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Abstract

A PAC learning model involves two worst-case requirements: a learner must learn all func-
tions in a class on all example distributions. However, basing the hardness of learning on
NP-hardness has remained a key challenge for decades. In fact, recent progress in computational
complexity suggests the possibility that a weaker assumption might be sufficient for worst-case
learning than the feasibility of worst-case algorithms for NP problems.

In this study, we investigate whether these worst-case requirements for learning are satisfied
on the basis of only average-case assumptions in order to understand the nature of learning.
First, we construct a strong worst-case learner based on the assumption that DistNP ⊆ AvgP, i.e.,
in Heuristica. Our learner agnostically learns all polynomial-size circuits on all unknown P/poly-
samplable distributions in polynomial time, where the complexity of learning depends on the
complexity of sampling examples. Second, we study the limitation of relativizing constructions
of learners based on average-case heuristic algorithms. Specifically, we construct a powerful
oracle such that DistPH ⊆ AvgP, i.e., every problem in PH is easy on average, whereas UP∩ coUP

and PAC learning on almost-uniform distributions are hard even for 2n/ω(logn)-time algorithms
in the relativized world, which improves the oracle separation presented by Impagliazzo (CCC
2011). The core concept of our improvements is the consideration of a switching lemma on a
large alphabet, which may be of independent interest. The lower bound on the time complexity
is nearly optimal because Hirahara (STOC 2021) showed that DistPH ⊆ AvgP implies that PH

can be solved in time 2O(n/ logn) under any relativized world.
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1 Introduction

Investigating the relationship between two fundamental tasks, namely computing and learning, has
been a key research objective since Valiant introduced the probably approximately correct (PAC)
learning model as a pioneering development in computational learning theory [Val84]. In the PAC
learning model, a learner must learn all unknown target functions f computable by polynomial-size
circuits on all unknown example distributions D in the following sense: the learner is given an
accuracy parameter ϵ ∈ (0, 1] and passively collected examples of the form (x, f(x)), where each x
is selected independently and identically according to D; then, the learner is asked to generate a
good hypothesis h which is ϵ-close to f (i.e., Prx∼D[h(x) ̸= f(x)] ≤ ϵ) with high probability.

A PAC learner must satisfy two worst-case requirements: it must be distribution-free and must
learn every target function. The worst-case nature of PAC learning becomes more apparent in the
equivalent model of Occam learning [BEHW87, Sch90]. In Occam learning, a learner is given an
arbitrary set of examples and is asked to find a small hypothesis consistent with all the given exam-
ples. Clearly, this task can be formulated as a (worst-case) search problem in NP. The fundamental
results of Blumer, Ehrenfeucht, Haussler, and Warmuth [BEHW87] and Schapire [Sch90] show that
PAC learning and Occam learning are in fact equivalent.

Despite the worst-case nature of PAC learning and Occam learning, basing the hardness of these
learning tasks on the hardness of NP has been a key challenges in computational learning theory
for decades. The difficulty of proving the NP-hardness of learning has been explained in the work
of Applebaum, Barak, and Xiao [ABX08], who showed that the NP-hardness of learning cannot
be proved via a many-one reduction unless the polynomial hierarchy collapses. Given the lack of
success in proving the NP-hardness of learning,1 it is natural to ask whether PAC learning is “NP-
intermediate.” In this study, we investigate whether PAC learning is feasible in Heuristica [Imp95],
i.e., a world in which NP is easy on average but hard in the worst case.

Recent progress in computational complexity has provided new insights into the relationship
between learning and average-case complexity of NP. Several studies [CIKK16, CIKK17, HS17,
ILO20] on natural proofs and the Minimum Circuit Size Problem (MCSP) have revealed that
learning with respect to the uniform distribution can be formulated as an average-case NP problem.
Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16] presented a generic reduction from
the task of PAC learning with respect to the uniform distribution to a natural property [RR97];
a natural property is essentially equivalent to solving MCSP on average [HS17]. Therefore, these
results imply that PAC learning for P/poly with respect to the uniform distribution is feasible
under the assumption that MCSP ∈ NP is easy on average.2 Moreover, by combining this learning
algorithm with inverters for distributional one-way functions [IL89], it can be shown that PAC
learning with respect to every fixed samplable distribution on examples is feasible in Heuristica.
Nanashima [Nan21] observed that, in Heuristica, it is possible to learn a target function chosen from
a fixed samplable distribution with respect to every unknown example distribution. These results
indicate that if either of the worst-case requirements on target functions or example distributions is
weakened, then a polynomial-time learner for P/poly can be constructed from average-case (errorless)
heuristics for NP problems.

1The main focus of this study is PAC learning for P/poly, i.e., the class of polynomial-size circuits. We mention
that there are several NP-hardness results for proper PAC learning of restricted circuit classes [PV88].

2The learning algorithm of [CIKK16] requires a membership query. Ilango, Loff, and Oliveira [ILO20] showed that
PAC learning with respect to the uniform distribution (without a membership query) is reduced to an average-case
problem in NP.
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1.1 Our Results

In this work, we present a PAC learner that satisfies the two worst-case requirements simultaneously
in Heuristica. Under the assumption that NP admits average-case polynomial-time algorithms, we
construct a polynomial-time learner that learns all polynomial-size circuits (P/poly) with respect
to all unknown efficiently samplable example distributions. In fact, our learning algorithm learns
polynomial-size circuits agnostically, i.e., even if a target function is not in P/poly, our learner
outputs a hypothesis that is as good as the best hypothesis in P/poly.

Theorem 1 (informal). If DistNP ⊆ AvgP (i.e., NP is easy on average), then P/poly is agnostic
learnable on all unknown P/poly-samplable distributions in polynomial time.

Let us remark on several points. First, our learner works without knowing example distri-
butions; however, it needs to know an upper bound on the complexity of example distributions.
Second, the running time of our learner depends on the complexity of the concept class and example
distributions. Note that the complexity of a learner does not depend on an example distribution
in the standard PAC learning model. This is the only difference between the standard learning
model and our learning model of Theorem 1; see Definition 2 for a precise definition. Third, most
importantly in this work, the above-mentioned result is obtained by relativizing techniques, i.e., the
above-mentioned theorem holds in the presence of any oracle.

Next, we consider the question of whether the standard PAC learner can be constructed in
Heuristica. In other words, can we remove the condition of Theorem 1 that example distribu-
tions must be P/poly-samplable? We present strong negative answers by constructing “relativized
Heuristica” in which there is no PAC learner with respect to almost-uniform distributions.

Theorem 2. For any arbitrary small constant ϵ > 0, there exists an oracle Oϵ such that

(1) DistPHOϵ ⊆ AvgPOϵ and

(2) SIZEOϵ [n] is not weakly learnable with membership queries in time O(2n/ω(logn))

on all uniform distributions over S ⊆ {0, 1}n such that |S| > 2(1−ϵ)n.

This theorem shows that, unless we use some non-relativizing techniques, we cannot improve
Theorem 1 for learning on almost-uniform example distributions even under the strong average-case
assumption that DistPH ⊆ AvgP. Moreover, the hardness of learning holds even with the drastically
weakened requirements: (a) weak learning (b) in sub-exponential time (c) with additional access to
a membership query oracle.

In addition, we construct an oracle that separates the average-case complexity of PH from the
worst-case complexity of UP ∩ coUP with the best possible parameters on time complexity.

Theorem 3. There exists an oracle O such that

(1) DistPHO ⊆ AvgPO and (2) UPO ∩ coUPO ̸⊆ BPTIMEO[2n/ω(logn)].

Furthermore, for all k ∈ N and constants a > 0, there exists an oracle Ok,a such that

(1) DistΣp
k
Ok,a ⊆ AvgPOk,a and (2) UPOk,a ∩ coUPOk,a ̸⊆ BPTIMEOk,a [2an/ logn].

This result significantly improves the previous oracle construction of Impagliazzo [Imp11], who
proved that there exist a constant α > 0 and an oracle O such that

(1) DistNPO ⊆ AvgPO and (2) UPO ∩ coUPO ̸⊆ BPTIMEO[2n
α
].
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In Theorem 3, we improve this oracle construction in the following two aspects. First, the worst-
case lower bound is improved from O(2n

α
) to 2n/ω(logn). Second, the feasibility of the average-case

computation is improved from DistNP to DistPH. The core concept of our improvements is to consider
a switching lemma on a large alphabet, which may be of independent interest.

Recently, Hirahara [Hir21] presented the first nontrivial worst-case-to-average-case connection
for PH:

Theorem 4 ([Hir21]). • If DistPH ⊆ AvgP, then PH ⊆ DTIME[2O(n/ logn)]; and

• If DistΣp
k+1 ⊆ AvgP, then Σp

k ⊆ DTIME[2O(n/ logn)] for each k ∈ N.

This result is proved by a relativizing proof technique (see Appendix A for the details). There-
fore, the time complexity 2n/ω(logn) given in Theorem 3 is nearly optimal for PH and completely
optimal for Σp

k.

1.2 Related Work

Impagliazzo and Levin [IL90] constructed another type of learner called universal extrapolation
under the assumption that there is no one-way function (i.e., in Pessiland), where the learner
approximates the appearance probability of a given string generated according to some unknown
distribution samplable by an efficient uniform algorithm. The agnostic learner of Theorem 1 can
learn a polynomial-size circuit with respect to unknown distributions samplable by efficient non-
uniform algorithms; however, it requires a stronger assumption that NP is easy on average (i.e., in
Heuristica). Li and Vitányi [LV91] implicitly developed a PAC learner on simple distributions that
contain P/poly-computable distributions in Heuristica. However, their learner requires an additional
example oracle on a specific distribution (i.e., the time-bounded universal distribution). In another
line of research, several cryptographic primitives have been constructed on the basis of the hardness
of learning linear functions on the uniform distribution in noisy settings (e.g., [Reg09, DP12]).
Theorem 1 can be regarded as a step toward constructing such cryptographic primitives based on the
weaker hardness assumption of learning in general settings. Several studies [Dan16, DSS16, Vad17]
have shown the hardness of learning for various central concept classes (e.g., polynomial-size DNFs)
under the average-case hardness of constraint satisfaction problems, in contrast to our work.

Regarding Theorems 3 and 2, Xiao [Xia09] constructed an oracle that separates the hardness of
learning on the uniform distribution from the non-existence of an auxiliary-input one-way function.
Since the hardness of learning on the uniform distribution implies that DistNP ̸⊆ AvgP, the scope
is different from ours. Watson [Wat12] constructed an oracle that rules out black-box reductions
from worst-case UP to average-case PH. Our relativization barrier is more general in that the proof
of Theorem 4 uses non-black-box reductions and is not captured by the oracle construction of
[Wat12]. Another line of research [FF93, BT06b, AGGM06, GV08, ABX08, HMX10, BL13, BB15,
LV16, HW20] rules out restricted types of black-box reductions from NP-hard languages to several
average-case notions under the assumption that PH does not collapse, which is not comparable with
our relativization result.

2 Overview of Proof Techniques

In this section, we present an overview of our proof techniques.
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2.1 Agnostic Learner in Heuristica

Here, we explain the ideas for constructing the agnostic learner of Theorem 1 under the assumption
that DistNP ⊆ AvgP. Our proofs are based on two lemmas, which we explain below.

The first lemma is the worst-case to average-case connection developed in [Hir18, Hir20] for the
problem of computing the time-bounded Kolmogorov complexity. Fix a prefix-free universal Turing
machine U0 arbitrarily. For each t ∈ N and x ∈ {0, 1}∗, the t-time-bounded Kolmogorov complexity
of x is defined as

Kt(x) = min
p∈{0,1}∗

{|p| : U0(p) outputs x in t steps} .

We also define K(x) by K(x) = limt→∞Kt(x). Intuitively, Kt(x) represents the minimum length
of a program that outputs x in time t. It was shown in [Hir20] that the time-bounded Kolmogorov
complexity can be efficiently approximated in the worst case under the assumption that NP is easy
on average.

Lemma 1 ([Hir20]). If DistNP ⊆ AvgP, then there exist a polynomial τ and an algorithm ApproxKτ

that is given (x, 1t), where x ∈ {0, 1}∗, t ∈ N, and outputs an integer s ∈ N in polynomial time to
satisfy

Kτ(|x|+t)(x)− log τ(|x|+ t) ≤ s ≤ Kt(x).

The second lemma is a recent characterization of learnability based on a task called random-
right-hand-side refutation (RRHS-refutation), first introduced by Vadhan [Vad17]. RRHS-refutation
enables us to characterize the feasibility of PAC learning. This characterization was later extended
by Kothari and Livni [KL18] to a characterization of agnostic learning, which we call correlative
RRHS-refutation.

We briefly explain the task of correlative RRHS-refutation3: For a randomized function f : {0, 1}n →
{0, 1}, a concept class C , and a distribution D on {0, 1}n, we define a correlation CorD(f,C ) ∈
[−1, 1] between f and C with respect to D by

CorD(f,C ) := max
c∈Cn

Ef,x←D

[
(−1)f(x) · (−1)c(x)

]
= 2 ·max

c∈Cn

Pr
f,x←D

[f(x) = c(x)]− 1.

Roughly speaking, correlative RRHS-refutation for C on a class D of example distributions is a task
of distinguishing the following two cases with high probability: on input ϵ ∈ (0, 1], (i) a “correlative”
case where samples are chosen identically and independently according to EX(f,Dn) for Dn ∈ Dn

and a randomized function f such that CorDn(f,C ) ≥ ϵ; and (ii) a “random” case where samples
are chosen identically and independently according to EX(fR, Dn) for Dn ∈ Dn and a truly random
function fR. Kothari and Livni [KL18] showed that for every concept class C , C is correlatively
RRHS-refutable in polynomial time iff C is agnostic learnable in polynomial time. In light of
this characterization, our goal is to perform correlative RRHS-refutation using an approximation
algorithm for time-bounded Kolmogorov complexity.

Correlative RRHS-refutation on Shallow Sampling-Depth Distributions

Now, we present a proof idea for constructing a correlative RRHS-refutation algorithm using an
approximation algorithm ApproxKτ for time-bounded Kolmogorov complexity. Our refutation algo-
rithm operates as follows:

3In this paper, we use a different term (i.e., correlative RRHS-refutation) to refer to “refutation” in the original
paper [KL18] in order to distinguish it from “RRHS-refutation” in [Vad17] and other refuting tasks for random CSPs.
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1. For a given sample S = ((x(i), b(i)))mi=1, letX = x(1)◦· · ·◦x(m) and b = b(1)◦· · ·◦b(m),
where ◦ denotes the concatenation of strings.

2. Use ApproxKτ to approximate Kt(X) and Kt′(X ◦ b) for some time bounds t and t′,
respectively. Let s and s′ denote the respective approximated values.

3. If ∆ = s′ − s is less than some threshold T , then output “correlative”; otherwise,
output “random”.

We explain why this algorithm distinguishes the “correlative” case and the “random” case. In
the former case, samples X and b are generated by a target function f such that CorD(f,C ) ≥ ϵ.
Thus, the best concept c∗ ∈ C satisfies that Prf,x←D[c

∗(x) ̸= f(x)] ≤ 1/2− ϵ/2. Using this fact, we
claim that the t′-time-bounded Kolmogorov complexity of X ◦ b is small for a properly large t′. Let
e ∈ {0, 1}m denote the string that indicates the difference between c∗ and f , i.e., the i-th bit of e
is b(i) ⊕ c∗(x(i)) for every i ∈ [m]. Using the best concept c∗, a program dX that describes X, and
the string e that indicates an “error”, we can describe the string X ◦ b by the following procedure:
(1) compute X, (2) compute b∗ = c∗(x(1)) · · · c∗(x(m)) by applying c∗ to each input x(i) contained
in X, and (3) compute b (and output X ◦ b) by taking bit-wise XOR between b∗ and e. The length
of the description of this procedure is bounded above by

|dX |+ |c∗|+ |(a description of e)|+O(1) ≤ s+ ℓC (n) + (1− Ω(ϵ2)) ·m,

with high probability, where ℓC (n) is the length of the representation of the n-input functions in
C . Therefore, ∆ = s′ − s is at most ℓC (n) + (1− Ω(ϵ2)) ·m in a “correlative” case.

Thus, if ∆ ≈ m holds with high probability in a “random” case, then the algorithm distinguishes
a “random” case from a “correlative” case by taking sufficiently large m with respect to n, ℓC (n),
and ϵ−1. It seems reasonable to expect that ∆ ≈ m because b is a truly random string of m bits
selected independently of X. However, in general, this might not hold for the following two technical
reasons. First, we need nearly m bits to describe b with high probability; however, such b might
help generate X in a time-bounded setting. Second, we must choose a time bound t′ larger than
t to ensure the upper bound on ∆ in a “correlative” case, and this might also reduce the cost of
generating X.

To analyze the case in which ∆ becomes large, we consider the expected value of the com-
putational depth of samples. Antunes, Fortnow, van Melkebeek, and Vinodchandran [AFvV06]
introduced the notion of the t-time-bounded computational depth of x ∈ {0, 1}∗ (where t ∈ N),
which is defined as Kt(x)−K(x). Hirahara [Hir21] extended this notion to the (t, t′)-time-bounded
computational depth of x ∈ {0, 1}∗ (where t, t′ ∈ N with t′ > t), which is defined as Kt(x)−Kt′(x).
Here, we further generalize these notions as follows:

Definition 1 (Sampling-depth functions). Let t, t′ ∈ N such that t′ > t. For a class D of example

distributions, we define a (t, t′)-sampling-depth function sdt,t
′

D = {sdt,t
′

D,n}n∈N where sdt,t
′

D,n : N→ R≥0
by

sdt,t
′

D,n(m) = max
D∈D

EXD

[
Kt(XD)−Kt′(XD)

]
,

where XD = x(1) ◦ · · · ◦ x(m), and each x(i) is selected identically and independently according to D.

We verify that if the sampling depth of example distributions is small, then ∆ is large. We
remark that ∆ could become small because (i) the random string b and (ii) the larger time bound
t′(> t) could help generate X. However, if the sampling depth of the example distribution is small
for t and t′, the second case does not occur because Kt′(X) is close to Kt(X) with high probability.
To show that the first case does not occur, we apply the weak symmetry of information, proved by
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Hirahara [Hir21] under the assumption that NP is easy on average. Informally speaking, the weak
symmetry of information states that for any time bound t ∈ N and string X, and for a random
string b, Kt(X ◦ b) is larger than Kt′(X) + |b| for some large t′ > t with high probability over the
choice of b. By the weak symmetry of information and the small sampling depth of the example
distribution, we can show that Kt′(X ◦ b) is large compared to Kt(X) + |b|, i.e., the additional
random string b does not help generate X so much.

To show Theorem 1, we will also observe that the sampling-depth function of a P/poly-samplable
distribution is logarithmically small. Roughly speaking, this follows from the fact that samples
selected according to a P/poly-samplable distribution have nearly optimal encoding with an efficient
decoder, which can be proved using the techniques developed in [AF09, AGvM+18, Hir21]. In
other words, the term E[Kt(XD)] in the definition of a sampling-depth function is nearly close to
mH(D) ≈ E[K(XD)] for a sufficiently large t, where H(D) is the entropy of D.

2.2 Oracle Separation

In this subsection, we present our proof ideas for Theorems 2 and 3.
Before presenting our key idea to show Theorem 3, we first explain the idea applied in [Imp11]

and the reason why it is not sufficient for the improved lower bound 2Ω(n/ logn).
The oracle O constructed in [Imp11] consists of the following two oracles: a random permutation

F = {Fn}n∈N, where Fn : {0, 1}n → {0, 1}n, and a restricted NP-oracle A. The oracle A takes a
nondeterministic oracle machine M?, x ∈ {0, 1}∗, and 1T

4
, where T ∈ N, as input and simulates

MF+A(x) in T steps. We remark that the simulation overhead T 4 in A is crucial for preventing
circular calls for A. The purpose of F is to make UP∩coUP hard by considering its inverting problem,
and the purpose of A is to make DistNP easy on average in the relativized world. A challenging
task in the construction is to preserve the worst-case hardness of NP, even in the presence of the
restricted NP-oracle A.

To satisfy this requirement, the key idea applied in [Imp11] is to let A reveal the values of F
gradually according to the time bound T . The execution of a nondeterministic machine MO is
represented as a disjunctive normal form (DNF) formula in variables Fx,y for x, y ∈ {0, 1}∗ with
|x| = |y| (referred to as matching variables), which expresses the connection specified by F (i.e.,
Fx,y = 1 iff F(x) = y). Impagliazzo’s idea is to apply random restrictions to these matching variables
repeatedly on the choice of F , i.e., to determine the values of F in multiple steps. In the execution of
A, we determine the disclosure levels for F as follows. On input (M,x, 1T

4
), A applies only the first

i := 2−1 log log T restrictions to the DNF formula ϕM corresponding to M?(x) (where i is selected
so that circular calls for A will not occur). If ϕM becomes a constant by these restrictions, then
A returns the same constant; otherwise, A returns “?”. We remark that, whenever A(M,x, 1T

4
)

returns some constant, the answer by A is consistent with the answer of MO(x) executed in T steps.
To solve the NPO problem LO determined by a polynomial-time nondeterministic machine MO on
average, we query (M,x, 1T

4
) to A for an input x and a sufficiently large T with respect to the

time bound of M and return the answer from A. When the instance x is selected by some efficient
sampler SO, SO cannot access F at high disclosure levels with high probability, and the instance
x is independent of such values of F . In this case, the average-case easiness for NP follows from
the switching lemma for DNFs on matching variables. Roughly speaking, the lemma shows that
the output of any small depth DNF formula on matching variables is fixed to a constant with high
probability by applying a random restriction. Since the simulation of M by A is regarded as the
application of a random restriction to ϕM , the switching lemma guarantees that the value of ϕM is
determined with high probability, and it must be the correct answer for LO. Meanwhile, inverting
F remains hard in the worst case as long as the inverting algorithms do not have sufficient resources
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to fully access F .
The bottleneck in the above-mentioned construction lies in the bad parameters of the switching

lemma for matching variables. Let N be the number of unassigned entries of Fn (for some n ∈ N)
at some stage when selecting random restrictions. To obtain the nontrivial bound on the failure
probability of A (i.e., the probability that ϕM does not become a constant by a random restriction)
by applying the switching lemma for matching variables, we need to additionally assign at least
N −

√
N entries of Fn. To obtain the lower bound t(n) = 2Ω(n/ logn) in the result, we need to

apply such random restrictions imax(n) := 2−1 log log t(n) times to prevent t(n)-time algorithms
from accessing all random restrictions (i.e., full access to F) by A. In these settings of parameters,
all the values of F are assigned before applying random restrictions imax(n) times. In other words,
t(n)-time algorithms can access to all the information about F by A, which is sufficient to invert
F efficiently.

Switching Lemma on General Domains

Now, we present the key idea for improving the lower bound. In this section, for simplicity, we focus
on the case of separation from DistNP.

The key idea for the improvement is to apply a switching lemma on general domains instead of
the switching lemma for matching variables, where the variables are separated into several blocks
and take different alphabets in different blocks. The size of the alphabets and the probability of
random restrictions also vary among the blocks. We first present the details of the switching lemma
and then explain the oracle construction and the importance of large alphabets.

Let Σ be a finite set of alphabets. For a variable x that takes a value in Σ, we define a literal on
x as a condition taking either of the following forms for some a ∈ Σ: (i) x = a or (ii) x ̸= a. Using
these generalized literals, we define DNFs, conjunctive normal form formulas (CNFs), and circuits
of general domains as the usual ones of a binary domain.

For p ∈ [0, 1] and a set V of variables on Σ, we define a p-random restriction ρ : V → Σ ∪ {∗}
by the following procedure. First, we select a random subset S ⊆ V of size ⌊p|V |⌋ uniformly at
random. Then, we set ρ(x) = ∗ (which represents “unassigned”) for x ∈ S and assign a uniformly
random value ρ(x) from Σ for each x ∈ V \ S. For partial assignments ρ1 to variables V1 and ρ2 to
variables V2, we use the notation ρ1ρ2 to represent the composite restriction to V1 ∪ V2. Then, our
technical lemma is stated as follows.

Lemma 2. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint sets
of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-random
restriction to Vi, where pi ∈ [0, 1]. Then, for any t-DNF ϕ on the variables in V1 ∪ . . . ∪ Vm and
k ∈ N, we have

Pr
ρ1,...,ρm

[ϕ|ρ1...ρm is not expressed as k-CNF ] ≤ O

(
mt ·max

i∈[m]
pi|Σi|2

)k

.

Tight Separation between UP ∩ coUP and DistNP

Here, we present the oracle construction for separating UP∩ coUP and DistNP and explain why large
alphabets on the switching lemma are important for the tight lower bound t(n) = 2Ω(n/ logn).

In our construction, an oracle O consists of two oracles V and A, where V makes UP∩ coUP hard
andAmakes DistNP easy on average in the relativized world. Further, V andA are determined by the
internal random function f = {fn}n∈N, where fn : {0, 1}n → Σn, and Σn is a subexponentially large
alphabet in n. For each n ∈ N, we select the random function fn by repeatedly applying p(n)-random
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restrictions imax(n) := Θ(log log t(n)) times and determine the disclosure levels from 1 to imax(n)
(i.e., full access to fn) on the execution of A. We define V by V(x, y) = 1 if F (x) = y; otherwise,
V(x, y) = 0. We also define the restricted NP oracle A similarly to the previous construction. The
easiness of DistNP follows from the switching lemma on general domains (Lemma 2).

In our oracle construction, computing fn is hard for t(n)-time algorithms because any t(n)-time
algorithm cannot obtain any information of f of the highest disclosure level from A by the choice of
imax(n). In fact, we can obtain the lower bound close to |Σn| on the time complexity of computing
fn, even with access to V. The lower bound for UPO∩coUPO holds because computing fn is reducible
to the following language LO in UPO ∩ coUPO:

LO = {(x, i) : n ∈ N, x ∈ {0, 1}n, i ∈ [n], and ∃y ∈ Σn s.t. fn(x) = y and ⟨y⟩i = 1},

where ⟨y⟩ denotes a (proper and unique) binary representation of y ∈ Σn.
Next, we explain the importance of large alphabets. It is natural to attempt to use a standard

switching lemma on binary alphabets because the parameters achievable by such a switching lemma
are significantly better than those achievable by a switching lemma on matching variables. We
explain below why this approach is insufficient to obtain the tight lower bound. Let fn : {0, 1}n →
{0, 1}poly(n) be a random function constructed by repeatedly applying the standard p(n)-random
restrictions on each bit of fn(x) for every x ∈ {0, 1}n. Note that the output length of fn must be at
most poly(n) in order to make sure that LO ∈ UPO ∩ coUPO. There are two conflicting requirements
on the probability p(n).

On one hand, to obtain the lower bound t(n) = 2Ω(n/ logn), we need to let p(n) be subex-
ponentially small for the following reasons. Consider the case in which an NPO problem LO is
determined by a polynomial-time nondeterministic machine MO, and query MO to A for some
time bound T = poly(n) to solve LO on average. For each instance x ∈ {0, 1}n, MO(x) may ac-
cess fn′ by A for some n′ ≈ t−1(T ) such that imax(n

′) (= Θ(log log t(n′))) is slightly larger than
the disclosure level Θ(log log T ), which is accessible to M?. In this case, random restrictions for
fn′ are applied in the simulation of MO(x) by A. To bound the failure probability of A above
by 1/q(n) for some q(n) = poly(n) by the switching lemma, we need to select p(n) to satisfy
p(n′) ≈ p(t−1(T )) = p(t−1(poly(n))) ≤ 1/q(n). To satisfy this requirement, we need to select a
subexponentially small p(n).

On the other hand, p(n) must be at least 1/poly(n) in order to show the worst-case lower bound
on the time complexity of LO. In general, it is possible to obtain approximately 2dn as the lower
bound on the time complexity of computing fn, where dn is the maximum number of ∗ contained
in fn(x) for some x ∈ {0, 1}n at the (imax(n)− 1) disclosure level. However, when we apply random
restrictions for binary variables with a sub-polynomially small probability p(n) ≤ n−ω(1), it holds
that dn = o(n/ log n) with high probability; hence, we cannot obtain the desired lower bound
2Ω(n/ logn) by just using a switching lemma on binary alphabets.

The switching lemma on general domains insists that the size of the alphabets only affects the
probability of a random restriction multiplicatively. Thus, we can select subexponentially many
alphabets even for subexponentially small p(n) without affecting the failure probability. This yields
sufficient ∗s in fn(x) at the (imax(n) − 1) disclosure level, and interestingly, it yields the tight
subexponential lower bound for UP ∩ coUP.

We remark that we can extend the above-mentioned argument to the case of the separation
between UP ∩ coUP and DistPH by extending Lemma 2 to constant-depth circuits as the standard
switching lemma.
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Extending the Hardness from UP ∩ coUP to Learning

To extend the hardness result to learning, we change the oracle V in the above-mentioned con-
struction to a new oracle F determined as follows. In addition to the random function f =
{fn}n∈N, where fn : {0, 1}n → Σn, we select an internal random function g = {gn}n∈N, where
gn : {0, 1}n × {0, 1}n → {0, 1} by repeatedly applying random restrictions. Intuitively, we use g
as the target function gz(x) := g(z, x) for each z ∈ {0, 1}∗ and f as the pair of locks and keys to
access g through the oracle F . Specifically, we define the oracle F by F(z, y, x) = gz(x) if f(z) = y;
otherwise, F(z, y, x) = 0.

Then, we construct an oracle O consisting of F and the restricted NP oracle A. The average-case
easiness of DistNP follows from the switching lemma on general domains in a similar way, where we
identify each entry fn(z) (for z ∈ {0, 1}n) with a variable on Σn and identify each entry g(z, x) (for
z, x ∈ {0, 1}n) with a binary variable.

Now, we present the proof sketch of the hardness of learning. We consider the following concept
class CO = {hz,y : hz,y(x) = F(z, y, x) for z ∈ {0, 1}n and y ∈ Σn}. Since a worst-case learner L
for CO learns F(z, y, x) for all z ∈ {0, 1}n and y ∈ Σn, such an L must learn gz for all z ∈ {0, 1}n.
Note that the learner L can access F but not gz through F unless the key f(z) is identified.

We will show the upper bound on the probability that L succeeds in learning CO without
sufficient resources for full access to f and g by A. There are the following two cases for L: (1) L
finds f(z) for all z with notable probability, or (2) L learns gz without identifying f(z) for some z.
In the former case, L essentially succeeds in computing f , which must be hard in the worst case, as
discussed in the case of UP ∩ coUP. In the latter case, if we consider the case of learning gz on the
uniform distribution over unrevealed entries of gz at the (imax(n)−1) disclosure level, then L cannot
distinguish the value of gz with a truly random value on the support of the example distribution
even with access to A. Thus, L cannot learn gz even weakly on such an example distribution. In
fact, we can show that there exists an index z with high probability such that the value f(z) is
unassigned and many ∗s remain in the truth table of gz at the (imax(n)− 1) disclosure level. This
yields the subexponential lower bound of weak learning on almost-uniform distributions.

2.3 Organization of this Paper

The remainder of this paper is organized as follows. In Section 3, we introduce the preliminaries
for our formal arguments. In Section 4, we present our agnostic learner and analyze its capability.
In Section 5, we present the switching lemma on general domains. By applying the switching
lemma, we show the oracle separation between UP∩ coUP and DistPH in Section 6 and that between
worst-case learning and DistPH in Section 7.

3 Preliminaries

For each n ∈ N, let [n] = {1, . . . , n}. For a distribution D, we use the notation x ← D to denote
a random sampling x according to D. For a finite set S, we also use the notation x ←u S to
denote the uniform sampling from S. For x ∈ {0, 1}∗, let D(x) ∈ [0, 1] be the probability that x is
generated according to D. For each distribution D and m ∈ N, let Dm denote the distribution of
x1 ◦ · · · ◦xm, where x1, . . . , xm ← D. For any distribution D, let H(D) denote the Shannon entropy
of D.

For a randomized algorithm A using r(n) random bits on an n-bit input, we use A(x; s) to refer
to the execution of A(x) with a random tape s for x ∈ {0, 1}n and s ∈ {0, 1}r(n).
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In this paper, we assume basic knowledge of probability theory, including the union bound,
Markov’s inequality, Hoeffding’s inequality, and the Borel–Cantelli lemma. We also use the following
concentration inequality to select a random subset. For correctness, we present the formal proof in
Appendix B.

Lemma 3. Let U be a universe of size N , and let Z ⊆ U be an arbitrary subset of size M (≤ N).
Let S ⊆ U be a random subset of size n. Then, for any γ ∈ (0, 1), we have

Pr
T

[∣∣∣∣|S ∩ Z| − M

N
n

∣∣∣∣ > γ · M
N

n

]
< 2e−2γ

2·(M
N

)2·n.

3.1 Learning Models

A concept class is defined as a subset of Boolean-valued functions {f : {0, 1}n → {0, 1} : n ∈ N}.
Roughly speaking, the goal of learners is to learn all functions in a concept class from passively
collected data.

For any concept class C , we use the notation Cn to represent C ∩ {f : {0, 1}n → {0, 1}} for
each n ∈ N. We assume that every concept class C has a binary encoding of the target functions
and an evaluation C : {0, 1}∗ × {0, 1}∗ → {0, 1} satisfying C(f, x) = f(x) for each n ∈ N, f ∈ Cn,
and x ∈ {0, 1}n. In this paper, we consider only polynomially evaluatable concept classes, i.e.,
classes that have polynomial-size encodings and polynomial-time computable evaluation functions.
For every C , we use the notation ℓC to refer to a polynomial ℓC : N→ N such that each f ∈ Cn has
a binary encoding of length at most ℓC (n).

We also define a class of example distributions as a set of families D = {Dn}n∈N of distributions,
where Dn is a distribution on {0, 1}n. For any class D of example distributions and n ∈ N, we use
the notation Dn to represent Dn = {Dn : {Dm}m∈N ∈ D}.

Here, the PAC learning and agnostic learning models are defined as follows.

Definition 2 (PAC learning and agnostic learning [Val84, KSS94]). Let C be a concept class and
D be a class of example distributions. We say that a randomized oracle machine L, referred to as
an agnostic learner, agnostically learns C on D (with time complexity t : N× (0, 1]→ N and sample
complexity m : N× (0, 1]→ N) if L satisfies the following conditions:

1. L is given n ∈ N and an accuracy parameter ϵ ∈ (0, 1] as the input and given access to an
example oracle EX(f,D) determined by a (possibly randomized4) target function f : {0, 1}n →
{0, 1} and an example distribution D ∈ Dn.

2. For each access, EX(f,D) returns an example of the form (x, f(x)), where x is selected iden-
tically and independently according to D.

3. For all n ∈ N, ϵ ∈ (0, 1], randomized target functions f : {0, 1}n → {0, 1}, and example
distributions D ∈ Dn, the learner L outputs a circuit h : {0, 1}n → {0, 1} as a hypothesis that
is ϵ-close to f under D with probability at least 2/3, i.e., L satisfies the following condition:

Pr
L,EX(f,D)

[
LEX(f,D)(n, ϵ) outputs h such that Pr

f,x←D
[h(x) ̸= f(x)] ≤ optC ,f + ϵ

]
≥ 2/3,

where optC ,f = minc∗∈C Prf,x←D[c
∗(x) ̸= f(x)].

4In other words, we assume that each f(x) is associated with some distribution Dx on {0, 1}, and the outcome of
f(x) is selected according to Dx.
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4. L halts in time t(n, ϵ) with access to the example oracle at most m(n, ϵ) times in each case.

A PAC learner L (with time complexity t(n, ϵ) and sample complexity m(n, ϵ)) on D is defined
as a randomized oracle machine L satisfying the above-mentioned conditions 1, 2, and 4, as well
as condition 3, except that we only consider the case of f ∈ C , i.e., optC ,f = 0 (instead of all
randomized target functions).

We say that C is agnostic (resp. PAC) learnable in polynomial time on D if there is an agnostic
(resp. PAC) learner for C on D with time complexity t ≤ poly(n, ϵ−1). In addition, we say that C is
weakly learnable on D if there exists a PAC learner for C on D with some fixed accuracy parameter
ϵ ≤ 1/2− 1/poly(n) and time complexity t(n) ≤ poly(n).

We may grant a learner oracle access to a target function f , referred to as a membership query.

For a function s : N→ N, we define a concept class5 SIZE[s] of circuits by

SIZE[s] = {f : {0, 1}n → {0, 1}|n ∈ N and f is computable by an s(n)-size circuit}.

3.2 Average-Case Complexity Theory

We define a distributional problem as a pair of a language L ⊆ {0, 1}∗ and a distribution D =
{Dn}n∈N on instances where Dn is a distribution on {0, 1}n. We say that a distributional problem
(L,D) has an errorless heuristic algorithm A with failure probability at most ϵ : N→ (0, 1) if (1) A
outputs L(x) (:= 1l{x ∈ L}) or ⊥ (which represents “failure”) for every n ∈ N and x ∈ supp(Dn) in
poly(n) time, and (2) the failure probability that A(x) outputs ⊥ is bounded above by ϵ(n) for each
n ∈ N. We remark that an errorless heuristic algorithm never outputs an incorrect value ¬L(x) for
any x ∈ supp(D). We define a class AvgP of solvable distributional problems by

AvgP = {(L,D) : ∀p : poly,∃A : an errorless heuristic algorithm for (L,D) with error at most 1/p(n)}.

For a standard complexity class C (e.g., NP and PH), we also define its average-case extension DistC as
{(L,D) : L ∈ C, D is polynomial-time samplable}, where we say that D = {Dn}n∈N is polynomial-
time samplable if there exists a randomized sampling algorithm S such that S(1n) ≡ Dn for each
n ∈ N. Further details on the background can be found in a survey [BT06a] on average-case
complexity theory.

3.3 RRHS-Refutation

We remark that, for a randomized function f : {0, 1}n → {0, 1}, a concept class C , and a distribution
D on {0, 1}n, we define a correlation CorD(f,C ) ∈ [−1, 1] between f and C with respect to D by

CorD(f,C ) := max
c∈Cn

Ef,x←D

[
(−1)f(x) · (−1)c(x)

]
= 2 ·max

c∈Cn

Pr
f,x←D

[f(x) = c(x)]− 1.

The following is the formal description of correlative RRHS-refutation.

Definition 3 (Correlative RRHS-refutation). Let C be a concept class, m : N × (0, 1] → N be
a function, and D be a class of example distributions. We say that a randomized algorithm A
correlatively random-right-hand-side-refutes (correlatively RRHS-refutes) C with sample complexity
m on D if for any n ∈ N, ϵ ∈ (0, 1], and example distribution Dn ∈ Dn, A satisfies the following
conditions: on input n,∈ N, ϵ ∈ (0, 1), and m := m(n, ϵ) samples S =

(
(x(i), b(i))

)m
i=1

, where

x(i) ∈ {0, 1}n and b(i) ∈ {0, 1} for each i ∈ [m],

5SIZE[n2] is regarded as a complete problem for learning in the following sense: if SIZE[n2] is agnostic (resp. PAC)
learnable iff all polynomially evaluated classes are agnostic (resp. PAC) learnable by the simple padding argument.
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1. Soundness: if the samples S are selected identically and independently according to EX(f,Dn)
for a randomized function f such that CorDn(f,C ) ≥ ϵ, then

Pr
S,A

[A(n, ϵ, S) outputs “correlative”] ≥ 2/3;

2. Completeness: if the samples S are selected identically and independently according to EX(fR, Dn)
for a truly random function fR (i.e., each b(i) is selected uniformly at random), then

Pr
S,A

[A(n, ϵ, S) outputs “random”] ≥ 2/3.

We also say that C is correlatively RRHS-refutable with sample complexity m on D if there exists
a randomized algorithm that correlatively RRHS-refutes C with sample complexity m on D.

Theorem 5 ([KL18]). Let C be a concept class, and let D be a class of example distributions. If
C is correlatively RRHS-refutable on D with m(n, ϵ) samples in time T (n, ϵ), then C is agnostic

learnable on D with sample complexity O(m(n,ϵ/2)3

ϵ2
) and time complexity O(T (n, ϵ/2) · m(n,ϵ/2)2

ϵ2
).

3.4 GapMINKT

The approximation problem of computing the time-bounded Kolmogorov complexity is formally
defined as follows.

Definition 4 (GapτMINKT). For a function τ : N → N, GapτMINKT is a promise problem
(ΠY ,ΠN ) defined as follows:

ΠY =
{
(x, 1s, 1t) : Kt(x) ≤ s

}
,

ΠN =
{
(x, 1s, 1t) : Kτ(|x|+t)(x) > s+ log τ(|x|+ t)

}
.

Hirahara [Hir20] showed that the above problem is efficiently solvable if DistNP ⊆ AvgP.

Theorem 6 ([Hir20]). If DistNP ⊆ AvgP, then GapτMINKT ∈ pr-P for some polynomial τ .

Every algorithm A that solves GapτMINKT yields the approximation algorithm ApproxKτ simply
as follows. On input x ∈ {0, 1}∗ and 1t, where t ∈ N, ApproxKτ outputs the minimum s ∈ N such
that A(x, 1s, 1t) = 1. Since (x, 1s−1, 1t) is not a YES instance and (x, 1s, 1t) is not a NO instance
for such s, the following lemma is easily verified.

Lemma 1. If GapτMINKT ∈ pr-P, then there exists an algorithm ApproxKτ that is given (x, 1t),
where x ∈ {0, 1}∗, t ∈ N, and outputs an integer s ∈ N in polynomial time to satisfy

Kτ(|x|+t)(x)− log τ(|x|+ t) ≤ s ≤ Kt(x).

3.5 Weak Symmetry of Information

We introduce the following powerful tool available in Heuristica.

Theorem 7 (Weak symmetry of information [Hir21]). If DistNP ⊆ AvgP, then there exist polyno-
mials p0 and pw that, for any n,m ∈ N, t ≥ p0(nm), ϵ ∈ (0, 1], and x ∈ {0, 1}n, satisfy

Pr
r∼{0,1}m

[
Kt(x ◦ r) ≥ Kpw(t/ϵ)(x) +m− log pw(t/ϵ)

]
≤ ϵ.

In this paper, we use the notations p0 and pw to refer to the polynomials in Theorem 7.
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4 Agnostic Learning in Heuristica

In this section, we construct the agnostic learner based on DistNP ⊆ AvgP and prove Theorem 1.

4.1 Agnostic Learning on Shallow Sampling-Depth Distributions

We present the construction of the agnostic learner and show the correctness on distributions that
have shallow sampling-depth functions. We remark that sampling-depth functions of a distribution
and a class of distributions are defined as follows.

Definition 5 (Sampling-depth functions). Let t, t′ ∈ N such that t′ > t. For a family of distributions

D, we define a (t, t′)-sampling-depth function sdt,t
′

D = {sdt,t
′

D,n}n∈N, where sdt,t
′

D,n : N→ R≥0 by

sdt,t
′

D,n(m) = EX←Dm
n

[
Kt(X)−Kt′(X)

]
.

We also extend the above-mentioned notion to a class of distributions. For a class D of families of

distributions, we define a (t, t′)-sampling-depth function sdt,t
′

D = {sdt,t
′

D,n}n∈N, where sdt,t
′

D,n : N→ R≥0
by

sdt,t
′

D,n(m) = max
D∈D

sdt,t
′

D,n(m).

Our technical theorem is stated as follows.

Theorem 8. For any polynomial τ : N → N, there exist polynomials pτ (n,m, t) and p′τ (n,m, t)
satisfying the following. If DistNP ⊆ AvgP, then there exists a learner L that agnostically learns
C on D in time poly(n,m(n, ϵ/2), t(n, ϵ/2), ϵ−1) with sample complexity O(ϵ−2 ·m(n, ϵ/2)3), where
m, t : N × (0, 1] → N are arbitrary functions satisfying the following conditions: for all sufficiently
large n and for all ϵ ∈ (0, 1],

t(n, ϵ) ≥ p0(nm(n, ϵ)2), and

m(n, ϵ) >
8

ϵ2

(
n+ ℓC (n) + 6sd

t(n,ϵ),pτ (n,m(n,ϵ),t(n,ϵ))
D,n (m(n, ϵ)) + log p′τ (n,m(n, ϵ), t(n, ϵ))

)
.

Proof. Let m := m(n, ϵ) and t := t(n, ϵ). First, we specify the polynomials pτ and p′τ . Fix
x(1), . . . , x(m) ∈ {0, 1}n and f ∈ Cn arbitrarily. Let X = x(1) ◦ · · · ◦ x(m). Then, we can compute
f(x(1)), . . . , f(x(m)) in timem·poly(n) fromX, the representation of f , and the evaluation algorithm
for C (where we use the assumption that ℓC (n) ≤ poly(n) and C is polynomially evaluatable). For
any b ∈ {0, 1}m such that |{i ∈ [m] : bi = f(x(i))}| ≥ (1/2 + ϵ/4)m, we define e ∈ {0, 1}m
by ei = bi ⊕ f(x(i)). Then, e is reconstructed from H2(1/2 + ϵ/4)m bits in time poly(n,m) by
lexicographic indexing among binary strings of the same weight, where H2 is the binary entropy
function. Therefore, we can take a polynomial t′(n,m, t) such that, for any sufficiently large n,

Kt′(n,m,t)(X ◦ b) ≤ Kτ(nm+t)(X) + ℓC (n) + n+H2(1/2 + ϵ/4)m

≤ Kτ(nm+t)(X) + ℓC (n) + n+ (1− ϵ2/8) ·m, (1)

where we applied the Taylor series of H2 in a neighborhood of 1/2, i.e., for any δ ∈ [−1/2, 1/2],

H2(1/2 + δ) = 1− 1

2 ln 2

∞∑
i=1

(2δ)2i

i(2i− 1)
≤ 1− 2

ln 2
δ2 ≤ 1− 2δ2.
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Now, we define the polynomials pτ and p′τ by

pτ (n,m, t) = pw(6τ(nm+ t′(n,m, t))), and

p′τ (n,m, t) = pw(6τ(nm+ t′(n,m, t)))τ(nm+ t′(n,m, t))τ(nm+ t)

Next, we construct a refutation algorithm R for C as follows. On input n ∈ N, a set S =(
(x(1), b(1)), . . . , (x(m), b(m))

)
of samples, and ϵ ∈ (0, 1], R computes t and t′ := t′(n,m, t), executes

s← ApproxKτ (X, 1t) and s′ ← ApproxKτ (X ◦ b, 1t
′
) for X = x(1) ◦ · · · ◦ x(m) and b = b(1) ◦ · · · ◦ b(m),

and finally outputs “correlative” if s′ − s ≤ m + ℓC (n) + n + log τ(nm + t) −mϵ2/8 and outputs
“random” otherwise.

We can easily verify that R halts in polynomial time in n,m, and t. We now verify the correctness
of R. Let f denote a target randomized function for refutation.

In “correlative” cases, there exists a function f∗ ∈ Cn such that

Pr
x←D,f

[f(x) = f∗(x)] =
1

2
+

CorD(f,C )

2
≥ 1

2
+

ϵ

2
.

According to the Hoeffding inequality, the probability that |{i ∈ [m] : b(i) = f∗(x(i))}| <
1/2+ ϵ/4 holds is less than exp(−2m · (ϵ/4)2) ≤ exp(−n · 8/ϵ2 · ϵ2/8) ≤ 1/3 over the choice of S for
any sufficiently large n ∈ N. In such cases, by Lemma 1 and inequality (1), we have

s′ ≤ Kt′(n,m,t)(X ◦ b)
≤ Kτ(nm+t)(X) + ℓC (n) + n+ (1− ϵ2/8) ·m
≤ s+ log τ(nm+ t) + ℓC (n) + n+ (1− ϵ2/8) ·m,

and
s′ − s ≤ m+ ℓC (n) + n+ log τ(nm+ t)−mϵ2/8.

Thus, R(n, S, ϵ) outputs “correlative” with a probability of at least 2/3.
In “random” cases, b is selected uniformly at random from {0, 1}m. By the assumption that

DistNP ⊆ AvgP, t ≥ p0(nm · m), and the weak symmetry of information (Theorem 7), for any
X ∈ {0, 1}nm, we have

Pr
b

[
Kτ(nm+t′(n,m,t))(X ◦ b) ≥ Kpw(6τ(nm+t′(n,m,t)))(X) +m− log pw(6τ(nm+ t′(n,m, t)))

]
≤ 1/6.

Let D ∈ D be an arbitrary example distribution. By Markov’s inequality, we can show that

Pr
X

[
Kt(X)−Kpτ (n,m,t)(X) > 6sd

t,pτ (n,m,t)
D,n (m)

]
≤

sd
t,pτ (n,m,t)
D,n (m)

6sd
t,pτ (n,m,t)
D,n (m)

≤ 1

6
.

Thus, the following inequality holds with a probability of at least 1− (1/6 + 1/6) = 2/3:

s′ ≥ Kτ(nm+t′(n,m,t))(X ◦ b)− log τ(nm+ t′(n,m, t))

≥ Kpw(6τ(nm+t′(n,m,t)))(X) +m− log pw(6τ(nm+ t′(n,m, t)))τ(nm+ t′(n,m, t))

≥ Kpτ (n,m,t)(X) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ Kt(X)− (Kt(X)−Kpτ (n,m,t)(X)) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ s− (Kt(X)−Kpτ (n,m,t)(X)) +m− log p′τ (n,m, t) + log τ(nm+ t)

≥ s− 6sd
t,pτ (n,m,t)
D,n (m) +m− log p′τ (n,m, t) + log τ(nm+ t).

15



By arranging the above, we get

s′ − s ≥ m− 6sd
t,pτ (n,m,t)
D,n (m)− log p′τ (n,m, t) + log τ(nm+ t).

By the assumption that

m >
8

ϵ2

(
n+ ℓC (n) + 6sd

t,pτ (n,m,t)
D,n (m) + log p′τ (n,m, t)

)
,

we have(
m− 6sd

t,pτ (n,m,t)
D,n (m)− log p′τ (n,m, t) + log τ(nm+ t)

)
−
(
m+ ℓC (n) + n+ log τ(nm+ t)−mϵ2/8

)
= mϵ2/8−

(
n+ ℓC (n) + 6sd

t,pτ (n,m,t)
D,n (m) + log p′τ (n,m, t)

)
> 0.

Thus, s′− s > m+ ℓC (n)+n+log τ(nm+ t)−mϵ2/8 holds, and R outputs “random” in such cases.
Therefore, R(n, S, ϵ) outputs “random” with a probability of at least 2/3

By the above-mentioned argument, R correlatively RRHS-refutes C on D in time poly(n,m, t)
with m samples. Thus, by Theorem 5, we conclude that C is agnostic learnable on D in time

O

(
poly(n,m(n, ϵ/2), t(n, ϵ/2)) · m(n, ϵ/2)2

ϵ2

)
= poly(n,m(n, ϵ/2), t(n, ϵ/2), ϵ−1),

with O(m(n,ϵ/2)3

ϵ2
) samples.

4.2 Sampling-Depth of P/poly-Samplable Distributions

Next, we observe that P/poly-samplable distributions have a logarithmically small sampling depth.
Then, we use Theorem 8 to establish the agnostic learnability on P/poly-samplable distributions.

Definition 6 (P/poly-samplable distributions). For functions t, a : N → N, we define a class
Samp[t(n)]/a(n) of example distributions as follows: Dn ∈ Samp[t(n)]/a(n)n iff there exist a random-
ized TM M and advice zn ∈ {0, 1}a(n)−|M | such that Dn is statistically identical to the distribution
of outputs of M(1n; zn) in t(n) steps.

To analyze the sampling depth of Samp[t(n)]/a(n), we introduce the following useful lemmas.

Lemma 4 ([Hir21, Corollary 9.8]). If DistNP ⊆ AvgP, then there exists a polynomial p : N×N→ N
such that for any t, a : N→ N, n,m ∈ N, Dn ∈ Samp[t(n)]/a(n)n, and x ∈ supp(Dm

n ),

Kp(t(n),m)(x) ≤ − logDm
n (x) +O(logm) +O(log t(n)) + a(n).

The following holds by the noiseless coding theorem.

Lemma 5 (cf. [LV19, Theorem 8.1.1]). For any distribution D, Ex←D[K(x)] ≥ H(D).

Now, we show the upper bound on the sampling depth of Samp[t(n)]/a(n).

Lemma 6. If DistNP ⊆ AvgP, then there exists a polynomial p′0 : N × N → N such that for any
t, a : N→ N, n,m ∈ N, the following expression holds: for all t′ ≥ p′0(t(n),m),

sdt
′,∞
Samp[t]/a,n(m) ≤ O(logm+ log t(n)) + a(n).
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In this paper, we use the notation p′0 to refer to the polynomial in Lemma 6.

Proof. Fix D ∈ Samp[t(n)]/a(n) arbitrarily. Let p′0 denote the polynomial p in Lemma 4. Assuming
that DistNP ⊆ AvgP and Lemma 4, for each m ∈ N, we have

Ex←Dm
n
[Kt′(x)] ≤ Ex←Dm

n
[Kp′0(t(n),m)(x)]

≤ Ex←Dm
n
[− logDm

n (x)] +O(logm+ log t(n)) + a(n)

≤ H(Dm
n ) +O(logm+ log t(n)) + a(n)

≤ Ex←Dm
n
[K(x)] +O(logm+ log t(n)) + a(n).

Thus, we conclude that

sdt
′,∞
D,n (m) = Ex←Dm

n
[Kt′(x)]− Ex←Dm

n
[K(x)]

≤ O(logm+ log t(n)) + a(n).

Theorem 8 and Lemma 6 imply the following corollary, which is the formal statement of Theo-
rem 1.

Corollary 1. If DistNP ⊆ AvgP, then for any polynomials s, ts, as : N → N, SIZE[s(n)] is agnostic
learnable on Samp[ts(n)]/as(n) in polynomial time with sample complexity O(ϵ−8+∆(n + s(n) +
as(n))

3+∆), where ∆ > 0 is an arbitrary small constant.

We remark that the time complexity ts for the sampling algorithms above affects only the time
complexity of the agnostic learner.

Proof. Let ∆ > 0 be an arbitrary small constant. By the assumption that DistNP ⊆ AvgP and
Theorem 6, there exists a polynomial τ such that GapτMINKT ∈ pr-P. Thus, we can apply
Theorem 8.

We define the functions m, t : N× (0, 1]→ N by

m(n, ϵ) = (ϵ−2 log ϵ−1 · (n+ s(n) log s(n) + as(n)))
1+∆, and

t(n, ϵ) = max{⌈p0(n ·m(n, ϵ)2)⌉, ⌈p′0(ts(n),m(n, ϵ))⌉}.

Obviously, t(n, ϵ) > p0(n ·m(n, ϵ)2) and t(n, ϵ) > p′0(ts(n),m(n, ϵ)) hold. By Lemma 6, we get

sd
t(n,ϵ),pτ (n,m(n,ϵ),t(n,ϵ))
Samp[ts]/as,n

(m(n, ϵ)) ≤ sd
t(n,ϵ),∞
Samp[ts]/as,n

(m(n, ϵ))

≤ O(logm(n, ϵ) + log ts(n)) + as(n).

It is easily verified that t(n, ϵ) ≤ poly(n, s(n), ts(n), as(n), ϵ
−1) = poly(n, ϵ−1) and

log p′τ (n,m(n, ϵ), t(n, ϵ)) ≤ O(log n+ log ϵ−1 + logm(n, ϵ)).

Therefore, for any sufficiently large n ∈ N, we have

8

ϵ2

(
n+O(s(n) log s(n)) + 6sd

t(n,ϵ),pτ (n,m(n,ϵ),t(n,ϵ))
Samp[ts]/as,n

(m(n, ϵ)) + log p′τ (n,m(n, ϵ), t(n, ϵ))
)

≤ ϵ−2 ·O(n+ s(n) log s(n) + log ϵ−1 + as(n) + logm(n, ϵ))

≤ O(ϵ−2 log ϵ−1(n+ s(n) log s(n) + as(n)))

≤ m(n, ϵ).
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Thus, by Theorem 8, we conclude that SIZE[s(n)] is agnostic learnable in time

poly(n,m(n, ϵ/2), t(n, ϵ/2), ϵ−1) = poly(n, s(n), ϵ−1, ts(n), as(n)) = poly(n, ϵ−1).

The sample complexity is at most O(ϵ−2m(n, ϵ/2)3), which is bounded above by O(ϵ−8+∆′
(n+s(n)+

as(n))
3+∆′

) for an arbitrary small constant ∆′ > 0 by selecting a sufficiently small ∆ compared to
∆′ in the above-mentioned argument.

Remark. In fact, it is not clear whether several techniques (e.g., the weak symmetry of information)
developed in [Hir20, Hir21] can be relativized when we only assume that DistNP ⊆ AvgP, owing to the
pseudorandom generator construction presented in [BFP05]. However, all of them can be relativized
under the stronger assumption that DistΣp

2 ⊆ AvgP (refer to Appendix A). Thus, Theorem 8 and
all the results in this section can be also relativized under the assumption that DistΣp

2 ⊆ AvgP.
Furthermore, when we restrict the target to the efficient agnostic learning on P/poly-samplable
distributions (i.e., Theorem 1), we can obtain the same learnability result by using only relativized
techniques from the following observations. First, the same upper bound of the sampling-depth
function in Lemma 6 is obtained by applying the encoding developed in [AF09, AGvM+18] with
additional random strings, and such additional random strings are available for learners. Second,
the same upper bound of the sampling-depth function in Lemma 6 holds for t′ = ∞; in this case,
we can apply the symmetry of information for resource-unbounded Kolmogorov complexity instead
of the weak symmetry of information in Theorem 8. Third, since the upper bound in Lemma 6 is
logarithmically small, the algorithm for GapMINKT in [Hir18] with a worse approximation factor
is sufficient, which can be relativized.

5 Switching Lemma on General Domains

In this section, we extend the switching lemma of a binary domain to general domains. Our proof
mainly follows the proof presented by Razborov [Raz93].

We remark that, for p ∈ [0, 1] and a set V of variables on alphabets Σ, we define a p-random
restriction ρ : V → Σ ∪ {∗} by the following procedure. First, we select a random subset S ⊆ V
of size ⌊p|V |⌋ uniformly at random. Then, we set ρ(x) = ∗ for x ∈ S and assign a random value
ρ(x)←u Σ for each x ∈ V \ S.

Lemma 2. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint sets
of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-random
restriction to Vi, where pi ∈ [0, 1]. Then, for any t-DNF ϕ on the variables in V1 ∪ . . . ∪ Vm and
k ∈ N, we have

Pr
ρ1,...,ρm

[ϕ|ρ1...ρm is not expressed as k-CNF ] ≤ O

(
mt ·max

i∈[m]
pi|Σi|2

)k

.

Proof. Each literal in ϕ of the form (x ̸= a) (for some a ∈ Σi) is expressed as
∨

b∈Σi:b ̸=a(x = b).
Note that if we apply this transformation to all literals of the form (x ̸= a) in ϕ and expand them
to obtain a DNF formula, these operations do not change the width of the original DNF ϕ. Thus,
without loss of generality, we can assume that ϕ does not contain any literal of the form (x ̸= a).

For each i ∈ [m], let Mi = |Σi|, Ni = |Vi|, and ni = ⌊piNi⌋. To prove the lemma, we assume
that ϕ|ρ1...ρm is not expressed as k-CNF and show that ρ = ρ1 · · · ρm has a short description for
estimating the number of such restrictions.

We can select a partial assignment π to V1 ∪ . . . ∪ Vm of size at least k + 1 such that ϕ|ρπ ≡ 0,
but for any proper subrestriction π′ of π, ϕ|ρπ′ ̸≡ 0 (otherwise, ϕ|ρ must be expressed as k-CNF).
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We also select subrestrictions πj of π and restrictions σj inductively on j ≤ s (≤ k) by the following
procedure. Assume that (π1, σ1), . . . , (πi−1, σj−1) have been determined, and π1 · · ·πj−1 ̸≡ π; if not,
we complete the procedure. Since π1 · · ·πj−1 is a proper subrestriction of π, we have ϕ|ρπ1···πj−1 ̸≡ 0,
and we can select the first term τj (in some fixed order) such that the value of τj is not determined
by ρπ1 · · ·πj−1. Since τj |ρπ ≡ 0, there must exist a set Sj of variables that are contained in
τj , unassigned by π1 · · ·πj−1 but assigned by π. We define σj by a partial assignment to Sj ,
which is consistent with the literals in τj . We also define πj by the corresponding subrestriction
of π to Sj . This procedure is repeated until π1 · · ·πj ≡ π holds; let s denote the index j at the
end. For convenience, we trim Ss (and πs, σs correspondingly) in some arbitrary manner to satisfy
k = |S1 ∪ · · · ∪ Ss|.

For each j ∈ [s], let Pj denote the set of indices in [t], which indicates the position of the
variables in Si among the literals in τj , and let Qj denote Qj = (πj(v1), . . . , πj(v|Pj |)), where vj′ is
the j′-th variable indicated by Pj . For each i ∈ [m], let ki be the number of variables in Vi that are
assigned by σ1 . . . σs, i.e., we have k =

∑
i ki.

We claim that ρ can be reconstructed from the composite restriction ρ′ = ρσ1 · · ·σs, P1, . . . , Ps,
and Q1, . . . , Qs by the following procedure: (0) let j = 1; (1) find the first term not to become
0 by ρ′, which must be τj by the construction; (2) obtain σj and πj from ρ′, Pj , and Qj ; (3) let
ρ′ := ρπ1 . . . πjσj+1 . . . σm and j := j+1, and repeat (1) and (2) to obtain σj and πj ; (4) repeat (3)
until all of σ1, . . . , σs are obtained; then, ρ can be reconstructed from ρ′ and σ1, . . . , σs.

Therefore, ρ is represented by P1, . . . , Ps, Q1, . . . , Qs, and the composite restriction ρ′ that has
(ni − ki) ∗s on Vi for each i ∈ [m]. For each choice of k1, . . . , km such that k =

∑
i ki and each

i ∈ [m], the possible choice of Pi is at most tki , and the possible choice of Qi is at most Mki
i . Thus,

the possible number of such expressions is at most

C ·
∑

ki:k=
∑

i ki

∏
i∈[m]

(
Ni

ni − ki

)
·MNi−ni+ki

i ·tki ·Mki
i = C ·

∑
ki:k=

∑
i ki

tk ·
∏
i∈[m]

(
Ni

ni − ki

)
·MNi−ni+ki

i ·Mki
i ,

for some absolute constant C.
If maxi∈[m] ni/Ni ≥ 1/2, then the lemma holds trivially because 2maxi∈[m] pi ≥ 1. Therefore,

we can assume that ni/Ni < 1/2, i.e., ni < Ni/2 for each i ∈ [m]. Then, we can establish the upper
bound on the probability as follows:

Pr
ρ1,...,ρm

[ϕ|ρ1...ρm is not expressed as k-CNF ] ≤ C ·
∑

ki:k=
∑

i ki

tk ·
∏
i∈[m]

(
Ni

ni−ki

)
·MNi−ni+2ki

i(
Ni
ni

)
·MNi−ni

i

≤ C ·
∑

ki:k=
∑

i ki

tk ·
∏
i∈[m]

nki
i

(Ni − ni)ki
M2ki

i

≤ C ·
∑

ki:k=
∑

i ki

tk ·max
i∈[m]

(
niM

2
i

Ni − ni

)k

≤ C · (mt)k ·max
i∈[m]

(
niM

2
i

Ni − ni

)k

≤ C · (mt)k ·max
i∈[m]

(
2niM

2
i

Ni

)k

= O

(
mt ·max

i∈[m]

niM
2
i

Ni

)k
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= O

(
mt ·max

i∈[m]
pi|Σi|2

)k

.

The above-mentioned lemma implies the following by considering the negation of a given CNF
formula.

Lemma 7. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint sets
of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-random
restriction to Vi, where pi ∈ [0, 1]. Then, for any t-CNF ϕ on the variables in V1 ∪ . . . ∪ Vm and
k ∈ N, we have

Pr
ρ1,...,ρm

[ϕ|ρ1...ρm is not expressed as k-DNF ] ≤ O

(
mt ·max

i∈[m]
pi|Σi|2

)k

.

Now, we extend the above-mentioned results to constant-depth circuits on general domains. For
any depth-d circuit, we number each layer from 0 (bottom) to d (top), where layer 0 consists of
input gates and layer d consists of the topmost ∨- or ∧-gate. Without loss of generality, we can
assume that each depth-d circuit satisfies the following properties: (1) each input gate is a literal
taking the form of either (x = a) or (x ̸= a) for some alphabet a; (2) each layer (from 1 to d)
contains either ∨-gates or ∧-gates; and (3) the type of gate (i.e., ∨ or ∧) alternates at adjacent
layers. For any depth-d circuit, we define its width by the maximum number of literals (i.e., input
gates) that are connected to the same gate and define its internal size by the total number of gates
at layers 2, 3, . . . d. Then, our technical lemma is stated as follows.

Lemma 8. For m ∈ N, let Σ1, . . . ,Σm be finite sets of alphabets, and let V1, . . . , Vm be disjoint sets
of variables, where each variable in Vi takes a value in Σi. For each i ∈ [m], let ρi be a pi-random
restriction to Vi, where pi ∈ [0, 1]. Then, for any depth-d circuit C on the variables in V1 ∪ . . .∪Vm

of width ≤ t and internal size ≤ c2t (for some constant c), we have

Pr
ρ1,...,ρm

[C|ρ1...ρm is not a constant ] ≤ O

(
mt ·max

i∈[m]
p

1
d
i |Σi|2

)
.

Proof. For each i ∈ [d], let si be the number of gates at layer i.
First, we consider only the case where the following holds: for all i ∈ [m],

⌊piN⌋ ≤ ⌊p1/di ⌊p
1/d
i · · · ⌊p1/di N⌋ · · · ⌋⌋︸ ︷︷ ︸

d− 1 times

. (2)

In this case, we can regard a pi-restriction ρi as consecutive applications of p
1/d
i -random restric-

tions ρ
(1)
i , . . . , ρ

(d−1)
i , and one remaining random restriction. For each i ∈ [d−1], let ρ(i) ≡ ρ

(i)
1 . . . ρ

(i)
m .

We assume that layer 1 consists of ∧-gates (in the case of ∨-gates, we can show the lemma in the
same manner). In this case, each gate in layer 2 is regarded as t-DNF; thus, we can apply Lemma 2
and show that all the gates at layer 2 are transformed into t-CNF with a probability of at least

1− s2 · (c′mt ·maxi∈[m] p
1/d
i |Σi|2)t for some absolute constant c′. If such an event occurs, then each

∨-gate at layer 2 collapses into its parent node. Thus, the depth decreases by 1. Since the resulting
depth-(d − 1) circuit has width t, we can apply Lemma 7 and the same argument at layer 3. We

repeat the same argument (d − 2) times for ρ
(1)
i , . . . , ρ

(d−2)
i at layers 2, . . . , d, respectively. Then,
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the resulting circuit becomes a depth-2 circuit of width t (i.e., t-DNF or t-CNF) with a probability
of at least

1− (s2 + s3 + . . .+ sd) · (c′mt ·max
i∈[m]

p
1/d
i |Σi|2)t ≥ 1− (c2t) · (c′mt ·max

i∈[m]
p
1/d
i |Σi|2)t.

We apply Lemmas 2 and 7 and show that the resulting circuit becomes a constant by ρ(d−1)

with a probability of at least 1−c′mt ·maxi∈[m] p
1/d
i |Σi|2. Without loss of generality, we can assume

that 2c′mt ·maxi∈[m] p
1/d
i |Σi|2 < 1; otherwise, the lemma holds trivially. Thus, we conclude that

Pr
ρ1,...,ρm

[C|ρ1...ρm is not a constant ] ≤ Pr
ρ(1),...,ρ(d−1)

[
C|ρ(1)···ρ(d−1) is not a constant

]
≤ c(2c′mt ·max

i∈[m]
p
1/d
i |Σi|2)t +mt ·max

i∈[m]
p
1/d
i |Σi|2

≤ 2cc′mt ·max
i∈[m]

p
1/d
i |Σi|2 +mt ·max

i∈[m]
p
1/d
i |Σi|2

= O

(
mt ·max

i∈[m]
p

1
d
i |Σi|2

)
.

Next, we consider the case where (2) does not hold for some i ∈ [m]. We can assume that

p
1/d
i < 1/4; otherwise, we have 1/4 ≤ p

1/d
i ≤ maxi∈[m] p

1/d
i |Σi|2, and the lemma holds trivially. In

this case, we can show that

piN ≥ ⌊piN⌋

> ⌊⌊· · · ⌊p1/di N⌋ · · · ⌋⌋

≥ ⌊⌊· · · ⌊p1/di (p
1/d
i N − 1)⌋ · · · ⌋⌋

≥ p
(d−1)/d
i N − (1 + p

1/d
i + p

2/d
i + · · ·+ p

(d−2)/d
i )

≥ p
(d−1)/d
i N − 2.

By rearranging the above, we have

2

p
(d−1)/d
i N

≥ 1− p
1/d
i >

3

4
,

and

piN = p
1/d
i · p(d−1)/di N <

1

4
· 8
3
=

2

3
.

Therefore, ⌊piN⌋ = 0 holds, and all the variables in Vi are fully determined by ρi. Thus, we can
ignore such i in the argument above.

6 Oracle Separation: UP ∩ coUP and Distributional PH

We improve the oracle separation in [Imp11] by applying Lemma 8. In Sections 6.1– 6.3, we present
the following theorem (i.e., the first item of Theorem 3). In fact, the second item of Theorem 3 is
shown in a similar way by changing the parameters (we will discuss this in Section 6.4).

Theorem 9. For any function ϵ(n) such that ω(1) ≤ ϵ(n) ≤ n/ω(log2 n), there exists an oracle Oϵ

satisfying (1) DistPHOϵ ⊆ AvgPOϵ and (2) UPOϵ ∩ coUPOϵ ̸⊆ BPTIMEOϵ [2
O( n

ϵ(n) logn
)
].
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6.1 Construction of Random Oracle

Let ϵ : N→ N denote a parameter such that ω(1) ≤ ϵ(n) ≤ n/ω(log2 n).

Construction. Oϵ = V +A, where each oracle is randomly selected by the following procedure:

1. Define functions t, p, ℓ, and imax by

t(n) = 2
n

ϵ(n)·logn , p(n) = t(n)−ϵ(n)
1/2

, ℓ(n) = t(n)2, and imax(n) = log log t(n).

2. For each n ∈ N, define a set Vn,0 of variables on alphabet Σn of size ℓ(n) by

Vn,0 = {Fx : x ∈ {0, 1}n}.

We assume that each alphabet in Σn has a binary representation of length at most ⌈log ℓ(n)⌉.

3. For each n ∈ N and i ∈ [imax(n) − 1], we inductively (on i) define a p(n)-random restriction
ρn,i to Vn,i−1, and we define a subset Vn,i ⊂ Vn,i−1 of variables by

Vn,i = {v ∈ Vn,i−1 : ρn,i(v) = ∗}.

We also define ρn,imax(n) as a 0-random restriction (i.e., a full assignment) to Vn,imax(n)−1. Let
ρn,i ≡ ρn,imax(n) for i ≥ imax(n) + 1. For simplicity, we may identify ρn,i with a composite
restriction ρn,1 . . . ρn,i to Vn,0 for each n and i.

4. Let f = {fn}n∈N, where fn : {0, 1}n → Σn is a random function defined by fn(x) = ρn,imax(n)(Fx).

5. Define V as follows:

V(x, y) =

{
1 if y = f(x)

0 otherwise.

6. Define A as follows: On input (⟨M,d⟩, x, 1T 2
), where M is an oracle machine, d ∈ N, x ∈

{0, 1}∗, and T ∈ N, the oracle A returns the value in {0, 1, ?} determined according to the
following procedure:

1: let i := log log T ;
2: construct a depth d+ 2 circuit C corresponding to the quantified formula

∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd),

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.
First, we construct a depth d circuit that represents the above-mentioned quantified
formula, where each leaf corresponds toMO(x,w1, w2, . . . , wd) for some w1, w2, . . . , wd,
where we truncate w1, w2, . . . , wd into a string of length T because we will execute
M in only T steps. Then, we replace each leaf with a DNF formula of width T to ob-
tain the circuit C, where each term corresponds to one possible choice of V such that
MV+A(x,w1, w2, . . . , wd) halts with an accepting state after execution in T steps.
In other words, we consider each function f ′ = {f ′n}Tn=1, where f ′n : {0, 1}n → Σn,
define an oracle V ′ in the same manner as V, and execute MV

′+A(x,w1, w2, . . . , wd)
in T steps. If M queries (x, y) to V ′, and the answer is 1 (resp. 0), then we add a
literal (Fx = y) (resp. (Fx ̸= y)) to the corresponding term. Finally, we construct
a circuit C =

∨
f ′ Cf ′ on V1,0, . . . , VT,0.
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By the construction described above, the above-mentioned quantified formula is
satisfied with the execution of MV+A in T steps iff C returns 1 when it is restricted
by ρ1,imax(1), . . . , ρT,imax(T ). We can also easily verify that the width of C is at most

T and the internal size of C is at most 2T+1.
3: if C|ρ1,i,...,ρT,i ≡ b for some b ∈ {0, 1}, then return b; otherwise, return “?”.

To verify that the above-mentioned A is not circular on recursive calls for A, it is sufficient to
show the following.

Lemma 9. For each input, the value of A(⟨M,d⟩, x, 1T 2
) is determined by only ρn,j for n ≤ T and

j ≤ log log T (= i).

Proof. We show the lemma by induction on T . We consider the execution of (⟨M,d⟩, x, 1T 2
). We

remark that A first makes a depth d+ 2 circuit C based on M , and C is independent of the value
of V.

We assume that M makes some valid query (⟨M ′, d′⟩, x′, 1T ′2
) to A recursively on constructing

C. Since the length of such a query is at most T , we have T ′2 ≤ T . If we let i′ = log log T ′, then
we have

i′ = log log T ′ ≤ log log T
1
2 = log log T − 1.

By the induction hypothesis, the recursive answer of A is determined by only ρn,j for n ≤ T ′ and
j ≤ i− 1, and so is C. The lemma holds because the answer of A is determined by restricting C by
ρn,j for n ≤ T and j ≤ i.

Lemma 10. For ϵ(n) = ω(1), Vn,imax(n)−1 ̸= ∅ for sufficiently large n.

Proof. Since ϵ(n) = ω(1), we have t(n) ≤ 2n and imax(n) ≤ log n for sufficiently large n. Thus, for
sufficiently large n, we have

p(n)imax(n)−1 ≥ t(n)−ϵ(n)
1/2 logn = 2

− n logn

ϵ(n)1/2 logn ≥ 2
− n

ω(1) ,

and |Vn,imax(n)| = Ω(p(n)imax(n)−1 · 2n) = 2Ω(n) > 0.

Note that we may omit the subscript ϵ from Oϵ.

6.2 Worst-Case Hardness of UP ∩ coUP

Theorem 10. For any function ϵ such that ω(1) ≤ ϵ(n) ≤ n/ω(log2 n), with probability 1 over the

choice of Oϵ, no randomized oracle machine can compute f within t(n) = 2
n

ϵ(n)·logn steps with a
probability of at least 1− 2−2n, where f is the random function selected in Oϵ.

Proof. We fix a randomized oracle machine A and input size n ∈ N arbitrarily. By the Borel–
Cantelli lemma, union bound, and countability of randomized oracle machines, it is sufficient to
show that for sufficiently large n,

Pr
O

[
Pr
A

[
∀x ∈ {0, 1}n, AO(x) outputs f(x) within t(n) steps

]
≥ 1− 2−n

]
≤ n−ω(1).

To show the above inequality, we prove the following and apply Markov’s inequality:

PA,n := Pr
A,O

[
∀x ∈ {0, 1}n, AO(x) outputs f(x) within t(n) steps

]
≤ n−ω(1).
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First, we fix random restrictions ρn′,i except for ρn,imax(n) arbitrarily and use the notation ρ to
denote the restriction. We remark that ρ determines Vn,imax(n)−1. Even under the condition on ρ,
the value of fn(x) for each x such that Fx ∈ Vn,imax(n)−1 is selected from Σn uniformly at random
(by ρn,imax(n)). Let xρ be the lexicographically first string xρ ∈ {0, 1}n satisfying Fxρ ∈ Vn,imax(n)−1.
Then, we also fix all remaining values of fn except for fn(xρ), and let ρ′ denote the restriction.

When we execute A in t(n) steps, the length of the query made by A is at most t(n). Thus, A
can only access A(M,x, 1T

2
) for T ≤ t(n)1/2. For such T , we have

i = log log T ≤ log log t(n)− 1 = imax(n)− 1.

Therefore, by Lemma 9, the answers of A to queries made by A are determined only by ρ. Thus,
for each random string for A, the queries made by A(xρ) are also determined independently of the
value of f(xρ) unless A asks (xρ, f(xρ)) to V. Since the value of f(xρ) is selected uniformly at
random under the condition on ρ and ρ′, we have

PA,n = Eρ,ρ′,r

[
Pr
O

[
∀x ∈ {0, 1}n, AO(x; r) outputs f(x) within t(n) steps

∣∣ρ, ρ′]]
≤ Eρ,ρ′,r

[
Pr
O

[
AO(xρ; r) outputs f(xρ) within t(n) steps

∣∣ρ, ρ′]]
≤ Eρ,ρ′,r

[
t(n) + 1

ℓ(n)

]
= O

(
t(n)

t(n)2

)
= 2

−Ω( n
ϵ(n) logn

)
= n−ω(1),

where the last inequality follows from ϵ(n) ≤ n
ω(log2 n)

.

Corollary 2. For any function ϵ(n) such that ω(1) ≤ ϵ(n) ≤ n/ω(log2 n), with probability 1 over

the choice of Oϵ′ for ϵ′(n) =
√
ϵ(n), we have UPOϵ′ ∩ coUPOϵ′ ̸⊆ BPTIMEOϵ′ [2

O( n
ϵ(n) logn

)
].

Proof. Fix a random oracle O = Oϵ′ arbitrarily. For each alphabet y ∈ Σn (n ∈ N), we use the
notation ⟨y⟩ to refer to its unique binary expression of length at most ⌈log ℓ(n)⌉. We consider the
following language LO:

LO = {(x, i) : n ∈ N, x ∈ {0, 1}n, i ∈ [n], and ∃y ∈ Σn s.t. fn(x) = y and ⟨y⟩i = 1}.

Obviously, y := fn(x) is a unique witness for both statements ⟨x, i⟩ ∈ LO and ⟨x, i⟩ /∈ LO by
verifying whether V(x, y) = 1 and yi = 1 hold. Thus, LO ∈ UPO ∩ coUPO.

Suppose that UPO ∩ coUPO ⊆ BPTIMEO[2O(n/(ϵ(n) logn))]. Then, there exists a randomized oracle
machine AO that solves LO in time 2an/(ϵ(n) logn) with a probability of at least 2/3 for some constant
a > 0. Now, we can construct a randomized oracle machine BO to compute f as follows. On input
x ∈ {0, 1}n, BO executes bi = AO(⟨x, i⟩) for each i ∈ [n], where BO executes AO poly(n) times and
takes the majority of the answers to reduce the error probability of A from 1/3 to 1/(n22n).

By the union bound, the error probability of B is at most 22n. Let n′ = |⟨x, i⟩| for x ∈ {0, 1}n
and i ∈ [n]. Then, we can assume that n′ ≤ 2n for sufficiently large n. Thus, the running time
of B is bounded above by poly(n) · 22an/(ϵ(2n) log 2n), which is less than 2n/(ϵ(n)

′ logn) for sufficiently
large n. Since such O contradicts the statement in Theorem 10, we conclude that the event that

UPO ∩ coUPO ̸⊆ BPTIMEO[2
O( n

ϵ(n) logn
)
] occurs with probability 1 over the choice of O.

6.3 Average-Case Easiness of PH

Theorem 11. For any function ω(1) ≤ ϵ(n) ≤ n/ω(log2 n), the following event occurs with proba-
bility 1 over the choice of Oϵ: for all triples of a polynomial-time oracle machine M?, d ∈ N, and a
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polynomial-time randomized oracle sampling machine S?, there exists a deterministic polynomial-
time errorless heuristic oracle machine with a failure probability of at most n−ω(1) for the distribu-
tional Σp

d problem (LOM , DOS ) determined as follows: (DOS )n ≡ SO(1n) for each n ∈ N and

LOM = {x ∈ {0, 1}∗ : ∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd) = 1},

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.

By the padding argument on the instance, the above-mentioned theorem implies the following.

Corollary 3. For any function ω(1) ≤ ϵ(n) ≤ n/ω(log2 n), the event DistPHOϵ ⊆ AvgPOϵ occurs
with probability 1 over the choice of Oϵ.

Theorem 9 immediately follows from Corollaries 2 and 3.

Proof of Theorem 11. For each n, let Tn be the maximum value of n, the square of the time for S?

to generate an instance of size n, and the square of the time to execute M? on instance size n. Let
in = log log Tn.

Now, we construct an errorless heuristic scheme BO that is given x ∈ {0, 1}n as input and returns
a value of A(⟨M,d⟩, x, 1T 2

n). Remember that BO(x) = LOM (x) unless A(⟨M,d⟩, x, 1T 2
n) outputs “?”.

Thus, we show the inequality

Pn,M,S := Pr
O,S

[
A(⟨M,d⟩, x, 1T 2

n) = “?” where x← SO(1n)
]
≤ n−ω(1). (3)

Then, by applying Markov’s inequality, we have

Pr
O

[
Pr
S

[
BO(x) = LOM (x) where x← S(1n)

]
> n−ω(1)

]
≤ 1

n2
,

and the theorem follows from the Borel–Cantelli lemma and the countability of (M,d, S).
To show inequality (3), we first show that the instance x ∈ {0, 1}n is determined by only

ρn′,j for n′ ≤ Tn and j ≤ in − 1 with a probability of at least 1 − n−ω(1). Then, we will show

that A(⟨M,d⟩, x, 1T 2
n) returns LOM (x) (i.e., A(⟨M,d⟩, x, 1T 2

n) ̸=“?”) with a probability of at least
1− n−ω(1) under the condition that x is determined by only ρn′,j for n′ ≤ Tn and j ≤ in − 1.

Let TS
n be the time bound for S to generate an instance of size n. Since TS

n ≤ T
1/2
n , the answers

of A to queries made by S(1n) are determined by only ρn′,j for n
′ ≤ T

1/2
n and j ≤ in− 2. Under the

condition on restrictions ρn′,j for n′ ≤ T
1/2
n and j ≤ in − 2, the value of x← SO(1n) is determined

by only ρn′,j for n
′ ≤ Tn and j ≤ in−1 unless S queries x ∈ {0, 1}≤T

1/2
n such that Fx ∈ V|x|,in−1 to V.

Note that, if n′ ∈ N satisfies n′ < t−1(T
1/2
n ), then we have imax(n

′) < log log(T
1/2
n ) = log log Tn−1 =

in−1. Thus, Vn′,in−1 = ∅. Otherwise, V|x|,in−1 is selected from V|x|,in−2 uniformly at random. Thus,
such a conditional probability is bounded above by

T 1/2
n max

t−1(T
1/2
n )≤n′≤T 1/2

n

⌊p(n′)|Vn′,in−2|⌋
|Vn′,in−2|

= O
(
T 1/2
n p(t−1(T 1/2

n ))
)

= O
(
T 1/2
n · (T 1/2

n )−
√

ϵ(n)
)

= T−ω(1)n

= n−ω(1),
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where the last equation holds because Tn ≥ n.
Under the condition that the given instance x ∈ {0, 1}n is determined by only ρn′,j for n′ ≤ Tn

and j ≤ in − 1, the depth d + 2 circuit C constructed during the execution of A(⟨M,d⟩, x, 1T 2
n) is

determined only by ρn′,j for n
′ ≤ Tn and j ≤ in− 1. Then, applying the restriction ρn′,j for n

′ ≤ Tn

and j ≤ in under this condition is regarded as a p(n′)-random restriction for Vn′,in−1 for each
n′ ≤ Tn, where we can ignore small n′ such that n′ < t−1(Tn) because imax(n

′) < log log Tn = in for
such n′. Note that the width and internal size of C are at most Tn and 2Tn+1, respectively. Thus,
by applying Lemma 8, the probability that C does not become a constant (i.e., the probability that
A returns “?”) is at most

O

(
T 2
n max

t−1(Tn)≤n′≤Tn

p(n′)1/(d+2)ℓ(n′)2
)

= O

(
T 2
n max

t−1(Tn)≤n′≤Tn

t(n′)−
ω(1)
d+2

+4

)
= T−ω(1)n

= n−ω(1),

where the last equation holds because Tn ≥ n.

6.4 Oracle Separation between UP ∩ coUP and Distributional Σp
d

Theorem 12. For any constant a > 0 and d ∈ N, there exists an oracle Oa,d satisfying (1)

DistΣp
d
Oa,d ⊆ AvgPOa,d and (2) UPOa,d ∩ coUPOa,d ̸⊆ BPTIMEOa,d [2

an
logn ].

Proof sketch. Let c = max{21(d+ 2)a, 1} and ϵ(n) = 1/4a for each n ∈ N. We construct an oracle
Oa,d, as in Section 6.1, where we set the parameters as follows:

t(n) = 2
n

ϵ(n)·logn , p(n) = t(n)−5(d+2), ℓ(n) = t(n)2, and imax(n) =
1

c
log log t(n).

We also change the simulation overhead from T 2 to T 2c and the setting of i from log log n to
c−1 log log n in A. Then, we can easily show the analog of Lemma 9. Further, we get

p(n)imax(n)−1 ≥ t(n)−
5(d+2) logn

c = 2
− 20(d+2)an logn

c logn ≥ 2−
20
21

n,

and |Vn,imax(n)| = Ω(p(n)imax(n)−1 · 2n) = 2Ω(n) > 0. Thus, we can show the hardness of computing

in t(n) = 2
n

ϵ(n)·logn = 24an/ logn steps using the same proof as that of Theorem 10. It is not hard

to verify that this lower bound yields UPOa,d ∩ coUPOa,d ̸⊆ BPTIMEOa,d [2
an

logn ] as Corollary 2. The
average-case easiness of DistΣp

d also holds by the same argument to as proof of Theorem 11, where
we select Tn as the maximum value of n4, n2c , the 2c-th power of the time for S? to generate an
instance of size n, and the 2c-th power of the time to execute M? on instance size n (see also
Section 7.3).

7 Oracle Separation: Learning and Distributional PH

We prove the oracle separation between the hardness of learning and distributional PH. In Sec-
tions 7.1– 7.3, we present Theorem 13. Note that we can obtain the second item of Theorem 2 as a
corollary to Theorem 13 (i.e., Corollary 4). The first item of Theorem 2 is shown in a similar way
by changing the parameters (we will discuss this in Section 7.4).
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Theorem 13. Let a : N→ R>0 be a function such that n/ω(log2 n) ≤ a(n) ≤ O(1). For any d ∈ N
and sufficiently large c ∈ N, there exists an oracle O := Oa,c,d such that (1) DistΣp

d
O ⊆ AvgPO and

(2) SIZEO[n] is not weakly PAC learnable with membership queries in time 2
a(n)n
logn on D, where D

is an arbitrary class of example distributions such that Dn contains all uniform distributions over

subsets S ⊆ {0, 1}n with |S| ≥ 2(1−
a(n)
c

)·n.

Corollary 4. For any constants a, ϵ > 0 and d ∈ N, there exists an oracle O such that (1)

DistΣp
d
O ⊆ AvgPO and (2) SIZEO[n] is not weakly PAC learnable with membership queries in 2

an
logn

steps on all uniform distributions over subsets S ⊆ {0, 1}n with |S| ≥ 2(1−ϵ)·n.

7.1 Construction of Random Oracle

Let ϵ : N → N and c, d ∈ N denote parameters such that Ω(1) ≤ ϵ(n) ≤ n/ω(log2 n) and c ≥
max{3, 26(d+ 2)/ϵ(n)} for sufficiently large n.

Construction. Oϵ,c,d = F +A, where each oracle is randomly selected by the following procedure:

1. Define functions t, p, ℓ, q, and imax by

t(n) = 2
n

ϵ(n)·logn , p(n) = t(n)−11(d+2), ℓ(n) = t(n)4, q(n) = t(n)−3(d+2), and imax(n) =
1

c
log log t(n).

2. For each n ∈ N, define a set Vn,0 of variables on alphabet Σn of size ℓ(n) by

Vn,0 = {Fz : z ∈ {0, 1}n}.

We assume that each alphabet in Σn has a binary representation of length at most ⌈log ℓ(n)⌉.

3. For each n ∈ N, define a set Wn,0 of variables on alphabet {0, 1} by

Wn,0 = {Gz,x : z, x ∈ {0, 1}n}.

4. For each n ∈ N and i ∈ [imax(n) − 1], we inductively (on i) define a p(n)-random restriction
ρn,i to Vn,i−1 and a q(n)-random restriction σn,i to Wn,i−1, and we define subsets Vn,i ⊂ Vn,i−1
and Wn,i ⊂Wn,i−1 of variables by

Vn,i = {v ∈ Vn,i−1 : ρn,i(v) = ∗} and Wn,i = {w ∈Wn,i−1 : σn,i(w) = ∗}.

We also define ρn,imax(n) (resp. σn,imax(n)) as a 0-random restriction (i.e., a full assignment) to
Vn,imax(n)−1 (resp. Wn,imax(n)−1). Let ρn,i ≡ ρn,imax(n) and σn,i ≡ σn,imax(n) for i ≥ imax(n)+ 1.
For simplicity, we may identify ρn,i (resp. σn,i) with a composite restriction ρn,1 · · · ρn,i to
Vn,0 (resp. σn,1 · · ·σn,i to Wn,0) for each n and i.

5. Let f = {fn}n∈N, where fn : {0, 1}n → Σn is a random function defined by fn(z) = ρn,imax(n)(Fz).
Let g = {gn}n∈N, where gn : {0, 1}n × {0, 1}n → {0, 1} is a random function defined by
gn(z, x) = σn,imax(n)(Gz,x).

6. Define F = {Fn}n∈N, where Fn : {0, 1}n × Σn × {0, 1}n as follows:

Fn(z, y, x) =

{
gn(z, x) if y = fn(z)

0 otherwise.

27



7. Define A as follows: On input (⟨M,d⟩, x, 1T 2c

), where M is an oracle machine, d ∈ N, x ∈
{0, 1}∗, and T ∈ N, the oracle A returns the value in {0, 1, ?} determined according to the
following procedure:

1: let i := 1
c log log T ;

2: construct a depth d+ 2 circuit C corresponding to the quantified formula

∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd),

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.
First, we construct a depth-d circuit that represents the above-mentioned quantified
formula whose leaf corresponds to MO(x,w1, w2, . . . , wd) for some w1, w2, . . . , wd,
where we truncate w1, w2, . . . , wd into a string of length T because we will execute
M in only T steps. Then, we replace each leaf with a DNF formula of width 2T
to obtain the circuit C, where each term corresponds to one possible choice of F
such that MF+A(x,w1, w2, . . . , wd) halts with an accepting state after execution
in T steps. In other words, we arbitrarily consider functions f ′ = {f ′n}Tn=1 and
g′ = {g′n}Tn=1, where f ′n : {0, 1}n → Σn and g′n : {0, 1}n × {0, 1}n → {0, 1}, define
an oracle F ′ in the same manner as F , and execute MF

′+A(x,w1, w2, . . . , wd) in T
steps. If M queries (z, y, x) to F ′, then we add literals to the corresponding term
in the following manner:

add literals


(Fz ̸= y) if f ′(z) ̸= y

(Fz = y) and (Gz,x = 0) if f ′(z) = y and g′(z, x) = 0

(Fz = y) and (Gz,x = 1) if f ′(z) = y and g′(z, x) = 1

By the construction, the above-mentioned quantified formula is satisfied whenMF+A

is executed in T steps iff C returns 1 when it is restricted by ρ1,imax(1), . . . , ρT,imax(T )

and σ1,imax(1), . . . , σT,imax(T ). We can also easily verify that the width of C is at

most 2T and the internal size of C is at most 2T+1.
3: if C|ρ1,i,...,ρT,i ≡ b for some b ∈ {0, 1}, then return b; otherwise, return “?”.

To verify that A is not circular on recursive calls for A, it is sufficient to check the following:

Lemma 11. For each input, the value of A(⟨M,d⟩, x, 1T 2c

) is determined by only ρn,j and σn,j for
n ≤ T and j ≤ 1

c log log T (= i).

Proof. We show the lemma by induction on T . We consider the execution of (⟨M,d⟩, x, 1T 2c

). We
remark that A first makes a depth d+ 2 circuit C based on M , and C is independent of the value
of F .

We assume that M makes some valid query (⟨M ′, d′⟩, x′, 1T ′2c
) to A recursively on constructing

C. Since the length of such a query is at most T , we have T ′2
c ≤ T . If we let i′ = c−1 log log T ′,

then we have

i′ =
1

c
log log T ′ ≤ 1

c
log log T

1
2c =

1

c
log log T − 1.

By the induction hypothesis, the recursive answer of A is determined by only ρn,j and σn,j for
n ≤ T ′ and j ≤ i − 1, and so is C. The lemma holds because the answer of A is determined by
restricting C by ρn,j and σn,j for n ≤ T and j ≤ i.

Note that we may omit the subscripts ϵ, c, and d from Oϵ,c,d.
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7.2 Hardness of Learning

Theorem 14. For arbitrary parameters ϵ(n), c, and d such that Ω(1) ≤ ϵ(n) ≤ n/ω(log2 n) and
c ≥ max{3, 26(d + 2)/ϵ(n)} (for sufficiently large n), the following event occurs with probability 1
over the choices of O := Oϵ,c,d: a concept class CO defined by

CO = {Fn(z, y, ·) : n ∈ N, z ∈ {0, 1}n, y ∈ Σn}

is not weakly PAC learnable (with confidence error at most 1/3) in t(n) = 2
n

ϵ(n) logn steps on D,
where D is a class of example distributions such that Dn contains all uniform distributions over

subsets S ⊆ {0, 1}n with |S| ≥ 2
(1− 4(d+2)

cϵ(n)
)·n

.

In the remainder of Section 7.2, we present the formal proof of Theorem 14.
For any choice of O and z ∈ {0, 1}n, we define a subset G∗z ⊆ {0, 1}n by

G∗z = {x ∈ {0, 1}n : ρn,imax(n)−1(Gz,x) = ∗}.

We let U∗z denote a uniform distribution over the elements in G∗z. For z ∈ {0, 1}n, we define a
function gz : {0, 1}n → {0, 1} by gz(x) = g(z, x) (= Fn(z, fn(z), x) ∈ CO). We introduce the notion
of hard indices as follows.

Definition 7. We say that z ∈ {0, 1}n is a hard index if z ∈ Vn,imax(n)−1 and |G∗z| ≥ 2
(1− 4(d+2)

cϵ(n)
)·n

.

We show that fz is hard to learn on example distribution U∗z for a hard index z.
First, we estimate the probability that such a hard index exists.

Lemma 12. If ϵ(n) ≥ Ω(1) and c ≥ 26(d+ 2)/ϵ(n), then we have

Pr
O

[there exists no hard index in {0, 1}n] ≤ n−ω(1).

Proof. Since ϵ(n) ≥ Ω(1), we have t(n) ≤ 2n and imax(n) ≤ 1
c log n for sufficiently large n. Thus,

we have that for sufficiently large n,

p(n)imax(n) ≥ t(n)−
11(d+2)

c
logn = 2

− 11(d+2)n logn
cϵ(n) logn ≥ 2−

11
26

n,

and

q(n)imax(n) ≥ t(n)−
3
c
logn = 2

− 3n logn
cϵ(n) logn ≥ 2−

3
26

n.

By Lemma 3, for any z ∈ {0, 1}n, we get

Pr

 ∑
z∈Vn,imax(n)−1

|G∗z| <
1

2
·
|Vn,imax(n)−1| · 2n

22n
|Wn,imax(n)−1|

 < 2 exp
(
−Ω(p(n)2imax(n)q(n)imax(n)) · 22n

)
≤ 2 exp

(
−Ω(2−

22
26

n · 2−
3
26

n · 22n)
)

≤ exp(−2Ω(n))

= n−ω(1).

If the above-mentioned event does not occur, then there exists z ∈ Vn,imax(n)−1 such that

|G∗z| ≥
|Wn,imax(n)−1|

2n+1
= Ω(q(n)imax(n) · 2n) = Ω(2

n− 3(d+2)n
cϵ(n) ).

Thus, |G∗z| ≥ 2
n− 4(d+2)n

cϵ(n) for sufficiently large n ∈ N, and such z is a hard index.

29



Now, we fix a (randomized) learning algorithm L and n ∈ N arbitrarily. For Theorem 14, by the
Borel–Cantelli lemma and the countability of uniform learners, it is sufficient to show the following:
for sufficiently large n ∈ N and δn = t(n)−1/4 (≥ n−ω(1)),

Pr
O

[for all z ∈ {0, 1}n and D ∈ Dn,

Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x←D
[hO(x) = gz(x)] ≥

1

2
+ δn within t(n) steps

]
≥ 2

3

]
≤ n−ω(1), (4)

where S is a sample set of size at most t(n) generated according to EX(gz, D).
For z ∈ {0, 1}n, x ∈ {0, 1}n, and a sample set S, we use the notation LO,gz(S)(x) to refer to the

following procedure: (1) execute LO,gz(S); (2) if L outputs some hypothesis h within t(n) steps,
then execute hO(x). For z ∈ {0, 1}n, we define events Iz and Jz (over the choice of O) as follows:

Iz =

(
Pr

L,S,x

[
F(z, fn(z), x′) is queried for some x′ ∈ {0, 1}n during LO,gz(S)(x)

]
≥ δ4n

)
Jz =

(
Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x
[hO(x) = gz(x)] ≥

1

2
+ δn within t(n) steps

]
≥ 2

3

)
,

where S is selected according to EX(gz, U
∗
z ), and x is selected according to U∗z .

We assume that z ∈ {0, 1}n is a hard index. Then, we have |G∗z| ≥ 2
(1− 4(d+2)

cϵ(n)
)·n

; thus, U∗z must
be contained in Dn. Therefore, the left-hand side of the inequality (4) is bounded above by

Pr
O

[ ∧
z:hard

Jz

]
≤ Pr
O

[ ∧
z:hard

Jz ∨ Iz

]

≤ Pr
O

[( ∧
z:hard

Iz

)
∨

( ∨
z:hard

Jz ∧ ¬Iz

)]

≤ Pr
O

[ ∧
z:hard

Iz

]
+ Pr
O

[ ∨
z:hard

Jz ∧ ¬Iz

]
. (5)

Here, we let P1 and P2 represent the first and second terms of (5), respectively. We derive the upper
bounds on P1 and P2 as the following lemmas, which immediately imply the inequality (4).

Lemma 13. P1 = PrO [
∧

z:hard Iz] ≤ n−ω(1).

Lemma 14. P2 = PrO [
∨

z:hard Jz ∧ ¬Iz] ≤ n−ω(1).

7.2.1 Proof of Lemma 13

First, we fix random restrictions except for ρn,imax(n) and use π to denote the composite restriction.
Note that all the hard indices are determined at this stage. Assume that there exists a hard index
of length n, and let zπ ∈ {0, 1}n be the lexicographically first hard index. Then, we can divide
ρn,imax(n) into two random selections as follows. First, we randomly select unassigned values of
fn(z) except for fn(zπ) (let π′ denote the corresponding random restriction). Then, we select the
remaining value of fn(zπ) from Σn uniformly at random.

We remark that π determines g and G∗z for all z ∈ {0, 1}n. Now, we construct a randomized
oracle machine A to compute fn(zπ) based on L, g, G∗z, π, π

′, and additional oracle access to V,
where V(y) returns 1 if y = fn(zπ) (otherwise, returns 0).
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On input zπ and oracle access to V, A executes L in t(n) steps for a target function gz and an
example distribution U∗z (note that examples and membership queries are simulated by g and G∗z);
if L outputs some hypothesis h, then compute h(x) for x← U∗z , where A answers the queries of L
and h to O as follows:

F(z, y, x): If z = zπ, then A queries y to V; if V returns 1, then return gn(z, x) (otherwise,
return 0). In other cases, A can correctly answer F(z, y, x) because it is determined by
π and π′.
A(⟨M,d⟩, x, 1T 2c

): Since A executes L only t(n) steps, we can assume that the size
of h is at most t(n) and it is evaluated in time O(t(n)2). Thus, we can assume that
T 2c = O(t(n)2) and for sufficiently large n,

i =
1

c
log log T =

1

c
log logO(t(n))1/2

c−1 ≤ 1

c
log log t(n)1/2

c−2 ≤ 1

c
log log t(n)− c− 2

c
,

which is strictly smaller than imax(n) (=
1
c log log t(n)) because c ≥ 3. By Lemma 11,

the answer does not depend on ρn,imax(n). Thus, A can correctly simulate A by π and
π′ in this case.

A repeats the above-mentioned executions of L and its hypothesis n/δ4n times. If A queries y such
that V(y) = 1 at some trial, then A outputs y (= fn(zπ)) and halts (otherwise, A outputs ⊥).

By the construction, A can correctly simulate L and its hypothesis h for a target function gz
and an example distribution U∗z . It is easy to verify that the number q of the queries of A to V is
bounded as q ≤ (n/δ4n) ·O(t(n)2) ≤ O(n) · t(n)3.

Assume that ∧z:hardIz holds. Then, L or h queries (zπ, fn(zπ), ·) to F with a probability of at
least δ4n for each trial. Since A repeats this trial n/δ4n-times, the failure probability of A is at most
(1− δ4n)

n/δ4n < 2−n. Thus, we have

Pr
O,A

[
AV(zπ) = fn(zπ)

∣∣π, π′,∧z:hardIz] ≥ 1− 2n. (6)

Meanwhile, even under the condition on π and π′, the value of fn(zπ) is selected from Σn at random
independently of A. Thus, we can also show that

Pr
O,A

[
AV(zπ) = fn(zπ)

∣∣π, π′,∧z:hardIz] ≤ q

ℓ(n)
=

O(n)

t(n)
= n−ω(1). (7)

The above-mentioned inequality (7) contradicts the inequality (6). This indicates that there exists
no hard index in this case. By Lemma 12, we conclude that

P1 = Pr
O

[ ∧
z:hard

Iz

]
≤ Pr
O

[there exists no hard index in {0, 1}n] ≤ n−ω(1).

7.2.2 Proof of Lemma 14

We fix z ∈ {0, 1}n arbitrarily, and we let O′ denote a partial choice of O except for the values of
g(z, x), where x ∈ G∗z. Then, we have

Pr
O

[¬Iz ∧ Jz] = EO′

[
Pr
O

[
¬Iz ∧ Jz|O′

]]
.

We remark that gz is a truly random (partial) function on G∗z, even under the condition on O′.
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Assume that z is a hard index, and ¬Iz ∧ Jz occurs. Let N = |G∗z|. Since z is a hard index,

N ≥ 2
(1− 4(d+2)

cϵ(n)
)·n ≥ 2Ω(n) holds.

By Markov’s inequality and ¬Iz, we have

Pr
L,S

[
Pr
x

[
F is asked (z, fn(z), ·) during LO,gz(S)(x)

]
≤ 4δ3n

]
≥ 1− δn

4
.

By Jz, we also get

Pr
L,S

[
LO,gz(S)→ hO s.t. Pr

x
[hO(x) = gz(x)] ≥

1

2
+ δn within t(n) steps

]
≥ 2

3
.

By the two above-mentioned inequalities, there exist a sample set S and a random string r for L
such that

• LO,gz(S; r) outputs some hypothesis hO in time t(n) without querying (z, fn(z), ·) to F ;

• Prx←U∗
z
[hO(x) queries (z, fn(z), ·) to F ] ≤ 4δ3n; and

• Prx←U∗
z
[hO(x) = fz(x)] ≥ 1

2 + δn.

If L and h do not query (z, fn(z), ·) to F and they halt in t(n) steps, then the answers by O
do not depend on σn,imax(n), i.e., the values of gz(x) for x ∈ G∗z, as seen in the proof of Lemma 13.
In other words, they are totally determined by O′. Thus, we can replace O with O′ in these cases
(where we assume that O′ returns an error on an undefined input).

Now, we show that a truth table τ ∈ {0, 1}N of gz on G∗z has a short description (under the
condition on O′), which yields the upper bound on P2 because a random function does not have
such a short description with high probability.

Let Bz ⊆ G∗z be the subset consisting of x such that hO(x) queries (z, fn(z), ·) to F . By the
second property, we have |Bz| ≤ 4Nδ3n. We consider the following reconstruction procedure for τ .
First, we execute LO

′,gz(S; r) to obtain hO
′
. Note that if we obtain all answers for membership

queries by L as auxiliary advice Q (of length at most t(n)), then we can remove external access to
gz from L. Next, we execute hO

′
(x) on each input x ∈ G∗z \ Bz. By combining these predictions

with auxiliary advice SB = {(x, gz(x)) : x ∈ Bz}, we also obtain a partial truth table τ̃ ∈ {0, 1}N
(1/2 − δn)-close to τ ∈ {0, 1}N . If we obtain err ∈ {0, 1}N defined by erri = τi ⊕ τ̃i as auxiliary
advice, then we can reconstruct τ from τ̃ and err.

Therefore, we can reconstruct τ from L, S, r, Q, SB, and err under the condition on O′. Since
the Hamming weight of err is at most N · (1/2+ δn), err is represented by a binary string of length
at most (1−Ω(δ2n)) ·N by lexicographic indexing among binary strings of the same weight. Hence,
τ has a short description of length at most

O(t(n)) + 4δ3n(n+ 1) ·N + (1− Ω(δ2n)) ·N ≤ O(t(n)) +
(
1− Ω(δ2n)

)
·N.

Since τ is a truly random string even under the condition on O′, we have

Pr
O

[
z is hard and ¬Iz ∧ Jz|O′

]
≤ 2O(t(n))+(1−Ω(δ2n))·N

2N

≤ 2O(t(n))−Ω(t(n)−1/2)·N

≤ 22
O(n/ logn)−2Ω(n−n/ logn)

≤ 2−2
Ω(n)

.
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This implies that PrO [z is hard and ¬Iz ∧ Jz] ≤ EO′ [PrO [z is hard and ¬Iz ∧ Jz|O′]] ≤ 2−2
Ω(n)

for
any index z. Note that the number of indices is at most 2n. Thus, by taking the union bound, we
conclude that

P2 = Pr
O

[ ∨
z:hard

Jz ∧ ¬Iz

]
≤ 2n · 2−2Ω(n)

= n−ω(1).

7.3 Average-Case Easiness of Σp
d

Theorem 15. For any parameters ϵ(n), c, and d such that Ω(1) ≤ ϵ(n) ≤ n/ω(log2 n) and c ≥
max{3, 26(d+ 2)/ϵ(n)} (for sufficiently large n), the following event occurs with probability 1 over
the choice of O := Oϵ,c,d: for all tuples of a polynomial-time oracle machine M? and a polynomial-
time randomized oracle sampling machine S?, there exists a deterministic polynomial-time errorless
heuristic oracle machine with a failure probability of at most n−2 for the distributional Σp

d problem
(LOM , DOS ), defined as follows: (DOS )n ≡ SO(1n) for each n ∈ N and

LOM = {x ∈ {0, 1}∗ : ∃w1 ∈ {0, 1}|x|∀w2 ∈ {0, 1}|x|, . . . , Qdwd ∈ {0, 1}|x|,MO(x,w1, w2, . . . , wd)},

where Qd = ∃ if d is an odd number; otherwise, Qd = ∀.

By a simple padding argument on the instance size and the argument in [Imp95, Proposition 3],
we obtain the following corollary to Theorem 15.

Corollary 5. Let ϵ(n), c, and d denote the same parameters as in Theorem 15. With probability 1

over the choice of O := Oϵ,c,d, the event DistΣp
d
O ⊆ AvgPO occurs.

Theorem 13 immediately follows from Theorem 14 and Corollary 5 by selecting ϵ(n) = 1/a(n)
and sufficiently large c for ϵ−1 and d.

Proof of Theorem 15. For each n, let Tn be the maximum value of n2c , the 2c-th power of the time
for S? to generate an instance of size n, and the 2c-th power of the time to execute M? on input of
size n. Let in = c−1 log log Tn.

Now, we construct an errorless heuristic scheme BO that is given x ∈ {0, 1}n as input and

returns a value of A(⟨M,d⟩, x, 1T 2c
n ). Note that BO(x) = LOM (x) unless A(⟨M,d⟩, x, 1T 2c

n ) outputs
“?”. Thus, we will show the inequality

Pn,M,S := Pr
O,S

[
A(⟨M,d⟩, x, 1T 2c

n ) = “?” where x← SO(1n)
]
≤ O

(
1

n4

)
. (8)

Then, by applying Markov’s inequality, we have

Pr
O

[
Pr
S

[
BO(x) = LOM (x) where x← SO(1n)

]
≥ 1

n2

]
≤ O

(
1

n2

)
,

and the theorem follows from the Borel–Cantelli lemma and the countability of (M,S).
To show the inequality (8), we first show that the instance x ∈ {0, 1}n is determined by only

ρn′,j for n′ ≤ Tn and j ≤ in − 1 with a probability of at least 1−O(n−4). Then, we will show that

A(M,x, 1T
2c
n ) returns MO(x) with a probability of at least 1−O(n−4) under the condition that x

is determined by only ρn′,j for n′ ≤ Tn and j ≤ in − 1.
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By the same argument as the proof of Theorem 11, the first probability is bounded above by

T 1/2c

n O

(
max

t−1(T
1/2c
n )≤n′≤T 1/2c

n

{p(n′), q(n′)}

)
= O

(
T 1/2c

n q(t−1(T 1/2c

n ))
)

= O
(
T 1/2c

n · (T 1/2c

n )−3(d+2)
)

= O((T 1/2c

n )−(3d+5))

= O(n−4),

where the last equation holds because Tn ≥ n2c .
By the same argument as the proof of Theorem 11, the second probability that A returns “?”

under the condition that the given instance x ∈ {0, 1}n is determined by only ρn′,j for n′ ≤ Tn and
j ≤ in − 1 is at most

O

(
T 2
n max

t−1(Tn)≤n′≤Tn

{p(n′)1/(d+2)ℓ(n′)2, q(n′)1/(d+2) · 22}
)

= O

(
T 2
n max

t−1(Tn)≤n′≤Tn

t(n′)−3
)

= O(T−1n )

= O(n−4),

where the last equation holds because Tn ≥ n2c ≥ n4.

7.4 Oracle Separation between Learning and Distributional PH

Theorem 16. For any function ϵ such that ω(1) ≤ ϵ(n) ≤ n/ω(log2 n) and an arbitrary small
constant δ ∈ (0, 1), there exists an oracle O such that (1) DistPHO ⊆ AvgPO and (2) SIZEO[n]

is not weakly PAC learnable with membership queries in time 2
O( n

ϵ(n) logn
)
on D, where D is an

arbitrary class of example distributions such that Dn contains all uniform distributions over subsets
S ⊆ {0, 1}n with |S| ≥ 2(1−ϵ(n)

−(1−δ))·n.

Proof sketch. Let c = 3. We construct an oracle O, as in Section 7.1, where we set the parameters
as follows:

t(n) = 2
n

ϵ(n)·logn , p(n) = t(n)−ϵ(n)
δ
, ℓ(n) = t(n)2, q(n) = t(n)−ϵ(n)

δ
, and imax(n) = c−1 log log t(n).

Then, the hardness of learning follows by the same argument as the proof of Theorem 14, where we
can select the lower bound of G∗z for a hard index z as

|G∗z| ≥ 2n−1 · q(n)imax(n) ≥ 2
(1− 1

3ϵ(n)1−δ )n+1 ≥ 2(1−ϵ(n)
−(1−δ))n,

for sufficiently large n. The average-case easiness of DistPH also holds by essentially the same
argument as the proofs of Theorems 11 and 15.
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A Relativized Worst-Case-to-Average-Case Connections for PH

In this appendix, we observe that some of the results from [Hir21] can be relativized.

Theorem 17. For every oracle A, and for every constant k ≥ 1, if DistΣpA

k+1 ⊆ AvgPA, then

ΣpA

k ⊆ DTIME(2O(n/ logn))A.

[Hir21] presented a non-relativizing proof of Theorem 17. The only non-relativizing part of
the proof of [Hir21] is the pseudorandom generator construction of Buhrman, Fortnow, and Pa-
van [BFP05] under the assumption that NP is easy on average. Their proof uses a variant of the
PCP theorem, which is known to be non-relativizing.

Theorem 18 (Buhrman, Fortnow, and Pavan [BFP05]). If DistNP ⊆ AvgP, then E ̸⊆ i.o.SIZE(2ϵn)
for some constant ϵ > 0.

Here, we present a relativizing proof of a weaker statement.

Theorem 19. For every oracle A, if DistPNPA ⊆ AvgPA, then EA ̸⊆ i.o.SIZE(2ϵn)A for some constant
ϵ > 0.

Proof. The proof consists of two parts. First, we show that there exists a PA-natural property useful
against SIZE(2n/2)A. Second, using the natural property, we present a strongly exponential lower

bound for ENP
A
. This is sufficient because ENP

A
= EA holds under the assumption that PNPA

is easy
on average, which was proven in [BCGL92].

For a string x ∈ {0, 1}∗, let sizeA(x) denote the minimum size of an A-oracle circuit whose truth
table is equal to x. Following [HS17], we claim that there is a PA-natural property useful against
SIZE(2n/2)A. Let L := {x ∈ {0, 1}∗ | sizeA(x) ≤ |x|0.5}. (This is the Minimum Circuit Size Problem
with size parameter 2n/2.) It is easy to observe that L ∈ NPA. Consider the uniform distribution
U = {Un}n∈N. Since (L,U) ∈ DistNPA ⊆ AvgPA, there exists an errorless heuristic polynomial-time
algorithm MA such that Prx∈{0,1}n [M

A(x) = L(x)] ≥ 3
4 and MA(x) ∈ {1,⊥} for every x ∈ {0, 1}∗

such that sizeA(x) < |x|1/2. The number of Yes instances in L is small: by a standard counting
argument, it can be shown that Prx∈{0,1}n [L(x) = 1] = o(1). Thus, MA outputs 0 for at least a
3
4 − o(1) fraction of the inputs, whereas it outputs either 1 or ⊥ on any Yes instance of L.

Next, we claim that ENP
A ̸⊆ i.o.SIZE(2n/2). By a standard search-to-decision algorithm for

NP, there exists a PNPA
algorithm HA that, on input N ∈ N represented in unary, finds the

lexicographically first string f ∈ {0, 1}N such that MA(f) = 0. Note that there exists such a

string f . Moreover, MA(f) = 0 implies that sizeA(f) ≥ |f |1/2. Now, consider the following ENP
A

algorithm: On input x ∈ {0, 1}∗ of length n ∈ N, simulate HA on input 2n to obtain the truth table
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f ∈ {0, 1}2n and output the x-th bit of f . Since this algorithm computes a function whose truth

table is f , we conclude that EA = ENP
A ̸⊆ i.o.SIZE(2n/2)A.

A consequence of Theorem 19 is that there exists a pseudorandom generator secure against
linear-sized circuits.

Corollary 6. For every oracle A, if DistPNPA ⊆ AvgPA, then there exists a pseudorandom generator

G = {Gn : {0, 1}O(logn) → {0, 1}n}

secure against A-oracle linear-sized circuits and computable in time nO(1) with oracle access to A.
In particular, PA = BPPA.

Proof. This follows from Theorem 19 and the fact that the theorem of Impagliazzo and Wigder-
son [IW97] relativizes.

Now, we sketch the proof of Theorem 17. For simplicity, we consider only the following special
case.

Theorem 20. For every oracle A, if DistΣpA

2 ⊆ AvgPA, then NPA ⊆ DTIME(2O(n/ logn))A.

Proof Sketch. The proof consists of three steps.

1. If DistΣpA

2 ⊆ AvgPA, then Gap(KNPA
vs KA) ∈ PA.

2. If Gap(KNPA
vs KA) ∈ PA, then every language in NPA admits an A-oracle universal heuristic

scheme.

3. Any language with an A-oracle universal heuristic scheme can be solved in time 2O(n/ logn)

with oracle access to A.

The first two steps use the existence of a pseudorandom generator, which follows from Corollary 6.
(In the original proof of [Hir21], the non-relativizing proof of Theorem 18 was used.) It is not hard
to observe that the proofs of the three steps listed above are relativizing.

B Proof of Lemma 3

We can identify a random choice of n elements from U with n consecutive random choices of one
element from U , where the chosen element is removed from U . We remark that these n choices are
dependent on the previous choices, and we cannot directly apply the Chernoff bound. Instead, we
apply the martingale theory. The basic background can be founded elsewhere [MU05].

For each i ∈ N, let Xi be a random variable that returns 1 if the i-th chosen element is contained
in S and 0 otherwise. Let m =

∑n
i=1Xi. Then, the statement in the lemma is written as follows:

Pr
X1,...,Xn

[∣∣∣∣m− M

N
n

∣∣∣∣ > γ · M
N

n

]
< 2e−2γ

2·(M
N

)2·n.

For each i ∈ N ∪ {0}, we define Zi by

Zi =
M −

∑i
k=1Xk

N − i
n.

First, we show that these Z0, Z1, . . . , Zn constitute a martingale.
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Claim 1. The sequence of Z0, Z1, . . . , Zn is a martingale with respect to X1, . . . , Xn.

Proof. It is sufficient to show that for each i, E[Zi+1|X1, . . . , Xi] = Zi.
FixX1, . . . , Xi−1 arbitrarily, where i ≤ n. LetX =

∑i
k=1Xk. IfX = M , then E[Zi+1|X1, . . . , Xi] =

0 = Zi. Even when X < M , the same equation holds as follows:

E[Zi+1|X1, . . . , Xi] = n ·
[
M −X − 1

N − i− 1
· Pr[Xi+1 = 1|X] +

M −X

N − i− 1
· Pr[Xi+1 = 0|X]

]
= n ·

[
M −X − 1

N − i− 1
· M −X

N − i
+

M −X

N − i− 1
· (N −M)− (i−X)

N − i

]
= n · (M −X)(N − i− 1)

(N − i− 1)(N − i)

= n · M −X

N − i

= Zi.

Thus, the sequence of Z0, Z1, . . . , Zn is a martingale (with respect to themselves).
For each i ≤ n, under the condition on X1, . . . , Xi−1, we have

M −
∑i−1

k=1Xk − 1

N − i
n ≤ Zi ≤

M −
∑i−1

k=1Xk

N − i
n.

Thus, we can show that

Zi − Zi−1 ≤
M −

∑i−1
k=1Xk

N − i
n−

M −
∑i−1

k=1Xk

N − i+ 1
n

=
M −

∑i−1
k=1Xk

(N − i)(N − i+ 1)
n,

and

Zi − Zi−1 ≥
M −

∑i−1
k=1Xk − 1

N − i
n−

M −
∑i−1

k=1Xk

N − i+ 1
n

=
M −

∑i−1
k=1Xk − (N − i+ 1)

(N − i)(N − i+ 1)
n

Therefore, if we define a new random variable Bi by

Bi =
M −

∑i−1
k=1Xk − (N − i+ 1)

(N − i)(N − i+ 1)
n,

then we get

Bi ≤ Zi − Zi−1 ≤ Bi +
n

N − i
.

Now, we apply the Azuma-Hoeffding inequality for Z0, . . . , Zn. Then, for any real value λ ≥ 0, we
have

Pr [|Zn − Z0| > λ] < 2 exp

(
− 2λ2∑n

i=1(
n

N−i)
2

)

≤ 2 exp

(
−2λ2(N − n)2

n3

)
.
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Note that Zn =
M−

∑n
i=1 Xi

N−n n = M−m
N−n n and Z0 =

M
N n. If we assume that |m− M

N n| > γM
N n, then it

is not hard to verify that

|Zn − Z0| > γ · Mn2

N(N − n)
.

Therefore, by applying the above-mentioned inequality for λ = γ · Mn2

N(N−n) , we conclude that

Pr

[∣∣∣∣m− M

N
n

∣∣∣∣ > γ · M
N

n

]
≤ Pr

[
|Zn − Z0| > γ · Mn2

N(N − n)

]

< 2 exp

−2( γMn2

N(N−n))
2(N − n)2

n3


= 2 exp

(
−2γ2 · (M

N
)2 · n

)
.
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