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Abstract

Multipoint evaluation is the computational task of evaluating a polynomial given as a list
of coefficients at a given set of inputs. Besides being a natural and fundamental question in
computer algebra on its own, fast algorithms for this problem is also closely related to fast
algorithms for other natural algebraic questions like polynomial factorization and modular
composition. And while nearly linear time algorithms have been known for the univariate in-
stance of multipoint evaluation for close to five decades due to a work of Borodin and Moenck
[BM74], fast algorithms for the multivariate version have been much harder to come by. In a
significant improvement to the state of art for this problem, Umans [Uma08] and Kedlaya &
Umans [KU11] gave nearly linear time algorithms for this problem over field of small charac-
teristic and over all finite fields respectively, provided that the number of variables n is at most
do(1) where the degree of the input polynomial in every variable is less than d. They also stated
the question of designing fast algorithms for the large variable case (i.e. n /∈ do(1)) as an open
problem.

In this work, we show that there is a deterministic algorithm for multivariate multipoint
evaluation over a field Fq of characteristic p which evaluates an n-variate polynomial of degree
less than d in each variable on N inputs in time(

(N + dn)1+o(1) poly(log q, d, p, n)
)

,

provided that p is at most do(1), and q is at most (exp(exp(exp(· · · (exp(d))))), where the height
of this tower of exponentials is fixed. When the number of variables is large (e.g. n /∈ do(1)),
this is the first nearly linear time algorithm for this problem over any (large enough) field.

Our algorithm is based on elementary algebraic ideas and this algebraic structure naturally
leads to the following two independently interesting applications.
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• We show that there is an algebraic data structure for univariate polynomial evaluation
with nearly linear space complexity and sublinear time complexity over finite fields of
small characteristic and quasipolynomially bounded size. This provides a counterexam-
ple to a conjecture of Milterson [Mil95] who conjectured that over small finite fields, any
algebraic data structure for polynomial evaluation using polynomial space must have
linear query complexity.

• We also show that over finite fields of small characteristic and quasipolynomially bounded
size, Vandermonde matrices are not rigid enough to yield size-depth tradeoffs for lin-
ear circuits via the current quantitative bounds in Valiant’s program [Val77]. More pre-
cisely, for every fixed prime p, we show that for every constant ε > 0, and large enough
n, the rank of any n × n Vandermonde matrix V over the field Fpa can be reduced to(
n/ exp(Ω(poly(ε)

√
log n))

)
by changing at most nΘ(ε) entries in every row of V, pro-

vided a ≤ poly(log n). Prior to this work, similar upper bounds on rigidity were known
only for special Vandermonde matrices. For instance, the Discrete Fourier Transform ma-
trices and Vandermonde matrices with generators in a geometric progression [DL20].



Contents

1 Introduction 1
1.1 Algorithms for multivariate multipoint evaluation . . . . . . . . . . . . . . . . . . . . 1
1.2 Data structures for polynomial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Non-rigidity of Vandermonde matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Our results 6
2.1 Algorithms for multivariate multipoint evaluation . . . . . . . . . . . . . . . . . . . . 6
2.2 Data structures for polynomial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Upper bound on the rigidity of Vandermonde matrices . . . . . . . . . . . . . . . . . 9

3 An overview of the proofs 9
3.1 A simple algorithm for multipoint evaluation . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Towards faster multipoint evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Data structure for polynomial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Rigidity of Vandermonde matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Preliminaries 16
4.1 Some facts about finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Hasse derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Univariate polynomial evaluation and interpolation . . . . . . . . . . . . . . . . . . . 21
4.4 Multidimensional Fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 A simple algorithm for multipoint evaluation 22
5.1 A description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Analysis of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Multipoint evaluation for large number of variables 24
6.1 A description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Analysis of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Multipoint evaluation with improved field dependence 29
7.1 A description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Analysis of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 An algebraic data structure for polynomial evaluation 38
8.1 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



9 Rigidity uppper bounds 40
9.1 Non-rigidity of DFT matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 Non-rigidity of multidimensional DFT matrices . . . . . . . . . . . . . . . . . . . . . 43
9.3 Non-rigidity of Vandermonde matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 47



1 Introduction

We study the question of designing fast algorithms for the following very natural and fundamental
computational task.

Question 1.1 (Multipoint Evaluation). Given the coefficient vector of an n-variate polynomial f of degree
at most d− 1 in each variable over a field F and a set of points {αααi : i ∈ [N]} in Fn, output f (αααi) for each
i ∈ [N].

Besides being a natural and fundamental question in computer algebra on its own, fast algo-
rithms for this problem is also closely related to fast algorithms for other natural algebraic ques-
tions like polynomial factorization and modular composition [KU11].

The input for this question can be specified by (dn + Nn) elements of F and clearly, there is
a simple algorithm for this task which needs roughly ((dn · N)poly(n, d)) arithmetic operations
over F: just evaluate f on αααi for every i iteratively. Thus for N = dn, the number of field oper-
ations needed by this algorithm is roughly quadratic in the input size. While nearly linear time1

algorithms have been known for the univariate instance of multipoint evaluation [BM74] for close
to five decades, fast algorithms for the multivariate version have been much harder to come by.
In a significant improvement to the state of art for this problem, Umans [Uma08] and Kedlaya
& Umans [KU11] gave nearly linear time algorithms for this problem over fields of small charac-
teristic and over all finite fields respectively, provided that the number of variables n is at most
do(1) where the degree of the input polynomial in every variable is less than d. They also stated the
question of designing fast algorithms for the large variable case (i.e. n /∈ do(1)) as an open problem.

In this work, we make some concrete progress towards this question over finite fields of small
characteristic (and not too large size). We also show two independently interesting applications of
our algorithm. The first is to an upper bound for algebraic data structures for univariate polyno-
mial evaluation over finite fields and second is to an upper bound on the rigidity of Vandermonde
matrices over fields of small characteristic. Before stating our results, we start with a brief outline
of each of these problems and discuss some of the prior work and interesting open questions. We
state our results in section 2.

1.1 Algorithms for multivariate multipoint evaluation

For the case of univariate polynomials and N = d, Borodin and Moenck [BM74] showed that
multipoint evaluationcan be solved in O(d poly(log d)) field operations via a clever use of the Fast
Fourier Transform (FFT).

For multivariate polynomials, when the evaluation points of interest are densely packed in
a product set in Fn, FFT based ideas naturally generalize to multivariate multipoint evaluation

1Throughout this paper, we use the phrase “nearly linear time" to refer to algorithms such that for all sufficiently
large m, they run in time m1+o(1) on inputs of size m.
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yielding a nearly linear time algorithm. However, if the evaluation points are arbitrary and the
underlying field is sufficiently large2, and in particular not packed densely in a product set, the
question of designing algorithms for multipoint evaluationthat are significantly faster than the
straightforward quadratic time algorithm appears to be substantially harder. In fact, the first sig-
nificant progress in this direction was achieved nearly three decades after the work of Borodin
and Moenck by Nüsken and Ziegler [NZ04] who showed that for n = 2 and N = d2, multipoint
evaluationcan be solved in most O(dω2/2+1) operations, where ω2 is the exponent for multiplying
a d × d and a d × d2 matrix. The algorithm in [NZ04] also generalizes to give an algorithm for
general n that requires O(dω2/2(n−1)+1) field operations.3 Two significant milestones in this line of
research are the results of Umans [Uma08] and Kedlaya & Umans [KU11] who designed nearly
linear time algorithms for this problem for fields of small characteristic and over all finite fields
respectively, provided the number of variables n is at most do(1). We now discuss these results in
a bit more detail.

Umans [Uma08] gave an algorithm for multipoint evaluationover finite fields of small char-
acteristic. More precisely, the algorithm in [Uma08] solves multipoint evaluationin time O((N +

dn)(n2 p)n) · poly(d, n, p, log N) over a finite field F of characteristic p. Thus, when p and n are
do(1), the running time can be upper bounded by (N + dn)1+δ for every constant δ > 0 and d, N
sufficiently large. In addition to its impressive running time, the algorithm of Umans [Uma08] is
also algebraic, i.e. it only requires algebraic operations over the underlying field. With multipoint
evaluationnaturally being an algebraic computational problem, an algebraic algorithm for it has
some inherent aesthetic appeal. The results in [Uma08], while being remarkable has two poten-
tial avenues for improvement, namely, a generalization to other fields and to the case when the
number of variables is not do(1).

In [KU11], Kedlaya & Umans addressed the first of these issues. They showed that multipoint
evaluationcan be solved in nearly linear time over all finite fields. More precisely, for every δ > 0,
their algorithm for multipoint evaluationhas running time (dn + N)1+δ log1+o(1) q over any finite
field F of size q, provided d is sufficiently large and n = do(1). Quite surprisingly, the algorithm
in [KU11] is not algebraic. It goes via lifting the problem instance from the finite field F to an
instance over Z and then relies on an extremely clever and unusual application of the Chinese
Remainder Theorem to reduce the instance over Z back to instances over small finite fields. In-
tuitively, the gain in the entire process comes from the fact that in the reduced instances obtained
over small finite fields, the evaluation points of interests are quite densely packed together inside
a small product set and a standard application of the multidimensional FFT can be used to solve
these small field instances quite fast. Another closely related result is a recent work of Björklund,

2Over small fields, for instance if |F| ≤ d1+o(1) of |F|n ≤ N1+o(1), a standard application of multidimensional Fast
Fourier Transform which just evaluates the polynomial at all points in Fn and looks up the values at the N input points
works in nearly linear time. So, throughout the discussion on multipoint evaluation, we assume that F is large enough.

3The results in both [BM74] and [NZ04] work for arbitrary N, but for simplicity have been stated for N = d and
N = d2 respectively here.
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Kaski and Williams [BKW19] who (among other results) give an algorithm for multivariate mul-
tipoint evaluation but their time complexity depending polynomially on the field size (and not
polynomially on the logarithm of the field size).

In addition to these algorithms for multivariate multipoint evaluation, Umans [Uma08] and
Kedlaya & Umans [KU11] also show that these fast algorithms lead to significantly faster than pre-
viously known algorithms for many other natural algebraic problems. This includes the questions
of modular composition where the input consists of three univariate polynomials f , g, h ∈ F[X]

of degree less than d each and the goal is to output ( f (g(X)) mod h(X)). In addition to being
interesting on its own, faster algorithms for modular composition over finite fields are known to
directly imply faster algorithms for univariate polynomial factorization over such fields. Indeed,
using their nearly linear time algorithm for multipoint evaluation, Umans [Uma08] and Kedlaya &
Umans [KU11] obtain the currently fastest known algorithms for univariate polynomial factoriza-
tion over finite fields. We refer the reader to [KU11] for a detailed discussion of these connections
and implications.

In spite of the significant progress on the question of algorithms for multipoint evaluationin
[Uma08] and [KU11], some very natural related questions continue to remain open. For instance,
we still do not have nearly linear time algorithms for multipoint evaluationwhen the number of
variables is large, e.g. n /∈ do(1) over any (large enough) finite field, or when the field is not finite.
Since multipoint evaluationis quite naturally an algebraic computational problem, it would also
be quite interesting to have a nearly linear size arithmetic circuits over the underlying field for
this problem even if such a circuit cannot be efficiently constructed. Currently, small circuits of
this kind are only known over finite fields of small characteristic due to the results in [Uma08].
The algorithm in [KU11] does not seem to yield such a circuit since it is not algebraic over the
underlying field.

1.2 Data structures for polynomial evaluation

One particular implication of the results in [KU11] is towards the question of constructing efficient
data structures for polynomial evaluation over finite fields. The data here is a univariate polyno-
mial f ∈ F[X] of degree less than n over a finite field F. The goal is to process this data and store
it in a way that we can support fast polynomial evaluation queries, i.e. queries of the form: given
an α ∈ F output f (α). The two resources of interest here are the space required to store the data
and the number of locations 4 accessed for every query, i.e the query complexity. There are two
very natural solutions to this problem.

4This can be measured in terms of the cells accessed where each cell contains an element over the underlying field.
This is an instance of the cell probe model and is quite natural in the context of algebraic data structures for algebraic
problems. Alternatively, we can also measure the space and query complexity in terms of the number of bits stored and
accessed respectively.
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• We can store the coefficient vector of the polynomial f in the memory and for each query
α ∈ F, we can read the whole memory to recover the coefficient vector of f and hence
compute f (α). Thus, the space complexity and the query complexity of this data structure
are both (O(n log q)) bits, with clearly the space requirement being the best that we can hope
for.

• The second natural data structure for this problem just stores the evaluation of f on all α ∈ F

in the memory, and on any query, can just read off the relevant value. Thus, the space
complexity here is O(q log q) bits, but the query complexity is O(log q) bits (which is the
best that we can hope for). For q being much larger than n the space requirement here is
significantly larger than that in the first solution.

Using their algorithm for multipoint evaluation in [KU11], Kedlaya & Umans construct a data
structure for this problem with space complexity n1+δ log1+o(1) q and query complexity poly(log n) ·
log1+o(1) q for all δ > 0 and sufficiently large n. Thus, the space needed is quite close to opti-
mal, and the query complexity is within a poly(log n) factor of the optimal. Quite surprisingly,
this data structure is not algebraic since it relies on the multipoint evaluationalgorithm in [KU11]
which in turn relies on non-algebraic modular arithmetic. We also note that while the algorithm
for multipoint evaluationover fields of small characteristic in [Uma08] is algebraic, to the best of
our knowledge, it does not immediately yield a data structure for polynomial evaluation. We
remark that while the discussion here has been focused on data structures for univariate polyno-
mial evaluation, the ideas in [KU11] continue to work as it is even for the multivariate version of
this problem and gives quantitatively similar results there. In fact, their solution to the univariate
problem goes via a reduction to the multivariate case!

In a recent work, Björklund, Kaski and Williams [BKW19] also prove new data structures up-
per bounds for polynomial evaluations for multivariate polynomials over finite fields. These data
structures are algebraic and are based on some very neat geometric ideas closely related to the
notion of Kakeya sets over finite fields. Their construction can be viewed as giving a tradeoff
in the space and query complexities but at least one of these parameters always appears to have
polynomial dependence on the size of the underlying finite field. This is in contrast to the results
in [KU11] where the query complexity depends nearly linearly on log q which is more desirable
for this problem.

A very natural open question in this line of research is to obtain an algebraic data structure for
this problem which matches the space and query complexity of the results in [KU11]. Currently,
we do not have an algebraic data structure for this problem over with even polynomial space and
sublinear query complexity over any sufficiently large field. In fact, Milterson [Mil95] showed that
for algebraic data structures over finite fields of size exponential in n, if the space used is poly(n),
then the trivial data structure obtained by storing the given polynomial as a list of coefficients and
reading off everything in the memory on every query is essentially the best we can do. Milterson
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also conjectured a similar lower bound to hold over smaller fields. Thus, over smaller finite fields
(for instance, finite fields of size poly(n)), either proving a lower bound similar to that in [Mil95] ,
or constructing algebraic data structures for polynomial evaluation with perform guarantees sim-
ilar to those in [KU11] are extremely interesting open problems. For the later goal, it would be a
good start to even have an algebraic data structure that does significantly better than the trivial
solution of storing the coefficient vector of the given polynomial.

1.3 Non-rigidity of Vandermonde matrices

An application of our results for multipoint evaluationis towards upper bounds for the rigidity of
Vandermonde matrices. In this section, we give a brief overview of matrix rigidity.

Let F be any field. An n × n matrix M over F is said to be (r, s) rigid for some parameters
r, s ∈ N if M cannot be written as a sum of n× n matrices of rank at most r and sparsity at most
s. In other words, the rank of M cannot be reduced to less than or equal to r by changing at most
s of its entries. This notion was defined by Valiant [Val77] who showed that if the linear trans-
formation given by M can be computed by an arithmetic circuit of size O(n) and depth O(log n),
then M is not (O(n/ log log n), O(n1+ε)) rigid for any ε > 0. For brevity, we say that a family of
matrices is Valiant rigid if it is (O(n/ log log n), O(n1+ε)) rigid for some ε > 0. Thus, constructing
an explicit family of matrices that are Valiant rigid suffices for proving superlinear lower bounds
for log depth circuits for an explicit family of linear transformations; an extremely interesting
problem that continues to be wide open. The progress on this question has been painfully slow
although there have been several highly non-trivial and extremely interesting developments in
this direction, e.g. [SSS97, Fri93, Lok00, Lok01, Lok06, GT18, AC19, BHPT20].

Even though the question of provable rigidity lower bounds for explicit matrix families has
remained elusive, there has been a steady accumulation of various families of explicit matrices that
are suspected to be rigid. For instance, Hadamard Matrices, Design Matrices, the Discrete Fourier
Transform (DFT) matrices and various Vandermonde Matrices have all been suspected to be rigid
with varying parameters at various points in time. For some of these cases, we even have rigidity
lower bounds either for special cases or with parameters weaker than what is needed for Valiant’s
connection to arithmetic circuit lower bounds. However, quite surprisingly Alman & Williams
[AW17] showed that Hadamard matrices are not Valiant rigid over Q. This result was succeeded
by a sequence of recent results all showing that many more families of matrices suspected to be
highly rigid are in fact not Valiant rigid. This includes the work of Dvir & Edelman [DE19], the
results of Dvir & Liu [DL20], those of Alman [Alm21] and Kivva [Kiv21]. This list of suspected
to be highly rigid that have since been proven innocent includes families like Hadamard Matrices
[AW17], Discrete Fourier Transform (DFT) Matrices, Circulant and Toeplitz matrices [DL20] and
any family of matrices that can be expressed as a Kronecker product of small matrices [Alm21,
Kiv21].
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However, a notable family of matrices missing from this list is that of Vandermonde matri-
ces. Special cases of Vandermonde matrices, for instance the DFT matrices, are known to be not
be Valiant rigid, and in fact this result extends to the case of all Vandermonde matrices where
the generators are in geometric progression.5 However, the case of Vandermonde matrices with
arbitrary generators is still not well understood.6

2 Our results

We now state our results formally and try to place them in the context of prior work.

2.1 Algorithms for multivariate multipoint evaluation

Our main result is a fast algebraic algorithm for multipoint evaluationover fields of small char-
acteristic. We state this result informally here, and refer the reader to Theorem 7.1 for a formal
statement.

Theorem 2.1 (Informal). Over a field Fpa of characteristic p, there is a deterministic algorithm which
evaluates a given n variate polynomial of degree less than d in each variable on N inputs in time(

(N + dn)1+o(1) · poly(a, d, p, n)
)

,

provided that p is at most do(1) and a is at most (exp(exp(exp(· · · (exp(d))))), where the height of this
tower of exponentials is fixed.

A few remarks are in order.

Remark 2.2. Throughout this paper, we assume that we are given a description of the field Fq as a part of
the input. For instance, we are given an irreducible polynomial v(Y) ∈ Fp[Y] of degree equal to logp q and
Fq ≡ Fp[Y]/⟨v(Y)⟩. ⌟

Remark 2.3. Our algorithms for Theorem 2.1 can be viewed as naturally giving an arithmetic circuit of
nearly linear size for multivariate multipoint evaluation over the underlying finite field Fpa . Throughout
this paper, this is what we mean when we say we have an “algebraic" algorithm. Moreover, given a descrip-
tion of Fq as in Remark 2.2, we can use the algorithm in Theorem 2.1 to output such a circuit for multipoint
evaluation in nearly linear time.

⌟

As alluded to in the introduction, when the number of variables is large (e.g. n /∈ do(1)), this is
the first nearly linear time algorithm for this problem over any sufficiently large field. Prior to this

5An n× n Vandermonde matrix over a field F is specified by a list of n field elements α0, α1, . . . , αn−1 in F that we
call generators. The rows and columns are indexed by {0, 1, . . . , n− 1} and the (i, j) entry of the matrix equals αi

j.
6Lokam [Lok00] shows that n × n Vandermonde matrices with algebraically independent generators are at least

(
√

n, Ω(n2)) rigid. This bound, however, is not sufficient for Valiant’s program.
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work, the fastest known algorithms for multivariate multipoint evaluation are due to the results
of Umans [Uma08] and Kedlaya & Umans [KU11] who give nearly linear time algorithms for this
problem over finite fields of small characteristic and all finite fields respectively when the number
of variables n is at most do(1). Theorem 2.1 answers an open question Kedlaya & Umans [KU11]
over the fields where it applies.

By a direct connection between the complexity of multipoint evaluation and modular compo-
sition shown by Kedlaya & Umans [KU11], Theorem 2.1 implies a nearly linear time algorithm
for modular composition even when the number of variables n is not less than do(1). In [KU11],
such an algorithm was obtained when n < do(1) (over all finite fields). More precisely, we have the
following corollary.

Corollary 2.4 (Informal). Let Fpa be a field of characteristic p. Then, there is an algorithm that on input
an n-variate polynomial f (X1, X2, . . . , Xn) of individual degree less than d and univariate polynomials
g1(X), . . . , gn(X) and h(X) in Fq[X] with degree less than N, outputs the polynomial

f (g1(X), g2(X), . . . , gn(X)) mod h(X)

in time
(dn + N)1+o(1) · poly(a, d, p, n) ,

provided that p is at most do(1) and a is at most (exp(exp(exp(· · · (exp(d))))), where the height of this
tower of exponentials is fixed.

Our algorithm is based on elementary algebraic ingredients. One of these ingredients is the
basic fact that the restriction of a low degree multivariate polynomial to a low degree curve is
a low degree univariate polynomial! We use this fact together with some other algebraic tools,
e.g. univariate polynomial interpolation (with multiplicities), structure of finite fields, and mul-
tidimensional FFT for our algorithm. We describe an overview of the main ideas in the proof in
section 3. We also note that even though the algorithm in [Uma08] is algebraic, it appears to be
based on ideas very different from those in this paper. In particular, Umans relies on a clever
reduction from the multivariate problem to the univariate problem by working over appropriate
extension of the underlying field. This is then combined with the classical univariate multipoint
evaluation algorithm to complete the picture. Our algorithm, on the other hand, does not involve
a global reduction from the multivariate set up to the univariate set up, and crucially relies on
more local properties of low degree multivariate polynomials.

Another related prior work is a result of Björklund, Kaski and Williams [BKW19], who give
a data structure (and an algorithm) for multipoint evaluation and some very interesting conse-
quences to fast algorithms for problems in #P. We note that at a high level, the structure of our
algorithm is similar to that of the algorithm of Björklund, Kaski and Williams [BKW19]. However,
the technical details and quatitative bounds achieved are different. One major difference is that the
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time complexity of the algorithm in [BKW19] depends polynomially on the field size. Thus strictly
speaking, with the field size growing, this algorithm is not polynomial time in the input size. On
the other hand, the time complexity of the algorithms in the works of Umans [Uma08], Kedlaya
& Umans [KU11] and that in Theorem 2.1 depends polynomially in the logarithm of the field size,
as is more desirable. We discuss the similarities and differences in the high level structure of the
algorithm in [BKW19] and that in Theorem 2.1 in a little more detail in section 3.

2.2 Data structures for polynomial evaluation

As an interesting application of our ideas in Theorem 2.1, we get the following upper bound for
data structure for polynomial evaluation.

Theorem 2.5 (Informal). Let p be a fixed prime. Then, for all sufficiently large n ∈ N and all fields
Fpa with a ≤ poly(log n), there is an algebraic data structure for polynomial evaluation for univariate
polynomials of degree less than n over Fpa that has space complexity at most n1+o(1) and query complexity
at most no(1).

A more precise version of Theorem 2.5 can be found in Theorem 8.1. We remark that by an
algebraic data structure, we mean that there is an algebraic algorithm (in the spirit of Remark 2.3)
over Fpa that, when given the coefficients of a univariate polynomial f of degree at most n as input
outputs the data structure D f in time n1+o(1) and another algebraic algorithm which when given
an α ∈ Fpa and query access toD f outputs f (α) in time no(1). In other words, there is an arithmetic
circuit C1 over Fpa with n1+o(1) outputs that when given the coefficients of f as input, outputs D f

and an arithmetic circuit C2 with no(1) inputs satisfying the following: for every α ∈ Fpa , there is a
subset S(α) of cells in D f such that on input α and D f |S(α), C2 outputs f (α).

As alluded to in the introduction, Milterson [Mil95] showed that over finite fields that are
exponentially large (in the degree parameter n), any algebraic data structure for polynomial eval-
uation with space complexity poly(n) must have query complexity Ω(n). He also conjectured
that the lower bound continues to hold over smaller fields.7 Theorem 2.5 provides a counterexam-
ple to this conjecture when the underlying field has small characteristic and is quasipolynomially
bounded in size.

The data structure of Kedlaya & Umans [KU11] outperforms the space and query complexi-
ties of the data structure in Theorem 2.5. However, their construction is not algebraic; essentially
because their algorithm for multipoint evaluationis not algebraic.8 However, their construction
works over all finite fields, while we require fields of small characteristic that are quasipolyno-
mially bounded in size. Umans’ [Uma08] algorithm for multipoint evaluationon the other hand

7We note that Milterson did not precisely quantify what smaller fields mean, but the case when the field size is a large
polynomial in the degree parameter n is a natural setting, since the trivial data structures in this case do not have both
nearly linear space and sublinear query complexity. Theorem 2.5 provides such a construction when the underlying
field additionally has a small characteristic.

8This is also the reason why the data structure in [KU11] does not give a counterexample to Milterson’s conjecture.
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is algebraic, although to the best of our knowledge, this is not known to give a data structure
for polynomial evaluation. Finally, we note that for the algebraic data structure in the work of
Björklund, Kaski and Williams [BKW19], either the query complexity or the space complexity has
polynomial dependence on the field size and thus even over fields of polynomial size it does not
appear to give nearly linear space complexity or sublinear query complexity. However, the results
in [BKW19] are stated for multivariate polynomials and it is not clear to us if for the special case
of univariate polynomial one can somehow bypass this polynomial dependence on field size by a
careful modification of their construction.

2.3 Upper bound on the rigidity of Vandermonde matrices

As the second application of the ideas in Theorem 2.1, we show the following upper bound on the
rigidity of general Vandermonde matrices.

Theorem 2.6 (Informal). Let p be a fixed prime. Then, for all constants ε with 0 < ε < 0.01 and for all
sufficiently large n, if V is an n× n Vandermonde matrix over the field Fpa for a ≤ poly(log n), then the
rank of V can be reduced to n

exp(Ω(ε7 log0.5 n)
) by changing at most n1+Θ(ε) entries of V.

For a more formal version of Theorem 2.6, we refer to Theorem 9.6. Theorem 2.6 extends the
list of natural families of matrices that were considered potential explicit candidates for rigidity
but turn out to not be rigid enough for Valiant’s program [Val77] of obtaining size-depth tradeoffs
for linear arithmetic circuits via rigidity. Prior to this work, such upper bounds on rigidity were
only known for special Vandermonde matrices, for instance, the Discrete Fourier transform matrix
and Vandermonde matrices with generators in geometric progression [DL20].

Our proof of Theorem 2.6 crucially relies on the results in [DL20] and combines these ideas
with ideas in the proof of Theorem 2.1. We discuss these in more details in the next section.

3 An overview of the proofs

In this section we describe some detail, the main high level ideas of our proofs. We begin with a de-
tailed overview of our algorithms for multipoint evaluation. We have three algorithms (section 5,
section 6 and section 7) starting with the simplest one and each subsequent algorithm building
upon the previous one with some new ideas. We start with the simplest one here.

3.1 A simple algorithm for multipoint evaluation

We start with some necessary notation. Let p be a prime and Fq be a finite field with q = pa. Let f ∈
Fq[x] be an n-variate polynomial of degree at most d− 1 in every variable and for i = 1, 2, . . . , N let
αααi ∈ Fn

q be points. The goal is to output the value of f at each of these points αααi. As is customary,
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we assume that the field Fq is given as Fp[Y]/⟨v(Y)⟩ for some degree a irreducible polynomial
v(Y) ∈ Fp[Y]. In Lemma 4.3, we observe that given the irreducible polynomial v(Y) ∈ Fp[Y]
such that Fq = Fp[Y]/⟨v(Y)⟩ and any u ∈ Fq, we can efficiently compute the coefficients of the
univariate polynomial over Fp[Y] corresponding to u via arithmetic operations over Fq. Therefore,
for the rest of this discussion, we assume that every field element (in the coefficients of f and the
coordinates of αααi) are explicitly given to univariate polynomials of degree at most a− 1 in Fp[Y].

We start with a discussion of the simplest version of our algorithm before elaborating on the
other ideas needed for further improvements. The formal guarantees for this version can be found
in Theorem 5.1. The algorithm can be thought to have two phases, the preprocessing phase and
the local computation phase.

Preprocessing phase. We start with a description of the preprocessing phase.

• A subfield of appropriate size: As the first step of the algorithm, we compute a natural
number b such that pb−1 ≤ adn ≤ pb. For the ease of this discussion, let us assume that b
divides a, and thus Fpb is a subfield of Fq = Fpa . If b does not divide a, then we work in a
field Fpc that is a common extension of Fpa and Fpb .

• Evaluating f on Fn
pb : We now use the standard multidimensional Fast Fourier Transform

algorithm to evaluate f on all of Fn
pb . This algorithm runs in quasilinear time in the input

size, i.e. Õ(dn + (pbn)), where Õ hides poly(d, n, p, b) factors. From our choice of b, we note
that this quantity is at most Õ((padn)n).

Local computation phase. We now describe the local computation phase.

• A low degree curve through αααi: Once we have the evaluation of f on all points in Fn
pb , we

initiate some local computation at each αααi. This local computation would run in time (adn)c

for some fixed constant c, thereby giving an upper bound of Õ
(
(pad)n + N(adn)O(1)

)
on

the total running time. To describe this local computation, let us focus on a point αααi. Since
the field elements of Fq are represented as univariate polynomials of degree at most (a− 1)
in Fp[Y], we get that for every αααi ∈ Fn

q , there exist vectors αααi,0, αααi,1, . . . , αααi,a−1 in Fn
p such that

αααi = αααi,0 + αααi,1Y + · · ·+ αααi,a−1Ya−1 .

Let us now consider the curve g(t) ∈ Fn
p[t] defined as

gi(t) = αααi,0 + αααi,1t + · · ·+ αααi,a−1ta−1 .

We are interested in some simple properties of this curve. The first such property is that it
passes through the point αααi, since αααi = gi(Y) (recall that Y is an element of Fq = Fp[Y]/⟨v(Y)⟩
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here). The second property is that this curve contains a lot of points in the Fn
pb . In particular,

note that for every γ ∈ Fpb , gi(γ) ∈ Fn
pb . Thus, there are at least pb points on gi(t) in Fn

pb

(counted with multiplicities).

• Restriction of f to gi(t): We now look at the univariate polynomial hi(t) obtained by re-
stricting the n-variate polynomial f to the curve gi(t). Thus, if gi(t) = (gi,0(t), . . . , gi,n−1(t))
for some univariate polynomials gi,j(t) of degree at most a− 1, then hi(t) is equal to the poly-
nomial f (gi,0(t), . . . , gi,n−1(t)). Clearly, the degree of hi is at most a(d− 1)n < adn. From our
previous discussion, we know that hi(Y) = f (αααi). Moreover, we have already evaluated f
on all of Fn

pb and thus, we know the value of hi(γ) for all γ ∈ Fpb . Note that these are at

least pb many inputs on which the value of hi(t) is correctly known to us. Also, from our
choice of b, we know that pb > adn > deg(hi). Thus, we can recover the polynomial hi com-
pletely using univariate polynomial interpolation in time at most poly(a, d, n, p), and thus
can output hi(Y) = f (αααi) in time poly(a, d, n, p). Iterating this local computation for every
i ∈ {0, 1, . . . , N − 1}, we can compute the value of f at αααi for each such i.

Correctness and running time. The correctness of the algorithm immediately follows from the
outline above. Essentially, we set things up in a way that to compute f (αααi) it suffices to evaluate
the univariate polynomial hi at input Y ∈ Fq. Moreover, from the preprocessing phase, we already
have the value of f on Fn

pb and this in turn gives us the evaluation of hi(t) on pb > adn > deg(hi)

distinct inputs. Thus, by standard univariate polynomial interpolation, we recover hi and hence
hi(Y) = f (αααi) correctly.

The time complexity of the preprocessing phase is dominated by the step where we evaluate
f on Fn

pb . This can be upper bounded by Õ((padn)n) using the standard multidimensional FFT
algorithm. In the local computation phase, the computation at each input point αααi involves con-
structing the curve gi(t), constructing the set {(γ, hi(γ)) : γ ∈ Fpb}, using the evaluation of hi

on these pb inputs to recover hi uniquely via interpolation and then computing hi(Y). For every
γ ∈ Fpb , gi(γ) ∈ Fn

pb can be done in time at most poly(a, d, n, p). So, the total time complexity
of this phase is at most (N · poly(a, d, n, p)), and hence the total running time of the algorithm is
Õ(N + (padn)n).

3.2 Towards faster multipoint evaluation

The algorithm outlined in the previous section achieves a O(Nn + dn)1+o(1) when apn = do(1).
We now try to modify it so that it continues to be nearly linear time even when the number of
variables n and the degree of underlying field a are not less than do(1). The factor of pn appears
to be inherent to our approach and seems difficult to get rid of, and this leads to the restriction of
working over fields of small characteristic for all our results in this paper.
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Before proceeding further, we remark that the basic intuition underlying all of our subsequent
algorithms are essentially the same as those in the simple algorithm outlined in this section. For
each of the further improvements, we modify certain aspects of this algorithm using a few more
technical (and yet simple) ideas on top of the ones already discussed in subsection 3.1.

Handling large number of variables. The factor of nn in the running time appears in the pre-
processing phase of the algorithm in subsection 3.1. The necessity for this stems from the fact that
the univariate polynomial hi(t) obtained by restricting f to the curve gi(t) through αααi can have
degree as large as a(d− 1)n. Thus, for interpolating hi(t) from its evaluations, we need its value
on at least a(d− 1)n + 1 distinct inputs. Thus, we need pb to be at least a(d− 1)n + 1.

However, we note that if we have access to not just the evaluations of hi(t), but also to the
evaluations of its derivatives up to order n − 1 at each of these inputs in Fpb , then hi(t) can be
uniquely from this information provided pb is at least deg(hi(t))/n, i.e. (a(d− 1)n + 1)/n ≤ ad
(see Lemma 4.10 for a formal statement). Thus, with observation at hand, we now choose b such
that pb−1 ≤ ad ≤ pb. Moreover, for the local computation, we now need not only the evaluation
of hi on all points in Fpb but also the evaluations of all derivatives of hi(t) of order at most n− 1
on all these points. A natural way of ensuring that the evaluations of these derivatives of hi(t) are
available in the local computation phase is to compute not just the evaluation of f but also of all its
partial derivatives of up to n on all of Fn

pb . Together with the chain rule of partial derivatives, we
can use the evaluations of these partial derivatives of f and the identity hi(t) = f ◦ gi(t) to obtain
the evaluations of hi(t) and all its derivatives of order at most n − 1 on all inputs in Fpb . This
ensures that hi can once again be correctly and uniquely recovered given this information via a
standard instance of Hermite Interpolation, which in turn ensures the correctness of the algorithm.

To see the effect on the running time, note that in the preprocessing phase, we now need to
evaluate not just f but all its partial derivatives of order at most n− 1 on all of Fn

pb . Thus, there
are now roughly (n+n

n ) ≤ 4n polynomials to work with in this phase. So, given the coefficients
of f , we first obtain the coefficients of all these derivatives, and then evaluate these polynomials
on Fn

pb using a multidimensional FFT algorithm again. Also, the coefficient representation of any
fixed derivative of order up to n− 1 can be computed from the coefficients of f in Õ(dn) time (see
Lemma 4.7). Thus, the total time complexity of the preprocessing phase in this new algorithm can
be upper bounded by Õ((adp)n4n).

Once we have this stronger guarantee from the preprocessing phase, we get to doing some
local computation at each point αααi. Now, instead of recovering hi via a standard univariate poly-
nomial interpolation, we have to rely on a standard Hermite interpolation for this. In particular,
we need access to the evaluation of all derivatives of hi(t) of order at most n − 1 on all inputs
γ ∈ Fpb . This can be done via an application of chain rule of derivatives and the fact that we
have evaluations of all partial derivatives of f of order at most n− 1 on all points in Fn

pb . The time
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taken for this computation at each γ ∈ Fpb turns out to be about O(4n poly(d, n, a, p)). Thus, the
total time taken for local computation at all the input points can be upper bounded by roughly
O(N4n poly(d, n, a, p)).

Thus, the total time complexity of this modified algorithm is Õ((N + (adp)n)4n). In other
words, we have managed to remove the factor of nn present in the algorithm in subsection 3.1 and
replace it by 4n. An algorithm based on this improvement is described in section 6.

Handling larger fields. We now discuss the improvement in the dependence on the parameter
a, which is the degree of the extension of Fp where the input points lie. In the local computation
step at each point, the curve gi(t) through αααi has degree a − 1 in the worst case, since we view
the field elements in Fpa as univariate polynomials of degree at most a − 1 with coefficients in
Fp. Therefore, the restriction of f to such a curve, namely the polynomial hi(t) can have degree
(a− 1)deg( f ) in the worst case. This forces us to choose the parameter b such that pb is at least
deg(hi), thereby leading to a factor of an in the running time. Note that if we had the additional
promise that the point αααi was in an extension Fpa′ of Fp for some a′ < a, then the curve gi would
be of degree at most (a′ − 1) < (a− 1) and hence the polynomial hi would have degree at most
(a′ − 1)deg( f ). More generally, if all the input points αααi were promised to be in Fn

pa′ , we can

improve the factor an to (a′)n in the running time by choosing b such that pb is larger than a′dn (in
fact, we only need pb ≥ (a′d) if we are working with multiplicities). We also note that for every
a′ ∈ N the curve gi(t) takes a value in Fn

pa′ whenever t is set to a value in Fpa′ . As a consequence,

the curve gi contains at least pa′ points in Fn
pa′ . With these observations in hand, we now elaborate

on the idea for reducing the an factor in the running time. For simplicity of exposition, we outline
our ideas in the setting of the algorithm discussed in subsection 3.1. In particular, derivative based
improvements are not involved.

Let a′ be such that pa′ > adn ≥ pa′−1. Now, instead of recovering hi directly from its values on
Fpb , we try to recover hi in two steps. In the first step, we try to obtain the values of hi(t) for every
γ ∈ Fpa′ using the information we have from the preprocessing phase. Assuming that we can do
this, we can again obtain hi by interpolation and compute hi(Y) = f (αααi).

Now, to compute hi(γ) for γ ∈ Fpa′ , we note that hi(γ) equals f ◦ gi(γ), thus it would be
sufficient if we had the evaluation of f on the point set {gi(γ) : γ ∈ Fpa′ }. This seems like the
problem we had started with, but with one key difference: the points {gi(γ) : γ ∈ Fpa′ } are all in
Fn

pa′ with a′ = Θ(log adn)! Thus, the degree of the extension where these points lie is significantly
reduced. In essence, this discussion gives us a reduction from the problem of evaluating f on
N points in Fn

pa to evaluating f on N · adn points in Fn
pa′ , with a′ = Θ(log adn). Thus, we have

another instance of multipoint evaluation with a multiplicatively larger point set in an extension
of Fp of degree logarithmic in adn. If we now apply the algorithm discussed in subsection 3.1, we
get a running time of roughly Õ(Nadn+ (pdn log(adn))n). Thus, in the running time, the factor an
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has been replaced by logn a at the cost of N being replaced by Nadn. In fact, we can continue this
process ℓ times, and in each step we end up with an instance of multipoint evaluation with the
size of the point set being increased by a multiplicative factor, with the gain being that we have a
substantial reduction in the degree of the field extension that the points live in.

This idea can be combined with those used for improving the dependence on the number
of variables, to get our final algorithm that achieves nearly linear running time provided that
p = do(1) and a ≤ exp(exp(. . . (exp(d)))) where the height of this tower of exponentials is fixed.
We refer to Theorem 7.1 for a formal statement of the result and section 7 for further details.

Comparison with the techniques of Björklund, Kaski and Williams [BKW19]. Now that we
have an overview of the algorithms for multipoint evaluation in this paper, we can elaborate on
the similarities they share with the algorithms in [BKW19]. At a high level, the similarities are
significant. In particular, both the algorithms have a preprocessing phase where the polynomial is
on a product set using multidimensional FFT. This is followed by a local computation step, where
the value of the polynomial at any specific input of interest is deduced from the already computed
data by working with the restriction of the multivariate polynomial to an appropriate curve. In
spite of these similarities in the high level outline, the quantitative details of these algorithms are
different. One salient difference is that the time complexity of the algorithm in [BKW19], depends
polynomially on the size of the underlying field, whereas in our algorithm outlined above, this
dependence is polynomial in logarithm of the field size as long as the size of the field is bounded
by a tower function of fixed height in the degree parameter d. This difference stems from techni-
cal differences in the precise product set used in the preprocessing phase and the sets of curves
utilized in the local computation phase. In particular, the degree of the curves in the local compu-
tation phase of our algorithms depends polynomially on log |F|, where as the degree of the curves
used in [BKW19] depends polynomially on |F|. Additionally, algorithms in [BKW19] rely on the
assumption that the total degree of the polynomial divides |F∗| − 1, whereas we do not need any
such divisibility condition.

3.3 Data structure for polynomial evaluation

The multipoint evaluation algorithm in Theorem 2.1 is naturally conducive to obtaining data struc-
tures for polynomial evaluation. Essentially, the evaluation of the polynomial in a fixed grid
(independent of the N points of interest in the input) gives us the data structure, and the local
computation at each input point of interest which requires access to some of the information com-
puted in the preprocessing phase constitutes the query phase of the data structure. We discuss
this in some more detail now.

Let f (X) ∈ Fpa [X] be a univariate polynomial of degree at most n. We start by picking param-
eters d, m such that dm is at least n. For any such choice of d and n, there is clearly an m-variate
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polynomial F(Z0, Z1, . . . , Zm−1) such that F(X, Xd, Xd2
, . . . , Xdm−1

) = f (X). In other words, the
image of F under the Kronecker substitution equals f . Now, as in the multipoint evaluation algo-
rithms, we pick the smallest integer b such that pb > adm and evaluate F on Fm

pb and store these
points along with the value of F on these inputs in the memory. This forms the memory content
of our data structure. Thus, the memory can be thought of having pbm ≤ (padm)m cells, each
containing a pair (c, F(c)) for c ∈ Fm

pb .
Let us now consider the query complexity of this data structure. Let α ∈ Fpa be an input and

the goal is to compute f (α). From the relation between F and f , we have that f (α) = F(ααα), where
ααα = (α, αd, αd2

, . . . , αdm−1
). Now, we rely on the local computation in the multipoint evaluation

algorithms to compute F(ααα). In the algorithm, we consider a curve g of degree at most a− 1 which
passes through ααα and look at the restriction of F to this curve to get a univariate polynomial h of
degree less than adm. Then, we take the value of h on inputs in Fpb , which can be recovered from
the value of F on the points in the set g(Fpb) ∩ Fn

pb . Finally, note that there are at least pb > adm
of these inputs and value of h on these inputs is already stored in the memory. This suffices to
recover h and thus, also f (α) = F(ααα). So, the query complexity of this data structure is adm.

To get a sense of the parameters, let us set d = n1/ log log n and m = log log n. Clearly, the
constraint dm ≥ n is met in this case. For this choice of parameter and for p being a constant and
a ≤ poly(log n), we get that the space complexity is at most n1+o(1) and the query complexity is at
most no(1).

The complete details can be found in section 8.

3.4 Rigidity of Vandermonde matrices

The connection between rigidity of Vandermonde matrices and multipoint evaluation is also quite
natural. Consider a Vandermonde matrix V with generators α0, . . . , αn−1 and for every (i, j) ∈
{0, 1, . . . , n− 1} × {0, 1, . . . , n− 1}, the (i, j) entry of V is α

j
i . Now, for any univariate polynomial

f of degree at most n− 1, the coefficients of f , together with the set {αi : i ∈ [n]} of generators
form an instance of (univariate) multipoint evaluation. Moreover, for any choice of the generators
{αi : i ∈ [n]}, the algorithm for multipoint evaluation, e.g Theorem 2.1 can naturally be interpreted
as a circuit for computing the linear transform given by the matrix V. Furthermore, if this linear
circuit is structured enough, we could, in principle hope to get a decomposition of V as a sum
of a sparse and a low rank matrix from this linear circuit, for instance, along the lines of the
combinatorial argument of Valiant [Val77]. Our proof of Theorem 2.6 is along this outline. We
now describe these ideas in a bit more detail.

Given a univariate polynomial f of degree n − 1 and inputs α0, α1, . . . , αn−1, let F be an m-
variate polynomial of degree d such that (n = dm)9 as described in subsection 3.3. Moreover, for
i ∈ {0, 1, . . . , n− 1}, let αααi = (αi, αd

i , . . . , αdm−1

i ). Now, as discussed in subsection 3.3, f (αi) = F(αααi).

9For simplicity, let us assume that such a choice of integers d, m exist.
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Let Ṽ be the n × n matrix where the rows are indexed by {0, 1, . . . , n − 1} and the columns are
indexed by all m- variate monomials of individual degree at most d − 1. We use the fact that
dm = n here. From the above set up, it immediately follows that the coefficient vectors of f and
F are equal to each other (with the coordinate indices having slightly different semantics) and the
matrices V and Ṽ are equal to each other.

We now observe that the algorithm for multipoint evaluation described in subsection 3.1 gives
a natural decomposition of Ṽ (and hence V) as a product of a matrix A of row sparsity at most
adm and a pbm × dm matrix B with b being the smallest integer such that pb > adm. The rows
of B are indexed by all elements of Fm

pb and the columns are indexed by all m-variate monomials
of individual degree at most d − 1, and the (ααα, e) entry of B equals αααe. Intuitively, the matrix B
corresponds to the preprocessing phase of the algorithm and the matrix A corresponds to the local
computation. At this point, we use an upper bound of [DL20] on the rigidity of Discrete Fourier
Transform matrices over finite fields and the inherent Kronecker product structure of the matrix B
to obtain an upper bound on the rigidity of B. Finally, we observe that that matrix V = Ṽ = A · B
obtained by multiplying a sufficiently non-rigid matrix B with a row sparse matrix A continues to
be non-rigid with an interesting regime of parameters. This essentially completes the proof. For
more details, we refer the reader to section 9.

4 Preliminaries

We use N to denote the set of natural numbers {0, 1, 2, . . .}, F to denote a general field. For
any positive integer N, [N] denotes the set {1, 2, . . . , N}. By x and z, we denote the variable
tuples (X1, . . . , Xn) and (Z1, . . . , Zn), respectively. For any e = (e1, . . . , en) ∈ Nn, xe denotes the
monomial ∏n

i=1 Xei
i . By |e|1, we denote the sum e1 + · · ·+ en.

For every positive integer k, k! denotes ∏k
i=1 i. For k = 0, k! is defined as 1. For two non-

negative integer i and k with k ≥ i, (k
i) denotes k!

i!(k−i)! . For k < i, (k
i) = 0. For non-negative

integer i1, . . . , is with i1 + · · ·+ is = k, ( k
i1,...,is

) = k!
i1!···is ! . For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Nn,

(a
b) = ∏n

i=1 (
ai
bi
), and (a+b

a,b ) = ∏n
i=1 (

ai+bi
ai ,bi

).
We say that a function ψ : N→N is polynomially bounded, or denoted by ψ(n) ≤ poly(n), if

there exists a constant c such that for all large enough n ∈N, ψ(n) ≤ nc.

Proposition 4.1. For any two positive integers i and k with k ≥ i,(
k
i

)
≤
(

ke
i

)i

.

For proof see [Juk10, Chapter 1]. Suppose that p be a positive integer greater than 1. Then
for any non-negative integer c, log◦cp (n) denotes the c-times composition of logarithm function
with itself, with respect to base p. For example, log◦2p (n) = logp logp(n). By log⋆

p(n), denotes the
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smallest non-negative integer c such that log◦cp (n) ≤ 1. For p = 2, we may omit the subscript p in
logp(n), log◦cp (n) and log⋆

p(n).

4.1 Some facts about finite fields

Suppose that p is a prime and q = pa for some positive integer a. Then there exists an unique finite
field of size q. In other words, all the finite fields of size q are isomorphic to each other. We use Fq

to denote the finite field of size q, and p is called the characteristic of Fq. For any finite field Fq, F∗q
represents the multiplicative cyclic group after discarding the field element 0. For any irreducible
polynomial v(Y) over Fq, the quotient ring Fq[Y]/⟨v(Y)⟩ forms a larger field over Fq of size qb

where b is the degree of v(Y). The next lemma describes that we can efficiently construct such
larger fields over Fq, when the characteristic of the field is small.

Lemma 4.2. Let p be a prime and q = pa for some positive integer a. Then, for any positive integer
b, the field Fqb can be constructed as Fq[Y]/⟨v(Y)⟩, where v(Y) is degree b irreducible polynomial over
Fq, in poly(a, b, p) Fq-operations. Furthermore, all the basic operations in Fqb can be done in poly(b)
Fq-operations.

Proof. The elements of the quotient ring Fq[Y]/⟨v(Y)⟩ are polynomials in Y over Fq with degree
less than b, and the operations are polynomial addition and multiplication under modulo v(Y).
Therefore, once we have an irreducible v(Y) (over Fq) of degree b, we can perform the basic oper-
ations in Fqb using poly(b) Fq-operations. From [Sho90, Theorem 4.1], we can compute a degree b
irreducible polynomial v(Y) over Fq using poly(a, b, p) Fp-operations.

Fix a field Fq of characteristic p. In the standard algebraic model over Fq, the basic operations
are addition, subtraction, multiplication, and division of elements in Fq. Let Fq = Fp[X]/⟨g(X)⟩
where q = pa and g(X) is a degree a irreducible polynomial over Fp. Then for any element α ∈ Fq,
consider its canonical representation α = α0 + α1X + . . . + αa−1Xa−1 where αi ∈ Fp. Note that it
is not clear how to extract αi’s from α using the algebraic operations over Fq. We show that this
is possible if p is small. Since Fq = Fp[X]/⟨g(X)⟩, X ∈ Fq is a root of the degree a irreducible
polynomial g(X) (over Fp). This implies that X, Xp, Xp2

, . . . , Xpa−1
are all distinct elements of Fq.

Lemma 4.3. Let p be prime and q = pa for some positive integer a. Let Fq = Fp[X]/⟨g(X)⟩ where
g(X) is a degree a irreducible polynomial over Fp. Let α ∈ Fq and α = α0 + α1X + · · · + αa−1Xa−1

where αi ∈ Fp. Then, given blackbox access to α and Fq-operations, α0, α1, . . . , αa−1 can be computed in
poly(a, log p) Fq-operations.

Proof. Note that, given α, we can compute αp by repeated squaring over Fq. Applying this itera-

17



tively, we have access to all conjugates α, αp, αp2
, . . . , αpa−1

. Observe that,
1 X X2 . . . Xa−1

1 Xp X2p . . . Xp(a−1)

. . . . . . . . . . . . . . .
1 Xpa−1

X2pa−1
. . . X(a−1)pa−1


︸ ︷︷ ︸

A


α0

α1

. . .
αa−1

 =


α

αp

. . .
αpa−1

 .

Note that, the matrix A in the above linear system is a Vandermonde matrix and thus invert-
ible. Also, each entry of A is an element in Fq. Thus, we can find αi by solving this linear system
over Fq. For time complexity, note that we can use αpi

to compute αpi+1
. Thus, α, αp, . . . , αpa−1

can
be computed in poly(a, log p) Fq-operations. Also, the computation of A and solving the linear
system can be done in poly(a, log p) Fq-operations. Therefore, overall complexity is poly(a, log p)
Fq-operations.

Thus, for the rest of our paper, we consider that the extraction of the Fp-coefficients from
elements in Fq as an algebraic operation. Also, in our applications, the time complexity overhead
introduced due to this is negligible.

Suppose that Fq1 and Fq2 are two finite fields of characteristic p such that Fq1 is a subfield of
Fq2 . Then Fq2 forms a vector space over Fq1 . A subset {β1, β2, . . . , βk} of Fq2 is called an Fq1-basis
if every element of α ∈ Fq2 is a linear combination of βi’s over Fq1 .

Lemma 4.4. Let p be a prime and q = pa for some positive integer a. Let b be a positive integer and
Fqb = Fq[Y]/⟨v(Y)⟩ for some degree b irreducible polynomial v(Y) over Fq. Then, the following holds:

1. The field Fqb contains the subfield Fpb . Furthermore, all the elements of Fpb can be computed in
pb · poly(a, b, p) Fq-operations.

2. In poly(a, b, p) Fq-operations, an element β ∈ Fqb can be computed such that {1, β, . . . , βb−1}
forms an Fp-basis for Fpb . Moreover, given any element α ∈ Fpb , the Fp-linear combination of α in
the basis {1, β, . . . , βb−1} can be computed in poly(b) Fq-operations.

Proof. Since pb − 1 divides qb − 1, Fqb is a splitting field of the xpb − x, that is, xpb − x linearly
factorizes over Fqb . Now, one can show that the roots of xpb − x over Fqb form a subfield of size
pb. Now, using [Sho90, Theorem 3.2], we can compute a degree b irreducible polynomial u(Z)
over Fp in poly(b, p) Fp-operations. Next, applying [Ber70], we can find a root β ∈ Fqb for u(Z)
in poly(a, b, p) Fq-operations. One can show that for any other polynomial u′(Z) with u′(β) = 0,
u(Z) divides u′(Z). Also, β is in Fpb since Fpb is a splitting field for u(Z). This implies that
{1, β, . . . , βb−1} forms an Fp-basis for Fpb . Thus, after having β, we can compute all the elements
of Fpb by taking all possible Fp-linear combinations of {1, β, . . . , βb−1}. The cost of doing this is
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pb · poly(b, p) Fq-operations. Computing β takes poly(a, b, p) Fq-operations. Therefore, in pb ·
poly(a, b, p) Fq-operations, we can compute all the elements of Fpb .

Let α ∈ Fpb . Since Fpb is a subfield of Fqb , from the representation of Fqb , we can write α =

α0 + α1Y + · · ·+ αb−1Yb−1 where αi ∈ Fq. Also, for all i ∈ {0, 1, . . . , b− 1}, each βi can be written
as βi,0 + βi,1Y + · · ·+ βi,b−1Yb−1 where βi,j ∈ Fq. Let α = c0 + c1β + · · ·+ cb−1βb−1, where ci’s are
unknown and we want to find them. This combined with the representation of α and βi, we get a
system of linear equations in {c0, . . . , cb−1} over Fq. Now we can solve it in poly(b) Fq-operations
and get ci’s.

4.2 Hasse derivatives

In this section, we briefly discuss the notion of Hasse derivatives that plays a crucial role in our
results.

Definition 4.5 (Hasse derivative). Let f (x) be an n-variate polynomial over a field F. Let e = (e1, . . . , en) ∈
Nn. Then, the Hasse derivative of f with respect to the monomial xe is the coefficient of ze in the polynomial
f (x + z) ∈ (F[x])[z]. ⌟

Notations. Suppose that f (x) be an n-variate polynomial over a field F. Let b ∈ Nn. Then,
∂b( f ) denotes the Hasse derivative of f (x) with respect to the monomial xb. For any non-negative
integer k, ∂

≤k
( f ) is defined as

∂
≤k
( f ) =

{
∂b( f ) | b ∈Nn s.t. |b|1 ≤ k

}
,

and ∂
<k
( f ) denotes the set {∂b( f ) | b ∈Nn s.t. |b|1 < k}.

For a univariate polynomial h(t) over F and a non-negative integer k, h(k)(t) denotes the Hasse
derivative of h(t) with respect to the monomial tk, that is, CoeffZk(h(t + Z)).

Next, we mention some useful properties of Hasse derivatives.

Proposition 4.6. Let f (x) be an n-variate polynomial over F. Let a, b ∈Nn. Then,

1. ∂a( f ) = ∑e∈Nn (e
a)Coeffxe( f )xe−a.

2. ∂a∂b( f ) = (a+b
a,b )∂a+b( f ).

For proof one can see [For14, Appendix C]. The following lemma describes the cost of com-
puting Hasse derivatives.

Lemma 4.7. Let p be a prime and q = pa for some positive integer a. Let f (x) be an n-variate polynomial
over Fq with individual degree less than d. Let b = (b1, . . . , bn) ∈ Nn. Then, given f (x) and b as input,
Algorithm 1 outputs ∂b( f ) in

dn · poly(n) + poly(b, d)
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Fq-operations, where b = maxi∈[n] bi.

Proof. We first describe the algorithm and then argue about its correctness and running time.

Algorithm 1 Computing Hasse derivative
Input: An n-variate polynomial f (x) ∈ Fq[x] with individual degree less than d and
b = (b1, . . . , bn) ∈Nn.
Output: ∂b( f ).

1: Let b be maxi∈[n] bi.
2: Let D be an (b + 1)× d array.
3: for j← 0 to d− 1 do
4: for i← 0 to b do
5: if i = j then
6: Di,j ← 1.
7: else if i > j then
8: Di,j ← 0.
9: else if i = 0 then

10: D0,j ← 1.
11: else
12: Di,j = Di−1,j−1 + Di,j−1

13: for e ∈ {0, 1, . . . , d− 1}n do
14: Let e = (e1, . . . , en).
15: ce ← Coeffxe( f ) ·∏n

i=1 Dbi ,ei .

16: Output ∑e∈{0,1,...,d−1}n cexe−b.

In Algorithm 1, for all i ∈ {0, 1, . . . , b} and j ∈ {0, 1, . . . , d− 1}, the (i, j)th entry of array D

Di,j =

(
j
i

)
mod p.

For this, we note that the arithmetic in Line 15 of the algorithm is happening over the underlying
field Fq. This combined with Proposition 4.6 implies that the Algorithm 1 computes ∂b( f ).

To compute the array D, we are performing d(b + 1) Fp-operations. Computing all ce’s for
e ∈ {0, 1, . . . , d− 1}n takes dn · (n + 1) Fq-operations. Therefore, Algorithm 1 runs in our desired
time complexity.
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4.3 Univariate polynomial evaluation and interpolation

The two simplest but most important ways of representing an univariate polynomial of degree
less than d are either by giving the list of its coefficients, or by giving its evaluations at d distinct
points. In this section, we discuss about the cost of changing between these two representations.
First, we mention the cost of polynomial evaluation, that is, going from the list of coefficients to
the list of evaluations.

Lemma 4.8 (Evaluation). Let f (x) be a degree d polynomial over F. Let α1, α2, . . . , αN be N distinct
elements from F. Then, f (αi) for all i ∈ [N] can be computed in O(Nd) F-operations.

For each i ∈ [N], using Horner’s rule, one can compute f (αi) with d− 1 additions and d− 1
multiplications over F. Therefore, the total cost of computing f (αi) for all i ∈ [N] is O(Nd)
operations. For more details see [GG03, Section 5.2]. Next, we discuss the cost of polynomial
interpolation where we go from the list of evaluations to the list of coefficients.

Lemma 4.9 (Interpolation). Let f (x) be a degree d polynomial over F. Let α0, α1, . . . , αd be (d + 1)
distinct elements from F. Let βi = f (αi) for all i ∈ {0, 1, . . . , d}. Then, given (αi, βi) for all i ∈
{0, 1, . . . , d}, f (x) can be computed in O(d2) F-operations.

For proof see [GG03, Section 5.2]. The following lemma gives a stronger version of univariate
polynomial interpolation, known as Hermite interpolation. Here, the number of evaluation points
can be less than d, but evaluations of Hasse derivatives of the polynomial up to certain order is
available.

Lemma 4.10 (Hermite interpolation). Let f (x) be a degree d univariate polynomial over a field F and
e1, . . . , em be m positive integers such that e1 + · · · + em is greater than d. Let α1, . . . , αm be m distinct
elements from F. For all i ∈ [m] and j ∈ [ej], let f (j−1)(αi) = βij. Then given (αi, j, βij) for all i ∈ [m]

and j ∈ [ej], f (x) can be computed in O(d2) F-operations.

For proof see [GG03, Section 5.6]. We also remark that while there are nearly linear time algo-
rithms for all of the above operations (multipoint evaluation, interpolation and Hermite interpo-
lation) based on the Fast Fourier transform. However, for our applications in this paper, the above
stated more naive bounds suffice.

4.4 Multidimensional Fast Fourier transform

We crucially rely on the following lemma that says that there is a fast algorithm for evaluating an
n-variate polynomial f with coefficients in a finite field F on the set F̃n where F̃ is a subfield of F.
The proof is based on a simple induction on the number of variables and uses the standard FFT
one variable at a time. For the proof, see Theorem 4.1 in [KU11].
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Lemma 4.11. Let F be a finite field and let F̃ be a subfield of F. Then, there is a deterministic algorithm
that takes as input an n-variate polynomial f ∈ F[x] of degree at most d − 1 in each variable as a list
of coefficients, and in at most (dn + |F̃|n) · poly(n, d, log |F|) operations over the field F, it outputs the
evaluation of f for all ααα ∈ F̃n.

5 A simple algorithm for multipoint evaluation

We start with our first and simplest algorithm for multipoint evaluation. The algorithm gives
an inferior time complexity to what is claimed in Theorem 2.1, but contains some of the main
ideas. Subsequently, in section 6 and section 7, we build upon this algorithm to eventually prove
Theorem 2.1. Our main theorem for this section is the following.

Theorem 5.1. Let p be a prime and q = pa for some positive integer a. There is a deterministic algorithm
such that on input an n-variate polynomial f (x) over Fq with individual degree less than d and points
ααα1, ααα2, . . . , αααN from Fn

q , it outputs f (αααi) for all i ∈ [N] in time

(N + (adnp)n) · poly(a, d, n, p) .

5.1 A description of the algorithm

We start with a description of the algorithm, followed by its analysis. We recall again that through
all the algorithms in this and subsequent sections, we assume that the underlying field Fq is given
to us via an irreducible polynomial of appropriate degree over the prime subfield. Moreover, from
Lemma 4.3, we also assume without loss of generality that for every input field element, we have
access to its representation as a polynomial of appropriate degree over the prime subfield. For a
polynomial map g(t) = (g1(t), g2(t), . . . , gn(t)) and an n-variate polynomial f , we use f (g(t)) to
denote the univariate polynomial f (g1(t), g2(t), . . . , gn(t)).
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Algorithm 2 Efficient Multivariate Multipoint Evaluation
Input: An n-variate polynomial f (x) ∈ Fq[x] with individual degree less than d and N distinct
points ααα1, ααα2, . . . , αααN from Fn

q .
Output: f (ααα1), f (ααα2), . . . , f (αααN).

1: Let p be the characteristic of Fq and q = pa.
2: Let v0(Y0) be an irreducible polynomial in Fp[Y0] of degree a and

Fq = Fp[Y0]/⟨v0(Y0)⟩.

3: Let b be the smallest integer such that pb > adn.
4: Compute an irreducible polynomial v1(Y1) in Fq[Y1] of degree b and

Fqb = Fq[Y1]/⟨v1(Y1)⟩. (Lemma 4.2)

5: Compute the subfield Fpb of Fqb . (Lemma 4.4)
6: Evaluate f (x) over the grid Fn

pb . (Lemma 4.11)
7: for all i ∈ [N] do
8: Let αααi = αααi,0 + αααi,1Y0 + · · ·+ αααi,a−1Ya−1

0 , where αααi,j ∈ Fn
p.

9: Let gi(t) be the curve defined as αααi,0 + αααi,1t + · · ·+ αααi,a−1ta−1.
10: Compute the set Pi = {(γ, gi(γ)) | γ ∈ Fpb}. (Lemma 4.8)
11: Compute the set Ei = {(γ, f (γγγ′) | (γ, γγγ′) ∈ Pi} from the evaluations of f (x) over Fn

pb .
12: Let hi(t) be the univariate polynomial defined as f (gi(t)).
13: Using Ei, interpolate hi(t). (Lemma 4.9)
14: Output hi(Y0) as f (αααi). (Lemma 4.8)

5.2 Analysis of Algorithm 2

Proof of Theorem 5.1. We start with the proof of correctness of the algorithm.

Correctness of Algorithm 2. We show that Algorithm 2 computes f (αααi) for all i ∈ [N] in (N +

(adnp)n) · poly(a, d, n, p) many Fq operations. We assume that the underlying field Fq is rep-
resented as Fp[Y0]/⟨v0(Y0)⟩, where v0(Y0) is a degree a irreducible polynomial over Fp. From
Lemma 4.2, the field Fqb can be constructed as Fq[Y1]/⟨v1(Y1)⟩ for some degree b irreducible poly-
nomial v1(Y1) over Fq. Lemma 4.4 ensures that we can explicitly compute all the elements of
the subfield Fpb (of Fqb ). The representation of Fq ensures that every element β ∈ Fq is of the
form β0 + β1Y0 + · · · + βa−1Ya−1

0 , where βi ∈ Fp. Therefore, for all i ∈ [N], αααi is of the form
αααi,0 + αααi,1Y0 + · · · + αααi,a−1Ya−1

0 , where αααi,j ∈ Fn
p. For all i ∈ [N], the curve gi(t) is defined as
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αααi,0 + αααi,1t + · · · + αααi,a−1ta−1. Since f is an n-variate polynomial over Fq with individual degree
less than d, for all i ∈ [N], the polynomial hi(t) = f (gi(t)) is a polynomial in t of degree less than
adn. For all γ ∈ Fpb , gi(γ) is in Fn

pb . Therefore, from the evaluations of f (x) over the grid Fn
pb , we

get the set Ei = {(γ, hi(γ) | γ ∈ Fpb}. Since the degree of hi is less than adn and pb is greater than
adn, from the set Ei, we can interpolate hi(t). The construction of gi(t) ensures that gi(Y0) = αααi.
Hence, hi(Y0) = f (αααi) for all i ∈ [N].

Time complexity of Algorithm 2. Now we discuss the time complexity of Algorithm 2. From
Lemma 4.2, the field Fqb can be constructed as Fq[Y1]/⟨v1(Y1)⟩ for some degree b irreducible poly-
nomial v1(Y1) over Fq in poly(a, b, p) many Fq-operations. Also, all the basic operations in the
field Fqb = Fq[Y1]/⟨v1(Y1)⟩ can be done using poly(b) Fq-operations. Applying Lemma 4.4, the
cost of computing all the elements of the subfield Fpb (of Fqb ) is pb · poly(a, b, p) Fq-operations.
Using Lemma 4.11, we can evaluate f (x) over the grid Fn

pb in

(dn + pbn) · poly(a, b, d, n, p)

Fq-operations. For all i ∈ [N], using Lemma 4.8, the cost of computing the set Pi = {(γ, gi(γ)) |
γ ∈ Fpb} is pb · poly(a, b, n) Fq-operations. Using the set Ei, Lemma 4.9 ensures that hi(t) can be
interpolated using poly(a, b, d, n) Fq-operations. Finally, h(Y0) can be computed in poly(a, d, n)
many Fq-operations. Since adn < pb ≤ adnp, the above discussion implies that that Algorithm 2
performs

(N + (adnp)n) · poly(a, d, n, p)

Fq-operations.

6 Multipoint evaluation for large number of variables

In this section, we append the overall structure of Algorithm 2 with some more ideas to improve
the dependence of the running time on n. In particular, the goal is to reduce the nn factor in the
running time of Theorem 5.1 to a factor of the form exp(O(n)). The main result of this section is
the following theorem.

Theorem 6.1. Let p be a prime and q = pa for some positive integer a. There is a deterministic algorithm
such that on input an n-variate polynomial f (x) over Fq with individual degree less than d and points
ααα1, ααα2, . . . , αααN from Fn

q , it outputs f (αααi) for all i ∈ [N] in time

(N + (adp)n) · 4n · poly(a, d, n, p).

A useful additional ingredient in the proof of this theorem is the following lemma. Semanti-
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cally, this is an explicit form of the chain rule of Hasse derivatives for the restriction of a multi-
variate polynomial to a curve of low degree.

Lemma 6.2. Let f (x) be an n-variate degree d polynomial over a field F, g(t) = (g1, . . . , gn) where
gi ∈ F[t], and h(t) = f (g(t)). For all i ∈ [n], let gi(t + Z) = gi(t) + Zg̃i(t, Z) for some g̃i ∈ F[t, Z].
Let g̃(t, Z) = (g̃1, . . . , g̃n), and for all e = (e1, . . . , en) ∈Nn, g̃e = ∏n

i=1 g̃ei
i . For any ℓ ∈N, let

hℓ(t, Z) =
ℓ

∑
i=0

Zi ∑
e∈Nn :|e|1=i

∂e( f )(g(t)) · g̃e(t, Z).

Then, for every k ∈N with k ≤ ℓ, h(k)(t) = CoeffZk(hℓ).

Proof. By the definition of Hasse derivative, h(k)(t) = CoeffZk(h(t + Z)). On the other hand,

h(t + Z) = f (g1(t + Z), . . . , gn(t + Z))

= f (g1 + Zg̃1, . . . , gn + Zg̃n).

Applying Taylor’s expansion on f (g1 + Zg̃1, . . . , gn + Zg̃n), we get that

h(t + Z) =
d

∑
i=0

Zi ∑
e∈Nn :|e|1=i

∂e( f )(g(t)) · g̃e

= hℓ +
d

∑
i=ℓ+1

Zi ∑
e∈Nn :|e|1=i

∂e( f )(g(t)) · g̃e.

The lowest possible degree of Z in the second part of the above sum is greater than ℓ. Therefore,
the coefficient of Zk in the second part is zero since k ≤ ℓ. Hence,

h(k)(t) = CoeffZk(h(t + Z)) = CoeffZk(hℓ(t, Z)),

which completes the proof.

6.1 A description of the algorithm

We start by describing the algorithm, followed by its analysis.
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Algorithm 3 Efficient multivariate polynomial evaluation with large number of variables
Input: An n-variate polynomial f (x) ∈ Fq[x] with individual degree less than d and N points
ααα1, ααα2, . . . , αααN from Fn

q .
Output: f (ααα1), f (ααα2), . . . , f (αααN).

1: Let p be the characteristic of Fq and q = pa.
2: Let v0(Y0) be an irreducible polynomial in Fp[Y0] of degree a and

Fq = Fp[Y0]/⟨v0(Y0)⟩.

3: Let b the smallest positive integer such that pb > ad.
4: Compute an irreducible polynomial v1(Y1) in Fq[Y1] of degree b and

Fqb = Fq[Y1]/⟨v1(Y1)⟩. (Lemma 4.2)

5: Compute the subfield Fpb of Fqb . (Lemma 4.4)

6: Compute the set ∂
<n

( f ). (Lemma 4.7)
7: Evaluate all the polynomials in ∂

<n
( f ) over the grid Fn

pb . (Lemma 4.11)
8: for all i ∈ [N] do
9: Let αααi = αααi,0 + αααi,1Y0 + · · ·+ αααi,a−1Ya−1

0 , where αααi,j ∈ Fn
p.

10: Let gi(t) be the curve defined as αααi,0 + αααi,1t + · · ·+ αααi,a−1ta−1.
11: Let hi(t) = f (gi(t)).
12: Let Ei = {(γ, h(0)i (γ), h(1)i (γ), . . . , h(n−1)

i (γ) | γ ∈ Fpb}.
13: Invoke the function EVALUATE DERIVATIVES A with input gi(t) and compute the set Ei.
14: Using Ei, interpolate hi(t). (Lemma 4.10)
15: Output hi(Y0) as f (αααi). (Lemma 4.8)

We now describe the function Evaluate Derivatives A invoked above. We follow the same
notation as in Algorithm 3 including the local variable names.
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Algorithm 4 Function to generate data for Hermite Interpolation
1: function EVALUATE DERIVATIVES A (g(t))
2: Let g(t) = (g1, . . . , gn).
3: For all i ∈ [n], let gi(t + Z) = gi(t) + Zg̃i(t, Z) and g̃(t, Z) = (g̃1(t, Z), . . . , g̃n(t, Z)).
4: Compute g̃i(t, Z) for all i ∈ [n]. (Lemma 4.7)
5: For all e = (e1, . . . , en) ∈Nn, let g̃e = ∏n

i=1 g̃ei
i .

6: Compute the set of polynomials {g̃e(t, Z) | |e|1 < n}. (Polynomial multiplication)
7: P← ∅.
8: for all γ ∈ Fpb do

9: Using evaluations of polynomials in ∂
<n

( f ) over Fn
pb , compute the polynomial

hγ(Z) =
n−1

∑
i=0

Zi ∑
e∈Nn :|e|1=i

∂e( f )(g(γ))g̃e(γ, Z).

10: For all i ∈ {0, 1, . . . , n− 1}, extract CoeffZi(hγ).
11: P← P ∪ {(γ, CoeffZ0(hγ), CoeffZ1(hγ), . . . , CoeffZn−1(hγ))}.

12: return P.

6.2 Analysis of Algorithm 3

Proof of Theorem 6.1. We start with the proof of correctness.

Correctness of Algorithm 3. We show that Algorithm 3 computes f (αααi) for all i ∈ [N] in the de-
sired time. Like Algorithm 2, we assume that the underlying field Fq is represented as Fp[Y0]/⟨v0(Y0)⟩
for some degree a irreducible polynomial v0(Y0) over Fp. However, unlike Algorithm 3, here we
pick b as the smallest positive integer satisfying pb > ad. Like Algorithm 2, here also we con-
struct a degree b extension Fqb over Fq and compute all the elements of the subfield Fpb (of Fqb ).
Lemma 4.2 ensures that we can construct Fqb as Fq[Y1]/⟨v1(Y1)⟩ for some degree b irreducible
polynomial over Fq and from Lemma 4.4, we can compute Fpb . The crucial difference with Algo-
rithm 2 is the way we interpolate the polynomial hi(t) in Line 13 of Algorithm 3. The field Fpb

may have much smaller number of points than the degree of hi(t). Therefore, to interpolate hi(t),
we have to evaluate all the Hasse derivatives of hi(t) up to order n− 1 at points in Fpb . Next we
describe the correctness of Algorithm 3 in detail.

As mentioned in the proof of Theorem 5.1, the representation of Fq ensures that each αααi is of
form αααi,0 + αααi,1Y0 + · · ·+ αααi,a−1Ya−1

0 where αααi,j is in Fn
p. Therefore, hi(t) = f (gi(t)) is a polynomial

of degree less than adn since f is an n-variate polynomial with individual degree less than d. This
implies that, like Algorithm 2, we can interpolate the hi(t) by evaluating it at adn many distinct
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points. However, for the choice of b in this algorithm, we don’t have adn elements. So, for all
γ ∈ Fpb , we compute the evaluations at γ of all Hasse derivatives of hi up to order n − 1 and

invoke Lemma 4.10 with this data to recover hi. From Lemma 6.2, using the evaluations of ∂
<n

( f )
over the grid Fn

pb , the function EVALUATE DERIVATIVES A of Algorithm 4 computes the set Ei

consisting of nth order derivative information of hi for every γ ∈ Fpb . Given this set Ei, we invoke
Lemma 4.10 to successfully interpolate hi(t) and output f (αααi) = hi(Y0) for all i ∈ [N].

Time complexity of Algorithm 3. We now describe the time complexity of Algorithm 3. Similar
to Algorithm 2, using Lemma 4.2, the construction of Fqb takes poly(a, b, p) Fq-operations and
its basic operations can be done in poly(b) Fq-operations. From Lemma 4.4, all the elements of
Fpb can be computed in pb · poly(a, b, p) Fq-operations. Since (n+n−1

n ) is upper bounded by 4n,

applying Lemma 4.7, the set of polynomials ∂
<n

( f ) can be computed in (4d)n · poly(d, n) Fq-
operations. Hence, from Lemma 4.11, computing all the polynomials in ∂

<n
( f ) over the grid Fn

pb

requires
(dn + pbn) · 4n · poly(a, b, d, n, p)

Fq-operations. Next we discuss the time taken by the for loop in Algorithm 3 at Line 7.
First we estimate the cost of each iteration of the loop. For that, we need to analyze the com-

plexity of the function EVALUATE DERIVATIVES A. The input g(t) = (g1, . . . , gn) to EVALUATE

DERIVATIVES A is a curve of degree at most a− 1. Using Lemma 4.7, g̃(t, Z) = (g̃1, . . . , g̃n) can be
computed in poly(a, n) Fq-operations. Thus, the total cost of computing the set {g̃e(t, Z) | |e|1 <

n} is 4n · poly(a, n) Fq-operations. Given γ ∈ Fpb , we can evaluate g̃e(t, Z) at t = γ in poly(a, b, n)
Fq-operations. Thus, for each γ ∈ Fpb , the polynomial hγ(Z) at Line 8 in Algorithm 4 can be com-
puted at the cost of 4n ·poly(a, b, n) Fq-operations. After computing hγ(Z) as its list of coefficients,
we collect the coefficients of Zi of hγ(Z) for i ∈ {0, 1, . . . , n− 1}. This implies that each call of the
function EVALUATE DERIVATIVES A performs 4n · pb · poly(a, b, n) Fq-operations.

Now we return to analyzing the cost taken by each iteration of the for loop at Line 7 in Al-
gorithm 3. From the above discussion, for each i ∈ [N], the set Ei can be computed in 4n · pb ·
poly(a, b, n) Fq-operations. Given Ei, applying Lemma 4.10, the interpolation of hi(t) requires
poly(a, b, d, n) operations in Fq. Thus, each iteration of the for loop at Line 7 in Algorithm 3 takes
4n · pb · poly(a, b, d, n) Fq-operations. Therefore, the total cost of the for loop is

N · 4n · pb · poly(a, b, d, n)

Fq-operations. Since ad < pb ≤ adp, combining the complexities of all the components, we get
that Algorithm 3 performs

(N + (adp)n) · 4n · poly(a, d, n, p)

Fq-operations.
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7 Multipoint evaluation with improved field dependence

In this section, we build on the ideas in Algorithm Theorem 6.1 to improve the dependence on the
field size. Our main theorem, which is a formal statement of our main result Theorem 2.1 stated
in the introduction.

Theorem 7.1. Let p be a prime and q = pa for some positive integer a. There is a deterministic algo-
rithm such that on input an n-variate polynomial f (x) over Fq with individual degree less than d, points
ααα1, ααα2, . . . , αααN from Fn

q and a non-negative integer ℓ ≤ log⋆
p(a), it outputs f (αααi) for all i ∈ [N] in time(

N ·
(

2dp logp(dp)
)ℓ

+
(

2rdp logp(dp)
)n
)
·O(ℓ+ 1)n · poly(a, d, n, p) ,

where r = max{2, log◦ℓp (a)}.

7.1 A description of the algorithm

We start by describing the algorithm, followed by its analysis.
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Algorithm 5 Efficient multivariate polynomial evaluation over large fields
Input: An n-variate polynomial f (x) ∈ Fq[x] with individual degree less than d, N points
ααα1, ααα2, . . . , αααN from Fn

q , and a non-negative integer ℓ ≤ log⋆
p(a) where q = pa and p is the char-

acteristic of Fq.
Output: f (ααα1), . . . , f (αααN).

1: Let v0(Y0) be an irreducible polynomial in Fp[Y0] of degree a and Fq = Fp[Y0]/⟨v0(Y0)⟩.
2: Points0 ← {αααi | i ∈ [N]}, a0 ← a, and q0 ← pa.
3: POLYNOMIAL EVALUATION(0). (Recursive call)
4: Output Eval0,0.
5: function POLYNOMIAL EVALUATION(i)
6: Let ai+1 be the smallest positive integer such that pai+1 > aid, and qi+1 ← qai+1 .
7: Compute an irreducible polynomial vi+1(Yi+1) over Fq of degree ai+1 and

Fqi+1 = Fq[Yi+1]/⟨vi+1(Yi+1)⟩. (Lemma 4.2)

8: Compute the subfield Fpai+1 of Fqi+1 . (Lemma 4.4)
9: Compute an element βi in Fqi s.t. {1, βi, . . . , βai−1

i } forms an Fp-basis for Fpai . (Lemma 4.4)
10: Pointsi+1 ← ∅.
11: for all ααα ∈ Pointsi do
12: Let ααα = ααα0 + ααα1βi + · · ·+ αααai−1βai−1

i , where αααj ∈ Fn
p.

13: Compute ααα0, . . . , αααai−1. (Lemma 4.4)
14: Let gααα(t) be the curve defined as ααα0 + ααα1t + · · ·+ αααai−1tai−1.
15: Pααα ← {gααα(γ) | γ ∈ Fpai+1} (Lemma 4.8), and Pointsi+1 ← Pointsi+1 ∪ Pααα.

16: if i < ℓ then
17: POLYNOMIAL EVALUATION(i + 1).
18: else
19: Compute all the polynomials in ∂

≤(ℓ+1)(n−1)
( f ). (Lemma 4.7)

20: Evaluate all the polynomials in ∂
≤(ℓ+1)(n−1)

( f ) over the grid Fn
paℓ+1 . (Lemma 4.11)

21: Let Pointsℓ+1 = Fn
paℓ+1 .

22: For all e ∈Nn with |e|1 ≤ (ℓ+ 1)(n− 1), Evalℓ+1,e = {(ααα, ∂e( f )(ααα) | ααα ∈ Fn
paℓ+1 )}.

23: for all e ∈Nn s.t. |e|1 ≤ i(n− 1) do
24: Evali,e ← ∅.
25: for all ααα ∈ Pointsi do
26: Let he,ααα(t) = ∂e( f )(gααα(t)).
27: Let Ee,ααα = {(γ, h(0)e,ααα(γ), . . . , h(n−1)

e,ααα (γ)) | γ ∈ Fpai+1}.
28: Using EVALUATE DERIVATIVES B with input (gααα(t), i, e), compute Ee,ααα.
29: Using Ee,ααα, interpolate he,ααα(t). (Lemma 4.10)
30: Evali,e ← Evali,e ∪ {(ααα, he,ααα(βi))}. (Lemma 4.8)
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Algorithm 6 Evaluating Hasse derivatives for Algorithm 5
1: function EVALUATE DERIVATIVES B (g(t), k, e)
2: Let g(t) = (g1, . . . , gn).
3: Let e = (e1, . . . , en).
4: Let gi(t + Z) = gi(t) + Zg̃i(t, Z), for all i ∈ [n], and g̃(t, Z) = (g̃1(t, Z), . . . , g̃n(t, Z)).
5: Compute g̃i(t, Z) for all i ∈ [n]. (Lemma 4.7)
6: For all b = (b1, . . . , bn) ∈Nn, let g̃b = ∏n

i=1 g̃bi
i .

7: Compute the set of polynomials {g̃b(t, Z) | |b|1 < n}. (Polynomial multiplication)
8: Let D be an ((k + 1)(n− 1) + 1)× n array such that,

Di,j =

(
j
i

)
mod p, where i ∈ {0, . . . , n− 1}, j ∈ {0, . . . , (k + 1)(n− 1)}

9: Like Algorithm 1, we can compute D using Fp-operations.
10: For b = (b1, . . . , bn) ∈Nn such that |b|1 < n,

cb ←
n

∏
i=1

Dei+bi ,bi .

11: P← ∅.
12: for all γ ∈ Fpak+1 do

13: Using evaluations of polynomials in ∂
≤(k+1)(n−1)

( f ) over Pointsk+1, compute

hγ(Z) =
n−1

∑
i=0

Zi ∑
b∈Nn :|b|1=i

cb∂e+b( f )(g(γ))g̃b(β, Z).

14: For all i ∈ {0, 1, . . . , n− 1}, extract CoeffZi(hβ).
15: P← P ∪ {(γ, CoeffZ0(hγ), CoeffZ1(hγ), . . . , CoeffZn−1(hγ))}.

16: return P.

7.2 Analysis of Algorithm 5

A useful lemma. The following lemma would be useful for the time complexity analysis of Al-
gorithm 5.

Lemma 7.2. Let a, d and p be three positive integers such that p, d are greater than 1. Let (a0, a1, a2, . . .)
be a sequence of positive integers with the following properties: a0 = a, and for all i > 0, ai be the smallest
positive integer such that pai > dai−1. Then for all non-negative integer i,

ai ≤ 2ri logp(dp),
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where ri = max{2, log◦ip (a)}. Furthermore, for any non-negative integer ℓ ≤ log⋆
p(a),

ℓ

∏
i=0

ai ≤ (2 logp(dp))ℓ · a1+o(1).

Proof. From the definition of the sequence, it is not hard to see that for every positive integer i,
pai ≤ dpai−1. We inductively show that for every non-negative integer i, ai ≤ 2ri logp(dp). It is
true for i = 0 since log◦ip (a) = a for i = 0 and logp(dp) ≥ 1. This establishes our base case. Now
assume that ai ≤ 2ri logp(dp) for some integer i ≥ 0. We know that pai+1 ≤ dpai. Taking logarithm
with respect to p, we get that ai+1 ≤ logp(dp) + logp(ai). From the induction hypothesis, we get
that

ai+1 ≤ logp(dp) + logp(2ri logp(dp))

= logp(dp) + logp logp(dp)2 + logp(ri)

From the definition of ri+1, we get that ri+1 ≥ logp(ri). Also, (dp)2 ≤ pdp for all d, p ≥ 2. Therefore,
ai+1 ≤ 2 logp(dp) + ri+1. Since both 2 logp(dp) and ri+1 are ≥ 2,

2 logp(dp) + ri+1 ≤ 2ri+1 logp(dp).

This completes the induction step.
Now we prove the second part of the above lemma. From the first half, we get that

ℓ

∏
i=0

ai ≤ a(2 logp(dp))ℓ ·
ℓ

∏
i=1

ri.

Let k be the largest non-negative integer such that log◦kp (a) ≥ 2. First, assume that ℓ ≤ k. Then

ℓ

∏
i=0

ai ≤ a(2 logp(dp))ℓ ·
ℓ

∏
i=1

ri

≤ a(2 logp(dp))ℓ ·
ℓ

∏
i=1

log◦ip (a)

≤ (2 logp(dp))ℓ · a1+o(1).

Since log⋆
p(a) can be at most k + 2, ℓ ≤ k + 2. Now, assume that ℓ > k.

ℓ

∏
i=0

ai ≤ a(2 logp(dp))ℓ ·
ℓ

∏
i=1

ri
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≤ a(2 logp(dp))ℓ ·
(

k

∏
i=1

log◦ip (a)

)
· 2ℓ−k

≤ (2 logp(dp))ℓ · a1+o(1).

We are now ready to discuss the proof of Theorem 7.1. As discussed in section 3, the main idea
in reducing the dependence of the running time on the underlying field is to reduce the question
of multipoint evaluation over the field Fpa0 to an instance of multipoint evaluation with a larger
number of points, but all these points lie in a smaller field Fpa1 , where pa1 ≥ a0dn. This reduction
in the size leads to a significant decrease in the degree of the curves used in the local computation
step, at the cost of increasing the number of points. We now make this intuition formal, and prove
the necessary quantitative bounds.

Proof of Theorem 7.1. We start with a proof of correctness.

Correctness of Algorithm 5. We prove that Algorithm 5 computes f (αααi) for all i ∈ [N] with the
desired time complexity. First, we briefly highlight the main difference between Algorithm 5 and
Algorithm 3. In Algorithm 3, we construct the field Fqb , a degree b extension of Fq, such that both

Fq and Fpb are its subfields and pb > ad. Next, we evaluate all the polynomials in ∂
≤n−1

( f ) over
the grid Fn

pb . Finally, we reduce the evaluation of f (x) at points in Fn
q to the evaluation of the

polynomials in ∂
≤n−1

( f ) at the points in Fn
pb , and use the evaluations of ∂

≤n−1
( f ) at the grid Fn

pb

to compute f (αααi) for all i ∈ [N]. In short, Algorithm 3 reduces the evaluation of f (x) at points in
Fn

q to the evaluation of ∂
≤n−1

( f ) at the points in a "smaller" grid Fn
pb . In Algorithm 5, we repeat

this reduction (ℓ + 1) times where at the ith iteration, we reduce the question of evaluating the
set of all Hasse derivatives of f of order up to i(n − 1) on a subset of points(Pointsi) in Fn

pai to
the question of evaluating all the Hasse derivatives of f of order up to (i + 1)(n− 1) on a subset
of points(Pointsi+1) in Fn

pai+1 . Finally, at the ℓth iteration, we reach a much "smaller" grid Fn
paℓ+1

(compare to Fn
q ) where we evaluate all the Hasse derivatives of f (x) up to order (ℓ+ 1)(n− 1).

We now show via an induction on i, with i decreasing from ℓ to 0, the following claim holds.

Claim 7.3. For every i ∈ {0, 1, . . . , ℓ}, at the end of the function call POLYNOMIAL EVALUATION (i),
we have correctly computed the evaluation of all polynomials in the set ∂

≤i(n−1)
( f ) at all points in the set

Pointsi.

Recall that the set Points0 = {αααi | i ∈ [N]} is the original set of input points and hence, this
suffices for the correctness of the algorithm. To proceed with the induction, we need the following
subclaim whose proof we defer to the end. Recall the set Ee,ααα defined in Line 27 of Algorithm 5.
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Claim 7.4. Given (gααα(t), i, e) as the input, the function EVALUATE DERIVATIVES B of Algorithm 6
computes the set Ee,ααα in time

4n · poly(ai, ai+1, d, n, p) .

We now proceed with the inductive proof of Claim 7.3.

Base case. For i = ℓ, in Line 22 of Algorithm 5, for every e ∈ Nn with |e|1 ≤ (ℓ+ 1)(n− 1), we
first compute the set Evalℓ+1,e which is the evaluation table of the polynomial ∂e( f ) at all points
in the set Fn

paℓ+1 via a multidimensional FFT (Lemma 4.11). We now claim that at the end of the
subsequent for loop (Lines 23 − 30), for every ααα ∈ Pointsℓ and for every e in Nn with |e|1 ≤
ℓ(n − 1), we have the value of ∂e( f ) at ααα. For this, consider a point ααα ∈ Pointsℓ and e ∈ Nn

such that |e|1 ≤ ℓ(n − 1). Now the curve gααα(t) can be computed efficiently as in the proofs of
correctness of Algorithm 2 and Algorithm 3. Then, hααα,e = ∂e( f )(gααα(t)) is a polynomial of degree
less than aℓdn. From Claim 7.4, we have that the function EVALUATE DERIVATIVES B correctly
computes the set Ee,ααα. Moreover, by our choice of a′is, we have that paℓ+1 ≥ aℓd. Thus, from
Lemma 4.10, we can interpolate hααα,e(t) correctly from the set Ee,ααα.

Induction step. In the induction step, we assume Claim 7.3 is true for i = i0 ≤ ℓ and show that
it holds for the iteration i0 − 1. The proof of this is precisely the same as that of the base case. The
only difference is that in the base case, the set Evalℓ+1,e for every e ∈Nn with |e|1 ≤ (ℓ+ 1)(n− 1)
was computed in Line 22 of the algorithm directly via the multidimensional FFT. In the induction
step, for iteration i0 − 1, we need the corresponding set Evali0,e for every e ∈ Nn with |e|1 ≤
i0(n− 1). Note that these are sets of evaluations of all derivatives of order at most i0(n− 1) of f
on the point set Pointsi0 that are guaranteed to be available to us by the induction hypothesis. The
rest of the argument is exactly as that in the base case. We skip the details.

A point to note for the proof of both the base case and the induction step of Claim 7.3, is that
hααα,e is a polynomial with coefficients in Fq and Fq is a subfield of Fqi for every i ∈ {0, 1, . . . , ℓ}, so
all the algebra is consistent here.

This completes the proof of Claim 7.3 and hence the correctness of 5 (which follows from i = 0
case of the claim), modulo the proof of Claim 7.4. We defer that to the end of this section, and
discuss the time complexity of Algorithm 5.

Time complexity of Algorithm 5. Now we discuss the time complexity of Algorithm 5. We rely
on the following claim, whose proof we defer to the end of this section.

Claim 7.5. |Pointsℓ| ≤ N · (2dp logp(dp))ℓ · a1+o(1).

For all i ∈ {0, 1, . . . , ℓ}, let Ti be the time complexity of the ith invocation of the function
POLYNOMIAL EVALUATION. Next, we discuss the various components of Ti.
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1. Using Lemma 4.2, the field Fqi+1 = Fq[Yi+1]/⟨vi+1(Yi+1)⟩ can be constructed in poly(a, ai+1, p)
Fq-operations. From Lemma 4.4, the cost of computing all the elements of the subfield Fpai+1

(of Fqi+1) is pai+1 · poly(a, ai+1, p) Fq-operations.

2. Using Lemma 4.4, we can also compute the element βi in poly(a, ai, p) Fq-operations. In
addition, Lemma 4.4 ensures that for every γ ∈ Fpai , the Fp-linear combination of γ with
respect to {1, βi, . . . , βai−1

i } can be computed using poly(ai) Fq-operations. Therefore, for
every ααα ∈ Pointsi, the cost of computing the curve gααα(t) is poly(ai, n) Fq-operations. This
implies that the set Pααα can be constructed in pai+1 · poly(ai, ai+1, n) Fq-operations. Thus, the
total cost of computing the set Pointsi+1 is

|Pointsi| · pai+1 · poly(ai, ai+1, n)

Fq-operations.

3. For i ∈ {0, 1, . . . , ℓ− 1}, we need to add the cost of (i + 1)th call of POLYNOMIAL EVALU-
ATION, that is Ti+1. For i = ℓ, using Lemma 4.7, we can compute the set ∂

≤(ℓ+1)(n−1)( f )
in

((ℓ+1)(n−1)+n
n ) · dn · poly(n) many Fq-operations. Since ((ℓ+1)(n−1)+n

n ) ≤ O(ℓ+ 1)n, the total

cost of computing the set ∂
≤(ℓ+1)(n−1)( f )

is

O(ℓ+ 1)n · dn · poly(n)

Fq-operations. We have to evaluate all the polynomials in ∂
≤(ℓ+1)(n−1)

( f ) over the grid

Fn
paℓ+1 . Using Lemma 4.11, each polynomial in ∂

≤(ℓ+1)(n−1)
( f ) can be evaluated over the

grid in
(dn + pnaℓ+1) · poly(a, aℓ+1, d, p, n)

many Fq-operations. Thus, the total cost of evaluating all the polynomials in ∂
≤(ℓ+1)(n−1)

( f )
over the grid is

(aℓdp)n ·O(ℓ+ 1)n · poly(a, aℓ+1, d, p, n)

Fq-operations since paℓ+1 ≤ aℓdp.

4. We have to compute the set Evali,e for all e ∈ Nn with |e|1 ≤ i(n − 1). Let e ∈ Nn with
|e|1 ≤ i(n − 1), and ααα ∈ Pointsi. Then, using Claim 7.4, the set Ee,ααα can be computed in
4n · poly(ai, ai+1, d, n, p) many Fq-operations. Applying Lemma 4.10, the polynomial he,ααα(t)
can be interpolated from Ee,ααα using poly(ai, ai+1, d, n) Fq-operations. Finally, he,ααα(βi) can be
computed in poly(ai, d, n) Fq-operations. Thus, for an e ∈ Nn with |e|1 ≤ i(n− 1), the cost
of computing Evali,e is |Pointsi| · 4n · (ai, ai+1, d, n, p) Fq-operations. The number of e ∈ Nn

with |e|1 ≤ i(n− 1) is (i(n−1)+n
n ), and it is upper bounded by O(i + 1)n. Therefore, the total
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of computing Evali,e for all e ∈Nn with |e|1 ≤ i(n− 1) is

|Pointsi| ·O(i + 1)n · poly(ai, ai+1, d, n, p)

Fq-operations.

The choice of ai+1 gives us that pai+1 ≤ aidp. From Lemma 7.2, ai ≤ 4a logp(dp) for all i ≥ 1. Thus,
from the above discussion, for all i ∈ {0, 1, . . . , ℓ− 1},

Ti ≤ Ti+1 + |Pointsi| ·O(i + 1)n · poly(a, d, n, p).

Also, the complexity of the ℓth invocation of POLYNOMIAL EVALUATION is

Tℓ ≤ (aℓdp)n ·O(ℓ+ 1)n · poly(a, d, n, p).

Therefore, the overall Fq-operations performed by Algorithm 5 is

T0 ≤
ℓ−1

∑
i=0
|Pointsi| ·O(i + 1)n · poly(a, d, n, p) + Tℓ

≤ ℓ|Pointsℓ| ·O(ℓ+ 1)n · poly(a, d, n, p) + (aℓdp)n ·O(ℓ+ 1)n · poly(a, d, n, p)

≤ (|Pointsℓ|+ (aℓdp)n) ·O(ℓ+ 1)n · poly(a, d, n, p).

Using Lemma 7.2, aℓ ≤ 2r logp(dp), where r = max{2, log◦ℓp (a)}. From Claim 7.5,

|Pointsℓ| ≤ N · (2dp logp(dp))ℓ · a1+o(1).

Therefore, the number of Fq-operations performed by Algorithm 5

T0 ≤
(

N ·
(

2dp logp(dp)
)ℓ

+
(

2rdp logp(dp)
)n
)
·O(ℓ+ 1)n · poly(a, d, n, p).

This completes the proof of Theorem 7.1 modulo the proofs of the Claim 7.4 and Claim 7.5. We
now discuss these missing proofs.

Proof of Claim 7.4

Proof of Claim 7.4. According to the function call, g(t) = gααα(t) and k = i. Also, g(t) = (g1, . . . , gn),
gi(t + Z) = gi(t) + Zg̃i(t, Z) for all i ∈ [n] and for all b = (b1, . . . , bn) ∈ Nn, g̃b = ∏n

i=1 g̃bi
i . Let
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∂e( f ) = fe. Let

h(t + Z) =
n−1

∑
i=0

Zi ∑
b∈Nn :|b|1≤n−1

∂b( fe)(g(t)) · g̃b.

Then, from Proposition 4.6,

h(t + Z) =
n−1

∑
i=0

Zi ∑
b∈Nn :|b|1≤n−1

(
e + b

b

)
∂e+b( f )(g(t)) · g̃b.

In step 10 of Algorithm 6, for all b ∈Nn with |b|1 ≤ n− 1, cb = (e+b
b ). Therefore,

h(t + Z) =
n−1

∑
i=0

Zi ∑
b∈Nn :|b|1≤n−1

cb∂e+b( f )(g(t)) · g̃b.

Applying Lemma 6.2, we get that for all i ∈ {0, 1, . . . , n − 1}, the ith order Hasse derivative of
fe(g(t)) is same as CoeffZi(h(t + Z)). Hence, for all γ ∈ Fpak+1 , the evaluation of ith order Hasse
derivative of fe(g(t)) at γ is equal to CoeffZi(h(γ + Z)). In terms of notation used in Algorithm 6,
CoeffZi(h(γ + Z)) is same as CoeffZi(hγ(Z)). This implies that the evaluation of ith order Hasse
derivative of fe(g(t)) at γ is equal to CoeffZi(hγ(Z)). This implies that given (gααα(t), k, e) as input,
the set P returned by EVALUATE DERIVATIVES B is same as Ee,ααα. Now, to compute hγ(t), we
need access to g̃b(γ, Z) for all b ∈ Nn with |b|1 < n. Lemma 4.7 ensures that we can compute
g̃i(t, Z) for all i ∈ [N]. After we have all g̃i(t, Z)’s, we can compute g̃b(t, Z) and evaluate it at
t = γ. Also, we need the access of ∂e+b( f )(g(γ)) for all b ∈ Nn with |b|1 < n. Observe that
|e+b|1 ≤ (k+ 1)(n− 1) and g(γ) ∈ Pointsk+1. Therefore, from the evaluations of the polynomials
∂
≤(k+1)(n−1)

( f ) at points Pointsk+1 we get ∂e+b( f )(g(γ)).
Now we discuss the number of Fq-operations performed by Algorithm 6. From Lemma 4.7,

we can compute g̃i(t, Z) for all i ∈ [n] in poly(ak, n) Fq-operations. Since each g̃i(t, Z) is a bivariate
polynomial of individual degree less than ak and (n+n−1

n ) ≤ 4n, we can compute the set {g̃b(t, Z) |
|b|1 < n} in 4n · poly(ak, n) Fq-operations. Computing all cb’s takes 4n · poly(n) + poly(k, n) Fq-
operations. Given a γ ∈ Fpak+1 , from Lemma 4.4, we can evaluate g̃b at t = γ in poly(ak, ak+1, n)
Fq-operations. Thus, for any γ ∈ Fpak+1 , the cost of computing hγ(Z) is 4n · poly(ak, ak+1, n). Once
we have hγ(Z) as its list of coefficients, we collect the coefficients of Zi for all i ∈ {0, 1, . . . , n− 1}.
From the choice of ak+1, pak+1 ≤ akdp. Thus, the total cost of Algorithm 6 is

4n · poly(ak, ak+1, d, p, n)

Fq-operations.

Proof of Claim 7.5
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Proof of Claim 7.5. First, we show that for all i ∈ {0, 1, . . . , ℓ − 1}, |Pointsi+1| ≤ |Pointsi| · (aidp).
From the step 15 of Algorithm 5, the set

Pointsi+1 = ∪ααα∈Pointsi Pααα.

The definition of Pααα ensures that its size is at most pai+1 , which is upper bounded by aidp. There-
fore, the size of Pointsi+1 is at most |Pointsi| · (aidp). This implies that

Pointsℓ ≤ N · (dp)ℓ ·
ℓ

∏
i=0

ai.

From Lemma 7.2, ∏ℓ
i=0 ai ≤ (2 logp(dp))ℓ · a1+o(1). Therefore,

|Pointsℓ| ≤ N · (2dp logp(dp))ℓ · a1+o(1).

8 An algebraic data structure for polynomial evaluation

In this section, we discuss the implication of our multipoint evaluation algorithms to the question
of data structures for polynomial evaluation. For functions s : N → N and t : N → N, an
algebraic data structure for univariate polynomial evaluation over a field F with space complexity
s(n) and time complexity t(n) is specified by a preprocessing map and a query algorithm. For
every n ∈ N, the preprocessing map maps a polynomial f ∈ F[X] of degree less than n to an
s(n) dimensional vector over F which we denote by D f and the query algorithm is an algebraic
algorithm that on any input α ∈ F, accesses at most t(n) coordinates of D f and correctly outputs
f (α).

For this discussion F is a finite field, and as mentioned in Remark 2.2, we assume that the
query algorithm has access to a description of the field, for instance via an irreducible polynomial
of appropriate degree over the base field. Now, we formally state the main result for this section.

Theorem 8.1. Let p be a fixed prime. Then, for all sufficiently large n ∈ N and all fields Fpa with
a = poly(log n), there is an algebraic data structure for polynomial evaluation for univariate polynomials
of degree less than n over Fpa that has space complexity at most n1+o(1) and query complexity at most no(1).

Moreover, given a description of Fpa (via an irreducible polynomial of degree a over Fp ) there is an
algebraic algorithm that when given the coefficients of a univariate polynomial f of degree less than n
computes the output of the preprocessing map on f , denoted here by D f in time n1+o(1) and an algebraic
algorithm which, when given an α ∈ Fpa and D f , outputs f (α) in time no(1).

We recall that for fields of small characteristic and size poly(n), Theorem 8.1 provides a coun-
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terexample to a conjecture of Milterson from [Mil95] that any algebraic data structure for polyno-
mial evaluation over small fields that has space complexity poly(n) must have query complexity
linear in n. We also note that a slightly more general version of Theorem 8.1 is true where we have
an appropriate tradeoff between the query and the space complexities. However, for the ease of
exposition, we focus on proving the specific statement in Theorem 8.1.

8.1 Proof of Theorem 8.1

The proof is a very simple application of the ideas in the multipoint evaluation algorithms dis-
cussed in the earlier section. The first ingredient is a reduction from the univariate problem to the
multivariate problem. This step is also there in the data structure of Kedlaya & Umans [KU11].

Definition 8.2 (Inverse Kronecker Map). Let F be a field. Then, for parameters d, m ∈N, the map ψd,m

from F[X] to F[Z1, . . . , Zm] is defined as follows: Given a monomial Xt, write t in base d, t = ∑j≥0 tjdj

and define the monomial
Ma(z) := Zt0

1 Zt1
2 · · · Z

tm−1
m .

The map ψd,m sends Xa to Ma(z) and extends multilinearly to F[X]. ⌟

The map ψd,m( f ) can be computed in linear time in the size of f , assuming f is represented
explicitly by its coefficients. Also, ψd,m is injective on the polynomials of degree less than dm. For
such polynomial f , if F = ψd,m( f ), then

f (X) = F(Xd0
, Xd1

, . . . , Xdm−1
).

Given a degree n− 1 univariate polynomial f , let the parameters m, d be set as follows: m =

log log n and d = n1/ log log n and construct the polynomial F = ψd,m( f ) on n variables and degree
at most d − 1 in each variable. Clearly, this can be done in time n · poly(log n) by processing f
one monomial at a time. We now describe the preprocessing map and its image on f denoted D f

using this polynomial F. This construction is based on the Theorem 5.1. A slightly more general
statement can be obtained by relying on the more involved algorithms for multipoint evaluation
in section 6 and section 7, but for the proof of Theorem 8.1, Algorithm 2 is sufficient.

The preprocessing map. Let v0(Y0) be an irreducible polynomial over Fp of degree a such that
Fq = Fp[Y0]/⟨v0(Y0)⟩, where q = pa. We assume that this v0 is given to as a part of the input, since
it conveys the description of the field we are working over. Compute the smallest integer of form
pb such that pb > adm. Compute an irreducible polynomial v1(Y1) in Fq[Y1] of degree b such that
Fqb = Fq[Y1]/⟨v1(Y1)⟩. Using Lemma 4.4, compute the subfield Fpb of Fqb . We compute and store
the evaluation of F on every input in the grid Fm

pb . This is our D f . The space required to store all

this data is at most 2pbm elements of the field Fpab of equivalently 2pbmb elements of the field Fpa .

39



For our choice of parameters, the space complexity can be upper bounded as follows.

pbm ≤ (padm)m = plog log n · (log log n)log log n · (poly(log n))log log n · n ≤ n1+o(1) .

Thus, the space complexity is at most 2bpbm ≤ n1+o(1) as claimed. Moreover, D f can be computed
by an algebraic algorithm over Fq using Lemma 4.11 and other ideas in section 6.

Answering evaluation queries using D f . We now describe an algorithm that given an α ∈ Fq

and access to D f computes f (α) in time no(1). The algorithm is essentially the same as the local
computation step in Algorithm 2. Note that D f contains precisely the data that is computed in
Algorithm 2 in the preprocessing phase. We assume the notation (F, v0, v1 etc.) set up in the
previous paragraph.

Algorithm 7 Evaluating polynomial f (x) at a point in Fq using D f

Input: A point α ∈ Fq and query access to D f .
Output: f (α).

1: Let ααα = (αd0
, αd1

, . . . , αdn−1
).

2: Let ααα = ααα0 + ααα1Y0 + · · ·+ αααa−1Ya−1
0 , where αααj ∈ Fn

p.
3: Compute ααα0, ααα1, . . . , αααk−1.
4: Let g(t) be the curve defined as ααα0 + ααα1t + · · ·+ αααa−1ta−1.
5: Compute the set P = {(γ, g(γ)) | γ ∈ Fpb}.
6: Collect the set E = {(γ, F(γγγ′)) | (γ, γγγ′) ∈ P} by querying D f .
7: Using E, interpolate the univariate polynomial F(g(t)).
8: Output F(g(Y0)) as f (α).

The proof of correctness of the construction ofD f and the query algorithm immediately follow
from the proof of correctness of Algorithm 2. The query complexity is clearly upper bounded by
pb ≤ padm, which for our setting of parameters, i.e. p = O(1), d = n1/ log log n and n = log log n is
no(1). This completes the proof of Theorem 8.1.

9 Rigidity uppper bounds

In this section, we prove Theorem 2.6. We start with the definition of matrix rigidity which was
introduced by Valiant [Val77].

Definition 9.1. (Matrix rigidity) For a matrix M over some field F and a natural number r, we define
RF

M(r) to be the smallest number s for which there exists a matrix A with at most s nonzero entries and

40



a matrix B of rank at most r such that M = A + B. If RF
M(r) ≥ s, we say M is (r, s)-rigid. When the

underlying field is clear from the context, we drop the superscript and denote RF
M(r) by RM(r). ⌟

Now we define regular rigidity denoted by rF
M(·) .

Definition 9.2. (Regular rigidity) For a matrix M over some field F and a natural number r̃, we define
rM(r̃) to be the smallest number s such that there exists a matrix A with at most s nonzero entries in each
row and column and a matrix B of rank at most r̃ such that M = A + B. If rF

M(r̃) ≥ s, we say M is
(r̃, s)-regular rigid. Also here, when the underlying field is clear from the context, we drop the superscript
and denote rF

M(r̃) by rM(r̃). ⌟

Note that the notion of regular rigidity is weaker than the usual notion of rigidity. That is, say
A is an n× n matrix and A is (r, ns)-rigid then rA(r) ≥ s. From the perspective of rigidity upper
bounds, if rA(r) ≤ s then RA(r) ≤ ns. Thus, it follows that proving a family of matrices to be
non-regular rigid is even a stronger criterion compared to the usual notion of non-rigidity. In this
section, we show that the Vandermonde matrices are not valiant-rigid (refer subsection 1.3). Note
that, for any matrix M ∈ Fn×n, showing that there exists constants c1, c2 and ε > 0 such that

RF
M(

n
exp(εc1 logc2 n)

) ≤ n1+ε

implies that M is not valiant-rigid. For concreteness, we state our results in terms of RM(·) and
rM(·).

We start by defining some interesting classes of matrices which will be used frequently in the
subsequent sections.

Definition 9.3 (Discrete Fourier Transform (DFT) Matrices). Let F be any field and let ω ∈ F be a
primitive nth root of unity in F. Then, the Discrete Fourier Transform (DFT) Matrix of order n, denoted
by Fn is an n× n matrix over F defined as follows. The rows and columns of the matrix are indexed from
{0, 1, . . . , n− 1}. The (i, j)th entry of Fn is ωij. ⌟

Definition 9.4 (Circulant Matrices). Let F be a field and Cn be a matrix of order n× n with entries in F

such that the rows and columns of Cn are indexed from {0, 1, . . . , n− 1}. Then, Cn is said to be a Circulant
matrix if there exist c0, c1, . . . cn ∈ F such that for every i, j ∈ [n], Cn(i, j) = c(i+j) mod n. ⌟

Definition 9.5. A Vandermonde matrix of order n× n is defined by an input vector ααα = (α0, α2, . . . , αn−1)

where the (i, j) ∈ [n]× [n] entry of the matrix is α
j
i . ⌟

We now state the formal version of Theorem 2.6.

Theorem 9.6. Let 0 < ε < 0.01, p be a fixed prime and c be a fixed constant. Let a : N→N be a function
such that for all n, a(n) ≤ logc n. Let {Vn}n∈N be a family of matrices over Fp such that for every n, Vn

is an n× n Vandermonde Matrix with entries in the subfield Fq=pa(n) . Then, for all large enough n,

RFq
Vn

( n
exp(Ω(ε7 log0.5 n)

)) ≤ n1+31ε
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As alluded in subsection 3.4, the main idea in proving Theorem 9.6 comes from viewing Al-
gorithm 2 as a decomposition of (any) Vandermonde matrix into the product of a row-sparse
matrix(A) and a sufficiently non-rigid matrix(B). Before getting into the proof of the main theo-
rem, we discuss the non-rigidity of the matrix family “B". As it turns out, B is a multidimensional
analog of the DFT matrix. Thus, we start by proving that the DFT matrices are non-rigid over
quasi-polynomial size finite field Fq in Theorem 9.10. Followed by showing that the multidimen-
sional DFT matrices are also non-rigid in Theorem 9.14, using the non-rigidity of DFT matrices
and the Kronecker product structure of multidimensional DFT. Finally, in subsection 9.3, we flesh
out the decomposition of Vandermonde matrices as product of row-sparse and multidimensional
DFT matrices and use it to conclude that Vandermonde matrices are non-rigid as well.

9.1 Non-rigidity of DFT matrices

In this section, we give an upper bound on the rigidity of DFT matrices over finite fields. This
bound follows directly from the work of Dvir and Liu [DL20]. Although the precise statement
needed for our purpose (see Theorem 9.10) is not included in [DL20] as the results there are stated
for a family of matrices over a fixed finite field. Whereas, in Theorem 9.6, the field is also increasing
in size with the dimension of the matrix and for its proof, we need a bound on the rigidity of a
family of DFT matrices with the field growing in size with the dimension of the matrices. This
turns out to be a direct consequence of the results in [DL20] and was communicated to us by the
Zeev Dvir and Allen Liu [DL21].

We start with a simple observation from [DL20].

Observation 9.7 ([DL20]). Let M be an n × n matrix over a field F, and let D be an n × n diagonal
matrix over F. Then, for every choice of rank parameter a,

rF
DM(a) ≤ rF

M(a) , and rF
MD(a) ≤ rF

M(a) .

Let’s analyse the DFT matrix Fq−1 over Fq. We show that there is a way to get a Circulant
matrix by scaling Fq−1 matrix over Fq. This along with Observation 9.7 links the rigidity of Fq−1

matrix over Fq with the rigidity of Circulant matrices.

Lemma 9.8. It is possible to rescale the rows and columns of a DFT matrix Fq−1 over any finite field Fq to
get a Circulant matrix Cq−1 over the extended field Fq2 , where q = pa.

The proof of the above lemma is almost identical to the proof of Claim 2.22 in [DL20] and
hence omitted. We would like to emphasise one key point though. The scaling procedure involves
working with an element ζ s.t. ζ2 = g, where g is the generator of F∗q . Note that ζ may not always
exist in the underlying field Fq, when q is odd. In that case, we perform a degree 2 extension over
the base field Fq. After extension, we view Fq−1 over this extended field and perform appropriate
scaling using ζ to get a Circulant matrix over Fq2 .
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We now state the upper bound on the rigidity of Circulant matrices from [DL20].

Theorem 9.9 (Theorem 7.27 in [DL20]). Let 0 < ε < 0.01 and p be a fixed prime. For all sufficiently
large n, if Cn is an n× n Circulant matrix over Fp then,

rFp
Cn

( n
exp(ε6

(
log n)0.35

)) ≤ n15ε

We now state an upper bound on the rigidity of DFT matrices due to Dvir & Liu which is the
main takeaway of this subsection.

Theorem 9.10 ([DL20, DL21]). Let 0 < ε < 0.01, p be a fixed prime and c be a fixed constant. Let
a : N→ N be a function such that for all n, a(n) ≤ logc n. Let {Fn}n∈N be a family of matrices over Fp

such that for every n, Fn is an n× n DFT Matrix with entries in the subfield Fpa(n) =: Fq. Then,

rFq
Fn

( n
exp(0.5 · ε6

(
log n)0.35

)) ≤ 2 logp q · n15ε

Proof. We first obtain a Circulant matrix Cn of order n by scaling the DFT matrix (of order n) from
Lemma 9.8. As discussed earlier, the entries in the corresponding Circulant matrix potentially
belongs to a degree 2 extension over the field Fq, that is Cn ∈ Fn×n

q2 . Let Fq2 [X] = Fp[X]/⟨v(X)⟩
where v(X) is a degree 2a irreducible polynomial over Fp. Hence, Cn can be expressed as Cn =

C(0) + C(1)X + C(2)X2 + . . . + C(2a−1)X2a−1, where each C(i) is also a Circulant matrix of order n
over Fp. This follows directly from the structure of Circulant matrices.

Now we invoke the rigidity upper bound from Theorem 9.9 for each of the above Circulant
matrix C(i) over the fixed field Fp . Due to the sub-additive property of rank and sparsity, the
overall rank and sparsity of Cn gets upper bounded by 2a times the rank and sparsity of each of
these C(i)’s. Hence,

rFq
Fn

( 2an
exp(ε6

(
log n)0.35

)) ≤ 2an15ε

On rewriting the above equation,

rFq
Fn

( n
exp(ε6

(
log n)0.35 − log logp q2

)) ≤ 2 logp q · n15ε

Since a < logc n, ε6 log0.35 n≫ log logp q2, this concludes the proof.

9.2 Non-rigidity of multidimensional DFT matrices

For our proof of Theorem 9.6, we need an upper bound on the rigidity of the following high
dimensional analog of DFT Matrices.
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Definition 9.11. Let m, d ∈ N, F be a field and S ⊂ F be a subset of cardinality d. The matrix VS
d,m is

a dm × dm matrix with rows labelled by all field elements of the product set Sm = S× S× · · · × S, and
columns labelled by all monomials of individual degree at most d − 1 in variables x = (x1, x2, . . . , xm).
Such that, for a ∈ Sm and a monomial xe of individual degree at most d − 1, the (a, e)’th entry of VS

d,m

equals ae.
⌟

For most of this section, we work with VS
d,m for the setting where F is a finite field of size q,

d = q and S = F. Moreover, when S is clear from the context, we drop the superscript and denote
VS

d,m by Vd,m.

Note that for m = 1 the matrix VFq
q,1 is closely related to the DFT matrix of order q− 1 over Fq.

To see this, note that if g is a generator of the multiplicative group F∗q , then g is trivially a primitive

root of unity of order q− 1 over Fq. So, up to a permutation of rows, the rows of VFq
q,1 can be viewed

as being indexed by g0, g1, g2, . . . , gq−2, and the columns by 0, 1, . . . , q− 2 in this order. Thus, if we
discard the row indexed by 0 and the column indexed by q− 1 of VFq

q,1, what remains is precisely a
DFT matrix of order q− 1 over the field Fq. The following lemma is an easy consequence of this
observation together with the upper bound on rigidity of DFT matrices from [DL20].

Lemma 9.12. Let 0 < ε < 0.01, and Fq be a finite field of size q. Let V = VFq
q,1. Then, for all sufficiently

large q,

rFq
V

( q
exp(ε6

(
log q)0.34

)) ≤ q16ε

Proof. Consider the (q− 1)× (q− 1) submatrix V̄ of V by deleting the row corresponding to the
field element 0 and the column corresponding to the monomial of degree q− 1. V̄ is a DFT matrix
of order q− 1 with the generator of the multiplicative group F∗q being the primitive root of unity
of order q− 1. Note that setting n = q− 1 and invoking the rigidity upper bound of DFT matrices
from Theorem 9.10, we get,

rFq

V̄

( (q− 1)
exp(0.5ε6

(
log(q− 1))0.35

)) ≤ 2 logp q · (q− 1)15ε.

Before simplifying the above expression, let’s see how this related to rigidity of V. In order
to do that, we re-add the deleted row and column to V̄. This process can potentially increase the
rank of the augmented matrix by at most 2. Also, note that logp q≪ qε, thus we get

rFq
V

( q
exp(ε6

(
(log q)0.34

)) ≤ q16ε.

In the rest of this section, we generalize Lemma 9.12 to obtain an upper bound on the rigidity
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of VFq
q,m for larger values of m. The following simple observation is the first step in this direction.

Observation 9.13. VFq
q,m = 10

(
VFq

q,1

)⊗m
.

We are now ready to state the main theorem of this section, where we prove a non-trivial upper
bound on the rigidity of VFq

q,m for an appropriate range of parameters.

Theorem 9.14. Let 0 < ε < 0.01, and m ∈ N+ be the given parameters and Fq be any finite field such
that m ≤ qε. Then for large enough q , we have

rFq
Vq,m

( qm

exp (9ε7( log q)0.34m)

)
≤ q27ε·m

Proof. From Observation 9.13, we have

VFq
q,m =

(
VFq

q,1

)⊗m
.

From Lemma 9.12, we have that

rFq
Vq,1

( q
exp(ε6

(
log q)0.34

)) ≤ q16ε .

Thus, Vq,1 can be written as the sum of a matrix L of rank at most q

exp(ε6
(

log q)0.34
) and a matrix S

with row sparsity at most q16ε. Thus, VFq
q,m can be written as

VFq
q,m = (L1 + S1)⊗ (L2 + S2)⊗ . . .⊗ (Lm + Sm) ,

where each Li is a copy of L and each Si is a copy of S (they have been indexed for clarity of
notation).

The above Kronecker product has 2m many terms, each term consisting of the Kronecker prod-
ucts of various copies of Li and Sj. We partition these summands into two groups based on the
number of copies of L participating in the Kronecker product. To complete the proof, we show
that the sum of every term with many copies of L is a matrix of not too high rank and the sum
of the remaining terms (that have few copies of L and hence many copies of S) are non-trivially
sparse. This would complete the proof of the theorem. We now fill in the details, which involve
some slightly careful calculations to get the quantitative bounds stated in the theorem.

We pick a threshold t (to be set later) and collect all terms in the Kronecker product

VFq
q,m = (L1 + S1)⊗ (L2 + S2)⊗ . . .⊗ (Lm + Sm) ,

10This equality holds up to some row column permutation, which doesn’t affect rigidity.
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consisting of at most t copies of S for t = m(1− 10ε). Let L be the sum of all such terms, and let S
be the sum of the remaining terms. In the following two claims, we obtain an upper bound on the
rank of L and the sparsity of S .

Claim 9.15.

rank(L) ≤ qm

exp(9ε7(m · (log q)0.34))
.

Claim 9.16. Every row and column of S has at most q27ε·m non-zero entries.

These bounds, together with the decomposition

VFq
q,m = L+ S

complete the proof of the theorem.

We now prove Claim 9.15 and Claim 9.16.

Proof of Claim 9.15. From Lemma 9.12, we know the rank of each Li is at most
(

q

exp
(

ε6( log q)0.34
))

and the rank of each Si is at most q since it is a q× q matrix. Moreover, the rank of a Kronecker
product of matrices is the product of their ranks. Thus, we have

rank(L) ≤
t−1

∑
j=0

(
m
j

)( q
2α

)m−j
qj (where α = ε6( log q)0.34)

=
( q

2α

)m t−1

∑
j=0

(
m
j

)
2αj

≤
( q

2α

)m
2αt

t−1

∑
j=0

(
m
j

)
≤
( q

2α

)m
2αt · 2m

= (q)m2α(t−m)+m .

We now obtain an upper bound on the quantity 2α(t−m)+m to complete the proof of the claim.

2m2α(t−m) ≤ 2(−10εα+1)m (since t = m(1− 10ε))

≤ 2−α·9εm since α · 9ε > 1 for all large enough q

46



Thus, the rank of L is at most qm · 2−9εαm, which by the choice of α gives

rank(L) ≤ qm

exp(9ε7m · (log q)0.34)
.

Proof of Claim 9.16. This proof also proceeds along the lines of the proof of Claim 9.15, and in-
volves similar calculations. We just note that every summand in S involves at least (m− t) sparse
matrices in the Kronecker product. Moreover, we rely on the basic fact that the row/column spar-
sity of a Kronecker product of matrices is equal to the product of the row/column sparsity of each
of the matrices in the product.

Let q′ = q16ε denote the row sparsity of every matrix Si. For each Li, we use the obvious upper
bound of q on its row sparsity for our estimate.

RowSparsity(S) ≤
m

∑
j=t

(
m
j

)
(q′)j(q)m−j

= qm ·
m

∑
j=t

(
m
j

)(q′

q

)j

≤ qm
m

∑
j=t

mj
(q′

q

)j

≤ 2.qm
(q′m

q

)t
(since q′m/q < 1/2) .

≤ qm
( 1

q1−16ε−logq m

)t

≤ qm
( 1

q1−17ε

)t
(we have

log m
log q

< ε)

Using t = m(1− 10ε), we get

RowSparsity(S) ≤ qm(1−(1−10ε)(1−17ε)) ≤ q(10ε+17ε)m ≤ q27ε·m .

An almost identical argument also bounds the column sparsity, which completes the proof of
the claim.

9.3 Non-rigidity of Vandermonde matrices

In this section, we prove Theorem 9.6. As discussed in subsection 3.4, using the algorithm for mul-
tivariate multipoint evaluation, we write (any) Vandermonde matrix as the product of a sparse
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matrix and a multidimensional DFT matrix. Then, we invoke the rigidity upper bound for mul-
tidimensional DFT matrices in Theorem 9.14. This together with the fact that a product of sparse
and non-rigid matrix continues to be non-rigid with slightly diminished parameters completes the
proof. We now fill in the details.

Proof of Theorem 9.6. We start by setting up some necessary notation. Let d, m be parameters, cho-
sen as follows.

• m :=
⌈

log0.3 n
⌉

• d is set to be the smallest integer such that dm > n

Clearly, d can be taken to be at most n1/m + 1. For this choice of d, m, we note that dm is at least n
and most (n1/m + 1)m) ≤ 2n.

Let α0, α1, . . . , αn−1 be the generators of the Vandermonde matrix Vn , i.e., Vn(i, j) = α
j
i . For

every i ∈ {0, 1, . . . , n− 1}, let αααi = (αi, αd
i , . . . , αdm−1

i ). For simplicity, we use a to denote a(n). Let b
be the smallest integer such that padm ≥ q0 = pb > adm. Let W be the pbm × pbm matrix with its
rows indexed by vectors in Fm

pb and the columns indexed by all m-variate monomials of individual
degree at most q0 − 1 and the (c, e) entry of W is equal to ce. Moreover, let Ṽ be the matrix with
rows indexed by {0, 1, . . . , n− 1} and columns indexed by all m-variate monomials of individual
degree d− 1 and the (i, e) entry being equal to αααe

i .
To see the connection between the matrices Vn, Ṽ and W, let us try to understand the action of

Vn on a vector. Semantically, we can view this n dimensional vector as the coefficient vector of a
univariate polynomial f of degree at most n− 1 and thus the matrix vector product Vn ·Coeff( f )
is precisely the evaluation vector of f on inputs α0, α1, . . . , αn−1. Recall the inverse Kronecker map
ψd,m from Definition 8.2, and let F be an m-variate polynomial of degree at most d − 1 in each
variable such that F = ψd,m( f ). For this to make sense, recall that by our choice of parameters
dm ≥ n. Now, it follows from these definitions that for every i ∈ {0, 1, . . . , n− 1}, f (αi) = F(αααi).
Moreover, the coefficient vectors of f and F are closely related. In fact, if dm = n, then these
coefficient vectors are exactly the same (even though the natural labelling of the coordinates of
Coeff( f ) is via univariate monomials of degree at most n− 1 and that of Coeff(F) is via m-variate
monomials of individual degree at most d− 1). If dm > n, then we have to append some zeroes to
the coefficient vector f to obtain the coefficient vector of F. In other words,

Coeff(F) = Ĩ ·Coeff( f ) ,

where Ĩ is a dm × n matrix with the top n× n submatrix being the identity matrix and the remain-
ing dm − n rows being all zeroes. Moreover,

Ṽ ·Coeff(F) = Vn ·Coeff( f ) .
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Now we recall Algorithm 2 for multivariate multipoint evaluation and invoke it for the poly-
nomial F and evaluation points ααα0, ααα1, . . . , αααn−1. The algorithm first evaluates F on the product set
Fm

q0
in the preprocessing phase. In other words, it computes the vector W · Coeff(F). Then, for

every i ∈ {0, 1, . . . , n− 1}, the value of F on αααi is computed by some local computation consisting
of looking at the univariate polynomial hi(t) obtained as a restriction of F on a curve of degree
at most a− 1 through αααi, then interpolating hi using the already available values of F on Fm

q0
, and

then evaluating hi on an appropriate input to get F(αααi). In other words, F(αααi) is obtained by taking
an appropriate weighted linear combination of the value of F on a specific subset of points in Fm

q0

of size at most adm. Thus, for every i ∈ {0, 1, . . . , n − 1}, there is a vector τi of length qm
0 with

entries in the field11 such that

F(αααi) = ⟨τi, W ·Coeff(F)⟩ .

If we collect the vectors τ0, τ1, . . . , τn−1 into an n× qm
0 matrix Γ, then we have

Ṽ ·Coeff(F) = Γ ·W ·Coeff(F) .

Recalling the relation between F, f and between Vn, Ṽ, we get that

Vn ·Coeff( f ) = Ṽ ·Coeff(F) = Γ ·W ·Coeff(F) ,

or, using Coeff(F) = Ĩ ·Coeff( f ), we get

Vn ·Coeff( f ) =
(
Γ ·W · Ĩ

)
·Coeff( f ) .

Recall that we started with Coeff( f ) being an arbitrary vector. Thus, we have

Vn = Γ ·W · Ĩ .

Now, to obtain a decomposition of Vn as the sum of a sparse and a low rank matrix, the idea is to
invoke Theorem 9.14 on W, and combine the decomposition obtained together with the sparsity
of Γ and Ĩ to obtain a similar decomposition for Vn. To invoke Theorem 9.14, we must satisfy all
the constraints on the parameters present there. To this end, we note that

• q0 > adm and thus is large enough.

• log m/ log q0 < ε. This is true since log m/ log q0 < log m/ log d < 0.3 log log n
log0.7 n

≪ ε.

Now from Theorem 9.14, we have that W can be written as the sum of matrices L and S where the
11Recall that for technical reasons, we have to work in the field Fpab in Algorithm 2 Fpab even though the inputs are

in Fpa .
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row and column sparsity of S is at most q27εm
0 and the rank of L can be upper bounded as follows.

rank(L) ≤ qm
0

exp(9ε7(log q0)0.34m)
≤ (padm)m

exp(9ε7(log q0)0.34m)
.

Note that by our choice of parameters, (pam)m ≪ 2log0.4 n and m log0.34 q0 ≥ (log n)(0.34)(0.70)+0.3 ≥
log(0.54) n. Also, since 2(ε

7m log0.34 q0) ≫ (pam)m, we get

rank(L) ≤ qm
0

exp(9ε7(log q0)0.34m)
≤ n

exp(Ω(ε7 log0.5 n)
) .

Now, we have

Vn = Γ ·W · Ĩ = Γ · (L + S) · Ĩ ,

or after simplification,

Vn = (Γ · L · Ĩ) + (Γ · S · Ĩ) .

Clearly, the rank of (Γ · L · Ĩ) is at most the rank of L which as we calculated above is at most
n

exp(Ω(ε7 log0.5 n)
) . The row sparsity of (Γ · S · Ĩ) is at most the product of the row sparsity of Γ and

the row sparsity of S 12 and thus is at most

(adm)(q27ε·m
0 ) ≤ (padm)((q0)

m)27ε

= p27ε·m+1 · a27ε·m+1n27εm(27ε·m+1)d

Note that by our choice of parameters, d < nε, a27ε·m+1 < nε, p27ε·m+1 < nε and m(27ε·m+1) < nε,
and thus, the row sparsity of (Γ · S · Ĩ) is at most n31ε.

Thus, Vn can be written as the sum of a matrix of row sparsity13 at most n31ε and rank at most
n

exp(Ω(ε7 log0.5 n)
) as claimed in the theorem.
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