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Abstract

The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree polynomial
cannot vanish with high multiplicity very often on a sufficiently large product set. Since its
discovery in a work of Dvir, Kopparty, Saraf and Sudan [DKSS13], the lemma has found nu-
merous applications in both math and computer science; in particular, in the definition and
properties of multiplicity codes by Kopparty, Saraf and Yekhanin [KSY14].

In this work, we show how to algorithmize the multiplicity Schwartz-Zippel lemma for ar-
bitrary product sets over any field. In other words, we give an efficient algorithm for unique
decoding of multivariate multiplicity codes from half their minimum distance on arbitrary
product sets over all fields. Previously, such an algorithm was known either when the un-
derlying product set had a nice algebraic structure (for instance, was a subfield) [Kop15] or
when the underlying field had large (or zero) characteristic, the multiplicity parameter was
sufficiently large and the multiplicity code had distance bounded away from 1 [BHKS21]. In
particular, even unique decoding of bivariate multiplicity codes with multiplicity two from
half their minimum distance was not known over arbitrary product sets over any field.

Our algorithm builds upon a result of Kim & Kopparty [KK17] who gave an algorithmic
version of the Schwartz-Zippel lemma (without multiplicities) or equivalently, an efficient al-
gorithm for unique decoding of Reed-Muller codes over arbitrary product sets. We introduce
a refined notion of distance based on the multiplicity Schwartz-Zippel lemma and design a
unique decoding algorithm for this distance measure. On the way, we give an alternate analy-
sis of Forney’s classical generalized minimum distance decoder that might be of independent
interest.
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1 Introduction

The degree-mantra states that any univariate non-zero polynomial P ∈ F[x] of degree d, where F

is a field, has at most d zeros even including multiplicities. A generalization of this basic maxim
to the multivariate setting is the well-known Schwartz-Zippel Lemma, also sometimes referred to
as the Polynomial-Identity Lemma, (due to Ore [Ore22], Schwartz [Sch80], Zippel [Zip79] and De-
Millo & Lipton [DL78]). This Lemma states that if F is a field, and P ∈ F[x1, x2, . . . , xm] is a non-zero
polynomial of degree d, and T ⊆ F is an arbitrary finite subset of F, then the number of points on
the grid Tm where P is zero is upper bounded by d|T|m−1. A generalization of this lemma that in-
corporates the multiplicity aspect of the (univariate) degree-mantra was proved by Dvir, Kopparty,
Saraf and Sudan [DKSS13]. This multiplicity Schwartz-Zippel Lemma (henceforth, referred to as
the multiplicity SZ lemma for brevity) states that the number of points on the grid Tm where f is
zero with multiplicity1 at least s is upper bounded by d|T|m−1

s .2

This innately basic statement about low degree polynomials is crucial to many applications
in both computer science and math, e.g see [Gut16]. Of particular interest to this work is the
significance of this lemma and its variants to algebraic error correcting codes that we now discuss
in more detail.

1.1 The coding theoretic context and main theorem

SZ lemma and its variants play a fundamental role in the study of error correcting codes. The uni-
variate version (referred to as the degree mantra in the first paragraph) implies a lower bound on
the distance of Reed-Solomon codes whereas for the general multivariate setting, the SZ lemma
gives the distance of Reed-Muller codes. In its multiplicity avatar (both the univariate and mul-
tivariate settings), the lemma implies a lower bound on the distance of the so called multiplicity
codes. Informally, multiplicity codes are generalizations of Reed-Muller codes where in addition to

1This means that all the partial derivatives of P of order at most s − 1 are zero at this point. See Section 2.2 for a
formal definition.

2This bound is only interesting when |T| > d/s so that d|T|m−1

s is less than the trivial bound of |T|m.
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the evaluation of a message polynomial at every point on a sufficiently large grid, we also have the
evaluations of all partial derivatives of the polynomial up to some order at every point on a grid.
Thus, the number of agreements between two distinct codewords of this linear code is exactly the
number of points on a grid where a low degree polynomial vanishes with high multiplicity, and
thus, is precisely captured by the multiplicity SZ lemma.

A natural algorithmic question in the context of error correcting codes is that of decoding:
given a received word that is sufficiently close to a codeword in Hamming distance, can we ef-
ficiently find the codeword (or the message corresponding to the closest codeword). For Reed-
Solomon codes, this decoding question is equivalent to the question of designing efficient algo-
rithms for recovering a univariate polynomial from its evaluations, with the additional complica-
tion that some of the evaluations might be erroneous. For Reed-Muller codes, this is the question
of multivariate polynomial interpolation with errors over grids, and for multiplicity codes, this is
the question of recovering a multivariate polynomial from its evaluations and evaluations of all its
partial derivatives up to some order on a grid, where some of the data is erroneous. If the number
of coordinates with errors is at most half the minimum distance of the code, then we know (from
the SZ lemma or its variants) that there is a unique codeword close to any such received word.
In particular, the multiplicity SZ lemma can be restated as the following combinatorial statement
about unique decodability of multiplicity codes.

Unique Decoding (Combinatorial Statement). Let F be a field, and T ⊆ F, d the degree parameter,
m the dimension and s the multiplicity parameter be as above. Given an arbitrary function f : Tm →
F<s[z1, . . . , zm], where F<s[z1, . . . , zm] denotes the set of all polynomials of degree less than s in the vari-
ables z1, z2, . . . , zm, there exists at most one polynomial P ∈ F[x1, . . . , xm] of degree at most d such that
the function Enc(s)(P) : Tm → F<s[z1, . . . , zm] defined as

Enc(s)(P)(a) := P(a + z) mod 〈z〉s

differs from f on less than 1
2

(
1− d

s|T|

)
fraction of points on Tm. Here 〈z〉s denotes the ideal in F[z]

generated by monomials of total degree s.

Remark 1.1. We note that the encoding function Enc(s)(P)(a) is sometimes also defined as being given by
the evaluation of all partial derivatives of P of order at most s− 1 on input a. These definitions are equivalent
as can be seen by looking at the Taylor expansion of P(a + z) and truncating the series at monomials of
degrees less than s in z. y

Thus, the unique decoding question for multiplicity codes is equivalent to asking whether
there is an algorithmic equivalent of the multiplicity SZ lemma. More precisely, given a function
f , can one efficiently find the (unique) polynomial P such that ∆( f ,Enc(s)(P)) < 1

2

(
1− d

s|T|

)
(if

one exists).
Given the central role that these polynomial evaluation codes play in coding theory and in
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complexity theory, it is not surprising to note that this question of efficient unique decoding of
Reed-Solomon codes and Reed-Muller codes in particular has been widely investigated. For Reed-
Solomon codes, we know multiple algorithms for this task, starting with the result of Peterson
from the 50s [Pet60] and the subsequent algorithms of Berlekamp and Massey [Ber15, Mas69] and
Welch and Berlekamp [WB86]. However, the situation is a bit more complicated for Reed-Muller
and multivariate multiplicity codes.

Till recently, all known decoding algorithms for the multivariate setting (both Reed-Muller
and larger order multiplicity codes), worked only when the underlying set T had a nice algebraic
structure (eg., T = F) or when the degree d was very small (cf, the Reed-Muller list-decoding
algorithm of Sudan [Sud97] and its multiplicity variant due to Guruswami & Sudan [GS99]). In
particular, even for Reed-Muller codes (equivalently multiplicity codes with multiplicity param-
eter s = 1), where the unique decoding question corresponds to an algorithmic version of the
standard SZ lemma, no unique decoding algorithm was known. In fact, the problem was open
even in the bivariate setting! This seems a bit surprising since the distance of these codes just de-
pends on the non-vanishing of polynomials on arbitrary grids, whereas the decoding algorithms
appear to crucially use some very specific algebraic properties of the grid. Even beyond the imme-
diate connection to questions in coding theory, this seems like a very natural algorithmic question
in computational algebra that represents a gap in our understanding of a very fundamental prop-
erty of low-degree polynomials.

For Reed-Muller codes, this question was resolved in a beautiful work of Kim and Kop-
party [KK17] who gave an efficient algorithm for this problem of unique decoding Reed-Muller
codes on arbitrary grids. Their algorithm was essentially an algorithmic version of the standard
induction-based proof of the SZ lemma. However, the algorithm of Kim and Kopparty does not
seem to generalize for the case of higher multiplicity (s > 1), and indeed, this problem is men-
tioned as an open problem of interest in [KK17].

Since the work of Kim and Kopparty, Bhandari, Harsha, Kumar and Sudan [BHKS21] made
some partial progress towards this problem for the case of s > 1 and m > 1. In particular, they
designed an efficient decoding algorithm albeit under some special conditions:

• the field F has characteristic zero or is larger than the degree d

• the distance of the code is constant

• the multiplicity parameter s is a sufficiently large constant

Under these special conditions, they in fact obtained a list-decoding algorithm. Yet, the original
algorithmic challenge of obtaining an efficient unique decoding for all dimensions and all multi-
plicity parameters remained unresolved.

Our main result in this work is a generalization of the result of Kim and Kopparty to all multi-
plicities or equivalently, an algorithmic version of the multiplicity SZ lemma. More formally, we
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prove the following theorem.

Main result. Let s, d, m ∈ N and T ⊆ F of size n be such that d < sn. Then, there is a deterministic
algorithm that runs in time (sn)O(s+m) · (s−1+m

m ) and on input f : Tm → F<s[x] outputs the unique
polynomial P ∈ F≤d[x] (if such a polynomial exists) such that Enc(s)(P) differs from f on less than
1
2

(
1− d

s|T|

)
fraction of points on Tm.

The actual result is stronger than the one stated above (see Theorem 2.8 for the formal state-
ment). We remark that the above algorithm runs in time (sn)O(s+m) · (s−1+m

m ). This is polynomial in
the input size, i.e.,

(
nm · (s−1+m

m )
)

, when (sn)s+m is polynomial in the input size. Hence, for the case
of s = O(1) we do get a truly polynomial time algorithm. Furthermore, as remarked earlier [BHKS21]
obtained decoding algorithms which work when s is sufficiently large in terms of the dimension
m. Combining our algorithm with theirs, we get polynomial time unique-decoding algorithms
for all settings of the multiplicity parameter s when the dimension m and the fractional distance
1− d

s|T| are constant.

1.2 Alternate analysis of Forney’s GMD Decoding

Forney designed the Generalized Minimum Distance (GMD) decoding to decode concatenated
codes from half its minimum distance [For65, For66]. A key step in our algorithm (as in Kim and
Kopparty’s Reed-Muller decoder) is reminiscent of Forney’s GMD decoding. Forney analysed the
GMD decoding using a convexity argument, which in modern presentations is usually expressed
as a probabilistic or a random threshold argument. Kim and Kopparty used a direct adaptation of
this random threshold argument for their Reed-Muller decoder. This argument unfortunately fails
in our setting. To get around this, we first give an alternate analysis of Forney’s GMD decoding
using a matching argument, which we explain in detail in the next section. The alternate analysis
of Forney’s GMD decoding is given in detail in Section 5.

1.3 Overview of algorithm

As one would expect, our multivariate multiplicity code decoder for s > 1 is a generalization of
the Kim-Kopparty decoder for Reed-Muller codes (i.e., the s = 1 case). However, a straightfor-
ward generalization does not seem to work and several subtle issues arise. Some of these issues
are definitional and conceptual; for instance, one needs to work with a finer notion of distance
while others are more technical, for instance the need for an alternate analysis of Forney’s GMD
decoding.

To explain these issues and discuss how we circumvent them, we first recall the Kim-Kopparty
decoder and then mention how we generalize it to the s > 1 setting, highlighting the various issues
that arise along the way.
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1.3.1 An overview of the Kim-Kopparty Reed-Muller decoder

We begin by recalling the Kim-Kopparty decoder for Reed-Muller codes on arbitrary grids. Their
algorithm is, in some sense, an “algorithmization” of the standard inductive proof of the classical
Schwartz-Zippel lemma (without any multiplicities). For simplicity, we will focus on the bivariate
case (m = 2) initially.

The setting is as follows: we are given a received word f : T2 → F and have to find the unique
polynomial P(x, y) ∈ F[x, y] (if one exists) such that ∆( f , P) < 1

2 n2(1− d
n ), where ∆ is the standard

Hamming distance and n = |T|.
The high-level approach is to write P as ∑d

i=0 Pi(x)yd−i and iteratively recover the univari-
ate polynomials P0, P1, . . . , Pd in this order. The goal of the `th iteration is to recover P`(x) as-
suming we have correctly recovered P0, P1, . . . , P`−1 in the previous iterations. For the `th iter-
ation, we work with f` : T2 → F given by f`(a, b) := f (a, b) − ∑`−1

i=0 Pi(a) · bd−i as the received
word. Clearly, the Hamming distance between f` and the evaluation of the bivariate polynomial
Q`(x, y) = ∑d

i=` Pi(x)yd−i on the grid is exactly ∆( f , P) which is at most 1
2 n2(1− d

n ).
Very naturally, we view f` as values written on a two dimensional grid T× T, with the columns

indexed by x = a ∈ T and the rows indexed by y = b ∈ T, and each entry on a grid point of T× T
is an element of F. As a first step of the algorithm, for every a ∈ T, a Reed-Solomon decoder
is used to find a univariate polynomial G(a)(y) of degree at most d − ` such that the tuple of
evaluations of this polynomial on the set T is close to the restriction of f` on the column x = a.
For columns where Q` and f` have a high agreement, G(a)(y) would be equal to Q`(a, y) and
hence, the leading coefficient of G(a)(y) must equal P`(a). A natural suggestion here would be
to collect the leading coefficients of the polynomials G(a)(y)’s, namely g(a) := Coeffyd−`(G(a)(y))
and try and run another Reed-Solomon decoder on g : T → F to get P`(x). Unfortunately, with
∆( f , P) < 1

2 n2(1− d
n ), it can be shown that a lot of these polynomials G(a) could be incorrect and

hence, the number of errors in the received word for this second step Reed-Solomon decoding is
too large for it to correctly output P`.

The key idea of Kim and Kopparty is to observe that at the end of the first step, not only do
we have the decoded column polynomials G(a)(y) but we also have hitherto unused information
about the function f`, namely, the Hamming distance between the received word (the restriction
of f`) on a column x = a and the evaluation of G(a)(y). Formally, for every a ∈ T, they associate a
weight

w(a) := min
{

∆
(

f`(a, ·), G(a)
)

,
n− (d− `)

2

}
. (1.2)

Note that if ∆
(

f`(a, ·), G(a)
)
> n−(d−`)

2 , then there is no guarantee that G(a)(y) is the closest code-
word to f`(a, y) and hence the minimum is taken in the above expression to cap the distance to
n−(d−`)

2 (this plays a technical reason in the proof, but let us ignore it for now). Based on these
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weights, they define a modified distance between the pair (g, w) : T → F×Z≥0, which they refer
to as a “fractional word”, and a regular word h : T → F as follows:

∆((g, w), h) := ∑
a∈A0(g,h)

(n− (d− `)− w(a)) + ∑
a∈A1(g,h)

w(a) , (1.3)

where T = A0(g, h) ∪ A1(g, h) is the following partition of T

A1(g, h) := {a ∈ T : g(a) = h(a)} , (agreement points)

A0(g, h) := {a ∈ T : g(a) 6= h(a)} . (disagreement points)

We note that the above is a scaled version of the modified distance used by Kim and Kopparty. We
find it convenient to express it in the above equivalent form for the purpose of this presentation
as this alternate form generalizes to the s > 1 setting more naturally.

They then prove that this modified distance satisfies the following two important properties.

• The fractional word (g, w) and the “correct” polynomial P` satisfy

∆((g, w), P`) ≤ ∆( f , P) <
1
2

n2
(

1− d
n

)
. (1.4)

• For any two distinct polynomials Q` and R` of degree `, we have

∆((g, w), Q`) + ∆((g, w), R`)) ≥ (n− (d− `)) · ∆(Q`, R`)

≥ (n− (d− `)) · (n− `)

≥ n2
(

1− d
n

)
. (1.5)

These two properties imply that the pair (g, w) uniquely determines the polynomial P` since P`
satisfies ∆((g, w), P`) < 1

2 n2
(

1− d
n

)
(by the first property) while every other polynomial Q` sat-

isfies ∆((g, w), Q`) ≥ n2
(

1− d
n

)
− ∆((g, w), P`) > 1

2 n2
(

1− d
n

)
(by the second property).

We are still left with the problem of efficiently determining P` from the pair (g, w). We will defer
that discussion to later, but first show how the above steps can be generalized to the s > 1 setting.

1.3.2 Generalizing the Kim-Kopparty decoder to s > 1

To begin with, we will need to work with a more fine-grained notion of distance which incorpo-
rates the multiplicity information. For two functions f , g : Tm → F<s[z] and a point a ∈ Tm, the
Hamming distance ∆( f (a), g(a)) measures if the polynomials f (a) and g(a) are different. We will
consider a refined notion of ∆(s)

mult( f (a), g(a)), which measures the “multiplicity distance” at the
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point a (here s is the multiplicity parameter). Formally,

∆(s)
mult( f (a), g(a)) := (s− d(s)min( f (a)− g(a))) ,

where d(s)min(R) is defined as follows for any polynomial R: d(s)min(R) is the minimum of s and the
the degree of the minimum degree monomial with a non-zero coefficient in R. Note that if R is
identically zero, d(s)min(R) is set to s. Recall that here f (a) and g(a) are both polynomials in z of
degree strictly less than s. The multiplicity distance between the functions f and g is defined to be
the sum of the above quantity over all a ∈ Tm. More precisely,

∆(s)
mult( f , g) := ∑

a∈Tm
∆(s)
mult( f (a), g(a)) .

Observe that for s = 1, this matches with the usual notion of Hamming distance. Furthermore,
this fine-grained distance lower bounds the Hamming distance as follows:

∆(s)
mult( f , g) ≤ s · ∆( f , g) .

The multiplicity SZ lemma, in terms of the this fine-grained multiplicity distance, states that
for two distinct m-variate degree d polynomials P, Q, we have

∆(s)
mult(Enc

(s)(P),Enc(s)(Q)) ≥ nm ·
(

s− d
n

)
.

The Kim-Kopparty decoder for Reed-Muller codes on a grid required as a basic primitive a
Reed-Solomon decoder. Correspondingly, our algorithm will require as a basic primitive a uni-
variate multiplicity code decoder. Such a decoder was first obtained by Nielsen [Nie01]. Later on
in the algorithm, we will actually need a generalization of this decoder which can handle the case
when the multiplicity parameters at different evaluation points are not necessarily the same. Such
a decoder can be obtained by a suitable modification of the standard Welch-Berlekamp decoder
for Reed-Solomon codes. This modification is presented in Section 4 (Algorithm 2 specifically).

We are now ready to generalize the Kim-Kopparty decoder to the s > 1 setting. To keep things
simple, let us focus on the s = 2 and m = 2 setting. The problem stated in terms of the multiplicity-
distance is as follows. We are given a received word f : T2 → F<2[u, v] and have to find the
unique polynomial P(x, y) ∈ F[x, y] (if one exists) such that ∆(2)

mult( f ,Enc(2)(P)) < 1
2 n2(2 − d

n ),
where n = |T|.

As before we write P = ∑d
i=0 Pi(x)yd−i and recover the polynomials P0, . . . , Pd in successive

iterations. Let us assume we are in the `th iteration where we have to recover P` and have al-
ready correctly recovered P0, . . . , P`−1 in the previous iterations. Similar to the s = 1 setting, we
consider the function f` : T2 → F<2[u, v] given by f`(a, b) := f (a, b) − Enc(2)

(
∑`−1

i=0 Pi(x) · yd−i
)
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as the received word. Clearly, the distance between f` and Enc(2)
(

∑d
i=` Pi(x)yd−i

)
is exactly

∆(2)
mult( f ,Enc(2)(P)) which is at most 1

2 n2(2− d
n ).

As before, we view f` as values written on a two dimensional grid T × T, with the columns
indexed by x = a ∈ T and the rows indexed by y = b ∈ T, and each entry on a grid point of T× T
is an element of F<2[u, v]. It will be convenient to view this degree one polynomial f`(a, b) at the
grid point (a, b) as f (0)` (a, b)(v)+ u · f (1)` (a, b) where f (0)` (a, b) ∈ F<2[v] and f (1)` (a, b) ∈ F<1[v] ≡ F.
For every a ∈ T, we look at the restriction of the functions f (0)` and f (1)` to the column x = a. We
could use a Reed-Solomon decoder to find the univariate polynomial G(a,1)(y) of degree at most
d− ` such that the tuple of evaluations of this polynomial on the set T is close to the restriction
of f (1)` on the column x = a. Similarly, we could use the univariate multiplicity code decoder
(mentioned above) to find the univariate polynomial G(a,0)(y) of degree at most d − ` such that
encoding of this polynomial is close to the restriction of f (0)` on the column x = a. We can for
each a, define g(a) ∈ F<2[u] to be the polynomial g(a) := Coeffxd−`(G(a,0)) + u · Coeffxd−`(G(a,1)).
We also have the corresponding weight functions (similar to (1.2)) which measure how close the
encodings of the polynomials G(a,0)(y) and G(a,1)(y)) are close to the corresponding functions f (0)`

and f (1)` respectively. Namely,

w(a, 0) := min
{

∆(2)
mult

(
f (0)` (a, ·),Enc(2)(G(a,0))

)
,

2n− (d− `)

2

}
,

w(a, 1) := min
{

∆(1)
mult

(
f (1)` (a, ·),Enc(1)(G(a,1))

)
,

n− (d− `)

2

}
.

The quantities 2n − (d − `) and n − (d − `) are the distances of univariate multiplicity codes of
degree (d − `) and multiplicity parameters 2 and 1 respectively. We will refer to these pairs of
weight functions as w = (w(·, 0), w(·, 1)). As in the s = 1 setting, we will view the pair (g, w) as
a “fractional word”. Inspired by the modified distance definition of Kim and Kopparty between
a fraction word and a regular word (see (1.3)), we define a similar modified distance between the
fractional word (g, w) : T → F<2[u]× (Z≥0 ×Z≥0) and and a word h : T → F<2[u] as follows:

Γ ((g, w), h) := ∑
a∈A0(g,h)

(2n− (d− `)− w(a, 0)) + ∑
a∈A1(g,h)

max {(n− (d− `)− w(a, 1)) , w(a, 0)}

+ ∑
a∈A2(g,h)

max {w(a, 0), w(a, 1)} , (1.6)

where T = A0(g, h) ∪ A1(g, h) ∪ A2(g, h) is the following partition of T

A2(g, h) := {a ∈ T : g(a) ≡ h(a)} , (agreement points with multiplicity 2)

A1(g, h) := {a ∈ T : g(a) ≡ h(a) mod 〈u〉} \ A2(g, h) ,
(agreement points with multiplicity 1)
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A0(g, h) := T \ (A2(g, h) ∪ A1(g, h)) . (disagreement points)

(see Definition 6.1 for the exact definition of this modified distance). This definition might seem
complicated, however it is chosen so that it satisfies the following two important properties.

• [Lemma 7.1] The fractional word (g, w) and the “correct” polynomial P` satisfy

Γ((g, w), P`) ≤ ∆(2)
mult( f ,Enc(2)(P)) <

1
2

n2
(

2− d
n

)
. (1.7)

• [Lemma 6.2] For any two distinct polynomials Q` and R` of degree `, we have

Γ((g, w), Q`) + Γ((g, w), R`)) ≥ n2
(

2− d
n

)
. (1.8)

These two properties imply that the pair (g, w) uniquely determines the polynomial P`, which is
in fact an alternate statement of the multiplicity SZ lemma.

As in the case s = 1, we are now left with the problem of efficiently extracting the polynomial
P` from the fractional word (g, w). In the next section, we describe how this was done by Kim and
Kopparty and our modification of the same.

1.3.3 Extracting P` from the fractional word

Let us restate the problem of P` extraction: we are given a fractional word (g, w) : T → F×Z≥0

that satisfies (1.4), namely ∆((g, w), P`) ≤ 1
2 n2

(
1− d

n

)
(note that by (1.5), this uniquely defines P`)

and we have to find the polynomial P`. Kim and Kopparty designed the weighted Reed-Solomon
decoder, inspired by Forney’s generalized minimum distance (GMD) decoder for this purpose. To
see this connection to Forney’s GMD decoding, we first rewrite (1.4) as follows:

1
2
· (n− (d− `)) ·

(
∑

a∈A0

w̃(a) + ∑
a∈A1

(2− w̃(a))

)
≤ 1

2
n2
(

1− d
n

)
,

where w̃(a) := w(a)/
( 1

2 · (n− (d− `))
)
∈ [0, 1]. Or equivalently,

∑
a∈A0

w̃(a) + ∑
a∈A1

(2− w̃(a)) ≤
n2
(

1− d
n

)
(n− (d− `))

≤ n
(

1− `

n

)
.

This can be further rewritten as

∑
a∈T

w̃(a) + ∑
a∈A1

2(1− w̃(a)) ≤ n
(

1− `

n

)
. (1.9)
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The above inequality is very reminiscent of Forney’s analysis of GMD decoding (c.f., [GRS, Sec-
tion 12.3]). Consider a uniformly random threshold θ ∈ [0, 1] and erase all coordinates a ∈ T such
that w̃(a) ≥ θ. (1.9) can be now rewritten as

Eθ [# erasures(θ) + 2 · # errors(θ)] ≤ n
(

1− `

n

)
. (1.10)

This implies that there exists a threshold θ ∈ [0, 1] that satisfies # erasures(θ) + 2 · # errors(θ) ≤
n
(

1− `
n

)
. This is precisely the condition under which Reed-Solomon decoding (under erasures

and errors) is feasible. Thus, the weighted Reed-Solomon decoder of Kim and Kopparty is as fol-
lows: consider every possible threshold θ ∈ [0, 1] and the corresponding erased word g|{a∈T : w̃(a)<θ}.
Observe that there are at most n distinct thresholds to consider. We can now run a standard Reed-
Solomon decoder on this partially erased word to extract the polynomial P`.

This completes the description of the Kim-Kopparty decoder for Reed-Muller codes on grids.
We would now like to adapt this weighted Reed-Solomon decoder to the multiplicity setting.

We are now given the fractional word (g, w) : T → F<2[u] × (Z≥0 ×Z≥0) with the promise of
(1.7), namely Γ((g, w), P`) ≤ 1

2 n2(2− d
n ) and we have to find the polynomial P`. Recall that (1.8)

states that the promise uniquely determines P`.
A natural “weighted univariate multiplicity code decoder” would be the following: consider

all possible step-thresholds θ = (θ0, θ1, . . . , θs−1) and erase coordinates of g accordingly to obtain a
univariate multiplicity received word of varying multiplicities3. If this step-threshold θ is indeed
correct (i.e., it retains a large fraction of agreements with P`), we can show that we can adapt the
classical Welch-Berlekamp decoder for Reed-Solomon codes to decode even in this setting. And
we do precisely this in Section 4. We are still left with the problem of showing that there exists a
step-threshold θ that works.

How did Kim and Kopparty show that such a threshold exists in the s = 1 setting? They
showed by scaling the promise (1.4) by 1

2 (n − (d − `)) to obtain (1.9) which is equivalent to the
statement (1.10) that a random threshold θ works. Observe that the scaling 1

2 (n− (d− `)) is pre-
cisely the unique-decoding radius of the (d− `) degree Reed-Solomon code G(a)(y). In our setting
(s > 1), there is not one code G(a)(y), but a whole family of them (G(a,0)(y) and G(a,1)(y) for the
s = 2 case). Recall that these are members of multiplicity codes of degree d− ` with multiplicity
parameter 2 and 1 respectively. Their corresponding unique-decoding radii are 1

2 (2n − (d − `))

and 1
2 (n − (d − `)) (in terms of the multiplicity distance). In general, we might have s different

unique-decoding radii. It is unclear which of these scalings we should use.
There is a more fundamental reason why one does not expect such a random-threshold ar-

gument to hold. Consider the following instance of the problem. Let P be a degree d polyno-
mial for 2n/3 < d < 2n − 2. Let B ⊆ T be a set of points of size

⌈
n
2

(
1− d

2n

)⌉
− 1. Consider

3We are intentionally vague at this point. For more details, see Section 6.
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a word f : T2 → F<2[u, v] formed by corrupting Enc(2)(P) on T × B. The fraction of errors is
|B|/n < 1

2

(
1− d

2n

)
and hence we must be able to uniquely decode P from f . Let us see how our

suggested algorithm proceeds when it decodes along each column x = a. For each a ∈ T, the
function f (0)` (a, y) is corrupted on less than 1

2

(
1− d

2n

)
and hence the univariate multiplicity code

decoder for multiplicity parameter 2 correctly decodes this column. Furthermore, w(a, 0) = |B|.
However, while decoding f (1)` (a, y) we observe that the number of errors is |B| while the distance
of the underlying code (multiplicity code with multiplicity parameter 1) is only n

(
1− d

n

)
which

is less than B for our choice of parameters. So we could have corrupted enough points so that for
each a ∈ T, f (1)` (a, y) is a valid codeword and yet different from the correct codeword in Enc(2)(P).
In this case, all the G(a,1)(y) polynomials are erroneous, however w(a, 1) = 0. We thus have for
this setting w(a, 1) = 0 and w(a, 0) = |B| for all a ∈ T. Clearly, the step-threshold (|B|+ 1, 0) (by
this we mean that we use the threshold |B|+ 1 for f (0)` and 0 for f (1)` ) correctly decodes P`, yet it
is easy to check that the expected number of erasures plus two times the number of errors is too
large for any reasonable choice of a random threshold.

How do we then show a step-threshold θ works without resorting to the random-threshold
argument?

For starters, we could ask if we could give an alternate analysis of Forney’s GMD decoding
without appealing to the random-threshold argument. We show that this is indeed true. More
formally, we show that if every threshold fails for Forney’s GMD decoding, then the promise
for GMD decoding is violated. We prove this as follows. Assume every threshold fails. We then
construct a matching between agreement points and disagreement points such that every matched
agreement-disagreement pair has the property that the distance in the disagreeing coordinate is at
least that in the agreeing coordinate. Such a matching then immediately implies that the promise
for GMD decoding is violated. See Section 5 for further details. This alternate analysis of Forney’s
GMD decoding is not needed for our algorithm. It only serves as an inspiration for our “weighted
univariate multiplicity code decoder” just as the original analysis inspired the “weighted Reed-
Solomon decoder” of Kim and Kopparty.

Equipped with this alternate analysis of Forney’s GMD decoding, we show a similar result
for our setting. For contradiction, let us assume that every step-threshold θ fails to decode the
polynomial P`. This lets us construct a matching between “correct” and “incorrect” coordinate-
multiplicity pairs. The construction of this matching is considerably more involved than the con-
struction of the corresponding matching in Forney’s GMD decoding as we need to respect the
monotonicity of the multiplicity coordinates. The matching is constructed via a delicate analysis
using a generalization of Hall’s Theorem (see Theorem 6.9). As in the Forney analysis, the matched
agreement-disagreement pairs have the property that the multiplicity-distance of the disagreeing
member is at least that of the agreeing member. Once we have constructed such a matching, it
is not hard to show that the promise (1.7) is violated. Hence, at least one of the step-thresholds
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work and our “weighted univariate multiplicity code decoder” works as suggested. This part of
the analysis happens to be the most technically-challenging part of the paper and indeed this
“weighted univariate multiplicity code decoder” forms the work-horse of our bivariate decoder
(for more details, see Section 6). The factor of ns in the running time comes because this step runs
over all possible step-thresholds and there are O(ns) of them. We conjecture that this step can be
improved to poly(n, s).

1.3.4 The multivariate setting for m > 2

The above presentation gave an outline of both the Kim-Kopparty decoder as well as ours in the
bivariate setting. Kim and Kopparty extended the bivariate Reed-Muller decoder to larger m by
designing a weighted version of the Reed-Muller decoder which they then used inductively as
suggested by the proof of the classical SZ Lemma. We however do not have a similar “weighted
multivariate multiplicity code decoder”. In particular, we do not even have a weighted version of
the bivariate decoder. We get around this issue by performing a slightly different proof of the SZ
Lemma from the textbook proof (see Section 8.1). This alternate proof of the SZ Lemma proceeds
by viewing the polynomial as an (m− 1)-variate polynomial with the coefficients coming from a
univariate polynomial ring F[xm] instead of as a univariate polynomial in xm with the coefficients
coming from the (m− 1)-variate polynomial ring F[x1, . . . , xm−1]. This slight modification allows
us to work with just a “weighted univariate multiplicity code decoder”. We note that a similar
construction could have been obtained in the Reed-Muller setting too. We discuss this multivariate
generalization in more detail in Section 8.

1.4 Further discussion and open problems

We conclude the introduction with some open problems.

Faster algorithms. Observe that the running time of the main result as stated above depends
polynomially on (sn)s+m. Since the input to the decoding problem has size

(
nm · (s−1+m

m )
)

,
strictly speaking, the running time of the algorithm in the main theorem is not polynomially
bounded in the input size for all choices of the parameters n, s, m. It would be extremely in-
teresting to obtain an algorithm for this problem which runs in polynomial time in the input
size for all regimes of parameters.

List-decoding. Another natural question in the context of the main result in this paper is to obtain
efficient algorithms for decoding multiplicity codes on arbitrary grids when the amount of
error exceeds half the minimum distance of the code. The results in [BHKS21] provide such
algorithms when s is sufficiently large, m is a constant and we are over fields of sufficiently
large (or zero) characteristic. However, when s is small, for instance, even when s = 1
and m = 2, we do not have any such list decoding results. In fact, for small s, we do not
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even have a good understanding of the combinatorial limits of list decoding of these (Reed-
Muller/Multiplicity) codes on arbitrary grids.

Polynomial-method-based algorithms. It would also be interesting to understand if the results
in this paper and those in [KK17] can be proved via a more direct application of the polyno-
mial method. By this we mean a decoding algorithm along the lines of the classical Welch-
Berlekamp [WB86] decoding algorithm as presented by Gemmell and Sudan [GS92] or the
genralizations used for list-decoding: for instance, as in the work of Guruswami and Su-
dan [GS99]. Note that for large s, constant m, and fields of sufficiently large or zero char-
acteristic, the algorithm in [BHKS21] is indeed directly based on a clean application of the
polynomial method. It would be aesthetically appealing to have an analogous algorithm for
the case of small s (and perhaps over all fields).

1.5 Organization

The rest of the paper is organized as follows.
In Section 2, we discuss the necessary preliminaries including the definition and properties of

multiplicity codes and describe a fine-grained notion of distance for multiplicity codes that plays
a crucial role in our proofs. In Section 3, we describe our algorithm for decoding bivariate mul-
tiplicity codes. We build up the necessary machinery for the analysis of the bivariate decoder in
Section 4 and Section 6 where we describe and analyse efficient decoding algorithms for univariate
multiplicity codes with varying multiplicities and weighted univariate multiplicity codes respec-
tively, and then use them to analyse the bivariate decoder in Section 7. Using a suitable induction
on the number of variables, we generalize the algorithm for the bivariate case to the multivariate
case in Section 8. An alternate analysis of Forney’s generalized minimum distance decoder, which
inspires our analysis of our algorithm, is discussed in Section 5.

2 Multiplicity codes and main result

In this section, we give a formal statement of our main result. We start by building up the requisite
notations and preliminaries including the notion of multiplicity codes and their properties which
provide the key underlying motivation for the results in this paper.

2.1 Notations

• We use boldface letters like x, y, z for m-tuples of variables.

• F denotes the underlying field.

• For a positive integer `, [`] = {0, . . . , `− 1} (note ` /∈ [`]).
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• For ` ∈ N, F≤`[x] (and F<`[x]) denotes the set of polynomials in x, with coefficients in F of
degree at most (strictly less than) `.

• For e ∈ Zm
≥0, xe denotes the monomial ∏j∈[m] x

ej
j and |e|1 := ∑ ei.

2.2 Multiplicity code

We now state the definition of multiplicity codes.

Definition 2.1 (Multiplicity code). Let s, m ∈ N, d ∈ Z≥0, F be a field and T ⊆ F be a non-empty
finite subset of F. The m-variate order-s multiplicity code for degree-d polynomials over F on the grid Tm

is defined as follows.
Let E := {e ∈ Zm

≥0 | 0 : ≤ |e|1 < s}. Note that |E| = (s+m−1
m ), which is the number of distinct

monomials in F<s[z]. Hence, we can identify FE with F<s[z].
The code is defined over the alphabet FE and has block length |T|m with the coordinates being indexed by

elements of the grid Tm. The code is an F-linear map from the space of polynomials F≤d[x] to (F<s[z])
|T|m ,

where for any a ∈ Tm, the ath coordinate of the codeword denoted by Enc
(s)
Tm(P)|a is given by

Enc
(s)
Tm(P)|a := P(a + z) mod 〈z〉s.

Thus, a codeword of this code can be naturally viewed as a function from Tm to F<s[z]. y

Remark 2.2. For the ease of notation, we sometimes drop one or both of s and Tm from Enc
(s)
Tm(P) when

they are clear from the context. Also, we will use n to refer to the size of T, i.e., n = |T|. y

Univariate multiplicity codes were first studied by Rosenbloom & Tsfasman [RT97] and Nielsen
[Nie01]. Multiplicity codes for general m and s were introduced by Kopparty, Saraf and Yekhanin
[KSY14] in an attempt to construct locally decodable codes with high rate and small query com-
plexity. In the context of local decoding, these codes are typically studied with the set T being the
entire field F (or a subfield of F). However, in this work, we encourage the reader to think of T
being an arbitrary subset of F.

We note that for every a ∈ Fm, (P(a + z) mod 〈z〉s) is a polynomial in F[z] of degree at most
s− 1, and therefore can be viewed as a function from the set E to F given by its coefficient vector.
Thus, the alphabet of the code is indeed FE. Moreover, the coefficients of (P(a + z) mod 〈z〉s) are
precisely the evaluation of the Hasse derivatives of order at most (s− 1) of P at the input a. Recall
that for a polynomial P ∈ F[x], the eth Hasse derivative of P, denoted by ∂̄P

∂̄xe is the coefficient of
ze in P(x + z). Typically, multiplicity codes are defined directly via Hasse derivatives, however,
in this paper, it is notationally more convenient to work with Definition 2.1. Observe that with
this notation, it is natural to think of a received word (an input to the decoding algorithm for
multiplicity codes) as being given as a function f : Tm → F<s[z].

The distance of multiplicity codes is guaranteed by a higher order generalization of the Schwartz-

14



Zippel Lemma, that was proved by Dvir, Kopparty, Saraf and Sudan [DKSS13]. We need the
following notation for the statement of the lemma.

Definition 2.3 (multiplicity at a point). For an m-variate polynomial P ∈ F[x] and a point a ∈ Fm, the
multiplicity of P at a, denoted by mult(P, a) is the largest integer ` such that P(a + z) = 0 mod 〈z〉` ,
or equivalently, the Hasse derivative ∂̄P

∂̄xe (a) is zero for all monomials xe of degree at most `− 1. y

We now state the multiplicity Schwartz-Zippel lemma.

Lemma 2.4 (multiplicity Schwartz-Zippel lemma [DKSS13, Lemma 8]). Let P ∈ F[x] be a nonzero
m-variate polynomial of total degree at most d and let T ⊆ F. Then,

∑
a∈Tm

mult(P, a) ≤ d |T|m−1 .

We note that the lemma immediately implies that the multiplicity codes as defined in Defini-
tion 2.1 have distance at least nm(1− d

ns ).

2.3 A fine-grained notion of distance for multiplicity codewords

The multiplicity Schwartz-Zippel lemma states that for two distinct polynomials P and Q of total
degree d,

∑
a∈Tm

(s−mult(P−Q, a)) > nm
(

s− d
n

)
.

Thus, we can view ∑a∈Tm (s−mult(P−Q, a)) as a measure of distance between the encodings of
P and Q. We work with a natural extension of this measure of distance to a notion of distance be-
tween functions f , g : Tm → F<s[z] that might not necessarily be valid codewords of a multiplicity
code.

Definition 2.5. Let T ⊆ F be any set. For functions f , g : Tm → F<s[z], we define ∆(s)
mult( f , g) as

∆(s)
mult( f , g) := ∑

a∈Tm
(s− d(s)min( f (a)− g(a))) ,

where for a polynomial R, d(s)min(R) is defined to be the minimum of s and the degree of the minimum degree
monomial with a non-zero coefficient in R. Note that if R is identically zero, then d(s)(R) is set to s. y

The quantity d(s)min is related to the notion of multiplicity in the following sense:

d(s)min(Enc
(s)
Tm(P)(a)− Enc

(s)
Tm(Q)(a)) = min{mult(P−Q, a), s} .

For brevity, we abuse notation slightly and sometimes drop one or more of the parameters r, s, Tm
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from ∆(s)
mult(Enc

(r)
Tm(P),Enc(r)Tm(Q)) when they are clear from the context. Note that the parameters r

and s in the encoding, and that in ∆mult might be different from each other.

Remark 2.6. In Definition 2.5, s does not depend on a and is constant throughout. However, in the course
of our analysis we will also encounter a scenario (see Algorithm 2) where m = 1 and the multiplicity
parameter is not constant and is given by a function s : T → Z≥0. The Definition 2.5 naturally extends to
this case as follows.

∆(s)
mult,T( f , g) = ∑

a∈T
(s(a)− d(s)min( f (a)− g(a))) . y

The following observation relates ∆(s)
mult with the standard definition of Hamming distance for

multiplicity codes of order s.

Observation 2.7. For any two polynomials P, Q ∈ F[x] of degree at most d,

∆(s)
mult(Enc

(s)
Tm(P),Enc(s)Tm(Q)) ≤ s · ∆(Enc(s)Tm(P),Enc(s)Tm(Q)) .

Intuitively, if Enc(s)Tm(P) differs from Enc
(s)
Tm(Q) at a point a ∈ Tm, then the standard Hamming

distance ∆(Enc(s)Tm(P),Enc(s)Tm(Q)) counts this point with weight one, whereas ∆(s)
mult(Enc

(s)
Tm(P),Enc(s)Tm(Q))

also takes into account the lowest degree monomial in ze such that the coefficients of ze in Enc
(s)
Tm(P)

and Enc
(s)
Tm(Q) are not equal to each other. This fine-grained structure will be crucially used in the

analysis of our algorithm.

2.4 Main Result

With these definitions in place, our main technical result can be stated as follows.

Theorem 2.8. Let s, d, m ∈ N and T ⊆ F be such that d < s|T|. Then, there is a deterministic algorithm
(Algorithm 4) that runs in time (sn)3m+s+O(1) · (m+s−1

s ) and on input f : Tm → F<s[z] outputs the unique
polynomial P ∈ F≤d[x] (if such a polynomial exists) such that

∆(s)
mult( f ,Enc(s)Tm(P)) <

nm

2

(
s− d

n

)
,

where n = |T|.

3 Bivariate multiplicity code decoder

In this section, we describe the main subroutine of our decoding algorithm for bivariate multiplic-
ity codes. This algorithm relies on algorithms for decoding two variants of a decoder for univari-
ate multiplicity codes; the first where the multiplicity parameters varies with the evaluation point
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and the second being a decoder for a weighted version of univariate multiplicity codes. We first
give a summary of these univariate decoders in Section 3.1 and then a complete description of our
bivariate decoder in Section 3.2

3.1 Algorithms for decoding univariate multiplicity codes

In this section, we summarize the decoding algorithms for the univariate multiplicity code we will
be using in our multivariate (and bivariate) decoders. These univariate decoders form the work-
horse of our bivariate (and multivariate) decoder and will be described in detail in Sections 4 and 6
respectively.

Univariate multiplicity code decoder with varying multiplicities. In a typical definition of uni-
variate multiplicity codes (e.g. Definition 2.1), the multiplicity parameter is fixed to some
quantity s and in the encoding of a message polynomial P, we are given evaluations of P
and all its derivatives up to order s− 1 over some set T of evaluation points. For our multi-
variate decoding, we need a slightly atypical variant of univariate multiplicity codes where
for an a ∈ T, and a message polynomial P, the encoding of P contains s(a) derivatives of P
evaluated at a, where s : T →N is now a potentially non-constant function. In Section 4, we
observe that a natural (and simple) adaptation of the standard Welch-Berlekamp decoder4

for various polynomial-based codes decodes these univariate multiplicity codes with vary-
ing multiplicities from half their minimum distance. This decoding algorithm (Algorithm 2)
is called in Line 7 of the bivariate decoding algorithm in Algorithm 1 and discussed in more
detail in Section 4.

Weighted univariate multiplicity code decoder. As explained in the algorithm overview (Sec-
tion 1.3), we also needed a “weighted univariate multiplicity code decoder”. This decoder
gets as input a function g : T → F<r[z] and a set of weights w : T× [r]→ Z≥0. Recall that we
referred to this pair (g, w) as a “fractional word” in the algorithm overview. It is also given
as input a degree parameter ` and multiplicity parameter r besides the global degree pa-
rameter d and global multiplicity parameter s. We have two sets of degree and multiplicity
parameters (the local and global) as the intermediate algorithms will be running decoders on
degree and multiplicity parameters different from the global ones, but they do need to know
the global parameters. The weighted decoder then returns a polynomial R ∈ F≤`[x] such
that Γd,`,s

w (g, R) < n2

2

(
s− d

n

)
if such an R exists and the zero polynomial otherwise. Here, Γ

refers to the modified distance mentioned in the algorithm overview and is defined formally
in Definition 6.1. This decoder is invoked in Line 11 of the bivariate decoding algorithm in
Algorithm 1 and discussed in more detail in Section 6.

4By the Welch-Berlekamp decoder we refer to the Gemmell and Sudan [GS92] presentation of the Welch-Berlekamp
algorithm [WB86].
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We remark that these two univariate decoders are the ones corresponding to the Reed-Solomon
decoder and weighted Reed-Solomon decoder respectively in the Kim-Kopparty decoder for Reed-
Muller codes. The weighted univariate multiplicity code decoder, which is the most crucial and
technically involved ingredient in our decoder, differs significantly from the corresponding “weighted
Reed-Solomon decoder” of Kim and Kopparty.

3.2 Description of the bivariate decoder

We start with an informal description of this algorithm, along the lines suggested in the overview
Section 1.3. The bivariate decoder takes as input sets T1, T2 ⊆ F of size n, degree and multiplicity
parameters d and s, and the received word f : T1 × T2 → F<s[z1, z2]. The decoder outputs a
polynomial P ∈ F≤d[x1, x2] such that ∆(s)

mult( f ,Enc(s)(P)) < 1
2 n2(s − d

n ) if one exists. It will be
convenient to write the polynomial P in the following form.

P(x1, x2) = ∑
`∈[d+1]

P`(x1)xd−`
2 ∈ F≤d[x1, x2] .

The decoder proceeds in d + 1 iterations numbered 0 to d where in the `th iteration, the de-
coder recovers the univariate polynomial P`(x1) ∈ F≤`[x1]. Having obtained the polynomials
P0, P1, . . . , P`−1 correctly in the previous iterations, the decoder in the `th iteration peels away these
polynomials from the received word f to obtain the word f` defined as

f` := f − Enc(s)

(
∑

i∈[`]
Pi(x1)xd−i

2

)
.

The appropriate choice of the multiplicity parameter for the `th iteration is r = s − b d−`
n c (see

Remark 3.1). For each a ∈ T1, the decoder unravels the received word f`|x1=a along the column
x1 = a into r parts

{
f (i,a)`

}
i∈[r]

in Line 6. It then runs the univariate decoder on each of these parts

to obtain the polynomials G(i,a)
` (x2) ∈ Fd−`[x2] respectively for each i ∈ [r]. It then constructs the

polynomial g` from the leading coefficients of these polynomials (Line 10) and the corresponding
weights w`(a, i) which indicate how close the polynomial G(i,a)

` (x2) is to the word f (i,a)` (Line 9).
Finally it extracts the polynomial P` from the pair (g`, w`) using the Weighted Univariate Multi-
plicity Code Decoder.
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Algorithm 1: Bivariate Multiplicity Code Decoder
Input:

• T1, T2 ⊆ F, |T1| = |T2| = n /* points of evaluation */

• d, s /* degree and multiplicity resp. */

• f : T1 × T2 → F<s[z1, z2]. /* received word */

Output: P = ∑`∈[d+1] P` (x1) xd−`
2 ∈ F≤d[x1, x2] such that

∆(s)
mult

(
f ,Enc(s)(P)

)
< 1

2 n2
(

s− d
n

)
, if such a P exists

1 for `← 0 to d do
2 Define f` : T1 × T2 → F<s[z1, z2] as /* received word for the `th iteration */

f` ← f − Enc(s)
(

∑i∈[`] Pi (x1) xd−i
2

)
;

∀ (a, b) ∈ T1 × T2, let /* some more notation */

f` (a, b) = ∑i,j f`,(i,j) (a, b) zi
1zj

2 ;
3 Set r ← s− b d−`

n c ; /* number of usable derivatives */

4 for a ∈ T1 do
5 for i← 0 to r− 1 do

6 Define f (i,a)` : T2 → F<s−i[z2] as

f (i,a)` (b)← ∑j∈[s−i] f`,(i,j) (a, b) · zj
2 ;

7 Run Generalized Univariate Multiplicity Code Decoder (Algorithm 2) on(
T2, d− `, s− i, f (i,a)`

)
to obtain G(i,a)

` ∈ F≤d−`[x2] ;

8 if G(i,a)
` is ⊥ then set G(i,a)

` ← 0 ;

9 Define w` : T1 × [r]→ Z≥0 as

w` (a, i)← min
{

∆(s−i)
mult

(
f (i,a)` ,Enc(s−i)

(
G(i,a)
`

))
, n

2 ·
(
(s− i)− d−`

n

)}
;

10 Define g` : T1 → F<r[z1] as

g` (a)← ∑i∈[r] Coeffxd−`
2

(
G(i,a)
`

)
zi

1 ;

11 Run Weighted Univariate Multiplicity Code Decoder (Algorithm 3) on
(T1, d, s, 2, `, r, g`, w`) to get P` (x1) ;

12 if ∆(s)
mult

(
f ,Enc(s)(P)

)
< 1

2 n2
(

s− d
n

)
then return P (x1, x2) else return ⊥ .

Remark 3.1. We remark that the number of derivatives r we use here (Line 3) is s − b d−`
n c. This is the

value that satisfies a few constraints. For the call to Algorithm 2 (Line 7) to work, it must be the case that
(s− i)n− (d− `) ≥ 0, for every i in [r]. In other words, we must have r− 1 ≤ s− (d− `)/n. For the
call to Algorithm 3 (Line 11), we must have rn− ` ≥ 0. Finally, in the proof of correctness of Algorithm 3
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(specifically, Lemma 6.2), we require rn− ` ≥ sn− d. (This actually subsumes the previous constraint.)
r := s− b d−`

n c is the unique (integral) value of r that satisfies all these. y

We now formally state the claim of correctness and the running time of Algorithm 1. It as-
serts that Algorithm 1 does indeed decode bivariate multiplicity codes from half their minimum
distance on arbitrary product sets, hence giving us the bivariate version of Theorem 2.8.

Theorem 3.2 (correctness of bivariate decoder (Algorithm 1)). Let d, s, n ∈ N be such that d < sn,
F be any field and let T1, T2 be arbitrary subsets of F of size n each. Let f : T1 × T2 → F<s[z1, z2] be any
function.

Then, on input T1, T2, s, d, n and f , Algorithm 1 runs in time (sn)s+O(1) and outputs a polynomial
P ∈ F[x1, x2] of total degree at most d such that

∆(s)
mult( f ,Enc(s)T1×T2

(P)) <
1
2

n2
(

s− d
n

)
,

if such a P exists.

The proof of Theorem 3.2 crucially relies on the correctness of Algorithms 2 and 3. We postpone
the proof of Theorem 3.2 to the end of Section 6 and build the necessary ingredients first.

4 Decoding univariate multiplicity codes with varying multiplicities

In this section, we discuss an algorithm for decoding univariate multiplicity codes up to half their
minimum distance based on the standard Welch-Berlekamp decoder5 for Reed-Solomon codes.
While such decoders for univariate multiplicity codes are well known, the decoder discussed here
handles a slightly more general scenario than off-the-shelf decoders of this kind, namely that the
multiplicity parameter at each evaluation point is not necessarily the same. This slight general-
ization is necessary for our applications in this paper. However, as we observe in this section, a
natural adaptation of the Welch-Berlekamp decoding algorithm handles this scenario.

5By the Welch-Berlekamp decoder we refer to the description of the Welch-Berlekamp algorithm [WB86] provided
by Gemmell and Sudan [GS92].
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4.1 Description of the generalized univariate multiplicity decoder

We start with a description of the algorithm.

Algorithm 2: Generalized Univariate Multiplicity Decoder
Input:

• T ⊆ F /* set of evaluation points */

• e /* degree of the univariate polynomial */

• s : T → Z≥0 /* number of multiplicities */

• h : T → F[z] such that for all a ∈ T, ha = ∑i∈[s(a)] h(i)a zi /* received word */

Output: R ∈ F≤e[x] such that ∆(s)
mult(h,Enc(s)(R)) < 1

2 (∑a s(a)− e), if such an R exists and
⊥ otherwise

1 Set N ← ∑a∈T s(a) ;
2 Set D ← b 1

2 (N + e)c+ 1 ;
3 Find a non-zero polynomial Q(x, y) = B0(x) + y · B1(x) such that

• deg(B0) < D,
• deg(B1) < D− e, and
• ∀a ∈ T, Q(a + z, ha) ≡ 0 mod zs(a) ;

4 if the following three conditions are satisfied
• −B0/B1 is a polynomial,
• −B0/B1 has degree ≤ e, and
• ∆(s)

mult(h,Enc(s)(−B0/B1)) <
1
2 (∑a s(a)− e)

5 then return −B0/B1 else return ⊥ .

We remark while the overall structure of the algorithm is essentially that of the Welch-Berlekamp
based algorithms, the main point of difference is that the number of linear constraints imposed in
the interpolation step (Line 3) at any a ∈ T is s(a), and might be different for different a ∈ T.

We now proceed with the analysis.

4.2 Correctness and running time of Algorithm 2

We first show that the interpolation step (Line 3) is possible, that is, a non-zero polynomial Q(x, y)
satisfying the constraints exists. Then, we argue that if there is a polynomial R of degree at most
e such that ∆(s)

mult(h,Enc(s)(R)) < 1
2 (∑a s(a)− e), then R is indeed output by the algorithm. More-

over, from the check in step 4, it is clear that the algorithm never outputs a polynomial that is far
from the received word. Thus, together, these claims imply the correctness of the algorithm.

We also note that the algorithm is efficient and runs in polynomial time in its input size, since
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all it needs is to solve a linear system of not-too-large size and a call to an off-the-shelf polynomial
division algorithm, both of which can be done efficiently. We now proceed with the proof of
correctness.

Claim 4.1. For D = b 1
2 (N + e)c+ 1, there exists a non-zero polynomial Q(x, y) = B0(x) + y · B1(x)

with deg(B0) < D, deg(B1) < D− e and ∀a ∈ T, Q(a + z, ha) ≡ 0 mod zs(a), where N = ∑a s(a).
Moreover, for any such non-zero solution, B1(x) is non-zero.

Proof. As is standard with decoding algorithms for various algebraic codes that are based on the
polynomial method, we think of the constraints as a system of homogeneous linear equations in
the coefficients of the unknown polynomials B0 and B1.

The number of variables in the linear system equals the number of coefficients we need to find
across B0 and B1, which is D + (D− e) = 2D− e. For every a ∈ T, the constraint

Q(a + z, ha) ≡ 0 mod zs(a)

is really s(a) many homogeneous linear constraints on the coefficients of Q, with there being one
constraint corresponding to the coefficient of xi in Q(a + z, ha) being 0 for every i ∈ [s(a)]. Thus,
the total number of homogeneous linear constraints is ∑a∈T s(a) = N. Hence, setting 2D− e > N,
e.g., D > 1

2 (N + e) ensures the existence of a non-zero solution.
For the moreover part, observe that if B1 is identically zero, then the system of homogeneous

linear constraints imposed on Q imply that B0 vanishes with multiplicity at least s(a) for every
a ∈ T. Thus, ∑a∈T mult(B0, a) = ∑a∈T s(a) = N > D ≥ deg(B0). But this implies that B0 must be
identically zero, and hence Q must be identically zero, which contradicts the non-zeroness of the
solution.

We now observe that any non-zero solution of the linear system, as is guaranteed by Claim 4.1
becomes identically zero when y is substituted by the correct message polynomial R.

Claim 4.2. If R ∈ F≤e[x] is such that ∆(s)
mult(h,Enc(s)(R)) < 1

2 (N − e) and Q is a non-zero polynomial
satisfying the set of constraints in the algorithm, then Q(x, R) ≡ 0.

Proof. The linear constraints imposed in the interpolation step imply that for every a ∈ T,

Q(a + z, ha) ≡ 0 mod zs(a).

Now, if (h(a)− Enc(s)(R)(a)) = 0 mod zua , i.e. Enc(s)(R) and h agree with multiplicity at least ua

at a ∈ T, then

Q(a + z, R(a + z)) ≡ 0 mod zmin{ua,s(a)}.
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If Q(x, R(x)) is a non-zero polynomial, then it is a non-zero polynomial of degree less than D.
Thus, we have,

D > ∑
a∈T

mult(Q(x, R(x)), a) ≥ ∑
a∈T

min{ua, s(a)} .

Now, from the definition of ∆mult and from the hypothesis of the claim, we know that

∆(s)
mult(h,Enc(s)(R)) = ∑

a∈T
(s(a)−min{ua, s(a))} < 1/2(N − e) .

Thus, ∑a∈T min{ua, s(a)} > 1/2(N + e), and the left hand side is an integer, so it must be at least
b1/2(N + e)c+ 1 which is our choice of D. So, we have

D > ∑
a∈T

min{ua, s(a)} ≥ D ,

which is a contradiction. Hence, Q(x, R(x)) must be identically zero.

We are now ready to complete the proof of correctness of the algorithm.

Theorem 4.3. If R ∈ F≤e[x] is such that ∆(s)
mult(h,Enc(s)(R)) < 1

2 (N − e), then R is correctly output by
the algorithm and if there is no such close enough R, then the algorithm outputs⊥. Moreover, the algorithm
runs in time NO(1).

Proof. From Claim 4.1, we know that the linear system solver in the algorithm (Line 3) always finds
a non-zero polynomial B0(x) + yB1(x) satisfying the linear constraints imposed in the algorithm,
regardless of the existence of a codeword that is close enough to the received word. Moreover, in
any such non-zero solution, B1 is a non-zero polynomial.

We also know from Claim 4.2 that any R ∈ F≤e[x] such that ∆(s)
mult(h,Enc(s)(R)) < 1/2(N − e)

satisfies

B0(x) + B1(x) · R(x) = 0 ,

or, in other words R = −B0/B1, and is correctly output by the algorithm. Since the algorithm per-
forms a sanity check in the last line to make sure that −B0/B1 is indeed a low-degree polynomial
such that the corresponding codeword is close to h and outputs the computed solution only if this
check is passed; else it outputs ⊥. Thus, it never outputs an incorrect solution.

Algorithm 2 really only needs to set up and solve a linear system of size O(N) and perform
some basic univariate polynomial arithmetic involving polynomials of degree at most D < N.
Thus, it runs in time NO(1).
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5 Forney’s generalized minimum distance decoding

In this section, we give an alternate analysis of Forney’s algorithm for decoding a concatenated
code from half its minimum distance assuming that there is an efficient algorithm for decoding
the outer code from errors (scaled by a factor of 2) and erasures up to its minimum distance, and
that the inner code has an efficient maximum likelihood decoder. An example of such a setting is
when the outer code is the Reed-Solomon code and the inner code has block length logarithmic in
the total block length, and is over an alphabet of constant size. In this case, the outer code can be
efficiently decoded from errors and erasures using, for instance, the Welch-Berlekamp algorithm,
as long as

2(#Errors) + (#Erasures) < (Minimum distance) .

For the inner code, one can just do a brute-force iteration over all codewords, and find the closest
one. We recommend the reader to think of this example going forward even though the discussion
here applies to a general concatenated code.

5.1 Concatenated codes

We start with a definition of concatenated codes.

Definition 5.1 (concatenated code). Let q ≥ 2, k ≥ 1 be natural numbers and let Q = qk. Let
Cout : [Q]K → [Q]N be a code of minimum distance D and let Cin : [q]k → [q]n be a code of minimum
distance d. The concatenated code C = Cout ◦ Cin : [Q]K → [q]Nn is defined as follows: Given a message
m ∈ [Q]K, we first apply Cout to m to get a codeword m′ ∈ [Q]N . Since Q = qk, we identify each symbol
of m′ with a vector of length k over [q], or equivalently, an element in the message space of Cin. We now
encode each coordinate of m′ using Cin to get a vector in [q]Nn. See Fig. 1. y

m1 . . . mK

m′1 . . . m′N

c1 . . . . . . . . . cN

Cout

Cin

Figure 1: Encoding of a concatenated code

As defined above, the concatenated code C has minimum distance at least Dd. Forney de-
signed an algorithm [For65, For66] to uniquely decode C when the number of erroneous coordin-

24



ates is less than Dd/2. Next, we briefly describe Forney’s algorithm before discussing a slightly
different analysis for it.

Let f be the received word (obtained by making less than Dd/2 errors), and let c be the (unique)
codeword of the concatenated code C such that ∆( f , c) < Dd/2 where ∆ refers to the usual Ham-
ming distance.

f1 . . . . . . . . . fN

c′1 . . . . . . . . . c′N

Inner decoding

Figure 2: Inner decoding of a concatenated code

Notice that the received word f consists of N blocks of length n each over [q], which we denote
by f1, . . . , fN . Similarly, let c1, c2, . . . , cN be the corresponding blocks in the nearest codeword c.
The decoding algorithm starts by taking each of the blocks fi and using the maximum likelihood
decoder for Cin to find the codeword c′i of Cin that is closest to fi. This process is shown in Fig. 2.
For some of the coordinates i ∈ [N], c′i equals ci and for others c′i 6= ci. For each i ∈ [N], let m′i be
such that Cin(m′i) = c′i. The natural next step would be to use a decoder for the outer code Cout

with the input m′ = (m′1, m′2, . . . , m′N) and hope to show that the output equals c as is intended.
When the number of errors in f (i.e. ∆( f , c)) is less than Dd/4 then this algorithm can indeed be
shown to work and output the correct message m corresponding to the codeword c.

In [For65, For66], Forney built upon this simple and natural decoder to design an efficient
algorithm with error tolerance improved from Dd/4 to Dd/2. The key idea was to assign a weight

w(i) := min
{

∆( fi, c′i)
d/2

, 1
}

to each block i; the intuition being that the weight w(i) is an indicator of the number of errors in
the block i. Thus, the higher the weight for a coordinate i, the lower is the confidence in c′i being
ci.

Forney showed that if ∆( f , c) < Dd/2, then there is a threshold θ ∈ Z≥0 such that the vector
m′′ = (m′′1 , m′′2 , . . . , m′′N) ∈ ([Q] ∪ {⊥})N where m′′i equals m′i if w(i) ≤ θ and is an erasure (⊥)
otherwise has the property that when compared to the correct codeword c, the sum of the number
of erased blocks and twice the number or erroneous blocks is less than D. Thus, given an error-
erasure decoder for Cout from half the minimum distance, we can recover the correct message
m.6

6We remark that just showing the existence of a good threshold θ is sufficient, since without loss of generality, θ can
be taken to be equal to one of the weights in the set {w(i) : i ∈ [N]}. Thus we can efficiently try all these N values and
check if the resulting message gives a codeword close enough to the received word f .
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The key technical task in the correctness of above algorithm is to prove the existence of such
a threshold θ given that ∆( f , c) < Dd/2. Forney proves this using a convexity argument which
shows that if all the thresholds in {w(i) : i ∈ [N]} fail, then the number of errors in f must be
at least Dd/2. This convexity argument has a randomized interpretation, which in turn shows
that a random threshold succeeds (see the manuscript by Guruswami, Rudra and Sudan [GRS,
Section 12.3] for this randomized interpretation).

In the next section we give an alternate proof of existence of a good threshold, thereby proving
the correctness of Forney’s algorithm. This alternate proof serves as the inspiration for our proof
of Theorem 2.8, and as far as we understand appears to be different from the above mentioned
proofs.

5.2 An alternate analysis of Forney’s GMD decoding

We now give an alternate proof of the existence of a good threshold.

Theorem 5.2 (Forney). Let f , c, c′, w, D, d be as defined above. If ∆( f , c) < Dd/2, then there exists a
θ ∈ [0, 1] such that

2
∣∣{i ∈ [N] : w(i) ≤ θ, c′i 6= ci

}∣∣+ |{i ∈ [N] : w(i) > θ}| < D .

We recall that the condition in the conclusion of the theorem is sufficient for the outer decoding
to be done by our assumption on the outer code Cout. For instance, if the outer code is the Reed-
Solomon code, then the Welch-Berlekamp decoder can be used for this.

Notice that all weights w(i) lie between 0 and d/2 and as mentioned earlier, can be though of
as representing the uncertainty in that block. Let A and B be defined as follows:

A :=
{

i ∈ [N] : ci = c′i
}

, B :=
{

i ∈ [N] : ci 6= c′i
}

.

That is, A is the set of blocks where the inner decoding is correct, and B is those where the decoding
is incorrect. Further, for a threshold θ, we define Aθ = A ∩ {i ∈ [n] : w(i) ≤ θ}. Bθ is defined
similarly. Notice that the number of erased blocks for a given θ is N − |Aθ | − |Bθ |.

We say that a threshold θ is bad if

2
∣∣{i ∈ [N] : w(i) < θ, c′i 6= ci

}∣∣+ |{i ∈ [N] : w(i) > θ}| ≥ D .

Or, in the new notation, 2|Bθ |+ (N − (|Aθ |+ |Bθ |)) ≥ D, or equivalently,

|Bθ | ≥ |Aθ | − (N − D) .

We note the above in the following observation.
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Observation 5.3. For a fixed θ ∈ [0, 1], if the threshold θ is bad, then |Bθ | ≥ |Aθ | − (N − D).

Proof of Theorem 5.2. Suppose for contradiction that all thresholds θ ∈ [0, 1] are bad. By Observa-
tion 5.3, we have |Bθ | ≥ |Aθ | − (N − D) for every θ ∈ [0, 1].

First, we observe that the size of A, i.e., the number of correctly decoded blocks, must be more
than (N − D). Otherwise, since |A| + |B| = N, the number of errors |B| is at least D. Further,
for every i ∈ B, the ith block in f must have had at least d/2 errors for the maximum likelihood
decoder for Cin to have output a c′i 6= ci. But this means that ∆( f , c) is at least Dd/2 which is a
contradiction. Therefore, we can write |A| = N − D + u for some positive integer u.

Now, write the indices in A in increasing order of their weights, i.e., according to w, to get a
sequence i1, i2, . . . , iN−D+u. We do the same with B to get a sequence j1, j2, . . . , jD−u.

We first claim that u ≤ D − u and for each k ∈ {1, 2, . . . , u}, w(jk) ≤ w(iN−D+k). In other
words, if the indices i ∈ {1, 2, . . . , N} are written left to right in increasing order of weights w(i),
then for every k ∈ {1, 2, . . . , u}, the index jk is to the left of the index iN−D+k as indicated in the
picture below.

Indices in A
i1 iN−D iN−D+1 iN−D+u

Indices in B
j1 ju ju+1 jD−u

Figure 3: Pairing of indices in the concatenated code

To see this, let us assume that there is a k ∈ {1, 2, . . . , u}, such that either w(jk) > w(iN−D+k)

or jk does not exist. Consider a threshold θ which picks up everything including and to the left of
iN−D+k. Then, we have |Aθ | ≥ N − D + k and |Bθ | ≤ k− 1. This contradicts our assumption that
|Bθ | ≥ |Aθ | − (N − D) for every θ.

Using the above claim, we can “pair” each of the last u indices in A with the first u of B (ordered
by weight). When we pair iN−D+k with jk, we have w(jk) ≤ w(iN−D+k). For the incorrectly
decoded index jk, the distance of the block f jk from cjk is at least d

2 (2− w(jk)). This follows from
the triangle inequality of the Hamming distance: ∆( f jk , cjk) + ∆( f jk , c′jk) ≥ ∆(cjk , c′jk) ≥ d. For a
correct index iN−D+k, the distance between f and c on this block is by definition d

2 w(iN−D+k).
Thus, the total distance between f and c on the pair (jk, iN−D+k) of blocks together is at least

d
2
(2− w(jk)) +

d
2

w(iN−D+k) ≥ d,

where the inequality follows from the fact that w(jk) ≤ w(iN−D+k). We now have u pairs con-
tributing a distance of at least d each. In addition, there are still D− 2u incorrectly decoded blocks
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with indices in B, each contributing at least d/2 to ∆( f , c). Thus, we have

∆( f , c) ≥ du + (D− 2u)
d
2
=

Dd
2

,

which is a contradiction.

As mentioned earlier, Forney’s original proof [For65, For66] uses a convexity argument, while
more recent presentations of this argument reinterprets this as a randomized argument (erasing
the block i with probability w(i) for each i) to show that there is a good threshold θ (see [GRS,
Section 12.3]). For the analysis of our bivariate decoder, we adapt the pairing argument used in the
proof of Theorem 5.2 to analyse the weighted univariate multiplicity code decoder in Section 6.
It is unclear to us if the previous convexity-based proofs of Theorem 5.2 can be adapted for our
application.

6 Weighted univariate multiplicity code decoder

In this section, we describe an algorithm for decoding weighted univariate multiplicity codes, i.e.
given a received word h : T → F<r[z], and a weight function w : T × [r] → Z≥0, this algorithm
finds a low-degree polynomial R such that the encoding of R as a univariate multiplicity code of
order r evaluated on T is close enough to the received word h. However, the notion of close enough
here is not defined in terms of either the Hamming distance or the multiplicity distance, but a
weighted notion of distance parameterized by the weight function w. This notion of distance was
previously introduced in Eq. (1.6). It serves as a proxy for distance in our analysis, and turns out
to be crucial in the overall analysis of Algorithm 3.

Algorithm 3 takes as input d, s, m the global degree, multiplicity parameter and dimension
respectively. For the purpose of this section, we will assume m = 2 (the bivariate setting). The
general m setting will be discussed in Section 8.

The analysis of this decoder is inspired by the alternate analysis of Forney’s GMD decoding
mentioned in the previous section.

6.1 A notion of weighted distance and its properties

We start with the following definition.

Definition 6.1. Let d, `, s ∈N be parameters with d ≥ ` and let T ⊆ F be a subset of size n. Let R ∈ F[x]
be a univariate polynomial of degree at most `, g : T → F<r[z] and w : T × [r] → Z≥0 be functions such
that for every (a, i) ∈ T × [r] we have w(a, i) ≤ n

2 ·
(
(s− i)− d−`

n

)
.
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Then, Γs,d,`
w (g, R) is defined as follows.

Γs,d,`
w (g, R) :=

r−1

∑
i=0

∑
a∈Ai(g,R)

max
{(

n
(
(s− i)− d− `

n

)
− w(a, i)

)
, max

j<i
w(a, j)

}+ ∑
a∈Ar(g,R)

max
j<r

w(a, j)

where for every i ∈ [r + 1]

Ai(g, R) =
{

a ∈ T : max
{

j ∈ [r + 1] : g(a) = R(a + z) mod 〈z〉j
}
= i
}

. y

In other words, for i ∈ [r + 1] the set Ai collects those locations in T where g and R agree up to
derivatives of order i− 1. Now, we prove some properties of Γs,d,`

w . These properties will turn out
to be useful in proving the correctness of Algorithm 3.

Below we prove a triangle-like inequality for Γ which we will use to show uniqueness of the
output of Algorithm 3. This is the point alluded to in Eq. (1.8).

Lemma 6.2 (Triangle-like inequality for Γ). Let d, `, r, s ∈N be parameters with d ≥ `, r = s− b d−`
n c,

and let T ⊆ F be a subset of size n. Let Q, R ∈ F[x] be univariate polynomials of degree at most `, and
g : T → F<r[z] and w : T × [r] → Z≥0 be functions such that for every (a, i) ∈ T × [r], w(a, i) ≤
n
2 ·
(
(s− i)− d−`

n

)
.

If Q 6= R, then

Γs,d,`
w (g, Q) + Γs,d,`

w (g, R) ≥ n2
(

s− d
n

)
.

Proof. For i ∈ [r + 1], let Ai(Q, R) be the set of points a ∈ T such that

Ai(Q, R) =
{

a ∈ T : max
{

j ∈ [r + 1] : Q(a + z) = R(a + z) mod 〈z〉j
}
= i
}

.

Further, for each i ∈ [r + 1], let τi = |Ai(Q, R)|. Since the sets Ai(Q, R) for each i are all disjoint,
we have ∑r

i=0 τi = |T| = n.
In addition, since Q and R are distinct polynomials of degree at most `, using the multiplicity

SZ lemma we have:

∆(r)
mult(Enc

(r)
T (Q),Enc(r)T (R)) ≥ rn− `.

Using the definition of ∆(r)
mult, this can be re-written as

r−1

∑
i=0

τi · (r− i) ≥ rn− ` .

29



That is,

r
r

∑
i=0

τi −
r

∑
i=0

i · τi ≥ rn− ` .

Rearranging and using ∑r
i=0 τi = n, we obtain

r

∑
i=0

i · τi ≤ ` .

Now, consider an a ∈ Ai(Q, R) for some i ∈ [r]. (The case of a ∈ Ar(Q, R) will be explained
shortly.) Hence, Q(a + z) 6= R(a + z) mod 〈z〉i+1. Therefore, both g(a) = Q(a + z) mod 〈z〉i+1

and g(a) = R(a + z) mod 〈z〉i+1 can’t simultaneously hold. In other words, there is a j ≤ i such
that a ∈ Aj(g, R) or a ∈ Aj(g, Q).

Without loss of generality, we assume a ∈ Aj(g, Q) with j ≤ i. In addition, a ∈ Ak(g, R) for
some k. Again we can assume j ≤ k (otherwise, swap the roles of Q and R).

If a ∈ Aj(g, Q), then we claim that the contribution of the term corresponding to a to Γs,d,`
w (g, Q),

which we denote by Γs,d,`
w (g, Q)a is at least ((s− j)n− (d− `)− w(a, j)), because that is one of the

terms in the maximum, in the definition of Γs,d,`
w .

As for Γs,d,`
w (g, R)a, since a is in Ak(g, Q) with k ≥ j, two cases can happen. If j 6= k, then the

contribution of a is at least w(a, j), since that is one of the terms in the maximum. Else, if k = j,
then the contribution is at least (s− j)n− (d− `)− w(a, j), which, by the condition on w(a, j) in
Definition 6.1 is at least w(a, j).

Then, the sum of the distances at a is at least

Γs,d,`
w (g, Q)a + Γs,d,`

w (g, R)a ≥ (s− j)n− (d− `)− w(a, j) + w(a, j)

= (s− j)n− (d− `)

≥ (s− i)n− (d− `) .

since j ≤ i.
If a ∈ Ar(Q, R), we cannot get an expression of this form, since its contribution to Γ will be

maxj<r w(a, j). Since the contribution from this set is nonnegative and we are trying to get a lower
bound, it is sufficient to consider the contributions from Ai(Q, R)’s for i < r.
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By the above arguments we arrive at the following.

Γs,d,`
w (g, Q) + Γs,d,`

w (g, R) ≥
r−1

∑
i=0

τi((s− i)n− (d− `))

=
r−1

∑
i=0

τi(sn− (d− `))− n
r−1

∑
i=0

iτi

≥ (sn− (d− `))(n− τr)− n(`− rτr)

= n(sn− d) + τr(rn + (d− `)− sn)

≥ n2(s− d/n) .

using the relations ∑r
i=0 τi = n and ∑r

i=0 iτi ≤ `, and the definition of r: since r ≥ s − d−`
n , the

coefficient of τr in the penultimate expression is non-negative.

6.2 Weighted Univariate Multiplicity Code Decoder

For the Weighted Univariate Multiplicity Code Decoder we are given a word g : T → F<r[z] and
a weight function w : T × [r] → Z≥0 along with parameters d, ` and s with ` ≤ d and r = s −
b d−`

n c. Further, for every (a, i) ∈ T × [r]: w(a, i) ≤ n
2 ·
(
(s− i)− d−`

n

)
. The algorithm returns a

polynomial R of degree at most ` such that Γd,`,s
w (g, R) is smaller than n2

2 (s −
d
n ). Notice that by

Lemma 6.2 there can only be once such R.
Recall that higher the value of w(a, i), lower is our confidence on the (i− 1)th derivative spec-

ified by g at a. For ever a ∈ T, we set ω(a) ← maxi∈[r] w(a, i), i.e., the maximum distrust in
any derivative specified by g at a. For every step-threshold θ = (θ0, θ1, . . . , θr−1) ∈ [sn/2]r with
θ0 ≥ θ1 ≥ · · · ≥ θr−1 and for ever a ∈ T we retain g(a) up to degree i (equivalently deriva-
tives up to order i − 1) such that ω(a) ≤ θi. Let the retained set of (a, i)’s be Uθ; we then call
Algorithm 2 on g restricted to Uθ. Then, we check whether the polynomial returned by this step
satisfies Γd,`,s

w (g, R) < n2

2 (s−
d
n ) and output it if it does.
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Algorithm 3: Weighted Univariate Multiplicity Code Decoder
Input:

• T ⊆ F, |T| = n /* set of evaluation points */

• d, s, m /* global degree, multiplicity and dimension resp. */

• `, r with ` ≤ d and r = s− b d−`
n c /* actual degree and multiplicity resp. */

• g : T → F<r[z] /* received word */

• w : T × [r]→ Z≥0 satisfying w(a, i) ≤ nm−1

2

(
s− i− d−`

n

)
, ∀(a, i) /* weight function */

Output: R ∈ F≤`[x] such that Γd,`,s
w (g, R) < nm

2 (s− d
n ), if such an R exists and 0 otherwise.

1 for a ∈ T do
2 Set ω(a)← maxi∈[r] w(a, i) ;

3 for every step threshold θ = (θ0, θ1, . . . , θr−1) such that θ0 ≥ θ1 ≥ · · · ≥ θr−1
a do

4 Set Uθ ← {(a, i) ∈ T × [r] : ω(a) ≤ θi , a ∈ T, i ∈ [r]} ;
5 for a ∈ T do
6 Set s(a)← max {i ≤ r− 1 : ω(a) ≤ θi} ;

7 Run Generalized Univariate Multiplicity Code Decoder (Algorithm 2) on (T, `, s, g|Uθ
)

to obtain R (if R = ⊥ set R← 0) ;
8 if Γd,`,s

w (g, R) < nm

2 (s− d
n ) then return R else return 0 .

aThere are at most (n+s
s ) step thresholds and the algorithm goes over each one of them.

6.3 Proof of correctness of Algorithm 3

Notice that the algorithm proceeds by trying every threshold vector θ. Hence, it suffices to show
that one θ exists which can be used to do the decoding. We first characterise when a threshold
vector can be used in the call to Algorithm 2. We then prove that such a threshold vector exists in
Lemma 6.4. For this we need the following notation. Suppose there is a polynomial R ∈ F≤`[x]
such that Γd,`,s

w (g, R) < n2

2 (s−
d
n ): Lemma 6.2 implies that there can be at most one such R. Given

this polynomial R, we partition the set T × [r] = A ] B as follows. Let A be the set of locations
(a, i) such that g(a) = R(a + z) mod 〈z〉(i+1): in other words, at the location a all derivatives of
R till order i match with g. And let B = (T × [r]) \ A. Let θ be a vector of thresholds. Define
Aθ := Uθ ∩ A and similarly Bθ := Uθ ∩ B = Uθ \ Aθ.

Observation 6.3. If it holds that |Aθ| > |Bθ|+ `, then Algorithm 2 can decode using θ.
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This is because, Algorithm 2 will decode using θ whenever ∆(s)
mult(g|Uθ

,Enc(s)(R)) < 1
2 (|Uθ| −

`). With our notation, this means |Bθ| < |Uθ|−`
2 . Rearranging this and using |Uθ| = |Aθ| + |Bθ|

gives the above characterization.
The following lemma, which we prove in the next section, shows that there is at least one

step-threshold θ which works.

Lemma 6.4. Let g be the received word. If R is such that Γd,`,s
w (g, R) < n2

2 (s−
d
n ), then there is a vector of

thresholds θ that can be used to find R.

Armed with the above lemma we are now ready to prove the correctness of Algorithm 3.

Theorem 6.5. Let g : T → F<r[z] be a received word and R a degree ` polynomial such that Γd,`,s
w (g, R) <

n2

2 (s −
d
n ). Then, Algorithm 3 returns the polynomial R. Further, Algorithm 3 runs in time (sn)s+O(1)

where n is the size of the set of evaluation points, T.

Proof. The algorithm proceeds by trying every step-threshold θ. By Lemma 6.4, there is a vector
of thresholds θ that can be used to find R in the call to Algorithm 2. Hence, the algorithm finds
R within the given distance if one exists. Also, the algorithm never outputs an incorrect R due to
the check at Line 8 and the fact that if one such R exists then it is unique by Lemma 6.2.

The running time of the Algorithm is determined by the O(sn)r iterations of the for loop over
all possible step-thresholds. By Theorem 4.3 each such iteration requires (nr)O(1) time. As r ≤ s,
the overall running time is (sn)s+O(1).

6.4 Proof of Lemma 6.4

The proof of Lemma 6.4 requires a few claims and definitions. We begin by showing that |A| > `.

Claim 6.6. Let g be any received word and R be a degree ` polynomial with Γd,`,s
w (g, R) < n2

2 (s −
d
n ).

Then, |A| > `.

Proof. Suppose for contradiction that |A| ≤ `. We will show that the error is more than promised.
Write A as a disjoint union, A =

⊎r
i=1 A≥i(g, R) where A≥i(g, R) = A ∩ (T × {i}). Informally,

A≥i(g, R) is the set of locations where g and R agree up to derivatives of order i− 1. Let the size
of A≥i(g, R) be ηi−1, so that we have η0 elements which are correct up to the 0th order derivative,
η1 up to the first order derivative and so on.

Note that ∑ ηi ≤ `, by our assumption. Additionally, η0 ≥ η1 ≥ · · · ≥ ηr−1 because if (a, i) ∈ A
then for all j < i, (a, j) ∈ A. Hence the number of coordinates where g and R disagree at the
0th order derivative is n − η0 and the total contribution to Γ from such coordinates is at least
1
2 (n− η0)(ns− (d− `)). Further, there are at least (n− η1)− (n− η0) = η0− η1 coordinates where
g and R agree at the 0th order derivative but disagree at the first order derivative: such coordinates
contribute to Γ at least 1

2 (η0 − η1)(n(s− 1)− (d− `)). In this manner, we get the total distance to
be
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Γd,`,s
w (g, R) ≥ 1

2
(n− η0)(ns− (d− `)) +

1
2
(η0 − η1)(n(s− 1)− (d− `))+

· · ·+ 1
2
(ηr−2 − ηr−1)(n(s− r + 1)− (d− `))

=
1
2

r−1

∑
i=0

δi(n(s− i)− (d− `))

where δi = ηi−1 − ηi (and δ0 = n− η0). Note that each δi ≥ 0 and ∑r−1
i=0 δi ≤ n (by a telescoping

sum). In addition, ∑r−1
i=0 iδi = (∑r−2

i=0 ηi)− (r− 1)ηr−1 ≤ `, by assumption.
Replicating the argument in Lemma 6.2 with τi replaced by δi, we obtain that Γd,`,s

w (g, R) ≥
n2

2 (s−
d
n ), a contradiction.

Now we know |A| > `, so we can write |A| = `+ u for some positive u. For a ∈ T, let iR(a) be
the i such that a ∈ Ai(g, R). Recall that for every i ∈ [r + 1]

Ai(g, R) =
{

a ∈ T : max
{

j ∈ [r + 1] : g(a) = R(a + z) mod 〈z〉j
}
= i
}

.

Informally, g and R agree up to derivatives of order i− 1 at a, but disagree at the ith order deriva-
tive. We construct a pairing as in our reproof of Forney’s result in Section 5.2; however, we will
need it to be a “good” pairing to help in the error analysis. We provide the definition below.

Definition 6.7 (good pairing). Let a0, . . . , ak−1, b0, . . . , bk−1 ∈ T. We say (a0, b0), . . . , (ak−1, bk−1) is a
good pairing if it satisfies the following conditions:

1. |{ai : i ∈ [k]} ∪ {bi : i ∈ [k]}| = 2k. That is, they are all distinct.

2. ω(bj) ≤ ω(aj) for all j ∈ [k− 1] where as before ω(a) = maxi∈[r] w(a, i). This is analogous to the
weight condition in the Forney case.

3. iR(bj) < iR(aj) for all j ∈ [k]. This is analogous to one being correct (from A) and the other being
corrupted (from B) - here, we need one to be correct up to more derivatives than the other. See Fig. 4

4. ∑k−1
j=0 (iR(aj) − iR(bj)) ≥ u. This is analogous to the number of pairs being u (that is, |A| − `).

(While there are 2k locations being paired with each other, the quantity of interest is the total difference
in the derivatives to which ai’s and bi’s are correct. This has to be at least u). y

Lemma 6.8. If none of the step-thresholds θ work, then there exists a good pairing among the elements of
T.

The proof of this lemma requires the following generalization of Hall’s theorem (which can be
found for instance in the textbook on Matching Theory by Lovász and Plummer).
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Figure 4: When a and b can be in a good pairing, with ω(b) ≤ ω(a)

Theorem 6.9 (Generalisation of Hall’s theorem [LP86, Theorem 1.3.1]). In a bipartite graph G =

(L,R, E), if the maximum matching has size at most m, then there is a subset U ⊆ L such that

|U| − |N(U)| ≥ |L| −m .

Proof of Lemma 6.8. Consider the following bipartite graph with left and right partite sets L = A
andR = B, respectively. It will be useful to stratify L =

⊎r
i=1 Li where Li = A≥i(g, R); recall that

A≥i(g, R) = A ∩ (T × {i}). Similarly, we stratify R =
⊎r

i=1Ri where Ri = (T × {i}) \ Li. The
edge set of the graph is given as (See Fig. 5):

E = {((a, i), (b, i)) : (a, i) ∈ Li , (b, i) ∈ Ri, ω(a) ≥ ω(b) , 1 ≤ i ≤ r} .

We first show that this graph has a matching of size u (recall that |L| = ` + u), using the
generalization of Hall’s theorem from Theorem 6.9. We will then convert this matching into a
good pairing using Claim 6.10.

First to prove the existence of a matching of size u, it will be useful to visualize the vertices of
L andR, which are of the type (a, i), ordered first according to their strata, i.e., i, and then within
each strata according to the ω(a) values. See Fig. 5.

Suppose for contradiction that the maximum matching in the graph has size u− 1. Appealing
to Theorem 6.9 with m = u− 1, we have a witness set U ⊆ L such that |U| − |N(U)| ≥ |L| − u +

1 = `+ 1.
Let Ui be the part of U that lies in each Li. For each Ui, observe that we may as well take the

first (ordered by weight ω(a)) |Ui| elements in Li, and this does not increase the neighbourhood.
This is because (a, i) of weight ω(a) is connected only to vertices (b, i) with ω(b) ≤ ω(a). Hence,
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L1
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(a2, 2)
(a1, 2)

(b2, 2)
(b1, 2)

increasing weight u

Figure 5: Edge structure of the bipartite graph in Lemma 6.8.

we can assume each Ui is a prefix of Li (i.e., the first |Ui| elements of Li).
Further, since (a, i) ∈ Li implies that for all j < i, (a, j) ∈ Lj we can do the following transfor-

mation to U without increasing the size of N(U). If for i > j we have |Ui| > |Uj|, then, we can
replace Ui, Uj with U′i =

{
(a, i) : (a, j) ∈ Uj

}
and U′j = {(a, j) : (a, i) ∈ Ui}.

It is easy to see that with this structure on U we can now create a valid step-threshold θ so
that Aθ is exactly U. Further, Bθ = N(U) (See Fig. 6). However, as |U| − |N(U)| ≥ ` + 1, this
contradicts our assumption that no step-threshold θ works. Hence, we must have a matching of
size at least u in the bipartite graph.

To finish the proof of Lemma 6.8 we will need Claim 6.10 which essentially transform this
matching into a good pairing.

U0

U1

U2

U3

N(U0)

N(U1)

N(U2)

N(U3)L4

L3

L2

L1

R3

R2

R1

R0

Figure 6: Extracting a threshold from the matching

Next, we proceed to show how to extract a good pairing from a matching obtained in the
bipartite graph defined above.

Claim 6.10. Given a matching of size u in the graph defined in Lemma 6.8, a good pairing can be extracted
from it.

Proof. When does a matching correspond to a good pairing? Firstly, for some fixed a, every copy
(a, j) of it should be matched to copies of the same (b, j), between the levels iR(b) and iR(a). This
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would take care of condition 1 in the definition (since the pair (a, b) can be read off from the copies
of a being matched with the copies of b). Conditions 2 and 3 are guaranteed by the edge structure.

We need, for every a and b, the matching M to either match (a, j) to (b, j) for every j between
iR(b) and iR(a), or for none of them. (In the first case, (a, b) is in the pairing; otherwise, it is not.)
The problem case is if they are matched on some levels but not on others — in this case, we will
call a and b a bad pair of blocks.

Arrange the elements in T in order of the weight u. We will process them in this order. Hence,
when we are trying to correct a pair (a, b), we can assume there are no bad pairs (a′, b′) with
ω(b′) < ω(b), or ω(b′) = ω(b) and ω(a′) < ω(a).

Now, say we are at the stage of processing (a, b), and say they are matched at some other levels,
but not the level j, that is, the edge ((a, j), (b, j)) is not in the matching M.

Since every pair with lesser weight has been corrected, (a, j) is not matched to something with
lesser weight than b. Hence, it is either unmatched, or matched to some (c, j), where c has weight
between b and a. (b, j) could be unmatched in M, or matched to some other (c′, j).

Case 1: (a, j) and (b, j) are both unmatched in M. (shown in Fig. 7)
Then they can be matched with each other, which increases the size of the matching which is a

contradiction.

i = 0

i = 1

i = 2

i = 3

i = 4

ab

X X

X X

× X

× X

× X

ab

X X

X X

× X

× X

× X

 

Figure 7: Case 1: (a, 3) and (b, 3) both unmatched

Case 2: (b, j) is matched with some (c, j) with ω(c) > ω(a). (shown in Fig. 8)
Then, we can remove that edge from M and add the edge ((b, j), (a, j)) to the matching. (If

(a, j) is already matched in M, we instead add the edge between its old partner and (c, j).) This
may create a new pair of bad blocks to the right, which can be dealt with subsequently.

Case 3: (b, j) is matched with some (c, j) with ω(c) < ω(a). (shown in Fig. 9)
In this case, (b, c) is also a bad pair of blocks, which would have been processed first since

ω(c) < ω(a). Hence this case is not possible.
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Figure 8: Case 2: (b, 3) is matched with (c, 3) instead of (a, 3)
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Figure 9: Case 3: (b, 3) is matched with (c, 3) instead of (a, 3)



Case 4: (b, j) is unmatched in M, and and (a, j) is matched to something else. (shown in Fig. 10)

i = 0

i = 1

i = 2

i = 3

i = 4
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×

×
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X
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Figure 10: Case 4: (a, 3) is matched with (c, 3) instead of (b, 3)

Then that edge can be removed and the edge between (a, j) and (b, j) added.

Now, we show that if there is a good pairing in the elements of T, then, Γd,`,s
w (g, R) ≥ n2

2 (s−
d
n ).

This is shown by transforming the received word g and the weight function w into a different word
g′ and weight function w′, by changing the values of g and w at the locations where the good
pairing exits. In doing so, we ensure Γ(g, R) is non-increasing. We then reach a scenario where
|A| ≤ ` for this new word g′. Then, by Claim 6.6 we get that Γd,`,s

w (g, R) ≥ Γd,`,s
w′ (g, R) ≥ n2

2 (s−
d
n ).

Claim 6.11. Assume we have a good pairing of size k, (a0, b0), . . . , (ak−1, bk−1), in the received word g.
Construct a new received word g′ as follows: for each j in [k] (recall that iR(aj) > iR(bj)) in the original
received word, corrupt the values of

{
g(aj, i) : i ∈

{
iR(bj) + 1, . . . , iR(aj)

}}
such that iR(aj) = iR(bj).

Further, for all i ∈ [r] let w′(aj, i) = w′(bj, i) = min
{

n
2 ·
(
(s− iR(bj))− d−`

n

)
, n

2 ·
(
(s− i)− d−`

n

)}
.

At all other locations which are not part of the pairing g′ and w′ are exactly the same g and w. See Fig. 11.
Then, the error as per our measure actually decreases, that is Γd,`,s

w′ (g′, R) ≤ Γd,`,s
w (g, R). Furthermore,

Γd,`,s
w′ (g, R) ≥ n2

2 (s−
d
n ).

Proof. Let (a, b) be one of the pairs in the pairing. We count the contribution of a and b to Γ before
and after the transformation is applied.

Suppose iR(a) = ia (originally) and iR(b) = ib. Since it is a good pairing, ia > ib.
Originally, their contribution to Γd,`,s

w (g, R) is at least

ω(a) + ((s− ib)n− (d− `)− w(b, ib)).
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Figure 11: Construction of the new received word

Note that this is at least ((s− ib)n− (d− `)), since ω(a) ≥ ω(b) by the good pairing condition,
and ω(b) ≥ w(b, ib) by definition of u.

Now, we apply the corruption to ia − ib levels of a and change the weight function w at a and
b. Then, to Γd,`,s

w′ (g′, R), a and b each contribute 1
2 ((s− ib)n− (d− `)), giving a total of ((s− ib)n−

(d− `)), which is the lower bound for the previous expression.
Notice, that after we have applied this transformation to all the pairs present in the good pair-

ing we are left with a word g′ such that |A| ≤ `. This is because by Condition 4 of Definition 6.7 we
have ∑k−1

j=0 (iR(aj)− iR(bj)) ≥ u: hence, we have corrupted at least u locations (a, i) of agreement
between g and r. However, now g′ and w′ satisfy the hypothesis of Claim 6.6. Putting everything
together we get that Γd,`,s

w (g, R) ≥ Γd,`,s
w′ (g, R) ≥ n2

2 (s−
d
n ).

We can finally complete the proof of Lemma 6.4.

Proof of Lemma 6.4. We prove this by contradiction, by assuming that no threshold θ can be used
to decode. By Observation 6.3, this means we assume |Aθ| ≤ |Bθ|+ ` for all θ.

Claim 6.6 shows that A must have size at least `, or the error is more than promised. Hence,
we can write |A| = `+ u for some positive u.

As in our reproof of Forney’s result in Section 5.2, we construct a pairing. Here, the size of the
pairing is u - measured not as the number of locations a ∈ T participating in the pairing but the
total difference in the multiplicity levels summed over each pair. We add some conditions for it to
be a good pairing in Definition 6.7: Lemma 6.8 shows that such a pairing exists. Given such a good
pairing Claim 6.11 shows that the Γd,`,s

w (g, R) ≥ n2

2 (s−
d
n ), a contradiction.
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7 Proof of Theorem 3.2 (correctness of Algorithm 1)

Recall that Algorithm 1 makes calls to Algorithm 2 and Algorithm 3. We have shown the correct-
ness of both individually.

To prove correctness of Algorithm 3 one of the ingredients we need is that the call on Line 11
always satisfies the promise Γd,`,s

w`
(g`, R) < n2

2 (s−
d
n ), which is required for Algorithm 3 to work.

We prove this in the lemma below.

Lemma 7.1 (Relationship between Γ and multiplicity distance). Suppose we are in the `th iteration of
the for-loop at Line 1 of Algorithm 3. To recall, we have subsets T1, T2 ⊆ F sets of size n each, and natural
numbers d, `, s, r with d ≥ ` and r = s− b d−`

n c. Let P = ∑d
i=` Pi(x1)xd−i

2 be the polynomial of degree at
most d with ∆(s)

mult( f ,Enc(s)T1×T2
(P)) < 1

2 n2(s− d
n ).

If g` : T1 → F<r[z1] and w` : T1 × [r] → Z≥0 are as defined in Algorithm 1, i.e., for a ∈ T1, g`(a) is
the guess for (P`(a + z1) mod 〈z1〉r) that comes from using Algorithm 2 on f` at x1 = a and w`(a, i)
represents the confidence we have in the (i− 1)th derivative of P`(a + z1) at a as specified by g`, then

Γs,d,`
w (g`, P`) ≤ ∆(s)

mult( f ,Enc(s)T1×T2
(P)) <

1
2

n2
(

s− d
n

)
.

Proof. It will be helpful to recall the definition of Γs,d,`
w`

from Definition 6.1:

Γs,d,`
w`

(g`, P`) :=
r−1

∑
i=0

∑
a∈Ai(g`,P`)

max
{(

n ·
(
(s− i)− d− `

n

)
− w` (a, i)

)
, max

j<i
w`(a, j)

}
+ ∑

a∈Ar(g`,P`)
max

j<r
w`(a, j) ,

where for every i ∈ [r + 1]

Ai (g`, P`) =
{

a ∈ T1 : max
{

j ∈ [r + 1] : g`(a) = P`(a + z1) mod 〈z1〉j
}
= i
}

,

and the definition of the weights w` from Algorithm 1:

w`(a, i) := min
{

∆(s−i)
mult

(
f (i,a)` ,Enc(s−i)

(
G(i,a)
`

))
,

n
2
·
(
(s− i)− d− `

n

)}
.

Here f (i,a)` : T2 → F<s−i[z2] refers to

f (i,a)` (b) = ∑
j∈[s−i]

f`,(i,j) (a, b) · zj
2,

where G(i,a)
` is the output of Algorithm 2 on input

(
T2, d− `, s− i, f (i,a)`

)
. Also, recall the definition
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of the function g` : T1 → F<r[z1] (from Algorithm 1):

g` (a) := ∑
i∈[r]

Coeffxd−`
2

(
G(i,a)
`

)
zi

1.

It follows from the definition that Ai (g`, P`) refers to the set of a’s in T1 such that g` and P`
agree up to the (i− 1)th-derivative at a but not at the ith-derivative for i < r while Ar (g`, P`) refers
to the set of a’s in T1 such that g` and P` agree up to the (r− 1)th-derivative. Further, as mentioned
earlier, w`(a, i) represents the confidence we have in the (i − 1)th derivative of P`(a + z1) at a as
specified by g`.

Also, define the polynomial P(i,a)
` (x2) ∈ F≤d−`[x2] as

P(i,a)
` (x2) := Coeffzi

1

(
d

∑
j=`

Pj (a + z1) xd−`
2

)
.

Hence, if the received word f` and the polynomial ∑d
j=` Pj agreed completely, then the following

three conditions are met

• f (i,a)` (b) =
(
Enc(s−i)

(
P(i,a)

))
(b) = P(i,a) (b + z2) mod 〈z2〉(s−i), ∀i, a, b.

• The polynomials G(i,a)
` and P(i,a)

` are identical, for all i, a.

• g` = Enc(r)(P`).

We use f , g, w, P instead of f`, g`, w`, P` below for convenience of notation.
Now, fix some a ∈ T1 and let a ∈ Ai (g`, P`) for some i ∈ [r + 1]. For all j ∈ [r + 1], since the

decoded polynomial G is the closest, we have

∆(s−j)
mult

(
f (j,a),Enc(s−j)

(
P(j,a)

))
≥ ∆(s−j)

mult

(
f (j,a),Enc(s−j)

(
G(j,a)

))
.

Further if i < r, we can now apply the triangle inequality to get

∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))
+∆(s−i)

mult

(
f (i,a),Enc(s−i)

(
G(i,a)

))
≥ ∆(s−i)

mult

(
Enc(s−i)

(
P(i,a)

)
,Enc(s−i)

(
G(i,a)

))
.

Since i < r and a ∈ Ai(g`, P`), we have g`(a) 6= P`(a + z1) mod 〈z1〉i. Hence, P(i,a) 6= G(i,a)

are two distinct polynomials of degree at most d − ` and by the distance of the (s − i)th order
multiplicity code, we have

∆(s−i)
mult

(
Enc(s−i)

(
P(i,a)

)
,Enc(s−i)

(
G(i,a)

))
≥ n

(
(s− i)− d− `

n

)
,
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which in turn yields

∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))
≥ n

(
(s− i)− d− `

n

)
− ∆(s−i)

mult

(
f (i,a),Enc(s−i)

(
G(i,a)

))
.

Also, if ∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
G(i,a)

))
> n

2 ·
(
(s− i)− d−`

n

)
, then, ∆(s−i)

mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))
>

n
2 ·
(
(s− i)− d−`

n

)
. Together, we get that if i < r, then

∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))
≥ n

(
(s− i)− d− `

n

)
− w(a, i).

Now, by the definition of Γ and w,

Γs,d,`
w (g`, P`) =

r−1

∑
i=0

∑
a∈Ai(g`,P`)

max
{(

n
(
(s− i)− d− `

n

)
− w(a, i)

)
, max

j<i
w(a, j)

}
+ ∑

a∈Ar(g`,P`)
max

j<r
w(a, j)

≤ ∑
a∈T1

max
i∈[s]

{
∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))}
.

We will now complete the proof by showing the following inequality:

∆(s)
mult

(
f ,Enc(s) (P)

)
≥ ∑

a∈T1

max
i∈[s]

{
∆(s−i)
mult

(
f (i,a),Enc(s−i)

(
P(i,a)

))}
.

To see this, note that the left-hand side is ∑a∈T1 ∑b∈T2

(
s− d(s)min

(
f (a, b)−

(
Enc(s) (P)

)
(a, b)

))
.

The right-hand side is ∑a∈T1
maxi∈[s] ∑b∈T2

(
(s− i)− d(s−i)

min

(
f (i,a)(b)−

(
Enc(s−i)

(
P(i,a)

))
(b)
))

.
Since both have a summation over a ∈ T1, we will show the inequality holds term by term for
each a ∈ T1.

Again, fix an a ∈ T1. Say the maximum on the right-hand side is attained at some i0. Also let
d(s)min

(
f (a, b)−

(
Enc(s)P

)
(a, b)

)
= d0. Then the right-hand side is

∑
b∈T2

(s− i0)− d(s−i0)
min

(
f (i0,a)(b)−

(
Enc(s−i0)P(i0,a)

)
(b)
)

.

Note that d0 ≤ i0 + d(s−i0)
min

(
f (i0,a)(b)−

(
Enc(s−i0)P(i0,a)

)
(b)
)

, and hence

s− d0 ≥ (s− i0)− d(s−i0)
min

(
f (i0,a)(b)−

(
Enc(s−i0)P(i0,a)

)
(b)
)

.

This completes the proof.

Now that we have all the necessary ingredients, we complete the proof of Theorem 3.2. We
start with a restatement of the theorem here for completeness.
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Theorem 3.2 (correctness of bivariate decoder (Algorithm 1)). Let d, s, n ∈ N be such that d < sn,
F be any field and let T1, T2 be arbitrary subsets of F of size n each. Let f : T1 × T2 → F<s[z1, z2] be any
function.

Then, on input T1, T2, s, d, n and f , Algorithm 1 runs in time (sn)s+O(1) and outputs a polynomial
P ∈ F[x1, x2] of total degree at most d such that

∆(s)
mult( f ,Enc(s)T1×T2

(P)) <
1
2

n2
(

s− d
n

)
,

if such a P exists.

Proof of Theorem 3.2. We first observe that Algorithm 1 never outputs an incorrect answer, since
towards the end of the algorithm we always check whether the polynomial P that is the potential
output indeed satisfies

∆(s)
mult( f ,Enc(s)T1×T2

(P)) <
1
2

n2
(

s− d
n

)
,

and P is output only if the check passes. In particular, Algorithm 1 does not output a polynomial
if there is no codeword close enough to the received word.

Thus, to show the correctness of the algorithm, it suffices to assume that there exists a poly-
nomial Q of degree at most d that is close to the received word f and argue that in this case the
polynomial P output by the algorithm equals Q. Let Q(x1, x2) = ∑d

`=0 Q`(x1)xd−`
2 with the poly-

nomials Q` satisfying deg(Q`) ≤ `.
Algorithm 1 proceeds in d + 1 iterations and we now claim that at the end of iteration `, we

have correctly recovered Q0, Q1, . . . , Q`. More formally, we have the following claim.

Claim 7.2. Let ` be any element in {0, 1, . . . , d}. Then, at the end of the iteration ` of the for loop in line 2
of Algorithm 1, we have that the polynomial P`(x1) equals Q`(x1).

Clearly, the claim proves the correctness of Algorithm 1. We now prove this claim by a strong
induction on `. The argument for the base case of the algorithm, i.e. ` = 0 is essentially the same
as the in the induction step. So, we just sketch the argument for the induction step.

To this end, we assume that for every i ∈ {0, 1, . . . , ` − 1}, Pi(x1) = Qi(x1) and prove that
P`(x1) = Q`(x1). To start with, let

Q̃` := Q−
`−1

∑
i=0

Qi(x1)xd−i
2 .

From the induction hypothesis, note that

Q̃` = Q−
`−1

∑
i=0

Pi(x1)xd−i
2 .
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Thus, from the definition of the function f` : T1 × T2 → F<s[z1, z2] in Line 2 of Algorithm 1 as

f` := f − Enc(s)

(
`−1

∑
i=0

Pi(x1)xd−i
2

)
,

and the linearity of the encoding map for multiplicity codes, we have

∆(s)
mult

(
f`,Enc

(s)
T1×T2

(
Q̃`

))
= ∆(s)

mult

(
f − Enc(s)

(
`−1

∑
i=0

Pi (x1) xd−i
2

)
,Enc(s)T1×T2

(
Q−

`−1

∑
i=0

Qi (x1) xd−i
2

))
= ∆(s)

mult

(
f ,Enc(s)T1×T2

(Q)
)

<
1
2

n2
(

s− d
n

)
With this guarantee in hand, we now proceed with the analysis of the `th iteration.

Now, for every a ∈ T1, and i ∈ {0, 1, . . . , r − 1} for r = s − b d−`
n c, the function f (i,a)` : T2 →

F<s−i[z2] defined as

f (i,a)` (b) = ∑
j∈[s−i]

f`,(i,j)(a, b) · zj
2

can be viewed as a received word for a univariate multiplicity code with multiplicity (s− i) and
degree d − ` on the set T2 of evaluation points. Indeed, if the original received word f had no
errors, and was in fact the encoding of Q, then f (i,a)` must be equal to the encoding of the univariate
polynomial obtained by taking the ith order (Hasse) derivative of Q̃` with respect to x1 and setting
x1 to a.

By combining the output of various calls to Algorithm 2, we obtain the function g` and the
weight function w` which together are part of an input to the Weighted Univariate Multiplicity
Code Decoder (Algorithm 3). Now, from Lemma 7.1 and Lemma 6.4, and the upper bound on
∆(s)
mult( f`,Enc

(s)
T1×T2

(Q̃`)) above, we get that the polynomial P` output by the call to Algorithm 3 is
equal to Q`(x1), as needed to complete the proof of the induction step.

The upper bound on the running time follows immediately from the time complexity of Algo-
rithm 2 (Theorem 4.3) and Algorithm 3 (Theorem 6.5).

8 Multivariate multiplicity code decoder

In this section, we extend the bivariate decoder (Algorithm 1) constructed in Section 3 to the mul-
tivariate setting with m > 2. The extension to larger m proceeds as suggested by the inductive
proof of the multiplicity SZ Lemma. If we perform the induction following the standard textbook
proof of the SZ Lemma, we need a “weighted multivariate multiplicity code decoder”. However,
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we do not even have weighted version of the bivariate decoder. We get around this issue by per-
forming a slightly different proof of the SZ Lemma from the textbook proof. This alternate proof
of the SZ Lemma proceeds by viewing the polynomial as an (m− 1)-variate polynomial with the
coefficients coming from a univariate polynomial ring F[xm] instead of as a univariate polynomial
in xm with the coefficients coming from the (m− 1)-variate polynomial ring F[x1, . . . , xm−1]. We
first present this alternate proof of the classical SZ Lemma (without multiplicities) in Section 8.1
and in the subsequent sections, extend the bivariate decoder (Algorithm 1) to the multivariate
decoder (Algorithm 4).

8.1 Multivariate Schwartz-Zippel Lemma

We discuss a proof of the standard Schwartz-Zippel lemma in this sections, that is slightly dif-
ferent from the standard textbook proof of the lemma, e.g. in [AB09] and the proof in Kim and
Kopparty’s work [KK17].

Lemma 8.1 (Schwartz-Zippel Lemma). Let P(x1, x2, . . . , xm) ∈ F[x] be a non-zero m variate polyno-
mial of total degree at most d and let T1, T2, . . . , Tm be subsets of F of size n each. Then, the number of
zeroes of P on the product set T1 × T2 × · · · × Tm is at most dnm−1.

Proof. The proof is via an induction on m as usual. The base case, where m = 1 is clear. For the
induction step, we view P as a polynomial in the variables x1, x2, . . . , xm−1, with the coefficients
being from the polynomial ring F[xm].

P(x) =
`

∑
i=0

Pi(x) ,

where the polynomial Pi(x) is homogeneous and degree i when viewed as a polynomial in x1, . . . , xm−1

with coefficients in F[xm]. Note that ` is equal to the total degree of P in x1, . . . , xm−1 and is at most
d, and the degree of Pi in the variable xm is at most d− i. Now, for any setting am of xm in Tm, we
consider two cases based on whether P`(x1, x2, . . . , xm−1, am) is zero or non-zero.

Let T′m ⊂ Tm be the set of am ∈ Tm such that P`(x1, x2, . . . , xm−1, am) is identically zero. Viewing
P`(x1, x2, . . . , xm−1, xm) as a univariate polynomial in xm of degree at most d− `, we get that |T′m| ≤
d− `. Thus, for every each am ∈ T′m, the total number of (a1, . . . , am−1) ∈ T1× · · · × Tm−1 such that
P(a1, . . . , am−1, am) equals zero is trivially at most nm−1.

On the other hand for every am ∈ Tm \ T′m, P`(x1, . . . , xm−1, am) is not identically zero, and
thus P(x1, x2, . . . , xm−1, am) is a non-zero m − 1 variate polynomial of degree `. Thus, for each
am ∈ Tm \ T′m by the induction hypothesis, the total number of (a1, . . . , am−1) ∈ T1 × · · · × Tm−1

such that P(a1, . . . , am−1, am) equals zero is at most ` · nm−2.
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Therefore, the total number of zeroes of P on the product set T1 × T2 × · · · × Tm is at most

|T′m| · nm−1 + (n− |T′m|) · ` · nm−2 ≤ (|T′m|+ `)nm−1 ,

which is at most dnm−1, since T′m is of size at most d− `.

We do remark that the way induction is set up in the above proof is different from the way
it proceeds in a typical proof of this lemma, where P is viewed as a univariate polynomial in xm

with the coefficients coming from the (m− 1)-variate polynomial ring F[x1, . . . , xm−1] (as opposed
to being viewed as an (m− 1)-variate polynomial with the coefficients coming from a univariate
polynomial ring F[xm].). This subtle difference also shows up in the way induction is done in our
decoding algorithm for the multivariate case when compared to how Kim-Kopparty proceed in
the decoding algorithm for multivariate Reed-Muller codes [KK17]. In fact, it is not clear to us
that the results in this paper can be obtained if we set up the induction as in the work of Kim and
Kopparty [KK17]. The main technical difficulty is that we do not have an analogue of Algorithm 1
when the received word comes with weights.

8.2 Multivariate decoder: description

We now describe our main algorithm for the multivariate case. For this case, the message space
consists of m-variate degree d polynomials. For our algorithm, it will be helpful to think of the
decomposition of such a polynomial P as follows. For brevity, we use e−1 = (e2, e3, . . . , em) to
denote an m− 1 tuple, whose coordinates are indexed from 2 up to m.

P(x) = ∑
`=[d+1]

 ∑
e−1∈Zm−1

≥0
|e−1|1=d−`

P`,e−1(x1) ·
m

∏
j=2

x
ej
j

 .

Since the total degree of P is at most d, the degree of the univariate polynomial P`,e−1(x1) is at most
`.
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Multivariate Multiplicity Code Decoder

Algorithm 4: Multivariate Multiplicity Code Decoder
Input:

• m, T1 × T2 × . . .× Tm ⊆ F, |T1| = · · · = |Tm| = n /* #variables & points of evaluation

*/

• d, s /* degree and multiplicity resp. */

• f : T1 × T2 × · · · × Tm → F<s[z1, z2, . . . , zm]. /* received word */

Output: P = ∑`∈[d+1]] ∑e∈Zm−1
≥0 ,|e|1=d−` P`,e (x1) ·∏m

j=2 x
ej
j ∈ F≤d[x1, x2, . . . , xm] such that

∆(s)
mult

(
f ,Enc(s) (P)

)
< 1

2 nm
(

s− d
n

)
, if such a P exists.

1

2 if m = 2 then
3 Run Bivariate Multiplicity Code Decoder (Algorithm 1) on (T1, T2, d, s, f ) to obtain P ;
4 else
5 Set T̃ ← T2 × · · · × Tm ;
6 for `← 0 to d do
7 Define f` : T1 × T̃ → F<s[z] as /* received word for the `th iteration */

f` ← f − Enc(s)
(

∑i∈[`]

(
∑e−1∈Zm−1

≥0 ,|e−1|1=d−i P`,e−1 (x1) ·∏m
j=2 x

ej
j

))
;

∀a ∈ T1 × T̃, let f` (a) = ∑i f`,i (a) zi ; /* some more notation */

8 Set r ← s− b d−`
n c ; /* number of usable derivatives */

9 for a ∈ T1 do
10 for i← 0 to r− 1 do

11 Define f (i,a)` : T̃ → F<s−i[z2, . . . , zm] as

f (i,a)` (a−1) = ∑i−1∈[s−i] f`,(i,i−1) (a, a−1) · zi−1
−1 , where z−1 = (z2, . . . , zm),

a−1 = (a2, . . . , am) and i−1 = (i2, . . . , im) ;
12 (Recursively) run Multivariate Multiplicity Code Decoder (Algorithm 4) on(

m− 1, T̃, d− `, s− i, f (i,a)`

)
to obtain G(i,a)

` ∈ F≤d−`[x2, x3, . . . , xm] ;

13 if G(i,a)
` is ⊥ then set G(i,a)

` ← 0 ;

14 Define w` : T1 × [r]→ Z≥0 as

w` (a, i)← min
{

∆(s−i)
mult

(
f (i,a)` ,Enc(s−i)

(
G(i,a)
`

))
, nm−1

2 ·
(
(s− i)− d−`

n

)}
;

15 For every e−1 ∈ Zm−1
≥0 , |e−1|1 = d− `, define g`,e−1 : T1 → F<r[z1] as

g`,e−1 (a)← ∑i∈[r] Coeffx
e−1
−1

(
G(i,a)
`

)
zi

1 , where

x−1 = (x2, x3, . . . , xm), e−1 = (e2, . . . , em), and xe−1
−1 = xe2

2 · x
e3
3 · · · x

em
m ;

16 For every e−1 ∈ Zm−1
≥0 , |e−1|1 = d− `, run Weighted Univariate Multiplicity Code

Decoder (Algorithm 3) on
(
T1, d, s, m, `, r, g`,e−1 , w`

)
to get P`,e−1 ;

17 if ∆(s)
mult

(
f ,Enc(s) (P)

)
< 1

2 nm
(

s− d
n

)
then return P (x1, x2, . . . , xm) else return ⊥ .
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To prove the correctness of Algorithm 4 we will need to generalize the analysis of Algorithm 3
which we describe below. Since, all the proofs are direct extensions of the corresponding proofs in
the bivariate case, we have skipped them for the sake of brevity.

8.3 Weighted Univariate Multiplicity Code Decoder (multivariate case)

We give the general versions of the statements in section 5 for the bivariate case. The proofs are
identical, except for the new bounds on distances and weights. Accordingly, n2 in the distance
statements is replaced by nm, and n in the weight bounds after column decoding is replaced by
nm−1 (since a column is now replaced by recursive decoding over a grid of lower dimension).
There is no change in the matching argument.

8.3.1 Properties of weighted distance

The following is the general definition of the distance Γ between a polynomial and a received
word. The only difference from Definition 6.1 is in the weight bounds (n is replaced by nm−1) and
in the contribution of each element a, the quantity n(s− i) is replaced by nm−1(s− i).

Definition 8.2. Let d, `, s, m ∈N be parameters with d ≥ `, T ⊆ F be a subset of size n. Let R ∈ F[x] be
a univariate polynomial of degree at most `, h : T → F<r[z] and w : T× [r]→ Z≥0 be functions such that
for every (a, i) ∈ T × [r], w(a, i) ≤ nm−1

2 ·
(
(s− i)− d−`

n

)
.

Then, Γs,d,`
w (h, R) is defined as follows.

Γs,d,`
w (h, R) =

(
r−1

∑
i=0

∑
a∈Ai(h,R)

max
{(

nm−1
(
(s− i)− d− `

n

)
− w(a, i)

)
, max

j<i
w(a, j)

})
+ ∑

a∈Ar(h,R)
max

j<r
w(a, j)

where for every i ∈ [r + 1]

Ai(h, R) =
{

a ∈ T : max
{

j ∈ [r + 1] : h(a) = R(a + z) mod 〈z〉j
}
= i
}

.

y

The following is a triangle-inequality-type statement for the general definition of Γ.

Lemma 8.3 (Triangle-like inequality for Γ). Let d, `, s, m ∈ N be parameters with d ≥ `, T ⊆ F be
a subset of size n. Let Q, R ∈ F[x] be univariate polynomials of degree at most `, h : T → F<r[z] and
w : T × [r]→ Z≥0 be functions such that for every (a, i) ∈ T × [r], w(a, i) ≤ nm−1

2 ·
(
(s− i)− d−`

n

)
.

If Q 6= R, then

Γs,d,`
w (h, Q) + Γs,d,`

w (h, R) ≥ nm
(

s− d
n

)
.

49



Proof sketch. The proof is identical to that of Lemma 6.2, with the following one difference: where
we count a contribution of the form (s− i)n− (d− `), that is replaced by nm−1((s− i)− (d− `)/n)
(in accordance with the new weight bound).

The following is the relationship between the distance we work with, Γ, and the multiplicity
distance ∆.

Lemma 8.4 (Relationship between Γ and multiplicity distance). Let T1, T2, . . . , Tm ⊆ F be sets of size
n each, and d, `, s, r be natural numbers with d ≥ ` and r = s− b d−`

n c. Let

P =
d

∑
i=0

∑
monomials x−1of degree d−i

Pi,x−1(x1)x−1

be a polynomial of degree at most d with ∆(s)
mult(Enc

(s)
T1×T2×···×Tm

(P), f ) < 1
2 nm(s− d

n ). If g` : T1 → F<r[z]
and w` : T1 × [r] → Z≥0 are as defined in the main multivariate algorithm, then for every fixed monomial
x−1 of degree d− `,

Γs,d,`
w (g`, P`,x−1) ≤ ∆(s)

mult( f ,Enc(s)T1×T2×···×Tm
(P)) <

1
2

nm
(

s− d
n

)
.

Proof sketch. The proof is identical to that of Lemma 7.1, with instances of (s− i)n being once again
replaced by (s− i)nm−1.

8.3.2 Proof of Theorem 2.8 (correctness of Algorithm 4)

Recall that the algorithm proceeds by trying every possible vector of thresholds θ. The following
lemma asserts that one of the thresholds can be used to carry out the decoding.

Lemma 8.5. Let g be the received word. If R is such that Γd,`,s
w (g, R) < nm

2 (s− d
n ), then there is a vector

of thresholds θ that can be used to find R.

Proof sketch. The proof is identical to that of Lemma 6.4: it proceeds by contradiction, assuming
that no such vector exists. We start by making a claim on the size of A, the set of points where the
received word g agrees with the desired polynomial R.

Claim 8.6. Let g be any received word and R be a degree ` polynomial with Γd,`,s
w (g, R) < nm

2 (s− d
n ). Let

A be the set of points where g and R agree. Then, |A| > `.

Proof sketch. The proof is identical to that of Claim 6.6, with instances of (s− i)n being once again
replaced by (s− i)nm−1.
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We then define a good pairing as before, the same as Definition 6.7. Lemma 6.8 and Claim 6.10
which assert that such a good pairing exists, remain the same, word for word.

Finally, we use this pairing to compute the error, and show it is more than promised, under the
contradiction assumption that no threshold vector works. The statement of Claim 6.11 remains
the same. In its proof, in the error calculation, as usual (s− i)n is replaced by (s− i)nm−1.

The remainder of the proof is similar to the proof of Theorem 3.2 presented in Section 7.

Running time: Let W(m) denote the running time of the m-variate decoder. Then, by Theo-
rem 3.2 W(2) = (sn)s+O(1). From the structure of Algorithm 4, W(m) satisfies the following recur-
rence:

W(m) ≤ (sn)s+O(1) ·
(

m + s− 1
s

)
+ (sn)2 ·W(m− 1).

From this we conclude that W(m) is upper bounded by (sn)3m+s+O(1) · (m+s−1
s ).
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