

Case 2:
∥∥LCP

(
πLd(t− 1),Π(X)

)∥∥ < k: Then, Φ(t − 1) = 2 ·
∥∥LCP(πLd(t− 1),Π(X)

∥∥ −∥∥πLd(t− 1)
∥∥. We will split this case into two further sub-cases, based on if LCP

(
πLd(t− 1),Π(X)

)
=

πLd(t− 1) or not.

Case 2a: LCP
(
πLd(t− 1),Π(X)

)
= πLd(t− 1): In this case, πLd(t − 1) = Π(X)≤‖πLd(t−1)‖.

Thus,

Φ(t− 1) = 2 ·
∥∥LCP

(
πLd(t− 1),Π(X)

)∥∥− ∥∥πLd(t− 1)
∥∥

= 2 ·
∥∥πLd(t− 1)

∥∥− ∥∥πLd(t− 1)
∥∥

=
∥∥πLd(t− 1)

∥∥.
We can then repeat the analysis from Case 1 to see that for j ∈

[∥∥πLd(t− 1)
∥∥+ 1

]
,

z̃Ldj (t) = zj(t) = Πj(X). Furthermore, for j ≤
∥∥πLd(t− 1)

∥∥, we also have that Πj(X) =

πLd
j (t− 1), so LCP

(
πLd(t− 1), z̃Ld(t)

)
= πLd(t− 1).
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Thus, we end up extending πLd in Line 8 by z̃Ld‖πLd(t−1)‖+1
(t) = Π‖πLd(t−1)‖+1(X). As

such, πLd(t) becomes equal to Π≤‖πLd(t−1)‖+1(X) = Π≤‖πLd(t)‖(X). Thus,

Φ(t) =
∥∥πLd(t)

∥∥ =
∥∥πLd(t− 1)

∥∥+ 1 = Φ(t− 1) + 1.

Case 2b: LCP
(
πLd(t− 1),Π(X)

)
6= πLd(t− 1): In this case, Φ(t−1) = 2·

∥∥LCP(πLd(t− 1),Π(X)
∥∥−∥∥πLd(t− 1)

∥∥ and there exists some j ∈
[
min

(∥∥πLd(t− 1)
∥∥, k)] such that πLd

j (t− 1) 6=
Πj(X). Let j′ be the smallest such j. We can now analyse the behaviour of party p(j′)

at Line 5 to see that

zj
′
(t) = Mj′

(
xp(j′), π̃

p(j′)
<j′ (t)

)
= Mj′

(
xp(j′), πLd

<j′(t− 1)
)

= Mj′

(
xp(j′),Π<j′(X)

)
= Πj′(X).

Furthemore, as established before, z̃Ldj′ (t) = zj
′
(t) = Πj′(X). Thus, z̃Ldj′ (t) 6= πLd

j′ (t− 1).

As such,
∥∥LCP

(
πLd(t− 1), z̃Ld(t)

)∥∥ < j′ ≤ min
(∥∥πLd(t− 1)

∥∥, k), so the leader will

shrink πLd in Line 10.

Thus, πLd(t) becomes πLd(t − 1) with the last symbol removed. Thus,
∥∥πLd(t)

∥∥ =∥∥πLd(t− 1)
∥∥− 1. As a result, note that LCP

(
πLd(t),Π(X)

)
= LCP

(
πLd(t− 1),Π(X)

)
,

as the last symbol in πLd(t− 1) is not in the prefix. Thus,
∥∥LCP

(
πLd(t),Π(X)

)∥∥ < k,

and we can compute Φ(t) as

Φ(t) = 2 ·
∥∥LCP

(
πLd(t),Π(X)

)∥∥− ∥∥πLd(t)
∥∥

= 2 ·
∥∥LCP

(
πLd(t),Π(X)

)∥∥− (
∥∥πLd(t− 1)

∥∥− 1)

= 2 ·
∥∥LCP

(
πLd(t),Π(X)

)∥∥− ∥∥πLd(t− 1)
∥∥+ 1

= 2 ·
∥∥LCP

(
πLd(t− 1),Π(X)

)∥∥− ∥∥πLd(t− 1)
∥∥+ 1

= Φ(t− 1) + 1.

Thus, in all possible cases, Φ(t) = Φ(t− 1) + 1.

Corollary 4.8. Whenever |{t ∈ [105k] : E(t)}| < k, we have Φ(105k) > 104k.

Proof. Whenever |{t ∈ [105k] : E(t)}| < k, there are at least (105−1)k rounds such that E(t)

does not occur. By Lemma 4.7, we thus get that Φ(t) increases by at least one in each of

those rounds. Furthermore, recall that in the remaining less than k rounds, Φ(t) decreases

by at most one.
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Thus, over the span of the algorithm, we get that

Φ(105k) ≥
(
105 − 1

)
k − k ≥ 104k.

Thus, conditioned on |{t ∈ [105k] : E(t)}| < k, using Corollary 4.8 and Eq. (4), we get that∥∥πLd(105k)
∥∥ ≥ 104k and

∥∥LCP
(
πLd(105k),Π(X)

)∥∥ = k, so πLd
≤k(105k) = Π(X). Therefore, as

the leader finishes by outputting πLd
≤k in Line 13, we get that Π′(X) = Π(X).

Finally, Lemma 4.5 gives us that

Pr(Π′(X) 6= Π(X)) ≤ Pr
(∣∣{t ∈ [105k

]
: E(t)

}∣∣ ≥ k
)

≤ 2−k
2

,

which concludes the proof of Theorem 4.2.

4.1 Proof of Theorem 4.1

We now proceed to prove Theorem 4.1.

Fix some T . Recall that we want our simulation scheme to use T · Õ
(
min

(√
log T , n

))
rounds. When

√
log T ≤ n, this reduces to T · Õ

(√
log T

)
. We show how to achieve this

result in Section 4.1.1. If
√

log T ≥ n, however, we wish to find a simulation scheme that

takes T · Õ(n) communication. We show such a simulation scheme that works for all T

(including
√

log T ≤ n) in Section 4.1.2. Combining these two schemes finishes the proof.

4.1.1 “Short” Protocols (2
√

log T ≤ n/3)

Consider the case where 2
√

log T ≤ n/3. Then, setting k = 2
√

log T means that k satisfies

the conditions of Theorem 4.2.18 Without loss of generality, let k divide T .

We can then split our T rounds into chunks of size k. From there, we will simply run

Algorithm 1 on k steps of Π at a time. The leader will then pad the resulting πLd to have

length k2, and encode it using a (0.4,Γ, k2, 104)-error correcting code. All players then decode

this code, and use that to arrive at a conclusion for what the first k messages in Π(X) are.

We can then simulate the next chunk using Algorithm 1. We can repeat this for all T
k

such

chunks, and then concatenate all the resulting transcripts so that every player has a guess

for Π(X).

Note that this algorithm requires T
k

rounds of communication with 1025k2 log k + 104k2

communication per round. This gives a total communication of Tk ·O(log k) = T Õ(
√

log T ),

as desired.

18 We require k = 2
√

log T ≤ n/3 to hold in Theorem 4.2 because Algorithm 2 requires us to have k
different repeaters.
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Furthermore, note that the leader for each chunk correctly computes the transcript for

Π(X) in that chunk except with probability 2−k
2

= 2−4 log T = T−4. Furthermore, the

probability of a given player incorrectly decoding πLd from the error correcting code in a

given chunk is at most e−103k2/3 = T−4.

Thus, by taking a union bound over the at most T players who speak and over our

T/k chunks, we get that all players know the correct transcript for each chunk except with

probability at most T−2.

Thus, our players can accurately compute Π(X) except with probability at most T−2,

and the desired result is shown.

4.1.2 “Long” Protocols

Now, we show a way of simulating any protocol of a length T using T · Õ(n) rounds. At a

high level, we will use the simulation scheme in [EKS18] to first simulate the protocol using

an adaptive protocol of length O(T ), and then simulate that adaptive protocol by splitting

up each adaptive round into O(n log n) non-adaptive rounds.

Adaptive simulation. We begin by refering to the main result of [EKS18], which says

that any n-party protocol Π taking T rounds can be simulated in a noise-resilient way in

O(T ) rounds by an adaptive protocol: One where multiple parties may speak in a single

round, and where a party can decide whether to speak in a given round depending on the

transcript it heard so far. Our strategy will then be to simulate this adaptive protocol in a

non-adaptive setting.

Simulating adaptive protocols. Consider a single round of the adaptive protocol, which

might have any number of players speaking. We can replace this by n ·O(log n) non-adaptive

rounds, with each player speaking for O(log n) rounds. When a player wishes to send a

symbol z ∈ Γ in the adaptive round, that player will send z O(log n) times in the non-

adaptive rounds. This allows the other players to accurately decode each player’s message

except with polynomially small probability.

Simulating silences. However, players might also elect to stay silent in an adaptive round,

which they communicate by sending a message of length O(log n) which is very different from

the encoding of any symbol in Γ. As each symbol in Γ is encoded via repeating that symbol

O(log n) times, when a player wishes to communicate a silence, that player needs to send a

string with many of its coordinates being different (e.g. 123 . . . 123 . . .).

Note that any two encoded messages a player might choose to send will differ in at least

half of the O(log n) positions. Thus, decoding each message via least Hamming distance

results in a given player decoding another player’s intent (whether that is a symbol or a

silence) correctly, except with inverse polynomial probability.
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Thus, as each player can correctly decode every other player’s message except with in-

verse polynomial probability, the players can simulate whether any collisions occurred, thus

allowing the players to simulate any adaptive round with the desired small error probability.

5 Lower Bound

Given integers n,m > 0, the n-depth, m-width pointer chasing function PCn,m takes as input

an integer19 f1 ∈ [m] and n− 1 functions f2, f3, · · · , fn : [m]→ [m], and outputs the value:

PCn,m(f1, · · · , fn) = fn(fn−1(· · · (f2(f1)) · · ·)). (5)

We shall use F to denote the tuple (f1, · · · , fn), F to denote the uniform distribution over

all F , and F = (f1, · · · , fn) to denote a random variable sampled from F . We drop n,m

from the subscript when they are clear from context. Let LSB(·) be the function that takes

an integer and outputs the least significant bit in the binary representation of that integer,

i.e., the protocol outputs 1 if the integer is odd and 0 if it is even20. Observe that, for any

n,m, the function LSB(PCn,m) can be computed by an n-round protocol over the noiseless

broadcast channel with n parties and alphabet [m], when the input to player i, for all i ∈ [n],

is the function fi. For our lower bound, we show that such a protocol requires Ω
(
n ·
√

log n
)

rounds in the noisy case, even if it is only required to estimate LSB(PCn,m) with a small

advantage over random guessing.

In more details, we show that, when m = poly(n), any protocol over the n-party noisy

broadcast channel with alphabet Γ = [m] and noise parameter21 ε = 1
2

requires at least

Ω
(
n ·
√

log n
)

rounds to estimate LSB(PCn,m(·)) with advantage 1
n

when the input to player

i, for all i ∈ [n], is the function fi. Formally, we show that:

Theorem 5.1. Let n > 0 be large enough and set m = 2·n200 and ε = 1
2
. For any randomized

protocol Π over the (n, ε, [m])-noisy broadcast model satisfying ‖Π‖ < n·
√

logn
105 , we have:

Pr
F∼F ,N

(Π(F) = LSB(PC(F))) ≤ 1

2
+

1

n
,

where N is the random variable corresponding to the noise in the channel22.

We prove Theorem 5.1 in the rest of this section. Let n,m, ε,Π be fixed as in the theorem

statement. As a randomized protocol is simply a distribution over deterministic protocols,

we can assume Π to be deterministic without loss of generality. By adding n+1 extra rounds,

we can also assume without loss of generality that p(1) = 1 and p(T + 1− i) = n+ 1− i for

19We sometimes treat this integer as a function from the singleton set {0} to the set [m].
20The choice of the function LSB(·) is made for concreteness. Any function that is “balanced” would be

enough for our proof.
21Our proof works for any constant ε but we fix it to be 1

2 for simplicity.
22To simplify notation, we henceforth use Pr(·) instead of PrF∼F,N(·).
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all i ∈ [n]. We also define the function p−1(·) to be the “inverse” of p, i.e., for i ∈ [n], we

have:

p−1(i) = {j ∈ [T ] | p(j) = i}.

5.1 Basic Definitions

Throughout, we use P ⊂ [n] to denote a subset of players and R ⊆ [T ] to denote a subset

of rounds. We reserve P = |P| to denote the size of P and let P(1) < P(2) < · · · < P(P )

be the elements of P .

Definition 5.2. We say a pair (P ,R) is nice if p(r) ∈ P for all r ∈ R.

Consider a nice pair (P ,R) and for r ∈ R and p ∈ [P ], define the set:

BP,R,p,r = {0} ∪ {r′ ∈ R | r′ < r ∧ p(r′) = P(p)}. (6)

We reserve BP,R,p,r = |BP,R,p,r| to denote the size of BP,R,p,r and let 0 = BP,R,p,r(1) <

BP,R,p,r(2) < · · · < BP,R,p,r(BP,R,p,r) be the elements of BP,R,p,r. Observe that all these

elements are strictly less than r. We adopt the convention BP,R,p,r(BP,R,p,r + 1) = r and

shall drop some of the subscripts P ,R, p, r when they are clear from context. Next, we

define:

Definition 5.3 (Crashing Sets). Consider a nice pair (P ,R) and inductively define, for

r ∈ {0} ∪R, a family of crashing sets CrashP,R(r) as follows: Define CrashP,R(0) to be the

family of all subsets of P × [T ]. For r > 0 such that p(r) = P(1), define CrashP,R(r) = ∅
to be the empty family. Finally, for r > 0 such that p(r) = P(p) for some p > 1, define

CrashP,R(r) to be the family containing all sets C ∈ P × [T ] for which there exists a value

b ∈ [Bp−1,r] and a set C ′ ∈ CrashP,R(Bp−1,r(b)) satisfying

C ′ ∪ {(P(p), r′) | Bp−1,r(b+ 1) ≤ r′ < r} ⊆ C.

We shall use tP,R(r) = minC∈CrashP,R(r)|C| to denote the size of the smallest set in

CrashP,R(r) and adopt the convention that tP,R(r) =∞ if CrashP,R(r) = ∅. As before, we

drop the subscripts P ,R when they are clear from context. Observe that the sets CrashP,R(r)

are all upwards closed, i.e.,

Observation 5.4. Consider a nice pair (P ,R) and r ∈ {0}∪R. For all C ⊆ C ′ ⊆ P × [T ],

we have C ∈ Crash(r) =⇒ C ′ ∈ Crash(r).

Observation 5.5. Consider a nice pair (P ,R) and r ∈ {0} ∪R. For all sets C ⊆ P × [T ],

we have C ∈ Crash(r) =⇒ C ∩ (P × [r]) ∈ Crash(r).
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5.2 A Reduction to the Adversarial Model

We start by stating the notation used in this subsection. The notations Πi
≤j(·), Π≤j(·) are as

defined in Section 3.5. We extend these to sets S ⊆ [T ] by defining and Πi
S(·) and ΠS(·) to be{

Πi
j(·)
}
j∈S and {Πj(·)}j∈S respectively. Recall that F = (f1, · · · , fn) and define, for i ∈ [n],

the notations F−i = (f1, · · · , fi−1, fi+1, · · · fn), F≤i = (f1, · · · , fi), and F<i = (f1, · · · , fi−1). Also

define, for a set S ⊆ [m] and a function f : [m]→ [m] the set f−1(S) = {z ∈ [m] | f(z) ∈ S}.
If X is a random variable and x is a value that X can take, we sometimes abbreviate the

event X = x as simply x when it is clear from context, e.g., we may write Π≤j instead of

Π≤j(F) = Π≤j, etc. We also sometimes omit the argument F in notations such as Π≤j(F)

when it is clear from context.

5.2.1 Properties of Protocols

In this section, we collect some results about broadcast protocols.

Definition 5.6. Let 0 ≤ j ≤ T be given. For all (Π≤j, N) and i ∈ [n], define the set:

Reci(Π≤j, N) =
{
fi ∈ supp(fi) | ∀j′ ∈ p−1(i) ∩ [j] : Πj′ = Mj′

(
fi,Π

i
<j′

)}
,

where Πi
≤j is the sequence of symbols received by party i when Π≤j is the sequence of sent

symbols and N is the channel noise (see Section 3.5).

Lemma 5.7. Let 0 ≤ j ≤ T and (Π≤j, N) be given. The following events are equivalent:

(N,Π≤j) ≡ (N,∀i ∈ [n] : fi ∈ Reci(Π≤j, N)).

Proof. Proof by induction on j. The base case j = 0 is trivial. We show the lemma for j > 0

by assuming it holds for j − 1. Fix (Π≤j, N) and for all i ∈ [n], let Πi
≤j be the sequence of

symbols received by party i when Π≤j is the sequence of sent symbols and N is the channel

noise. Observe that Πi
<j is determined by the pair (Π<j, N). We have:

(N,Π≤j) ≡ (N,Π<j,Πj)

≡
(
N,Π<j,Mj

(
fp(j),Π

p(j)
<j

)
= Πj

)
≡
(
N,∀i ∈ [n] : fi ∈ Reci(Π<j, N),Mj

(
fp(j),Π

p(j)
<j

)
= Πj

)
(Induction hypothesis)

≡ (N,∀i ∈ [n] : fi ∈ Reci(Π≤j, N)). (Definition 5.6)

Lemma 5.8. Let j ∈ [T ] and (Π≤j, N) be given. It holds that:

Pr(Πj | Π<j, N) =

∣∣Recp(j)(Π≤j, N)
∣∣∣∣Recp(j)(Π<j, N)
∣∣ .
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Proof. We derive:

Pr(Πj | Π<j, N) =
Pr(Π≤j, N)

Pr(Π<j, N)

=
Pr(N, ∀i ∈ [n] : fi ∈ Reci(Π≤j, N))

Pr(N, ∀i ∈ [n] : fi ∈ Reci(Π<j, N))
(Lemma 5.7)

=

∏
i∈[n] Pr(fi ∈ Reci(Π≤j, N))∏
i∈[n] Pr(fi ∈ Reci(Π<j, N))

(Mutual Independence of {fi}i∈[n] and N)

=
Pr
(
fp(j) ∈ Recp(j)(Π≤j, N)

)
Pr
(
fp(j) ∈ Recp(j)(Π<j, N)

) (Definition 5.6)

=

∣∣Recp(j)(Π≤j, N)
∣∣∣∣Recp(j)(Π<j, N)
∣∣ . (As fp(j) is uniform)

Lemma 5.9. Let i ∈ [n] and 0 ≤ j′ ≤ j ≤ T be such that p−1(i)∩ [j] = p−1(i)∩ [j′]. It holds

for all (Π≤j, N) and fi ∈ supp(fi) that:

Pr(fi | Π≤j, N) = Pr(fi | Π≤j′ , N).

Namely, the random variable fi is independent of Π≤j conditioned on Π≤j′ and N.

Proof. We have:

Pr(fi | Π≤j, N) = Pr(fi | ∀i′ ∈ [n] : fi′ ∈ Reci′(Π≤j, N), N) (Lemma 5.7)

= Pr(fi | fi ∈ Reci(Π≤j, N), N) (Mutual Independence of {fi}i∈[n] and N)

= Pr(fi | fi ∈ Reci(Π≤j′ , N), N) (As p−1(i) ∩ [j] = p−1(i) ∩ [j′])

= Pr(fi | ∀i′ ∈ [n] : fi′ ∈ Reci′(Π≤j′ , N), N)

(Mutual Independence of {fi}i∈[n] and N)

= Pr(fi | Π≤j′ , N). (Lemma 5.7)

Definition 5.10. For all C ⊆ [n]× [T ], define the event N (C) over the randomness in N as

N (C) =
{
N | ∀(i, j) ∈ C : N i

j 6= ?
}
.

Lemma 5.11. Let i ∈ [n] and 0 ≤ j′ ≤ j ≤ T be given. Define A = [j′] ∪ ([j] ∩ p−1(i)) and

let N ∈ N ({i} × ([j] \ A)).

1. The random variable fi is independent of Π≤j conditioned on ΠA and N , i.e., it holds

for all Π≤j and fi ∈ supp(fi) that:

Pr(fi | Π≤j, N) = Pr(fi | ΠA, N).
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2. The random variables
(
{fi′}i′ 6=i∈[n],ΠA

)
are mutually independent conditioned on Π≤j′

and N , i.e., it holds for all F−i = {fi′}i′ 6=i∈[n] and ΠA that:

Pr(F−i,ΠA | Π≤j′ , N) = Pr(ΠA | Π≤j′ , N) ·
∏

i′ 6=i∈[n]

Pr(fi′ | Π≤j′ , N).

Proof. We prove each part in turn:

1. As N ∈ N ({i} × ([j] \ A)), the transcript received by party i in the first j rounds is

determined by ΠA and N . In turn, Reci(Π≤j, N) is determined by ΠA and N . As

Pr(fi | Π≤j, N) = Pr(fi | ∀i′ ∈ [n] : fi′ ∈ Reci′(Π≤j, N), N) (Lemma 5.7)

= Pr(fi | fi ∈ Reci(Π≤j, N), N),

(Mutual Independence of {fi}i∈[n] and N)

we can conclude that Pr(fi | Π≤j, N) is determined by ΠA and N . The result follows.

2. As N ∈ N ({i} × ([j] \ A)), we have that ΠA is determined by fi, Π≤j′ , and N . Thus,

conditioned on Π≤j′ , N , ΠA is a function of fi and it is enough to show that the

random variables {fi′}i′∈[n] are mutually independent conditioned on Π≤j′ and N . This

is because, for all F , we have:

Pr(F | Π≤j′ , N) = Pr(F | ∀i′ ∈ [n] : fi′ ∈ Reci′(Π≤j′ , N), N) (Lemma 5.7)

=
∏
i′∈[n]

Pr(fi′ | fi′ ∈ Reci′(Π≤j′ , N))

(Mutual Independence of {fi}i∈[n] and N)

=
∏
i′∈[n]

Pr(fi′ | ∀i′′ ∈ [n] : fi′′ ∈ Reci′′(Π≤j′ , N), N)

(Mutual Independence of {fi}i∈[n] and N)

=
∏
i′∈[n]

Pr(fi′ | Π≤j′ , N). (Lemma 5.7)

5.2.2 Entropy Bounds on the Parties’ Inputs

Definition 5.12. Let 0 ≤ j ≤ T be given. For all noise vectors N and i ∈ [n], define the

event:

Z iN(j) =
{

Π≤j

∣∣∣ D(dist(fi | Π≤j, N) || U) > 10 · logm ·
∣∣p−1(i) ∩ [j]

∣∣}.
Additionally, define ZN(j) =

⋃
i∈[n]Z iN(j).
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Lemma 5.13. Let 0 ≤ j ≤ T be given. For all noise vectors N and i ∈ [n], we have:

Pr

(
|Reci(Π≤j, N)|
|supp(fi)|

<
1

m10·|p−1(i)∩[j]|

∣∣∣ N) ≤ |p−1(i) ∩ [j]|
m9

.

Proof. Proof by induction on j. The base case j = 0 is easy to see. We show the result for

j > 0 assuming it holds for j − 1. We have:

Pr

(
|Reci(Π≤j, N)|
|supp(fi)|

<
1

m10·|p−1(i)∩[j]|

∣∣∣ N)
≤ Pr

(
|Reci(Π<j, N)|
|supp(fi)|

<
1

m10·|p−1(i)∩[j−1]|

∣∣∣ N)+ Pr

(
|Reci(Π≤j, N)|
|Reci(Π<j, N)|

<
1

m10·1(i=p(j))

∣∣∣ N)
(Union bound)

≤ |p
−1(i) ∩ [j − 1]|

m9
+ Pr

(
|Reci(Π≤j, N)|
|Reci(Π<j, N)|

<
1

m10·1(p(j)=i)

∣∣∣ N). (Induction hypothesis)

If p(j) 6= i, the lemma follows from the foregoing inequality and Definition 5.6. Otherwise,

if p(j) = i, and the lemma follows if we show that the rightmost term is upper bounded by
1
m9 . Next, we show that this holds even when conditioned on an arbitrary value Π<j. We

have:

Pr

(
|Reci(Π≤j, N)|
|Reci(Π<j, N)|

<
1

m10

∣∣∣ Π<j, N

)
=
∑
Πj

Pr
(

Πj

∣∣∣ Π<j, N
)
· 1
(
|Reci(Π≤j, N)|
|Reci(Π<j, N)|

<
1

m10

)
=
∑
Πj

Pr
(

Πj

∣∣∣ Π<j, N
)
· 1
(

Pr(Πj | Π<j, N) <
1

m10

)
(Lemma 5.8)

≤ 1

m9
.

Lemma 5.14. Let 0 ≤ j ≤ T be given. For all noise vectors N and i ∈ [n], we have:

Pr
(
Z iN(j) | N

)
≤ 1

m5
.

Proof. For all Π≤j ∈ Z iN(j), we have:

D(dist(fi | Π≤j, N) || U) > 10 · logm ·
∣∣p−1(i) ∩ [j]

∣∣
=⇒ D(dist(fi | ∀i′ ∈ [n] : fi′ ∈ Reci′(Π≤j, N), N) || U) > 10 · logm ·

∣∣p−1(i) ∩ [j]
∣∣

(Lemma 5.7)

=⇒ D(dist(fi | fi ∈ Reci(Π≤j, N)) || U) > 10 · logm ·
∣∣p−1(i) ∩ [j]

∣∣
(Mutual Independence of {fi}i∈[n] and N)
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=⇒ |Reci(Π≤j, N)|
|supp(fi)|

<
1

m10·|p−1(i)∩[j]| . (Lemma 3.8)

The lemma now follows from Lemma 5.13.

Corollary 5.15. Let 0 ≤ j ≤ T be given. For all noise vectors N , we have:

Pr(ZN(j) | N) ≤ 1

m4
.

5.2.3 Properties of High Entropy Inputs

Definition 5.16. Let i > 1 ∈ [n] and 0 ≤ j ≤ T be given. For all (Π≤j, N), define the set:

SiN(Π≤j) =

{
z ∈ [m]

∣∣∣ D(dist(fi(z) | Π≤j, N) || U) >
1

m0.65

}
.

Lemma 5.17. Consider i > 1 ∈ [n], 0 ≤ j ≤ T , and a noise vector N . For all Π≤j /∈ Z iN(j),

we have ∣∣SiN(Π≤j)
∣∣ ≤ m0.66.

Proof. As Π≤j /∈ Z iN(j), we derive:

10T · logm ≥ D(dist(fi | Π≤j, N) || U) (Definition 5.12)

≥
m∑
z=1

D(dist(fi(z) | Π≤j, N) || U) (Lemma 3.10)

≥
∑

z∈SiN (Π≤j)

D(dist(fi(z) | Π≤j, N) || U)

≥
∣∣SiN(Π≤j)

∣∣ · 1

m0.65
. (Definition 5.16)

The lemma follows as 10T · logm ≤ m0.01.

Lemma 5.18. Consider 0 ≤ j ≤ T and a noise vector N . For all Π≤j /∈ ZN(j), S ⊆ [m],

and i > 1 ∈ [n], we have:

Pr
(∣∣f−1

i (S)
∣∣ ≥ |S|+m0.67 | Π≤j, N

)
≤ 1

m0.33
.

Proof. Let X be the indicator random variable that is 1 if and only if
∣∣f−1
i (S)

∣∣ ≥ |S|+m0.67

and p = Pr(X = 1 | Π≤j, N). As Π≤j /∈ Z iN(j), we have:

(m− 10T ) · logm ≤ H(fi | Π≤j, N) (Definition 5.12 and Lemma 3.9)

≤ 1 + H(fi | X,Π≤j, N) (Lemmas 3.3 and 3.5)

≤ 1 +
∑

x∈{0,1}

Pr(X = x | Π≤j, N) ·H(fi | X = x,Π≤j, N) (Definition 3.2)
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≤ 1 + (1− p) ·m logm+ p ·H(fi | X = 1,Π≤j, N) (Lemma 3.5)

≤ m logm+ 1− p · (m logm−H(fi | X = 1,Π≤j, N)).

This rearranges to

p · (m logm−H(fi | X = 1,Π≤j, N)) ≤ 11T · logm ≤ m0.01,

and to show the lemma it suffices to show that

H(fi | X = 1,Π≤j, N) ≤ m logm−m0.34.

We show this in the rest of the proof. Note that due to Lemma 3.5, it is enough to upper

bound the number of different values of fi such that X = 1. We do this as follows: There

are (at most) m possible choices for
∣∣f−1
i (S)

∣∣. For each value k of
∣∣f−1
i (S)

∣∣, there are
(
m
k

)
values of f−1

i (S). Once we fixed f−1
i (S) such that

∣∣f−1
i (S)

∣∣ = k, the number of choices of fi
is |S|k · (m− |S|)m−k. Thus, we have:

H(fi | X = 1,Π≤j, N) ≤ logm+ H
(
fi |
∣∣f−1
i (S)

∣∣,X = 1,Π≤j, N
)

(Lemma 3.5)

≤ logm+ max
k≥|S|+m0.67

H
(
fi |
∣∣f−1
i (S)

∣∣ = k,X = 1,Π≤j, N
)

(Definition 3.2)

≤ logm+ max
k≥|S|+m0.67

log

(
m

k

)
+ k log(|S|) + (m− k) · log(m− |S|).

(Lemma 3.5)

To continue, let h(x) = x log 1
x

+ (1 − x) log 1
1−x denote the binary entropy function. From

the identity
(
m
k

)
≤ 2h(k/m)·m, we have:

H(fi | X = 1,Π≤j, N)

≤ logm+ max
k≥|S|+m0.67

m · h(k/m) + k log(|S|) + (m− k) · log(m− |S|)

≤ (m+ 1) · logm+ max
k≥|S|+m0.67

m · h(k/m) + k log

(
|S|
m

)
+ (m− k) · log

(
1− |S|

m

)
≤ (m+ 1) · logm+ max

k≥|S|+m0.67
k log

|S|/m
k/m

+ (m− k) · log
1− |S|/m
1− k/m

(Definition of h(·))

≤ (m+ 1) · logm+ max
k≥|S|+m0.67

(
−m ·

(
k

m
log

k/m

|S|/m
+

(
1− k

m

)
· log

1− k/m
1− |S|/m

))
.

Now observe that the term inside the max is just the KL divergence (see Definition 3.7)

between the Bernoulli distribution with parameter k/m and the Bernoulli distribution with
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parameter |S|/m. We apply Fact 3.12 to get:

H(fi | X = 1,Π≤j, N) ≤ (m+ 1) · logm+ max
k≥|S|+m0.67

(
−2m ·

(
k − |S|
m

)2
)

≤ (m+ 1) · logm− min
k≥|S|+m0.67

2 · (k − |S|)2

m

≤ (m+ 1) · logm− 2 ·m0.34

≤ m logm−m0.34.

Lemma 5.19. Consider 0 ≤ j ≤ T and a noise vector N . For all Π≤j /∈ ZN(j), S ⊆ [m],

and 1 < i′ ≤ i ≤ n, we have:

Pr
(∣∣f−1

i′

(
· · ·
(
f−1
i (S)

))∣∣ ≥ |S|+m0.67 · (i+ 1− i′) | Π≤j, N
)
≤ i+ 1− i′

m0.33
.

Proof. Proof by induction of i − i′. The base case i = i′ is due to Lemma 5.18. We show

the lemma for i > i′ by assuming it holds for i′ + 1. For notational convenience, define the

events:

Ei′ ≡
∣∣f−1
i′

(
· · ·
(
f−1
i (S)

))∣∣ ≥ |S|+m0.67 · (i+ 1− i′).
Ei′+1 ≡

∣∣f−1
i′+1

(
· · ·
(
f−1
i (S)

))∣∣ ≥ |S|+m0.67 · (i− i′).

We have to bound:

Pr(Ei′ | Π≤j, N) ≤ Pr(Ei′+1 | Π≤j, N) + Pr
(
Ei′ | Ei′+1,Π≤j, N

)
≤ i− i′

m0.33
+ Pr

(
Ei′ | Ei′+1,Π≤j, N

)
. (Induction hypothesis)

It is thus enough to bound the rightmost term by 1
m0.33 . We shall show this bound even

under the stronger conditioning of fi′+1, · · · , fi,Π≤j, N for any fi′+1, · · · , fi such that Ei′+1

does not happen. Letting S ′ = f−1
i′+1

(
· · ·
(
f−1
i (S)

))
, we have:

Pr(Ei′ | fi′+1, · · · , fi,Π≤j, N) ≤ Pr
(∣∣f−1

i′ (S ′)
∣∣ ≥ |S|+m0.67 · (i+ 1− i′) | fi′+1, · · · , fi,Π≤j, N

)
≤ Pr

(∣∣f−1
i′ (S ′)

∣∣ ≥ |S ′|+m0.67 | fi′+1, · · · , fi,Π≤j, N
)

(As Ei′+1 does not happen)

≤ Pr
(∣∣f−1

i′ (S ′)
∣∣ ≥ |S ′|+m0.67 | Π≤j, N

)
(Lemma 5.7 and the mutual independence of {fi}i∈[n] and N)

≤ 1

m0.33
. (Lemma 5.18)
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Corollary 5.20. Consider 0 ≤ j ≤ T and a noise vector N . For all Π≤j /∈ ZN(j), S ⊆ [m],

and 1 < i′ ≤ i ≤ n, we have:

Pr
(∣∣f−1

i′

(
· · ·
(
f−1
i (S)

))∣∣ ≥ |S|+m0.68 | Π≤j, N
)
≤ 1

m0.32
.

5.2.4 Entropy Bounds on the Output

Definition 5.21. Let 0 ≤ j ≤ T and a noise vector N be given. For all i ∈ [n], define the

event:

Y iN(j) =


{

(Π≤j, F<i)
∣∣∣ D(dist(fi | Π≤j, N) || U) > 1

m0.65

}
, if i = 1{

(Π≤j, F<i)
∣∣∣ PC(F<i) ∈ SiN(Π≤j)

}
, if i > 1

.

Observation 5.22. For all noise vectors N and i ∈ [n], we have Y iN(0) = ∅.

Before the next lemma, it may be helpful to recall the definition of Crash(·) in Defini-

tion 5.3.

Lemma 5.23. Let P ⊆ [n] and R = {j ∈ [T ] | p(j) ∈ P}. For all j ∈ R, all crashing sets

C ∈ Crash(j), and all noise vectors N ∈ N (C), we have:

Pr
(
Yp(j)
N (j) | N

)
≤ j

m0.3
.

Proof. Proof by induction on p(j). For the base case, not that for all j such that p(j) = P(1),

we have Crash(j) = ∅ by Definition 5.3 and there is nothing to show. For the inductive step,

we take an arbitrary p > 1 and show the result for all j such that p(j) = P(p) assuming it

holds for all j′ such that p(j′) = P(p − 1). As C ∈ Crash(j), we have from Definition 5.3

that there exists a value b ∈ [Bp−1,j] and a set C ′ ∈ Crash(Bp−1,j(b)) satisfying

C ′ ∪ {(p(j), j′′) | Bp−1,j(b+ 1) ≤ j′′ < j} ⊆ C.

Let j′ = Bp−1,j(b) for convenience. Observe that N ∈ N (C ′) and j′ < j. We first claim that:

Pr
(
YP(p−1)
N (j′) | N

)
≤ j − 1

m0.3
. (7)

Indeed, if j′ = 0, then Eq. (7) is due to Observation 5.22 and otherwise, it is by the induction

hypothesis on j′ (note that in the latter case, we have p(j′) = P(p − 1)). Next, define

j∗ = Bp−1,j(b + 1) − 1 and the event EBad = YP(p−1)
N (j′) ∨ Zp(j)

N (j) ∨ ZN(j∗) and note by a

union bound that:

Pr(EBad | N) ≤ Pr
(
YP(p−1)
N (j′) | N

)
+ Pr

(
Zp(j)
N (j) | N

)
+ Pr(ZN(j∗) | N)

≤ j − 1/2

m0.3
. (Eq. (7), Lemma 5.14, and Corollary 5.15)
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Moreover, letting A = [j∗]∪ ([j] ∩ p−1(p(j))), note that j′ ≤ j∗ < j and any value of the pair(
ΠA, F<P(p−1)

)
determines whether or not the EBad happens. Indeed, any value of the pair(

ΠA, F<P(p−1)

)
determines whether or not YP(p−1)

N (j′) and ZN(j∗) happen as j′ ≤ j∗, and

also determines whether or not Zp(j)
N (j) happens due to Item 1 of Lemma 5.11. Combining,

we get that it determines whether or not EBad happens, as claimed. We now derive:

Pr
(
Yp(j)
N (j) | N

)
≤ Pr(EBad | N) + Pr

(
Yp(j)
N (j) | EBad, N

)
≤ j − 1/2

m0.3
+ Pr

(
Yp(j)
N (j) | EBad, N

)
.

It is thus enough to upper bound the last term by 3
m0.31 . As any value of the pair

(
ΠA, F<P(p−1)

)
determines whether or not the EBad happens, it suffices to do this conditioned on an arbitrary

value of
(
ΠA, F<P(p−1)

)
such EBad does not happen. Letting E = ΠA, F<P(p−1), N , we have

from Definition 5.21 that:

Pr
(
Yp(j)
N (j) | E

)
= Pr

(
PC
(
F<p(j)

)
∈ Sp(j)

N (Π≤j) | E
)
.

Due to Item 1 of Lemma 5.11, fixing ΠA also fixes the value of S
p(j)
N (Π≤j). Denoting this by

S
p(j)
N (ΠA), we have:

Pr
(
Yp(j)
N (j) | E

)
= Pr

(
PC
(
F<p(j)

)
∈ Sp(j)

N (ΠA) | E
)

= Pr
(

fp(j)−1

(
· · ·
(
fP(p−1)

(
PC
(
F<P(p−1)

))))
∈ Sp(j)

N (ΠA) | Π≤j∗ , N
)
(Lemma 5.11, Item 2)

= Pr
(

fP(p−1)

(
PC
(
F<P(p−1)

))
∈ f−1
P(p−1)+1

(
· · ·
(

f−1
p(j)−1

(
S
p(j)
N (ΠA)

)))
| Π≤j∗ , N

)
=
∑
S⊆[m]

Pr
(

fP(p−1)

(
PC
(
F<P(p−1)

))
∈ f−1
P(p−1)+1

(
· · ·
(

f−1
p(j)−1

(
S
p(j)
N (ΠA)

)))
= S | Π≤j∗ , N

)
.

To continue, we use Lemma 5.7 and the mutual independence of {fi}i∈[n] and N. We get:

Pr
(
Yp(j)
N (j) | E

)
=
∑
S⊆[m]

Pr
(
fP(p−1)

(
PC
(
F<P(p−1)

))
∈ S | Π≤j∗ , N

)
× Pr

(
f−1
P(p−1)+1

(
· · ·
(

f−1
p(j)−1

(
S
p(j)
N (ΠA)

)))
= S | Π≤j∗ , N

)
.

Now, as Zp(j)
N (j) does not happen, we have by Lemma 5.17 that

∣∣∣Sp(j)
N (ΠA)

∣∣∣ ≤ m0.66. As

ZN(j∗) does not happen, due to Corollary 5.20, we can upper bound the terms corresponding
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to S such that |S| ≥ m0.69 by 1
m0.32 . We get:

Pr
(
Yp(j)
N (j) | E

)
≤ 1

m0.32
+ max

S⊆[m]:|S|≤m0.69
Pr
(
fP(p−1)

(
PC
(
F<P(p−1)

))
∈ S | Π≤j∗ , N

)
.

Using Lemma 5.9 on the second term, we get:

Pr
(
Yp(j)
N (j) | E

)
≤ 1

m0.32
+ max

S⊆[m]:|S|≤m0.69
Pr
(
fP(p−1)

(
PC
(
F<P(p−1)

))
∈ S | Π≤j′ , N

)
.

Finally, as YP(p−1)
N (j′) does not happen, we have D(dist

(
fP(p−1)

(
PC
(
F<P(p−1)

))
| Π≤j′ , N

)
|| U) ≤

1
m0.65 . Combining with Corollary 3.13, we get:

Pr
(
Yp(j)
N (j) | E

)
≤ 1

m0.32
+ max

S⊆[m]:|S|≤m0.69

|S|
m

+

√
1

2
· 1

m0.65

≤ 1

m0.32
+
m0.69

m
+

1

m0.32

≤ 3

m0.31
.

The following is the main result of Section 5.2:

Lemma 5.24. For any noise vector N for which there exists P ⊆ [n] and a set C such that

n ∈ P, C ∈ CrashP,R(T ), where R = {j ∈ [T ] | p(j) ∈ P}, and N ∈ N (C), we have:

Pr(Π(F) = LSB(PC(F)) | N) ≤ 1

2
+

1

m0.1
.

Proof. We have:

Pr(Π(F) = LSB(PC(F)) | N) ≤ Pr(YnN(T ) | N) + Pr
(

Π(F) = LSB(PC(F)) | YnN(T ), N
)

(Union bound)

≤ 1

m0.2
+ Pr

(
Π(F) = LSB(PC(F)) | YnN(T ), N

)
. (Lemma 5.23)

It is thus enough to bound the last term by 1
2

+ 1
m0.2 . We shall in fact show bound even when

conditioned on an arbitrary Π≤T , F<n such that YnN(T ) does not happen. We have:

Pr(Π(F) = LSB(PC(F)) | Π≤T , F<n, N) ≤ Pr(LSB(fn(PC(F<n))) = Π | Π≤T , F<n, N)

(As (Π≤T , N) determines Π(F))

≤ Pr(LSB(fn(PC(F<n))) = Π | Π≤T , N).

(Lemma 5.7 and the mutual independence of {fi}i∈[n] and N)
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As YnN(T ) does not happen, we have PC(F<n) /∈ SnN(Π≤T ) implying by Definition 5.16 that

D(dist(fn(PC(F<n)) | Π≤T , N) || U) ≤ 1
m0.65 . We get from Corollary 3.13 and the fact that m

is even that:

Pr(Π(F) = LSB(PC(F)) | Π≤T , F<n, N) ≤ 1

2
+

1

m0.2
.

5.3 A Lower Bound in the Adversarial Model

5.3.1 Properties of Crash

The following properties of our definitions in Section 5.1 will be useful for us.

Lemma 5.25. Let (P ,R) be a nice pair. For all r′ ≤ r ∈ R such that p(r) ≤ p(r′), we have

t(r′) ≤ t(r).

Proof. Proof by contradiction. Suppose there is a counterexample and set r′, r to be the

counterexample with the (lexicographically) smallest value of (p(r), p(r′)). Let p, p′ be

such that (p(r), p(r′)) = (P(p),P(p′)). These are well defined as (P ,R) is a nice pair. As

t(r′) > t(r), we must have t(r) <∞ =⇒ p > 1. We first claim that:

Claim 5.26. p = p′.

Proof. If not, then we have p < p′ and t(r′) > t(r). Letting b = Bp′−1,r′ , observe from

Definition 5.3 that Crash(Bp′−1,r′(b)) ⊆ Crash(r′) which implies t(r′) ≤ t(Bp′−1,r′(b)). Now,

either Bp′−1,r′(b) = 0 which means that t(r′) ≤ t(Bp′−1,r′(b)) = 0 and contradicts t(r′) >

t(r), or we have p(Bp′−1,r′(b)) = P(p′ − 1) by Eq. (6) and t(r) < t(r′) ≤ t(Bp′−1,r′(b))

contradicts the choice of r, r′.

As t(r) < ∞, there is a set C ∈ Crash(r) such that |C| = t(r). Fix such a C and use

Definition 5.3 to get that their exists b ∈ [Bp−1,r] and a set C ′ ∈ Crash(Bp−1,r(b)) satisfying

C ′ ∪ {(P(p), r′′) | Bp−1,r(b+ 1) ≤ r′′ < r} ⊆ C.

Claim 5.27. Bp−1,r(b) < r′.

Proof. If not, then we have r′ ≤ Bp−1,r(b) and also (from Eq. (6)) that p(Bp−1,r(b)) =

P(p − 1) < p(r). By our choice choice of r, r′, this must mean that t(r′) ≤ t(Bp−1,r(b)) ≤
|C ′| ≤ |C| = t(r), a contradiction.

Conclude from Claim 5.27 that there exists b′ ∈ [Bp−1,r′ ] such that Bp−1,r(b) = Bp−1,r′(b
′).

From Eq. (6), note that this means either Bp−1,r′(b
′ + 1) = Bp−1,r(b+ 1) or Bp−1,r′(b

′ + 1) =

r′. In either case, we can conclude that C ∈ Crash(r′) implying t(r′) ≤ |C| = t(r), a

contradiction.
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Lemma 5.28. Let (P ,R) be a nice pair and p′ < p ∈ [P ]. For all r ∈ R ∩ p−1(P(p)), we

have:

1. t(r) ≤ t(Bp′,r(Bp′,r)).

2. If Bp′,r > 1, then t(r) ≤ t(Bp′,r(Bp′,r − 1)) + r − Bp′,r(Bp′,r).

Proof. We prove each part in turn:

1. Proof by contradiction. Consider a counterexample with the smallest p − p′. We

claim that, in fact, p − p′ = 1. Indeed, if not, define r̂ = Bp−1,r(Bp−1,r) and use our

choice of p, p′ to conclude that t(r) ≤ t(r̂). If r̂ ≤ Bp′,r(Bp′,r), then Lemma 5.25 says

t(r) ≤ t(Bp′,r(Bp′,r)), a contradiction. Else, we have Bp′,r(Bp′,r) < r̂ ≤ r implying

that Bp′,r̂(Bp′,r̂) = Bp′,r(Bp′,r). We again use our choice of p, p′ to get t(r) ≤ t(r̂) ≤
t(Bp′,r(Bp′,r)), a contradiction.

Having shown that p − p′ = 1, we use Definition 5.3 to get Crash(Bp′,r(Bp′,r)) ⊆
Crash(r), a contradiction.

2. Proof by contradiction. Consider a counterexample with the smallest p− p′. We claim

that, in fact, p− p′ = 1. Indeed, if not, define r̂ = Bp−1,r(Bp−1,r) and use Item 1 to get

t(r) ≤ t(r̂). Consider the following three cases:

• When r̂ ≤ Bp′,r(Bp′,r − 1): From Lemma 5.25, we get that t(r) ≤ t(r̂) ≤
t(Bp′,r(Bp′,r − 1)), a contradiction.

• When Bp′,r(Bp′,r − 1) < r̂ ≤ Bp′,r(Bp′,r): Observe that, when this happens, we

have Bp′,r(Bp′,r − 1) = Bp′,r̂(Bp′,r̂). From Item 1, we get that t(r) ≤ t(r̂) ≤
t(Bp′,r(Bp′,r − 1)), a contradiction.

• When Bp′,r(Bp′,r) < r̂: Observe that, when this happens, we have Bp′,r = Bp′,r̂.
From our choice of p, p′, we get that t(r) ≤ t(r̂) ≤ t(Bp′,r(Bp′,r − 1)) + r̂ −
Bp′,r(Bp′,r), a contradiction as r̂ < r.

Having shown that p − p′ = 1, it is easy to see from Definition 5.3 that t(r) ≤
t(Bp′,r(Bp′,r − 1)) + r − Bp′,r(Bp′,r), a contradiction.

Lemma 5.29. Let P ⊆ [n] be non-empty and i∗ = max(P). Define P ′ = P ∪ ([n] \ [i∗]) and:

R = {r ∈ [T ] | p(r) ∈ P} and R′ = {r ∈ [T ] | p(r) ∈ P ′}.

We have:

CrashP,R(max(R)) ⊆ CrashP ′,R′(max(R′)).

Proof. By our assumption that p(T + 1 − i) = n + 1 − i for all i ∈ [n], we have that

max(R) = T + i∗ − n and max(R′) = T . The lemma follows from the following claims:
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Claim 5.30. For r ∈ {0} ∪ R, we have CrashP,R(r) ⊆ CrashP ′,R′(r).

Proof. Proof by induction. The base case r = 0 is straightforward from Definition 5.3. We

show the result for r > 0 by assuming it holds for smaller values of r. As CrashP,R(r) is empty

otherwise, we can assume that p(r) = P(p) for some p > 1. Then, for any C ∈ CrashP,R(r),

there exists a value b ∈ [BP,R,p−1,r] and a set C ′ ∈ CrashP,R(BP,R,p−1,r(b)) satisfying

C ′ ∪ {(P(p), r′) | BP,R,p−1,r(b+ 1) ≤ r′ < r} ⊆ C.

Now, note that BP,R,p−1,r(b) < r and we can apply the induction hypothesis on BP,R,p−1,r(b)

to get CrashP,R(BP,R,p−1,r(b)) ⊆ CrashP ′,R′(BP,R,p−1,r(b)). Also, note by Eq. (6) and our

definitions of P ′,R′ that P(p) = P ′(p) and BP,R,p−1,r = BP ′,R′,p−1,r. The induction step now

follows from another application of Definition 5.3.

Claim 5.31. For r ≥ max(R), we have CrashP ′,R′(max(R)) ⊆ CrashP ′,R′(r).

Proof. Proof by induction. The base case r = max(R) is straightforward. We show the result

for r > max(R) by assuming it holds for r− 1. As CrashP ′,R′(max(R)) we can assume that

p(max(R)) 6= P ′(1). It follows that p(r−1) 6= P ′(1). Let p > 1 be such that p(r−1) 6= P ′(p).
Then, by Definition 5.3 and the fact that BP ′,R′,p−1,r(BP ′,R′,p−1,r) = r − 1, we have that

CrashP ′,R′(r − 1) ⊆ CrashP ′,R′(r) and claim follows from the induction hypothesis.

5.3.2 Strength of a Pair

For a subset R ⊆ [T ] and i ∈ [n], we define the notation mR,i = max(R∩ p−1(i)) with the

convention that mR,i = 0 if R∩ p−1(i) = ∅.

Definition 5.32 (Strength). Let (P ,R) be a nice pair. Define the strength StrP,R of the

pair as StrP,R = minp∈[P ] StrP,R(p) where:

StrP,R(p) = tP,R
(
mR,P(p)

)
.

Lemma 5.33. Let (P ,R) be a nice pair such that R 6= ∅. For p ∈ [P ] satisfying P(p) ≤
p(max(R)), we have:

tP,R(max(R)) ≤ tP,R
(
mR,P(p)

)
.

Proof. Proof by contradiction. Let p ∈ [P ] be the largest counterexample. We derive a

contradiction by showing that P(p) = p(max(R)). Indeed, this means that mR,P(p) =

mR,p(max(R)) = max(R).

Claim 5.34. P(p) = p(max(R)).
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Proof. If not, then our choice of p implies that t
(
mR,P(p)

)
< t(max(R)) ≤ t

(
mR,P(p+1)

)
.

By the contrapositive of Lemma 5.25, we get that mR,P(p+1) > mR,P(p). We derive a contra-

diction by showing that Crash
(
mR,P(p)

)
⊆ Crash

(
mR,P(p+1)

)
. This is due to Definition 5.3

when applied with r = mR,P(p+1), b = Bp,mR,P(p+1)
.

Lemma 5.35. Let (P ,R) be a nice pair and t ≤ StrP,R. We then have t ≤ StrP,R′, where

the set R′ is defined as:

R′ =
{
r ∈ R | ∀r′ < r ∈ R ∩ p−1(p(r)) : tP,R(r′) < t

}
.

Proof. We can assume that t > 0 as the lemma is trivial otherwise. Conclude from t ≤ StrP,R

and Definition 5.32 that t ≤ tP,R
(
mR,P(p)

)
for all p ∈ [P ]. Thus, for all p ∈ [P ], there exists

at least one element r′ in R∩ p−1(P(p)) such that tP,R(r′) is at least t. We first claim that

the smallest such element is mR′,P(p).

Claim 5.36. For all p ∈ [P ], we have mR′,P(p) = min{r′ ∈ R ∩ p−1(P(p)) | t ≤ tP,R(r′)}.
Moreover, for all r ∈ p−1(P(p)), we have r ∈ R ∧ r ≤ mR′,P(p) ⇐⇒ r ∈ R′.

Proof. Let m∗p = min{r′ ∈ R ∩ p−1(P(p)) | t ≤ tP,R(r′)} for convenience. We first show that

m∗p ∈ R′. This is by definition of R′ as r′ < m∗p ∈ R ∩ p−1(P(p)) implies that tP,R(r′) < t

by definition of m∗p. From m∗p ∈ R′, it follows that m∗p ≤ mR′,P(p). We now show that

m∗p ≥ mR′,P(p). Indeed, if not, then as m∗p < mR′,P(p) ∈ R′, we have from the definition of

R′ that tP,R(m∗p) < t, a contradiction.

For the “moreover” part, the ⇐= direction is trivial. For the =⇒ direction, use the

definition of R′ and that mR′,P(p) ∈ R′.

Claim 5.37. For all r ∈ {0} ∪R′ and all C ∈ CrashP,R′(r), we have that |C| < t =⇒ C ∈
CrashP,R(r).

Proof. Proof by induction on r. The base case r = 0 is trivial. We prove the claim for

r > 0 by assuming it holds for smaller values of r. By Definition 5.3, if C ∈ CrashP,R′(r),

then p(r) = P(p) for some p > 1 and there exists a value b′ ∈ [BP,R′,p−1,r] and a set

C ′ ∈ CrashP,R′(BP,R′,p−1,r(b
′)) satisfying

C ′ ∪ {(P(p), r′) | BP,R′,p−1,r(b
′ + 1) ≤ r′ < r} ⊆ C.

As BP,R′,p−1,r(b
′) < r, we can apply the induction hypothesis on BP,R′,p−1,r(b

′) to conclude

that C ′ ∈ CrashP,R(BP,R′,p−1,r(b
′)). As |C ′| ≤ |C| < t, we have that tP,R(BP,R′,p−1,r(b

′)) < t

implying by contrapositive of Lemma 5.25 that BP,R′,p−1,r(b
′) < mR′,P(p−1).

Next, note from Eq. (6) that there is a value b ∈ [BP,R,p−1,r] such that BP,R,p−1,r(b) =

BP,R′,p−1,r(b
′). From BP,R′,p−1,r(b

′) < mR′,P(p−1) and the “moreover” part of Claim 5.36,
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we get that BP,R,p−1,r(b + 1) = BP,R′,p−1,r(b
′ + 1). By Definition 5.3, this means that C ∈

CrashP,R(r), as desired.

We now show that t ≤ StrP,R′ by showing that t ≤ tP,R′
(
mR′,P(p)

)
for all p ∈ [P ].

We do this by contradiction. Let p be a counterexample. As tP,R′
(
mR′,P(p)

)
< t, there

exists a set C ∈ CrashP,R′
(
mR′,P(p)

)
such that |C| < t. By Claim 5.37, we have that

C ∈ CrashP,R
(
mR′,P(p)

)
implying that tP,R

(
mR′,P(p)

)
< t. This contradicts Claim 5.36.

Lemma 5.38. For integers t > 0, nice pairs (P ,R) satisfying |P| > 1 and 2 · |R||P| < t ≤
StrP,R, we have that:

T ≥ |P| · StrP,R
10t

.

Proof. Proof by induction on t. The base case t = 1 is trivial as |R| < |P| implies that

StrP,R = 0. We show the result for t > 1 by assuming it holds for t− 1. Define the set:

R′ =
{
r ∈ R | ∀r′ < r ∈ R ∩ p−1(p(r)) : tP,R(r′) < StrP,R ·

t− 1

t

}
.

As R′ ⊆ R, we have from Definition 5.3 that (P ,R′) is nice. Also, we have from Lemma 5.35

that StrP,R · t−1
t
≤ StrP,R′ . If it holds that 2 · |R

′|
|P| < t − 1, we get the lemma from our

induction hypothesis, so we assume otherwise and deduce:

2 · |R
′|
|P|
≥ t− 1 > 2 · |R|

|P|
− 1 =⇒ |R′| > |R| − |P|

2
.

Next, conclude from StrP,R > 0 that mR,i is distinct for all i ∈ P . Let P ′ ⊆ P be the set

of i ∈ P such that mR,i ∈ R′. As |R′| > |R| − |P|
2

, we must have |P ′| > |P|/2. Denote by

P ′ = |P ′| and let P ′(1) < P ′(2) < · · · < P ′(P ′) be the elements of P ′. We claim that:

Claim 5.39. For all 1 < p′ ≤ P ′, we have:

StrP,R

t
< mR,P ′(p′) −mR,P ′(p′−1).

Proof. As we have P ′ ⊆ P , we have q′ < q ∈ [P ] such that P(q′) = P ′(p′ − 1) and P(q) =

P ′(p′). Let r = mR,P ′(p′) and r′ = mR,P ′(p′−1) for convenience. We first show that r′ < r. If

not, then as mR,i is distinct for all i ∈ P , we must have r < r′. From Item 1 of Lemma 5.28,

we get that tP,R(r) ≤ tP,R(BP,R,q′,r(BP,R,q′,r)). Now use the fact that BP,R,q′,r(BP,R,q′,r) ≤
r < r′ and r′ ∈ R′ to continue as tP,R(r) < StrP,R · t−1

t
, a contradiction.

Having shown that r′ < r. Observe that this impliesBP,R,q′,r > 1 and BP,R,q′,r(BP,R,q′,r) =

r′. From Item 2 of Lemma 5.28, we get that

StrP,R ≤ tP,R(r) ≤ tP,R(BP,R,q′,r(BP,R,q′,r − 1)) + r − r′.
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Now use BP,R,q′,r(BP,R,q′,r − 1) < r′ and r′ ∈ R′ to get StrP,R < StrP,R · t−1
t

+ r − r′, as

claimed.

As P ′ = |P ′| > |P|/2 ≥ 1, we have from Claim 5.39 that:

T ≥ mR,P ′(P ′) ≥ (P ′ − 1) · StrP,R
t

≥ |P| · StrP,R
10t

.

5.3.3 Abundance of Small Crashing Sets

We now show the main result of Section 5.3 which is that there are plenty of disjoint and

small crashing sets.

Lemma 5.40. Let k =
√
n. There exists nice pairs {Pl,Rl}l∈{0}∪[k] and disjoint sets {Cl}l∈[k]

such that:

1. For all l ∈ {0} ∪ [k], we have |Pl| ≥ n− l · logn
100

and n ∈ Pl.

2. For all l ∈ {0} ∪ [k], we have Rl = {r ∈ [T ] | p(r) ∈ Pl} and T ∈ Rl.

3. For all l ∈ [k], we have |Cl| ≤ logn
100

and Cl ∈ CrashPl−1,Rl−1
(max(Rl−1)).

Proof. It is enough to show a weaker version of the lemma that does not the conditions

n ∈ Pl and T ∈ Rl as these conditions can be obtained by applying Lemma 5.29 on the

weaker version. We will need the following helper claim:

Claim 5.41. Let (P ,R) be a nice pair such that |P| > n
2

and R = {r ∈ [T ] | p(r) ∈ P}.
There exists a set C such that |C| < logn

100
and C ∈ CrashP,R(max(R)).

Proof. Note that StrP,R <
logn
100

. Indeed, if not, we have by the contrapositive of Lemma 5.38

with t =
√

logn
1000

that T ≥ n
2
·
√

log n, a contradiction. By Definition 5.32, this means that there

is p ∈ [P ] such that tP,R
(
mR,P(p)

)
< logn

100
. By Lemma 5.33 (the conditions in Lemma 5.33

are satisfied due to our assumption that p(T + 1 − i) = n + 1 − i for all i ∈ [n]), we can

continue as tP,R(max(R)) < logn
100

. The lemma now follows from definition of t(·).

We define the sets inductively. At stage j of the induction, for j ∈ {0} ∪ [k], we would

have defined the sets {Pl,Rl}l∈{0}∪[j] and {Cl}l∈[j] such that Items 1 to 3 are satisfied for all

l ≤ j. For the base case j = 0, define P0 = [n] and R0 = [T ] and observe that these satisfy

Items 1 to 3. For the inductive step, let j > 0 be such that Pj−1,Rj−1 have been defined.

Define Cj to be the set promised by Claim 5.41. By Claim 5.41, we have |Cj| ≤ logn
100

and

Cj ∈ CrashPj−1,Rj−1
(max(Rj−1)) and Item 3 is satisfied. Next, define

Pj = Pj−1 \ {i ∈ Pj−1 | ∃j ∈ [T ] : (i, j) ∈ Cj}.
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Rj = {r ∈ [T ] | p(r) ∈ Pj}.

Item 2 is clearly satisfied. For Item 1, note that |Pj| ≥ |Pj−1| − |Cj| ≥ n− j · logn
100

. Finally,

the sets {Cl}l∈[k] are disjoint as for all l ∈ [k], we have that Cl ⊆ Pl−1× [T ] by Definition 5.3.

By our definition of Pj, this gives Cl ⊆ (Pl−1 \ Pl)× [T ] and it follows from Pl ⊆ Pl−1 that

the sets {Cl}l∈[k] are disjoint.

5.4 Finishing the Proof

We now combine Lemmas 5.24 and 5.40 to finish the proof of Theorem 5.1.

Proof of Theorem 5.1. Let k =
√
n and {Pl,Rl}l∈{0}∪[k] and {Cl}l∈[k] be those promised by

Lemma 5.40. As |Cl| ≤ logn
100

, we have that Pr(N ∈ N (Cl)) ≥ 1
n0.01 . As the sets {Cl}l∈[k] are

disjoint we have Pr(E) ≤ 2−n
0.25

, where:

E = {N | ∀l ∈ [k] : N /∈ N (Cl)}.

We derive:

Pr(Π(F) = LSB(PC(F))) ≤ Pr(E) + Pr
(
Π(F) = LSB(PC(F)) | E

)
(Union bound)

≤ Pr(E) + max
N /∈E

Pr(Π(F) = LSB(PC(F)) | N)

≤ 2−n
0.25

+ max
N /∈E

Pr(Π(F) = LSB(PC(F)) | N) (As Pr(E) ≤ 2−n
0.25

)

≤ 1

2
+ 2−n

0.25

+
1

m0.1
(Lemma 5.24)

≤ 1

2
+

1

n
.
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