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Abstract

One can fix the randomness used by a randomized algorithm, but there is no analogous
notion of fixing the quantumness used by a quantum algorithm. Underscoring this fundamental
difference, we show that, in the black-box setting, the behavior of quantum polynomial-time
(BQP) can be remarkably decoupled from that of classical complexity classes like NP. Specifically:

• There exists an oracle relative to which NPBQP 6⊂ BQPPH, resolving a 2005 problem of
Fortnow. As a corollary, there exists an oracle relative to which P = NP but BQP 6= QCMA.

• Conversely, there exists an oracle relative to which BQPNP 6⊂ PHBQP.

• Relative to a random oracle, PP = PostBQP is not contained in the “QMA hierarchy”

QMAQMAQMA···

.

• Relative to a random oracle, ΣP
k+1 6⊂ BQPΣP

k for every k.

• There exists an oracle relative to which BQP = P#P and yet PH is infinite. (By contrast,
relative to all oracles, if NP ⊆ BPP, then PH collapses.)

• There exists an oracle relative to which P = NP 6= BQP = P#P.

To achieve these results, we build on the 2018 achievement by Raz and Tal of an oracle
relative to which BQP 6⊂ PH, and associated results about the Forrelation problem. We also
introduce new tools that might be of independent interest. These include a “quantum-aware”
version of the random restriction method, a concentration theorem for the block sensitivity of
AC0 circuits, and a (provable) analogue of the Aaronson-Ambainis Conjecture for sparse oracles.
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1 Introduction

The complexity-theoretic study of quantum computation is often dated from 1993, when Bernstein
and Vazirani [BV97] defined BQP, or Bounded-Error Quantum Polynomial-Time: the class of
languages that admit efficient quantum algorithms. Then as now, a central concern was how BQP
relates to classical complexity classes, such as P, NP, and PH. Among the countless questions that
one could raise here, let us single out three as especially fundamental:

(1) Can quantum computers efficiently solve any problems that classical computers cannot? In
other words, does BPP = BQP?

(2) Can quantum computers solve NP-complete problems in polynomial time? In other words, is
NP ⊆ BQP?

(3) What is the best classical upper bound on the power of quantum computation? Is BQP ⊆ NP?
Is BQP ⊆ PH?

Three decades later, all three of these still stand as defining questions of the field. Nevertheless,
from the early 2000s onwards, it became rare for work in quantum computing theory to address
any of these questions directly, perhaps simply because it became too hard to say anything new
about them. A major recent exception was the seminal work of Raz and Tal [RT19], who gave an
oracle relative to which BQP 6⊂ PH, by completing a program proposed by one of us [Aar10]. In
this paper, we take the Raz-Tal breakthrough as a starting point. Using it, together with new tools
that we develop, we manage to prove many new theorems about the power of BQP—at least in the
black-box setting where much of our knowledge of quantum algorithms resides.

Before discussing the black-box setting or Raz-Tal, though, let’s start by reviewing what is
known in general about BQP. Bernstein and Vazirani [BV97] showed that BPP ⊆ BQP ⊆ P#P, and
Adleman, DeMarrais, and Huang [ADH97] improved the upper bound to BQP ⊆ PP, giving us the
following chain of inclusions:

P ⊆ BPP ⊆ BQP ⊆ PP ⊆ P#P ⊆ PSPACE ⊆ EXP.

Fortnow and Rogers [FR98] slightly strengthened the inclusion BQP ⊆ PP, to show for example
that PPBQP = PP. This complemented the result of Bennett, Bernstein, Brassard, and Vazirani
[BBBV97] that BQPBQP = BQP: that is, BQP is “self-low,” or “the BQP hierarchy collapses to
BQP.”

1.1 The Contrast with BPP

Meanwhile, though, the relationships between BQP and complexity classes like NP, PH, and P/poly
have remained mysterious. Besides the fundamental questions mentioned above—is NP ⊆ BQP? is
BQP ⊆ NP? is BQP ⊆ PH?—one could ask other questions:

(i) In a 2005 blog post, Fortnow [For05] raised the question of whether NPBQP ⊆ BQPNP. Do
we even have NPBQP ⊆ BQPPH? I.e., when quantum computation is combined with classical
nondeterminism, how does the order of combination matter?

(ii) What about the converse: is BQPNP ⊆ PHBQP?

(iii) Suppose NP ⊆ BQP. Does it follow that PH ⊆ BQP as well?

(iv) Suppose NP ⊆ BQP. Does it follow that PH collapses?
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(v) Is BQP ⊂ P/poly?

(vi) Suppose P = NP. Does it follow that BQP is “small” (say, not equal to EXP)?

(vii) Suppose P = NP. Does it follow that BQP = QCMA, where QCMA (Quantum Classical Merlin
Arthur) is the analogue of NP with a BQP verifier?

What is particularly noteworthy about the questions above is that, if we replace BQP by BPP,
then positive answers are known to all of them:

(i) NPBPP ⊆ AM ⊆ BPPNP.

(ii) BPPNP ⊆ PH = PHBPP.

(iii) If NP ⊆ BPP, then PH = BPP—this is sometimes given as a homework exercise in complexity
theory courses, and also follows from (i).

(iv) If NP ⊆ BPP, then PH = ΣP
2 —this follows from (iii) and the Sipser-Lautemann Theorem

[Sip83, Lau83].

(v) BPP ⊂ P/poly is Adleman’s Theorem [Adl78].

(vi) If P = NP, then P = BPP and hence BPP 6= EXP, by the time hierarchy theorem.

(vii) If P = NP, then of course BPP = MA.

So what is it that distinguishes BPP from BQP in these cases? In all of the above examples, the
answer turns out to be one of the fundamental properties of classical randomized algorithms: namely,
that one can always “pull the randomness out” from such algorithms, viewing them as simply
deterministic algorithms that take a uniform random string r as an auxiliary input, in addition to
their “main” input x. This, in turn, enables one to play all sorts of tricks with such an algorithm
M(x, r)—from using approximate counting to estimate the fraction of r’s that cause M(x, r) to
accept, to moving r from inside to outside a quantifier, to hardwiring r as advice. By contrast, there
is no analogous notion of “pulling the randomness (or quantumness) out of a quantum algorithm.”
In quantum computation, randomness is just an intrinsic part of the model that rears its head at
the end (rather than the beginning) of a computation, when we take the squared absolute values of
amplitudes to get probabilities.

This difference between randomized and quantum algorithms is crucial to the analysis of the
so-called “sampling-based quantum supremacy experiments”—for example, those recently carried
out by Google [AAB+19] and USTC [ZWD+20]. The theoretical foundations of these experiments
were laid a decade ago, in the work of Aaronson and Arkhipov [AA13] on BosonSampling, and
(independently) Bremner, Jozsa, and Shepherd [BJS10] on the commuting Hamiltonians or IQP
model. Roughly speaking, the idea is that, by using a quantum computer, one can efficiently sample
a probability distribution D over n-bit strings such that even estimating the probabilities of the
outcomes is a #P-hard problem. Meanwhile, though, if there were a polynomial-time classical
randomized algorithm M(x, r) to sample from the same distribution D, then one could use the
“pulling out r” trick to estimate the probabilities of M ’s outcomes in PH. But this would put P#P

into PH, thereby collapsing PH by Toda’s Theorem [Tod91].
More generally, with any of the apparent differences between quantum algorithms and classical

randomized algorithms, the question is: how can we prove that the difference is genuine, that no
trick will ever be discovered that makes BQP behave more like BPP? For questions like whether
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NP ⊆ BQP or whether BQP ⊆ NP, the hard truth here is that not only have we been unable to
resolve these questions in the unrelativized world, we’ve been able to say little more about them
than certain “obvious” implications. For example, suppose NP ⊆ BQP and BQP ⊆ AM. Then since
BQP is closed under complement, we would also have coNP ⊆ BQP, and hence coNP ⊆ AM, which
is known to imply a collapse of PH [BHZ87]. And thus, if PH is infinite, then either NP 6⊂ BQP or
BQP 6⊂ AM. How can we say anything more interesting and nontrivial?

1.2 Relativization

Since the work of Baker, Gill, and Solovay [BGS75], whenever complexity theorists were faced with
an impasse like the one above, a central tool has been relativized or black-box complexity: in other
words, studying what happens when all the complexity classes one cares about are fed some specially-
constructed oracle. Much like perturbation theory in physics, relativization lets us make well-defined
progress even when the original questions we wanted to answer are out of reach. It is well-known
that relativization is an imperfect tool—the IP = PSPACE [Sha92], MIP = NEXP [BFL91], and
more recently, MIP∗ = RE [JNV+20] theorems provide famous examples where complexity classes
turned out to be equal, even in the teeth of oracles relative to which they were unequal. On the
other hand, so far, almost all such examples have originated from a single source: namely, the use
of algebraic techniques in interactive proof systems. And if, for example, we want to understand
the consequences of NP ⊆ BQP, then arguably it makes little sense to search for nonrelativizing
consequences if we don’t even understand yet what the relativizing consequences (that is, the
consequences that hold relative to all oracles) are or are not.

In quantum complexity theory, even more than in classical complexity theory, relativization has
been an inextricable part of progress from the very beginning. The likely explanation is that, even
when we just count queries to an oracle, in the quantum setting we need to consider algorithms
that query all oracle bits in superposition—so that even in the most basic scenarios, it is already
unintuitive what can and cannot be done, and so oracle results must do much more than formalize
the obvious.

More concretely, Bernstein and Vazirani [BV97] introduced some of the basic techniques of
quantum algorithms in order to prove, for the first time, that there exists an oracle A such that
BPPA 6= BQPA. Shortly afterward, Simon [Sim97] gave a quantitatively stronger oracle separation
between BPP and BQP, and then Shor [Sho97] gave a still stronger separation, along the way to his
famous discovery that Factoring is in BQP.

On the negative side, Bennett, Bernstein, Brassard, and Vazirani [BBBV97] showed that there
exists an oracle relative to which NP 6⊂ BQP: indeed, relative to which there are problems that take
n time for an NP machine but Ω

(
2n/2

)
time for a BQP machine. Following the discovery of Grover’s

algorithm [Gro96], which quantumly searches any list of N items in O
(√

N
)

queries, the result of

Bennett, Bernstein, Brassard, and Vazirani gained the interpretation that Grover’s algorithm is
optimal. In other words, any quantum algorithm for NP-complete problems that gets more than the
square-root speedup of Grover’s algorithm must be “non-black-box.” It must exploit the structure
of a particular NP-complete problem much like a classical algorithm would have to, rather than
treating the problem as just an abstract space of 2n possible solutions.

Meanwhile, clearly there are oracles relative to which P = BQP—for example, a PSPACE-complete
oracle. But we can ask: would such oracles necessarily collapse the hierarchy of classical complexity
classes as well? In a prescient result that provided an early example of the sort of thing we do in this
paper, Fortnow and Rogers [FR98] showed that there exists an oracle relative to which P = BQP and
yet PH is infinite. In other words, if P = BQP would imply a collapse of the polynomial hierarchy,

5



then it cannot be for a relativizing reason. Aaronson and Chen [AC17] extended this to show that
there exists an oracle relative to which sampling-based quantum supremacy is impossible—i.e., any
probability distribution approximately samplable in quantum polynomial time is also approximately
samplable in classical polynomial time—and yet PH is infinite. In other words, if it is possible
to prove the central theoretical conjecture of quantum supremacy—namely, that there are noisy
quantum sampling experiments that cannot be simulated in classical polynomial time unless PH
collapses—then nonrelativizing techniques will be needed there as well.

What about showing the power of BQP, by giving oracle obstructions to containments like
BQP ⊆ NP, or BQP ⊆ PH? There, until recently, the progress was much more limited. Watrous
[Wat00] showed that there exists an oracle relative to which BQP 6⊂ NP and even BQP 6⊂ MA
(these separations could also have been shown using the Recursive Fourier Sampling problem,
introduced by Bernstein and Vazirani [BV97]). But extending this further, to get an oracle relative
to which BQP 6⊂ PH or even BQP 6⊂ AM, remained an open problem for two decades. Aaronson
[Aar10] proposed a program for proving an oracle separation between BQP and PH, involving a new
problem he introduced called Forrelation:

Problem 1 (Forrelation). Given black-box access to two Boolean functions f, g : {0, 1}n →
{1,−1}, and promised that either

(i) f and g are uniformly random and independent, or

(ii) f and g are uniformly random individually, but g has Ω(1) correlation with f̂ , the Boolean
Fourier transform of f (i.e., f and g are “Forrelated”),

decide which.

Aaronson [Aar10] showed that Forrelation is solvable, with constant bias, using only a single
quantum query to f and g (and O(n) time). By contrast, he showed that any classical randomized
algorithm for the problem needs Ω

(
2n/4

)
queries—improved by Aaronson and Ambainis [AA18]

to Ω
(

2n/2

n

)
queries, which is essentially tight. The central conjecture, which Aaronson left open,

said that Forrelation 6∈ PH—or equivalently, by the connection between PH machines and AC0

circuits [FSS84], that there are no AC0 circuits for Forrelation of constant depth and 2poly(n)

size.
Finally, Raz and Tal [RT19] managed to prove Aaronson’s conjecture, and thereby obtain the

long-sought oracle separation between BQP and PH.1 Raz and Tal achieved this by introducing new
techniques for constant-depth circuit lower bounds, involving Brownian motion and the L1-weight of
the low-order Fourier coefficients of AC0 functions. Relevantly for us, Raz and Tal actually proved
the following stronger result:

Theorem 2 ([RT19]). A PH machine can guess whether f and g are uniform or Forrelated with
bias at most 2−Ω(n).

Recall that before Raz and Tal, we did not even have an oracle relative to which BQP 6⊂ AM.
Notice that, if BQP ⊆ AM, then many other conclusions would follow in a relativizing way. For
example, we would have:

• P = NP implies P = BQP,

1Strictly speaking, they did this for a variant of Forrelation where the correlation between g and f̂ is only ∼ 1
n

,
and thus a quantum algorithm needs ∼ n queries to solve the problem, but this will not affect anything that follows.
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• NPBQP ⊆ NPAM∩coAM ⊆ BPPNP ⊆ BQPNP,

• If NP ⊆ BQP, then NPNP ⊆ NPBQP ⊆ BQPNP = BQPBQP = BQP, and

• If NP ⊆ BQP, then NP ⊆ coAM, which implies that PH collapses.

Looking at it a different way, our inability even to separate BQP from AM by an oracle served
as an obstruction to numerous other oracle separations.

The starting point of this paper was the following question: in a “post-Raz-Tal world,” can we
at last completely “unshackle” BQP from P, NP, and PH, by showing that there are no relativizing
obstructions to any possible answers to questions like the ones we asked in Section 1.1?

1.3 Our Results

We achieve new oracle separations that show an astonishing range of possible behaviors for BQP
and related complexity classes—in at least one case, resolving a longstanding open problem in this
topic. Our title, “The Acrobatics of BQP,” comes from a unifying theme of the new results being
“freedom.” We will show that, as far as relativizing techniques can detect, collapses and separations of
classical complexity classes place surprisingly few constraints on the power of quantum computation.
In most cases, this can be understood as ultimately stemming from the fact that one cannot “fix
the randomness” (or quantumness) used by a quantum algorithm, similarly to how one fixes the
randomness used by a randomized algorithm in many complexity-theoretic arguments.

As we alluded to earlier, many of our new results would not have been possible without Raz and
Tal’s analysis of Forrelation [RT19], which we rely on extensively. We will treat Forrelation
no longer as just an isolated problem, but as a sort of cryptographic code, by which an oracle can
systematically make certain information available to BQP machines while keeping the information
hidden from classical machines.

Having said that, very few of our results will follow from Raz-Tal in any straightforward way.
Most often we need to develop other lower bound tools, in addition to or instead of Raz-Tal. Our
new tools, which seem likely to be of independent interest, include a random restriction lemma for
quantum query algorithms, a concentration theorem for the block sensitivity of AC0 functions, and
a provable analogue of the Aaronson-Ambainis conjecture [AA14] for certain sparse oracles.

Perhaps our single most interesting result is the following.

Theorem 3 (Corollary 48, restated). There exists an oracle relative to which NPBQP 6⊂ BQPNP,
and indeed NPBQP 6⊂ BQPPH.

As mentioned earlier, Theorem 3 resolves an open problem of Fortnow [For05], and demonstrates
a clear difference between BPP and BQP that exemplifies the impossibility of pulling the randomness
out of a quantum algorithm. Indeed, Theorem 3 shows that there is no general, black-box way to
move quantumness past an NP quantifier, like we can do for classical randomness.

As a straightforward byproduct of Theorem 3, we are also able to prove the following:

Theorem 4 (Corollary 50, restated). There exists an oracle relative to which P = NP but BQP 6=
QCMA.

Conversely, it will follow from one of our later results, Theorem 9, that there exists an oracle
relative to which P 6= NP and yet BQP = QCMA = QMA. In other words, as far as relativizing
techniques are concerned, the classical and quantum versions of the P vs. NP question are completely
uncoupled from one another.

Theorem 3 also represents progress toward a proof of the following conjecture, which might be
the most alluring open problem that we leave.
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Conjecture 5. There exists an oracle relative to which NP ⊆ BQP but PH 6⊂ BQP.2 Indeed, for
every k ∈ N, there exists an oracle relative to which ΣP

k ⊆ BQP but ΣP
k+1 6⊂ BQP.

Conjecture 5 would provide spectacularly fine control over the relationship between BQP and
PH, going far beyond Raz-Tal to show how BQP could, e.g., swallow the first 18 levels of PH
without swallowing the 19th. To see the connection between Theorem 3 and Conjecture 5, suppose
NPBQP ⊆ BQPNP, and suppose also that NP ⊆ BQP. Then, as observed by Fortnow [For05], this
would imply

NPNP ⊆ NPBQP ⊆ BQPNP ⊆ BQPBQP = BQP,

(and so on, for all higher levels of PH), so that PH ⊆ BQP as well. Hence, any oracle that witnesses
Conjecture 5 also witnesses Theorem 3, so our proof of Theorem 3 is indeed a prerequisite to
Conjecture 5.

At a high level, we prove Theorem 3 by showing that no BQPPH machine can solve the
OR ◦ Forrelation problem, in which one is given a long list of Forrelation instances, and is
tasked with distinguishing whether (1) all of the instances are uniformly random, or (2) at least one
of the instances is Forrelated. A first intuition is that PH machines should gain no useful information
from the input, just because Forrelation “looks random” (by Raz-Tal), and hence a BQPPH

machine should have roughly the same power as a BQP machine at deciding OR ◦Forrelation. If
one could show this, then completing the theorem would amount to showing that OR◦Forrelation
is hard for BQP machines, which easily follows from the BBBV Theorem [BBBV97].

Alas, initial attempts to formalize this intuition fail for a single, crucial reason: the possibility of
homomorphic encryption! The Raz-Tal Theorem merely proves that Forrelation is a strong form
of encryption against PH algorithms. But to rule out a BQPPH algorithm for OR ◦ Forrelation,
we also have to show that one cannot take a collection of Forrelation instances and transform
them, by means computable in PH, into a single Forrelation instance whose solution is the OR
of the solutions to the input instances. Put another way, we must show that AC0 circuits of constant
depth and 2poly(n) size cannot homomorphically evaluate the OR function, when the encryption is
done via the Forrelation problem.

More generally, we even have to show that AC0 circuits cannot transform the “ciphertext” into
any string that could later be decoded by an efficient quantum algorithm. Theorem 3 accomplishes
this with the help of an additional structural property of AC0 circuits: our concentration theorem
for block sensitivity. Loosely speaking, the concentration theorem implies that, with overwhelming
probability, any small AC0 circuit is insensitive to toggling between a yes-instance and a neighboring
no-instance of the OR◦Forrelation problem. This, together with the BBBV Theorem [BBBV97],
then implies that such “homomorphic encryption” is impossible.

We also achieve the following converse to Theorem 3:

Theorem 6 (Corollary 57, restated). There exists an oracle relative to which BQPNP 6⊂ PHBQP,
and even BQPNP 6⊂ PHPromiseBQP.

Note that an oracle relative to which BQPNP 6⊂ NPBQP is almost trivial to achieve, for example
by considering a problem in coNP. However, BQPNP 6⊂ PHBQP is much harder. At a high level,
rather than considering the composed problem OR ◦ Forrelation, we now need to consider the
reverse composition: Forrelation ◦OR, a problem that’s clearly in BQPNP, but plausibly not in
PHBQP. The key step is to show that, when solving Forrelation ◦OR, any PHBQP machine can
be simulated by a PH machine: the BQP oracle is completely superfluous! Once we’ve shown that,
Forrelation ◦OR 6∈ PH then follows immediately from Raz-Tal.

2This first part of the conjecture was previously raised by Aaronson [Aar10].

8



For our next result, recall that QMA, or Quantum Merlin-Arthur, is the class of problems for
which a yes-answer can be witnessed by a polynomial-size quantum state. Perhaps our second most
interesting result is this:

Theorem 7 (Corollary 71, restated). PP is not contained in the “QMA hierarchy”, consisting of

constant-depth towers of the form QMAQMAQMA···
, with probability 1 relative to a random oracle.3

Note that PP = PostBQP, where PostBQP denotes BQP augmented with the power of postselec-
tion [Aar05], and so Theorem 7 contrasts with the classical containment PostBPP ⊆ BPPNP ⊆ PH
[HHT97, Kup15]. Nevertheless, before this paper, to our knowledge, it was not even known how

to construct an oracle relative to which PP 6⊂ BQPNP, let alone classes like BQPNPBQPNP···

or

QCMAQCMAQCMA···
, which are contained in the QMA hierarchy. The closest result we are aware of is

due to Kretschmer [Kre21], who gave a quantum oracle relative to which BQP = QMA 6= PostBQP.
Perhaps shockingly, our proof of Theorem 7 can be extended even to show that PP is not in, say,

QMIPQMIPQMIP···
relative to a random oracle, where QMIP means Quantum Multi-prover Interactive

Proofs with entangled provers. This is despite the breakthrough results of Reichardt, Unger, and
Vazirani [RUV13], and more recently Ji, Natarajan, Vidick, Wright, and Yuen [JNV+20], which
showed that in the unrelativized world, QMIP = MIP∗ = RE (where MIP∗ means QMIP with classical
communication only, and RE means Recursively Enumerable), so in particular, QMIP contains
the halting problem. This underscores the dramatic extent to which results like QMIP = RE are
nonrelativizing!

Theorem 7 can also be understood as showing that in the black-box setting, there is no quantum
analogue of Stockmeyer’s approximate counting algorithm [Sto83]. For a probabilistic algorithm
M that runs in poly(n) time and an error bound ε ≥ 1

poly(n) , the approximate counting problem is
to estimate the acceptance probability of M up to a multiplicative factor of 1 + ε. Stockmeyer’s
algorithm [Sto83] gives a relativizing poly(n)-time reduction from the approximate counting problem
to a problem in the third level of the polynomial hierarchy, and crucially relies on pulling the
randomness out of M . In structural complexity terms, Stockmeyer’s algorithm can be reinterpreted
as showing that SBP ⊆ PH relative to all oracles, where SBP is the complexity class defined in
[BGM06] that captures approximate counting.

One might wonder: is there a version of Stockmeyer’s algorithm for the quantum approximate
counting problem, where we instead wish to approximate the acceptance probability of a quantum
algorithm? In particular, is SBQP, the complexity class that captures quantum approximate
counting [Kup15], contained in the QMA hierarchy?4 Kuperberg [Kup15] showed that PP ⊆ PSBQP,
so it follows that PP ⊆ QMAH if and only if SBQP ⊆ QMAH, where QMAH denotes the QMA
hierarchy. Thus, Theorem 7 implies that SBQP 6⊂ QMAH relative to a random oracle, implying that
such a quantum analogue of Stockmeyer’s algorithm does not exist in the black-box setting.5 This
demonstrates yet another case where a classical complexity result that relies on fixing randomness
cannot be generalized to the quantum setting.

3Actually, our formal definition of the QMA hierarchy is more general than the version given here, in order to
accommodate recursive queries to QMA promise problems. This only makes our separation stronger. See Section 2.2
for details.

4We thank Patrick Rall (personal communication) for bringing this question to our attention.
5Note that this is just one of many possible ways that we could ask whether there exists a quantum analogue of

Stockmeyer’s algorithm. For example, one might consider alternative definitions of the quantum approximate counting
task, such as the problem defined in [BCGW21] of approximating the number of witness states accepted by a QMA
verifier. One might also consider other definitions of the “quantum polynomial hierarchy,” some of which are explored
in [GSS+18].
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Notably, our proof of Theorem 7 does not appeal to Raz-Tal at all, but instead relies on a
new random restriction lemma for the acceptance probabilities of quantum query algorithms. Our
random restriction lemma shows that if one randomly fixes most of the inputs to a quantum query
algorithm, then the algorithm’s behavior on the unrestricted inputs can be approximated by a
“simple” function (say, a small decision tree or small DNF formula). We then use this random
restriction lemma to generalize the usual random restriction proof that, for example, Parity 6∈ AC0

[H̊as87].

Here is another noteworthy result that we are able to obtain, by combining random restriction
arguments with lower bounds on quantum query complexity:

Theorem 8 (Corollary 41, restated). For every k ∈ N, ΣP
k+1 6⊂ BQPΣP

k with probability 1 relative to
a random oracle.

Theorem 8 extends the breakthrough of H̊astad, Rossman, Servedio, and Tan [HRST17], who
(solving an open problem from the 1980s) showed that PH is infinite relative to a random oracle
with probability 1. Our result shows, not only that a random oracle creates a gap between every
two successive levels of PH, but that quantum computing fails to bridge that gap.

Again, Theorem 8 represents a necessary step toward a proof of Conjecture 5, because if we had
ΣP
k+1 ⊆ BQPΣP

k , then clearly ΣP
k ⊆ BQP would imply ΣP

k+1 ⊆ BQPBQP = BQP.

Our last two theorems return to the theme of the autonomy of BQP.

Theorem 9 (Theorem 29, restated). There exists an oracle relative to which NP ⊆ BQP, and
indeed BQP = P#P, and yet PH is infinite.

Theorem 9 resolves a question of Aaronson [Aar10]. As a simple corollary (Corollary 31), we
also obtain an oracle relative to which BQP 6⊂ NP/poly, resolving a question of Aaronson, Cojocaru,
Gheorghiu, and Kashefi [ACGK19].

For three decades, one of the great questions of quantum computation has been whether it can
solve NP-complete problems in polynomial time. Many experts guess that the answer is no, for
similar reasons as they guess that P 6= NP—say, the BBBV Theorem [BBBV97], combined with our
failure to find any promising leads for evading that theorem’s assumptions in the worst case. But
the fact remains that we have no structural evidence connecting the NP 6⊂ BQP conjecture to any
“pre-quantum” beliefs about complexity classes. No one has any idea how to show, for example, that
if NP ⊆ BQP then P = NP as well, or anything even remotely in that direction.

Given the experience of classical complexity theory, it would be reasonable to hope for a theorem
showing that, if NP ⊆ BQP, then PH collapses—analogous to the Karp-Lipton Theorem [KL80],
that if NP ⊂ P/poly then PH collapses, or the Boppana-H̊astad-Zachos Theorem [BHZ87], that if
NP ⊆ coAM then PH collapses. No such result is known for NP ⊆ BQP, once again because of the
difficulty that there is no known way to pull the randomness out of a BQP algorithm. Theorem 9
helps to explain this situation, by showing that any proof of such a conditional collapse would have
to be nonrelativizing. The proof of Theorem 9 builds, again, on the Raz-Tal Theorem. And this is
easily seen to be necessary, since as we pointed out earlier, if BQP ⊆ AM, then NP ⊆ BQP really
would imply a collapse of PH.

Theorem 10 (Theorem 32, restated). There exists an oracle relative to which P = NP 6= BQP =
P#P.

10



Theorem 10 says, in effect, that there is no relativizing obstruction to BQP being inordinately
powerful even while NP is inordinately weak. It substantially extends the Raz-Tal Theorem, that
there is an oracle relative to which BQP 6⊂ PH, to show that in some oracle worlds, BQP doesn’t
go just slightly beyond the power of PH (which, if P = NP, is simply the power of P), but vastly
beyond it. Once again, this illustrates the difference between randomness and quantumness, because
if P = NP, then P = BPP for relativizing reasons.

We conjecture that Theorem 10 could be extended yet further, to give an oracle relative to
which P = NP and yet BQP = EXP, but we leave that problem to future work.

1.4 Proof Techniques

We now give rough sketches of the important ideas needed to prove our results. Here, in contrast to
Section 1.3, we present the results in the order that they appear in the main text, which is roughly
in order of increasing technical difficulty.

Our proofs of Theorem 9 and Theorem 10 serve as useful warm-ups, giving a flavor for how
we use the Raz-Tal Theorem and oracle construction techniques in later proofs. In Theorem 9,
to construct an oracle where BQP = P#P but PH is infinite, we start by taking a random oracle,
which by the work of H̊astad, Rossman, Servedio, and Tan [HRST17, RST15] is known to make PH
infinite. Then, for each P#P machine M , we add to the oracle an instance of the Forrelation
problem that encodes the behavior of M : if M accepts, we choose a Forrelated instance, while if M
rejects, we choose a uniformly random instance. This gives a BQP machine the power to decide any
P#P language.6

It remains to argue that adding these Forrelation instances does not collapse PH. We want to
show that relative to our oracle, for every k, there exists a language in ΣP

k+1 that is not in ΣP
k . This

is where we leverage the Raz-Tal Theorem: because the Forrelation instances look random to PH,
we can show, by a hybrid argument, that a ΣP

k algorithm’s probability of correctly deciding a target
function in ΣP

k+1 is roughly unchanged if we replace the Forrelation instances with uncorrelated,
uniformly random bits. But auxiliary random bits cannot possibly improve the success probability,
and so a simple appeal to [HRST17] implies that the ΣP

k+1 language remains hard for ΣP
k .

The proof of Theorem 10, giving an oracle where P = NP 6= BQP = P#P, follows a similar recipe
to the proof of Theorem 9. We start with a random oracle, which separates PH from P#P, and
then we add a second region of the oracle that puts P#P into BQP by encoding all P#P queries in
instances of the Forrelation problem. Next, we add a third region of the oracle that answers
all NP queries, which has the effect of collapsing PH to P. Finally, we again leverage the Raz-Tal
Theorem to argue that the Forrelation instances have no effect on the separation between PH
and P#P, because the Forrelation instances look random to PH algorithms.

We next prove Theorem 8, that ΣP
k+1 6⊂ BQPΣP

k relative to a random oracle. Our proof builds

heavily on the proof by [HRST17] that ΣP
k+1 6⊂ ΣP

k relative to a random oracle. Indeed, our proof is
virtually identical, except for a single additional step.

6The careful reader might wonder: if we can encode the answers to P#P machines, then what is to stop us from
encoding the answers to some arbitrarily powerful class, such as EXP or RE, into the Forrelation instances? For a
P#P machine M , we exploit the fact that we can always choose Forrelation instances on oracle strings that cannot
be queried by M . For example, if M runs in time t, then we can encode M ’s output into strings of length tc for some
c > 1, which remain accessible to a BQP machine with a larger polynomial running time. By contrast, if we tried to
do the same for an EXP machine (say), we run into the problem that the machine whose behavior we are trying to
encode could query the very encoding we are making of its output, and thus our oracle would be circularly defined.
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[HRST17]’s proof involves showing that there exists a function Sipserd that is computable by
a small AC0 circuit of depth d (which corresponds to a ΣP

d−1 algorithm), but such that any small

AC0 circuit of depth d− 1 (which corresponds to a ΣP
d−2 algorithm) computes Sipserd on at most

a 1
2 + o(1) fraction of random inputs. This proof uses random restrictions, or more accurately, a

generalization of random restrictions called random projections by [HRST17]. Roughly speaking,
the proof constructs a distribution R over random projections with the following properties:

(i) Any small AC0 circuit C of depth d − 1 “simplifies” with high probability under a random
projection drawn from R, say, by collapsing to a low-depth decision tree.

(ii) The target Sipserd function “retains structure” with high probability under a random projec-
tion drawn from R.

(iii) The structure retained in (ii) implies that the original unrestricted circuit C fails to compute
the Sipserd function on a large fraction of inputs.

To prove Theorem 8, we generalize step (i) above from ΣP
d−2 algorithms to BQPΣP

d−2 algorithms.
That is, if we have a quantum algorithm that queries arbitrary depth-(d− 1) AC0 functions of the
input, then we show that this algorithm’s acceptance probability also “simplifies” under a random
projection from R. We prove this by combining the BBBV Theorem [BBBV97] with [HRST17]’s
proof of step (i).

We next move on to the proof of Theorem 3, where we construct an oracle relative to which
NPBQP 6⊂ BQPPH. Recall that we prove Theorem 3 by showing that no BQPPH machine can solve
the OR ◦ Forrelation problem. To establish this, imagine that we fix a “no” instance x of the
OR ◦ Forrelation problem, meaning that x consists of a list of ∼ 2n Forrelation instances
that are all uniformly random (i.e. non-Forrelated). We can turn x into an adjacent “yes” instance
y by randomly choosing one of the Forrelation instances of x and changing it to be Forrelated.

Our proof amounts to showing that with high probability over x, an AC0 circuit of size 2poly(n)

is unlikely (over y) to distinguish x from y. Then, applying the BBBV Theorem [BBBV97], we can
show that for most choices of x, a BQPPH algorithm is unlikely to distinguish x from y, implying
that it could not have solved the OR ◦ Forrelation problem.

Next, we notice that it suffices to consider what happens when, instead of choosing y by randomly
flipping one of the Forrelation instances of x from uniformly random to Forrelated, we instead
choose a string z by randomly resampling one of the instances of x from the uniform distribution.
This is because, as a straightforward consequence of the Raz-Tal Theorem (Theorem 2), if f is an
AC0 circuit of size 2poly(n), then |Pry[f(x) 6= f(y)]− Prz[f(x) 6= f(z)]| ≤ 2−Ω(n).

Our key observation is that the quantity Prz[f(x) 6= f(z)] is proportional to a sort of “block
sensitivity” of f on x. More precisely, it is proportional to an appropriate averaged notion of block
sensitivity, where the average is taken over collections of blocks that respect the partition into
separate Forrelation instances. This is where our block sensitivity concentration theorem comes
into play:

Theorem 11 (Corollary 44, informal). Let f : {0, 1}N → {0, 1} be an AC0 circuit of size
quasipoly(N) and depth O(1), and let B = {B1, B2, . . . , Bk} be a collection of disjoint subsets
of [N ]. Then for any t,

Pr
x∼{0,1}N

[bsxB(f) ≥ t] ≤ 4N · 2−Ω
(

t
polylog(N)

)
,

where bsxB(f) denotes the block sensitivity of f on x with respect to B.
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Informally, Theorem 11 says that the probability that an AC0 circuit has B-block sensitivity
t� polylog(N) on a random input x decays exponentially in t. This generalizes the result of Linial,
Mansour, and Nisan [LMN93] that the average sensitivity of AC0 circuits is at most polylog(N). It
also generalizes a concentration theorem for the sensitivity of AC0 circuits that appeared implicitly
in the work of Gopalan, Servedio, Tal, and Wigderson [GSTW16], by taking B to be the partition
into singletons.7 In fact, we derive Theorem 11 as a simple corollary of such a sensitivity tail bound
for AC0. For completeness, we will also prove our own sensitivity tail bound, rather than appealing
to [GSTW16]. Our sensitivity tail bound follows from an AC0 random restriction lemma due to
Rossman [Ros17].

To prove Theorem 4, which gives an oracle relative to which P = NP but BQP 6= QCMA, we use
a similar technique to the proof of Theorem 10. We first take the oracle constructed in Theorem 3
that contains instances of the OR ◦ Forrelation problem. Next, we add a second region of the
oracle that answers all NP queries. This collapses PH to P. Finally, we use Theorem 3 to argue that
these NP queries do not enable a BQP machine to solve the OR ◦ Forrelation problem, which is
in QCMA.

We now move on to the proof of Theorem 6, that there exists an oracle relative to which
BQPNP 6⊂ PHBQP. Recall that our strategy is to show that no PHBQP machine can solve the
Forrelation ◦ OR problem. We prove this by showing that with high probability, a PHBQP

machine on a random instance of the Forrelation ◦ OR problem can be simulated by a PH
machine, from which a lower bound easily follows from the Raz-Tal Theorem. This simulation
hinges on the following theorem, which seems very likely to be of independent interest:

Theorem 12 (Theorem 53, informal). Consider a quantum algorithm Q that makes T queries
to an M ×N array of bits x, where each length-N row of x contains a single uniformly random
1 and 0s everywhere else. Then for any ε� T√

N
and δ > 0, there exists a deterministic classical

algorithm that makes O
(
T 5

ε4
log T

δ

)
queries to x, and approximates Q’s acceptance probability to

within additive error ε on a 1− δ fraction of such randomly chosen x’s.

Informally, Theorem 12 says that any fast enough quantum algorithm can be simulated by a
deterministic classical algorithm, with at most a polynomial blowup in query complexity, on almost
all sufficiently sparse oracles. The crucial point here is that the classical simulation still needs to
work, even in most cases where the quantum algorithm is lucky enough to find many ‘1’ bits. We
prove Theorem 12 via a combination of tail bounds and the BBBV hybrid argument [BBBV97].

In the statement of Theorem 12, we do not know whether the exponent of 5 on T is tight, and
suspect that it isn’t. We only know that the exponent needs to be at least 2, because of Grover’s
algorithm [Gro96].

We remark that Theorem 12 bears similarity to a well-known conjecture that involves simulation
of quantum query algorithms by classical algorithms. A decade ago, motivated by the question of
whether P = BQP relative to a random oracle with probability 1, Aaronson and Ambainis [AA14]
proposed the following conjecture:

Conjecture 13 ([AA14, Conjecture 1.5]; attributed to folklore). Consider a quantum algorithm Q
that makes T queries to x ∈ {0, 1}N . Then for any ε, δ > 0, there exists a deterministic classical

7Interestingly, [GSTW16]’s goal, in proving their concentration theorem for the sensitivity of AC0, was to make
progress toward a proof of the famous Sensitivity Conjecture—a goal that Huang [Hua19] achieved shortly afterward
using completely different methods. One happy corollary of this work is that, nevertheless, [GSTW16]’s attempt on
the problem was not entirely in vain.
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algorithm that makes poly
(
T, 1

ε ,
1
δ

)
queries to x, and approximates Q’s acceptance probability to

within additive error ε on a 1− δ fraction of uniformly randomly inputs x.

While Conjecture 13 has become influential in Fourier analysis of Boolean functions,8 it remains
open to this day. Theorem 12 could be seen as the analogue of Conjecture 13 for sparse oracles—an
analogue that, because of the sparseness, turns out to be much easier to prove.

We conclude with the proof of Theorem 7, showing that PP is not contained in the QMA
hierarchy relative to a random oracle. This is arguably the most technically involved part of this
work. Recall that our key contribution, and the most important step of our proof, is a random
restriction lemma for quantum query algorithms. In fact, we even prove a random restriction lemma
for functions with low quantum Merlin-Arthur (QMA) query complexity : that is, functions f where
a verifier, given an arbitrarily long “witness state,” can become convinced that f(x) = 1 by making
few queries to x. Notably, our definition of QMA query complexity does not care about the length
of the witness, but only the number of queries made by the verifier. This property allows us to
extend our results to complexity classes beyond QMA, such as QMIP.

An informal statement of our random restriction lemma is given below:

Theorem 14 (Theorem 64, informal). Consider a partial function f : {0, 1}N → {0, 1,⊥} with QMA
query complexity at most polylog(N). For some p = 1√

Npolylog(N)
, let ρ be a random restriction that

leaves each variable unrestricted with probability p. Then fρ is 1
quasipoly(N) -close, in expectation over

ρ, to a polylog(N)-width DNF formula.9

An unusual feature of Theorem 14 is that we can only show that fρ is close to a simple function
in expectation. By contrast, H̊astad’s switching lemma for DNF formulas [H̊as87] shows that the
restricted function reduces to a simple function with high probability, so in some sense our result is
weaker. Additionally, unlike the switching lemma, our result has a quantitative dependence on the
number of inputs N . Whether this dependence can be removed (so that the bound depends only on
the number of queries) remains an interesting problem for future work.

With Theorem 14 in hand, proving that PP 6⊂ QMAQMAQMA···
relative to a random oracle is

conceptually analogous to the proof that PP 6⊂ PH relative to a random oracle [H̊as87]. We first

view a QMAQMAQMA···
machine as a small constant-depth circuit in which the gates are functions of

low QMA query complexity. Then we want to argue that the probability that such a circuit agrees
with the Parity function on a random input is small. We accomplish this via repeated application
of Theorem 14, interleaved with H̊astad’s switching lemma for DNF formulas [H̊as87].

To elaborate further, we first take a random restriction that, by Theorem 14, turns all of the
bottom-layer QMA gates into DNF formulas. Next, we apply another random restriction and appeal
to the switching lemma to argue that these DNFs reduce to functions of low decision tree complexity,
which can be absorbed into the next layer of QMA gates. Finally, we repeat as many times as
needed until the entire circuit collapses to a low-depth decision tree. Since the Parity function
reduces to another Parity function under any random restriction, we conclude that this decision

8In the context of Fourier analysis, the Aaronson-Ambainis Conjecture usually refers to a closely-related conjecture
about influences of bounded low-degree polynomials; see e.g. [Mon12, OZ16]. Aaronson and Ambainis [AA14] showed
that this related conjecture implies Conjecture 13.

9By saying that fρ is “close” to a DNF formula, we mean that there exists a DNF g depending on ρ such that the
fraction of inputs on which fρ and g agree is 1− 1

quasipoly(N)
, in expectation over ρ. In Section 5.2, we introduce some

additional notation and terminology that makes it easier to manipulate such expressions, but we will not use them in
this exposition.
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tree will disagree with the reduced Parity function on a large fraction of inputs, and hence the
original circuit must have disagreed with the Parity function on a large fraction of inputs as well.

Of course, the actual proof of Theorem 7 is more complicated because of the accounting needed
to bound the error introduced from Theorem 14, but all of the important concepts are captured
above.

We end with a few remarks on the proof ideas needed for Theorem 14. Essentially, the first
step involves proving that if we take a function f computed by a quantum query algorithm Q, a
random restriction ρ, and a uniformly random input x to fρ, then x likely contains a small set K of
“influential” variables. These influential variables have the property that for any string y that agrees
with x on K, |Pr[Q(x) = 1]− Pr[Q(y) = 1]| is bounded by a small constant. Hence, K serves as a
certificate for fρ’s behavior on x.

Proving that such a K usually exists amounts to a careful application of the BBBV Theorem
[BBBV97]; the reader may find the details in Theorem 59. Finally, we generalize from quantum
query algorithms to arbitrary QMA query algorithms by observing that we only need to keep track
of the certificates for inputs x such that fρ(x) = 1. The DNF we obtain in Theorem 14 is then
simply the OR of all of these small 1-certificates.

2 Preliminaries

2.1 Notation and Basic Tools

We denote by [N ] the set {1, 2, . . . , N}. For a finite set S, |S| denotes the size of S. If D is a
probability distribution, then x ∼ D means that x is a random variable sampled from D. If v is a
real or complex vector, then ||v|| denotes the Euclidean norm of v.

We use poly(n) to denote an arbitrary polynomially-bounded function of n, i.e. a function f
for which there is a constant c such that f(n) ≤ nc for all sufficiently large n. Likewise, we use
polylog(n) for an arbitrary f satisfying f(n) ≤ log(n)c for all sufficiently large n, and quasipoly(n)
for an arbitrary f satisfying f(n) ≤ 2log(n)c for all sufficiently large n.

For a string x ∈ {0, 1}N , |x| denotes the length of x. Additionally, if i ∈ [N ], then x⊕i denotes
the string obtained from x by flipping the ith bit. Similarly, if S ⊆ [N ], then x⊕S denotes the
string obtained from x by flipping the bits corresponding to all indices in S. For sets S ⊆ [N ], we
sometimes use {0, 1}S to denote mappings from S to {0, 1}; these may equivalently be identified
with strings in {0, 1}|S| obtained by concatenating the bits of the mapping in order. We denote by
x|S the string in {0, 1}S obtained by restricting x to the bits indexed by S.

We view partial Boolean functions as functions of the form f : S → {0, 1,⊥}, where the domain
of f is Dom(f) := {x ∈ S : f(x) ∈ {0, 1}}. We use ⊥ (instead of ∗) to refer to the evaluation of f
on inputs outside the domain so as to avoid conflicting with our notation for random restrictions;
see Section 2.4 below.

We use the following forms of the Chernoff bound:

Fact 15 (Chernoff bound). Suppose X1, . . . , Xn are independent identically distributed random
variables where Xi = 1 with probability p and Xi = 0 with probability 1− p. Let X =

∑n
i=1Xi and

let µ = E[X] = pn. Then for all δ ≥ 0 it holds that:

Pr [X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ ,

Pr [X ≤ (1− δ)µ] ≤ e−
δ2µ

2 ,
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Additionally, if δ ≤ 1, then we may use the weaker bound:

Pr [X ≥ (1 + δ)µ] ≤ e−
δ2µ

3 .

We also require Hoeffding’s inequality, which generalizes Fact 15 to sums of arbitrary independent
bounded random variables:

Fact 16 (Hoeffding’s inequality). Suppose X1, . . . , Xn are independent random variables subject to
ai ≤ Xi ≤ bi for all i. Let X =

∑n
i=1Xi and let µ = E[X]. Then for all δ ≥ 0 it holds that:

Pr [X ≥ (1 + δ)µ] ≤ exp

(
− 2δ2µ2∑n

i=1(bi − ai)2

)
.

2.2 Complexity Classes and Oracles

We assume familiarity with basic complexity classes, including: P, NP, PH =
⋃∞
k=0 ΣP

k , PP, P#P,
BQP, QCMA, and QMA; see e.g. the Complexity Zoo10 for definitions. For one of these complexity
classes C, PromiseC denotes the corresponding class of promise problems. Recall that a promise
problem can be viewed as a partial function Π : {0, 1}∗ → {0, 1,⊥}. We say that a language
A : {0, 1}∗ → {0, 1} extends Π if for all x ∈ Dom(Π), Π(x) = A(x).

In this work, we follow the convention that an algorithm refers to a (possibly probabilistic)
abstract procedure, while a machine refers to a computational problem (either a language or promise
problem) that is decided by an algorithm. For example, if A is a polynomial-time quantum algorithm,
and M is the PromiseBQP machine corresponding to A, then this means that M : {0, 1}∗ → {0, 1,⊥}
is defined by:

M(x) :=


0 Pr[A(x) = 1] ≤ 1

3 ,

1 Pr[A(x) = 1] ≥ 2
3 ,

⊥ otherwise.

Note that, while A defines a probabilistic procedure, M has no further randomness in its definition
after rounding the acceptance probabilities of A.

We frequently make use of complexity classes augmented with oracles, where we use the standard
notation that CO denotes a complexity class C augmented with oracle O. We also consider oracles
for promise problems in the standard way: if C is a complexity class and Π a promise problem, then
a language (or promise problem) L is in CΠ if there exists a C oracle machine M such that, for every
language A that extends Π, MA decides L. We also take this as a definition of MΠ:

MΠ(x) :=


0 ML(x) = 0 for every language L that extends Π,

1 ML(x) = 1 for every language L that extends Π,

⊥ otherwise.

We remark that it is not clear to us if this is the “right” way to define queries to a promise
problem for quantum complexity classes, such as BQPΠ or QMAΠ. If we have query access to some
quantum algorithm that “solves” a promise problem, that algorithm could conceivably behave
arbitrarily (even non-unitarily) on the inputs outside of the promise: there is no guarantee that it
decides some language, as we assume above. However, since we are chiefly interested in proving lower
bounds on QMA complexity, this distinction makes little difference to us: our choice of definition

10https://complexityzoo.net/Complexity_Zoo
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could only possibly make the class QMAΠ more powerful than if the oracle could have worse behavior
on non-promise inputs. Whether complexity classes such as BQPΠ and QMAΠ are robust with
respect to the notion of promise problem queries remains an interesting question for future work.11

If C and D are both complexity classes, then CD :=
⋃
L∈D CL. A tower of relativized complexity

classes such as CDO should be understood as C(DO), which is to say that notation for relativization,
like exponentiation, is right associative. Nevertheless, in such cases, we can always view a language
(or promise problem) in a complexity class such as CDO as being specified by a CD oracle machine.

For example, a language in PNPO is uniquely specified by (1) a P oracle machine A (a polynomial-time
deterministic oracle Turing machine), (2) an NP oracle machine B (a polynomial-time nondetermin-
istic oracle Turing machine), and (3) the oracle O. In such cases, we may refer to the pair 〈A,B〉 as
a PNP oracle machine.

We define a quantum analogue of the polynomial hierarchy that we call QMAH, and denote by
PromiseQMAH the promise version of this class. Let PromiseQMAH1 = PromiseQMA, and for k > 1
we recursively define:

PromiseQMAHk := PromiseQMAPromiseQMAHk−1 ,

Then, analogous to PH, we take:

PromiseQMAH :=

∞⋃
k=1

PromiseQMAHk

QMAH denotes the set of languages in PromiseQMAH.
We note that there are many other possible ways to define a quantum analogue of the polynomial

hierarchy (see [GSS+18]), and that our definition appears to differ from all others that we are aware
of. The definition we give is closest in spirit to a class called BQPH by Vinkhuijzen [Vin18], except
that we allow recursive queries to PromiseQMA instead of just QMA.

We next specify some terminology and notation that we will use for constructing oracles. We
will often find it convenient to specify oracles as a union of disjoint regions. Formally, this means
the following. Suppose we have an increasing sequence n1 < n2 < ... and an associated sequence of
functions A1, A2, . . ., where Ai : {0, 1}ni → {0, 1}. We call each Ai a region, and define the oracle
O : {0, 1}∗ → {0, 1} constructed from these regions via:

O(x) :=

{
Ai(x) |x| = ni

0 otherwise.

We may also construct oracles by joining other oracles together. For example, if we have a pair
of oracles A,B : {0, 1}∗ → {0, 1}, then O = (A,B) means that we define O : {0, 1}∗ → {0, 1} by:

O(0x) := A(x)

O(1x) := B(x).

A random oracle O is a uniformly random language where for each x ∈ {0, 1}∗, O(x) = 0 or 1
with probability 1

2 (independently for each x).

11Nevertheless, we are not the first to apply this notion of promise problem queries to quantum complexity classes:
Aaronson and Drucker [AD14] use the same definition for QMAΠ.
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2.3 Query Complexity and Related Measures

We assume some familiarity with quantum and classical query complexity. We recommend a survey
by Ambainis [Amb18] for additional background and definitions. A quantum query to a string
x ∈ {0, 1}N is implemented via the unitary transformation Ux that acts on basis states of the form
|i〉 |w〉 as Ux |i〉 |w〉 = (−1)xi |i〉 |w〉, where i ∈ [N ] and w is an index over a workspace register.

We start with some standard definitions for classical and quantum query complexity.

Definition 17 (Decision tree complexity). The decision tree complexity of a function f : {0, 1}N →
{0, 1,⊥}, also called the deterministic query complexity of f and denoted D(f), is the fewest number
of queries made by any deterministic algorithm A(x) that satisfies, for all x ∈ Dom(f), A(x) = f(x).

Definition 18 (Quantum query complexity). The (bounded-error) quantum query complexity
of a function f : {0, 1}N → {0, 1,⊥}, denoted Q(f), is the fewest number of queries made by any
quantum query algorithm A(x) that satisfies, for all x ∈ Dom(f):

• If f(x) = 1, then Pr [A(x) = 1] ≥ 2
3 , and

• If f(x) = 0, then Pr [A(x) = 1] ≤ 1
3 .

We define a notion of QMA (Quantum Merlin-Arthur) query complexity as follows.

Definition 19 (QMA query complexity). The (bounded-error) QMA query complexity of a function
f : {0, 1}N → {0, 1,⊥}, denoted QMA(f), is the fewest number of queries made by any quantum
query algorithm V(|ψ〉 , x) that takes an auxiliary input state |ψ〉 and satisfies, for all x ∈ Dom(f):

• (Completeness) If f(x) = 1, then there exists a state |ψ〉 such that Pr [V(|ψ〉 , x) = 1] ≥ 2
3 , and

• (Soundness) If f(x) = 0, then for every state |ψ〉, Pr [V(|ψ〉 , x) = 1] ≤ 1
3 .

The algorithm V is sometimes called the verifier, and the state |ψ〉 a witness.

Note that, in contrast to most previous works (c.f. [RS04, AKKT20, ST19]), our definition
of QMA query complexity completely ignores the number of qubits in the witness state |ψ〉. Our
definition is more closely related to the quantum certificate complexity QC(f) that was introduced
by Aaronson [Aar08]. The key difference between QMA(f) and QC(f) is that QMA(f) only requires
the ability to query-efficiently verify 1-inputs to the function, whereas QC(f) assumes the existence
of a query-efficient verifier on both 0- and 1-inputs. Thus, one can view QMA(f) as a one-sided
version of QC(f).12

It is important to emphasize that QMA query complexity is not completely trivial: even though
the witness can have unbounded length, the power of the verifier is still limited by the number of
queries it makes. Indeed, in some cases, the proof does not help at all. For example, for the function
ANDN on N bits that outputs 1 if all of the inputs are 1, we have Q(ANDN ) = QMA(ANDN ) =

Θ
(√

N
)

, as observed by Raz and Shpilka [RS04].

We next define sensitivity, and the related B-block sensitivity.

12In other contexts, it might be preferable to denote “one-sided quantum certificate complexity” by QC1(f), but in
this work we exclusively use QMA(f) so as to emphasize the connection to quantum Merlin-Arthur protocols.

One can also show, as a consequence of [Aar08, Theorems 4 and 7], that the verifier in the definition of QMA(f)
can be replaced by a classical randomized verifier with perfect completeness, at the cost of a quadratic increase in the
query complexity. We will not require this fact elsewhere in the paper, however.
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Definition 20 (Sensitivity). The sensitivity of a function f : {0, 1}N → {0, 1} on input x is defined
as:

sx(f) :=
∣∣{i ∈ [n] : f(x) 6= f

(
x⊕i
)}∣∣ .

The sensitivity of f is defined as:
s(f) := max

x∈{0,1}N
sx(f).

Definition 21 (B-block sensitivity). Let B = {S1, S2, . . . , Sk} be collection of disjoint subsets of
[N ]. The block sensitivity of a function f : {0, 1}N → {0, 1} on input x ∈ {0, 1}N with respect to B
is defined as:

bsxB(f) :=
∣∣{i ∈ [k] : f(x) 6= f

(
x⊕Si

)}∣∣ .
The block sensitivity of f with respect to B is defined as:

bsB(f) := max
x∈{0,1}N

bsxB(f).

Note that sensitivity is the special case of B-block sensitivity in which B is the partition into
singletons.

We require a somewhat unusual definition of certificate complexity. Our definition agrees with
the standard definition for total functions, but may differ for partial functions.

Definition 22 (Certificate complexity). Let f : {0, 1}N → {0, 1,⊥}, and suppose x ∈ Dom(f). A
certificate for x on f , also called an f(x)-certificate, is a set K ⊆ [N ] such that for any y ∈ Dom(f)
satisfying yi = xi for all i ∈ K, f(x) = f(y).

The certificate complexity of f on x, denoted Cx(f), is the minimum size of any certificate for
f on x. The certificate complexity of f is defined as:

C(f) := max
x∈{0,1}N

Cx(f).

Intuitively, in this definition of certificate complexity, a b-certificate for b ∈ {0, 1} witnesses that
f(x) 6= 1− b, in contrast to the standard definition where a b-certificate witnesses that f(x) = b.

2.4 Random Restrictions

A restriction is a function ρ : [N ]→ {0, 1, ∗}. A random restriction with Pr[∗] = p is a distribution
over restrictions in which, for each i ∈ [N ], we independently sample:

ρ(i) =


0 with probability 1−p

2

1 with probability 1−p
2

∗ with probability p.

If f : {0, 1}N → {0, 1,⊥} is a function and ρ is a restriction where S = {i ∈ [N ] : ρ(i) = ∗},
we denote by fρ : {0, 1}S → {0, 1,⊥} the function obtained from f by fixing the inputs where
ρ(i) ∈ {0, 1}. We call the remaining variables the unrestricted variables. We sometimes apply
restrictions to functions fi that have a subscript in the name, in which case we denote the restricted
function by fi|ρ for notational clarity.

In this work, we also make use of projections, which are a generalization of restrictions that were
introduced in [HRST17]. The exact definition of projections is unimportant for us, but intuitively,
they are restrictions where certain unrestricted variables may be mapped to each other; see [HRST17]
for a more precise definition. We use the same notation fρ for applying a projection ρ to a function
f as we do for restrictions.
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2.5 Circuit Complexity

In this work, we consider Boolean circuits where the gates can be arbitrary partial Boolean functions
f : {0, 1}N → {0, 1,⊥}. On input x ∈ {0, 1,⊥}N , a circuit gate labeled by f evaluates to b ∈ {0, 1}
if, for all y ∈ {0, 1}N that extend x (meaning, for all i ∈ [n], xi ∈ {0, 1} implies yi = xi), we have
f(y) = b; otherwise, the gate evaluates to ⊥.

We always specify the basis of gates allowed in Boolean circuits. Most commonly, we will
consider Boolean circuits with AND, OR, and NOT gates where the AND and OR gates can have
unbounded fan-in, but we will also consider e.g. circuits where the gates can be arbitrary functions
of low QMA query complexity.

The size of a circuit is the number of gates of fan-in larger than 1 (i.e. excluding NOT gates).
The depth of circuit is the length of the longest path from an input variable to the output gate,
ignoring gates of fan-in 1.

An AND/OR/NOT circuit is alternating if all NOT gates are directly above the input, and
all paths from the inputs to the output gate alternate between AND and OR gates. A circuit is
layered if for each gate g in the circuit, the distance from g to the output gate is the same along all
paths. We denote by AC0[s, d] the set of alternating, layered AND/OR/NOT circuits of size at
most s and depth at most d. By a folklore result, any AND/OR/NOT circuit can be turned into
an alternating, layered circuit of the same depth at the cost of a small (constant multiplicative)
increase in size.

A DNF formula, also just called a DNF, is a depth-2 AC0 circuit where the top gate is an OR
gate (i.e. the circuit is an OR of ANDs). The width of a DNF is the maximum fan-in of any of the
AND gates.

We require the following results in circuit complexity.

Theorem 23 ([H̊as87, Lemma 7.8]). For every constant d, there exists a constant c such that for
all sufficiently large N , for all C ∈ AC0

[
2N

c
, d
]
, one has:

Pr
x∼{0,1}N

[C(x) = ParityN (x)] ≤ 0.6,

where ParityN is the parity function on N bits.

Theorem 24 ([HRST17, Proof of Theorem 10.1]). For all constant d ≥ 2 and all sufficiently large
m ∈ N, there exists a function Sipserd ∈ AC0

[
2Θ(m), d

]
with N = 2Θ(m) inputs, and a class R of

random projections such that the following hold:

(a) For some value b = 2−m
(
1−O

(
2−m/2

))
, for any function f : {0, 1}N → {0, 1,⊥},

Pr
x∼{0,1}N

[f(x) = Sipserd(x)] = Pr
x∼D,ρ∼R

[
fρ(x) = Sipserd|ρ(x)

]
,

where D is the distribution over bit strings in which each coordinate is 0 with probability b and 1
with probability 1− b.

Additionally, let C ∈ AC0[s, d− 1]. If we sample ρ ∼ R, then:

(b) Except with probability at most s2−2m/2−4
, D (Cρ) ≤ 2m/2−4.

(c) Except with probability at most O
(
2−m/2

)
, Sipserd|ρ is reduced to an AND gate of fan-in

(ln 2) · 2m ·
(
1±O

(
2−m/4

))
.
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An exact definition of the Sipserd function is not important for us, but to help give some
intuition, we mention a few of its other important properties. Sipserd can be constructed as a
depth-regular read-once monotone formula in which the gates at odd distance from the input are
AND gates and the gates at even distance are OR gates. Additionally, for each i ∈ [d], the gates at
distance i from the inputs all have the same fan-in fi. These fis satisfy f1 = 2m and fi = 2Θ(m)

for i > 1. This regularity allows for an appropriately scaled version of the Sipserd function (or
its negation) to be computed in ΣP

d−1. Specifically, given an oracle O : {0, 1}dlogNe → {0, 1}, and

viewing the first N bits of the truth table of O as an input x to Sipserd, a ΣPO
d−1 machine can evaluate

Sipserd(x) (if d is even, otherwise 1− Sipserd(x) if d is odd) in time polylog(N) = poly(m). See
[RST15, HRST17] for further details.

[HRST17] roughly explains the intuitive meaning of the above theorem as follows. Property (a)
guarantees that the distribution R of random projections completes to the uniform distribution.
Property (b) shows that the circuit C simplifies with high probability under a random projection,
while property (c) shows that Sipserd retains structure under this distribution of projections with
high probability. A simple corollary of these properties is the following:

Corollary 25 ([HRST17, Theorem 10.1]). Let Sipserd be the function defined in Theorem 24 on
N = 2Θ(m) bits. Let C ∈ AC0[s, d− 1]. Then, for all sufficiently large m, we have:

Pr
x∼{0,1}N

[C(x) = Sipserd(x)] ≤ 1

2
+O

(
2−m/4

)
+ s2−2m/2−4

.

Circuit complexity lower bounds are an indispensable tool for proving separations of relativized
complexity classes, as was first observed by Furst, Saxe, and Sipser [FSS84]. This connection can
be formalized via the following lemma, which shows that the behavior of any PH oracle machine
can be computed by an AC0 circuit whose inputs are the bits of the oracle string.

Lemma 26 (Implicit in [FSS84, Lemma 2.3]). Let M be a ΣP
k oracle machine, and let p(n) be a

polynomial upper bound on the running time of M on inputs of length n. Then for any x ∈ {0, 1}n,
there exists a circuit C ∈ AC0

[
2poly(n), k + 1

]
such that for any oracle O : {0, 1}∗ → {0, 1}, we have:

MO(x) = C
(
O[p(n)]

)
,

where O[p(n)] denotes the concatenation of the bits of O on all strings of length at most p(n).

Thus, lower bounds on AC0 circuit complexity give rise to oracle separations involving PH.
In particular, average-case lower bounds on the size of AC0 circuits can be used to construct
separations relative to random oracles. For example, Theorem 23 implies that P#P 6⊂ PH relative to
a random oracle [H̊as87], while Corollary 25 implies that ΣP

k+1 6⊂ ΣP
k relative to a random oracle

[HRST17, RST15].
In most cases, when applying Lemma 26 to jump between PH oracle machines and AC0 circuits,

we follow the convention of using n to denote the length of an input to the PH machine, and N to
denote the (exponentially larger) size of the input to the corresponding AC0 circuit. For example, we
might consider a PH machine that queries a function f : {0, 1}p(n) → {0, 1}, where p(n) ≤ poly(n).
The truth table of f can be interpreted as a string of length N = 2p(n). The corresponding AC0

circuit will have N inputs and size s ≤ 2poly(n). Thus, when we view s as a function of the input
size N of the circuit, we have the bound s ≤ quasipoly(N).
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2.6 Other Background

The form of the Raz-Tal Theorem stated below forms the basis for several of our results. It states
that there exists a distribution that looks pseudorandom to small constant-depth AC0 circuits, but
that is easily distinguishable from random by an efficient quantum algorithm.

Theorem 27 ([RT19, Theorem 1.2]). For all sufficiently large N , there exists an explicit distribution
FN that we call the Forrelation distribution over {0, 1}N such that:

1. There exists a quantum algorithm A that makes polylog(N) queries and runs in time polylog(N)
such that: ∣∣∣∣ Pr

x∼FN
[A(x) = 1]− Pr

y∼{0,1}N
[A(y) = 1]

∣∣∣∣ ≥ 1− 1

N2
.

2. For any C ∈ AC0[quasipoly(N), O(1)]:∣∣∣∣ Pr
x∼FN

[C(x) = 1]− Pr
y∼{0,1}N

[C(y) = 1]

∣∣∣∣ ≤ polylog(N)√
N

.

Note that, by standard amplification techniques, the 1
N2 in the above theorem can be replaced

by any δ ≤ 2−polylog(N) at a cost of polylog(N) in the other parameters. For our purposes, the above
theorem suffices as written. In some cases where N is clear from context, we omit the subscript and
write the distribution as F . Additionally, in a slight abuse of notation, we sometimes informally
call the decision problem of distinguishing a sample from FN from a sample from the uniform
distribution the Forrelation problem.

The next lemma was essentially shown in [BBBV97]. We provide a proof for completeness.

Lemma 28. Consider a quantum algorithm Q that makes T queries to x ∈ {0, 1}N . Write the
state of the quantum algorithm immediately after t queries to x as:

|ψt〉 =
N∑
i=1

∑
w

αi,w,t |i, w〉 ,

where w are indices over a workspace register. Define the query magnitude qi of an input i ∈ [N ] by:

qi :=

T∑
t=1

∑
w

|αi,w,t|2 .

Then for any y ∈ {0, 1}N , we have:

|Pr [Q(x) = 1]− Pr [Q(y) = 1]| ≤ 8
√
T ·
√ ∑
i:xi 6=yi

qi.

Proof. Denote by |ψ′t〉 the state of the quantum algorithm after t queries, where the first t − 1
queries are to x and the tth query is to y. For t > 0, we have:

|| |ψt〉 − |ψ′t〉 || =

∣∣∣∣∣∣
∣∣∣∣∣∣2
∑

i:xi 6=yi

∑
w

αi,w,t |i, w〉

∣∣∣∣∣∣
∣∣∣∣∣∣

= 2

√ ∑
i:xi 6=yi

∑
w

|αi,w,t|2.
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Hence, if we denote by |ϕt〉 the state of the quantum algorithm after t queries, where all t queries
are to y, then:

|Pr [Q(x) = 1]− Pr [Q(y) = 1]| ≤ 4|| |ψT 〉 − |ϕT 〉 ||

≤
T∑
t=1

8

√ ∑
i:xi 6=yi

∑
w

|αi,w,t|2

≤ 8
√
T ·

√√√√ T∑
t=1

∑
i:xi 6=yi

∑
w

|αi,w,t|2

= 8
√
T ·
√ ∑
i:xi 6=yi

qi.

Above, the first line holds by [BV97, Lemma 3.6]; the second line is valid by the BBBV hybrid
argument used in [BBBV97, Theorem 3.3]; the third line applies the Cauchy-Schwarz inequality,
viewing the summation as the inner product between the all 1s vector and the terms of the sum;
and the last line substitutes the definition of qi.

3 Consequences of the Raz-Tal Theorem

In this section, we prove several oracle separations that build on the Raz-Tal Theorem (Theorem 27)
and other known circuit lower bounds.

3.1 Relativizing (Non-)Implications of NP ⊆ BQP

Our first result proves the following:

Theorem 29. There exists an oracle relative to which BQP = P#P and PH is infinite.

The proof idea is as follows. First, we take a random oracle, which makes PH infinite [HRST17,
RST15]. Then, we encode the answers to all possible P#P queries in instances of the Forrelation
problem, allowing a BQP machine to efficiently decide any P#P language. We then leverage
Theorem 27 to argue that adding these Forrelation instances does not collapse PH, because the
Forrelation instances look random to PH algorithms. The formal proof is given below.

Proof of Theorem 29. We will inductively construct this oracle O, which will consist of two parts,
A and B. Denote the first part of the oracle A, and let this be a random oracle. For each t ∈ N, we
will add a region of B called Bt that will depend on the previously constructed parts of the oracle.
For convenience, we let At denote the region of A corresponding to inputs of length t, and we write
Ot = (At, Bt).

Let St be the set of all ordered pairs of the form 〈M,x〉 such that:

1. M is a P#P oracle machine and x is an input to M ,

2. 〈M,x〉 takes less than t bits to specify, and

3. M is syntactically restricted to run in less than t steps, and to query only the O1,O2, . . . ,Ob√tc
regions of the oracle.
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Note that there are at most 2t elements in St. Let M1,M2, . . . ,M2t be an enumeration of St. For each
Mi in St, we add a function fi : {0, 1}t2 → {0, 1} into Bt. That is, we define Bt : {0, 1}t×{0, 1}t2 →
{0, 1} by Bt(i, x) := fi(x). The function fi is chosen subject to the following rules:

1. If Mi accepts, then fi is drawn from the Forrelation distribution F
2t2

(given in Theorem 27).

2. If Mi rejects, then fi is uniformly random.

Let D be the resulting distribution over oracles O = (A,B).

Claim 30. BQPO = P#PO with probability 1 over O.

Proof of Claim. It suffices to show that P#PO ⊆ BQPO, as the reverse containment holds relative
to all oracles. Let M be any P#P oracle machine. Then given an input x of size n, a quantum
algorithm can decide whether MO(x) accepts in poly(n) time by looking up the appropriate Bt, the
one that contains a Forrelation instance fi : {0, 1}t2 → {0, 1} encoding the behavior of 〈M,x〉,
and then deciding whether fi is Forrelated or random by using the distinguishing algorithm A from
Theorem 27.

In more detail, by Theorem 27 we know that:

Pr
O∼D

[
A(fi) 6= MO(x)

]
≤ 2−2t2 ,

where the probability in the above expression is also taken over the randomness of A. By Markov’s
inequality, we may conclude:

Pr
O∼D

[
Pr
[
A(fi) 6= MO(x)

]
≥ 1/3

]
≤ 3 · 2−2t2 .

Hence, the BQP promise problem defined by A agrees with the P#P language on 〈M,x〉, except
with probability at most 3 · 2−2t2 .

We now appeal to the Borel-Cantelli Lemma to argue that, with probability 1 over O ∼ D, A
correctly decides MO(x) for all but finitely many x ∈ {0, 1}∗. Since there are at most 2t inputs
〈M,x〉 that take less than t bits to specify, we have:

∑
〈x,M〉∈{0,1}∗

Pr
O∼D

[
AO does not decide MO(x)

]
≤
∞∑
t=1

2t · 3 · 2−2t2 <∞

Therefore, the probability that A fails on infinitely many inputs 〈M,x〉 is 0. Hence, A can be
modified into a BQP algorithm that decides MO(x) for all x ∈ {0, 1}∗, with probability 1 over
O ∼ D.

Now, we must show that PHO is infinite. We will accomplish this by proving, for all k ∈ N,
ΣPO
k 6= ΣPO

k−1 with probability 1 over the choice of O. Let LO be the unary language used for the same

purpose as in [RST15, HRST17]. That is, LO consists of strings 0n such that, if we treat n as an index
into a portion of the random oracle An that encodes a size-2n instance of the Sipserk+1 function,
then that instance evaluates to 1. By construction, LO ∈ ΣPO

k [RST15, HRST17]. Furthermore,

[RST15, HRST17] show that LO is not in ΣPA

k−1 with probability 1 over the random oracle A. We

need to argue that adding B has probability 0 of changing this situation. Fix any ΣPO
k−1 oracle

machine M . By the union bound, it suffices to show that

Pr
O∼D

[
MO decides LO

]
= 0.
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Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
O∼D

[
MO correctly decides 0ni |MO correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
O∼D

[
MO decides LO

]
≤
∞∏
i=1

p(M, i).

Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many
i. To do this, we will consider a new quantity q(M, i), which is defined exactly the same way as
p(M, i), except that now the oracle is chosen from a different distribution, which we call Di. This
Di is defined identically to D on A and B1, . . . , Bni , but is uniformly random on Bm for all m > ni.
It suffices to prove the following: for any fixed M ,

(a) q(M, i) ≤ 0.6 for all but finitely many values of i, and

(b) |q(M, i)− p(M, i)| ≤ 0.1 for all but finitely many values of i.

Statement (a) essentially follows from the work of [HRST17]. In more detail, the key observation
is that the only portion of O that can depend on whether 0ni is in LO is the input to the size-2ni

Sipserk+1 function that is encoded in A. All other portions of O are sampled independently from
this region under Di:

1. The rest of A is sampled uniformly at random,

2. B1, . . . , Bni are drawn from a distribution that cannot depend on any queries to A on inputs
of length b√nic or greater (so in particular, they cannot depend on Ani), and

3. Bni+1, Bni+2, . . . are sampled uniformly at random.

Hence, M is forced to evaluate the size-2ni Sipserk+1 function using only auxilliary and uncorrelated
random bits. By the well-known connection between ΣP

k−1 oracle machines and constant-depth

circuits (Lemma 26), M ’s behavior on this size-2ni string can be computed by an AC0
[
2poly(ni), k

]
circuit. Corollary 25 shows that such a circuit correctly evaluates this Sipserk+1 function with
probability greater than (say) 0.6 for at most finitely many i. This even holds conditioned on MO

correctly deciding 0n1 , . . . , 0ni−1 , because the size-2ni Sipserk+1 instance is chosen independently
from the smaller instances, and because M (0ni) can query the oracle on strings of length ni+1 or
greater for at most finitely many values of i.

For statement (b), we will prove this claim using a hybrid argument. We consider an infinite
sequence of hybrids {Di,j : j ∈ N} between Di = Di,0 and D, where in the jth hybrid Di,j we
sample A and B1, . . . , Bni+j according to D and Bni+j+1, Bni+j+2, . . . uniformly at random. The
change between each Di,j−1 and Di,j may be further decomposed into a sequence of smaller changes:

from the uniform distribution U to the Forrelated F , for each function f : {0, 1}(ni+j)2 → {0, 1}
corresponding to a P#P oracle machine that happens to accept.

Suppose we fix the values of O on everything except for f . Theorem 27 implies that:∣∣∣∣ Pr
f∼F

[
MO (0ni) = 1

]
− Pr
f∼U

[
MO (0ni) = 1

]∣∣∣∣ ≤ poly(ni)

2(ni+j)2/2
. (1)
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This is because, again using Lemma 26, there exists an AC0
[
2poly(ni), k

]
circuit that takes the oracle

string as input and evaluates to MO (0ni). In fact, (1) also holds even if the parts of O other than
f are not necessarily fixed, but are drawn from some distribution, by convexity (so long as the
distribution is the same in both of the probabilities in (1)). In particular, using the fact that the
nis are far enough apart for sufficiently large i, (1) also holds (for all sufficiently large i) when the
parts of O other than f are drawn from the distribution conditioned on MO correctly deciding
0n1 , . . . , 0ni−1 .

Now, recall that there are at most 2t Forrelation instances in the Bt part of the oracle. By
the triangle inequality, bounding over each of these instances yields:∣∣∣∣ Pr

O∼Di,j−1

[
MO (0ni) = 1

]
− Pr
O∼Di,j

[
MO (0ni) = 1

]∣∣∣∣ ≤ 2ni+j · poly(ni)

2(ni+j)2/2
,

where we implicitly condition on MO correctly deciding 0n1 , . . . , 0ni−1 in both of the probabilities
above, omitting it as written purely for notational simplicity. Hence, when we change all of the
hybrids, we obtain:

|q(M, i)− p(M, i)| =
∣∣∣∣ Pr
O∼Di

[
MO (0ni) = 1

]
− Pr
O∼D

[
MO (0ni) = 1

]∣∣∣∣
≤
∞∑
j=1

2ni+j · poly(ni)

2(ni+j)2/2

≤ poly(ni)

2Ω(n2
i )

≤ 0.1

for all but at most finitely many i.

We conclude this section with a simple corollary.

Corollary 31. There exists an oracle relative to which BQP 6⊂ NP/poly.

Proof. It is known that for all oracles O, coNPO ⊂ NPO/poly implies that PHO collapses to the third
level [Yap83]. Let O be the oracle used in Theorem 29. Since PHO is infinite, coNPO 6⊂ NPO/poly.
On the other hand, coNPO ⊆ BQPO, and hence BQPO 6⊂ NPO/poly.

3.2 Weak NP, Strong BQP

In this section, we prove the following:

Theorem 32. There exists an oracle relative to which P = NP 6= BQP = P#P.

Note that, relative to any oracle, P = NP implies P = PH. So, the Raz-Tal oracle separation
of BQP and PH [RT19] is necessary to prove Theorem 32, in the sense that Theorem 32 is strictly
stronger: any oracle O that satisfies Theorem 32 must also have BQPO 6⊂ PHO.

We follow a similar proof strategy to Theorem 29, with some additional steps. First, we take
a random oracle, which separates PH from P#P (morally, because Parity is not approximable
by AC0 circuits [H̊as87]). We encode the answers to all possible P#P queries in instances of the
Forrelation problem, allowing a BQP machine to efficiently decide any P#P language. Then, we
add a region of the oracle that answers all NP queries, which collapses PH to P. Finally, we leverage
Theorem 27 to argue that the Forrelation instances have no effect on the separation between PH
and P#P, because the Forrelation instances look random to PH algorithms. The formal proof is
given below.
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Proof of Theorem 32. This oracle O will consist of three parts: a random oracle A, and oracles B
and C that we will construct inductively. For each t ∈ N, we will add regions Bt and Ct that will
depend on the previously constructed parts of the oracle. For convenience, we let At denote the
region of A corresponding to inputs of length t, and we write Ot = (At, Bt, Ct).

We first describe B, which will effectively collapse P#P to BQP. For t ∈ N, let St be the set of
all ordered pairs of the form 〈M,x〉 such that:

1. M is a P#P oracle machine and x is an input to M ,

2. 〈M,x〉 takes less than t bits to specify, and

3. M is syntactically restricted to run in less than t steps, and to query only the O1,O2, . . . ,Ob√tc
regions of the oracle.

Note that there are at most 2t elements in St. Let M1,M2, . . . ,M2t be an enumeration of St. For each
Mi in St, we add a function fi : {0, 1}t2 → {0, 1} into Bt. That is, we define Bt : {0, 1}t×{0, 1}t2 →
{0, 1} by Bt(i, x) := fi(x). The function fi is chosen subject to the following rules:

1. If Mi accepts, then fi is drawn from the Forrelation distribution F
2t2

(given in Theorem 27).

2. If Mi rejects, then fi is uniformly random.

We next describe C, which will effectively collapse NP to P. For t ∈ N, define Tt similarly to St,
except that we take NP oracle machines instead of P#P oracle machines. For each Mi in Tt, we add
a bit into Ct that returns Mi(x). That is, we define Ct : {0, 1}t → {0, 1} by Ct(i) := Mi(x).

Let D be the resulting distribution over oracles O = (A,B,C). We will show that the statement
of the theorem holds with probability 1 over O sampled from D.

Claim 33. PO = NPO with probability 1 over O.

Claim 34. BQPO = P#PO with probability 1 over O.

The proof of Claim 33 is trivial: given an NPO machine M and input x, a polynomial time
algorithm can decide M(x) by simply looking up the bit in C that encodes M(x). The proof of
Claim 34 is identical to the proof of Claim 30 in Theorem 29, so we omit it.

To complete the proof, we will show that NPO 6= P#PO with probability 1 over O. Let LO be
the following unary language: LO consists of strings 0n such that, if we treat n as an index into
a portion of the random oracle An of size 2n, then the parity of that length-2n string is 1. By
construction, LO ∈ P#PO . We will show that LO 6∈ NPO with probability 1 over O.

Fix any NPO oracle machine M . By the union bound, it suffices to show that

Pr
O∼D

[
MO decides LO

]
= 0.

Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
O∼D

[
MO correctly decides 0ni |MO correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
O∼D

[
MO decides LO

]
≤
∞∏
i=1

p(M, i).
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Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many
i. To do this, we will consider a new quantity q(M, i), which is defined exactly the same way as
p(M, i), except that now the oracle is chosen from a different distribution, which we call Di. This
Di is defined identically to D on A, C, and B1, . . . , Bni , but is uniformly random on Bm for all
m > ni. It suffices to prove the following: for any fixed M ,

(a) q(M, i) ≤ 0.6 for all but finitely many values of i, and

(b) |q(M, i)− p(M, i)| ≤ 0.1 for all but finitely many values of i.

To prove these, we first need the following lemma, which essentially states that for any t′ ≤ poly(t),
any bit in Ct′ can be computed by a small (i.e. quasipolynomial in the input length) constant-depth
AC0 circuit whose inputs do not depend on Ci for any i > t.

Lemma 35. Fix t, d ∈ N, and let t′ ≤ t2d . For each 〈M,x〉 ∈ Tt′ , there exists an AND/OR/NOT

circuit of size at most 21+t2
d

and depth 2d that takes as input A1, A2, . . . , At2d−1 ; B1, B2, . . . , Bt2d−1 ;
and C1, C2, . . . , Ct, and outputs M(x).

Proof of Lemma. Assume t ≥ 2 (otherwise the theorem is trivial). We proceed by induction on d.
Consider the base case d = 1. By definition of Tt′ , 〈M,x〉 is an NP oracle machine that runs in less
than t′ steps and queries only the O1,O2, . . . ,Ot regions of the oracle, because t′ ≤ t2. Hence, M(x)
computes a function of certificate complexity (Definition 22) at most t′ in the bits of O1,O2, . . . ,Ot.
This function may thus be expressed as a DNF formula of width at most t′, which is in turn an
AND/OR/NOT circuit of depth 2 and size at most 2t

′
+ 1 ≤ 2t

2
+ 1 ≤ 21+t2 .

For the inductive step, let d ≥ 2. Similar to the base case, we use the definition of Tt′ to obtain
a circuit of depth 2 and size at most 2t

′
+ 1 that takes as input O1,O2, . . . ,Ot2d−1 and outputs

M(x). To complete the theorem, we use the inductive hypothesis to replace each of the inputs to
this DNF formula from the regions Ct+1, Ct+2, . . . , Ct2d−1 with the respective circuits that compute
them. This yields a circuit of depth 2d, and by the inductive hypothesis, the total number of gates
in this circuit is at most: (

2t
′
+ 1
)

+
t2
d−1∑

i=t+1

2i · 21+t2
d−1

,

because for each t + 1 ≤ i ≤ t2
d−1

, there are at most 2i bits in Ci. The above quantity is upper
bounded by:
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(
2t
′
+ 1
)

+

t2
d−1∑

i=t+1

2i · 21+t2
d−1

≤
(

2t
2d

+ 1

)
+

t2
d−1∑

i=t+1

2i · 21+t2
d−1

≤ 2t
2d

+

t2
d−1∑
i=1

2i · 21+t2
d−1

≤ 2t
2d

+ 21+t2
d−1

· 21+t2
d−1

= 2t
2d

+ 22+2t2
d−1

≤ 2t
2d

+ 24t2
d−1

≤ 2t
2d

+ 2t
2+2d−1

≤ 2t
2d

+ 2t
2d

= 21+t2
d

.

Above, the first inequality holds because t′ ≤ t2d ; the second inequality simply expands the range of
the sum (which certainly increases the sum by at least 1); the third inequality applies

∑j
i=1 2i ≤ 2j+1;

and the remaining inequalities hold because t ≥ 2 and d ≥ 2.

Note that Lemma 35 does not depend on the distribution of A and B, but only on the way C is
defined recursively in terms of A and B. Hence, it holds for both O drawn from D or drawn from
any Di. We also note that the circuit given in Lemma 35 is not in AC0 normal form (i.e. it is not
necessarily alternating and layered), but can be made so at the cost of a small increase in size.

Choosing specific parameters in Lemma 35 gives the following simple corollary:

Corollary 36. Fix an NPO oracle machine M . Let p(n) be a polynomial upper bound on the
running time of M on inputs of length n, and also on the number of bits needed to specify 〈M, 0n〉.
Then there exists an AC0

[
2p(ni)

O(1)
, O(1)

]
circuit that takes as input A, B, and C1, . . . , Cni and

computes M (0ni).

Proof of Corollary. Let t = ni and t′ = p(ni)
2. Then 〈M, 0ni〉 ∈ Tt′ , because M is restricted to

query only O1, . . . ,Op(n) by its time upper bound. Additionally, there exists d = O(1) such that

t′ ≤ t2d because t′ ≤ poly(t). The corollary follows from Lemma 35.

With Corollary 36 in hand, the remainder of the proof closely follows the proof of Theorem 29.
Statement (a) essentially follows from the work of [H̊as87]. In more detail, consider the circuit
produced by Corollary 36 that computes M (0ni). The key observation is that the only portion of
the input to this circuit that can depend on whether 0ni is in LO is the input to the size-2ni parity
function that is encoded in A. All other portions of the input are sampled independently from this
region under Di:

1. The rest of A is sampled uniformly at random,

2. B1, . . . , Bni and C1, . . . , Cni are drawn from a distribution that cannot depend on any queries
to A on inputs of length b√nic or greater (so in particular, they cannot depend on Ani), and

3. Bni+1, Bni+2, . . . are sampled uniformly at random.
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Hence, M is forced to evaluate the size-2ni parity function using only auxiliary and uncorrelated
random bits. By Theorem 23, M can do this with probability greater than 0.6 for at most finitely
many i. This even holds conditioned on MO correctly deciding 0n1 , . . . , 0ni−1 , because the size-2ni

parity instance is chosen independently from the smaller instances, and because M (0ni) can query
the oracle on strings of length ni+1 or greater for at most finitely many values of i.

For statement (b), we will prove this claim using a hybrid argument. We consider an infinite
sequence of hybrids {Di,j : j ∈ N} between Di = Di,0 and D, where in the jth hybrid Di,j we
sample A, C, and B1, . . . , Bni+j according to D and Bni+j+1, Bni+j+2, . . . uniformly at random. The
change between each Di,j−1 and Di,j may be further decomposed into a sequence of smaller changes:

from the uniform distribution U to the Forrelated F , for each function f : {0, 1}(ni+j)2 → {0, 1}
corresponding to a P#P oracle machine that happens to accept.

Suppose we “fix” the values of O on everything except for f , in the following sense. We fix A
and B, except for some particular f in B that is allowed to vary. Then, we define C recursively in
terms of A and B in the usual, deterministic way (so that changing f can affect C, but not the rest
of A and B). Theorem 27 implies that:∣∣∣∣ Pr

f∼F

[
MO (0ni) = 1

]
− Pr
f∼U

[
MO (0ni) = 1

]∣∣∣∣ ≤ poly(ni)

2(ni+j)2/2
. (2)

This is because, by Corollary 36, there exists an AC0
[
2poly(ni), O(1)

]
circuit that takes A, B, and

C1, . . . , Cni as input and evaluates to MO (0ni). In fact, (2) also holds even if the parts of A, B,
and C1, . . . , Cni other than f are not necessarily fixed, but are drawn from some distribution, by
convexity (so long as the distribution is the same in both of the probabilities in (2)). In particular,
using the fact that the nis are far enough apart for sufficiently large i, (2) also holds (for all
sufficiently large i) when the parts of A, B, and C1, . . . , Cni other than f are drawn from the
distribution conditioned on MO correctly deciding 0n1 , . . . , 0ni−1 .

Now, recall that there are at most 2t Forrelation instances in the Bt part of the oracle. By
the triangle inequality, bounding over each of these instances yields:∣∣∣∣ Pr

O∼Di,j−1

[
MO (0ni) = 1

]
− Pr
O∼Di,j

[
MO (0ni) = 1

]∣∣∣∣ ≤ 2ni+j · poly(ni)

2(ni+j)2/2
,

where we implicitly condition on MO correctly deciding 0n1 , . . . , 0ni−1 in both of the probabilities
above, omitting it as written purely for notational simplicity. Hence, when we change all of the
hybrids, we obtain:

|q(M, i)− p(M, i)| =
∣∣∣∣ Pr
O∼Di

[
MO (0ni) = 1

]
− Pr
O∼D

[
MO (0ni) = 1

]∣∣∣∣
≤
∞∑
j=1

2ni+j · poly(ni)

2(ni+j)2/2

≤ poly(ni)

2Ω(n2
i )

≤ 0.1

for all but at most finitely many i.
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4 Fine Control over BQP and PH

4.1 BQPPH Lower Bounds for Sipser Functions

In this section, we prove that BQPΣP
k does not contain ΣP

k+1 relative to a random oracle, generalizing
the known result that PH is infinite relative to a random oracle [HRST17, RST15].

We first require the following form of the BBBV Theorem [BBBV97]. It essentially states that
a quantum algorithm that makes few queries to its input is unlikely to detect small random changes
to the input. Viewed another way, Lemma 37 is just a probabilistic version of Lemma 28.

Lemma 37. Consider a quantum algorithm Q that makes T queries to x ∈ {0, 1}N . Let y ∈ {0, 1}N
be drawn from some distribution such that, for all i ∈ [N ], Pry [xi 6= yi] ≤ p. Then for any r > 0:

Pr
y

[|Pr [Q(y) = 1]− Pr [Q(x) = 1]| ≥ r] ≤ 64pT 2

r2

Proof. Let Q be the quantum query algorithm corresponding to f . By Lemma 28, we have that for
any fixed y:

|Pr [Q(x) = 1]− Pr [Q(y) = 1]| ≤ 8
√
T ·
√ ∑
i:xi 6=yi

qi,

where we recall the definition of the query magnitudes qi which depend on the algorithm’s behavior
on input x, and which satisfy

∑n
i=1 qi = T . This implies that:

Pr
y

[|Pr [Q(y) = 1]− Pr [Q(x) = 1]| ≥ r] ≤ Pr
y

8
√
T ·
√ ∑
i:xi 6=yi

qi ≥ r


= Pr

y

 ∑
i:xi 6=yi

qi ≥
r2

64T


≤ 64T

r2
· E
y

 ∑
i:xi 6=yi

qi


=

64T

r2
·
n∑
i=1

qi · Pr
y

[yi 6= xi]

≤ 64pT 2

r2
,

where the third line applies Markov’s inequality (the qis are nonnegative), and the last two lines use
linearity of expectation along with the fact that the qis sum to T .

Corollary 38. Let f : {0, 1}N → {0, 1,⊥} be a partial function with Q(f) ≤ T . Fix x ∈ {0, 1}N ,
and let y ∈ {0, 1}N be drawn from some distribution such that, for all i ∈ [N ], Pry [xi 6= yi] ≤ p.
Then for some i ∈ {0, 1}, Pry[f(y) = i] ≤ 2304pT 2.

Proof. Let Q be the quantum query algorithm corresponding to f . We choose i = 1 if Pr [Q(x) = 1] ≤
1
2 , and i = 0 otherwise. Then the claim follows from Lemma 37 with r = 1

6 , just because Q computes
f with error at most 1

3 .

We now prove a query complexity version of the main result of this section.
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Theorem 39. Let Sipserd be the function defined in Theorem 24 for some choice of d, m, and
N . Let f : {0, 1}N → {0, 1,⊥} be computable by a depth-d circuit of size s in which the top gate
has bounded-error quantum query complexity T , and all of the sub-circuits of the top gate are
depth-(d− 1) AC0 circuits. Then:

Pr
x∼{0,1}N

[f(x) = Sipserd(x)] ≤ 1

2
+O

(
2−m/4

)
+ s2−2m/2−4

+ 2304T 22−m/2−4.

The proof of this theorem largely follows Theorem 10.1 of [HRST17], the relevant parts of which
are quoted in Theorem 24. We take a distribution ρ ∼ R of random projections with the property
that (a) R completes to the uniform distribution, (b) fρ simplifies with high probability over ρ, and
(c) Sipserd|ρ retains structure with high probability over ρ. Essentially the only difference compared
to [HRST17] is that we must incorporate the BBBV Theorem (in the form of Corollary 38) in order
to argue (b).

Proof of Theorem 39. By Theorem 24(a),

Pr
x∼{0,1}N

[f(x) = Sipserd(x)] = Pr
x∼D,ρ∼R

[
fρ(x) = Sipserd|ρ(x)

]
.

Theorem 24(b) and a union bound over all of the sub-circuits of the top gate imply that, except with

probability at most s2−2m/2−4
over ρ ∼ R, fρ can be computed by a depth-2 circuit where the top

gate has bounded-error quantum query complexity T , and all of the gates below the top gate have
deterministic query complexity at most 2m/2−4. In this case, we say for brevity that fρ “simplifies”.

By Theorem 24(c) and a union bound, except with probability at most O
(
2−m/2

)
+ s2−2m/4−2

over

ρ ∼ R, fρ simplifies and Sipserd|ρ is an AND of fan-in (ln 2) · 2m ·
(
1±O

(
2−m/4

))
.

An AND of fan-in (ln 2) ·2m ·
(
1±O

(
2−m/4

))
evaluates to 1 with probability 1

2

(
1±O

(
2−m/4

))
on an input sampled from D. On the other hand, if fρ simplifies, then for each sub-circuit C of the
top gate, Prx∼D

[
C(x) 6= C

(
1|x|
)]
≤ b2m/2−4, just because D(C) ≤ 2m/2−4 and each bit of x is 0

with probability at most b. Hence, by Corollary 38 with p = b2m/2−4, if fρ simplifies, then for some
i ∈ {0, 1}, Prx∼D [fρ(x) = i] ≤ 2304bT 22m/2−4. Since b ≤ 2−m, putting these together gives us that:

Pr
x∼D,ρ∼R

[
fρ(x) = Sipserd|ρ(x)

]
≤ 1

2
+O

(
2−m/4

)
+ s2−2m/2−4

+ 2304T 22−m/2−4.

To complete this section, we require the following extension of Furst-Saxe-Siper [FSS84]

(Lemma 26) to BQPΣP
k machines.

Proposition 40. Let M be a BQPΣP
k oracle machine (i.e. a pair 〈A,B〉 of a BQP oracle machine

A and a ΣP
k oracle machine B). Let p(n) be a polynomial upper bound on the runtime of A and

B on inputs of length n. Then for any x ∈ {0, 1}n, there is a depth-(k + 2) circuit C of size
at most 2poly(n) in which the top gate has bounded-error quantum query complexity at most p(n),
and all of the sub-circuits of the top gate are AC0

[
2poly(n), k + 1

]
circuits, such that for any oracle

O : {0, 1}∗ → {0, 1} we have:
MO(x) = C

(
O[p(p(n))]

)
,

where O[p(p(n))] denotes the concatenation of the bits of O on all strings of length at most p(p(n)).

Proof. For convenience, denote by L the language decided by BO. MO(x) = AL(x) is a function of
bounded-error quantum query complexity at most p(n) in the bits of L. We take this function to be
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the top gate of our circuit, and use Lemma 26 to replace the inputs to this gate, the bits of L, with
AC0 circuits.

Since AL(x) runs in time at most p(n), it can only query the evaluation of BO on inputs up to
length at most p(n). By Lemma 26, for each y ∈ {0, 1}m with m ≤ p(n), BO(y) is computed by an
AC0 [s, k + 1] circuit for some s ≤ 2poly(p(n)) ≤ 2poly(n), where the inputs to this circuit are the bits
of O on inputs of length at most p(p(n)). The resulting circuit obtained by composing the quantum
gate with these AC0 circuits has total number of gates bounded above by:

1 +

p(n)∑
m=0

2m · 2poly(m) ≤ 2poly(n),

and thus it satisfies the statement of the proposition.

By standard techniques, we obtain the main result of this section, stated in terms of oracles
instead of query complexity.

Corollary 41. For all k, ΣPO
k+1 6⊂ BQPΣPO

k with probability 1 over a random oracle O.

Proof. Let d = k + 2. Let LO be the unary language used for the same purpose as in [RST15,
HRST17]. That is, LO consists of strings 0n such that, if we treat n as an index into a portion of
the random oracle O that encodes a size-2n instance of the Sipserd function, then that instance
evaluates to 1. By construction, LO ∈ ΣPO

k+1 [RST15, HRST17].

It remains to show that LO 6∈ BQPΣPO
k . Fix a BQPΣP

k oracle machine M . By the union bound,
it suffices to show that

Pr
O

[
MO decides LO

]
= 0.

Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
O

[
MO correctly decides 0ni |MO correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
O

[
MO decides LO

]
≤
∞∏
i=1

p(M, i).

Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many i.
Proposition 40 shows that M ’s behavior on 0ni can be computed by a circuit of size s ≤ 2poly(ni)

in which the top gate has bounded-error quantum query complexity T ≤ poly(ni), and all of the
sub-circuits of the top gate are depth-(d− 1) AC0 circuits. Theorem 39 with N = 2ni and m = Θ(ni)
shows that such a circuit correctly evaluates the Sipserd function with probability greater than (say)
0.7 for at most finitely many i. This even holds conditioned on MO correctly deciding 0n1 , . . . , 0ni−1 ,
because the size-2ni Sipserd instance is chosen independently of the smaller instances, and because
M (0ni) can query the oracle on strings of length ni+1 or greater for at most finitely many values of
i.
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4.2 BQPPH Lower Bounds for OR ◦ Forrelation

In this section, we use tail bounds on the sensitivity of AC0 circuits to construct an oracle relative
to which NPBQP 6⊂ BQPPH. Such bounds are given implicitly in Section 3 of [GSTW16]. For
completeness, we derive our own bound on the sensitivity tails of AC0 circuits, though our bound is
probably quantitatively suboptimal.

To prove that the sensitivity of AC0 circuits concentrates well, the first ingredient we need is a
random restriction lemma for AC0 circuits. We use the following form, due to Rossman [Ros17].

Theorem 42 ([Ros17]). Let f ∈ AC0[s, d], and let ρ be a random restriction with Pr[∗] = p. Then
for any t > 0:

Pr
ρ

[D(fρ) ≥ t] ≤
(
p ·O (log s)d−1

)t
.

With this in hand, it is straightforward to derive our sensitivity tail bound.

Lemma 43. Let f : {0, 1}N → {0, 1} be a circuit in AC0[s, d]. Then for any t > 0,

Pr
x∼{0,1}N

[sx(f) ≥ t] ≤ 2N · 2−Ω
(

t

(log s)d−1

)
.

Proof. Let ρ be a random restriction with Pr[∗] = p, for some p to be chosen later. It will be
convenient to view the choice of ρ as follows: we choose a string x ∈ {0, 1}N uniformly at random,
and then we choose a set S ⊆ [N ] wherein each i ∈ [N ] is included in S independently with
probability p. Then, we take ρ to be:

ρ(i) =

{
∗ i ∈ S
xi i 6∈ S.

Thus, by definition, it holds that fρ(x|S) = f(x).
Observe that for any fixed x ∈ {0, 1}N and j > 0, we have:

sx(f) =
1

p
E
S

[
sx|S (fρ)

]
≤ 1

p
E
S

[s(fρ)]

≤ 1

p
E
S

[D(fρ)]

≤ 1

p
·
(
j +N · Pr

S
[D(fρ) ≥ j]

)
, (3)

where the first line holds because each sensitive bit of f on x is kept unrestricted with probability p;
the second line holds by the definition of sensitivity; the third line holds by known relations between
query measures; and the last line holds because D(fρ) ≤ N always holds.

With this in hand, we derive:

Pr
x

[sx(f) ≥ t] ≤ Pr
x

[
1

p
·
(
j +N · Pr

S
[D(fρ) ≥ j]

)
≥ t
]

= Pr
x

[
Pr
S

[D(fρ) ≥ j] ≥
pt− j
N

]
≤ Pr

x,S
[D(fρ) ≥ j] ·

N

pt− j

≤
(
p ·O (log s)d−1

)j
· N

pt− j
.
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Above, the first line applies (3); the third line holds by Markov’s inequality; and the last line applies
Theorem 42.

Choose p = O (log s)1−d so that the above expression simplifies to 2−j · N
pt−j . Then, set j = pt−1

and the corollary follows.

The sensitivity tail bound above immediately implies a tail bound on the block sensitivity of
AC0 circuits. We thank Avishay Tal for providing us with a proof of this fact.

Corollary 44. Let f : {0, 1}N → {0, 1} be a circuit in AC0[s, d], and let B = {B1, B2, . . . , Bk} be a
collection of disjoint subsets of [N ]. Then for any t,

Pr
x∼{0,1}N

[bsxB(f) ≥ t] ≤ 4N · 2−Ω
(

t

(log(s+N))d

)
.

Proof. Consider the function g : {0, 1}N+k defined by

g(y, z) := f (y ⊕ z1 ·B1 ⊕ z2 ·B2 ⊕ . . .⊕ zk ·Bk) ,

where zi ·Bi denotes the all zeros string if zi = 0, and otherwise is the indicator string of Bi.
We claim that g ∈ AC0[s+O(N), d+ 1]. Let x = y⊕ z1 ·B1⊕ z2 ·B2⊕ . . .⊕ zk ·Bk. Notice that

each bit of x is either a bit in y, or else the XOR of a bit of y with a bit of z. Hence, we can compute
g by feeding in at most N XOR gates and their negations into f . The XOR function can be written
as either an OR of ANDs or an AND of ORs: a⊕ b = (a ∨ b) ∧ (¬a ∨ ¬b) = (a ∧ ¬b) ∨ (¬a ∧ b).
Hence, we can absorb one layer of AND or OR gates into the bottom layer of the circuit that
computes f , thus obtaining a circuit of depth d+ 1.

Notice that for any x ∈ {0, 1}N , there are exactly 2k strings (y, z) ∈ {0, 1}N+k such that
x = y⊕ z1 ·B1⊕ z2 ·B2⊕ . . .⊕ zk ·Bk. Moreover, for any such (y, z) we have that bsxB(f) ≤ s(y,z)(g).
Thus, Lemma 43 implies that:

Pr
x∼{0,1}N

[bsxB(f) ≥ t] ≤ Pr
(y,z)∼{0,1}N+k

[
s(y,z)(g) ≥ t

]
≤ 2(N + k) · 2−Ω

(
t

(log(s+N))d

)
,

and the corollary follows because k ≤ N .

The rough idea of the proof going forward is as follows: an NPBQP machine can easily distinguish
(1) a uniformly random M ×N array of bits, and (2) an M ×N array which contains a single row
drawn from the Forrelation distribution, and is otherwise random. We want to show that a BQPPH

machine cannot distinguish (1) and (2). To prove this, we first use our block sensitivity tail bound
to argue in Lemma 45 below that for most uniformly random strings x, an AC0 circuit is unlikely to
detect a change to x made by uniformly randomly resampling a single row of x. Then, we use the
Raz-Tal Theorem to argue in Lemma 46 that the same holds if we instead resample a single row of
x from the Forrelation distribution, rather than the uniform distribution. Finally, in Theorem 47
we apply the BBBV Theorem to argue that a BQPPH oracle machine cannot distinguish cases (1)
and (2).

Lemma 45. Let f : {0, 1}MN → {0, 1} be a circuit in AC0[s, d]. Let x ∈ {0, 1}MN be an input,
viewed as an M × N array with M rows and N columns. Let y be sampled depending on x as
follows: uniformly select one of the rows of x, randomly reassign all of the bits of that row, and
leave the other rows of x unchanged. Then for any ε > 0:

Pr
x∼{0,1}MN

[
Pr
y

[f(x) 6= f(y)] ≥ ε
]
≤ 8M2N · 2−Ω

(
εM

(log(s+MN))d

)
.
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Proof. Let B be the distribution over collections B = {S1, . . . , SM} of subsets of [MN ] wherein
each Si is a uniformly random subset of the ith row. Notice that for any fixed x ∈ {0, 1}MN and
j > 0, we have:

Pr
y

[f(x) 6= f(y)] =
1

M
· E
B∼B

[bsxB(f)]

≤ 1

M
·
(
j +M · Pr

B∼B
[bsxB(f) ≥ j]

)
=

j

M
+ Pr
B∼B

[bsxB(f) ≥ j] , (4)

just because one can sample y by drawing B ∼ B, i ∼ [M ], and taking y = x⊕Si . The inequality in
the second line holds because bsxB(f) ≤ |B| = M .

With this in hand, we derive:

Pr
x∼{0,1}MN

[
Pr
y

[f(x) 6= f(y)] ≥ ε
]
≤ Pr

x

[
j

M
+ Pr
B∼B

[bsxB(f) ≥ j] ≥ ε
]

= Pr
x

[
Pr
B∼B

[bsxB(f) ≥ j] ≥ ε− j

M

]
≤ Pr

x,B
[bsxB(f) ≥ j] · M

εM − j

≤ 4MN · 2−Ω
(

j

(log(s+MN))d

)
· M

εM − j

≤ 4M2N

εM − j
· 2−Ω

(
j

(log(s+MN))d

)
.

Above, the first line applies (4); the third line holds by Markov’s inequality; and the fourth line
applies Corollary 44. Choosing j = εM − 1 completes the proof.

Lemma 46. Let M ≤ quasipoly(N), and suppose that f : {0, 1}MN → {0, 1} is a circuit in
AC0[quasipoly(N), O(1)]. Let x ∈ {0, 1}MN be an input, viewed as an M ×N array with M rows
and N columns. Let y be sampled depending on x as follows: uniformly select one of the rows of
x, randomly sample that row from the Forrelation distribution FN , and leave the other rows of x
unchanged. Then for some ε = polylog(N)√

N
, we have:

Pr
x∼{0,1}MN

[
Pr
y

[f(x) 6= f(y)] ≥ ε
]
≤ 8M2N · 2−Ω

(
M√

Npolylog(N)

)
.

Proof. Consider a Boolean function C(x, z, i) that takes inputs x ∈ {0, 1}MN , z ∈ {0, 1}N , and
i ∈ [M ]. Let ỹ be the string obtained from x by replacing the ith row with z. Let C output 1 if
f(x) 6= f(ỹ), and 0 otherwise. Clearly, C ∈ AC0[quasipoly(N), O(1)]. Observe that for any fixed x:

Pr
i∼[M ],z∼FN

[C(x, z, i) = 1] = Pr
y

[f(x) 6= f(y)]. (5)

By Theorem 27, for some ε = polylog(N)√
N

we have:∣∣∣∣ Pr
i∼[M ],z∼FN

[C(x, z, i) = 1]− Pr
i∼[M ],z∼{0,1}N

[C(x, z, i) = 1]

∣∣∣∣ ≤ ε

2
. (6)
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Putting these together, we obtain:

Pr
x∼{0,1}MN

[
Pr
y

[f(x) 6= f(y)] ≥ ε
]

= Pr
x∼{0,1}MN

[
Pr

i∼[M ],z∼FN
[C(x, z, i) = 1] ≥ ε

]
≤ Pr

x∼{0,1}MN

[
Pr

i∼[M ],z{0,1}N
[C(x, z, i) = 1] ≥ ε

2

]
= Pr

x∼{0,1}MN

[
Pr

i∼[M ],z∼{0,1}N
[f(x) 6= f(ỹ)] ≥ ε

2

]
≤ 8M2N · 2−Ω

(
εM

(log(s+MN))d

)

≤ 8M2N · 2−Ω
(

M√
Npolylog(N)

)
,

where the first line substitutes (5); the second line holds by (6) and the triangle inequality; the
third line holds by the definition of C and ỹ in terms of i and z; the fourth line invokes Lemma 45
for some s = quasipoly(N) and d = O(1); and the last line uses these bounds on s and d along with
the assumption that M ≤ quasipoly(N).

The next theorem essentially shows that no BQPPH oracle machine can solve the OR ◦
Forrelation problem (i.e. given a list of Forrelation instances, decide if one of them is
Forrelated, or if they are all uniform).

Theorem 47. Let M ≤ quasipoly(N), and let f : {0, 1}MN → {0, 1,⊥} be computable by a circuit
of size quasipoly(N) in which the top gate has bounded-error quantum query complexity T , and all
of the sub-circuits of the top gate are AC0[quasipoly(N), O(1)] circuits.

Let b ∼ {0, 1} be a uniformly random bit. Suppose z ∈ {0, 1}MN is sampled such that:

• If b = 0, then z is uniformly random.

• If b = 1, then a single uniformly chosen row of z is sampled from the Forrelation distribution
FN , and the remaining M − 1 rows of z are uniformly random.

Then:

Pr
b,z

[f(z) = b] ≤ 1

2
+ quasipoly(N) · 2−Ω

(
M√

Npolylog(N)

)
+
T 2polylog(N)√

N
.

Proof. We can think of sampling z as follows. First, we choose a string x0 ∼ {0, 1}MN . Then, we
sample x1 by uniformly at random replacing one of the rows of x0 with a sample from FN . Finally,
we sample b ∼ {0, 1} and set z = xb.

Call a fixed x0 “bad” if, for one of the sub-circuits C of the top gate, we have Prx1 [C(x0) 6=
C(x1)] ≥ ε, where ε ≤ polylog(N)√

N
is the parameter given in Lemma 46. Lemma 46, combined with a

union bound over the quasipoly(N)-many such sub-circuits, implies that:

Pr
x0∼{0,1}MN

[x0 is bad] ≤ quasipoly(N) · 2−Ω
(

M√
Npolylog(N)

)
.

Clearly, it holds that:

Pr
b,z

[f(z) = b] ≤ Pr
x0∼{0,1}MN

[x0 is bad] + Pr
x1,b

[f(xb) = b|x0 is good] .
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b is uniformly random, even conditioned on x0 being good. On the other hand, Corollary 38 implies
that for some i ∈ {0, 1} (depending on x0), Prx1,b [f(xb) = i|x0 is good] ≤ 2304εT 2. Thus, it holds
that:

Pr
x1,b

[f(xb) = b|x0 is good] ≤ 1

2
+
T 2polylog(N)√

N
.

Putting these bounds together implies the statement of the theorem.

Via standard complexity-theoretic techinques, Theorem 47 implies the following oracle separation,
which resolves the question of Fortnow [For05].

Corollary 48. There exists an oracle relative to which NPBQP 6⊂ BQPPH.

Proof. We construct an oracle A as follows. Let LA be a uniformly random unary language. For
each n ∈ N, we add into A a region consisting of a function fn : {0, 1}2n2 → {0, 1}. Choose fn as
follows:

• If LA (0n) = 0, then fn is uniformly random.

• If LA (0n) = 1, then viewing the truth table of fn as consisting of 2n
2

rows of length 2n
2
, we

pick a single row at random and sample it from the Forrelation distribution F
2n2 , and sample

the remaining 2n
2 − 1 rows from the uniform distribution.

Let D be the resulting distribution over oracles A.

We first show that LA ∈ NPBQPA with probability 1 over A ∼ D. To do so, we define a language
PA as follows: for a string x ∈ {0, 1}∗, PA(x) = 1 if |x| = n2 and the xth row of fn was drawn from

the Forrelation distribution; otherwise PA(x) = 0. Clearly, LA ∈ NPP
A

: to determine if 0n ∈ LA,
nondeterministically guess a string x ∈ {0, 1}n2

and check if x ∈ PA. Thus, it suffices to show
that PA ∈ BQPA, which we do below. (Note that this proof shares large parts with the proof of
Claim 30, only modifying a few parameters.)

Claim 49. PA ∈ BQPA with probability 1 over A.

Proof of Claim. Given an input x of length n2, a quantum algorithm can decide whether x ∈ PA in
poly(n) time by looking up xth row of fn, and then deciding whether it is Forrelated or random by
using the distinguishing algorithm A from Theorem 27.

In more detail, let gx : {0, 1}n2 → {0, 1} denote the xth row of fn (i.e. gx(y) := fn(x, y)). By
Theorem 27 we know that:

Pr
A∼D

[
A(gx) 6= PA(x)

]
≤ 2−2n2

,

where the probability in the above expression is also taken over the randomness of A. By Markov’s
inequality, we may conclude:

Pr
A∼D

[
Pr
[
A(gx) 6= PA(x)

]
≥ 1/3

]
≤ 3 · 2−2n2

.

Hence, the BQP promise problem defined by A agrees with PA on x, except with probability at
most 3 · 2−2n2

.
We now appeal to the Borel-Cantelli Lemma to argue that, with probability 1 over A, A correctly

decides PA(x) for all but finitely many x ∈ {0, 1}∗. Since there are exactly 2n
2

inputs x of length
{0, 1}n2

, we have:∑
x∈{0,1}∗

Pr
A∼D

[
AA does not decide PA(x)

]
≤
∞∑
n=1

∑
x∈{0,1}n2

3 · 2−2n2 ≤
∞∑
n=1

2n
2 · 3 · 2−2n2

<∞.
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Therefore, the probability that A fails on infinitely many inputs x is 0. Hence, A can be modified
into a BQP algorithm that decides PA(x) for all x ∈ {0, 1}∗, with probability 1 over A ∼ D.

It remains to show that LA 6∈ BQPPHA with probability 1 over A. As we will show, this follows
from Theorem 47 in the much same way that Corollary 41 follows from Theorem 39. Fix a BQPΣP

k

oracle machine M . By the union bound, it suffices to show that

Pr
A∼D

[
MA decides LA

]
= 0.

Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
A∼D

[
MA correctly decides 0ni |MA correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
A∼D

[
MA decides LA

]
≤
∞∏
i=1

p(M, i).

Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many
i. Proposition 40 shows that M ’s behavior on 0ni can be computed by a circuit of size 2poly(ni)

in which the top gate has bounded-error quantum query complexity T ≤ poly(ni), and all of the
sub-circuits of the top gate are AC0

[
2poly(ni), k + 1

]
circuits. Theorem 47 with M = N = 2n

2
i shows

that such a circuit correctly evaluates the OR ◦ Forrelation function with probability greater
than (say) 0.7 for at most finitely many i. This even holds conditioned on MA correctly deciding
0n1 , . . . , 0ni−1 , because the size-22n2

i OR ◦ Forrelation instance is chosen independently of the
smaller instances, and because M (0ni) can query the oracle on strings of length ni+1 or greater for
at most finitely many values of i.

Using techniques analogous to Theorem 32, we obtain the following stronger oracle separation.

Corollary 50. There exists an oracle relative to which P = NP but BQP 6= QCMA.

Proof sketch. This oracle O will consist of two parts: an oracle A drawn from the same distribution
as the oracle A in Corollary 48, and an oracle B that we will construct inductively. For each
t ∈ N, we add a region Bt that will depend on the previously constructed parts of the oracle.
For convenience, we denote by At the region of A corresponding to inputs of length t, and write
Ot = (At, Bt).

Similarly to Theorem 32, we define St as the set of all NP machines that take less than t bits
to specify, run in at most t steps, and query only the O1, . . . ,Ob√tc regions of the oracle. Then,

we encode into Bt the answers to all machines in St. This has the effect of making PO = NPO, as
a polynomial-time algorithm can decide the behavior of any NPO machine M by looking up the
relevant bit in B that encodes M ’s behavior.

It remains to show that BQPO 6= QCMAO with probability 1 over O. We achieve this by taking
the language LA defined in Corollary 48, which is clearly in QCMAO, and showing that LA 6∈ BQPO

with probability 1 over O.
Analogous to Lemma 35, one can show that for any t′ ≤ poly(t), any bit of Bt′ can be computed

by an AC0
[
2poly(t), O(1)

]
circuit whose inputs depend only on A and B1, B2, . . . , Bt. Hence, any

BQPO machine that runs in time poly(t) can be computed by a circuit of size 2poly(t) in which
the top gate has bounded-error quantum query complexity poly(t), all of the sub-circuits of the
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top gate are AC0
[
2poly(t), O(1)

]
circuits, and the inputs are A and B1, B2, . . . , Bt. In particular,

if t = n, then all of the inputs are uncorrelated with LA(0n), except for A2n2 , the region whose
OR ◦Forrelation instance encodes LA(0n). But in that case, we can again appeal to Theorem 47
with M = N = 2n

2
and T = poly(n) to argue that such a circuit correctly decides LA(0n) with

probability at most 0.7 for infinitely many n.

4.3 PHBQP Lower Bounds for Forrelation ◦OR

In this section, we construct an oracle relative to which BQPNP 6⊂ PHPromiseBQP.
Within this section, for a string z ∈ {0, 1}M and some choice of N , let Dz,N denote the following

distribution over {0, 1}MN . View x ∼ Dz,N as an M ×N array of bits sampled as follows: if zi = 0,
then the ith row of x is all 0s, while if zi = 1, then the ith row of x has a single 1 chosen uniformly
at random and 0s everywhere else.

Our first key lemma shows that, for a string x ∼ Dz,N , a quantum algorithm that queries x can
be efficiently simulated by a classical query algorithm, with high probability over x. We start with
a version of this lemma in which the quantum algorithm makes only a single query.

Lemma 51. Consider a quantum algorithm Q that makes 1 query to x ∈ {0, 1}MN to produce a
state |ψ〉. Then for any K ∈ N, there exists a deterministic classical algorithm that makes K queries

to x, and outputs a description of a state |ϕ〉 such that for any α ≥
√

8
N and any z ∈ {0, 1}M :

Pr
x∼Dz,N

[|| |ψ〉 − |ϕ〉 || ≥ α] ≤ e−
α4K
32 .

Proof. Analogous to Lemma 28, let qi,j be the query magnitude (i.e. probability) with which Q
queries xi,j during its single query. That is, if the initial state |ψ0〉 of Q has the form:

|ψ0〉 =
M∑
i=1

N∑
j=1

αi,j,w |i, j, w〉 ,

where w are indices over a workspace register, then

qi,j :=
∑
w

|αi,j,w|2,

so that
∑M

i=1

∑N
j=1 qi,j = 1.

The classical algorithm is simply the following: query every xi,j such that qi,j ≥ 1
K . Clearly

there are at most K such bits, so the algorithm makes at most K queries. Then, calculate Q’s
post-query state, assuming that all of the unqueried bits are 0. Call this state |ϕ〉.

We now argue that the classical algorithm achieves the desired approximation to |ψ〉 with the
correct probability. Fix some z ∈ {0, 1}M . For each row i with zi = 1, let j(i, x) be the unique
column j such that xi,j = 1. Now define a random variable w(i, x) that measures the contribution
of row i to the error of our classical simulation:

w(i, x) :=

{
qi,j(i,x) zi = 1 and qi,j(i,x) <

1
K ,

0 otherwise.
(7)
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Note that the w(i, x)’s are independent random variables, and also satisfy

E
x

[
M∑
i=1

w(i, x)

]
≤ E

x

[ ∑
i:zi=1

qi,j(i,x)

]

≤ E
x

 1

N

M∑
i=1

N∑
j=1

qi,j


≤ 1

N

by (7) and linearity of expectation. We also have w(i, x) ≤ 1
K for all i, but we will actually need a

stronger upper bound: namely w(i, x) ≤ mi, where

mi := min

{
1

K
, max

j
qi,j

}
.

Note that mi ≤ 1
K for all i, and also that

M∑
i=1

mi ≤
M∑
i=1

N∑
j=1

qi,j = 1,

which together imply that
M∑
i=1

m2
i ≤

M∑
i=1

mi ·
1

K
≤ 1

K
. (8)

Recall that we wish to bound the distance between |ψ〉 and |ϕ〉. (7) implies that

|| |ψ〉 − |ϕ〉 || = 2

√√√√ M∑
i=1

w(i, x), (9)

and therefore

Pr
x∼Dz,N

[|| |ψ〉 − |ϕ〉 || ≥ α] = Pr
x∼Dz,N

[
M∑
i=1

w(i, x) ≥ α2

4

]
.

We finally appeal to Hoeffding’s inequality (Fact 16) to bound this quantity. Set µ := 1
N and

δ := α2N
4 − 1. Then

Pr
x∼Dz,N

[|| |ψ〉 − |ϕ〉 || ≥ α] = Pr
x∼Dz,N

[
M∑
i=1

w(i, x) ≥ (1 + δ)µ

]

≤ exp

(
− 2δ2µ2∑M

i=1m
2
i

)

≤ exp

−2
(
α2N

4 − 1
)2 (

1
N

)2
1
K


≤ exp

−2
(
α2N

8

)2 (
1
N

)2
1
K


= e−

α2K
32 ,
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where the first line applies (9); the second line applies Fact 16; the third line substitutes (8); and

the fourth line uses the assumption that α ≥
√

8
N .

Next, by repeated application of Lemma 51, we generalize Lemma 51 to quantum algorithms
that make multiple queries.

Lemma 52. Consider a quantum algorithm Q that makes T queries to x ∈ {0, 1}MN to produce a
state |ψT 〉. Then for any K ∈ N, there exists a classical algorithm that makes KT queries to x, and

outputs a description of a state |ϕT 〉 such that for any α ≥
√

8
N and any z ∈ {0, 1}M :

Pr
x∼Dz,N

[|| |ψT 〉 − |ϕT 〉 || ≥ αT ] ≤ T · e−
α4K
32 .

Proof. View Q as a sequence of T 1-query algorithms Q1, Q2, . . . , QT , where each Qt is a unitary
transformation. For t ≤ T , define |ψt〉 as the state of Q after t queries. This is to say, if the initial
state of Q is |ψ0〉, then for t > 0, |ψt〉 = Qt |ψt−1〉.

Intuitively speaking, the classical simulation algorithm simply applies the algorithm from
Lemma 51 T times consecutively. In slightly more detail, let |ϕ0〉 := |ψ0〉. For t > 0, define |ϕt〉
inductively as the state obtained after applying the classical algorithm from Lemma 51 corresponding
to Qt |ψt−1〉. Then clearly |ϕT 〉 is computable by a classical algorithm that makes KT queries to x.

It remains to show that |ψT 〉 and |ϕT 〉 are close with high probability. For t ≤ T , define |γt〉
as the state obtained by applying the classical algorithm for the first t steps and the quantum
algorithm for the remaining T − t steps, i.e.

|γt〉 = QTQT−1 · · ·Qt+1 |ϕt〉 .

Note that |γ0〉 = |ψT 〉 and |γT 〉 = |ϕT 〉. From this, we may bound:

|| |ψT 〉 − |ϕT 〉 || = || |γ0〉 − |γT 〉 ||

≤
T∑
t=1

|| |γt−1〉 − |γt〉 ||

=

T∑
t=1

||Qt |ϕt−1〉 − |ϕt〉 ||, (10)

where the second line holds by the triangle inequality, and the last line holds because the Qt’s are
unitary transformations. Lemma 51 implies that all of the terms in this sum are bounded with high
probability. In particular, we conclude:

Pr
x∼Dz,N

[|| |ψT 〉 − |ϕT 〉 || ≥ αT ] ≤ Pr
x∼Dz,N

[
T∑
t=1

||Qt |ϕt−1〉 − |ϕt〉 || ≥ αT

]

≤
T∑
t=1

Pr
x∼Dz,N

[||Qt |ϕt−1〉 − |ϕt〉 || ≥ α]

≤ T · e−
α4k
32 ,

where the first line applies (10), the second line holds by a union bound, and the last line holds by
Lemma 51.
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The next theorem is essentially just a restatement of Lemma 52 with cleaner parameters. It can
be understood as a version of the Aaronson-Ambainis conjecture [AA14, Conjecture 1.5] for sparse
oracles.

Theorem 53. Consider a quantum algorithm Q that makes T queries to x ∈ {0, 1}MN . Then for

any ε ≥ 4T
√

8
N and δ > 0, there exists a classical algorithm that makes O

(
T 5

ε4
log T

δ

)
queries to x,

and that outputs an estimate p such that for any z ∈ {0, 1}M :

Pr
x∼Dz,N

[|Pr[Q(x) = 1]− p| ≥ ε] ≤ δ.

Proof. Let Q be the quantum algorithm corresponding to f , and let |ψ〉 be the output state of Q
on input x immediately before measurement. For some K to be chosen later, consider the classical
algorithm corresponding to Q from Lemma 52 that makes KT queries and produces a classical
description of a quantum state |ϕ〉 on input x. Let p be the probability that the first bit of |ϕ〉 is
measured to be 1 in the computational basis.

[BV97, Lemma 3.6] tells us that on any input x:

|Pr[Q(x) = 1]− p| ≤ 4|| |ψ〉 − |ϕ〉 ||.

Choose α = ε
4T , which, by the assumption of the theorem, must also satisfy α ≥

√
8
N . By

appealing to Lemma 52, we conclude that

Pr
x∼Dz,N

[|Pr[Q(x) = 1]− p| ≥ ε] ≤ Pr
x∼Dz,N

[
|| |ψ〉 − |ϕ〉 || ≥ ε

4

]
= Pr

x∼Dz,N
[|| |ψ〉 − |ϕ〉 || ≥ αT ]

≤ T · e−
α4K
32 .

Thus, we just need to choose K such that T · e−
α4K
32 ≤ δ, or equivalently:

α4K

32
≥ log T + log

1

δ
.

Choosing K = O
(
T 4

ε4
log T

δ

)
completes the theorem, as the classical algorithm makes KT queries.

As a straightforward corollary, we obtain the following functional version of Theorem 53.

Corollary 54. Let f : {0, 1}MN → {0, 1,⊥} be a function with Q(f) ≤ T for some T ≤
√

N
4608 .

Then for any δ > 0, there exists a function g : {0, 1}MN → {0, 1} with D(g) ≤ O
(
T 5 log T

δ

)
such

that for any z ∈ {0, 1}M :

Pr
x∼Dz,N

[f(x) ∈ {0, 1} and f(x) 6= g(x)] ≤ δ.

Proof. Let Q be the quantum query algorithm corresponding to f . Choose ε = 1
6 , and consider

running the classical algorithm from Theorem 53 that produces an estimate p of Q’s acceptance

probability. (The condition of Theorem 53 is satisfied because 4T
√

8
N ≤

1
6).

Define g by:

g(x) =

{
1 p ≥ 1

2 ,

0 p < 1
2 .
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We want to show that g usually agrees with f on inputs drawn from Dz,N . Because Q computes f
with error at most 1

3 , we have:

Pr
x∼Dz,N

[f(x) ∈ {0, 1} and f(x) 6= g(x)] ≤ Pr
x∼Dz,N

[
|Pr[Q(x) = 1]− p| ≥ 1

6

]
≤ δ,

by Theorem 53. Additionally, D(g) ≤ O
(
T 5 log T

δ

)
because g depends only on p.

The next theorem essentially shows that no PHPromiseBQP oracle machine can solve the Forrelation◦
OR problem (i.e. given an input divided into rows, decide if the ORs of the rows are Forrelated or
uniformly random).

Theorem 55. Let M,N satisfy quasipoly(M) = quasipoly(N) (i.e. M ≤ quasipoly(N) and
N ≤ quasipoly(M)). Let f : {0, 1}MN → {0, 1,⊥} be computable by a depth-2 circuit of size
quasipoly(N) in which the top gate is a function in AC0[quasipoly(N), O(1)], and all of the bottom
gates are functions with bounded-error quantum query complexity at most polylog(N).

Let b ∼ {0, 1} be a uniformly random bit. Suppose z ∈ {0, 1}M is sampled such that:

• If b = 0, then z is uniformly random.

• If b = 1, then z is drawn from the Forrelation distribution FM .

Then:

Pr
b,z,x∼Dz,N

[f(x) = b] ≤ 1

2
+

polylog(N)√
M

.

Proof. Suppose the bottom-level gates all have quantum query complexity at most T , and that there
are at most s such gates. Let δ = 1

s
√
M

. Consider the function g : {0, 1}MN → {0, 1} obtained by

replacing all of the bottom-level gates of f with the corresponding decision trees from Corollary 54
that have depth d ≤ O

(
T 5 log T

δ

)
). (The condition of Corollary 54 is satisfied for sufficiently large

N , as T ≤ polylog(N)�
√
N .)

Note that g ∈ AC0[quasipoly(N), O(1)]: a depth-d decision tree can be computed by a

width-d DNF formula, and since d ≤ polylog(N) · log
(

quasipoly(N) ·
√
M
)
≤ polylog(N) and

s ≤ quasipoly(N), the total number of gates needed to evaluate all s decision trees is at most
quasipoly(N).

By a union bound over all of the bottom-level gates, observe that

Pr
b,z,x∼Dz,N

[f(x) = b] ≤ Pr
b,z,x∼Dz,N

[g(x) = b] + Pr
b,z,x∼Dz,N

[f(x) ∈ {0, 1} and f(x) 6= g(x)]

≤ Pr
b,z,x∼Dz,N

[g(x) = b] +
1√
M
, (11)

from the assumption of Corollary 54, just because g disagrees with f only if at least one of the
decision trees disagrees with its corresponding quantum query algorithm.

Consider a Boolean function C(z, i1, . . . , iM ) that takes inputs z ∈ {0, 1}M and i1, . . . , iM ∈ [N ].
Let x̃ ∈ {0, 1}MN be the string in which for each row j ∈ [M ]:

• If zj = 0, then the jth row of x̃ is all zeros.

• If zj = 1, then the jth row of x̃ contains a single 1 in the ijth position.
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Let C compute g(x̃). Clearly, C ∈ AC0[quasipoly(N), O(1)]. Moreover, if i1, . . . , iM are chosen
randomly, then C simulates the behavior of g:

Pr
b,z,x∼Dz,N

[g(x) = b] = Pr
b,z,i1,...,iM

[C(z, i1, . . . , iM ) = b] . (12)

Putting these together, we find that:

Pr
b,z,x∼Dz,N

[f(x) = b] ≤ Pr
b,z,x∼Dz,N

[g(x) = b] +
1√
M

= Pr
b,z,i1,...,iM

[C(z, i1, . . . , iM ) = b] +
1√
M

≤ 1

2
+

polylog(M)√
M

≤ 1

2
+

polylog(N)√
M

,

where the first two lines apply (11) and (12), the third line holds by Theorem 27, and the last line
uses the fact that M ≤ quasipoly(N).

To complete this section, we require the following proposition, which is the same as Proposition 40
but with the role of BQP and ΣP

k reversed, and with the extra subtlety that we must also consider
queries to promise problems.

Proposition 56. Let M be a ΣP
k

PromiseBQP
oracle machine (i.e. a pair 〈A,B〉 of a ΣP

k oracle
machine A and a PromiseBQP oracle machine B). Let p(n) be a polynomial upper bound on the
runtime of A and B on inputs of length n. Then for any x ∈ {0, 1}n, there is a depth-2 circuit C of
size at most 2poly(n) in which the top gate is computed by a function in AC0

[
2poly(n), k + 1

]
, and

all of the bottom gates are functions with bounded-error quantum query complexity at most p(p(n)),
such that for any oracle O : {0, 1}∗ → {0, 1} we have:

MO(x) = C
(
O[p(p(n))]

)
,

where O[p(p(n))] denotes the concatenation of the bits of O on all strings of length at most p(p(n)).

Proof. Let N =
∑p(n)

m=0 2m. By Lemma 26, there exists a function f : {0, 1}N → {0, 1} in
AC0

[
2poly(n), k + 1

]
such that, for any language L, AL(x) = f

(
L[p(n)]

)
. We take this f to be

the top gate of our circuit, and will replace the inputs of this gate by functions of low quantum query
complexity. Recall from Section 2.5 that for b ∈ {0, 1}, a gate labeled by f evaluates to b on input
P ∈ {0, 1,⊥}N if, for every string Q ∈ {0, 1}N that extends P , we have f(Q) = b. Additionally,
recall from Section 2.2 that we define queries to a promise problem Π such that:

AΠ(x) :=


0 AL(x) = 0 for every language L that extends Π,

1 AL(x) = 1 for every language L that extends Π,

⊥ otherwise.

It follows that, for any promise problem Π, AΠ(x) = f
(
Π[p(n)]

)
(or, in plain words, the extension of

f to allow inputs in {0, 1,⊥} is consistent with the extension of A to allow queries to a promise
problem).

Let Π be the promise problem decided by BO. Since AΠ(x) runs in time at most p(n), it can
only query the evaluation of BO on inputs up to length at most p(n). For each y ∈ {0, 1}m with
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m ≤ p(n), there exists a partial function gy with Q(gy) ≤ p(m) ≤ p(p(n)) such that, for every oracle
O, BO(y) is computed by gy

(
Op(m)

)
.

Consider the circuit C obtained by feeding these functions {gy : y ∈ {0, 1}m,m ≤ p(n)} into f .
Then MO(x) = AΠ(x) = C

(
O[p(p(n))]

)
. Furthermore, C clearly satisfies the desired size, depth, and

structure requirements.

By straightforward techniques, Theorem 55 can be extended to a proof of the following oracle
result.

Corollary 57. There exists an oracle relative to which BQPNP 6⊂ PHPromiseBQP.

Proof. We construct an oracle A as follows. Let LA be a uniformly random unary language. For
each n ∈ N, we add into A a region consisting of a function fn : {0, 1}2n → {0, 1}. Viewing the
truth table of fn as a 2n × 2n array of bits, choose fn as follows:

• If LA (0n) = 0, sample a uniformly random string z of length 2n, and draw f ∼ Dz,2n .

• If LA (0n) = 1, sample z from the Forrelation distribution F2n , and draw f ∼ Dz,2n .

Let D be the resulting distribution over oracles A.

We first show that LA ∈ BQPNPA with probability 1 over A ∼ D. To do so, we define a language
PA as follows: for a string x ∈ {0, 1}∗, PA(x) = 1 if |x| = n and the xth row of fn contains a 1;
otherwise PA(x) = 0. Clearly, PA ∈ NPA: to determine if x ∈ PA, nondeterministically guess a

string y ∈ {0, 1}n and check if fn(x, y) = 1. Thus, it suffices to show that LA ∈ BQPP
A

, which we
do below. (Note that this proof shares large parts with the proof of Claim 30, only modifying a few
parameters.)

Claim 58. LA ∈ BQPP
A

with probability 1 over A.

Proof of Claim. A quantum algorithm can decide whether 0n ∈ LA in poly(n) time by using the
Forrelation distinguishing algorithm A from Theorem 27 on the region of PA corresponding to
inputs of length n.

In more detail, let z : {0, 1}n → {0, 1} denote the restriction of PA to inputs of length n. By
Theorem 27 we know that:

Pr
A∼D

[
A(z) 6= LA (0n)

]
≤ 2−2n,

where the probability in the above expression is also taken over the randomness of A. By Markov’s
inequality, we may conclude:

Pr
A∼D

[
Pr
[
A(z) 6= LA (0n)

]
≥ 1/3

]
≤ 3 · 2−2n.

Hence, the BQP promise problem defined by A agrees with LA on 0n, except with probability at
most 3 · 2−2n.

We now appeal to the Borel-Cantelli Lemma to argue that, with probability 1 over A, A correctly
decides LA (0n) for all but finitely many n ∈ N. We have:

∑
n∈N

Pr
A∼D

[
APA does not decide LA (0n)

]
≤
∞∑
n=1

3 · 2−2n <∞.

Therefore, the probability that A fails on infinitely many inputs 0n is 0. Hence, A can be modified
into a BQP algorithm that decides LA (0n) for all n ∈ N, with probability 1 over A ∼ D.
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It remains to show that LA 6∈ PHPromiseBQPA with probability 1 over A. As we will show, this
follows from Theorem 55 in the much same way that Corollary 41 follows from Theorem 39. Fix a

ΣP
k

PromiseBQP
oracle machine M . By the union bound, it suffices to show that

Pr
A∼D

[
MA decides LA

]
= 0.

Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
A∼D

[
MA correctly decides 0ni |MA correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
A∼D

[
MA decides LA

]
≤
∞∏
i=1

p(M, i).

Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many i.
Proposition 56 shows that M ’s behavior on 0ni can be computed by a depth-2 circuit of size 2poly(ni)

in which the top gate is a function in AC0
[
2poly(ni), k + 1

]
, and all of the bottom gates are functions

with bounded-error quantum query complexity at most poly(ni). Theorem 55 with M = N = 2ni

shows that such a circuit correctly evaluates the Forrelation ◦ OR function with probability
greater than (say) 0.7 for at most finitely many i. This even holds conditioned on MA correctly
deciding 0n1 , . . . , 0ni−1 , because the size-22ni Forrelation ◦OR instance is chosen independently
of the smaller instances, and because M (0ni) can query the oracle on strings of length ni+1 or
greater for at most finitely many values of i.

5 Limitations of the QMA Hierarchy (And Beyond)

In this section, we use random restriction arguments to prove that PP 6⊂ QMAH relative to a random
oracle.

5.1 The Basic Random Restriction Argument

The most basic form of our random restriction argument, though not necessarily its most easily
applicable, is given below. The theorem can be understood as stating that if we choose a random
subset S of the bits of some input x, then S usually contains a small set K such that the quantum
algorithm’s acceptance probability cannot change much when any bits of S \ K are flipped. In
particular, K serves as a sort of “certificate” of the quantum algorithm’s behavior when the bits of
S \K are unrestricted.

Theorem 59 (Random restriction for BQP). Consider a quantum algorithm Q that makes T queries
to x ∈ {0, 1}N . Choose k ∈ N. If S ⊆ [N ] is sampled such that each i ∈ [N ] is in S with probability
p, then with probability at least 1− 2e−k/6, there exists a set K ⊆ S of size at most k such that for
every y ∈ {0, 1}N with {i ∈ [N ] : xi 6= yi} ⊆ S \K, we have:

|Pr [Q(x) = 1]− Pr [Q(y) = 1]| ≤ 16Tp
√
N/k
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Proof. We proceed in cases. Suppose k > 2pN . Then, we may simply take the set K = S, which
satisfies the theorem whenever |S| ≤ k. By a Chernoff bound (Fact 15) with δ = k

pN − 1, the
probability that this condition is violated is upper bounded by:

Pr [|S| ≥ (1 + δ)pN ] ≤ e−
δ2pN
2+δ ≤ e−

(1+δ)pN
6 = e−k/6,

where we use the inequality δ2

2+δ ≥
1+δ

6 which holds for all δ ≥ 1.
In the complementary case, suppose k ≤ 2pN . Recall the definition of the query magnitudes qi

from Lemma 28, which are defined in terms of the behavior of Q on x. Note that
∑N

i=1 qi = T . Let

τ = 2Tp
k . Since all qis are nonnegative, |{i ∈ [N ] : qi > τ}| ≤ T

τ . Choose K = {i ∈ S : qi > τ}. By a
Chernoff bound (Fact 15),

Pr [|K| ≥ k] ≤ e−k/6,

using the fact that E [|K|] = p · |{i ∈ [N ] : qi > τ}| ≤ pT
τ = k

2 . Additionally,

Pr [|S| ≥ 2pN ] ≤ e−pN/3 ≤ e−k/6,

by another Chernoff bound. Suppose |K| ≤ k and |S| ≤ 2pN , which happens with probability at
least 1− 2e−k/6. Then we have:

|Pr [Q(x) = 1]− Pr [Q(y) = 1]| ≤ 8
√
T ·
√ ∑
i:xi 6=yi

qi

≤ 8
√
T ·
√ ∑
i∈S\K

qi

≤ 8
√
T ·
√
|S|τ

≤ 16Tp
√
N/k.

Above, the first line applies Lemma 28; the second line holds by the assumption that {i ∈ [N ] : xi 6=
yi} ⊆ S \K; the third line applies the definition of K to conclude that qi ≤ τ for all i ∈ S \K; and
the last line substitutes |S| ≤ 2pN and τ = 2Tp

k .

5.2 Measuring Closeness of Functions

In order to better make sense of Theorem 59, we introduce some language that allows us to quantify
how “close” a pair of partial functions are.

Definition 60. Let f, g : {0, 1}N → {0, 1,⊥} be partial functions. We say that g disagrees with f
on x if x ∈ Dom(f) and g(x) 6= f(x). The disagreement of g with respect to f , denoted disagrf (g),
is the fraction of inputs on which f and g disagree:

disagrf (g) := Pr
x∼{0,1}N

[g disagrees with f on x] .

If C is a class of partial functions, the disagreement of C with respect to f , denoted disagrf (C), is
the minimum disagreement of any function in C with f :

disagrf (C) := min
g∈C

disagrf (g).
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Note that the above definition is not symmetric in f and g. We typically think of f as some
“target” function, and g as some machine that tries to compute f on the inputs where f is defined.
The goal is for g to be consistent with f with good probability; thus we only penalize g if it reports
an incorrect answer when f takes a value in {0, 1}.

This next few propositions show that disagreement behaves intuitively in various ways. First,
we show that disagreement satisfies a sort of “triangle inequality”.

Proposition 61. Let f, g, h : {0, 1}N → {0, 1,⊥}. Then disagrf (h) ≤ disagrf (g) + disagrg(h).

Proof. This follows from Definition 60 and a union bound:

disagrf (h) = Pr
x∼{0,1}N

[h disagrees with f on x]

≤ Pr
x∼{0,1}N

[g disagrees with f on x OR h disagrees with g on x]

≤ disagrf (g) + disagrg(h).

The next two propositions show that disagreement behaves intuitively with respect to random
restrictions. First, we show that disagreement is preserved, in expectation, under random restrictions.

Proposition 62. Let f, g : {0, 1}N → {0, 1,⊥}. Consider a random restriction ρ with Pr[∗] = p.

Then Eρ
[
disagrfρ (gρ)

]
= disagrf (g).

Proof. Let S = {i ∈ [N ] : ρ(i) = ∗}, and let y ∈ {0, 1}[N ]\S be the assignment of non-∗ variables
under ρ. Then:

E
ρ

[
disagrfρ (gρ)

]
= E

ρ

[
Pr

z∈{0,1}S
[gρ disagrees with fρ on z]

]
= E

y∈{0,1}[N ]\S

[
Pr

z∈{0,1}S
[g disagrees with f on (y, z)]

]
= Pr

x∈{0,1}N
[g disagrees with f on x]

= disagrf (g).

Finally, we show that if we perform a sequence of random restrictions, each of which incurs some
cost in disagreement, then the disagreement accumulates additively.

Proposition 63. Let f : {0, 1}N → {0, 1,⊥}, and let ρ, σ be random restrictions with Pr[∗] = p, q
respectively. Suppose there exist classes of functions C,D such that:

(a) Eρ
[
disagrfρ (C)

]
≤ ε.

(b) For all g ∈ C, Eσ
[
disagrgσ (D)

]
≤ δ.

Then Eρσ
[
disagrfρσ (D)

]
≤ ε+ δ.

Proof. Let g ∈ C be the function (depending on ρ) that minimizes disagrfρ(g), and let h ∈ D be the
function (depending on ρ and σ) that minimizes disagrgσ(h). Then we have:

E
ρ,σ

[
disagrfρσ(h)

]
≤ E

ρ,σ

[
disagrfρσ (gσ) + disagrgσ(h)

]
= E

ρ

[
disagrfρ(g)

]
+ E
ρ,σ

[
disagrgσ(h)

]
≤ ε+ δ,
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where the first line holds by Proposition 61; the second line applies Proposition 62 and linearity of
expectation; and the last line holds because of assumptions (a) and (b).

5.3 Random Restriction for QMA Queries

With the tools introduced in the previous section, we can state a more intuitive and useful form of
our random restriction argument for QMA query algorithms. It states that a random restriction of
a QMA query algorithm is close in expectation to a small-width DNF formula.

Theorem 64. Consider a partial function f : {0, 1}N → {0, 1,⊥} with QMA(f) ≤ T . Set p =
√
k

64T
√
N

for some k ∈ N. Let ρ be a random restriction with Pr[∗] = p. Let DNFk denote the set of width-k

DNFs. Then Eρ
[
disagrfρ (DNFk)

]
≤ 2e−k/6.

Proof. It will be convenient to view the choice of ρ as follows: we choose a string z ∈ {0, 1}N
uniformly at random, and then we choose a set S ⊆ [N ] wherein each i ∈ [N ] is included in S
independently with probability p. Then, we take ρ to be:

ρ(i) =

{
∗ i ∈ S
zi i 6∈ S.

Thus, by definition, it holds that fρ(z|S) = f(z).
Choose g ∈ DNFk as follows, depending on the choice of ρ. For each x ∈ Dom(fρ), choose a

certificate Kx for fρ on x of minimal size. Define g by:

g(y) :=
∨

x∈f−1
ρ (1)

Cx(f)≤k

∧
i∈Kx

yi = xi.

This is to say that we take g to be the OR of all of the chosen 1-certificates of fρ that have size
at most k. Clearly, g is computable by a width-k DNF, so it remains to show that g has small
disagreement with respect to f in expectation.

Call the pair (z, S) “good” if either f(z) 6= 1 or Cz|S (fρ) ≤ k. Observe that g agrees with fρ on
the input z|S whenever (z, S) is good:

• If f(z) = 0, then z|S cannot contain a 1-certificate for fρ, and so g(z|S) = fρ(z|S) = 0.

• If f(z) = ⊥ then g always agrees with fρ on z|S .

• Lastly, if f(z) = 1 and Cz|S (fρ) ≤ k, then z|S certainly contains the certificate Kz|S and hence
g(z|S) = fρ(z|S) = 1.

Thus we can see that the expected disagreement of g with respect to f satisfies:

E
ρ

[
disagrfρ(g)

]
= Pr

z,S
[g disagrees with fρ on z|S ] ≤ Pr

z,S
[(z, S) is not good].

It remains to prove that most (z, S) are good. Let V (|ψ〉 , z) be the QMA verifier corresponding
to f on input z, where |ψ〉 is the witness. Fix z, and let |ψz〉 be the witness that maximizes
Pr[V (|ψ〉z , z) = 1]. By Theorem 59, for any z ∈ {0, 1}N , with probability at least 1− 2e−k/6 over
S, there exists a set K ⊆ S of size at most k such that for every y ∈ {0, 1}N with {i ∈ [N ] : zi 6=
yi} ∈ S \K we have:

|Pr[V (|ψ〉z , z) = 1]− Pr[V (|ψ〉z , y) = 1]| ≤ 1

4
.
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In particular, if f(z) = 1 then Pr[V (|ψ〉z , y) = 1] ≥ 2
3 −

1
4 >

1
3 , and so f(y) 6= 0. This is to say that

K is a certificate for fρ on z|S , and therefore Cz|S (fρ) ≤ k and (z, S) is good.

5.4 Application to QMAH

In order to generalize Theorem 64 to QMAH machines, we require the following form of H̊astad’s
switching lemma for DNF formulas [H̊as87]. The statement given below, and arguably its simplest
proof, are given in an exposition by Thapen [Tha09]. Technically, this is just a weaker statement of
Theorem 42, though we prefer the version given here because it makes the constant factor explicit.

Lemma 65 (Switching Lemma). Let f be a width-k DNF. If ρ is a random restriction with
Pr[∗] = q < 1

9 , then for any t > 0, Pr [D(fρ) > t] ≤ (9qk)t.

Corollary 66. Let f be a width-k DNF. Denote by Dt the set of functions that have deterministic
query complexity at most t. If ρ is a random restriction with Pr[∗] = q < 1

9 , then for any t > 0, we
have Eρ[disagrfρ (Dt)] ≤ (9qk)t.

Proof. Take g = fρ if D(fρ) ≤ t, and otherwise let g be the all-zeros function. Then g ∈ Dt, and by
Lemma 65, Eρ[disagrfρ (g)] ≤ (9qk)t.

With all of these tools in hand, we prove in our next theorem that under an appropriately chosen
random restriction, a circuit composed of QMA query gates simplifies to a function that is close
(in expectation) to a function with low deterministic query complexity. The proof amounts to a
recursive application of Theorem 64 combined with Corollary 66.

Theorem 67. Let f : {0, 1}N → {0, 1,⊥} be computable by a size-s depth-d circuit where each gate
is a (possibly partial) function with QMA query complexity at most R. Fix k ∈ N, and consider a
random restriction ρ with

Pr[∗] =
(
1024R2kN

)2−d−1 ·

(
e−1/6

18k

)d
,

Denote by Dk the set of functions that have deterministic query complexity at most k. Then

Eρ
[
disagrfρ (Dk)

]
≤ 4se−k/6.

Proof. For convenience, define α = 1
64R
√
k
. Let N0 = N , and for i ∈ [d] define pi and Ni recursively

by:

pi =
α√
Ni−1

Ni = 2piNi−1.

This recursive definition implies that:
d∏
i=1

pi =
Nd

2dN
. (13)

Additionally, a simple inductive calculation shows that Ni takes the closed form:

Ni = (2α)2(1−2−i)N2−i . (14)
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We view ρ as a sequence of restrictions ρ1, . . . , ρd in which ρi has Pr[∗] = piq, where q = e−1/6

9k

(one can easily verify from (13) and (14) that
∏d
i=1 piq equals the probability given in the statement

in the theorem). We view each ρi itself as the composition of two random restrictions, one with
Pr[∗] = pi and one with Pr[∗] = q.

We proceed in cases. Suppose k > Nd. Let S = {i ∈ [N ] : ρ(i) = ∗} denote the set of
unrestricted variables. Notice that disagrfρ (Dk) = 0 whenever |S| ≤ k, just because Dk contains all

total functions on at most k bits. Let δ = k
N ·Pr[∗] − 1. By (13),

k > Nd =
2dN · Pr[∗]

qd
≥ 2dN · Pr[∗] ≥ 2N · Pr[∗],

which implies that δ ≥ 1. By a Chernoff bound (Fact 15), this implies that:

E
ρ

[
disagrfρ (Dk)

]
≤ Pr [|S| ≥ (1 + δ)N · Pr[∗]] ≤ e−

δ2N·Pr[∗]
2+δ ≤ e−

(1+δ)N·Pr[∗]
6 = e−k/6,

where we use the inequality δ2

2+δ ≥
1+δ

6 which holds for all δ ≥ 1. Thus, the theorem is proved in
this k > Nd case.

In the complementary case, suppose k ≤ Nd. Let Ci be the class of functions such that for all
g ∈ Ci:

(a) g is computable by a circuit with the same structure as f , except that the gates at distance13 at
most i from the input are eliminated and the gates at distance i+ 1 make at most Rk queries
(or, if i = d, D(g) ≤ k).

(b) g depends on at most Ni inputs.

By convention, let C0 = {f}. With this definition, the statement of the theorem follows from
Proposition 63 and an inductive application of the following claim:

Claim 68. For all g ∈ Ci−1, Eρi
[
disagrgρi

(Ci)
]
≤ 4e−k/6 · si, where si is the number of gates at

distance exactly i from the inputs in the circuit that computes f .

Proof of Claim. Consider applying ρi to g. After the random restriction with Pr[∗] = pi, by a
Chernoff bound (Fact 15) and because g depends on at most Ni−1 variables, the resulting function
depends on at most Ni = 2piNi−1 variables, except with probability at most e−Ni/6 ≤ e−Nd/6 ≤ e−k/6
over this first restriction.14 Additionally, by Theorem 64 with T = Rk and p = pi, because g is a
function of at most Ni−1 variables, there exist width-k DNFs that each have expected disagreement
at most 2e−k/6 with respect to the corresponding bottom-layer QMA gates of the circuit that
computes gρi .

After the next random restriction with Pr[∗] = q, by Corollary 66, these width-k DNFs each
have expected disagreement at most e−k/6 from functions of deterministic query complexity at most
k. Hence, by Proposition 63, viewing ρi as the composition of these two random restrictions, each
bottom-layer QMA gate in the circuit that computes gρi has expected disagreement at most 3e−k/6

from a function of deterministic query complexity at most k.

13Here, distance is defined as the length of the longest path from that gate to any of the inputs.
14Actually, a careful inspection of the steps leading up to this proof reveals that this Chernoff bound is unnecessary:

we already account for this “bad” event (the number of unrestricted variables being larger than 2piNi−1) in Theorem 59.
We only write it this way to make each step of the proof is as self-contained as possible.
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Let h be a function depending on ρi, chosen as follows. Take h to be the all zeros function if gρi
depends on more than Ni variables; otherwise let h be the function obtained from g by replacing the
bottom-level gates of the circuit that computes g with the corresponding functions of deterministic
query complexity k. We verify that h ∈ Ci:

(a) We can absorb the functions of query complexity k into the next layer of QMA gates, increasing
the query complexity of each gate by a multiplicative factor of k. Alternatively, if i = d, then
D(h) ≤ k just because g consists of a single gate.

(b) Either gρi depends on at most Ni variables, or else h is trivial; in either case h depends on at
most Ni inputs.

We now demonstrate that Eρi
[
disagrgρi

(h)
]
≤ 4e−k/6 · si. Notice that h never disagrees with gρi

on input x, unless either (1) gρi depends on more than Ni variables, or (2) one of the functions of
deterministic query complexity k disagrees with its corresponding QMA gate on x. Hence, by a

union bound, Eρi
[
disagrgρi

(h)
]
≤ e−k/6 + 3e−k/6 · si ≤ 4e−k/6 · si.

This completes the theorem in the k ≤ Nd case.

As a corollary, we obtain the following result, which shows that small circuits composed of
functions with low QMA query complexity cannot compute the Parity function.

Corollary 69. Let f : {0, 1}N → {0, 1,⊥} be computed by a circuit of size s = quasipoly(N)
and depth d = O(1), where each gate has QMA query complexity at most R ≤ polylog(N). Let
ParityN be the parity function on N bits. Then for any ε ≥ 1

quasipoly(N) and sufficiently large N ,

disagrParityN (f) ≥ 1
2 − ε.

Proof. Choose k = d6 ln (5s/ε)e ≤ polylog(N). Let ρ be a random restriction where p = Pr[∗] is the

probability given in the statement of Theorem 67. A simple calculation shows that pN ≥ NΩ(1)

polylog(N) ;

hence k ≤ pN
2 for sufficiently large N . Let g ∈ Dk be the function (depending on ρ) that minimizes

disagrfρ(g). With this, we have the following chain of inequalities:

disagrParityN (f) = E
ρ

[
disagrParityN|ρ (fρ)

]
≥ E

ρ

[
disagrParityN|ρ (g)− disagrfρ (g)

]
≥ E

ρ

[
disagrParityN|ρ (g)

]
− 4se−k/6

≥ 1

2
Pr
ρ

[|{i ∈ [N ] : ρ(i) = ∗}| > k]− 4se−k/6

≥ 1

2

(
1− e−k/4

)
− 4se−k/6

≥ 1

2
− 5se−k/6

≥ 1

2
− ε.

Above, the first line holds by Proposition 62; the second line holds by Proposition 61; the third line
applies linearity of expectation along with the bound from Theorem 67; the fourth line uses the fact
that any function of deterministic query complexity k disagrees with the (k + 1)-bit parity function
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on exactly half of all inputs; the fifth line uses a Chernoff bound (Fact 15) and k ≤ pN
2 ; the sixth

line substitutes e−k/4

2 ≤ e−k/4 ≤ e−k/6 ≤ se−k/6; and the last line substitutes the definition of k.

To complete the oracle result of this section, we require the following analogue of Furst-Saxe-Sipser
[FSS84] (Lemma 26) for QMAH.

Proposition 70. For some constant d, let M be a PromiseQMAHd oracle machine (i.e. a tuple
of PromiseQMA oracle machines 〈M1, . . . ,Md〉), and let p(n) be a polynomial upper bound on the
runtime of each Mi on inputs of length n. Define pd(n) := p(p(· · · p︸ ︷︷ ︸

d times

(n))). Then for any x ∈ {0, 1}n,

there is a circuit C of size at most 2poly(n) and depth d in which each gate has QMA query complexity
at most pd(n), such that for any oracle O : {0, 1}∗ → {0, 1}, we have:

MO(x) = C
(
O[pd(n)]

)
,

where O[pd(n)] denotes the concatenation of the bits of O on all strings of length at most pd(n).

Proof. We prove by induction on d. In the base case d = 1, we simply have a PromiseQMA machine.
Thus, MO1 (x) is a partial function of QMA query complexity at most p(n) in the bits of O, and
since M1 runs in time at most p(n), it can only query bits of O up to length at most p(n). We may
view this QMA query function as a circuit of the desired form consisting of only a single gate.

For the inductive step, let d > 1. We can view M as a PromiseQMAPromiseQMAHd−1 machine,
where Md is the base PromiseQMA machine and M ′ := 〈M1, . . . ,Md−1〉 is the PromiseQMAHd−1

machine. MM ′O
d (x) is a partial function of QMA query complexity at most p(n) in the bits of M ′O.15

We take this partial function to be the top gate of our circuit, and use the inductive hypothesis to
replace the inputs to this gate, the bits of M ′O, with depth-(d− 1) circuits.

Since M1 runs in time at most p(n), it can only query bits of M ′O up to length at most p(n). By
the inductive hypothesis, for each y ∈ {0, 1}m with m ≤ p(n), M ′O(y) is computed by a circuit of
size 2poly(m) ≤ 2poly(n) and depth d, with QMA query complexity at most pd−1(m) ≤ pd(n) at each
gate, where the inputs to this circuit are the bits of O on inputs of length at most pd−1(m) ≤ pd(n).
So, the resulting circuit obtained by composing the top gate with these circuits clearly has depth d,
query complexity at most pd(n) at each gate, and depends only on O[pd(n)]. The total size of this
circuit is upper bounded by:

1 +

p(n)∑
m=0

2m · 2poly(m) ≤ 2poly(n),

which proves the proposition.

Via standard complexity-theoretic techniques, this implies the following:

Corollary 71. PPO 6⊂ QMAHO with probability 1 over a random oracle O.

Proof. Note that PPO ⊆ QMAHO if and only if P#PO ⊆ QMAHO, just because QMAHO is closed
under polynomial-time reductions. Hence, it suffices to show that P#PO 6⊂ QMAHO.

Let LO be the language consisting of strings 0n such that, if we treat n as an index into a portion
of O of size 2n, then the parity of that length-2n string is 1. Then LO ∈ P#PO (indeed, LO ∈ ⊕PO).

15Here, we slightly abuse notation to let M ′O denote the promise problem decided by M ′ with oracle O. Also
observe that, as in the proof of Proposition 56, the notion of promise problem queries defined in Section 2.2 is consistent
with the way we extend the domain of circuit gates to {0, 1,⊥} in Section 2.5.
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It remains to show that LO 6∈ QMAHO. (The remainder of this proof is largely the same as our
other oracle separations that follow from circuit lower bounds.) Fix a QMAH oracle machine M .
By the union bound, it suffices to show that

Pr
O

[
MO decides LO

]
= 0.

Let n1 < n2 < · · · be an infinite sequence of input lengths, spaced far enough apart (e.g.
ni+1 = 2ni) such that M (0ni) can query the oracle on strings of length ni+1 or greater for at most
finitely many values of i. Next, let

p(M, i) := Pr
O

[
MO correctly decides 0ni |MO correctly decided 0n1 , . . . , 0ni−1

]
Then we have that

Pr
O

[
MO decides LO

]
≤
∞∏
i=1

p(M, i).

Thus it suffices to show that, for every fixed M , we have p(M, i) ≤ 0.7 for all but finitely many i.
Proposition 70 shows that M ’s behavior on 0ni can be computed by a circuit of size at most 2poly(ni)

and depth O(1) in which each gate has QMA query complexity at most poly(ni). Corollary 69 with
N = 2ni , R = poly(ni), and ε = 0.2 shows that such a circuit correctly evaluates the ParityN
function with probability greater than 0.7 for at most finitely many i. This even holds conditioned on
MO correctly deciding 0n1 , . . . , 0ni−1 , because the size-2ni Parity instance is chosen independently
of the smaller instances, and because M (0ni) can query the oracle on strings of length ni+1 or
greater for at most finitely many values of i.

5.5 Beyond QMAH

Our proof that PP 6⊂ QMAH relative to a random oracle also extends to complexity classes that are
potentially much stronger than QMAH. This is because our definition of QMA query complexity
(Definition 19) only depends on the number of queries made by the verifier, and not on the length
of the witness state. Hence, QMA query complexity actually upper bounds the relativized power
of almost any complexity class that involves interactive proofs with a polynomial-time quantum
verifier, including QMA(2) [KMY03], QSZK [Wat02], and QMIP [KM03]. To illustrate, we argue

briefly that PP 6⊂ QMIPPromiseQMIPPromiseQMIP···
relative to a random oracle.

Recall that PromiseQMIP is the set of promise problems Π for which there exists an efficient
quantum multiprover interactive proof system: a communication protocol in which one or more
provers communicate with a verifier, trying to convince the verifier that Π(x) = 1. The verifier
is a polynomial time machine that can send and receive quantum messages. The provers are
computationally unbounded, and may share an entangled state at the start of the protocol. Otherwise,
the provers are not allowed to communicate with each other during the protocol. Then, Π(x) = 1 if
there exists a prover strategy that causes the verifier to accept with probability at least 2

3 , while
Π(x) = 0 if, for every prover strategy, the verifier accepts with probability at most 1

3 .
The key observation is that a poly(n)-time QMIP oracle protocol can be simulated by a poly(n)-

query QMA protocol in which the verifier receives an arbitrarily long witness, and the verifier is
computationally unbounded. In this QMA protocol, the witness is interpreted as a string that
is purported to encode the answers to all oracle queries on at most poly(n) bits. The verifier
then simulates the QMIP protocol, choosing the prover strategy that causes the QMIP verifier to
accept with the greatest possible probability when the oracle is consistent with the given witness.
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Finding this optimal strategy is merely a computational problem, and so the QMA verifier remains
query-efficient.

Thus, we can extend Proposition 70 from QMAH oracle machines to QMIPPromiseQMIPPromiseQMIP···
or-

acle machines. It follows, using the same proof as Corollary 71, that PP 6⊂ QMIPPromiseQMIPPromiseQMIP···

relative to a random oracle—despite the fact that QMIP = MIP∗ = RE in the unrelativized world
[RUV13, JNV+20]!

6 Open Problems

6.1 Oracles where BQP = EXP

We construct oracles relative to which BQP = P#P and yet either PH is infinite (Theorem 29), or
P = NP (Theorem 32). Can these be strengthened to oracles where we also have BQP = EXP?
The main challenge in generalizing our proofs is that P#P machines, unlike EXP machines, have a
polynomial upper bound on the length of the queries they can make. This property allowed us to
encode the behavior of a P#P machine M into a part of the oracle that M cannot query, but that a
BQP machine with a larger polynomial running time can query. Alas, such a simple trick will not
work when M is an EXP machine. Nevertheless, there exist alternative tools that can collapse EXP
to such weaker complexity classes. For instance, Heller [Hel86] gives an oracle relative to which
BPP = EXP. Beigel and Maciel [BM99] even construct an oracle relative to which P = NP and
⊕P = EXP, using AC0 circuit lower bounds for the Parity problem that are analogous to the lower
bounds we use for Forrelation.

6.2 Finer Control over BQP and PH

Recall Conjecture 5, which states that for every k, there exists an oracle relative to which ΣP
k ⊆ BQP

but ΣP
k+1 6⊂ BQP. We conjecture more strongly that a small modification of the oracle O constructed

in Theorem 29 achieves this. Recall that O consists of a random oracle A, and an oracle B that
recursively hides the answers to all possible P#PO queries in instances of the Forrelation problem.
The idea is simply to modify the definition of B so that it instead encodes the outputs of ΣP

k

machines instead of P#P machines.
Our intuition is that, because the Forrelation instances look random to ΣP

k machines, a ΣP
k

machine should not be able to recursively reason about B. Thus, a BQP machine that queries
O = (A,B) should be effectively no more powerful than a BQPΣP

k machine that queries only A. If

this intuition can be made precise, then one could possibly appeal to our proof that ΣP
k+1 6⊂ BQPΣP

k

relative to a random oracle. Of course, we could not get this proof strategy to work—otherwise, we
would not have needed the machinery surrounding sensitivity concentration of AC0 circuits in order
to get an oracle where NPBQP 6⊂ BQPNP!

We now sketch what we consider a viable alternative approach towards showing that our
conjectured oracle separation holds. Instead of the “top-down” view taken above, where one tries to
argue that a ΣP

k machine gains no benefit from making recursive queries to B, one might instead
attempt a “bottom-up” approach, where one uses the structure of the target ΣP

k+1 problem (the
Sipserk+2 function) to argue that each bit of B has only minimal correlation with the answer,
starting with the parts of B that are constructed first. Very roughly speaking, our idea would
be to combine the random projection technique of [HRST17] with some generalization of the AC0

sensitivity concentration bounds that we prove in Section 4.2.
In slightly more detail, we would first hit A with a random projection, one that with high

probability turns the Sipserk+2 function into an AND of large fan-in, while turning any ΣPA

k
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machine into a low-depth decision tree. Then, we would want to argue that if we fix the unrestricted
variables of A to all 1s, and choose Forrelation instances in B consistent with this, then each
bit of B is unlikely to flip if we instead randomly change a few bits of A to 0s, and resample the
Forrelation instances of B corresponding to ΣP

k machines that return different answers. If this
could be shown, then as in Theorem 39, an appeal to Lemma 37 (which is a modification of the
BBBV Theorem [BBBV97]) ought to be sufficient to argue that a BQPO machine could not compute
the Sipserk+2 function.

For the bits of B corresponding to the bottom-level ΣP
k machines that only query A directly,

this is easy to show, as a low-depth decision tree is unlikely to query any 0s under a distribution of
mostly 1s. However, for the higher levels of B corresponding to ΣP

k machines that can query the
earlier bits of B, this becomes more challenging: we have to argue that a ΣP

k machine that queries
a long list of Forrelation instances is unlikely to return a different answer when we randomly
flip a few of the instances between the uniform and Forrelated distributions. This might require
a generalization of Lemma 46 in which (1) the string x is not just uniformly random, but is an
arbitrary sequence of Forrelated and uniformly random rows, and (2) instead of flipping a single
random row of x from uniformly random to Forrelated, we flip an arbitrary subset of the rows
between random and Forrelated, subject only to the constraint that the probability of any individual
row being chosen is small.

If this problem is too difficult, it remains interesting, in our view, to give an oracle where
NP ⊆ BQP but PH 6⊂ BQP. This would merely require proving our proposed generalization of
Lemma 46 for low-width DNF formulas, as opposed to arbitrary AC0 circuits of quasipolynomial
size.

6.3 Stronger Random Restriction Lemmas

Can one prove a sharper version of our random restriction lemma for QMA query algorithms
(Theorem 64)? Unlike the switching lemma for DNF formulas (Lemma 65), our result has a
quantitative dependence on the number of inputs N . Thus, whereas a polylog(N)-width DNF
simplifies (to a low-depth decision tree, with high probability) under a random restriction with
Pr[∗] = 1

polylog(N) , we can only show that a polylog(N)-query QMA algorithm simplifies under a

random restriction with Pr[∗] = 1√
Npolylog(N)

, which leaves much fewer unrestricted variables. We see

no reason why such a dependence on N should be necessary, and we conjecture that a polylog(N)-
query QMA algorithm should simplify greatly under a random restriction with Pr[∗] = 1

polylog(N) . It
would be interesting to see whether one could prove this even without a bound on the QMA witness
length, as we do in our proofs.

It is also worth exploring whether our random restriction lemma could be generalized to other
classes of functions. Our argument works for functions of low quantum query complexity, so it is
natural to ask: is there a comparable random restriction lemma for bounded low-degree polynomials,
and thus functions of low approximate degree? Kabanets, Kane, and Lu [KKL17] exhibit a random
restriction lemma for polynomial threshold functions, an even stronger class of functions, though
their bounds become very weak when the degree is much larger than

√
logN . We conjecture that an

analogue of Theorem 64 should hold if we replace low QMA query complexity by low approximate
degree, perhaps even with better quantitative parameters.16

16One could conceivably even show this by simply proving that every partial function with low approximate degree
also has low QMA query complexity, made easier by the fact that our definition of QMA query complexity allows
for unbounded witness length. This is an easier version of the problem of showing whether approximate degree and
quantum query complexity are polynomially related for all partial functions, which remains an open problem.
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6.4 Collapsing QMAH to P

In Corollary 71, we gave an oracle relative to which PP 6⊂ QMAH (indeed, we showed that
this holds even for a random oracle). Can one generalize this to an oracle relative to which
P = QMA = QMAH 6= PP? A priori, it might seem that one could use techniques similar to the
ones we used in Theorem 32 to set P = NP while still keeping P 6= P#P. That is, the idea would be
to start with a random oracle A, then inductively construct an oracle B, recursively encoding into
B answers to all QMA machines that query earlier parts of A and B. One would then hope to prove
an analogue of Lemma 35, showing that the bits of B can be computed by small low-depth circuits
where the gates are functions of low QMA query complexity, and the inputs are in A. Finally, one
could appeal to Corollary 69 to argue that such a circuit cannot compute Parity.

The main issue is that QMA is a semantic complexity class, in contrast to NP, which is a
syntactic complexity class. This is to say that every NP machine defines a language, whereas a QMA
machine only defines a promise problem. Hence, it is not clear how B should answer on machines
that fail to satisfy the QMA promise without “leaking” information that would otherwise be difficult
to compute. Even if we, say, assign those bits of B randomly, we can no longer argue that those bits
are computable by a QMA query algorithm, which would break our idea for generalizing Lemma 35.

To illustrate the difficulty in constructing such an oracle, we describe an example of an oracle
O = (A,B) that fails to put PP outside QMAH. We start by taking a random oracle A. Then,
we inductively construct B, where each bit of B encodes the behavior of a QMAO verifier 〈M,x〉,
where M can query the previously constructed parts of the oracle, as follows. We let p :=
max|ψ〉 Pr[M(x, |ψ〉)] = 1, and then we randomly choose the encoded bit to be 1 with probability p
and 0 with probability 1− p. This is to say that we set the bit to 1 with probability equaling the
acceptance probability of the QMA verifier, maximized over all possible witness states |ψ〉.

Unfortunately, while one can easily show that BPPO = QMAO, O also allows an algorithm to
“pull the randomness out” of a quantum algorithm, which makes O much more powerful than it seems!
By padding 〈M,x〉 with extra bits, one can obtain from the oracle arbitrarily many independent
bits sampled with bias p. Because PHO ⊆ BPPO, a BPPO machine can run Stockmeyer’s algorithm
[Sto83] on these samples to obtain a multiplicative approximation of any such p. In particular, this
implies that the quantum approximate counting problem, defined in Section 1.3, is in BPPO. But
the quantum approximate counting problem is PPO-hard [Kup15], so we also have BPPO = PPO.
Hence, any oracle that makes P = QMA 6= PP would have to choose a more careful encoding of the
answers to QMA problems than the one described here.
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[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. computational complexity, 1(1):3–40, 1991.
doi:10.1007/BF01200056. [p. 5]
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