
Average-case Hardness of NP and PH from
Worst-case Fine-grained Assumptions*

Lijie Chen
MIT

lijieche@mit.edu

Shuichi Hirahara
National Institute of Informatics

s hirahara@nii.ac.jp

Neekon Vafa
MIT

nvafa@mit.edu

November 21, 2021

Abstract

What is a minimal worst-case complexity assumption that implies non-trivial average-case
hardness of NP or PH? This question is well motivated by the theory of fine-grained average-
case complexity and fine-grained cryptography. In this paper, we show that several standard
worst-case complexity assumptions are sufficient to imply non-trivial average-case hardness
of NP or PH:

• NTIME[n] cannot be solved in quasi-linear time on average if UP 6⊆ DTIME
[
2Õ(
√

n)
]
.

• Σ2TIME[n] cannot be solved in quasi-linear time on average if ΣkSAT cannot be solved

in time 2Õ(
√

n) for some constant k. Previously, it was not known if even average-case
hardness of Σ3SAT implies the average-case hardness of Σ2TIME[n].

• Under the Exponential-Time Hypothesis (ETH), there is no average-case n1+ε-time algo-
rithm for NTIME[n] whose running time can be estimated in time n1+ε for some constant
ε > 0.

Our results are given by generalizing the non-black-box worst-case-to-average-case connec-
tions presented by Hirahara (STOC 2021) to the settings of fine-grained complexity. To do so,
we construct quite efficient complexity-theoretic pseudorandom generators under the assump-
tion that the nondeterministic linear time is easy on average, which may be of independent
interest.

*Lijie Chen is supported by NSF CCF-2127597 and an IBM Fellowship. Shuichi Hirahara is supported by JST,
PRESTO Grant Number JPMJPR2024, Japan. Neekon Vafa is supported by NSF fellowship DGE-1745302.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 166 (2021)

Contents

1 Introduction 1
1.1 Fine-Grained Average-Case Complexity . 1
1.2 Non-Black-Box Worst-Case-to-Average-Case Connections 3
1.3 Our Results . 3

2 Techniques Overview 6
2.1 Review of the Framework in [Hir21] . 6
2.2 Extremely Efficient HSGs and PRGs from Average-case Easiness of NP 9
2.3 Average-case Hardness of Σ2TIME[n] from Worst-case Hardness of ΣkTIME[n] 12

3 Preliminaries 13
3.1 Notation . 13
3.2 Complexity Classes . 14
3.3 Average-case Complexity . 15
3.4 Kolmogorov Complexity and Its Variants . 16
3.5 Pseudorandomness . 17

4 Extremely Efficient PRGs from Average-case Easiness of NTIME[n] 20
4.1 Technical Ingredients . 20
4.2 Proof of Theorem 4.1 . 22

5 Fine-grained Algorithmic Compression 25

6 Fine-grained Weak Symmetry of Information 31

7 New Worst-case to Average-case Reduction for PH 33

8 New Worst-case to Average-case Reduction for UP 38

9 New Worst-case to Average-case Reduction for Computable Heuristic Schemes 40

10 Applications to NP Witness Compression 45

i

1 Introduction

One of the central questions in theoretical computer science is to base the existence of one-way
functions on the worst-case hardness of NP. Equivalently, this question is well known as the
question of whether Heuristica and Pessiland can be excluded from Impagliazzo’s five possible
worlds [Imp95]. Heuristica is a hypothetical world in which NP is hard in the worst case but NP
is easy on average; Pessiland is a hypothetical world in which NP is hard on average but one-way
functions do not exist. The existence of a one-way function is indispensable for complexity-theory-
based cryptography [IL89]; thus, excluding these hypothetical worlds (where one-way functions
do not exist) from Impagliazzo’s five possible worlds would make the security of cryptographic
primitives more reliable.

There are a number of reasons why excluding Heuristica and Pessiland is difficult: Standard
proof techniques, such as black-box reductions, hardness amplification procedures, and relativiz-
ing proof techniques, are known to be incapable of excluding Heuristica [FF93, BT06b, Vio05b,
Vio05a, Imp11]. Similar impossibility results are known for Pessiland [AGGM06, BB15, Liv10,
Wee06].

1.1 Fine-Grained Average-Case Complexity

To make progress on this challenging question, Ball, Rosen, Sabin, and Vasudevan [BRSV17] pro-
posed to study a weak variant of the question: Can we construct a fine-grained one-way function
under standard worst-case complexity assumptions? Informally, a fine-grained one-way function is
a function f : {0, 1}∗ → {0, 1}∗ such that f can be computed in time t(n) on inputs of length n but
cannot be inverted in time t(n)1+ε on average for some time bound t : N → N and for some con-
stant ε > 0. In contrast to the standard definition of a one-way function in which we require ε to
be a super constant, a fine-grained one-way function is slightly hard to invert; thus, we expect that
it is much easier to construct a fine-grained one-way function than a standard one-way function.
LaVigne, Lincoln, and Vassilevska Williams [LLW19] showed that some fine-grained average-case
hardness of Zero-k-Clique and k-SUM implies the existence of a fine-grained public-key cryptosys-
tem and, in particular, a fine-grained one-way function. This result is relevant to the question
of whether one can exclude a fine-grained version of Pessiland in which there is no fine-grained
one-way function and the class NTIME[n] of problems solvable by nondeterministic linear-time
algorithms (which contains Zero-k-Clique and k-SUM) is hard on average.1

The open question posed in [BRSV17] can be naturally decomposed into the following two
open questions: (1) Can we exclude the fine-grained version of Pessiland? In other words, can
we construct a fine-grained one-way function from super-linear-time average-case hardness of
NTIME[n]? (2) Can we prove super-linear-time average-case hardness of NTIME[n] under stan-
dard worst-case complexity assumptions? Resolving this second question is (almost) necessary to
resolve the open question of [BRSV17] because the existence of a fine-grained one-way function
implies that (the search version of2) NTIME[n] cannot be solved in time n1+ε on average with re-
spect to some O(n)-time samplable distribution for some constant ε > 0. In this paper, we focus
on the second question:

1Note that [LLW19] does not exclude the fine-grained version of Pessiland because the average-case hardness of
Zero-k-Clique and k-SUM is not implied by the average-case hardness of NTIME[n], which only means some problem
in NTIME[n] is average-case hard.

2A standard search-to-decision reduction [BCGL92] incurs a multiplicative overhead of O(n), which is prohibitively
large in the fine-grained setting; thus, it is unclear to us whether the existence of a fine-grained one-way function
implies an average-case hard decision problem in NTIME[n].

1

Question 1.1. What is a minimal worst-case complexity assumption that implies “non-trivial”3 average-
case hardness of linear-time versions of NP or PH? Can we exclude a fine-grained version of Heuristica?4

Regarding this question, the original work of [BRSV17] implicitly showed that MATIME[n]
(which is a class sandwiched between NTIME[n] and Σ2TIME[n]) cannot be solved in time n2−o(1)

on average under the Strong Exponential-Time Hypothesis (SETH [IP01]). Specifically, Ball et
al. [BRSV17] showed that worst-case hardness assumptions of popular fine-grained complexity
problems, such as OV, 3SUM, and Zero-Weight-Triangle, imply the existence of average-case hard
problems. For example, they introduced a problem FOV, which “encodes” OV as a low degree
polynomial over a finite field F , and showed that FOV cannot be solved in sub-quadratic time on
average unless OV can be solved in sub-quadratic time. They also observed that FOV is a problem
in MATIME[Õ(n)]5 using Williams’ MA protocol that refuted an MA variant of SETH [Wil16]. As
a consequence, the average-case hardness of (a padded version of) FOV ∈ MATIME[Õ(n)] fol-
lows from the worst-case hardness of OV, which in particular follows from SETH [Wil05]. Their
subsequent work [BRSV18] demonstrated the usefulness of average-case hard problems by con-
structing a cryptographic system called Proofs of Work. A subsequent line of research [GR18,
BBB19, DLW20, HS21] showed that worst-case hardness assumptions imply average-case hard-
ness of natural problems, such as counting the number of k-Cliques in a random graph, which is
in the linear-time variant of #P but is unlikely to be in NTIME[n]. Brakerski, Stephens-Davidowitz,
and Vaikuntanathan [BSV21] showed that a nearly optimal average-case lower bound for the k-
SUM problem follows from the worst-case assumption that the Short Independent Vector problem
(SIVP) over an n-dimensional lattice cannot be approximated to within an n1+ε factor in time 2o(n).
We mention that the approximation of SIVP is unlikely to be NP-complete because the problem is
known to be in NP∩ coNP [GMR05].

Currently, it is an open question to prove that NTIME[n] is super-linearly average-case hard
under SETH. In fact, the proof techniques developed in the above-mentioned literature on fine-
grained average-case complexity are unlikely to resolve this question without refuting a slightly
nonuniform AM variant of SETH. The fundamental impossibility result of Feigenbaum and Fort-
now [FF93] shows that if there exists a randomized k-time k-query nonadaptive “locally random”6

reduction from a problem L to some average-case problem in NTIME[n], then L can be solved by
an AM∩ coAM protocol in time n · kO(1) with O(log n) bits of advice on inputs of length n. For ex-
ample, the reduction of [BRSV17] is a k-query nonadaptive reduction from OV to an average-case
version of FOV for k = logO(1) n. If FOV were in NTIME[n], then by combining [FF93, BRSV17]
we would obtain that OV is in coAMTIME[Õ(n)]/ log n, which would refute an AM/ log n vari-
ant of SETH. Since the AM/ log n variant of SETH is not yet refuted, this connection explains the
difficulty of resolving the open question by using the current proof techniques.

3It is evident that NTIME[n] cannot be computed in sub-linear time. Here, we aim at proving average-case hardness
of NP or PH that does not follow from such an unconditional result.

4One possible definition of a fine-grained version of Heuristica is a world in which NTIME[n] 6⊆ DTIME[n1+ε] for
some constant ε > 0 but (the search version of) NTIME[n] can be solved in time n1+ε on average with respect to every
linear-time samplable distribution for every constant ε > 0.

5Throughout this paper, we always use Õ(f (n)) to denote f (n) · polylog(f (n)).
6A worst-case-to-average-case nonadaptive reduction R is said to be locally random [BFKR97] if the query distribution

of R on input x depends only on the length |x| of x. The reductions presented in [BRSV17] satisfy this property.
Bogdanov and Trevisan [BT06b] improved [FF93] and presented a similar impossibility result for reductions that are
not locally random.

2

1.2 Non-Black-Box Worst-Case-to-Average-Case Connections

Recently, Hirahara [Hir18, Hir21] developed a new type of proof technique that uses non-black-
box reductions and is not subject to the impossibility results of [FF93, BT06b]. We say that a
worst-case-to-average-case reduction is non-black-box if the reduction exploits the efficiency of a
hypothetical average-case solver. Using non-black-box reductions, the following connections from
worst-case hardness to average-case hardness were established.

Theorem 1.2 ([Hir21]). The following hold:

1. UP 6⊆ DTIME(2O(n/ log n)) implies NP× {U , T } 6⊆ AvgP.

2. PH 6⊆ DTIME(2O(n/ log n)) implies PH× {U , T } 6⊆ AvgP.

3. NP 6⊆ DTIME(2O(n/ log n)) implies NP× {U , T } 6⊆ AvgPP.

Here, U denotes the uniform distribution and T denotes the tally distribution, i.e., the fam-
ily {Tn}n∈N of distributions such that Tn is the singleton distribution on {1n}. AvgP denotes the
class of distributional problems solvable by average-case polynomial-time algorithms or, equiv-
alently, errorless heuristic schemes. AvgPP denotes the class of distributional problems solvable
by average-case polynomial-time algorithms whose running time can be estimated in polynomial
time. We refer the reader to the survey of Bogdanov and Trevisan [BT06a] for more background
on average-case complexity.

It would be very interesting to establish average-case lower bounds from weaker worst-case
lower bounds, especially due to the fact that the Exponential-Time hypothesis (ETH; [IPZ01])
only implies that NP 6⊆ DTIME(2o(n/ log n)), which just falls short of satisfying the hypothesis
of Item (3) of Theorem 1.2.7 Moreover, building on the work of Impagliazzo [Imp11], Hirahara
and Nanashima [HN21] constructed an oracle O such that PHO 6⊆ DTIME(2o(n/ log n))O and yet
DistPHO ⊆ AvgPO, meaning that no relativizing proof techniques can show strong average-case
lower bounds such as DistPH 6⊆ AvgP from worst-case hardness assumptions such as PH 6⊆
DTIME(2o(n/ log n)). We remark that the proof for Item (2) in Theorem 1.2 in [Hir21] does relativize,
while the proofs for Item (1) and (3) “almost relativize” in the sense that the only non-relativizing
part of the proofs is the theorem of Buhrman, Fortnow and Pavan [BFP05] showing the existence
of a complexity-theoretic pseudorandom generator in Heuristica.

1.3 Our Results

In this paper, we generalize the proof techniques from [Hir21] to show that worst-case lower
bounds much weaker than 2O(n/ log n) already imply super-linear-time average-case lower bounds.
Formally, we have the following theorem.

Theorem 1.3. The following hold:

1. UP 6⊆ DTIME

[
2O
(√

n log n
)]

implies NTIME[n]× {Upara} 6⊆ Avg1/2TIME[Õ(n)].

2. ΣkTIME[n] 6⊆ DTIME

[
2O
(√

n log n
)]

implies Σ2TIME[n] × {Upara} 6⊆ Avg1/2TIME[Õ(n)] for

every constant k.

7ETH implies that 3SAT cannot be solved in time 2o(m) on 3CNF formulas with m variables and O(m) clauses, which
implies that 3SAT 6∈ DTIME(2o(n/ log n)) because 3CNF formulas can be encoded in n := O(m log m) bits as a binary
string.

3

3. ETH implies NTIME[n]× {Upara} 6⊆ AvgDTIME[n1+ε]TIME[n1+ε] for some constant ε.

Here, Upara denotes a “parameterized uniform distribution”, which is a slight generalization of
the uniform distribution (see Definition 3.7). Avg1/2TIME[Õ(n)] denotes the class of distributional
problems that can be solved by quasi-linear-time errorless heuristics with failure probability at
most 1/2.8

We present the significance of the three results of Theorem 1.3 below. The second item of
Theorem 1.3 shows that the second level Σ2TIME[n] of the linear-time version of PH is super-
linearly average-case hard under the worst-case assumption that ΣkSAT cannot be solved in time
2Õ(
√

n) on inputs of length n. Here, ΣkSAT is the problem of deciding, given a Boolean circuit C on
mk inputs, whether

∃y1 ∈ {0, 1}m, ∀y2 ∈ {0, 1}m, . . . ,Qkyk ∈ {0, 1}m, C(y1, . . . , yk) = 1

is true or not, where Qk := ∃ if k is odd and Qk := ∀ if k is even. This problem is a canoni-
cal complete problem for the k-th level ΣkP of PH under quasi-linear time reductions (see, e.g.,
[JMV15]). In particular, Σ1SAT is equivalent to the Circuit Satisfiability problem and ETH implies
that Σ1SAT 6∈ DTIME(2o(n/ log n)). Solving ΣkSAT is known to be notoriously hard: The first algo-
rithm faster than the trivial brute-force algorithm for k ≥ 2 was given in [SW15] and runs in time
2n−n1/(k+1)

on CNF formulas with n variables. No non-trivial algorithm for general Boolean circuits
is known.

The second item of Theorem 1.3 makes an important progress on a central and long-standing
open question in the theory of structural average-case complexity. The influential paper of Im-
pagliazzo [Imp95] mentioned

“a central problem in the structure of average-case complexity is: if all problems in NP
are easy on average, can the same be said of all problems in the polynomial hierarchy?”

Impagliazzo [Imp11] constructed an oracle under which DistNP ⊆ AvgP and DistΣ2P 6⊆ HeurSIZE(2nα
)

for some constant α > 0, thereby explaining the difficulty of resolving this open problem. Previ-
ously, it was unknown whether average-case easiness of Σk+1TIME[n] follows from average-case
easiness of ΣkTIME[n] for any constant k. The contrapositive of our second result shows that
even worst-case easiness of ΣkTIME[n] follows from average-case easiness of Σ2TIME[n] for all con-
stants k.

The third item of Theorem 1.3 shows that some super-linear-time average-case hardness of
NTIME[n] follows from ETH, which is one of the popular worst-case assumptions. AvgDTIME[n1+ε]TIME[n1+ε]
is the class of distributional problems (L,D) such that there exists an errorless heuristic scheme
running in time n1+ε/δ that solves L with failure probability δ for any given parameter δ, and
moreover whether the heuristic algorithm fails or not can be computed in time n1+ε; see Defini-
tion 9.1 for a precise definition. We mention that the Hamiltonian path problem can be solved
on average with respect to the Erdős–Rényi random graph in this average-case sense [GS87]. We

note that, as in our second result, ΣkTIME[n] 6⊆ DTIME

[
2O
(√

n log n
)]

also implies NTIME[n] ×

{Upara} 6⊆ AvgDTIME[Õ(n)]TIME[Õ(n)] for every constant k; see Corollary 9.6.
The first item of Theorem 1.3 shows that NTIME[n] is super-linearly hard on average under the

worst-case assumption that UP cannot be solved in time 2Õ(
√

n) on inputs of length n. UP is the
complexity class of problems that can be solved by nondeterministic polynomial-time algorithms

8We mention that the constant 1/2 can be actually improved to any constant smaller than 1.

4

whose accepting path is always at most 1 and is known to characterize the complexity of worst-
case injective one-way functions [Ko85, GS88]. The trivial deterministic upper bound on UP is

DTIME(2nO(1)
) and thus the hypothesis that UP 6⊆ DTIME

[
2O
(√

n log n
)]

is quite plausible.

In addition to Theorem 1.3, we suggest a new approach to bypass the impossibility results of
[FF93, BT06b]. We observe that a reduction that uses a limited amount of nondeterministic bits
is not subject to these impossibility results. Let NTIMEGUESS[t(n), g(n)] denote the complexity
class of problems solvable by t(n)-time nondeterministic algorithms that use at most g(n) nonde-
terministic bits on inputs of length n. We show that the average-case hardness of NP follows from
the worst-case assumption that certificates for UP cannot be “compressed” into o(n) bits:

Theorem 1.4. For every constant ε > 0, if UP 6⊆ NTIMEGUESS[poly(n), εn], then NP× {Upara} 6⊆
Avg1/2P.

Interestingly, for ε = 1, Theorem 1.4 can be proved by a black-box reduction that uses n non-
deterministic bits. Similarly, we also prove the following theorem.

Theorem 1.5. For every constant ε > 0, if NP 6⊆ NTIMEGUESS[poly(n), εn], then Σ2P× {Upara} 6⊆
Avg1/2P.

We remark that for Theorem 1.4 and Theorem 1.5, we indeed show a certain “easy-witness
lemma” [IKW02, MW20]. Take Theorem 1.5 for example, we indeed prove that assuming Σ2P×
{Upara} ⊆ Avg1/2P, for every L ∈ NP and every verifier V for L9, x ∈ L implies that there exists a
y such that Kpoly(n)(y) ≤ εn and V(x, y) = 1. In other words, every yes instance x of L admits an
“easy witness” y that can be compressed into εn bits. This is similar to the easy-witness lemmas
proved in [IKW02, MW20]. In particular, [MW20] proved that if NP admits fixed-polynomial size
circuits, then for every verifier V for some L ∈ NP, x ∈ L implies that there exists a y such that y
is the truth-table of a small circuit and V(x, y) = 1.

Finally, we mention that the most technical ingredient of our result is a construction of ex-
tremely efficient hitting set generators (HSGs) and pseudorandom generators (PRGs)10 under the
assumption that NTIME[n] is easy on average. More specifically, we prove the following.

Lemma 1.6. Assuming that NTIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)], for every large enough t and m
such that log t ≤ m ≤ t, there exist an HSG Ht,m and a PRG Gt,m satisfying the following:

1. Ht,m 0.1-hits t-time deterministic algorithms with m bits of advice on m-bit inputs.

2. Ht,m has O(log(t)) seed length and is computable in Õ(t) · poly(m) time.

3. Gt,m 0.1-fools t-time deterministic algorithms with m bits of advice on m-bit inputs.

4. Gt,m has O(log(m)) seed length and is computable in Õ(t) · poly(m) time with O(log t) bits of
advice.

We note that our construction of the PRG Gt,m has a shorter seed length comparing to that of
the HSG Ht,m, at the expense of requiring O(log t) bits of advice to compute. In [BFP05], O(log t)-
seed length PRG fooling t-time computation that is computable in poly(t) time is constructed,
under the assumption that DistNP ⊆ AvgP. Lemma 1.6 is a fine-grained version of the construction
in [BFP05]: we start from a much stronger assumption to get a much more efficient PRG/HSG

9V is a verifier for L if (1) V(x, y) runs in poly(x) time and (2) x ∈ L if and only if there exists y such that V(x, y) = 1.
10See Section 3.5 for formal definitions of HSGs and PRGs.

5

construction. See Section 2 for an overview of how Lemma 1.6 is proved and why it is needed,
and Section 4 for formal proofs.11

2 Techniques Overview

Now we discuss the intuitions behind our results. For concreteness we will first focus on proving
the following theorem, and then discuss how to adapt the techniques to prove our other results.

Theorem 2.1. Σ2TIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)] implies that NP ⊆ TIME
[
2O
(√

n log n
)]

.

Note that the contrapositive of Theorem 2.1 says that NP 6⊆ TIME
[
2O
(√

n log n
)]

implies Σ2TIME[n]×
{Upara} 6⊆ Avg1/2TIME[Õ(n)].

2.1 Review of the Framework in [Hir21]

Since our results crucially build on the framework introduced by Hirahara [Hir21], it would be
instructive to first review his approach for worst-case to average-case reduction based on meta-
complexity, and examine why it requires a 2O(n/ log n) worst-case lower bound.

2.1.1 Key insight: Computational shallowness implies efficient algorithms

Computational depth and worst-case to average-case reduction. One crucial concept intro-
duced in [Hir21] is the (s, t)-time-bounded computational depth, defined as cds,t(x) := Ks(x)−Kt(x),
where Kt(x) is the time-bounded Kolmogorov complexity (see Section 3.4 for the formal def-
inition). This is a generalization of the computation depth, cdt(x) := Kt(x) − K(x), defined
by [AFvMV06].

Computational depth provides a fundamental link between worst-case complexity and average-
case complexity of NP. In particular, [AF09] showed that, if NP is easy on average (DistNP ⊆
AvgP), then an input x to a language L ∈ NP can be solved in 2O(cdpoly(n)(x)+log |x|) time; that is, one
can solve all shallow inputs (inputs with small cdpoly(n)) very efficiently.

Time-bounded computational depth suffices. The key insight of [Hir21] is that under certain
assumptions, one can generalize the above results to hold for time-bounded computational depth
as well. For instance, Hirahara [Hir21] proved:

Lemma 2.2 (Informal). If Σ2P× {U , T } ⊆ AvgP, then for every L ∈ NP there is a polynomial p such
that for every input x and t ≥ poly(n), one can solve L on input x in 2cd

t,p(t)(x) · poly(t) time.

Lemma 2.2 is a significant conceptual improvement: now we can consider multiple values of
t, and L is easy to solve on input x if cdt,p(t)(x) is small for any of the considered t. In more details,
let τ ∈ N be a parameter, t0 = poly(n), and ti = p(ti−1) for i ∈ [τ]. We have the following
telescoping sum

∑
i∈[τ]

cdti−1,ti(x) = ∑
i∈[τ]

[
Kti−1(x)−Kti(x)

]
= Kt0(x)−Ktτ (x) ≤ Kt0(x) ≤ n + O(1).

11Indeed, in Section 4 we obtain a general trade-off between the average-case easiness of NTIME[n] and the efficiency
of the constructed PRGs/HSGs, see Theorem 4.1 and Lemma 4.6 for details.

6

It then follows that there exists an i ∈ [τ] such that cdti−1,ti(x) ≤ n/τ + O(1), meaning that we
can solve L(x) in 2n/τ · poly(ti) ≤ 2n/τ · poly(tτ) time. So our goal now is to carefully choose τ to
minimize the running time. Since tτ = 2log n·O(1)τ

, setting τ = ε log n for a small enough constant
ε > 0 leads to tτ ≤ 2n0.99

and the final running time 2O(n/τ) = 2O(n/ log n) for L ∈ NP. To summarize,
from Lemma 2.2 we can show that Σ2P× {U , T } ⊆ AvgP implies NP ⊆ DTIME[2O(n/ log n)].

Bottleneck for improvement: the blow-up function p(t). The argument above can only achieve
running time 2O(n/ log n) since tτ = 2log n·O(1)τ

grows too fast: to make tτ smaller than 2n, we have
to take τ ≤ O(log n), meaning that the running time is at least 2Ω(n/ log n).

Assume for now that p(t) is linear in t. It follows that tτ = 2log n+O(τ), and then setting τ =
√

n
leads to a much faster running time of 2O(

√
n). Similarly, by a slightly more involved calculation, if

we have p(t) = Õ(t) · poly(n), we can also obtain a running time of 2O(
√

n log n). In this case, since
p(t) also depends on n, we will write it as pn(t) to avoid confusion.

2.1.2 Why p(t) has to be a large polynomial in [Hir21]

We now know that the key to improving the result in [Hir21] is the blow-up function p(t). There-
fore, it is crucial to understand why the blow-up function p(t) has to be a polynomial in Lemma 2.2.

The proof of Lemma 2.2 in [Hir21] consists of many components, and p(t) is indeed a compo-
sition of several polynomial blow-up functions, each for one component.12

We will focus on one important component in the proof of Lemma 2.2 and understand why
the blow-up function of the component, which we denote by τ(t), has to be a big polynomial.
Since the overall blow-up p(t) has to be at least τ(t), improving this τ(t) to be quasi-linear in t is
necessary for improving p(t). Furthermore, it turns out that the ideas behind improving this τ(t)
are already enough to simultaneously improve the blow-up functions for all other components.

Fast algorithm for Gap(KA vs K). One important component used by [Hir21] is the following
algorithm for the Gap(KA vs K) problem. Roughly speaking, if Σ2P is easy on average, then one
can distinguish between strings with small Kt,SAT complexity and large Kτ(t) complexity. (See Sec-
tion 3.4 for a formal definition of Kt,A(x).)

Lemma 2.3 ([Hir18, Hir20b, Hir20a]). If Σ2P× {U , T } ⊆ AvgP, then there is an algorithm AGap-Kt

and a polynomial τ such that

1. AGap-Kt
takes x ∈ {0, 1}n and s, t ∈N with t ≥ max(n, s) as inputs, and runs in poly(t) time.

2. If Kt,SAT(x) ≤ s, then AGap-Kt
(x, s, t) = 1.

3. If Kτ(t)(x) ≥ s + c log t, then AGap-Kt
(x, s, t) = 0, where c ≥ 1 is a constant.

Most importantly, the blow-up function τ is one crucial component in the overall blow-up
function p, meaning that p(t) must be at least τ(t).

2.1.3 Analyzing the blow-up function τ in AGap-Kt
: Derandomization is the bottleneck

Now we wish to analyze why the blow-up function τ(t) in AGap-Kt
has to be a polynomial and see

if we can improve it to a quasi-linear function in t. We need the following two crucial technical
components to discuss the proof of Lemma 2.3.

12We will not review all the components in this technical overview; the interested reader can refer to [Hir21, Section 2]
for an exposition of the ideas behind Lemma 2.2.

7

Direct product generators and derandomization from DistNP ⊆ AvgP. The first ingredient is
the direct product generator DPn,k : {0, 1}n × {0, 1}nk → {0, 1}nk+k, defined as

DPn,k(y; z1, z2, . . . , zk) = (z1, z2, . . . , zk, 〈y, z1〉, 〈y, z2〉, . . . , 〈y, zk〉),

where 〈y, zi〉 denotes the inner product between the two vectors y and zi over F2. We use d = nk
to denote the seed length of the DPn,k and write DPn,k as DPk when n is clear from the context.

Theorem 2.4. (Reconstruction property of DPk; Informal) There exists a randomized polynomial-time
oracle algorithm R(-) satisfying the following. Let D : {0, 1}d+k → {0, 1} be an oracle such that D distin-
guishes the output distribution DPn,k(y; Ud) from Ud+k; that is∣∣∣∣ Pr

z∼Ud
[D(DPk(y; z)) = 1]− Pr

w∼Ud+k
[D(w) = 1]

∣∣∣∣ ≥ 1/4.

Then with high probability over an internal coin flip of R(-), there exists an advice string α ∈ {0, 1}k+O(log n)

such that RD(α) outputs y.

Note that the reconstruction algorithm R(-) of Theorem 2.4 is randomized. One can deran-
domize that reconstruction algorithm using a PRG (pseudorandom generators), whose existence
is implied by DistNP ⊆ AvgP.

Theorem 2.5 ([BFP05]). DistNP ⊆ AvgP implies that there is an O(log n)-seed poly(n)-time computable
PRG fooling circuits of size n.

Proof sketch of Lemma 2.3. We will solve the following task instead:

• Given x ∈ {0, 1}n and s, t ∈ N as input with the promise that Kt,SAT(x) ≤ s, find a witness
to Kτ(t)(x) ≤ s + O(log t).13

Note that an algorithm B for the task above immediately gives an algorithm for AGap-Kt
: run

B(x, s, t) to obtain a program Π, and accept iff Π outputs x in τ(t) time and |Π| ≤ s + c log t.
Let k be a parameter to be chosen later. We consider the output distribution DPk(x; Ud) (recall

that here d = nk). For all z ∈ {0, 1}d and a large enough universal constant c1 ≥ 1, we have

K2t,SAT(DPk(x; z)) ≤ Kt,SAT(x) + d + c1 ≤ s + d + c1, (1)

since one can first compute x and then compute DPk(x; z), and our promise ensures Kt,SAT(x) ≤ s.
We then set k = s + 2c1 so that s + d + c1 = d + k − c1. Now, consider the following func-

tion D̄ : {0, 1}d+k → {0, 1}, defined as D̄(w) := [K2t,SAT(w) ≤ s + d + c1]. Note that D̄(w) can
be computed in O(t) Σ2-time. Hence, from our assumption that DistΣ2P ⊆ AvgP, for some
TD(t) = poly(t), we have a TD(t)-time heuristic D(w) such that D(w) ∈ {D̄(w),⊥} for every
w ∈ {0, 1}d+k, and D(w) = D̄(w) for at least half of w ∈ {0, 1}d+k.

In particular, from the above conditions on D, together with (1) and the fact that s + d + c1 =
|w| − c1 for a large enough constant c1, we have:

1. D(DP(x; z)) 6= 0 for all z ∈ {0, 1}d. (i.e., Prz∼Ud [D(DPk(x; z)) = 0] = 0.)

2. Prw∼Ud+k [D(w) = 0] ≥ 1/4.

That is, D is a distinguisher between DP(x; Ud) and Ud+k with a constant advantage. By The-
orem 2.4, there is a poly(n)-time randomized oracle algorithm R(-) that takes k + O(log n) bits of
advice and D as oracle and outputs x with high probability. The composed algorithm RD runs in
poly(n) · TD(t) randomized time, and takes k + O(log n) bits of advice.

13i.e., an (s + c log t)-bit program outputting x in τ(t) time.

8

Derandomize RD. Still, to find a witness to Kτ(t)(x) ≤ k + O(log t), we have to derandomize RD

into a deterministic algorithm. We can achieve this by replacing the randomness of RD with the
outputs of the PRG from Theorem 2.5. Now RD is derandomized with a polynomial-overhead into
a pdr(TD(t) · poly(n))-time deterministic algorithm with k + O(log t) bits of advice that outputs
x. Here, pdr(-) (dr stands for derandomization) is the derandomization overhead incurred by
applying Theorem 2.5.

To summarize, we have Kpdr(TD(t)·poly(n))(x) ≤ k + O(log t), meaning that we need to set

τ(t) = pdr(TD(t) · poly(n)). (2)

Improving τ(t). As discussed above, we hope to get τ(t) = τn(t) = Õ(t) · poly(n). Examin-
ing (2), we have to ensure two conditions:

(1) TD(t) = Õ(t) and (2) pdr(t) = pdrn (t) ≤ Õ(t) · poly(n).

Note that TD(t) = Õ(t) can be achieved if we are willing to assume Σ2TIME[n]× {Upara} ⊆
Avg1/2TIME[Õ(n)], as we already did in Theorem 2.1. Achieving pdr(t) ≤ Õ(t) · poly(n) is much
more involved, as we have to get a near-optimal derandomization of the randomized reconstruc-
tion algorithm RD from the assumption that Σ2TIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)].

2.2 Extremely Efficient HSGs and PRGs from Average-case Easiness of NP

One of our main technical contributions is the construction of extremely efficient HSGs (hitting set
generators)14 and PRGs that suffice to derandomize RD with minor overhead, from the assump-
tion that NTIME[n]× {Upara} ⊆ AvgTIME1/2[Õ(n)].

Requirements on the extremely efficient HSGs for the derandomization of RD. Recall that we
are given a randomized algorithm RD that runs in t1 = Õ(t) · poly(n) time and takes nadv =
k + O(log n) ≤ O(n) bits as advice. We further observe that RD only takes nr = poly(n) random
bits from Theorem 2.4, since the oracle D is a uniform deterministic algorithm. Let RD(r) be the
output of RD given randomness r ∈ {0, 1}nr ; then, we have

Pr
r∼Unr

[RD(r) = x] ≥ 2/3.

We wish to replace the randomness r of RD(r) by an output of an HSG. To achieve this, we
want an HSG H : {0, 1}O(log t) → {0, 1}nr that 0.1-hits t1-time randomized algorithms that take
nadv-bits as advice on nr-bit inputs. Given such an HSG H, it follows that there is u ∈ {0, 1}O(log t)

such that
RD(H(u)) = x.

In other words, given an additional advice u ∈ {0, 1}O(log t), we have a deterministic algo-
rithm RD(H(u)) that outputs x. Here, RD(H(u)) uses k + O(log t) bits of advice in total, and
runs in t1 + TG time, where TG is the running time of computing H(u) given u. Therefore, to get
KÕ(t)·poly(n)(x) ≤ k + O(log t) from the algorithm RD(H(u)), we need TG = Õ(t) · poly(n).

14See Section 3.5 for a formal definition of HSGs.

9

Our HSG construction. As the technical centerpiece of this paper, we construct the required
HSG from the assumption that NTIME[n]× {Upara} ⊆ AvgTIME[Õ(n)].

Lemma 2.6 (Special case of Lemma 4.6). Assuming that NTIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)],
for every large enough t and m such that log t ≤ m ≤ t, there exists an HSG Ht,m satisfies the following:

1. Ht,m 0.1-hits t-time deterministic algorithms with m bits of advice on m-bit inputs.

2. Ht,m has O(log(t)) seed length and is computable in Õ(t) · poly(m) time.

We mention that combing Lemma 2.6 with a careful “bootstrapping” argument, we are able
to construct a Õ(t) · poly(m)-time-computable PRG Gt,m fooling similar algorithms, with a near-
optimal seed length O(log m). However, the cost is that now our PRG Gt,m requires O(log t) bits
of advice to compute. We also remark that we have a trade-off between the AvgTIME1/2 upper
bound and the running time of the PRG (HSG). See Theorem 4.1 for the details.

2.2.1 HSGs for “weakly non-uniform” algorithms using the HSG for “low-end” derandom-
ization and strings with high time-bounded Kolmogorov complexity

Note that the most interesting setting for Lemma 2.6 is when t � m, since if m ≥ tΩ(1), the
running time requirement becomes poly(t), and we can resort to Theorem 2.5. Hence, unlike the
usual goal in derandomization that one wishes to hit (or fool for PRGs) maximumly non-uniform
algorithms (a.k.a. circuits), our goal here is only to hit “weakly non-uniform” algorithms, whose
non-uniformity is much less than its running time. But on the other hand, we wish the running
time of the HSG H is quasi-linear in the running time t and polynomial in the non-uniformity m.15

Perhaps surprisingly, we managed to prove Lemma 2.6 using the HSG construction from [SU05]
intended for “low-end” derandomization (i.e., it was intended for the trade-off between weaker
lower bounds and slower derandomization). In particular, [SU05] gives the following construction
of HSG.

Theorem 2.7 ([SU05], Informal version of Theorem 3.11). For every t, m ∈ N such that t ≥ m ≥
log t, there is a t · poly(m)-time algorithm SUt,m : {0, 1}t × {0, 1}O(log t) → {0, 1}m and a poly(m)-time
deterministic oracle algorithm Rcon(-) that takes poly(m) bits of advice, such that for every x ∈ {0, 1}t and
for every D that 0.1-avoids SUt,m(x, -), there exists an advice α so that for every i ∈ [t], RconD(i, α) = xi.

Our crucial observation here is that Theorem 2.7 enables us to construct HSGs fooling weakly
non-uniform algorithms with assumptions much weaker than circuit lower bounds. This observation
is crucial for our proof of Lemma 2.6.

Formally, we recall a “local” version of t-time bounded Kolmogorov complexity, denoted by
Kt
loc(x), such that Kt

loc(x) is the minimum size of a program Π such that Π(i) outputs xi in t time
for every i ∈ [|x|]. It is not hard to see that Kt

loc(x) ≥ t is essentially equivalent to saying that the
circuit complexity of x is at least t (up to a polylog(t) factor).

We claim that for some large enough constant c ≥ 1, t1 = t · mc and any x ∈ {0, 1}∗, if
Kt1
loc(x) ≥ mc, then SU|x|,m(x, -) 0.1-hits all t-time algorithms on m-bit inputs and with m-bit advice.

Since if SU|x|,m(x, -) fails to 0.1-hit some t-time algorithm D on m-bit inputs with m-bit advice, by
Theorem 2.7, there is an advice α ∈ {0, 1}poly(m) such that for every i ∈ [|x|], RconD(i, α) = xi. This
procedure RconD(-, α) implies that Kt1

loc(x) < mc, a contradiction to our assumption.
Therefore, to prove Lemma 2.6, it suffices to resolve the following construction problem.

15Our task is somewhat similar to the question of optimal derandomization for BPTIME[nk] studied in [CT21], which
aims to derandomize nk-time randomized algorithms with n-bit non-uniform advice. The difference is that [CT21] also
requires the seed length of the PRG to be (1 + o(1)) log n to keep the derandomization overhead at most n1+o(1). But
here, we are fine with an O(log t)-length seed.

10

Problem 2.8. Assuming that NTIME[n]×{Upara} ⊆ Avg1/2TIME[Õ(n)]. Given t, m ∈N with m� t,
in t · poly(m) time construct a string x ∈ {0, 1}∗ satisfying Kt

loc(x) ≥ m.

Note that |x| is clearly bounded by the construction time t · poly(m), so SU|x|,m is computable
in |x| · poly(m) = t · poly(m) time, as desired.

2.2.2 A refined version of [BFP05]

Our solution to Problem 2.8 is inspired by the proof of Theorem 2.5 and follows a similar outline.16

However, since here we need a t · poly(m) running time, our algorithm has to be very refined.
Our starting point is the time hierarchy theorem [HS65]. In particular, there is a language

L ∈ TIME[2n] \TIME[2n/n2]. Moreover, this language is in fact equipped with a uniform “refuter”
R, such that given a code of an algorithm B with running time at most 2n/n2, for every large
enough input length n,R(B, n) outputs an n-bit input xn satisfying L(xn) 6= B(xn). (See the proof
of Theorem 4.2 for details.)

Next, we apply an efficient PCP to L (e.g., [BGH+05, BV14]), with proof length ` = `(n) =
n + O(log n) and verifier V running in poly(n) time with ` bits randomness.

1. For an input x ∈ {0, 1}n, Vx takes an oracle O : {0, 1}` → {0, 1} and also ` random bits.

2. If x ∈ L, there exists an oracle Ox : {0, 1}` → {0, 1} such that Prr∼U`

[
VOx

x (r) = 1
]
= 1. And

there is a uniform algorithm computing the truth table of Ox from x in 2n · poly(n) time.

3. If x 6∈ L, for all oracle O : {0, 1}` → {0, 1}, we have Prr∼U`

[
VO

x (r) = 1
]
≤ 1/2.

Our algorithm solving Problem 2.8. Our algorithm works as follows17:

1. Given t, m ∈N, we set n = log t + c1 log m for a large enough constant c1.

2. We construct the code for a “cheating” algorithm Acheat with running time 2n/n2 from our
assumption that NTIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)]. We then apply the refuter R to
find an input xn ∈ {0, 1}n such that Acheat(xn) 6= L(xn).

3. We output the truth table of Oxn (our proof will guarantee that L(xn) = 1), which has length
2n · poly(n) ≤ t · poly(m).

It remains to specify the algorithm Acheat, which is constructed in the following three steps:

1. We first design a Merlin–Arthur algorithm A1 that attempts to solve L. On an input x ∈
{0, 1}n, it guesses an m-bit program Π with a running time bound t, draws r ∼ U`, and
accepts iff VΠ

x (r) = 1. To summarize, A1 is a Merlin–Arthur algorithm with running time
t · poly(m), proof complexity m, and randomness complexity `.

2. Under the assumption that NTIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)], A1 can be simulated
by a nondeterministic algorithm A2 with running time t · poly(m). (See Lemma 4.5.)

3. Again, under the assumption that NTIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)], A2 can be sim-
ulated by a deterministic algorithm A3 with running time t · poly(m). (See Proposition 4.3.)

16See [Hir21, Lemma 3.4] for a quick proof sketch of Theorem 2.5.
17In fact, the proof strategy below is also inspired by the refuter-based proof of [CLW20] for proving almost-

everywhere circuit lower bounds via the algorithmic method.

11

4. We set Acheat = A3. Since c1 is a large enough constant, it follows that Acheat runs in 2n/n2

deterministic time.

From time-hierarchy theorem and the refuter R, it follows that Acheat(xn) 6= L(xn). We claim
that this means L(xn) = 1 and Acheat(xn) = A1(xn) = 0. This is because if L(xn) = 0, then on any
guessed program Π, A1 rejects with probability at least 1/2, and hence Acheat(xn) = A1(xn) =
0 = L(xn).

Finally, we claim that when Acheat(xn) = 0 6= 1 = L(xn), it follows that Kt(Oxn) > m. This
is because, if Kt(Oxn) ≤ m, then on some guessed m-bit program Π, we would have Π computes
Oxn in time t, and therefore A1 would accept that proof. Consequently Acheat(xn) = A1(xn) = 1,
a contradiction to our assumption. To summarize, our algorithm solves Problem 2.8 in t · poly(m)
time, as desired. (See Section 4 for more details.)

2.2.3 Proof for Theorem 2.1

Finally, combining the algorithm above for Problem 2.8 with Theorem 2.7 proves Lemma 2.6,
which gives us the desired derandomization to prove the following variant of Lemma 2.2:

Lemma 2.9 (Special case of Lemma 7.2, informal). If Σ2TIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)],
then for every L ∈ NP there is pn(t) = Õ(t) · poly(n) such that for every input x and t ≥ poly(n), one
can solve L on input x in 2cd

t,p(t)(x) · poly(t) time.

We refer the readers to Section 7 for a formal proof of Lemma 7.2. The proof uses important
technical ingredients that are proved in Section 5 and Section 6.

As already discussed in Section 2.1.1, Lemma 2.9 implies a 2O
(√

n log n
)
-time algorithm for

NP from the assumption that Σ2TIME[n] × {Upara} ⊆ Avg1/2TIME[Õ(n)], thereby proving The-
orem 2.1.

2.3 Average-case Hardness of Σ2TIME[n] from Worst-case Hardness of ΣkTIME[n]

Finally, we discuss how to prove Item (2) of Theorem 1.3. We state its contrapositive below.

Theorem 2.10. Σ2TIME[n]×{Upara} ⊆ Avg1/2TIME[Õ(n)] implies ΣkTIME[n] ⊆ DTIME
[
2O
(√

n log n
)]

for any constant k ∈N.

To prove Theorem 2.10, we utilize the advice-efficient HSG construction of [Hir20a] (see The-
orem 7.1 for details) to prove the following fine-grained version of Lemma 2.9, which gives algo-
rithms for any NTIME[T(n)] language.

Lemma 2.11 (Informal version of Lemma 7.2). If Σ2TIME[n]× {Upara} ⊆ Avg1/2TIME[Õ(n)], then
for every L ∈ NTIME[T(n)] there is pn(t) = Õ(t) · poly(n) such that for every input x and t ≥
poly(T(n)), one can solve L(x) in 2cd

t,p(t)(x) · poly(t) time.

Lemma 2.11 is very powerful. In particular, set T(n) = 2O
(√

n log n
)
, t0 = poly(T(n)), and

ti = pn(ti−1) for i ∈ [τ], where τ is a parameter. One can calculate that for τ ≤ n, it holds that

tτ ≤ 2O
(√

n log n+τ log n
)
, meaning that we can set τ =

√
n/ log n to get a 2O

(√
n log n

)
time algorithm

for NTIME[T(n)]. That is:

12

Corollary 2.12 (Simplified version of Corollary 7.5). If Σ2TIME[n] × Upara ⊆ Avg1/2TIME[Õ(n)],
then

NTIME
[
2O
(√

n log n
)]
⊆ DTIME

[
2O
(√

n log n
)]

. (3)

We claim that (3) implies that ΣkTIME[n] ⊆ DTIME
[
2O
(√

n log n
)]

for every k ∈ N. This can be
shown by a simple induction. First note that the base case for k = 1 follows directly from (3).

Now, for k ≥ 2, assume that Σk−1TIME[n] ⊆ DTIME
[
2O
(√

n log n
)]

, we will establish the same

containment for ΣkTIME[n]. For a language L ∈ ΣkTIME[n], by definition (see Definition 3.2),
there is a verifier V(x, y) computable in Πk−1TIME[n], such that L(x) = 1 iff there exists y ∈
{0, 1}O(n) with V(x, y) = 1. From our induction hypothesis, we also have that Πk−1TIME[n] ⊆

DTIME
[
2O
(√

n log n
)]

, meaning that V(x, y) can be computed in 2O
(√

n log n
)

time (note that |x|+
|y| ≤ O(n)).

Hence, it follows that L ∈ NTIME
[
2O
(√

n log n
)]

. Then from (3), we have L ∈ TIME
[
2O
(√

n log n
)]

as well, which completes the proof.

Organization

In Section 3, we introduce the necessary technical ingredients for this paper. In Section 4, we
construct extremely efficient PRGs/HSGs from the average-case easiness of NTIME[n]. In Sec-
tion 5, we prove a fine-grained version of the algorithmic compression theorem in [Hir21] (see
Theorem 5.5). In Section 6, we prove a fine-grained version of the weak symmetry of informa-
tion in [Hir21] (see Theorem 6.1). In Section 7, we give a worst-case to average-reduction from
ΣkTIME[n] to Σ2TIME[n], for every constant k, and prove Item (2) of Theorem 1.3. In Section 8,
we give a worst-case to average-case reduction from UP to NTIME[n], and then prove Item (1)
of Theorem 1.3 and Theorem 1.4. In Section 9, we consider error-less heuristic schemes whose
running time can be efficiently estimated (i.e., AvgTIMEDTIME[β(n)][β(n)]), and prove Item (3) of
Theorem 1.3. Finally, in Section 10, we use our new techniques to obtain interesting witness com-
pression for languages in NP and prove Theorem 1.5.

3 Preliminaries

3.1 Notation

We use N to denote the set of all non-negative integers and N≥1 = N \ {0}. For any k ∈ N,
we let [k] denote the set {1, 2, . . . , k}. For an integer a ∈ N, we use bin(a) to denote the Boolean
string representing a in binary (from the most significant bit to the least significant bit). For a
Boolean string x ∈ {0, 1}∗, we slightly abuse the notation and also use bin(x) to denote the integer
represented by x in binary (i.e., bin(x) = ∑|x|i=1 2|x|−i · xi).

We will use Un to denote the uniform distribution over {0, 1}n. For a function f : N→ N, we
use f (k) to denote the following k ∈N times composition of f :

f (k)(x) :=

{
x k = 0,
f (f (k−1)(x)) k ≥ 1.

13

Let Σ be an alphabet set. For two strings α, β ∈ Σ∗, we use α ◦ β the concatenation between
α and β. Sometimes we also simply write αβ to denote concatenation when its meaning is clear
from the context. We also use ε to denote the empty string and let Σ0 = {ε} for convenience.

We say a function β : N→N is a good resource function if it is time-constructible, increasing,
satisfies the property that β(a · b) ≥ a · β(b), and is dominated by a polynomial (i.e., β(n) ≤ O(nk)
for some k ∈N).

We use the shorthand (x, 1t) to denote the string x ◦ 01t ∈ {0, 1}|x|+t+1, as both x and t can be
recovered in time O(|x|+ t). In particular, (ε, 1t) is encoded by 01t. We also need the following
encoding of a tuple of integers into one single integer.

Proposition 3.1. There is a pair of encoding/decoding algorithm Enc : N∗ → N and Dec : N →
N∗ ∪ {⊥} such that:

1. Both Enc and Dec runs in polynomial with respect to their inputs length.

2. For k ∈ N and ~a = (ai)i∈[k] ∈ Nk, we also use 〈~a〉 = 〈a1, . . . , ak〉 to denote Enc(~a) for notation
convenience, and we have maxi∈[k] ai ≤ 〈~a〉 ≤ Ok(1) · a1 · (∏k

i=2 ai)
2 and Dec(〈~a〉) =~a.

3. Dec(u) = ⊥ if u 6= Enc(~a) for every~a ∈N∗.

Proof. Given a vector~a = (a1, . . . , ak), we define Enc(~a) as follows. For each i ∈ {2, . . . , k}, we let
`i = |bin(ai)|, we duplicate each bit in bin(`i) to get a string zi of length 2 · bin(`i) (for example, if
bin(`) = 101, we get 110011).

Then we set

z = 1 ◦ bin(a1) ◦ bin(a2) ◦ · · · bin(ak) ◦ 01 ◦ z2 ◦ 01 ◦ z3 ◦ · · · 01 ◦ z`,

where ◦ means concatenation, and define Enc(~a) as the integer with binary representation z (i.e.,
bin(z)).

By simple calculation, one can verify that Enc(~a) ≤ Ok(1) · a1 · (∏k
i=2 ai)

2. Also, given the
integer Enc(~a), one can easily decode the tuple by first recovering `2, . . . , `k and then all of the ai’s,
thereby constructing the algorithm Dec. We further let Dec output ⊥ if the decoding fails.

For a non-uniform randomized algorithm A on input x ∈ {0, 1}n using advice string αn ∈
{0, 1}∗ and randomness z ∈ {0, 1}∗, we let A(x; z)/αn denote the output of algorithm A on input x
with randomness z and advice αn. (If the algorithm is deterministic, we omit z, and if the algorithm
is uniform, we omit αn.)

3.2 Complexity Classes

We will always consider the RAM model for computation in this paper.

Definition 3.2 (Polynomial hierarchy with bounded running time). For functions T : N → N and
a constant k ∈ N, let ΣkTIME[T] denote the class of languages L such that there is an O(T(n))-time
algorithm V such that, for every input x, it holds that x ∈ L if and only if

∃y1 ∈ {0, 1}O(T(|x|)), ∀y2 ∈ {0, 1}O(T(|x|)), . . . ,Qkyk ∈ {0, 1}O(T(|x|)), V(x, y1, y2, . . . , yk) = 1,

where Qk := ∃ if k is odd and Qk := ∀ otherwise.
We also define ΠkTIME[T] be the class of languages whose complement is in ΣkTIME[T]. For the

special case of k = 1, we let NTIME[T] denote Σ1TIME[T] and coNTIME[T] denote Π1TIME[T].

14

Definition 3.3 (Polynomial hierarchy with limited nondeterminism). For functions T, G : N → N

and a constant k ∈ N, let ΣkTIMEGUESS[T, G] denote the class of languages L such that there is a
O(T(n))-time algorithm V such that, for every input x, it holds that x ∈ L if and only if

∃y1 ∈ {0, 1}G(|x|), ∀y2 ∈ {0, 1}G(|x|), . . . ,Qkyk ∈ {0, 1}G(|x|), V(x, y1, y2, . . . , yk) = 1,

whereQk := ∃ if k is odd andQk := ∀ otherwise. Let PHTIMEGUESS[T, G] denote
⋃

k∈N ΣkTIMEGUESS[T, G].
We also use the shorthand NTIMEGUESS[T, G] to denote Σ1TIMEGUESS[T, G].

Note that ΣkTIME[T] = ΣkTIMEGUESS[T, O(T)].

Definition 3.4 (Unambiguous time). For a function T : N → N, we let UTIME[T] denote the class of
languages L such that there is a O(T(n))-time algorithm V such that for every input x,

1. If x ∈ L, then there is a unique y ∈ {0, 1}O(T(|x|) such that V(x, y) = 1.

2. If x /∈ L, there does not exist any y ∈ {0, 1}O(T(|x|)) such that V(x, y) = 1.

We let UP denote
⋃

c∈N UTIME[nc].

3.3 Average-case Complexity

We recall some definitions in average-case complexity (see [BT06a] for an exposition on this topic).

Definition 3.5. Let β be a good resource function and δ : N→ (0, 1). For a language L and a distribution
family D = {Dn}n∈N, we say that (L,D) ∈ AvgδTIME[β(n)] if there is an algorithm A such that, for
every n ∈N the following hold:

1. For every x ∈ Dn, A(x, n) ∈ {L(x),⊥}, and Prx∼Dn [A(x, n) = L(x)] ≥ 1− δ(n).

2. A(x, n) runs in at most β(|x|) time.

Similarly, we say that (L,D) ∈ Avg1
δTIME[β(n)], if there is an algorithm A such that for every n ∈N,

1. L(x) = 0 implies A(x, n) = 0 for every x ∈ Dn, and Prx∼Dn [A(x, n) = L(x)] ≥ 1− δ(n).

2. A(x, n) runs in at most β(|x|) time.

We say (L,D) ∈ AvgδP if (L,D) ∈ AvgδTIME[p(n)] for some polynomial p. Similarly, (L,D) ∈ Avg1
δP

if (L,D) ∈ Avg1
δTIME[p(n)] for some polynomial p.

Definition 3.6. Let β be a good resource function. For a language L and a distribution family D =
{Dn}n∈N, we say that (L,D) ∈ AvgTIME[β(n)] if there is an algorithm A such that, for every n and
k ∈N the following hold:

1. For every x ∈ Dn, A(x, n, k) ∈ {L(x),⊥}.

2. Prx∼Dn [A(x, n, k) = L(x)] ≥ 1− 2−k.

3. A(x, n, k) runs in at most 2k · β(|x|) time.

We say (L,D) ∈ AvgP if (L,D) ∈ AvgTIME[p(n)] for some polynomial p.

We define the parameterized uniform distribution Upara and the tally distribution T as below:

15

Definition 3.7. Upara = {Upara
n }n∈N is the family of distributions such that for every n ∈ N, Upara

n is
defined as follows: If Dec(n) 6= (t, m) for any (t, m) ∈ N2, then Upara

n is the singleton distribution on
{0n}. Otherwise, Upara

n is the uniform distribution over the set {(z, 1t) : z ∈ {0, 1}m} of (t + m + 1)-bit
strings.
T = {Tn}n∈N is the family of distributions that for every n ∈ N, Tn is the singleton distribution on

{1n}.

We note that in some sense T can be seen as a special case of Upara: For all n ∈ N, Upara
〈t,0〉 is the

singleton distribution on the input (ε, 1t) = 01t.

3.4 Kolmogorov Complexity and Its Variants

We use K(x) and Kt(x) to denote the Kolmogorov complexity and the t-time bounded Kolmogorov
complexity of the string x, which we will formally define shortly below. We also refer the readers
to [All20] for a recent survey on variants of Kolmogorov complexity.

We also use Univt(d) to denote the output of running a universal RAM machine Univ for t time
with input d; if it does not terminate within time t, we write Univt(d) = ⊥. We also use Univ(d) to
denote its output and we write Univ(d) = ⊥ if Univ does not terminate on input d. We will also
assume the input programs to Univ are paddable, in the sense that Π and Π ◦ 0t for every t denote
the same program.

In particular, K and Kt are defined with respect to this universal RAM machine Univ. Formally,
we have

K(x) := min
Π∈{0,1}∗

{|Π| : Univ(Π) = x},

and
Kt(x) := min

Π∈{0,1}∗
{|Π| : Univt(Π) = x}.

We will also use the following “local” version of t-time bounded Kolmogorov complexity:

Kt
loc(x) := min

Π∈{0,1}∗
{|Π| : Univt(Π(i)) = xi ∀i ∈ [|x|]}.

Note that the input program Π to Univ may take additional inputs. In the definition of K and
Kt we can assume Π set its input to be all zero; in the definition of Kloc, Π takes an integer i as the
input, and we use Π(i) to denote the program obtained by fixing the input of Π to be i.

For an oracle A : {0, 1}∗ → {0, 1}, we similarly define the oracle version of the time-bounded
Kolmogorov complexity Kt,A(x) as the minimum size of a program that outputs x in time t, given
oracle access to A.18

For time bounds s, t ∈ N where s ≤ t and x ∈ {0, 1}∗, we define the (s, t)-time-bounded
computational depth of x as

cds,t(x) := Ks(x)−Kt(x).

We also write cds(x) to denote Ks(t)−K(t).

18As a standard assumption, querying A on an m-bit input takes m time.

16

3.5 Pseudorandomness

We say a PRG G : {0, 1}s → {0, 1}m ε-fools a class of functions F with m-bit inputs, if for every
f ∈ F , it holds that ∣∣∣∣ Pr

x∼{0,1}m
[f (x) = 1]− Pr

z∼{0,1}s
[f (G(z)) = 1]

∣∣∣∣ ≤ ε.

If G fails to ε-fool a particular function f (i.e., the above inequality does not hold for f), then we
call f an ε-distinguisher for G.

Similarly, we say an HSG H : {0, 1}s → {0, 1}m ε-hits a class of functions F with m-bit inputs,
if for every f ∈ F with

Pr
x∼{0,1}m

[f (x) = 1] ≥ ε,

there is u ∈ {0, 1}s such that f (H(u)) = 1. If H fails to ε-hit a particular function (i.e., f accepts an
ε fraction of strings and rejects all outputs of H), then we say that f ε-avoids H.

We need the following construction of extractors.

Theorem 3.8 ([RRV02, Theorem 1]). For every m ≤ n such that m ≥ nΩ(1), there is a poly-time function
RRVn,m : {0, 1}n × {0, 1}d → {0, 1}m for d = d(n) = O(log n) such that for every x ∈ {0, 1}n and for
every 0.1-distinguisher D between RRVn,m(x, Ud) and Um, there is a polynomial-time deterministic oracle
algorithm Rcon taking O(m1.5) bits of advice, such that there is an advice string α so that RconD(α) = x.

Remark 3.9. The entropy parameter k in [RRV02, Theorem 1] is essentially the advice complexity of recon-
struction mentioned above. Hence, we can set k = m1.5 and m ≥ nΩ(1) in Item (1) of [RRV02, Theorem 1]
to get seed length O(log n). Also note that the theorem becomes trivial if k = m1.5 ≥ n as one can simply
store the whole n-bit string as advice. Therefore we can assume the constraint m ≤ k ≤ n of [RRV02,
Theorem 1] is satisfied.

Theorem 3.10. There is a polynomial p : N → N such that, for every large enough integer n, m, t such
that t ≥ n ≥ m and m ≥ n0.1, given a string x ∈ {0, 1}n satisfying Kt·p(n)(x) ≥ m2, it follows that
RRVn,m(x, ·) is a PRG with seed length d = O(log n) that 0.1-fools all t-time algorithms on m-bit inputs
with m bits of advice.

Proof. Suppose for the sake of contradiction that there is a t-time algorithm A on m-bit inputs
with m-bit of advice such that A is an 0.1-distinguisher between RRVn,m(x, Ud) and Um. From
Theorem 3.8, there is an advice α of length O(m1.5) such that RconA(α) = x, this in particular
shows that Kt̄(x) ≤ O(m1.5) for t̄ = t · poly(n), which is a contradiction to the assumption that
Kt·p(n)(x) ≥ m2 for a large enough polynomial p.

We also need the following construction of HSGs from [SU05].

Theorem 3.11 ([SU05]). For every n and m such that n ≥ m ≥ log n, there is an n · poly(m)-time
algorithm SUn,m : {0, 1}n × {0, 1}s → {0, 1}m for s = s(n) = O(log n), such that for every x ∈ {0, 1}n

and for every D which 0.1-avoids SUn,m(x, Us), there is a poly(m)-time deterministic oracle algorithm
Rcon taking poly(m) bits of advice, such that there is an advice string α so that for every i ∈ [n],
RconD(i, α) = xi.

Proof Sketch. The HSG described in [SU05, Section 5.4] is a reconstructive HSG, with reconstruc-
tion algorithm described in [SU05, Section 5.5]. The running time and advice complexity of the

17

reconstruction procedure is implicit in the proof of [SU05, Theorem 5.5 and Lemma 5.6].19

It remains to verify that SUn,m can be computed in n · poly(m) time ([SU05] only proved a
poly(n) running time, which is not affordable for us). Without loss of generality, we assume that
m is a power of 2 (otherwise, we can always round m up to the nearest power of 2, and use the
corresponding construction). Let h = m and q = m20, d = log(2n)/ log m.20 Let F = Fq and H
be a subfield of F with h elements (the choice of H will be clarified later when we introduce two
matrices A and B).

Overview of the HSG construction from [SU05]. We first give an overview of the construction
of the HSG in [SU05]. Since our main purpose is to bound its running time by n · poly(m), we
omit some minor details that do not affect the analysis.

1. One first constructs d candidate q-ary PRGs G(0)
q-ary, G(1)

q-ary, . . . , G(d−1)
q-ary : Fd

q → Fm
q . By q-ary PRG

we mean that the output string has alphabet Fq with size q (see [SU05, Definition 5.3] for
details).

2. Next, for each i ∈ [d], one converts the candidate q-ary PRG G(i)
q-ary to a candidate (binary)

PRG G(i)
bin : {0, 1}O(log n) → {0, 1} at the expense of additional O(log n) seed length and minor

running time overhead (see [SU05, Lemma 5.6] for details).

3. Finally, let s0(n) = O(log n) be seed length of the G(i)
bin’s (without loss of generality, we may

assume that these d candidate PRGs have the same seed length). Our final HSG SUn,m(x, ·)
takes an s0(n)+ dlog de-length seed, treats the seed as a pair (α, i) from {0, 1}s0(n)×{0, 1, . . . , d−
1}, and outputs G(i)

bin(α).
21

Since the transformation from G(i)
q-ary to G(i)

bin only adds minor overhead (at most n · poly(m),
see [SU05, Lemma 5.6]), to bound the running time of SUn,m, it suffices to bound the running time
of the G(i)

q-ary’s.

Bounding the running time of G(i)
q-ary’s. In the following, we first describe the construction G(i)

q-ary

and then analyze the running time. To compute the G(i)
q-ary’s, we first constructs two matrices

A, B ∈ Fd×d
q (we will get to the complexity of constructing A and B at the end of the proof) such

that

1. Aqd−1 and Bhd−1 are the identity matrix.

2. For any non-zero vector ~v ∈ Fd: {Ai~v}1≤i<qd = Fd \ {0}.

3. For any non-zero vector ~v ∈ Hd: {Bi~v}1≤i<hd = Hd \ {0}.
19In particular, it is summarized at the end of proof of [SU05, Theorem 5.5]. We also remark that the reconstruction

algorithm described in [SU05] is indeed randomized and uses at most poly(m) random bits. We can nonetheless first
amplify its correctness probability on each input to at least 1− 1/2n by repeating the reconstruction for O(log n) times,
and then specify a string of good random bits that makes the reconstruction algorithm computing xi correctly for every
i ∈ [n] as part of the advice. Note that such a string of good random bits exists by a union bound. Since m ≥ log n, the
resulting reconstruction algorithm is deterministic, and still runs in poly(m) time and uses poly(m) bits of advice.

20d is set to be log n/ log m in [SU05, Section 5.3]. We set it to be slightly larger so that hd > n.
21We only get an HSG instead of the PRG because [SU05] proved that for any given small circuit C, at least one of the

candidate PRGs fools this circuit. Since we simply put all outputs of these d candidate PRGs together, their combined
output may no longer fools the given circuit C. But nonetheless, their combined output would still be a valid HSG.

18

4. B = A(qd−1)/(hd−1).

We also note that from the properties above, the matrix B already determines the subfield H.
Let~1 be the all-one vector in Fd. We then compute a degree-hd polynomial x̂ : Fd → F such that
x̂(Bj~1) = xj for all j ∈ [n]. Then G(i)

q-ary is specified as follows:

G(i)
q-ary(~v) = x̂(Aqi ·1~v) ◦ x̂(Aqi ·2~v) ◦ · · · ◦ x̂(Aqi ·m~v).

Note that we cannot afford to compute a full description of x̂, as that takes poly(n) bits to store
(recall that we aim to compute G(i)

q-ary(~v) in n · poly(m) time). Therefore, we aim to compute x̂(~u)
directly from x, A and B, without constructing a full description of x̂.

Let~a ∈ Hd. We define the following polynomial

e~a(~v) := ∏
i∈[d]

∏
h∈H\{ai}

h− vi

h− ai
.

Observe that for every ~v ∈ Hd, e~a(~v) equals 1 if~a = ~v, and it equals 0 otherwise. The polyno-
mial x̂ can then be described as

x̂(~v) = ∑
j∈[n]

xi · eBj~1(~v).

From the above description, one can see that for any ~v ∈ Fd, x̂(~v) can be computed in n ·
poly(q, m, log n) = n · poly(m) time (recall that m ≥ log n), since Bj can be computed by repeated
squaring in poly(q) ·O(log n) = poly(m) time, and e ~Bj~1

(~v) can be computed in poly(q) time.

Next, note that for each i ∈ {0, 1, . . . , d− 1} and j ∈ [m], we can also compute Aqi ·j by repeated
squaring in poly(q) ·O(log n) = poly(m) time. Therefore, G(i)

q-ary(~v) can be computed in n ·poly(m)
time as well, as desired.

Specifying the matrix A. Finally, we need to account for the running time of finding A (B can
be determined from A). In the proof of [SU05, Lemma 5.4], it is shown that we only need to find a
generator of the multiplicative group of GF(Fd) = GF(Fqd), and such a generator can be found in
poly(qd) time by simply enumerating all elements in GF(Fqd). Unfortunately, we cannot afford to
perform such an exhaustive search as we aim for n · poly(m) time.

Fortunately, we observe that a generator of GF(Fqd) can be described by d · log q = O(log n)
bits. Therefore, we can specify such a generator as O(log n) bits of advice, and this implies that
we can compute SUn,m(x, ·) in n · poly(m) time with O(log n) bits of advice.

Finally, note that for an HSG computable with advice, one can simply append the advice bits
to the end of the seed to obtain another HSG without advice that fools the same set of algorithms.
Therefore, we can make SUn,m(x, ·) computable in n · poly(m) time without advice. One can also
see this transformation does not affect the reconstruction algorithm, as the reconstruction algo-
rithm can also take O(log n) ≤ poly(m) bits of additional advice to specify the matrix A.

Remark 3.12. It is worth mentioning why we cannot use simpler PRG constructions such as the Nisan–
Wigderson PRG [NW94, IW97, STV01]. The issue is that we require the PRG to have a seed length of
O(log n) while keeping the running time and advice complexity to be poly(m). When m� n, the Nisan–
Widgerson PRG requires a seed length of O(log2 n/ log m), which is too much for our applications.

19

Theorem 3.13. There is a polynomial p : N → N such that, for every large enough integer n, t, m such
that t ≥ m, given a string x ∈ {0, 1}n satisfying Kt

loc(x) ≥ p(m), it follows that SUn,m(x, ·) is an HSG
with seed length d = O(log n) that 0.1-hits all t/p(m)-time algorithm on m-bit inputs with m bits of
advice.

Proof. Suppose for the sake of contradiction that there is a t/p(m)-time algorithm A on m-bit
inputs with m bits of advice such that A 0.1-avoid SUn,m(x, ·). From Theorem 3.11, it follows
that there is a poly(m)-bit length advice α such that RconA(i, α) = xi for each i ∈ [n]. This in
particular implies that K

t/p(m)·poly(m)
loc (x) ≤ poly(m), which is a contradiction to the assumption

that Kt
loc(x) ≥ p(m) for a large enough polynomial p.

4 Extremely Efficient PRGs from Average-case Easiness of NTIME[n]

In this section, we prove the following theorem, which constructs a super-efficient PRG from (one-
sided) average-case easiness of coNTIME[n].

Theorem 4.1. Assuming that coNTIME[n]×{Upara} ⊆ Avg1
1/2TIME[β(n)] for a good resource function

β : N→ N, for every large enough t, m ∈ N such that log t ≤ m ≤ t, there is a PRG Gt,m satisfying the
following:

1. Gt,m 0.1-fools t-time deterministic algorithms with m bits of advice on m-bit inputs.

2. Gt,m has O(log(m)) seed length and is computable in β(3)(t · poly(m)) time with O(log t) bits of
advice.

4.1 Technical Ingredients

We need the following standard time hierarchy theorem.

Theorem 4.2 ([HS65]). For a time-constructible function T : N → N, there is another function T̄ =
T · polylog(T) such that there is a language L ∈ TIME[T̄] such that for every large enough integer n the
following holds:

• For every Π ∈ {0, 1}n, we have L(Π) 6= UnivT(n)(Π(Π)).

Proof. For every Π ∈ {0, 1}∗, we define L as follows:

• Let z = UnivT(n)(Π(Π)). If z is not a single bit, we set L(Π) = 0.

• Otherwise, z ∈ {0, 1} and we set L(Π) = 1− z.

It is straightforward to verify that the language L above satisfies our requirements. (In the RAM
model, the simulation UnivT(n)(Π(Π)) takes T(n) · polylog(T(n)) time.)

Note that since we assumed our encoding of programs is paddable, given a program B with
running time at most T(n), for a large enough input length n, we have L(B ◦ 0n−|B|) 6= B(B ◦
0n−|B|). Thus, a refuter R for L against all T(n)-time algorithms can be defined by R(B, n) =
B ◦ 0n−|B|.

We also need the following standard proposition.

20

Proposition 4.3. Let β : N → N be a good resource function. Assuming coNTIME[n] × {Upara} ⊆
Avg1

1/2TIME[β(n)], it follows that NTIME[2n] ⊆ TIME[β(O(2n))]. Furthermore, for large enough in-
put length n, given a nondeterministic program Π0 of length 2 log n and running time t ≥ 2n, one can
construct in polylog(n) time a deterministic program Π1 of length 2 log n + O(1) such that

• Π1 and Π0 agree on all n-bit inputs.

• Π1 runs in β(Õ(t)) time.

Proof. Let L ∈ NTIME[2n]. We now consider the following mapping τ from {0, 1}∗ and N≥1: For
every x ∈ {0, 1}∗, we set τ(x) = bin(1 ◦ x). In particular we have 2|x| ≤ τ(x) ≤ 2|x|+1. We also
note that τ is bijective.

Next we define another language L′ such that

1. L′(x) = 0 if x is not of the form 01t for some t ≥ 1 and

2. L′(x) = L(τ−1(t)) otherwise.

We can see that L′ ∈ NTIME[n]. From coNTIME[n]×{Upara} ⊆ Avg1
1/2TIME[β(n)] and the fact that

L′ is only supported on Upara
〈t,0〉 for some t ∈ N≥1, it follows that L′ ∈ TIME[β(n)]. Now, applying

the deterministic algorithm for L′ to solve L, we have that L ∈ TIME[β(O(2n))]. Now we prove
the “furthermore” part of the proposition. Consider a language H ∈ NTIME[2n] defined by the
following algorithm:

• Given an n-bit input x, we treat the first 2 log n bits as a nondeterministic program Π. Next,
we let y be the remaining n− 2 log n bits, and let i be the smallest integer such that yi = 1. if
no such i exists then we immediately reject.

• We then set z = y>i, and simulate Π on input z for 2n steps and output its answer.

From above discussions we have that H ∈ TIME[β(O(2n))] as well; we also let A be the corre-
sponding deterministic algorithm for H.

Now, suppose we are given a 2 log n-bit nondeterministic program Π0 with running time t ≥
2n. Let ` be the smallest integer such that 2` ≥ t and `− 2 log `− 1 ≥ n and A` be the restriction
of A to `-bit inputs. Fixing the first 2 log ` bits of the input to A` to be Π0 and the next `0 =
`− 2 log `− n bits to be 0`0−11 (note that we assumed our encoding of algorithms are paddable,
we can pad Π0 to be length exactly 2 log `), we obtain a β(O(2`)) = β(Õ(t)) time deterministic
algorithm Π1 satisfying our requirements.

We also define the following language.

Definition 4.4. A language MINKTpad is defined as follows. On input z ∈ {0, 1}n:

1. If Dec(n) 6= (t, m) for any (t, m) ∈N2 then MINKTpad(z) = 0.

2. Otherwise, MINKTpad(z) = 1 if and only if Kt(z≤m) ≥
√

m.

From the definition one can see that MINKTpad ∈ coNTIME[n].
We also need the following lemma.

Lemma 4.5. Let β : N→N be a good resource function. Assuming coNTIME[n]×{Upara} ⊆ Avg1
1/2TIME[β(n)],

there is a nondeterministic algorithm ANderand satisfying the following:

21

1. ANderand takes t, m ∈N and a program Π ∈ {0, 1}m as input, and runs in β(t · poly(m)) time.

2. For every computational path, ANderand either outputs ⊥ or an estimate pest such that∣∣∣∣pest − Pr
x∼{0,1}m

[Univt(Π(x)) = 1]
∣∣∣∣ ≤ 0.1.

Note that on different computational paths, it may output different estimates.

3. On at least one computational path, ANderand outputs an estimate.

Proof. Recall that MINKTpad ∈ coNTIME[n]. By our assumption that coNTIME[n] × {Upara} ⊆
Avg1

1/2TIME[β(n)], it follows that there is a β(n)-time algorithm A such that for every (t, m) ∈N2

and n = 〈t, m〉, the following hold:

1. MINKTpad(z) = 0 implies A(z) = 0 for all z ∈ Upara
〈n−m−1,m〉.

2. Prz∼Um [A(z ◦ 01n−m−1) = MINKTpad(z ◦ 01n−m−1)] ≥ 1/2. Note that z ◦ 01n−m−1 = (z, 1n−m−1) ∈
Upara
〈n−m−1,m〉.

Now, suppose we are given inputs t, m and a program Π ∈ {0, 1}m. Let t̄ = t · p(m4) where
p is the polynomial defined in Theorem 3.10, and u = 〈t̄, m4〉. Our nondeterministic algorithm
guesses an m4-bit string z, and rejects immediately if A(z ◦ 01u−m4−1) 6= 1.

Otherwise, it holds that A(z ◦ 01u−m4−1) = 1. From the first property of A, it follows that
MINKTpad(z ◦ 01u−m4−1) = 1. This further implies that Kt̄(z) ≥ m2. Applying Theorem 3.10 with
z, we obtain an O(log m) seed-length PRG fooling t-time algorithms on m-bit inputs with m bits
of advice. We then use this PRG to obtain an estimate of Prx∈{0,1}n [Univt(Π(x)) = 1] (Univt(Π(x))
is an algorithm with running time at most t).

Finally, one can verify that the whole algorithm runs in β(u) = β(t ·poly(m)) nondeterministic
time, and there must exist a guess z making our algorithm accept, as more than half of strings z in
{0, 1}m4

satisfy Kt̄(z) ≥ m2.

4.2 Proof of Theorem 4.1

To prove Theorem 4.1, we first construct O(log t) seed length HSGs from coNTIME[n]×{Upara} ⊆
Avg1

1/2TIME[β(n)], as captured by the following lemma.

Lemma 4.6. Assuming that coNTIME[n]× {Upara} ⊆ Avg1
1/2TIME[β(n)] for a good resource function

β : N → N, for every large enough t, m ∈ N such that log t ≤ m ≤ t, there is an HSG Ht,m satisfying
the following:

1. Ht,m 0.1-hits t-time deterministic algorithms with m bits of advice on m-bit inputs.

2. Ht,m has O(log(t)) seed length and is computable in β(2)(t · poly(m)) time.

We first show that Lemma 4.6 implies Theorem 4.1.

Proof of Theorem 4.1. coNTIME[n]× {Upara} ⊆ Avg1
1/2TIME[β(n)] implies that (MINKTpad,Upara) ∈

Avg1
1/2TIME[β(n)]. It follows that there is a β(n)-time algorithm A such that for every (t, m) ∈N2

and n = 〈t, m〉, the following hold:

1. MINKTpad(z) = 0 implies A(z) = 0 for all z ∈ Upara
〈n−m−1,m〉.

22

2. Prz∼Um [A(z ◦ 01n−m−1) = MINKTpad(z ◦ 01n−m−1)] ≥ 1/2.

Let t̄ = t · p(m4) where p is the polynomial defined in Theorem 3.10, and u = 〈t̄, m4〉. Let
t̃ = β(u) and Ht̃,m4 be the O(log t̃)-seed length HSG from Lemma 4.6 that 0.1-hits t̃-time algorithm
with m4-bit inputs and m4-bit advice.

When running A over u = 〈t̄, m4〉 bit inputs, we have that

Pr
z∼Um4

[A(z ◦ 01u−m4−1) = MINKTpad(z ◦ 01u−m4−1)] ≥ 1/2.

By the definition of MINKTpad, we also have

Pr
z∼Um4

[MINKTpad(z ◦ 01u−m4−1) = 1] ≥ 0.99.

Putting the above two inequalities together, we have

Pr
z∼Um4

[A(z ◦ 01u−m4−1) = 1] ≥ 1/3.

Since A(z ◦ 01u−m4−1) is an algorithm with m4-bit inputs, O(log u) bits of advice (specifying the
length of zeros appending to the end of the input), and t̃ = β(u) running time, we know that there
must exist an O(log t̃) length seed s such that

A(Ht̃,m4(s) ◦ 01u−m4−1) = 1.

From the first property of A, this also implies that MINKTpad(Ht̃,m4(s) ◦ 01u−m4−1) = 1. Hence, for
x = Ht̃,m4(s), we have Kt̄(x) ≥ m2. Our final PRG Gt,m(-) is then defined to be RRVm4,m(x, -). Now
we verify it satisfies all the required properties.

• By Theorem 3.10, RRVm4,m(x, -) has seed length O(log m) and 0.1-fools all t-time algorithms
with m-bit inputs and m-bit advice.

• The running time of Gt,m is dominated by the running time of Ht̃,m4 , which is

β(2)(t̃ · poly(m)) ≤ β(2)(β(t · poly(m)) · poly(m)) ≤ β(3)(t · poly(m)).

The last inequality above uses the fact that β is a good resource function and β(a · b) ≥
a · β(b). And we only need to specify O(log t̃) ≤ O(log t) bits of advice s to compute x =
Ht̃,m4(s), since t̃ ≤ poly(t) as t ≥ m and β is at most polynomial.

Finally, we prove Lemma 4.6.

Proof of Lemma 4.6. Letting T(n) = 2n, and applying Theorem 4.2 with T(n), it follows that there
is another time function T̄(n) = T(n) · polylog(T(n)) such that there is a language L ∈ TIME[T̄]
satisfying the conditions in Theorem 4.2.

Without loss of generality, we assume that m is a power of 2. We also use pw(x) to denote the
smallest power of 2 which is at least x (i.e., pw(x) = 2dlog xe).

23

Applying PCP. Now we take a very efficient PCP algorithm for L (e.g., [BV14, BGH+05]) such
that for ` = log T̄(n) + O(log log T̄(n)), there is a verifier V(-) satisfying the following:

1. For an input x ∈ {0, 1}n, V(−)
x (Vx denotes V with the input set to x) takes an oracle O : {0, 1}` →

{0, 1}, ` random bits, and runs in poly(`) time.

2. If x ∈ L, there exists an oracle Ox : {0, 1}` → {0, 1} such that

Pr
r∈{0,1}`

[
VOx

x (r) = 1
]
= 1.

Moreover, there is a uniform algorithm computing the truth-table of Ox from x in Õ(T̄(n))
time.

3. If x 6∈ L, for all oracles O : {0, 1}` → {0, 1}, we have

Pr
r∈{0,1}`

[
VO

x (r) = 1
]
≤ 1/2.

Set up. Let t0 = pw(t ·mα1) and t̄ = pw(β(2)(t0 ·mα2)), where α1 > 1 and α2 > 1 are two constants
to be specified later.

In the following we fix n = log t̄. Note that since t is large enough, we can assume that n is
also large enough and the condition in Theorem 4.2 holds.

Now we consider the following algorithm that aims to speed up L over n-bit inputs. Let τ ≥ 1
be a parameter to be set later.

Constructing a faster algorithm. We first consider a nondeterministic algorithm Π0 as follows.
On input x ∈ {0, 1}n:

1. Guess an mτ-bit program Π and construct an oracle OΠ : {0, 1}` → {0, 1} defined by letting
OΠ(r) = Univt0(Π(r)) for every r ∈ {0, 1}`.

2. Observe that now VOΠ
x (r) is a t0 · poly(n)-time randomized algorithm with ` bit inputs and

nadv = mτ + O(log n) bits of advice. We apply Lemma 4.5 and run ANderand with relevant
parameters to derandomize VOΠ(r); and we accept if ANderand outputs an estimate pest such
that pest ≥ 3/4.

Note that Π0 can be specified by the integers m, t0 and the constant τ (we do not have to
encode integer n in Π0 as it is the input length). Hence it can be described by log log m + O(1) +
log log t0 ≤ 2 log n bits (recall that m is assumed to be a power of 2, and t0 is a also power of 2 by
the definition of pw). Also, on n-bit inputs, from Lemma 4.5, Π0 runs in

β(t0 ·mO(τ))

nondeterministic time.
Now, from Proposition 4.3, we can further obtain a 2 log n + O(1)-length deterministic pro-

gram Π1 agreeing with Π0 on all n-bit inputs, with running time

β(β(t0 ·mO(τ))).

24

Obtaining the PRG. Setting τ and α2 properly, the above algorithm runs faster than t̄. Padding
Π1 to be length n to obtain a program Π2, by Theorem 4.2, we have

L(Π2) 6= Π2(Π2).

Note that Π0(Π2) = Π1(Π2) = Π2(Π2) by the definitions of Π1 and Π2. Hence, we have that
L(Π2) 6= Π0(Π2). This is only possible when L(Π2) = 1 and Π0(Π2) = 0, which implies that the
accepting truth-table OΠ2 for L on the input Π2 satisfies Kt0

loc(tt(OΠ2)) > mτ (otherwise, it would
be guessed by Π0 and we would have Π0(Π2) = 1 as well, a contradiction).

Now we are ready to specify our HSG construction. We first construct the n-bit program Π2 in
poly(n) = polylog(t) time and then compute the truth table of OΠ2 . Let x = tt(OΠ2). Our HSG
is then obtained by applying Theorem 3.13 and fixing the first parameter of SU|x|,m(-, -) to be x.
Finally, we verify that SU|x|,m(x, -) satisfies our requirement:

• The seed length of SU|x|,m(x, -) is O(log |x|) ≤ O(`) ≤ O(log T̄(n)) ≤ O(log t̄) ≤ O(log t).
The last inequality holds since β is at most polynomial and m ≤ t.

• The running time of SU|x|,m(x, -) is Õ(t̄) · poly(m) ≤ β(2)(t · poly(m)).

• Let pSU(m) be the universal polynomial p in Theorem 3.13. We set the constants τ and α1
so that t0/pSU(m) ≥ t · mα1 /pSU(m) ≥ t and mτ ≥ pSU(m). From Theorem 3.13 and the
condition that Kt0

loc(tt(OΠ2)) > mτ, it follows that SU|x|,m(x, -) 0.1-hits all t-time algorithms
on m-bit inputs with m bits of advice.

5 Fine-grained Algorithmic Compression

We begin by introducing the definitions of the ensemble of languages and algorithms. Recall that
we use (x, 1t) to denote the string x ◦ 01t.

Definition 5.1 (Ensemble of languages (Definition 4.1 of [Hir21])). For every language L ⊆ {0, 1}∗
and every t ∈ N, let Lt denote {x ∈ {0, 1}∗ | (x, 1t) ∈ L}. We say L is an ensemble of languages
if there exists a constant cL such that |x| ≤ cL · t for all t ∈ N and x ∈ Lt. We identify an ensemble
L ⊆ {0, 1}∗ of languages with a family {Lt}t∈N.

For a promise problem Π = (ΠYES, ΠNO), let ΠYES,t denote {x ∈ {0, 1}∗ | (x, 1t) ∈ ΠYES} and
ΠNO,t denote {x ∈ {0, 1}∗ | (x, 1t) ∈ ΠNO}. We say Π is an ensemble of promise problems if there
exists a constant cΠ such that |x| ≤ cΠ · t for all t ∈N and x ∈ ΠYES,t ∪ΠNO,t.

Remark 5.2. We slightly change the definition as given in [Hir21] so that (x, 1t) ∈ L implies |x| ≤ O(t),
as opposed to implying |x| ≤ poly(t). This is so that the fine-grained analysis goes through.

Definition 5.3 (Ensemble of algorithms). For every ensemble of languages L ⊆ {0, 1}∗, we say that
{At}t∈N is an ensemble of algorithms for L if for all t ∈ N, At is a program such that for all x ∈
{0, 1}≤cL·t, we have22

(x, 1t) ∈ L ⇐⇒ At(x) = 1.

Moreover, we say that this ensemble of algorithms has size s : N→ N if |At| ≤ s(t) for all t ∈ N, where
|At| denotes the size of the program At.

22We use {0, 1}≤cL ·t to denote the set of Boolean strings with length at most cL · t for convenience.

25

Similarly, for an ensemble of promise problems Π = (ΠYES, ΠNO), we say that Π has an ensemble of
algorithms if for all t ∈N, At is a program such that for all x ∈ {0, 1}≤cΠ·t, we have

(x, 1t) ∈ ΠYES =⇒ At(x) = 1,

(x, 1t) ∈ ΠNO =⇒ At(x) = 0.

We define size analogously as above.

Remark 5.4. The reason we do not use the standard notion of advice is that we will need the “advice” to
be indexed by the parameter t ∈ N and not by the input length, since the input length could correspond to
multiple values of t ∈N.

The main result of this section is the following.

Theorem 5.5 (Algorithmic language compression). Let A be an oracle and L = {Lt}t∈N ∈ NTIME[n]A

be an ensemble of languages. Assuming that coNTIME[n]A × {Upara} ⊆ Avg1
1/2TIME[β(n)] for a good

resource function β : N → N, for all constant ε > 0, there is a function τn(t) = β(4)(t · poly(n)) and a
constant c depending only on β such that the parameterized promise problem Π = (ΠYES, ΠNO) defined as

ΠYES := {(x, 1t) | x ∈ Lt, ε log t ≤ |x| ≤ t},
ΠNO := {(x, 1t) | Kτn(t)(x) > log |Lt|+ c log t, ε log t ≤ |x| ≤ t},

has an ensemble of (deterministic) algorithms of size O(log t) running in time τn(t), where n = |x|.

Before proving Theorem 5.5, we first show we can use it to give a fast algorithm for GapKt,A

under the same assumptions.

Theorem 5.6 (Fast Algorithm for GapKt,A). Assuming that coNTIME[n]A×{Upara} ⊆ Avg1
1/2TIME[β(n)]

for a good resource function β : N → N, there is a function τn(t) = β(4)(t · poly(n)) and a constant c
depending only on β such that the parameterized promise problem Π = (ΠYES, ΠNO) defined as

ΠYES = {(x, 1〈t,s〉) | Kt,A(x) ≤ s, log t ≤ |x| ≤ t},
ΠNO = {(x, 1〈t,s〉) | Kτn(t)(x) > s + c log t, log t ≤ |x| ≤ t},

has an ensemble of (deterministic) algorithms of size O(log t) running in τn(t) time, where n = |x| and
s ≤ O(n).

Proof. Consider the ensemble L = {L〈t,s〉}t,s∈N given by

L〈t,s〉 = {x ∈ {0, 1}∗ | Kt,A(x) ≤ s}.

From basic properties of Kolmogorov complexity, we know |L〈t,s〉| ≤ 2s+1. We can now apply
Theorem 5.5 (with running-time bound labeled as τ′n(〈t, s〉), constant ε > 0 chosen later, and
constant labeled as c′) to get an ensemble of algorithms of size O(log t) for Π′ = (Π′YES, Π′NO)
given by

Π′YES = {(x, 1〈t,s〉) | Kt,A(x) ≤ s, ε log(〈t, s〉) ≤ |x| ≤ 〈t, s〉},
Π′NO = {(x, 1〈t,s〉) | Kτ′n(〈t,s〉)(x) > s + 1 + c′ log t, ε log(〈t, s〉) ≤ |x| ≤ 〈t, s〉}.

Since s ≤ O(n), the running time is at most

τ′n(〈t, s〉) = β(4)(〈t, s〉 · poly(n)) ≤ β(4)(t · poly(n)) =: τn(t).

26

Now, we claim that for ε sufficiently small, this ensemble of algorithms also solves the following
promise problem:

ΠYES = {(x, 1〈t,s〉) | Kt,A(x) ≤ s, log t ≤ |x| ≤ t},
ΠNO = {(x, 1〈t,s〉) | Kτn(t)(x) > s + 1 + c′ log t, log t ≤ |x| ≤ t}.

Since s ≤ O(n), we know

ε log(〈t, s〉) ≤ ε (log t + 2 log s + O(1)) ≤ ε(log t + 2 log n + O(1)),

so if n ≤ t, choosing ε to be a sufficiently small universal constant implies

ε log(〈t, s〉) ≤ log t

for sufficiently large t. Lastly, we know t ≤ 〈t, s〉 by the properties of our natural number encoding
scheme.

Putting together the facts that τn(t) ≥ τ′n(〈t, s〉), ε log(〈t, s〉) ≤ log t, and t ≤ 〈t, s〉, we see
that ΠYES ⊆ Π′YES and ΠNO ⊆ Π′NO. Therefore, the ensemble of algorithms from Theorem 5.5
with some ε < 1 now solves the promise problem Π as given in the theorem statement, where the
constant c is a slight tweak to c′.

We will use DPn,k : {0, 1}n × {0, 1}nk → {0, 1}nk+k to denote the direct product generator as
in [Hir21]. Explicitly, it is given by

DPn,k(x; z1, z2, . . . , zk) = (z1, . . . , zk, Had(x)(z1), . . . , Had(x)(zk)),

where zi ∈ {0, 1}n for each i ∈ [k], and Had(x, z) = (∑j∈[n] xjzj) mod 2.
We first need the following improved reconstruction for DPn,k.

Theorem 5.7. Assuming that coNTIME[n] × {Upara} ⊆ Avg1
1/2TIME[β(n)] for a good resource func-

tion β : N → N, given a t-time algorithm D with m-bit randomness and `-bit advice such that D ε-
distinguishes between Unk+k and DPk(x; Unk), and assuming ` ≤ poly(m, n, 1/ε), log t ≤ poly(n, m, 1/ε),
n + m + 1/ε ≤ t, and k ≤ O(n), there is an algorithm running in time β(3)(t · poly(n, m, 1/ε)) with
O(log t) bits of advice that takes as input (x, 1〈m,k,1/ε〉) and D, along with the advice αD ∈ {0, 1}` for D,
and outputs a program of size at most k + `+ O(log t) that prints x in time β(3)(t · poly(n, m, 1/ε)). In
particular,

Kβ(3)(t·poly(n,m,1/ε))(x) ≤ k + `+ O(log t),

where the constants hidden in the poly(·) and O(·) depend only on β.

To prove Theorem 5.7, we first recall the following randomized reconstruction algorithm for
DP generator as in [Hir21].

Lemma 5.8 (A slight variant of [Hir21, Lemma 3.14]). For any parameters n, k ∈ N, and ε ∈ (0, 1)
with k ≤ O(n), there exists a pair of algorithms A and Rcon, such that

• RconD and AD take oracle access to a function D : {0, 1}nk+k → {0, 1}.

• AD : {0, 1}n×{0, 1}r → {0, 1}nadv is called an advice function and is computable in time poly(n/ε),
where nadv := k + O(log(n/ε)).

• RconD : {0, 1}nadv × {0, 1}r → {0, 1}n is called a reconstruction procedure and is computable in
time poly(n/ε).

27

• The randomness complexity r is at most poly(n/ε).

• For any string x ∈ {0, 1}n and any function D that ε-distinguishes the output distribution of
DPk(x; Unk) from Unk+k, it holds that

Pr
w∼Ur

[
RconD(AD(x, w), w) = x

]
≥ 1− 1/poly(n/ε).

Remark 5.9. The main differences between Lemma 5.8 and Lemma 3.14 of [Hir21] are as follows. First,
we repeat the local list-decoding algorithm with oracle access to D as described in Lemma 3.14 of [Hir21]
many times, so that with probability at least 1− 1/poly(n/ε), a list of length poly(n/ε) containing x
can be reconstructed in poly(n/ε) time. Second, for a random seed s ∼ Upoly(n/ε) (included as part of the
randomness w ∈ {0, 1}r), we store H(x, s) as part of the advice A(x, w) for a polynomial-time computable
pairwise-independent hash function H : {0, 1}n × {0, 1}poly(n/ε) → {0, 1}O(log(n/ε)), as this allows us to
uniquely recover x from this list with probability at least 1− 1/poly(n/ε).

Proof of Theorem 5.7. For randomness rD ∈ {0, 1}m for the distinguisher D, we let D(·; rD) de-
note the deterministic function when fixing the randomness of D to rD. Since D ε-distinguishes
DPk(x; Unk) from Unk+k, we know that∣∣∣∣∣∣ E

rD∼Um
z∼Unk

[D(DPk(x; z); rD)]− E
rD∼Um

b∼Unk+k

[D(b; rD)]

∣∣∣∣∣∣ ≥ ε.

By an averaging argument,

Pr
rD∼Um

[∣∣∣∣ E
z∼Unk

[D(DPk(x; z); rD)]− E
b∼Unk+k

[D(b; rD)]

∣∣∣∣ ≥ ε

2

]
≥ ε

2
.

Therefore, with probability at least ε/2 over rD ∼ Um, the deterministic function D(·; rD) is an
ε/2 distinguisher for DPk(x; Unk) and Unk+k. Therefore, when taking u = O(1/ε) independent
samples r(j)

D ∼ Um for j ∈ [u], with probability≥ 2/3, there exists some j∗ ∈ [u] such that D(·; r(j∗)
D)

is an ε/2-distinguisher.
We let r = poly(n/ε) be the randomness complexity of the reconstruction procedure (with

distinguishing advantage ε/2), and we let parameter r̄ = poly(n, m, 1/ε) be a sufficiently large
parameter chosen later, in particular so that r̄ ≥ r + um. For w ∈ {0, 1}r̄, we can consider the
substring w>r ∈ {0, 1}r̄−r and divide its prefix of length um into u groups of m to naturally give
r(1)D ◦ · · · ◦ r(u)D ∈ {0, 1}um. Now, by applying Lemma 5.8, we have

Pr
w∼Ur̄

[
∃j ∈ [u] s.t. Rcon

D
(
·;r(j)

D

) (
AD

(
·;r(j)

D

)
(x, w≤r), w≤r

)
= x

]
≥ 1/2.

We can define a function f (w) :=
[
∃j ∈ [u] s.t. Rcon

D
(
·;r(j)

D

) (
AD

(
·;r(j)

D

)
(x, w≤r), w≤r

)
= x

]
. One

can see that f is computable in t′ = poly(n, m, 1/ε) · t time given x and advice αD ∈ {0, 1}` for the
distinguisher D.

We now invoke Theorem 4.1 with time parameter t′ and input size r̄, chosen such that r̄ ≥ `+n,
as the function f can be computed on input w ∈ {0, 1}r̄ with advice αD ∈ {0, 1}` and x ∈ {0, 1}n.
To satisfy the preconditions of Theorem 4.1, we need log(t′) ≤ r̄ ≤ t′. First, notice that log(t′) =
log t + log(poly(n, m, 1/ε)), and since t ≥ n + m + 1/ε, it follows that log(poly(n, m, 1/ε)) ≤

28

O(log t). Therefore, log(t′) ≤ O(log t), and so log(t′) ≤ O(log t) ≤ poly(n, m, 1/ε) ≤ r̄ for suffi-
ciently large r̄. Second, since we can choose the bound t′ to have a sufficiently large poly(n, m, 1/ε)
factor, we can make r̄ ≤ t′ to satisfy the preconditions of Theorem 4.1.

Now applying Theorem 4.1, we can apply Gt′,r̄ with advice α ∈ {0, 1}O(log t′) to derandomize
the function f (w). That is, we have

Pr
s∼UO(log r̄); w=Gt′ ,r̄(s)/α

[
∃j ∈ [u] s.t. Rcon

D
(
·;r(j)

D

) (
AD

(
·;r(j)

D

)
(x, w≤r), w≤r

)
= x

]
≥ 1/3.

Therefore, our algorithm can take α ∈ {0, 1}O(log t′) as advice (so O(log t′) = O(log t) bits of
advice, as desired) and brute force search over all seeds s ∈ {0, 1}O(log r̄) until it finds one such that
f (Gt′,r̄(s)/α) = 1, using x, D, and αD. (If no such seed is found, we reject and output 0, which will
never happen for correct advice αD.) Since f (Gt′,r̄(s)/α) = 1, we know there exists j∗ ∈ [u] such
that

Rcon
D
(
·;r(j∗)

D

) (
AD

(
·;r(j∗)

D

)
(x, w≤r), w≤r

)
= x.

All that is needed to specify the program that outputs x is now bin(j∗) ∈ {0, 1}log(1/ε)+O(1), αD, α, s,
and A(x, w≤r) ∈ {0, 1}k+O(log(n/ε)), and an O(1)-size program, as f can be deterministically com-
puted given these strings via the reconstruction algorithm Rcon with w = Gt′,r̄(s)/α and random-
ness r(j∗)

D for the distinguisher D. The total length of this program is

|bin(j∗)|+ |αD|+ |α|+ |s|+ |A(x, w≤r)|+ O(1) ≤ k + `+ O(log t).

Moreover, the time needed to output this program is

2O(log r̄) · (β(3)(t′ · poly(r̄)) + t′) ≤ β(3)(t · poly(n, m, 1/ε)),

since we enumerate over all seeds s ∈ {0, 1}O(log r̄), and for each seed s we compute w = Gt′,r̄(s)/α

and then compute f (w) by brute forcing over all j ∈ [u] to ensure we have found a valid index j∗

and a valid seed s and with corresponding advice A(x, w≤r).
The program itself first computes w = Gt′,r̄(s)/α in β(3)(t′ · poly(r̄)) time and then computes x

in t′ = poly(n, m, 1/ε) · t time given w, j∗, αD, and A(x, w≤r) by the algorithms Rcon and D. As
the running time of computing w dominates the computation of x given w and the full advice, it
follows that the running time of the program itself is at most β(3)(t · poly(n, m, 1/ε)), as desired.

We are now ready to present a proof of Theorem 5.5.

Proof of Theorem 5.5. Let

L′ = {(DPn,k(x; z), 1〈t,n〉) | x ∈ Lt ∩ {0, 1}n, z ∈ {0, 1}nk, ε log t ≤ |x| ≤ t}

for a parameter k = k(t, n) = min(n, blog |Lt|c) + d log t ≤ n + d log t, where d is a constant to be
chosen later. Note that by construction, we also have

log(|Lt ∩ {0, 1}n|) ≤ min(n, log |Lt|) ≤ k + 1− d log t. (4)

Since L ∈ NTIME[n]A, it follows that we can nondeterministically compute L′ as follows. Let VA

be a verifier for L, so that

(x, 1t) ∈ L ⇐⇒ ∃yx,t ∈ {0, 1}O(n+t) such that VA(x, 1t, yx,t) = 1,

29

and VA runs in linear time in its input, O(n + t). We can construct a verifier WA for L′ as follows.
On a witness y′ = (x, yx,t, z), where z ∈ {0, 1}nk, we define

WA(w, 1〈t,n〉, y′) := VA(x, 1t, yx,t) ∧ (DPn,k(x; z) = w) ∧ (ε log t ≤ |x| ≤ t).

It is clear by the construction of L′ and WA that WA is a verifier for L′. The total witness length is
|y′| = n+O(n+ t)+ nk ≤ t ·poly(n). Since VA has running time O(n+ t), DPn,k has running time
poly(n, k), and decoding 〈t, n〉 takes time poly(log t, log n), the running time for WA is bounded
by O(n + t) + poly(n, k) + poly(log t, log n) ≤ t · poly(n). Therefore, L′ admits a nondeterministic
algorithm with running time (and witness length) t · poly(n) with oracle access to A.

Applying our hypothesis, we know (¬L′,Upara) ∈ Avg1
1/2TIME[β(n)]. In particular, negating

the resulting algorithm gives us a one-sided-error heuristic algorithm B for L′ running in time
β(nk + k + 1 + 〈t, n〉) ≤ β(t · poly(n)) with the following properties:

1. For all (w, 1〈t,n〉) ∈ L′, it holds that B(w, 1〈t,n〉) = 1.

2. Prw∼Unk+k [B(w, 1〈t,n〉) 6= L′(w, 1〈t,n〉)] ≤ 1/2.

Moreover, the number of YES instances of L′ is small. By a union bound and (4), we have

Pr
w∼Unk+k

[(w, 1〈t,n〉) ∈ L′] = Pr
w∼Unk+k

[∃x ∈ Lt ∩ {0, 1}n, ∃z ∈ {0, 1}nk : w = DPn,k(x; z)]

≤ |Lt ∩ {0, 1}n| · 2nk · 2−(nk+k)

≤ 2k+1−d log t · 2−k

= 2t−d.

We can now give an ensemble of randomized algorithms {Et}t∈N of size log t + O(1) that
solves the desired promise problem Π = (ΠYES, ΠNO). Since L = {Lt}t∈N is an ensemble of
languages, we know |Lt| ≤ 2O(t), and thus log |Lt| ≤ O(t), making αt := bin(blog |Lt|c) have
length at most log t + O(1). We hardcode αt into each algorithm Et. On input x ∈ {0, 1}n, we
define Et(x) as follows. First, Et(x) checks whether ε log t ≤ |x| ≤ t (and rejects if not). Then,
the program computes k(t, n) = min(n, αt) + d log t = O(n), samples z ∼ Unk uniformly, and
outputs B(DPn,k(x; z), 1〈t,n〉). That is, we define Et such that Et(x; z) = B(DPn,k(x; z), 1〈t,n〉) as long
as ε log t ≤ |x| ≤ t, where k = min(n, α) + d log t. The running time of Et will be dominated by
the running time of B, so we can bound the running time of Et by t′ = β(t · poly(n)).

We now prove correctness:

Claim 5.10. For all large t ∈N, the following hold for all x ∈ {0, 1}n:

1. If (x, 1t) ∈ ΠYES, then Prz∼Unk [Et(x; z) = 1] = 1.

2. If (x, 1t) ∈ ΠNO, then Prz∼Unk [Et(x; z) = 1] < 3/4.

Proof. For Item 1, if (x, 1t) ∈ ΠYES, then x ∈ Lt and ε log t ≤ |x| ≤ t. Since B does not err on YES
instances, for all z ∈ {0, 1}nk+k, we know Et(x; z) = B(DPn,k(x; z), 1〈t,n〉) = 1, as desired.

For Item 2, we will show the contrapositive. Suppose Prz[Et(x; z) = 1] ≥ 3/4. In other words,

Pr
z∼Unk+k

[B(DPn,k(x; z), 1〈t,n〉) = 1] ≥ 3/4. (5)

30

Since L′ does not have many YES instances, we also know that

Pr
w
[B(w, 1〈t,n〉) = 1] = Pr

w
[L′(w, 1〈t,n〉) = 1] + Pr

w
[B(w, 1〈t,n〉) 6= L′(w, 1〈t,n〉)]

≤ 2t−d +
1
2

≤ 2
3

, (6)

for sufficiently large t, d. Combining (5) and (6), we get a deterministic 1/12-distinguisher using
log t + O(1) bits of advice between DPn,k(x; Unk) and Unk+k, running in time at most t′.

We now apply Theorem 5.7. To do so, we need to verify the hypotheses of Theorem 5.7 for the
case when with 1/12 distinguishing advantage and m = 0, as our distinguisher is deterministic.
First, note that ` = log t + O(1). Since (x, 1t) ∈ ΠNO, we have ε log t ≤ |x| ≤ t, so ` = log t +
O(1) ≤ O(n) ≤ poly(n), as needed. Next, we have log(t′) = O(log t + log n) = O(n) = poly(n),
as needed. Next, we have n + 1/(1/12) = n + 12 ≤ poly(n) ≤ β(t · poly(n)) = t′, as we can
choose the polynomial poly(n) in t′ to be sufficiently large. Lastly, k ≤ n + O(log t) ≤ O(n), as
desired.

Thus, we can apply Theorem 5.7 to get that

Kβ(3)(t′·poly(n))(x) ≤ k + log t + O(1) + O(log t′) ≤ log |Lt|+ O(log t).

This implies that (x, 1t) /∈ ΠNO for an appropriately chosen constant c (depending only on β),
completing the contraposition, as β(3)(t′ · poly(n)) ≤ β(4)(t · poly(n)).

The above claim shows that Π has an ensemble of one-sided error algorithms of size log t +
O(1) running in time t′. We can then use the PRG from Theorem 4.1, setting m = nk and the time
parameter to t′. Observe that m is also a bound on the advice, as for sufficiently large t, d and n, we
have log t + O(1) ≤ d log t ≤ k < nk = m. We also have log(t′) ≤ O(log t + log n) ≤ O(log t) ≤
n log t ≤ n · k = m, as needed to apply Theorem 4.1. Lastly, we need m ≤ t′, which holds for
sufficiently large t′ = β(t · poly(n)) (that is, the poly(n) can be chosen to be large enough to make
it hold).

Thus, by applying the PRG in Theorem 4.1, we can derandomize Et by enumerating over all
seeds in time

2O(log(nk)) · β(3)(t′ · poly(nk)) = poly(nk) · β(3)(t′ · poly(n)) ≤ β(4)(t · poly(n))

using O(log t′) = O(log t) bits of advice, which can be further hardcoded into each program
Et. Thus, Π has an ensemble of deterministic algorithms of size O(log t) running in time β(4)(t ·
poly(n)). Setting τn(t) = β(4)(t · poly(n)) for a sufficiently large polynomial poly(n) (constants
depending only on β), we get the desired result.

6 Fine-grained Weak Symmetry of Information

In this section, we prove the following theorem.

Theorem 6.1. If coNTIME[n]×{Upara} ⊆ Avg1
1/2TIME[β(n)] for a good resource function β : N→N,

there exists a constant c depending only on β such that for every sufficiently large n, m, t ∈ N, ε ∈ (0, 1)
with log t ≤ n/2, for every x ∈ {0, 1}n, it holds that

Pr
w∼Um

[
Kt(xw) ≥ Kβ(7)(t·poly(nm/ε))(x) + m− c log(t/ε)

]
≥ 1− ε.

31

Proof. Let c′ be the constant in Theorem 5.6 and let k be some parameter to be chosen later which
will satisfy k ≤ n. We define the parameters s = nk + k + m− c′ log t− 2 log(1/ε) and t′ = t +
p(n, m) for some p(n, m) = poly(n, m) specified later. Let {Ar}r∈N be the ensemble of algorithms
in Theorem 5.6. We fix our attention on the algorithm A = A〈t′,s〉 and consider inputs of size
n′ = nk + k + m. Note that s ≤ n′ as needed for Theorem 5.6. We also have

log(〈t′, s〉) ≤ O(1) + log(t′) + 2 log s ≤ O(1) + log t + log(p(n, m)) + 2 log(n′)
≤ O(1) + n/2 + O(log n) + O(log m) + 2 log(n′)
≤ 2n/3 + n′/3
≤ n′,

for sufficiently large n and m, as well as n′ ≤ t′ ≤ 〈t′, s〉 for sufficiently large p(n, m), so the
condition log(〈t′, s〉) ≤ n ≤ 〈t′, s〉 in the definition of Π = (ΠYES, ΠNO) in Theorem 5.6 is satisfied.
Letting τn′(t′) be the runtime bound in Theorem 5.6, A has running time τnk+k+m(t′) = β(4)(t′ ·
poly(nk + k + m)) = β(4)(t · poly(n, m)) and has size O(log t′) = O(log t).

Note that with probability at least 1 − ε/10, a random string x from {0, 1}nk+k+m satisfies
K(x) ≥ nk + k + m− 2 log(1/ε) = s + c′ log t. Hence, A rejects Unk+k+m with probability at least
1− ε/10.

On the other hand, consider running A on DPk(x; Unk) ◦Um. If it rejects with probability less
than 1 − ε/2, this gives an ε/3-distinguisher between DPk(x; Unk) and Unk+k, computable by a
randomized t̃ = β(4)(t · poly(n, m))-time algorithm with m bits of randomness and O(log t) bits
of advice. We now apply Theorem 5.7, but we first verify that all hypotheses of the theorem
are met. First, observe ` = O(log t) ≤ O(n) = poly(n, m, 1/ε), as needed. Next, observe that
log(t̃) ≤ O(log t + log(nm)) ≤ poly(n, m, 1/ε). By choosing t̃ to be β(4)(t · poly(n, m, 1/ε)) for
a sufficiently large poly(n, m, 1/ε) without loss of generality, we have t̃ ≥ n + m + 1/ε. Lastly,
k ≤ n = O(n), as desired.

Now applying Theorem 5.7, by setting

t̄ = β(3)(t̃ · poly(nm/ε)) ≤ β(7)(t · poly(nm/ε)),

we have
Kt̄(x) ≤ k + O(log(β(4)(t · poly(n, m))) + O(log t) ≤ k + c′′ log t,

for some constant c′′ depending only on β (since we will set k ≤ n).
Now we further set k so that k + c′′ log t = Kt̄(x)− 1. That is, we set k = Kt̄(x)− 1− c′′ log t ≤

n. The above is now a contradiction by construction, so A rejects (DPk(x; Unk), Um) with probabil-
ity at least 1− ε/2. This means that

Pr
z∼Unk , w∼Um

[Kt′(DPk(x; z), w) > s] ≥ 1− ε/2.

By an averaging argument, there exists a z ∈ {0, 1}nk such that

Pr
w∼Um

[Kt′(DPk(x; z), w) > s] ≥ 1− ε/2. (7)

Note that we also have
Kt′(DPk(x; z), w) ≤ Kt(xw) + nk + O(1), (8)

32

as given x, w in time t, if given advice z ∈ {0, 1}nk, one can compute (DPk(x; z), w) with an O(1)-
sized program in additional time t′ − t = p(n, m). Combining inequalities (7) and (8), with prob-
ability at least 1− ε/2 over w, we have

Kt(xw) > s− nk−O(1) = k + m− c′ log t− 2 log(1/ε)−O(1)

= Kt̄(x)− c′′ log t + m− c′ log t− 2 log(1/ε)−O(1)

= Kt̄(x) + m− c log(t/ε),

for some appropriately chosen constant c depending only on β.

7 New Worst-case to Average-case Reduction for PH

In this section, we study worst-case to average-case reductions for various subclasses of PH. In
particular, we prove Item (2) of Theorem 1.3.

We need the following HSG construction in [Hir20a].

Theorem 7.1 ([Hir20a, Theorem 4.3]). For any sufficiently large n, m ∈ N such that m ≤ 2n, there ex-
ists a function Hn,m : {0, 1}n×{0, 1}d → {0, 1}m and a deterministic reconstruction procedure R(−) : {0, 1}a →
{0, 1}n where d = O(log n + log3 m) and a = 2m + O(log n + log3 m), such that, for any x ∈ {0, 1}n

and any function D : {0, 1}m → {0, 1} that 0.1-avoids Hn,m(x,−), there exists an advice string α ∈
{0, 1}a such that RD(α) = x. Moreover, H can be computed in time poly(n) and RD can be computed in
time poly(n) with oracle access to D.

The following lemma is crucial for the results of this section.

Lemma 7.2. Let T : N→N be such that T(n) ≤ 2o(n) and L ∈ NTIME[T(n)]. Assume that Π2TIME[n]×
{Upara} ⊆ Avg1

1/2TIME[β(n)] for a good resource function β : N → N. There exists a function τn(t) =
β(O(1))(t · poly(n)) and a nondeterministic algorithm SL such that the followings hold.

1. SL takes an input x ∈ {0, 1}n to L, an integer t ∈ [T(n)ct , 2εtn] and an integer w ≤ n, where ct ≥ 1
is universal constant and εt ∈ (0, 1) is a constant that only depends on β.

2. SL then guesses at most 2w +O(log3 n + log t) bits of witness and runs in poly(T(n)) · τn(t) time.

3. If L(x) = 0, SL rejects on all possible witnesses.

4. If L(x) = 1 and w ≥ cdt,τn(t)(x), SL accepts on at least one witness.

Proof.

Set up. Let L ∈ NTIME[T(n)]. We fix an input x ∈ {0, 1}n to L. From the definition of L, there is
a linear-time algorithm V taking two inputs x ∈ {0, 1}n and y ∈ {0, 1}T(n), such that L(x) = 1 if
and only if there exists y ∈ {0, 1}T(n) satisfying V(x, y) = 1.

If L(x) = 1, we let yx ∈ {0, 1}T(n) be the lexicographically first string y satisfying V(x, y) = 1.
Otherwise L(x) = 0, and we simply let yx = 0T(n). We also set ct to be a large enough universal
constant.

33

Algorithm AGap-Kt
. Let Lcomp be a complete language for NTIME[n]. From Theorem 5.6, there

is a function qn(t) = β(4)(t · poly(n)) such that for every t, s ∈ N with s ≤ O(n), there is an
O(log t)-size program AGap-Kt

〈t,s〉 that satisfies the following:

• AGap-Kt

〈t,s〉 takes a string x ∈ {0, 1}n with log t ≤ n ≤ t, and runs in qn(t) time.

• (Yes case) If Kt,Lcomp(x) ≤ s, then AGap-Kt

〈t,s〉 (x) = 1.

• (No case) If Kqn(t)(x) ≥ s + c1 log t, then AGap-Kt

〈t,s〉 (x) = 0, where c1 is a constant that only
depends on β.

Constructing the distinguisher from AGap-Kt
. Let m ≤ O(n) be a parameter to be specified later,

and d = O(log T(n) + log3 m) be the seed length of HT(n),m from Theorem 7.1. From now on, we
will always use H to denote HT(n),m for simplicity.

Our goal now is to use the AGap-Kt
algorithm to construct an algorithm that 0.1-avoids the

output of H(yx, ·), as by Theorem 7.1, this would give us a way to reconstruct the desired witness
yx.

We begin by analyzing the time-bounded Kolmogorov complexity of (x, H(yx, z)). For all
z ∈ {0, 1}d, we have

K2t,Lcomp(x, H(yx; z)) ≤ Kt(x) + d + O(1). (9)

We let s = Kt(x) + d + O(1) be the right side of (9).
The above holds since we can first compute x in t time with Kt(x) bits of advice, then compute

yx by running the search-to-decision reduction, taking poly(T(n)) ≤ o(t) time using the oracle to
Lcomp, and finally compute H(yx; z) in poly(T(n)) = o(t) time by specifying z as d bits of advice.

On the other hand, we set εt so that qn(2εtn+1) ≤ 2n/2. Since qn(t) = β(4)(t · poly(n)), εt only
depends on β. Now applying Theorem 6.1 with ε = 0.01, we have that

Pr
w∼Um

[
Kt1(xw) ≥ Kt2(x) + m− c2 log(t)

]
≥ 0.99. (10)

where t1 = qn(2t) and t2 = β(7)(t1 · poly(n, m)) = β(7)(t1 · poly(n)), and c2 is a constant that only
depends on β. Note that log(t1) ≤ n/2 from our choice of εt, which satisfies the requirement of
Theorem 6.1. We set m so that

Kt2(x) + m− c2 log t ≥ s + c1 log t = Kt(x) + d + O(1) + c1 log t. (11)

That is, we set m so that

m− d = m−O(log3 m + log T(n))

≥ Kt(x) + O(1) + (c1 + c2) log t−Kt2(x) = cdt,t2(x) + O(log t).

One can see that choosing
m = cdt,t2(x) + c3(log t + log3 n) (12)

for some big constant c3 ≥ 1 would be enough. Note that c3 is a constant that only depends on β.
Hence we can choose εt to be small enough so that we can set m ≤ 2n.

Now we claim that for m satisfying (12), D(w) := ¬AGap-Kt

〈2t,s〉 (xw) on m-bit inputs23 0.1-avoids
H(yx; ·). Note that log(2t) ≤ |xw| = n + m ≤ 2t. We argue as follows:

23D gets an input w ∈ {0, 1}m, simulates AGap-Kt

〈2t,s〉 (xw), and negates its output.

34

1. From (9), for every z ∈ {0, 1}d, it holds that D(H(yx; z)) = ¬AGap-Kt

〈2t,s〉 (xH(yx; z)) = 0.

2. Next, by (10) and (11), together with our choice t1 = qn(2t), it holds that for 0.99 fraction of
strings w ∈ {0, 1}m, we have D(w) = ¬AGap-Kt

〈2t,s〉 (xw) = 1.

Now, by Theorem 7.1, for a = 2m + O(log T(n) + log3 m), there exists an advice α ∈ {0, 1}a

such that RD(α) = yx.

The final algorithm SL. Finally, we are ready to describe our algorithm SL.

• Given parameter t and w, it sets m = w + c3 · (log t + log3 n).

• Then it guesses an integer s ≤ O(n) and an O(log t)-bit program Π as AGap-Kt

〈2t,s〉 . Let D(w) =

¬Π(xw) be the candidate distinguisher on m-bit inputs, where the running time of Π is
truncated at qn(t).

• It further guesses an advice α ∈ {0, 1}a with a = 2m + O(log T(n) + log3 m), and accepts if
and only if V(x, RD(α)) = 1.

Running time and witness complexity. Note that the constructed candidate distinguisher D(w)
runs in qn(2t) time, and hence reconstruction algorithm RD(α) runs in poly(T(n)) · qn(2t), which
dominates the running time of the whole algorithm SL. Hence the running time is poly(T(n)) ·
qn(2t) = poly(T(n)) · β(O(1))(t · poly(n)) as desired.

Regarding the witness complexity, it guesses a bits for reconstruction advice, O(log t) bits for
the program of AGap-Kt

〈2t,s〉 , and O(log n) bits for guessing s. Hence the total witness complexity is

bounded by 2m + O(log T(n) + log t + log3 m) = 2w + O(log t + log3 m).

Correctness. Finally, we argue that SL satisfies our correctness conditions (Items (3) and (4) in
the theorem).

• When L(x) = 0, since there is no string y making V(x, y) = 1 in this case, SL rejects on all
guesses.

• When L(x) = 1 and w ≥ cdt,t2(x), our choice of m now satisfies (12). Hence on our correct
guess of s and the program for AGap-Kt

〈2t,s〉 , there exists α ∈ {0, 1}a such that RD(α) = yx for the
corresponding candidate distinguisher D. So on this witness SL accepts.

Finally, we set

τn(t) = t2 = β(7)(t1 · poly(n)) = β(7)(β(4)(2t · poly(n)) · poly(n)) = β(11)(t1 · poly(n)).

The last inequality above is due to the fact that β is a good resource function. This completes the
proof.

Remark 7.3. The reason why we cannot use the direct product generator DPk in the proof of Lemma 7.2
is that DPk(yx; z) has output length at least |yx| = T(n). This in particular means in (10), t2 would be
β(5)(t1 · poly(T(n))) instead of β(5)(t1 · poly(n, m)). Such a t2 is too large for our theorem.

Next, we are ready to prove our main result, a parametrized worst-case to average-case reduc-
tion from NTIME[T] to Σ2TIME[n].

35

Theorem 7.4. Let T : N → N be such that T(n) ≤ 2o(n) and assume that Π2TIME[n] × {Upara} ⊆
Avg1

1/2TIME[β(n)] for a good resource function β : N → N. Let τn(t) = β(O(1))(t · poly(n)) be the

corresponding function in Lemma 7.2. Then for every k : N→N, letting Tk(n)(n) = τ
(k(n))
n (poly(T(n)))

and assuming Tk(n)(n) ≤ 2o(n), it holds that

NTIME[T] ⊆ NTIMEGUESS[Tk(n)(n), 2n/k(n) + O(log Tk(n)(n)) + log3 n)]

⊆ TIME[poly(Tk(n)(n)) · 22n/k(n) · 2O(log3 n)]

Proof. Let pi(n) = τ
(i)
n (T(n)ct), where ct is the universal constant in Lemma 7.2. Note that we have

∑
i∈[k(n)]

cdpi−1(n),pi(n)(x) = Kp0(n)(x)−Kpi(n) ≤ n + O(1).

Hence, it follows that there exists i ∈ [k(n)] such that cdpi−1(n),pi(n)(x) ≤ n/k(n) + O(1). Our
nondeterministic algorithm then first guesses an integer i ∈ [k(n)], and then runs SL with param-
eter t = pi(n) and w = n/k(n) + O(1). From our assumption, we have t ∈ [T(n)ct , 2εtn], where εt
is the constant in Lemma 7.2. From Lemma 7.2, this algorithm runs in poly(T(n)) · pi(n) time and
guesses at most 2w + O(log t + log3 n) bits of witness.

Furthermore, by Lemma 7.2, our algorithm always rejects when L(x) = 0. On the other hand,
if L(x) = 1, then on the guess i such that cdpi−1(n),pi(n)(x) ≤ n/k(n) + O(1), our algorithm accepts
on at least one witness. This proves the first part of the theorem.

For the second part, we can simply set k(n) := arg minu∈[n]

[
τ
(u)
n (T(n)ct) · 22n/u

]
.

The following corollary follows from Theorem 7.4 directly.

Corollary 7.5. If Π2TIME[n]× {Upara} ⊆ Avg1
1/2TIME[Õ(n)], then

NTIME[2O(
√

n log n)] ⊆ DTIME[2O(
√

n log n)].

Proof. Let c > 0 be an arbitrary constant. Applying Theorem 7.4 for β(n) = Õ(n) and T(n) =

2c
√

n log n, we obtain τn(t) = βO(1)(t · poly(n)). We note that when t ≤ 2n, it holds that that
τn(t) ≤ t · poly(n), where the poly(n) only depends on β but not t.

Letting k :=
√

n/ log n, we have that

Tg(n) ≤ poly(τ(k)
n (poly(T(n)))) · 22n/k+log3 n ≤ 2O(

√
n log n)

as desired.

We now extend the above to include the full polynomial hierarchy version of limited nonde-
terminism.

Theorem 7.6. If Π2TIME[n]× {Upara} ⊆ Avg1
1/2TIME[Õ(n)], then

PHTIMEGUESS[2O(
√

n log n), n] ⊆ DTIME[2O
(√

n log n
)
].

Proof. For every constant k ≥ 1, we prove

ΣkTIMEGUESS[2O(
√

n log n), n] ⊆ Σk−1TIMEGUESS[2O(
√

n log n), n]. (13)

36

The theorem immediately follows from Eq. (13) because

ΣkTIMEGUESS[2O(
√

n log n), n]

⊆ Σk−1TIMEGUESS[2O(
√

n log n), n].
⊆ · · ·

⊆ Σ0TIMEGUESS[2O(
√

n log n), n] = DTIME[2O(
√

n log n)].

It remains to prove Eq. (13). Let t(n) := 2O(
√

n log n) and let L ∈ ΣkTIMEGUESS[t, n]. By
definition, there exists a t(n)-time algorithm V such that x ∈ L if and only if

∃y1 ∈ {0, 1}n, . . . ,Qk−1yk−1 ∈ {0, 1}n,Qkyk ∈ {0, 1}n, V(x, y1, . . . , yk) = 1

for every input x of length n. Define a language L′ so that

L′ := {(x, y1, . . . , yk−1) | Qkyk, V(x, y1, . . . , yk) = 1, |x| = |y1| = · · · = |yk|}.

Clearly, this language is in either NTIME[t] or coNTIME[t]. By Corollary 7.5, we obtain

L′ ∈ NTIME[t] ∪ coNTIME[t] ⊆ DTIME[tO(1)].

By the property of V, for every input x of length n, we have

x ∈ L
⇐⇒ ∃y1 ∈ {0, 1}n, . . . ,Qk−1yk−1 ∈ {0, 1}n,Qkyk ∈ {0, 1}n, V(x, y1, y2, . . . , yk) = 1
⇐⇒ ∃y1 ∈ {0, 1}n, . . . ,Qk−1yk−1 ∈ {0, 1}n, (x, y1, . . . , yk−1) ∈ L′

Since L′ can be accepted by some t(nk)O(1)-time algorithm on input (x, y1, . . . , yk−1) ∈ ({0, 1}n)k,
we conclude that

L ∈ Σk−1TIMEGUESS[tO(1), n].

Finally, Item (2) of Theorem 1.3 follows as an easy corollary of Theorem 7.6.

Corollary 7.7 (Strengthening of Item (2) of Theorem 1.3). If ΣkTIME[n] 6⊆ DTIME[2O
(√

n log n
)
] for

some constant k, then
Π2TIME[n]× {Upara} 6⊆ Avg1

1/2TIME[Õ(n)].

Proof. By Theorem 7.6, it suffices to prove that ΣkTIME[n] 6⊆ DTIME[2O
(√

n log n
)
] implies that

PHTIMEGUESS[2O(
√

n log n), n] 6⊆ DTIME[2O
(√

n log n
)
]. We will prove the contrapositive.

Assume that PHTIMEGUESS[2O(
√

n log n), n] ⊆ DTIME[2O
(√

n log n
)
]. Let L ∈ ΣkTIME[n] and

c ≥ 1 be a constant so that L ∈ ΣkTIMEGUESS[cn, cn]. Now, we construct a language L′ such that

x ∈ L ⇔ x ◦ 0(c−1)|x| ∈ L′. Note that L′ ∈ PHTIMEGUESS[2O(
√

n log n), n]. Hence we also have

L′ ∈ DTIME[2O
(√

n log n
)
], which in turn implies that L ∈ DTIME[2O

(√
n log n

)
].

37

8 New Worst-case to Average-case Reduction for UP

In this section, we study the worst-case to average-reduction from UP to NTIME[n].
The following lemma is crucial for the results of this section.

Lemma 8.1. Let T : N→N be such that T(n) ≤ 2o(n) and L ∈ UTIME[T(n)]. Assume that coNTIME[n]×
Upara ⊆ Avg1

1/2TIME[β(n)] for a good resource function β : N → N. There is a function τn(t) =

β(O(1))(t · poly(n)) such that, there is a nondeterministic algorithm SL that satisfies the following:

• SL takes an input x ∈ {0, 1}n to L, an integer t ∈ [T(n)ct , 2εtn] and an integer w ≤ n, where ct ≥ 1
is universal constant and εt ∈ (0, 1) is a constant that only depends on β.

• SL then guesses at most 2w + O(log T(n) + log3 n) bits of witness and runs in poly(T(n)) · τn(t)
time.

• If L(x) = 0, SL rejects on all possible witnesses.

• If L(x) = 1 and w ≥ cdt,τn(t)(x), SL accepts on at least one witness.

Proof. The proof structure of the lemma is very similar to that of Lemma 7.2. The only difference is
that we now try to construct a distinguisher for HT(n),m(yx, ·) using the algorithmic compression
from Theorem 5.5 instead of the fast GapKt,A algorithm from Theorem 5.6.

Set up. Let L ∈ UTIME[T(n)]. We fix an input x ∈ {0, 1}n to L. From the definition of L, there is
a linear-time algorithm V taking two inputs x ∈ {0, 1}n and y ∈ {0, 1}T(n), such that L(x) = 1 if
and only if there exists y ∈ {0, 1}T(n) satisfying V(x, y) = 1. Moreover, for every x ∈ {0, 1}n, there
is at most one y satisfying V(x, y) = 1. We also set ct to be a large enough constant.

If L(x) = 1, we let yx ∈ {0, 1}T(n) be the unique string satisfying V(x, y) = 1. Otherwise
L(x) = 0 and we simply let yx = 0T(n). Next we define a language ensemble L′ as follows:

• For every tuple (t, n, s, m) ∈ N4, (x, w) ∈ L′〈t,n,s,m〉 if and only if there exists y ∈ {0, 1}T(n)

and z ∈ {0, 1}dT(n),m for dT(n),m = O(log T(n) + log3 m) (of Theorem 7.1) such that

• |x| = n, Kt(x) ≤ s, V(x, y) = 1, and w = HT(n),m(y, z).

Note that we can guess an s-bit program Π, a T(n)-bit witness y and a d-bit seed to verify
whether (x, w) ∈ L′〈t,n,s,m〉. This takes nondeterministic O(t +poly(T(n))) = O(t) ≤ O(〈t, n, s, m〉)
time (since ct is large enough) and hence L′ ∈ NTIME[n].

Apply algorithm compression to get an algorithm AComp. By Theorem 5.5, there is a function
qn(t) = β(4)(t · poly(n)) such that for every tuple (t, n, s, m) ∈ N4 and γ = 〈t, n, s, m〉 such that
log γ ≤ n + m ≤ γ, there is an O(log γ)-size program AComp

γ satisfying the following:

1. AComp
γ (z) runs in q|z|(γ) time.

2. (Yes case) for every (x, w) ∈ L′γ, AComp
γ ((x, w)) = 1.

3. (No case) for every (x, w) ∈ {0, 1}n × {0, 1}m, if Kqn+m(γ)(x, w) ≥ s + dT(n),m + c1 log γ, then
AComp

γ ((x, w)) = 1, where c1 ≥ 1 is a constant that only depends on β. (Note that log |L′γ| ≤
s + dT(n),m, as V only accepts at most one witness y for each input x.)

38

Let m = O(n) be a parameter to be specified later, and d = O(log T(n) + log3 m) be the seed
length of HT(n),m from Theorem 7.1 and s = Kt(x). From now on, we will always use H to denote
HT(n),m for simplicity.

Applying Theorem 6.1 with ε = 0.01, we have that

Pr
w∼Um

[
Kt1(xw) ≥ Kt2(x) + m− c2 log(t)

]
≥ 0.99. (14)

where t1 = qn+m(〈t, n, s, m〉) and t2 = β(7)(t1 · poly(n, m)) = β(7)(t1 · poly(n)), and c2 ≥ 1 is a
constant that only depends on β (note that O(log t1) = O(log t) because n, s, m ≤ O(t) and qn+m
is at most a polynomial). We set εt to be small enough so that log t1 ≤ n/2 when t ≤ 2εtn.

We set m so that

Kt2(x) + m− c2 log t ≥ s + d + c1 log t = Kt(x) + d + c1 log t. (15)

That is, we set m so that

m− d = m−O(log3 m + log T(n))

≥ Kt(x) + (c1 + c2) log t−Kt2(x) = cdt,t2(x) + O(log t).

One can see that choosing

m = cdt,t2(x) + c3(log t + log3 n) (16)

for some big constant c3 ≥ 1 would be enough. Since c3 only depends on β, we can set εt to be
small enough so that m ≤ 2n.

From the definition of L′〈t,n,s,m〉 together with (15) and (14), one can see that D(w) := ¬AComp
〈t,n,s,m〉(xw)

on m-bit inputs 0.1-avoids H(yx, ·). Note that we have log〈t, n, s, m〉 ≤ n + m ≤ 〈t, n, s, m〉, which
satisfies the condition of AComp.

Now, by Theorem 7.1, for a = 2m + O(log T(n) + log3 m), there exists an advice α ∈ {0, 1}a

such that RD(α) = yx.

The final algorithm SL. Finally, we are ready to describe our algorithm SL.

• Given parameter t and w, it sets m = w + c3 · (log t + log3 n).

• Then it guesses an integer s ≤ O(n) and an O(log t)-bit program Π as AComp
〈t,n,s,m〉. Let D(w) =

¬D(xw) be the candidate distinguisher on m-bit inputs, where the running time of Π is
truncated at qn+m(t).

• It further guesses an advice α ∈ {0, 1}a with a = 2m + O(log T(n) + log3 m), and accepts if
and only if V(x, RD(α)) = 1.

With an identical argument of the last part of proof for Lemma 7.2, we can verify the running
time, witness complexity and the correctness of the above algorithm by setting τn(t) = t2 =
βO(1)(t · poly(n)) (note that by Proposition 3.1, 〈t, n, s, m〉 ≤ t · poly(n)), which completes the
proof.

The following Theorem 8.2 and Corollary 8.3 follows from Lemma 8.1 in exactly the same way
that Theorem 7.4 and Corollary 7.5 follows from Lemma 7.2. We omit their proof.

39

Theorem 8.2. Let T : N → N be such that T(n) ≤ 2o(n) and assume that coNTIME[n] × Upara ⊆
Avg1

1/2TIME[β(n)] for a good resource function β : N → N. Let τn(t) = β(O(1))(t · poly(n)) be the

corresponding function in Lemma 7.2. Then for every k : N→N, letting Tk(n)(n) = τ
(k(n))
n (poly(T(n)))

and assuming Tk(n)(n) ≤ 2o(n), it holds that

UTIME[T] ⊆ NTIMEGUESS[Tk(n)(n), 2n/k(n) + O(log Tk(n)(n)) + log3 n)]

⊆ TIME[poly(Tk(n)(n)) · 22n/k(n) · 2O(log3 n)].

Now Item (1) of Theorem 1.3 and Theorem 1.4 follows easily from Theorem 8.2.

Corollary 8.3 (Strengthening of Item (1) of Theorem 1.3). If coNTIME[n]×Upara ⊆ Avg1
1/2TIME[β(n)],

then
UTIME[2O(

√
n log n)] ⊆ DTIME[2O(

√
n log n)].

Corollary 8.4 (Strengthening of Theorem 1.4). For every ε > 0, if UP 6⊆ NTIMEGUESS[poly(n), εn],
then coNP×Upara 6⊆ Avg1

1/2P.

Proof. We will prove the contrapositive of the theorem. Suppose coNP × Upara ⊆ Avg1
1/2P, we

know that for some polynomial β, it holds that coNTIME[n]×Upara ⊆ Avg1
1/2TIME[β(n)].

Let k = 3/ε. By Theorem 8.2, for every polynomial T we have

UTIME[T] ⊆ NTIMEGUESS[poly(n), 2n/k + o(n)] ⊆ NTIMEGUESS[poly(n), εn].

Therefore UP ⊆ NTIMEGUESS[poly(n), 2n/k + o(n)] ⊆ NTIMEGUESS[poly(n), εn] as well, this
completes the proof.

9 New Worst-case to Average-case Reduction for Computable Heuris-
tic Schemes

We consider error-less heuristic schemes whose running time can be efficiently estimated. We first
present the formal definition of AvgTIMEDTIME[β(n)][β(n)].

Definition 9.1. Let β be a good resource function, for a language L and a distribution family D =
{Dn}n∈N, we say that (L,D) ∈ AvgTIMEDTIME[β(n)][β(n)] if there exists a pair of algorithms (S, C)
such that, for every n, k ∈N the following hold:

1. For every x ∈ Dn, if C(x, n, k) = 1, then S(x, n, k) = L(x).

2. Prx∼Dn [C(x, n, k) = 1] ≥ 1− 2−k.

3. C(x, n, k) runs in at most β(|x|) time, and S(x, n, k) runs in at most 2k · β(|x|) time.

We remark that from Definition 9.1 and Definition 3.6, it is clear that (L,D) ∈ AvgTIMEDTIME[β(n)][β(n)]
implies that (L,D) ∈ AvgTIME[β(n)].

Following the proof of [Hir21, Theorem 10.2], we show that the assumption NTIME[n] ×
Upara ⊆ AvgTIME[β(n)] implies the following near-optimal compression and decompression scheme.

Theorem 9.2. Assuming that NTIME[n]×Upara ⊆ AvgTIME[β(n)] for a good resource function β : N→
N. Then, for τn(t) = βO(1)(t · poly(n)), there are two algorithms E and D such that

40

1. Fix n, t ∈ N such that t ∈ [nct , 2n], where ct ≥ 1 is universal constant. For every x ∈ {0, 1}n, it
holds that D(E(x, t), n, t) = x.

2. |E(x, t)| ≤ Kt(x) + O(log t).

3. D(z, n, t) runs in τn(t) time and E(x, t) runs in poly(t) time.

Proof. We set ct ≥ 1 to be a large enough universal constant. From Theorem 5.6, there is a function
qn(t) = β(4)(t · poly(n)) such that for every t, s ∈ N with s ≤ O(n), there is an O(log t)-size
program AGap-Kt

〈t,s〉 satisfies the following:

• AGap-Kt

〈t,s〉 takes a string x ∈ {0, 1}n with log t ≤ n ≤ t, and runs in qn(t) time.

• (Yes case) If Kt(x) ≤ s, then AGap-Kt

〈t,s〉 (x) = 1.

• (No case) If Kqn(t)(x) ≥ s + c1 log t, then AGap-Kt

〈t,s〉 (x) = 0, for some constant c1 that only
depends on β.

We will first use AGap-Kt
together the DP generator to obtain a compression scheme, and then

define our algorithms E and D. For a parameter k ≤ O(n), letting d = nk, for all z ∈ {0, 1}d we
have

K2t(DPk(x; z)) ≤ Kt(x) + d + c2 log t, (17)

where c2 ≥ 1 is a universal constant. This holds because one can compute DPk(x; z) by first
computing x in t time and then compute DPk(x; z) in d + k = o(t) time. (We also need to specify t
and k, which takes O(log t) bits.)

By a simple counting argument, we have that

Pr
w∼Ud+k

[K(w) ≥ d + k− c3] ≥ 0.99, (18)

where c3 ≥ 1 is a universal constant.
Let s = Kt(x) + d + c2 log t in (17). We will set k so that

d + k− c3 ≥ s + c1 log t = Kt(x) + d + (c2 + c1) log t,

which can be satisfied by picking k so that

k = Kt(x) + c3 log t (19)

for a large enough constant c3 ≥ 1 only depending on β.
For k that satisfies (19), we have log(2t) ≤ d + k ≤ 2t and it follows from (17) and (18) that

D(w) := AGap-Kt

〈2t,s〉 (w) 0.1-distinguishes between DPk(x; Ud) and Ud+k. Note that D takes O(log t)

bits of advice to specify the code for AGap-Kt

〈2t,s〉 (w), and runs in t1 = qd+k(2t) time on (d + k)-bit

inputs. Hence, by Theorem 5.7, there is a function ηn(t) = β(3)(t · poly(n)) such that there is an
algorithm R running in ηn(t1) time that takes x and D (along with the advice for D) as input and
O(log t1) = O(log t) bits as advice, and outputs a program of size k + O(log t) that prints x in
ηn(t1) time.

Now we are ready to specify our encoding algorithm E(x, t):

41

1. We first enumerate all possible values u ≤ n + O(1) for Kt(x), from the smallest to the
largest. Then we set s and k according to u as the guess of Kt(x) (i.e., s = u + d + c2 log t and
k = u + c3 log t).

2. Next, we enumerate all possible advice strings αD ∈ {0, 1}O(log t) for the (candidate) distin-
guisher D, and all possible advice strings αR ∈ {0, 1}O(log t) for the reconstruction algorithm
R, and run R/αR with input x and DαD . Then we check whether R/αR outputs a desired pro-
gram of size k + O(log t) that prints x in ηn(t1) time. We output the program and terminate
the algorithm if the outputted program passes the check.

We now define D(z, n, t) as the algorithm that simply simulates the program z for ηn(t1) steps
and then outputs its output, and we set τn(t) = βO(1)(t · poly(n)) to be large enough so that
τn(t) ≥ ηn(t1). This ensures the running time of D(z, n, t) satisfies our requirement.

For E(x, t), note that the running time is at most poly(t) · poly(n) ≤ poly(t) as required. Now,
let ū be the smallest guess for Kt(x) on which the algorithm terminates. Note that by our previous
discussions, the algorithm must terminate on the correct guess of Kt(x), so we have ū ≤ Kt(x).
Finally, on this guess ū, our algorithm outputs a program of size ū + O(log t) ≤ Kt(x) + O(log t)
which outputs x in ηn(t1) ≤ τn(t) time. This completes the proof.

The following lemma is crucial for our results in this section.

Lemma 9.3. Let T : N → N be such that T(n) ≤ 2o(n), L ∈ NTIME[T(n)] and β : N → N be a good
resource function. Assume that NTIME[n] × Upara ⊆ AvgTIMEDTIME[β(n)][β(n)]. There is a function
τn(t) = β(O(1))(t · poly(n)) and an algorithm SL such that the following hold:

1. SL takes an input x ∈ {0, 1}n to L, an integer t ∈ [max(T(n), nct), 2n] and an integer w ≤ n, where
ct is the universal constant in Theorem 9.2.

2. SL runs in 2w · poly(t) time and SL(x, t, w) ∈ {L(x),⊥}.

3. If w ≥ cdt,τn(t)(x), then SL(x) = L(x).

Proof. Our proof follows the same argument of the proof of [Hir21, Theorem 10.1].

Compressed Language Lzip and its heuristic. We first define a language Lzip (i.e., a compressed
version of L) such that for every (t, n, s) ∈N3, u ∈ Lzip

〈t,n,s〉 if and only if the following holds:

1. |u| = s and t ≥ T(n).

2. For x = Univt(u), it holds that x ∈ L and |x| = n.

From its definition we can see that Lzip ∈ NTIME[n], since given an input (u, 1〈t,n,s〉), one can
first compute x = Univt(u) in O(t) time, and then check whether x ∈ L in nondeterministic
T(n) = O(t) time.

From our assumption that NTIME× Upara ⊆ AvgTIMEDTIME[β(n)][β(n)] and the Definition 9.1,
there are two algorithms S and C such that for every (t, n, s) ∈ N3 and every k ∈ N, letting
γ = 〈t, n, s〉, the followings hold:

1. For every u ∈ {0, 1}s, if C(u, 〈γ, s〉, k) = 1, then S(u, 〈γ, s〉, k) = Lzip
γ (u). Note that here we

are applying S and C to solve Lzip over the distribution Upara
〈γ,s〉.

2. Pru∼Us [C(u, 〈γ, s〉, k) = 1] ≥ 1− 2−k.

3. C(u, 〈γ, s〉, k) runs in at most β(γ+ s) time, and S(u, 〈γ, s〉) runs in at most β(γ+ s) · 2k time.

42

Applying algorithmic compression to the language Lfail consisting of failed inputs. Now, we
consider another language Lfail, such that for every (t, n, s, k) ∈ N4, u ∈ Lfail

〈t,n,s,k〉 if and only if (1)

u ∈ Lzip
〈t,n,s〉 and (2) C(u, 〈γ, s〉, k) = 0 for γ = 〈t, n, s〉. That is, Lfail

〈t,n,s,k〉 contains all inputs u to Lzip
〈t,n,s〉

on which our heuristic algorithm with parameter k fails.
Recall that we have Pru∼Us [C(u, 〈γ, s〉, k) = 0] ≤ 2−k, which implies that |Lfail

〈t,n,s,k〉| ≤ 2s−k.
Also, note that a straightforward algorithm solves Lfail

〈t,n,s,k〉(u) in β(〈t, n, s, k〉) nondeterministic

time by computing Lzip
〈t,n,s〉(u) ∧ [C(u, 〈γ, s〉, k) = 0], meaning that Lfail ∈ NTIME[β(n)].

Applying Theorem 5.5 together with a simple padding argument24, it follows that for some
qn(t) = βO(1)(t · poly(n)) and for every u ∈ Lfail

〈t,n,s,k〉, we have

Kq|u|(〈t,n,s,k〉)(u) ≤ s− k + O(log t). (20)

Our algorithm SL. Now our algorithm SL works as follows:

1. Let k = w + c1 log t for a large constant c1 ≥ 1 to be specified later. Compute z = E(x, t) and
let u be the code of the algorithm outputting D(z, n, t). Let s = |u|. Applying Theorem 9.2,
and note that u can be specified by the integer t, the string z and the code of D, we have

s = |u| = |z|+ O(log t) ≤ Kt(x) + O(log t). (21)

Moreover, for some t1 = β(O(1))(t · poly(n)), we have Univt1(u) = x.

2. Let γ = 〈t1, n, s〉. If C(u, 〈γ, s〉, k) = 0, output ⊥.

3. Otherwise, output S(u, 〈γ, s〉, k).

Running time and the correctness of SL. Now we argue that SL satisfies our requirements. The
running time of SL is dominated by the running time of S(u, 〈γ, s〉, k), which is β(γ + s) · 2k ≤
2k · poly(t). Hence, the overall running time of SL is 2k · poly(t) as well.

For the correctness, we first note that whenever SL does not output⊥, it means C(u, 〈γ, s〉, k) =
1, and in this case SL(x) = Lzip

γ (u) = Lzip
〈t1,n,s〉(u). Since |u| = s and Univt1(u) = x, we have

Lzip
〈t1,n,s〉(u) = L(x), and therefore SL(x) = L(x).

Now, assume that w ≥ cdt,τn(t)(x) for some τn(t) = βO(1)(t · poly(n)) to be specified later. We
will prove that in this case we must have C(u, 〈γ, s〉, k) = 1 and thus SL(x) = L(x).

Assume that C(u, 〈γ, s〉, k) = 0 for the sake of contradiction. By definition it means that u ∈
Lfail
〈t1,n,s,k〉 and hence

Kqs(〈t1,n,s,k〉)(u) ≤ s− k + O(log t).

Recalling that Univt1(u) = x, we further have

K2qs(〈t1,n,s,k〉)(x) ≤ s− k + O(log t). (22)

24Theorem 5.5 applies to languages in NTIME[n] but our Lfail is in NTIME[β(n)]. Still, we can define a padded version
of Lfail such that it is in NTIME[n], and apply Theorem 5.5 to the padded version. The resulting algorithm can solve
the algorithmic compression task for Lfail as well. Note that we will later set s so that the constraint log t ≤ |x| ≤ t in
Theorem 5.5 is satisfied.

43

Combining (21) and (22), we have that

cdt,2qs(〈t1,n,s,k〉)(x) ≥ k−O(log t). (23)

Combining (23) and the definition of k, we further have

w ≤ cdt,2qs(〈t1,n,s,k〉)(x) + O(log t)− c1 · log t.

Setting c1 to be large enough, the above translates to

w < cdt,2qs(〈t1,n,s,k〉)(x). (24)

Finally, we set τn(t) = βO(1)(t · poly(n)) so that τn(t) ≥ 2qs(〈t1, n, s, k〉). In this case, (24)
contradicts our promise that w ≥ cdt,τn(t)(x), and therefore we have C(u, 〈γ, s〉, k) = 1 when
w ≥ cdt,τn(t)(x). This completes the proof.

Theorem 9.4. Let T : N → N be such that T(n) ≤ 2o(n) and assume that NTIME[n] × Upara ⊆
AvgTIMEDTIME[β(n)][β(n)] for a good resource function β : N → N. Let τn(t) = β(O(1))(t · poly(n)) be

the corresponding function in Lemma 9.3. Then for every k : N → N, letting Tk(n)(n) = τ
(k(n))
n (T(n) ·

poly(n)) and assuming Tk(n)(n) = 2o(n), it holds that

NTIME[T] ⊆ TIME[poly(Tk(n)(n)) · 2n/k(n)].

Proof. Let L ∈ NTIME[T] and let pi(n) = τ
(i)
n (T(n) · nct), where ct is universal constant in Theo-

rem 9.2. Note that we have

∑
i∈[k(n)]

cdpi−1(n),pi(n)(x) = Kp0(n)(x)−Kpi(n) ≤ n + O(1).

Hence, it follows that there exists i ∈ [k(n)] such that cdpi−1(n),pi(n)(x) ≤ n/k(n) + O(1). Our
algorithm for L then runs SL from Lemma 9.3 with parameter t = pi(n) and w = n/k(n) + O(1),
for every i ∈ [k(n)]. From Lemma 9.3, this algorithm runs in k(n) · poly(t) · 2w = poly(Tk(n)(n)) ·
2n/k(n) time. Our algorithm outputs the output of SL(pi(n), w) if it is not ⊥ (if many SL(pi(n), w)’s
are not ⊥, it simply outputs the one with the smallest i.)

By Lemma 9.3, if there is at least one SL(pi(n), w) 6= ⊥, then our algorithm is correct on x. Also,
since there must be an i such that cdpi−1(n),pi(n)(x) ≤ n/k(n) + O(1), we know that our algorithm
correctly solves L(x).

From Theorem 9.4, we immediately have the following corollaries.

Corollary 9.5. The following holds:

1. If NTIME[n]×Upara ⊆ AvgTIMEDTIME[Õ(n)][Õ(n)], then NTIME[2O(
√

n log n)] ⊆ DTIME[2O(
√

n log n)],
and consequently

ΣkTIMEGUESS[2O(
√

n log n), n] ⊆ TIME[2O(
√

n log n)].

2. If NTIME[n]×Upara ⊆ AvgTIMEDTIME[n1+ε][n1+ε] for every ε > 0, then for every δ > 0 and κ > 0,
it holds that NTIME[2n1−δ

] ⊆ DTIME[2κn/ log n].

44

Proof. The first item follows from Theorem 9.4 in exactly the same way that Corollary 7.5 follows

from Theorem 7.4. The inclusion for ΣkTIMEGUESS[2O(
√

n log n), n] follows from the proof of The-
orem 7.6. So we omit the proof of the first item and focus on the second item.

Fix δ > 0 and κ > 0, we set ε = ε(δ, κ) > 0 be a constant to be fixed later and set β(n) = n1+ε.
We also set T(n) = 2n1−δ

. Recall that Tk(n) = τ
(k)
n (T(n) · poly(n)) in Theorem 9.4. For a universal

constant c1 ≥ 1, it holds that
Tk(n) ≤ β(c1k)(2n1−δ · nc1k).

We will only consider k ≤ O(log n). The above can be further bounded by

β(c1k)(2n1−δ/2
) = 2n1−δ/2·(1+ε)c1k ≤ 2n1−δ/2·eεc1k

,

the last inequality follows from the fact that (1 + ε)t ≤ eεt for all t ≥ 0.
Now, we set k = 2 log n/κ and ε = ln(nδ)/(3c1k) so that eεc1k = nδ/3. Note that ε > 0 is a

constant that only depends on δ and κ, as desired.
Finally, applying Theorem 9.4, we have NTIME[2n1−δ

] ⊆ DTIME[poly(2n1−δ/6
) · 2n/k] ≤ 2κn/ log n,

which completes the proof.

Taking contrapositive of Corollary 9.5, the following corollary follows immediately.

Corollary 9.6. The following hold:

1. (Strengthening of Item (3) of Theorem 1.3) For every δ > 0 and κ > 0, NTIME[2n1−δ
] 6⊆ DTIME[2κn/ log n]

implies that NTIME[n]× Upara 6⊆ AvgTIMEDTIME[n1+ε][n1+ε] for some ε > 0. In particular, ETH
implies this conclusion.

2. NTIME[2O(
√

n log n)] 6⊆ DTIME[2O(
√

n log n)] implies NTIME[n]×Upara 6⊆ AvgTIMEDTIME[Õ(n)][Õ(n)].

3. ΣkTIME[n] 6⊆ DTIME

[
2O
(√

n log n
)]

implies NTIME[n]×{Upara} 6⊆ AvgDTIME[Õ(n)]TIME[Õ(n)]

for every constant k.

10 Applications to NP Witness Compression

In addition to giving a fast deterministic algorithm, Theorem 7.4 implies NP has compressible
witness. In fact, the proof of Theorem 7.4 allows for compression in a somewhat strong sense, as
we define below.

Definition 10.1. Let L ∈ NTIME[T(n)]. We say that L has `-compressible witnesses if for all verifiers
V for L, there exists an algorithm AV running in time poly(T(n)) such that on input x ∈ {0, 1}n and
y ∈ {0, 1}`, AV(x, y) outputs a string z such that for all x ∈ L ∩ {0, 1}n, there exists y ∈ {0, 1}` such
that V(x, AV(x, y)) = 1. That is, there is some “witness” y ∈ {0, 1}` such that AV(x, y) outputs a
witness z for x ∈ L under V.

Note that this definition is interesting only if ` is less than the amount of nondeterminism used
in the algorithm that shows L ∈ NTIME[T(n)].

Remark 10.2. Here and throughout, definitions and results can also be phrased in terms of NP relations
instead of verifiers to avoid focusing on a particular verifier V, but these formulations are essentially equiv-
alent.

45

We now observe that the proof of Theorem 7.4 gives us compressible witnesses for all of NP.

Corollary 10.3 (Formal version of Theorem 1.5). Let T : N → N, ε > 0 be a constant, and assume
that Π2TIME[n]×Upara ⊆ Avg1

1/2TIME[β(n)] for a good resource function β : N→N. For ` = `(n) =
εn + O(log T(n) + log3 n), all languages L ∈ NTIME[T] have `-compressible witnesses.

In particular, if Π2TIME[n]× Upara ⊆ Avg1
1/2P, then for all constant ε > 0 and for sufficiently large

n,
NP ⊆ NTIMEGUESS[poly(n), εn].

Moreover, for all L ∈ NP and any corresponding verifier V, there is a poly(n)-time algorithm using εn bits
of nondeterminism outputting witnesses for L under V (when they exist).

Proof. We use the proof of Theorem 7.4 with k(n) = 3/ε. Let L ∈ NTIME[T] and V be a verifier
for L. Following the notation of Lemma 7.2, the algorithm SL uses 2εn/3 + O(log T(n) + log3 n)
bits of nondeterminism to output some witness y = RD(α) such that V(x, y) = 1, where the
nondeterminism is used to guess α and advice for the distinguisher D. Thus, we can set AV(x, y) =
RD(α) to show the first part of the statement.

For the second part, if T(n) = poly(n), this becomes 2εn/3 + O(log n + log3 n) ≤ εn bits of
nondeterminism for sufficiently large n, as desired.

We give a natural class of problems for which this gives a useful notion of witness compress-
ible.

Definition 10.4. Let p(n) be an arbitrary polynomial. For a language L ∈ NP, let V be a polynomial-time
verifier for L with witnesses of length p1(n). We define

LV,p(n) := {x ∈ {0, 1}∗ : ∃y1, . . . , yp(|x|) ∈ {0, 1}p1(|x|) such that ∀i, V(x, yi) = 1 and ∀i < j, yi 6= yj}.

That is, LV,p(n) is the set of all x ∈ {0, 1}∗ that have at least p(|x|) distinct witnesses under V.

Note that LV,p(n) ∈ NP for any polynomial time verifier V, as a set of distinct witnesses
{yi}i∈[p1(|x|)] for L form a witness for LV,p(n). These witnesses for LV,p(n) have length p(|x|) · p1(|x|).
However, Corollary 10.3 tells us the following:

Corollary 10.5. If Π2TIME[n]× Upara ⊆ Avg1
1/2P, then for all constant ε > 0 and sufficiently large n,

LV,p(n) has εn-compressible witnesses.

As an example, we can apply this corollary to SAT ∈ NP.

Corollary 10.6. If Π2TIME[n]× Upara ⊆ Avg1
1/2P, then for all constant ε > 0, sufficiently large n, and

polynomials p(n), there is a polynomial time algorithm Ap,ε with the following property: if ϕ ∈ {0, 1}n is a
SAT instance with at least p(n) satisfying assignments, then there exists y ∈ {0, 1}εn such that Ap,ε(ϕ, y)
outputs p(n) distinct satisfying assignments of ϕ.

Acknowledgements

We are grateful to Rahul Ilango and Ryan Williams for helpful discussions. In particular, we want
to thank Ryan Williams for the observation that an HSG with seed length O(log t) already suffices
for our proof.

46

References

[AF09] Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for
average-case algorithms. In Proceedings of the 24th Annual IEEE Conference on Com-
putational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 298–303. IEEE
Computer Society, 2009.

[AFvMV06] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran.
Computational depth: Concept and applications. Theor. Comput. Sci., 354(3):391–404,
2006.

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing
one-way functions on NP-hardness. In Proceedings of the Symposium on Theory of Com-
puting (STOC), pages 701–710, 2006.

[All20] Eric Allender. The new complexity landscape around circuit minimization. In Lan-
guage and Automata Theory and Applications - 14th International Conference, LATA 2020,
Milan, Italy, March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in Computer
Science, pages 3–16. Springer, 2020.

[BB15] Andrej Bogdanov and Christina Brzuska. On Basing Size-Verifiable One-Way Func-
tions on NP-Hardness. In Proceedings of the Theory of Cryptography Conference (TCC),
pages 1–6, 2015.

[BBB19] Enric Boix-Adserà, Matthew S. Brennan, and Guy Bresler. The Average-Case Com-
plexity of Counting Cliques in Erdős-Rényi Hypergraphs. In Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS), pages 1256–1280, 2019.

[BCGL92] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the Theory of
Average Case Complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992.

[BFKR97] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Locally Random
Reductions: Improvements and Applications. J. Cryptol., 10(1):17–36, 1997.

[BFP05] Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some results on derandomiza-
tion. Theory Comput. Syst., 38(2):211–227, 2005.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Short pcps verifiable in polylogarithmic time. In 20th Annual IEEE Conference
on Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages
120–134. IEEE Computer Society, 2005.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-
case fine-grained hardness. In Proceedings of the Symposium on Theory of Computing
(STOC), pages 483–496, 2017.

[BRSV18] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs
of Work From Worst-Case Assumptions. In Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, pages 789–819, 2018.

47

[BSV21] Zvika Brakerski, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan. On the
hardness of average-case k-sum. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18,
2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 29:1–29:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[BT06a] Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[BT06b] Andrej Bogdanov and Luca Trevisan. On Worst-Case to Average-Case Reductions
for NP Problems. SIAM J. Comput., 36(4):1119–1159, 2006.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Proc. 41st
Internat. Colloq. on Automata, Languages and Programming (ICALP’14), pages 163–173.
Springer, 2014.

[CLW20] Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds
from non-trivial derandomization. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1–12.
IEEE, 2020.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 283–
291. ACM, 2021.

[DLW20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New Tech-
niques for Proving Fine-Grained Average-Case Hardness. In Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS), pages 774–785, 2020.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-Self-Reducibility of Complete Sets.
SIAM J. Comput., 22(5):994–1005, 1993.

[GMR05] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The complexity of the
covering radius problem. Comput. Complex., 14(2):90–121, 2005.

[GR18] Oded Goldreich and Guy N. Rothblum. Counting t-Cliques: Worst-Case to Average-
Case Reductions and Direct Interactive Proof Systems. In Proceedings of the Symposium
on Foundations of Computer Science (FOCS), pages 77–88, 2018.

[GS87] Yuri Gurevich and Saharon Shelah. Expected Computation Time for Hamiltonian
Path Problem. SIAM J. Comput., 16(3):486–502, 1987.

[GS88] Joachim Grollmann and Alan L. Selman. Complexity Measures for Public-Key Cryp-
tosystems. SIAM J. Comput., 17(2):309–335, 1988.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP.
In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 247–258. IEEE Computer Society, 2018.

48

[Hir20a] Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-
complexity. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 50–60. IEEE, 2020.

[Hir20b] Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of
pseudorandom generator constructions. In 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 20:1–20:47. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hard-
ness assumptions. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 292–302. ACM, 2021.

[HN21] Shuichi Hirahara and Mikito Nanashima. On worst-case learning in relativized
heuristica. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS,
2021.

[HS65] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

[HS21] Shuichi Hirahara and Nobutaka Shimizu. Nearly Optimal Average-Case Complexity
of Counting Bicliques Under SETH. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages
2346–2365, 2021.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.,
65(4):672–694, 2002.

[IL89] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for Com-
plexity Based Cryptography (Extended Abstract). In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 230–235, 1989.

[Imp95] Russell Impagliazzo. A Personal View of Average-Case Complexity. In Proceedings
of the Structure in Complexity Theory Conference, pages 134–147, 1995.

[Imp11] Russell Impagliazzo. Relativized Separations of Worst-Case and Average-Case Com-
plexities for NP. In Proceedings of the Conference on Computational Complexity (CCC),
pages 104–114, 2011.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have
Strongly Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proc. 29th STOC, pages 220–229. ACM Press,
1997.

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local Reductions. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 749–760, 2015.

49

[Ko85] Ker-I Ko. On Some Natural Complete Operators. Theor. Comput. Sci., 37:1–30, 1985.

[Liv10] Noam Livne. On the Construction of One-Way Functions from Average Case Hard-
ness. In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 301–309, 2010.

[LLW19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-Key Cryp-
tography in the Fine-Grained Setting. IACR Cryptology ePrint Archive, 2019:625, 2019.

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic
quasi-polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. System Sci.,
49(2):149–167, 1994.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators with-
out the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and
a new pseudorandom generator. J. ACM, 52(2):172–216, 2005.

[SW15] Rahul Santhanam and Richard Ryan Williams. Beating Exhaustive Search for Quan-
tified Boolean Formulas and Connections to Circuit Complexity. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 231–241, 2015.

[Vio05a] Emanuele Viola. On Constructing Parallel Pseudorandom Generators from One-Way
Functions. In Proceedings of the Conference on Computational Complexity (CCC), pages
183–197, 2005.

[Vio05b] Emanuele Viola. The complexity of constructing pseudorandom generators from
hard functions. Computational Complexity, 13(3-4):147–188, 2005.

[Wee06] Hoeteck Wee. Finding Pessiland. In Proceedings of the Theory of Cryptography Confer-
ence (TCC), pages 429–442, 2006.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci., 348(2-3):357–365, 2005.

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput.,
45(2):497–529, 2016.

50
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

