
Post-Quantum Zero Knowledge, Revisited
or: How to Do Quantum Rewinding Undetectably

Alex Lombardi
alexlombardi@alum.mit.edu

MIT∗

Fermi Ma
fermima@alum.mit.edu

Simons Institute & UC Berkeley∗

Nicholas Spooner
nicholas.spooner@warwick.ac.uk

University of Warwick†

September 23, 2022

Abstract

When do classical zero-knowledge protocols remain secure against quantum attacks? In this
work, we develop the techniques, tools, and abstractions necessary to answer this question for
foundational protocols:

1. We prove that the Goldreich-Micali-Wigderson protocol for graph non-isomorphism and
the Feige-Shamir protocol for NP remain zero-knowledge against quantum adversaries.
At the heart of our proof is a new quantum rewinding technique that enables extracting
information from multiple invocations of a quantum adversary without disturbing its state.

2. We prove that the Goldreich-Kahan protocol for NP is post-quantum zero knowledge using
a simulator that can be seen as a natural quantum extension of the classical simulator.

Our results achieve negligible simulation error, appearing to contradict a recent impossibility
result due to Chia-Chung-Liu-Yamakawa (FOCS 2021). This brings us to our final contribution:

3. We introduce coherent-runtime expected quantum polynomial time, a simulation notion
that (1) precisely captures all of our zero-knowledge simulators, (2) cannot break any
polynomial hardness assumptions, (3) implies strict polynomial-time 𝜀-simulation and (4)
is not subject to the CCLY impossibility. In light of our positive results and the CCLY
negative results, we propose coherent-runtime simulation to be the appropriate quantum
analogue of classical expected polynomial-time simulation.

∗Part of this work was done while the author was an intern at NTT Research.
†Work was chiefly conducted at Boston University.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 167 (2021)

Contents
1 Introduction 1

1.1 Challenges . 1
1.2 This Work . 3
1.3 Expected Quantum Polynomial-Time Simulation . 4
1.4 Results on Zero Knowledge . 6
1.5 Results on Extraction . 7
1.6 Additional Results . 9

2 Technical Overview 9
2.1 Defining Expected Quantum Polynomial Time Simulation 9
2.2 Post-Quantum ZK for [GMW86] and [FS90] from Guaranteed Extraction 14
2.3 Achieving Guaranteed Extraction . 18
2.4 Post-Quantum ZK for [GK96] . 28
2.5 Related Work . 32

3 Preliminaries 35
3.1 Quantum Preliminaries and Notation . 36
3.2 Black-Box Access to Quantum Algorithms . 37
3.3 Jordan’s Lemma . 37
3.4 Commitment Schemes . 38
3.5 Preliminaries on Interactive Arguments . 39

4 Standard Collapse-Binding Implies Unique Messages 41

5 Generalized Notions of Special Soundness 44
5.1 Generalized Special Soundness Definitions . 45
5.2 A Special Soundness Parallel Repetition Theorem . 46
5.3 Examples of Probabilistic Special Sound Protocols 48

6 Singular Vector Algorithms 52
6.1 Fixed-Runtime Algorithms . 52
6.2 Variable-Runtime Singular Vector Transformation (vrSVT) 53

7 Pseudoinverse Lemma 55

8 Post-Quantum Guaranteed Extraction 57
8.1 Description of the Extractor . 58
8.2 Partial Transcript Extraction Theorem . 60
8.3 Proof of Theorem 8.2 . 60
8.4 Obtaining Guaranteed Extraction . 72

9 Expected Polynomial Time for Quantum Simulators 75
9.1 Quantum Turing Machines . 75
9.2 Coherent-Runtime EQPT . 75
9.3 Zero Knowledge with EQPT𝑐 Simulation . 77

10 State-Preserving Extraction 77
10.1 From Guaranteed Extraction to State-Preserving Extraction 78
10.2 Applying Lemma 10.3 . 81
10.3 Concluding Theorems 1.8 and 1.9 . 83

11 The [GMW86] GNI Protocol is EQPT𝑐 Zero Knowledge 84

12 The [FS90] Protocol is EQPT𝑐 Zero Knowledge 86
12.1 Building Block: Delayed-Witness Proofs of Knowledge 87
12.2 Proof of Security for the [FS90] protocol . 89

13 The [GK96] Protocol is EQPT𝑐 Zero Knowledge 92
13.1 Indistinguishability of Projections onto Indistinguishable States 92
13.2 Quantum Simulator . 93

Acknowledgments 95

References 95

A Separating EQPT𝑐-Zero Knowledge and 𝜀-Zero Knowledge 100
A.1 Post-Quantum Fine-Grained One-Way Functions and Pseudorandom Generators . . 100
A.2 The Separations . 101

1 Introduction
Zero-knowledge protocols [GMR85] are a fundamental tool in modern cryptography in which a
prover convinces a verifier that some statement is true without revealing any additional information.
This security property is formalized via simulation: the view of any malicious efficient verifier 𝑉 *
can be simulated in polynomial time (without access to, e.g., an NP witness for the statement).

Although the zero-knowledge property sounds almost paradoxical, [GMR85] showed that zero-
knowledge protocols exist for non-trivial languages (e.g., for Quadratic Residuosity). This sparked a
sequence of foundational works over the next decade, including: zero-knowledge protocols for graph
isomorphism/non-isomorphism and all of NP [GMW86], constant-round zero-knowledge protocols
for NP [GK96, FS90] (based on two different paradigms), and applications to general-purpose secure
computation [GMW87a].

However, since these foundational results were established, our conception of what constitutes
efficient computation has fundamentally changed. Both in theory [Sho94] and in practice [AAB+19],
quantum computers appear to have capabilities beyond that of any efficient classical computer.
Thus, in order to have a satisfying and complete theory of cryptography, it is imperative to analyze
security against (efficient) quantum attacks. In this work, we ask:

When do classical zero-knowledge protocols remain secure against quantum attacks?

At a minimum, such protocols must be based on post-quantum cryptographic assumptions. Subject
to this constraint, one could hope that any “reasonable” protocol should remain secure against
quantum attack, but we are extremely far from having such a result.

To highlight our lack of understanding, consider the protocols (discussed above) from the original
works of [GMW86, GK96, FS90].1 Of these, the only ones known to be zero knowledge against
quantum attack are those amenable to the rewinding technique of Watrous [Wat06].2 Specifically,
[Wat06] proves security for a very restricted class of protocols: (sequential repetitions of) 3-message
public-coin protocols with logarithmic-length verifier messages.

As a result, the post-quantum security of some of the most basic protocols in cryptography
remains completely unclear. For instance, Watrous’s technique applies to the standard [GMW86]
zero-knowledge proof system for graph isomorphism but does not apply to the related protocol
for graph non-isomorphism from the same work.3 And while [Wat06] suffices to analyze the
super-constant round [GMW86] protocol for NP (based on graph 3-coloring), it cannot handle
the constant-round protocols of [GK96, FS90].

1.1 Challenges

We highlight two key issues that must be resolved in order to answer our question. The first is
technical in nature; the second is more conceptual.

1. State-Preserving Quantum Rewinding. For all of the protocols discussed above, classical
zero knowledge is proved by rewinding the malicious verifier to simulate its view. Classical
rewinding is completely inapplicable to quantum adversaries since a single execution might

1The protocols of [GMR85] are for languages in BQP, for which post-quantum zero knowledge is trivial.
2Recent work [CCY21] shows that the [GK96] protocol satisfies a relaxed notion called 𝜀-zero-knowledge [DNS98];

we discuss this result in detail later.
3This was noted in [Unr12, ARU14].

1

irreversibly disturb the adversary’s state. While there has been significant progress in devising
quantum-compatible rewinding strategies [Wat06, Unr12, CCY21, CMSZ21], these techniques
are fundamentally incapable of the kind of rewinding we need.
The abstract rewinding technique common to the [GMW86, GK96, FS90] protocols is some-
times referred to as “extract-and-simulate”: the simulator must first extract information from
the malicious verifier and then use this information to simulate its view. It is this problem of
simultaneous extraction and state preservation (for simulation) that prior work cannot solve:

• Even in simple cases where the simulator only needs to extract from a single protocol
execution (as in the [GK96] protocol), the problem of achieving negligible accuracy sim-
ulation is particularly challenging. A recent work [CCY21] shows how to simulate in
this setting with inverse polynomial simulation accuracy — achieving a relaxed security
notion called 𝜀-zero-knowledge [DNS98].

• The situation is especially dire in the more general (and more common) setting when
extraction requires information from multiple protocol executions as in the [GMW86]
graph non-isomorphism (GNI) protocol and the [FS90] protocol for NP. For these pro-
tocols, no post-quantum simulation strategies are known, even for weaker definitions
such as 𝜀-zero-knowledge. In fact, recent progress [CMSZ21] on extracting from multi-
ple protocol executions is specifically designed for (and only works in) a setting where
extraction without simulation suffices.

2. Defining Zero Knowledge. A key insight of [GMR85] was to capture a malicious verifier’s
“lack of knowledge” by simulation: the view of any efficient malicious verifier can be efficiently
simulated. However, from the beginning, the precise definition of “efficient” was different
for the verifier and the simulator: specifically, even though the verifier must run in fixed
polynomial time, the simulator was only required to run in expected polynomial time.
Allowing the simulator to run for expected polynomial time was essential for the [GMR85]
zero-knowledge protocol for quadratic non-residuosity (one out of their two constructions)
and similarly essential for many subsequent protocols [GMW86, GK96, FS90]. Later, it was
shown that for these and other protocols, (black-box4) strict polynomial-time simulation
is impossible [BL02]. Thus, it turns out that expected polynomial time simulation is the
appropriate computational model for capturing the classical zero knowledge of these protocols.
However, these definitional issues have not been resolved in the post-quantum setting. Unlike
in the classical setting, the standard formulation of a quantum Turing machine [BV97] is
intentionally restricted to fixed-runtime computation.
Thus — even putting aside the difficulty of quantum rewinding — proving post-quantum zero
knowledge for the [GMW86, GK96, FS90] protocols requires identifying an appropriate model
of efficient simulation. This question turns out to be surprisingly subtle: in fact, a recent
work [CCLY21b] shows that for one natural formulation5 of (black-box) expected quantum
polynomial-time simulation, zero knowledge is impossible for these protocols.

4While non-black box simulation techniques exist [Bar01, BP12], including in the post-quantum setting [BS20],
they seem to apply only to specially tailored protocols and do not help resolve our questions.

5[CCLY21b] does not precisely define a model, but a particular formulation is implicit in their result.

2

1.2 This Work

In this work, we develop the techniques, tools, and abstractions required to resolve the above
challenges. We employ these techniques to settle the post-quantum security of the [GMW86, GK96,
FS90] protocols and more broadly establish conditions under which classical protocols remain post-
quantum secure. In more detail, our contributions are as follows.

(1) We formally study the notion of expected runtime for quantum simulators. We give a for-
mal description of the model implicit in the impossibility result of [CCLY21b], which we call
measured-runtime expected quantum polynomial time (EQPT𝑚), and formulate a new model
we call coherent-runtime expected quantum polynomial time (EQPT𝑐) that avoids this impos-
sibility result. At a high level, the EQPT𝑐 model grants the simulator the ability to coherently
run an EQPT𝑚 computation (and its inverse). In particular, the runtime of the computation
is left in superposition and may be uncomputed. We argue that this model is an appropriate
analogue of classical expected polynomial time simulation by (i) providing a natural definition
of the expected work performed by such a computation, and (ii) showing that any expected-
time-𝑇 EQPT𝑐 computation can be approximated to error 𝜀 using 𝑇 ·poly(1/𝜀)-size quantum
circuits; in particular, any protocol that is EQPT𝑐-zero-knowledge is also 𝜀-ZK.

Contribution (1) makes negligible-accuracy zero-knowledge simulation for our protocols plausible.
Our main technical contributions are in actually constructing EQPT𝑐-zero knowledge simulators.

(2) We give a quantum analogue of the extract-and-simulate paradigm used in many classical
zero-knowledge protocols (such as the [GMW86] GNI protocol and [FS90]), in which a sim-
ulator uses information extracted from multiple protocol transcripts to simulate the verifier’s
view. The key difficulty in the quantum setting is state-preserving extraction: to obtain
this information without causing any noticeable disturbance to the verifier’s quantum state,
beyond what is caused by a single protocol execution.
While the recent techniques of [CMSZ21] allow extracting from multiple protocol transcripts,
a major problem is that their extractor strongly disturbs the adversary’s state. We revisit
the [CMSZ21] approach for extraction and, using several additional ideas, construct a state-
preserving extractor for a broad class of protocols. Using this extraction technique, we prove
that the original [GMW86] protocol for graph non-isomorphism and some instantiations of
the [FS90] protocol for NP are EQPT𝑐-zero-knowledge against quantum adversaries.

(3) We next turn our attention to the Goldreich-Kahan [GK96] zero-knowledge proof system for
NP. Informally, analyzing the [GK96] proof system presents different challenges as compared
to [GMW86, FS90] because in the latter protocols, rewinding is used for extraction (after
which simulation is straight-line), while in the [GK96] protocol, rewinding is used for the
simulation step (while extraction is trivial/straight-line).
Nevertheless, we show that some of our techniques are also applicable in this setting. We
prove that the [GK96] protocol is EQPT𝑐-zero-knowledge against quantum adversaries. Our
simulator can be viewed as a natural quantum extension of the classical simulator.
Previously, [CCY21] used different techniques to show that the [GK96] protocol is 𝜀-zero-
knowledge against quantum adversaries, but their simulation strategy cannot achieve negli-
gible accuracy even in the EQPT𝑐 setting.

We now discuss these contributions in more detail.

3

1.3 Expected Quantum Polynomial-Time Simulation

We consider the problem of defining zero knowledge in the quantum setting. To do so, we recall the
state of affairs in the classical setting. As explained in the original paper [GMR85], zero-knowledge
is a security property that captures the intuition that a verifier cannot learn new information from
interacting with the prover in a protocol; this is formalized via an efficient simulator. But what do
we mean by “efficient”? The standard complexity-theoretic notion of efficiency is strict polynomial
time, which we think of as simulators that can be implemented “in the real world.”

However, as discussed above, this turns out to be insufficient for capturing actual simulation
strategies. The solution, proposed (innocuously) in [GMR85], is to consider expected polynomial
time simulation. But this has relaxed the computational model in which the simulator operates!
This begs the question:

What constitutes a reasonable computational model for a zero-knowledge simulator?

One response to this question would be to require that the simulator can be implemented “in the
real world.” However, expected polynomial time (EPT) simulation does not satisfy this condition:
any negligibly-accurate implementation of an EPT simulator requires super-polynomial resources.

Does this mean that (classical) zero knowledge with EPT simulation is a useless definition?
Definitely not — a zero-knowledge simulator is a mental experiment and is not run in real life!

Mathematically, zero-knowledge simulators are used in security/hardness reductions: by simu-
lation security, an adversary can be analyzed by replacing parts of its view with simulated versions.
A zero-knowledge simulator in computational model 𝒞 can then be used in any reduction where
we can reason about the limitations of 𝒞-computation. Expected polynomial-time simulators are
therefore certainly useful, because it is often possible to reason about security properties against
expected polynomial time attacks.6 Thus, because we can use EPT simulators in security proofs,
the fact that an EPT simulator cannot actually be run is irrelevant.

The Quantum Setting. We are now ready to discuss models for quantum zero-knowledge sim-
ulation. We begin with the EQPT𝑚 model implicit in [CCLY21b], which is one potential analogue
to classical expected polynomial time simulation as per the above discussion.

While [CCLY21b] do not formally define EQPT,7 implicit in their result is a computational
model which we call measured-runtime EQPT (EQPT𝑚). EQPT𝑚 is a class of quantum simulators
that run for an expected polynomial number of steps when executed as follows: at each step, the
simulator applies a fixed, constant-size quantum circuit 𝑈 , followed by a measurement to determine
whether to halt or perform another step.

More formally, an EQPT𝑚 simulator operates on a quantum register 𝒜 containing the initial
input state |𝜓⟩𝒜, a memory/worktape register 𝒲 and a “halt” qubit 𝒬 (initialized to |0⟩). Then,
it repeats the following steps until it halts:

6A crude but sometimes effective method is to replace expected polynomial-time algorithms with a poly(1/𝜀)
truncation; this introduces an 𝜀 error by Markov’s inequality. However, more sophisticated methods exist that achieve
significantly better bounds [JT20]. Expected running time is also a common efficiency metric in cryptanalysis.

7When defining quantum zero-knowledge simulation, [CCLY21b, Page 12] requires that the simulator is a quantum
Turing machine with expected polynomial runtime, and refers to [BBBV97] (which uses the [BV97] definition of a
quantum Turing machine) for the quantum Turing machine model. However, [BV97] restricts quantum Turing
machines to have a fixed running time (see [BV97, Def 3.11]) in order to avoid difficult-to-resolve subtleties about
quantum Turing machines with variable running time [Mye97, Oza98a, LP98, Oza98b]. We discuss this in depth in
Section 2.1.

4

1. measure 𝒬 and halt if the outcome is 1; and
2. apply a fixed “transition” unitary 𝑈 to 𝒜⊗𝒬⊗𝒲.

The result of the computation is the residual state on 𝒜 once the computation has halted. Using
this model, we can give a more precise formulation of the [CCLY21b] theorem: black-box EQPT𝑚
zero-knowledge simulators for constant-round protocols do not exist.

However, this does not rule out the possibility of post-quantum zero-knowledge simulation in
some other reasonable computational model. In this work, we define a new model, which we
call coherent-runtime expected quantum polynomial time (EQPT𝑐), and show that zero-knowledge
simulation is possible in this model. We motivate and describe our model below.

EQPT𝑐 provides the simulator with a single additional power: it can run an EQPT𝑚 procedure
coherently, perform some operation on the result, and then apply the inverse of the same procedure.
Why does this help? The key observation underlying the [CCLY21b] result is that measuring
the simulator’s runtime — which is unavoidable in the EQPT𝑚 model — noticeably disturbs the
verifier’s state. In contrast, in an EQPT𝑐 computation, the running time of the underlying EQPT𝑚
procedure is left in superposition, and may be uncomputed by performing the inverse! As a result,
the [CCLY21b] impossibility does not apply to EQPT𝑐 simulation.

Understanding EQPT𝑐 Simulation. Why is EQPT𝑐 a reasonable computational model for a
zero-knowledge simulator? We address this in two ways:

(1) We prove that any EQPT𝑐 computation has strict polynomial-time approximations:

Lemma 1.1 (informal, see Claim 9.4). Any EQPT𝑐 computation can be approximated with 𝜀 accu-
racy by a quantum circuit of size poly(𝜆, 1/𝜀).

Importantly, this lemma ensures that EQPT𝑐 computations cannot break any post-quantum
polynomial hardness assumptions (unless, of course, the assumptions are false). This lemma also im-
plies that (black-box) zero-knowledge with EQPT𝑐 simulation implies (black-box) 𝜀-zero-knowledge
with strict quantum polynomial time simulation.

(2) We give a natural interpretation of “expected runtime” — compatible with Lemma 1.1 —
under which the expected runtime of any EQPT𝑐 computation is polynomial.

Taking these points together with the [CCLY21b] impossibility, we propose EQPT𝑐 to be the ap-
propriate quantum analogue to classical expected polynomial time zero knowledge simulation. Of
course, this only makes sense if interesting protocols satisfy EQPT𝑐-zero knowledge; establishing
this is the focus of this work.

We discuss and further motivate the definition of EQPT𝑐, including a thorough comparison to
the weaker notion of 𝜀-ZK, in Section 2.1; we define the model formally in Section 9. In Appendix A
we give a formal separation between 𝜀-ZK and zero knowledge with EQPT𝑐 simulation.

With this discussion in mind, we proceed to describe our results on post-quantum zero-knowledge
and extraction in more detail.

5

1.4 Results on Zero Knowledge

Our main results regarding post-quantum zero knowledge are as follows. First, we show that the
[GMW86] graph non-isomorphism protocol is zero knowledge against quantum verifiers.

Theorem 1.2. The [GMW86] 4-message proof system for graph non-isomorphism is post-quantum
(statistical) zero knowledge with EQPT𝑐 simulation.

The [GMW86] GNI protocol follows a somewhat general template using instance-dependent
commitments [BMO90, IOS97, MV03]; we believe Theorem 1.2 should extend to other instantiations
of this paradigm (e.g. for lattice problems).

With some additional work, we use similar techniques to show how to instantiate the Feige-
Shamir [FS90] paradigm in the post-quantum setting.

Theorem 1.3. Assuming super-polynomially secure non-interactive commitments, a particular in-
stantiation of the [FS90] 4-message argument system for NP is post-quantum zero-knowledge with
EQPT𝑐 simulation.8

We emphasize that neither of the above results was previously known even in the 𝜀-ZK setting.
Finally, using a different approach, we show that the Goldreich-Kahan [GK96] proof system is

EQPT𝑐-ZK.

Theorem 1.4. When instantiated using a collapse-binding and statistically-hiding commitment
scheme, the [GK96] protocol is post-quantum zero-knowledge with EQPT𝑐 simulation.

This strengthens the 𝜀-ZK result of [CCY21]. As a bonus, the simulator we construct in Theo-
rem 1.4 bears a strong(er) resemblance to the classical [GK96] simulator, giving a clean conceptual
understanding of constant-round zero knowledge in the quantum setting.

Proving Theorems 1.2 and 1.3. The core technical challenge in proving Theorem 1.2 and
Theorem 1.3 is achieving post-quantum state-preserving extraction. We briefly elaborate on the
connection between zero knowledge and extraction, using the graph non-isomorphism protocol as
an example.

Recall that in the GNI protocol, the prover 𝑃 wants to convince the verifier 𝑉 that two graphs
𝐺0, 𝐺1 are not isomorphic. To do so, the verifier sends a random isomorphic copy 𝐻 of 𝐺𝑏 for a
uniformly random bit 𝑏, to which the prover returns 𝑏.9 However, to ensure zero-knowledge, the
verifier first gives a proof of knowledge (PoK) that 𝐻 is isomorphic to either 𝐺0 or 𝐺1; this PoK
is instantiated using a variant of the parallel-repeated graph isomorphism Σ-protocol. Intuitively,
this ensures that a malicious verifier 𝑉 * already knows 𝑏 and hence does not learn anything new
from the interaction.

The classical zero-knowledge simulator for the GNI protocol performs the following steps:

1. Run 𝑉 * until the final PoK message; if the PoK is invalid, output an aborting transcript.

2. Extract an isomorphism 𝜋 satisfying 𝜋(𝐻) = 𝐺𝑏 for some 𝑏 using multiple valid PoK re-
sponses from 𝑉 * (obtained by rewinding).

8We also prove that the instantiation is sound against quantum polynomial-time provers; this is non-trivial because,
unlike other protocols in this section, [FS90] only achieves computational soundness.

9For this overview, we focus on the soundness 1/2 case, but appropriate parallel repetition of this step reduces
the soundness error.

6

3. Simulate the view of 𝑉 * in an real interaction by returning 𝑏 (computed efficiently from 𝜋).

As long as the extraction step has negligible failure probability (i.e., conditioned on a valid initial
PoK execution, the extractor produces 𝜋 with 1− negl(𝜆) probability) this correctly simulates the
view of 𝑉 * in an interaction with the honest prover.

One might hope to translate this approach to the post-quantum setting by instantiating the
extraction step using existing quantum rewinding techniques (e.g., [CMSZ21]). However, we im-
mediately encounter two problems:

• First, none of these techniques can achieve negligible10 failure probability.
• Second, the view of 𝑉 * includes its internal quantum state at the end of the interaction.

Unfortunately, all existing extraction techniques significantly disturb this state.

We therefore need a quantum extraction technique with two properties: (1) extraction succeeds
with 1− negl(𝜆) probability (conditioned on an accepting initial execution), and moreover (2) the
extractor does not cause any noticeable state disturbance (beyond that of the initial execution).
We call an extractor achieving these properties state-preserving (see Definition 2.2). Devising a
general-purpose state-preserving extraction technique is one of the primary technical contributions
of this work.

1.5 Results on Extraction

Towards achieving state-preserving extraction, we consider extractors satisfying only property (1),
which we call guaranteed extraction. As we will explain, under certain conditions on the protocol,
guaranteed extraction generically yields state-preserving extraction.

One of our primary technical results is a general extraction theorem (Theorem 8.2) that implies
guaranteed extraction for a broad class of protocols. While our main theorem is complex to state
in full generality, a useful special case is the following:

Theorem 1.5 (informal, see Theorem 8.2). Any collapsing 𝑘-special-sound Σ-protocol is a post-
quantum proof of knowledge with guaranteed extraction (in EQPT𝑚).

Our full theorem statement is significantly more general: it captures a broad class of 3- and
4-message protocols that satisfy substantially relaxed collapsing and special soundness notions.

We then show that guaranteed extraction generically implies state-preserving extraction if the
protocol is “witness binding”: at a high level, this means that the protocol execution serves as a
(collapse-binding) commitment to the output of the extractor. Looking ahead, a key step in our
proofs of Theorems 1.2 and 1.3 is to show that the relevant PoK subroutines satisfy (weak forms
of) witness binding.

Lemma 1.6 (informal, see Lemma 10.3). Any witness binding post-quantum proof of knowledge
with guaranteed extraction (in EQPT𝑚) has state-preserving extraction (in EQPT𝑐).

Note that this lemma turns an EQPT𝑚 guaranteed extractor into an EQPT𝑐 state-preserving
extractor. The following corollary is immediate from the above results.

10[CMSZ21] can achieve inverse polynomial knowledge error, but in a qualitatively (in addition to quantitatively)
weaker sense than what we need.

7

Corollary 1.7 (informal). Any collapsing 𝑘-special-sound sigma protocol satisfying witness bind-
ing is a post-quantum proof of knowledge with state-preserving extraction (in EQPT𝑐).

We stress that the informal statements above are illustrative; our formal theorems (Theorem 8.2
and Lemma 10.3) are significantly more general, and this generality is necessary for our main results.

We remark that in both Theorem 1.5 and Corollary 1.7, the computational model of the extrac-
tor cannot be further improved. As an easy consequence of our results, achieving either EQPT𝑚
state-preserving extraction or strict polynomial-time (black-box) guaranteed extraction for this
class of protocols would contradict [CCLY21b].

1.5.1 Example Applications

We now highlight a number of example applications of Theorem 1.5 and Corollary 1.7 beyond our
main results on zero knowledge. As a first example, we improve upon the [CMSZ21] analysis of the
[Kil92] succinct argument system.

Theorem 1.8. The [Kil92] protocol, when instantiated with a collapsing hash function, is a post-
quantum succinct argument of knowledge for NP with guaranteed extraction. Moreover, there is
a (4-message public-coin) “commit-and-prove” variant of the [Kil92] protocol with state-preserving
extraction.11

Next, we construct state-preserving witness-indistinguishable (WI) protocols. Here we have
three related constructions achieving slightly different properties under different computational
assumptions. A key component of these results is the application of Corollary 1.7 to a commit-
and-open sigma protocol (e.g. the [GMW86] protocol for 3-coloring).

Theorem 1.9. Assuming collapsing hash functions or super-polynomially secure one-way func-
tions, there exists a 4-message public-coin post-quantum witness-indistinguishable argument (in
the case of collapsing)/proof (in the case of OWFs) of knowledge with state-preserving extraction.
Assuming super-polynomially secure non-interactive commitments, there exists a 3-message PoK
achieving the same properties.

The latter construction is used to prove Theorem 1.3.
One important special case of Theorem 1.9 is extractable commitments [PRS02, PW09]. An

extractable commitment scheme ExtCom has the property that a committed message 𝑚 can be
extracted given black-box access to an adversarial committer. Analogously to the setting of proofs-
of-knowledge, we consider “state-preserving” extractable commitments (see, e.g., [BS20, GLSV21,
BCKM21]), in which the extractor must simulate the entire view of the adversarial committer in
addition to extracting the message. This variant of extractable commitments is very useful; for
example, it is exactly the property necessary to prove the post-quantum security of the [Ros04]
zero-knowledge proof system for NP. An immediate corollary of Theorem 1.9 is a new construction
of state-preserving extractable commitments.

Corollary 1.10 (Extractable commitments). Assuming super-polynomially secure non-interactive
commitments, there exists a 3-message public-coin post-quantum statistically-binding extractable
commitment scheme. Assuming super-polynomially secure one-way functions, there exists a 4-
message scheme with the same properties. Finally, assuming (polynomially secure) collapsing hash
functions, there exists a 4-message public-coin collapse-binding extractable commitment scheme.

11The modification to [Kil92] is necessary for witness-binding.

8

We leave open the problem of using these techniques to achieve a statistically-binding ex-
tractable commitment scheme (in 3 or 4 messages) from polynomial assumptions.

More generally, we expect our guaranteed and state-preserving extraction results to be useful
for future applications, in the context of zero-knowledge and beyond.

1.6 Additional Results

We briefly mention some additional contributions:

1. In Section 4, we resolve an issue related to the use of (standard) collapse-binding commitments
in reductions in which not all commitments openings are measured. This allows us to avoid
placing additional requirements on the [GK96] protocol (beyond the standard collapse-binding
requirement for post-quantum security). In addition, some results in [Unr12, Unr16b, CCY21]
can be generalized or simplified.

2. We prove a general lemma (Lemma 13.1) about post-quantum computational indistinguisha-
bility that may be of independent interest: we show that if two classical distributions 𝐷0 and
𝐷1 are quantum computationally indistinguishable, then guessing 𝑏 given the ℬ register of
|𝜓𝑏⟩𝒜,ℬ = ∑︀

𝑟 |𝑟⟩𝒜 |𝐷𝑏(𝑟)⟩ℬ remains hard even given an oracle for the projective measurement
onto |𝜓𝑏⟩. This lemma allows us to instantiate the [GK96] protocol with any post-quantum
special honest-verifier ZK sigma protocol for NP (previously, [CCY21] proved 𝜀-ZK for [GK96]
with a delayed witness sigma protocol).

3. We give a formal separation between ZK with EQPT𝑐 simulation and 𝜀-ZK in Appendix A.
Our proof strategy also separates classical ZK with EPT simulation and classical 𝜀-ZK; to
the best of our knowledge, no such separation was known before.

2 Technical Overview
In this section, we describe our techniques for proving our results on state-preserving extraction
(Theorems 1.8 and 1.9) and post-quantum zero knowledge (Theorem 1.2, Theorem 1.3, and Theo-
rem 1.4). Finally, we discuss related work in Section 2.5.

2.1 Defining Expected Quantum Polynomial Time Simulation

In order to clearly present our results on zero knowledge, we begin with a detailed discussion of
our model of expected quantum polynomial time simulation and how it relates to the [CCLY21b]
impossibility result.

Why is EQPT simulation hard to define? Recall from Section 1.3 that [CCLY21b] rules
out zero-knowledge simulators in a class of computations that we formalize as measured-runtime
expected quantum polynomial-time (EQPT𝑚). An EQPT𝑚 computation takes as input a state
|𝜓⟩𝒜, initializes an 𝑆-qubit workspace register |0⟩𝒲 and state register |𝑞0⟩𝒬 (where |𝑞0⟩ denotes
the initial state of a quantum Turing machine), then repeatedly applies some fixed transition unitary
𝑈𝛿 to 𝒜⊗𝒲 ⊗ ℬ ⊗𝒬. After each application of 𝑈𝛿, 𝒬 is measured (applying some (Π𝑓 , I− Π𝑓))
to determine if the computation is in the “halt state” |𝑞𝑓 ⟩; the computation halts if the outcome
of this measurement is 1. To avoid the complications of unbounded running time, we also enforce

9

that the computation halts (always) after 𝑇 = 2𝑛 steps. A computation is EQPT𝑚 if the expected
number of steps before halting is polynomial for all inputs |𝜓⟩𝒜.

Our EQPT𝑚 definition is based on the definition of a quantum Turing machine (QTM) given
in the seminal work of Deutsch [Deu85] (though we use a halt state [Oza98a] in place of Deutsch’s
halt qubit). Note that the operation of a QTM is unitary except for the measurement of whether
the machine has halted. The validity of this “halting scheme” was the subject of some debate in a
sequence of later works [Mye97, Oza98a, LP98, Oza98b].

While the particulars of this debate are not so important here, there was a clear message: the
reversibility of a QTM implies that the runtime of any QTM computation is always effectively
measured, even if there is no explicit monitoring of the halt state. Intuitively, this is because a
QTM that has halted must, when reversed, know when to “un-halt”; this requires counting the
number of computation steps since the machine halted.

It was observed by [LP98] that this prevents “useful interference” between branches of a QTM
computation with different runtimes. That is, each branch of the computation is entangled with a
description of its runtime, which prevents the branches from interfering with one another. Because
interference is crucial in the design of efficient quantum algorithms, this is considered a major
drawback of the QTM model. The now-standard definitions of efficient quantum computation
[BV97, BBBV97] deliberately avoid this problem by restricting quantum Turing machines to have
a fixed runtime; these QTMs are effectively uniform quantum circuit families.

This phenomenon underpins the [CCLY21b] impossibility result. Both in the classical [BL02]
and quantum [CCLY21b] settings, there do not exist strict polynomial time black-box simulators
for constant-round protocols. It follows that such a simulator must have a variable runtime. By
the observation of [LP98], simulation branches with different runtimes do not interfere. [CCLY21b]
leverage this by designing an adversary that can detect this absence of interference.

Can we avoid measuring the runtime? The above discussion suggests that the EQPT𝑚 model
(i.e., quantum Turing machines in Deutsch’s model [Deu85] with expected polynomial runtime) may
not capture arbitrary efficient quantum computation. In particular, we ask whether it is possible
to formalize a model in which the runtime is not measured. Such a model could potentially avoid
the [CCLY21b] impossibility result.

Our solution is to formalize computations in which the runtime of an EQPT𝑚 subcomputation
is left in superposition and can later be uncomputed. To describe our formalism in more detail, we
first briefly discuss coherent computation.

Coherent computation. It is well known that any quantum operation Φ on a state |𝜓⟩ can be
realized in three steps: (1) prepare some ancilla qubits in a fixed state |0⟩; (2) apply a unitary
operation 𝑈Φ to both |𝜓⟩ and the ancilla; (3) discard (trace out) the ancilla. We refer to 𝑈Φ as a
unitary dilation of Φ. 𝑈Φ is not uniquely determined by Φ, but all such dilations are related by an
isometry acting only on the ancilla system.

Since an EQPT𝑚 computation is a quantum operation, it has a unitary dilation. In fact, we can
choose a unitary dilation with a natural explicit form that we call a “coherent implementation”, as
shown in Fig. 1.

The unitary circuit 𝑈 in Fig. 1 is of exponential size (although it may operate on polynomially-
many qubits if the original QTM uses strict polynomial space). However, as long as the ancilla
𝒲 ⊗ ℬ is initialized to zero and 𝒬 is initialized to |𝑞0⟩, the effect of 𝑈 on 𝒜 is identical to the

10

· · ·

· · ·

· · ·

· · ·

|0⟩ℬ 𝑈inc 𝑈inc 𝑈inc

|𝑞0⟩𝒬 Π𝑓

𝑈𝛿

Π𝑓

𝑈𝛿

Π𝑓

𝑈𝛿|0𝑆⟩𝒲

|𝜓⟩𝒜

Figure 1: A coherent implementation 𝑈 (unitary dilation) of a quantum Turing machine with
transition function 𝛿, space complexity 𝑆 and strict time bound 𝑇 = 2𝑛. ℬ is an 𝑛-qubit register
containing an integer in {0, . . . , 𝑇 − 1}. 𝑈inc is the unitary ∑︀𝑇−1

𝑖=0 |𝑖+ 1 (mod 𝑇)⟩ ⟨𝑖|, whose ap-
plication is controlled on 𝒬 containing the halt state |𝑞𝑓 ⟩. The open circles indicate that 𝑈𝛿 is
controlled on ℬ containing |0⟩. The number of repetitions is 𝑇 . See Section 9.1 for more details.

|𝜑⟩𝒳 𝐶1 𝐶2 𝐶3

𝑈 𝑈 †|𝑞0⟩𝒬 ⊗ |0𝑆⟩𝒲

|0⟩ℬ

Figure 2: The structure of an EQPT𝑐 circuit.

original EQPT𝑚 computation. Indeed, the only difference from the original computation is that the
runtime 𝑡 is written (as 𝑇−𝑡) on ℬ and left in superposition. This means, in particular, that circuits
making a single black-box query to a coherent implementation 𝑈 of an EQPT𝑚 computation (and
that cannot otherwise access ℬ) can only perform EQPT𝑚 computations.

Our formalism: coherent-runtime EQPT. The advantage of moving to coherent implemen-
tations is that, unlike the original computation, 𝑈 has an inverse 𝑈 †. A coherent-runtime EQPT
(EQPT𝑐) computation is allowed to invoke both 𝑈 and 𝑈 † in a restricted way, as depicted in Fig. 2.

Note that, because all unitary dilations are equivalent up to local isometry, the map computed by
an EQPT𝑐 computation is independent of the particular choice of unitary dilation 𝑈 . In particular,
while the dilation in Fig. 1 is useful for proving properties of EQPT𝑐, it is not part of the definition.

What is the runtime of an EQPT𝑐 computation? While the application of 𝑈 is clearly
efficient by itself (stopping at this point and discarding the ancilla registers is the same as running
the original EQPT𝑚 computation), the efficiency of performing 𝑈 † is less immediate. We analyze
this in two ways:

• We prove (Claim 9.4) that any EQPT𝑐 computation has strict polynomial-time approximations
(obtained by simultaneously truncating 𝑈 and 𝑈 † to the same fixed runtime). This tells us
that EQPT𝑐 algorithms do not implement “inefficient” computations.

11

• We give a natural interpretation of “expected runtime” under which the expected runtime of
𝑈 † (as applied in Fig. 2) is equal to the expected runtime of 𝑈 .

Together, these give us a motivated definition of the expected runtime of an EQPT𝑐 computation.
Claim 9.4 is proved in Section 9. In this overview, we focus on the expected runtime inter-

pretation. For simplicity, we assume that 𝐶1 = 𝐶3 = I and that the computation always halts
“naturally” in at most 𝑇 steps.

Consider the projective measurement Mℬ = (Π𝑡 = 𝑈 † |𝑇 − 𝑡⟩⟨𝑇 − 𝑡|ℬ 𝑈)𝑇−1
𝑡=0 ; that is, Π𝑡 projects

on branches of the computation that run in time 𝑡. Let 𝑈≤𝑡 be the truncation of 𝑈 to just after
the 𝑡-th controlled application of 𝑈𝛿. Observe that after applying 𝑈 followed by 𝐶2 on input state
|𝜑⟩, the state of the system can be written as

|Ψ⟩ =
𝑇∑︁
𝑡=1

√
𝑝𝑡 |𝑇 − 𝑡⟩ℬ |𝑞𝑓 ⟩𝒬 |𝜑𝑡⟩𝒲,𝒳 =

𝑇∑︁
𝑡=1

(I⊗ 𝐶2)𝑈𝑇−𝑡inc 𝑈≤𝑡Π𝑡 |0⟩ℬ |𝑞0⟩𝒬 |0⟩𝒲 |𝜑⟩𝒳

for some states |𝜑𝑡⟩ where 𝑝𝑡 is the probability that the EQPT𝑚 computation halts in 𝑡 steps. The
latter equality holds because if the computation halts at step 𝑡, the effect of the last 𝑇 − 𝑡 steps of
𝑈 is only to increment ℬ (𝑇 − 𝑡) times (and 𝐶2 does not act on ℬ).

Since 𝑈 is a coherent implementation of an EQPT𝑚 computation, we know that∑︁
𝑡

𝑝𝑡 · 𝑡 = poly(𝜆).

Now, for any state |𝜓⟩ on 𝒲 ⊗𝒳 , we can also express an application of 𝑈 † to ℬ ⊗𝒬⊗𝒲 ⊗𝒳 in
terms of the unitaries 𝑈 †≤𝑡. Specifically, for each 𝑡 we have

𝑈 † |𝑇 − 𝑡⟩ℬ |𝑞𝑓 ⟩𝒬 |𝜓⟩ = 𝑈 †≤𝑡 |0⟩ℬ |𝑞𝑓 ⟩𝒬 |𝜓⟩

because the effect of the first 𝑇 − 𝑡 steps of 𝑈 † on this state is only to decrement ℬ. Since the
states |𝑇 − 𝑡⟩ are orthogonal for distinct 𝑡, the final state of the system (after the entire EQPT𝑐
computation) is

𝑈 † |Ψ⟩ =
𝑇∑︁
𝑡=1

√
𝑝𝑡(𝑈≤𝑡)† |0⟩ℬ |𝑞𝑓 ⟩𝒬 |𝜑𝑡⟩𝒲,𝒳 =

𝑇∑︁
𝑡=0

𝑈 †≤𝑡(I⊗ 𝐶2)𝑈≤𝑡Π𝑡 |0⟩ℬ |𝑞0⟩𝒬 |0⟩𝒲 |𝜑⟩𝒳 .

We can interpret this to mean that within the “branch” of the superposition where 𝑈 ran in time
𝑡, the running time of 𝑈 † is also 𝑡, even if an arbitrary computation 𝐶2 has been applied to 𝒳 in
between the applications of 𝑈 and 𝑈 †. This gives an intuitive explanation for how EQPT𝑐 com-
putations are efficient: they simply compute a superposition with amplitudes (√𝑝𝑡)𝑡 over branches
in which 𝑈 and 𝑈 † together ran for 2𝑡 steps, such that the expectation ∑︀

𝑡 𝑝𝑡 · 𝑡 is polynomial!
Curiously, the [LP98] reversibility issue indicates that such a computation cannot be implemented
by an EQPT𝑚 quantum Turing machine, which is what necessitates our new EQPT𝑐 definition.

With all of this as motivation, we define the expected running time of an EQPT𝑐 computation of
the form (𝑈,𝐶1 = I, 𝐶2, 𝐶3 = I) to be the appropriate linear combination of the branch runtimes,
which is ∑︁

𝑡

|𝛼𝑡|2 · (2𝑡+ time(𝐶2)) = 2 · time(𝑈) + time(𝐶2),

where time(𝑈) is the expected running time of 𝑈 as an EQPT𝑚 computation and time(𝐶2) is the
(strict) running time of 𝐶2. Claim 9.4 (whose proof makes use of this analysis) provides additional
justification for this definition.

12

EQPT𝑐 vs. black-box access. How does EQPT𝑐 differ from the conceptually simpler model
of a quantum circuit with black-box access to 𝑈,𝑈 †? The answer is in the treatment of the
ancillas: typically, black-box access to a unitary means that the unitary and its inverse can be
invoked multiple times on the same registers. For EQPT computations, this causes a problem:
our arguments that EQPT𝑐 computations are efficient crucially rely on the well-formedness of the
ancillas. As such, we must ensure that EQPT𝑐 computations access 𝑈,𝑈 † in the restricted way
depicted in Fig. 2. We note that deviating from this template leads to problems: one can show that
there is an EQPT𝑚 computation with dilation 𝑈 such that applying 𝑈,𝑈 †, 𝑈 to the same ancillas
enables arbitrary exponential-time computation. This is analogous to the phenomenon observed
by [KL05] for classical computations with oracle access to EPT machines.

Generalization. The above concerns notwithstanding, everything we have discussed so far ex-
tends to a more general case where we may invoke unitary dilations 𝑈𝑖 of multiple EQPT𝑚 com-
putations (or the same computation multiple times). Such computations must follow the same
structure as the single-𝑈 case — in particular, we initialize a fresh ancilla for each (𝑈𝑖, 𝑈 †𝑖) pair
— but may otherwise be freely interleaved. We give this more general definition in Definition 9.3;
however, all of our simulators are actually of the simpler form depicted in Fig. 2.

Comparing EQPT𝑐-ZK and 𝜀-ZK. Another way to avoid the [CCLY21b] impossibility result
is to settle for the relaxed notion of 𝜀-zero knowledge [DNS98]: a protocol is 𝜀-ZK if a malicious
verifier’s view can be simulated up to 𝜀 error in (fixed) time poly(1/𝜀). We noted above that EQPT𝑐-
ZK implies (post-quantum) 𝜀-ZK. One can ask: is there any advantage to obtaining EQPT𝑐-ZK?

Primarily, our goals are to (1) obtain a quantum analogue to classical expected polynomial time
simulation, and (2) show that protocols satisfy as strong a security property as possible. We briefly
discuss three ways in which EQPT𝑐-ZK is demonstrably stronger than 𝜀-ZK.

1. Stronger Security Implications. As originally discussed when 𝜀-ZK was defined in the
classical setting [DNS98], the security guarantees implied by 𝜀-ZK are quantitatively worse
than those implied by negligible-accurate ZK (and this holds even with expected running time
simulators). Specifically, imagine that a ZK protocol is executed in an environment where
a computational hardness assumption 𝒜 is believed to hold. One would like to say that 𝒜
remains valid against the verifier even after interacting with the prover.
Zero knowledge says that if 𝑉 * can violate 𝒜 in time 𝑇 with advantage 𝛿, then 𝑆𝑉 * can violate
𝒜 with advantage 𝛿 − negl(𝜆) in expected time 𝑇𝑂(1) (or even 𝑇 · poly(𝜆) if the simulator is
black-box). 𝜀-ZK says that 𝑆𝑉 * can violate 𝒜 with (e.g.) advantage 𝛿/2 in time poly(𝑇, 1/𝛿),
which may be far larger than 𝑇 (in situations where 𝛿 ≪ 1/𝑇). This additional dependence
on 1/𝛿 yields a significantly worse security guarantee.

2. How do you know 𝜀? In the definition of 𝜀-ZK, the simulator takes 𝜀 as input. What
is 𝜀? This depends on the application and the attack in question. The security reduction
discussed above is non-uniform in the sense that it somehow needs to know the required
accuracy parameter 𝜀. In the quantum setting, this issue seems more serious because 𝜀 may
not even be physically accessible.

3. Formal Separations. Finally, the distinction between EQPT𝑐-ZK and 𝜀-ZK can be made
explicit in the form of separations between EQPT𝑐- and 𝜀-security. Specifically, we prove:

13

Proposition 2.1 (informal, see Theorem A.4). There exists a (post-quantum) 𝜀-zero knowledge
protocol that is not (black-box) EQPT𝑐-zero knowledge.

Physical feasibility. We emphasize that the feasibility of physical implementation is not the chief
concern when evaluating simulation models. Nonetheless, we briefly discuss physical interpretations
of EQPT𝑐. Like EQPT𝑚 (and classical EPT), implementing an EQPT𝑐 simulator using a standard
(quantum) circuit requires super-polynomially many gates. However, one could conceive of running
an EQPT𝑚 simulator as follows: an experimenter runs the computation until it halts, paying for
more computational resources as she goes. While no polynomial amount of resources would suffice
to achieve negligible simulation accuracy, the expected cost of this experiment is polynomial.

EQPT𝑐 simulation does not have this property: an external experimenter must always run
the simulation for superpolynomial time to achieve negligible simulation accuracy. We suggest,
however, that there is a “physical” interpretation of EQPT𝑐 that arises from the interpretation of
EQPT𝑚 above. EQPT𝑐 simulation considers the EQPT𝑚 experimenter described above as part of
the computation. More precisely, her actions can be viewed as a unitary on an expanded system;
an EQPT𝑐 simulator has the power to reverse this unitary.

Having established our computational model for simulation/extraction, we now give a detailed
overview of our simulation and extraction techniques.

2.2 Post-Quantum ZK for [GMW86] and [FS90] from Guaranteed Extraction

The central idea behind our proofs of post-quantum ZK for the [GMW86] GNI protocol (Theo-
rem 1.2) and (some instantiations of) the [FS90] protocol for NP (Theorem 1.3) is state-preserving
extraction, which was informally described in Section 1.5. Before we continue, we provide more
precise definition.

Definition 2.2 (State-Preserving Extraction). An interactive protocol Π is defined to be a state-
preserving argument (resp. proof) of knowledge if there exists an extractor Ext(·) with the following
properties:

• Syntax: For any quantum algorithm 𝑃 * and auxiliary state |𝜓⟩, Ext𝑃 *,|𝜓⟩ outputs a protocol
transcript 𝜏 , prover state |𝜓′⟩, and witness 𝑤.

• Extraction Efficiency: If 𝑃 * is a QPT algorithm, 𝐸𝑃 *(·),|𝜓⟩ runs in expected quantum
polynomial time (EQPT𝑐).

• Extraction Correctness: the probability that 𝜏 is an accepting transcript but 𝑤 is an
invalid NP witness is negligible.

• State-Preserving: the pair (𝜏, |𝜓′⟩) is computationally (resp. statistically) indistinguishable
from a transcript-state pair (𝜏*, |𝜓*⟩) obtained through an honest one-time interaction with
𝑃 *(·, |𝜓⟩) (where |𝜓*⟩ is the prover’s residual state).

Given a state-preserving extractor of the appropriate “one-out-of-two graph isomorphism” sub-
routine, proving the post-quantum ZK for the [GMW86] GNI protocol (Theorem 1.2) follows easily,
as simulating a cheating verifier immediately reduces to performing a state-preserving extraction
of the verifier’s (uniquely determined) bit 𝑏 such that 𝐻 ≃ 𝐺𝑏. Proving post-quantum ZK for
the [FS90] protocol (Theorem 1.3) is more complicated because the Feige–Shamir protocol is a

14

concurrent composition of two different protocols; we refer the reader to Section 12 for details on
its analysis.

In this subsection, we show that state-preserving extraction reduces to achieving a weaker notion
we call guaranteed extraction; achieving the latter will be the focus of Section 2.3.

Consider a 3-message12 public coin classical proof of knowledge (𝑃Σ, 𝑉Σ) satisfying special sound-
ness:13 for any prover first message 𝑎 and any pair of accepting transcripts (𝑎, 𝑟, 𝑧), (𝑎, 𝑟′, 𝑧′) on
different challenges 𝑟 ̸= 𝑟′, it is possible to extract a witness from (𝑎, 𝑟, 𝑧, 𝑟′, 𝑧′). For any such
protocol, in the classical setting, it is possible to extract a witness from a cheating prover 𝑃 * as
follows:

• Given a cheating prover 𝑃 *, the extractor first generates a single transcript (𝑎, 𝑟, 𝑧) by running
𝑃 * to obtain 𝑎, and then running it on a random 𝑟 to get 𝑧. If the transcript is rejecting, the
extractor gives up.

• If the transcript is accepting, the extractor rewinds 𝑃 * to the point after 𝑎 was sent, and then
repeatedly sends i.i.d. challenges 𝑟1, 𝑟2, . . . until 𝑃 * produces another accepting transcript.

As long as the prover has significantly greater than 2−𝜆 probability of convincing the verifier, the
second accepting transcript (𝑎, 𝑟′, 𝑧′) produced will satisfy 𝑟 ̸= 𝑟′ with all but negligible probability,
and thus a witness can be computed. In other words, this extractor guarantees (with all but
negligible probability) that a witness is extracted conditioned on an initial accepting execution.
Moreover, for any efficient 𝑃 *, the expected runtime of this procedure is poly(𝜆), since if 𝑃 * (with
some fixed random coins) is convincing with probability 𝑝, the expected number of rewinds in this
procedure is 1

𝑝 and thus the overall expected number of rewinds is 𝑝 · 1
𝑝 = 1.

In the quantum setting, one might hope for a similar “guaranteed” extractor, but prior works [Unr12,
Unr16b, CMSZ21] fail to achieve this. Indeed, [Unr12, Page 32] explicitly asks whether something
of this nature is possible.

Our first idea is to abstractly define a quantum analogue of this “guaranteed” extraction prop-
erty and show that under certain conditions, it generically implies state-preserving extraction.
Since the classical problem can only be solved in expected polynomial time, there is again an am-
biguity in what the quantum efficiency notion should be. However, it turns out that there is no
[CCLY21b]-type impossibility result for the problem of guaranteed extraction, so we demand the
stronger EQPT𝑚 extraction efficiency notion.

Definition 2.3 (Guaranteed Extraction). (𝑃Σ, 𝑉Σ) is a post-quantum proof of knowledge with
guaranteed extraction if it has an extractor Extract𝑃 * of the following form.

• Extract𝑃 * first runs the cheating prover 𝑃 * to generate a (classical) first message 𝑎.
• Extract𝑃 * runs 𝑃 * coherently on the superposition ∑︀

𝑟∈𝑅 |𝑟⟩ of all challenges to obtain a
superposition ∑︀𝑟,𝑧 𝛼𝑟,𝑧 |𝑟, 𝑧⟩ over challenge-response pairs.14

• Extract𝑃 * then computes (in superposition) the verifier’s decision 𝑉 (𝑥, 𝑎, 𝑟, 𝑧) and measures
it. If the measurement outcome is 0, the extractor gives up.

12Throughout our discussion of proofs of knowledge, we focus on the case of 3- and 4-message protocols. We
sometimes ignore the first verifier message vk in a 4-message protocol for notational convenience.

13This particular special soundness assumption is also for convenience; we later describe generalizations of special
soundness for which we have results.

14In general, the response 𝑧 will be entangled with the prover’s state; here we suppress this dependence.

15

• If the measurement outcome is 1, run some quantum procedure FindWitness𝑃 * that outputs
a string 𝑤.

We require that the following two properties hold.

• Correctness (guaranteed extraction): The probability that the initial measurement re-
turns 1 but the output witness 𝑤 is invalid is negl(𝜆).

• Efficiency: For any QPT 𝑃 *, the procedure Extract𝑃 * is in EQPT𝑚.

A key difference between our definition and the classical setting is that our extractor leaves the
first transcript in superposition (over the possible random challenges 𝑟) and only measures whether
the transcript is accepting. While it might seem reasonable to define guaranteed extraction where
the extractor first runs the adversary to obtain a classical first transcript, the additional state
disturbance would make negl(𝜆) failure probability extraction impossible.

We claim that under suitable conditions, guaranteed extraction generically implies state-preserving
extraction, where the extractor will be EQPT𝑐 rather than EQPT𝑚. We describe the simplest ex-
ample of these conditions: when the NP language itself is in UP (i.e. witnesses are unique).

Lemma 2.4 (see Lemma 10.3). If (𝑃Σ, 𝑉Σ) is a post-quantum proof of knowledge with guaran-
teed extraction for a language with unique witnesses, then (𝑃Σ, 𝑉Σ) is a state-preserving proof of
knowledge with EQPT𝑐 extraction.

Lemma 2.4 can be extended to higher generality. For example, informally:

1. We can also extract “partial witnesses” that are uniquely determined by the instance 𝑥.

2. We can extract undetectably when the first message 𝑎 “binds” the prover to a single witness
in the sense that the guaranteed extractor will only output this one witness (even if many
others exist).

3. This can also be extended to certain protocols whose first messages are informally “collapse-
binding” [Unr16b] to the witness.

These generalizations are formalized in Section 10 using the notion of a “witness-binding pro-
tocol” (Definition 10.2). In this overview, we give a proof for the “unique witness” setting.

Proof sketch. Let Extract𝑃 * be a post-quantum guaranteed extractor with associated subroutine
FindWitness𝑃 * . We will present an EQPT𝑐 extractor Extract𝑃

*
that has the form of an EQPT𝑐

computation (see Fig. 2) where the unitary 𝑈 is a coherent implementation of FindWitness𝑃 * .

Remark 2.5. This is an oversimplification of our real state-preserving extractor. In particular,
Extract𝑃 * as described in this overview does not fit the EQPT𝑐 model because FindWitness𝑃 * is not
necessarily an EQPT𝑚 computation — its running time is only expected polynomial when viewed as a
subroutine of Extract𝑃 *, which runs FindWitness𝑃 * with some probability (which may be negligible)
and moreover, only runs it on inputs consistent with the verifier decision 𝑉 (𝑥, 𝑎, 𝑟, 𝑧) = 1. In
Section 10, we formally demonstrate that our state-preserving extractor is EQPT𝑐 by showing that
it can be written in the form of Fig. 2 where the unitary 𝑈 is a coherent implementation of the
EQPT𝑚 procedure Extract𝑃 *.

16

Our (simplified) EQPT𝑐 extractor Extract𝑃
*

is defined as follows.

• Given 𝑃 *, generate a first message 𝑎 and superposition ∑︀𝑟,𝑧 𝛼𝑟,𝑧 |𝑟, 𝑧⟩ as in Extract𝑃 * .

• Compute the verifier’s decision bit 𝑉 (𝑥, 𝑎, 𝑟, 𝑧) in superposition and then measure it. If the
measurement outcome is 0, measure 𝑟, 𝑧 and terminate, outputting (𝑎, 𝑟, 𝑧, 𝑤 = ⊥) along with
the current prover state.

• If the measurement outcome is 1, let |𝜓⟩ℋ denote the current prover state. For simplicity,
assume that |𝜓⟩ℋ includes the superposition over (𝑟, 𝑧) and space to write the extracted
witness. The next steps are:

– Run 𝑈 on input |𝜓⟩ℋ ⊗ |0⟩ℬ,𝒲 .
– Measure the sub-register of ℋ containing the witness 𝑤.
– Run 𝑈 †.
– Measure the sub-register of ℋ containing the current transcript 𝑟, 𝑧.
– Return (𝑎, 𝑟, 𝑧, 𝑤) and the residual prover state (i.e., the rest of ℋ).

Extraction correctness follows from the correctness of FindWitness𝑃 * . Moreover, one can see
that Extract𝑃

*
is state-preserving by considering two cases:

• Case 1: The initial measurement returns 0. In this case, the transcript (𝑟, 𝑧) is immediately
measured, and the resulting (sub-normalized) state exactly matches the component of the
post-interaction 𝑃 * view corresponding to when the verifier rejects.

• Case 2: The initial measurement returns 1. In this case, the procedure FindWitness𝑃 * would
output a valid witness with probability 1− negl, so the output register of 𝑈(|𝜓⟩𝒜 ⊗ |0⟩ℬ,𝒲)
contains a valid witness with probability 1 − negl. Since we assumed that the language 𝐿
is in UP, this witness register is actually deterministic, so measuring it is computationally
(even statistically!) undetectable, and hence after applying 𝑈 † the resulting state |𝜓′⟩ is
computationally indistinguishable from |𝜓⟩. Thus, the output of the extractor the measured
witness 𝑤 along with a view that is computationally indistinguishable from the view of 𝑃 *
corresponding to when the verifier accepts.

This completes the proof sketch.

How do we apply Lemma 2.4? We now describe how to instantiate Σ-protocols so that the
reduction in Lemma 2.4 applies (see Section 10.2).

First, we note that the un-repeated variants of standard proofs of knowledge [GMW86, Blu86]
are “witness-binding” in the informal sense of the generalization (2); an extractor run on such
protocols will only output a witness consistent with the commitment string 𝑎. However, since
the un-repeated protocols only have constant (or worse) soundness error, there is no guaranteed
extraction procedure for them (even in the classical setting).

In order to obtain negligible soundness error, these protocols are typically repeated in parallel;
in this case, we do show guaranteed extraction procedures, but the protocols lose the witness-
binding property (2). This is because each “slot” of the parallel repetition may be consistent with

17

a different witness, and the extractor has no clear way of outputting a canonical one. In this case,
measuring the witness potentially disturbs the prover’s state by collapsing it to be consistent with
the measured witness, which would not happen in the honest execution.

We resolve this issue using commit-and-prove. Given a generic Σ-protocol for which we have
a guaranteed extractor, we consider a modified protocol in which the prover sends a (collapsing
or statistically binding) commitment com = Com(𝑤) to its NP-witness along with a Σ-protocol
proof of knowledge of an opening of com to a valid NP-witness. When the extractor Extract𝑃

*

of Lemma 2.4 is applied to this protocol composition, the procedure FindWitness𝑃 * (which is run
coherently as 𝑈) actually obtains both an NP witness 𝑤 and an opening of com to 𝑤. Therefore, the
collapsing property of Com says that 𝑤 can be measured undetectably. In other words, the commit-
and-prove compiler enforces a computational uniqueness property sufficient for Lemma 2.4 to apply.
It also turns out that the (original, unmodified) [GMW86] graph-nonisomorphism protocol can be
viewed as using this commit-and-prove paradigm,15 which is one way to understand the proof of
Theorem 1.2.

Finally, we remark that this commit-and-prove compiler is the cause of the super-polynomial
assumptions in Theorems 1.3 and 1.9. This is because in order to show that a commit-and-prove
protocol remains witness-indistinguishable, it must be argued that the proof of knowledge does
not compromise the hiding of Com, which we only know how to argue by simulating the proof of
knowledge in superpolynomial time (and assuming that Com is superpolynomially secure). This
issue does not arise when Com is statistically hiding and the Σ-protocol is statistically witness-
indistinguishable.

2.3 Achieving Guaranteed Extraction

So far, we have reduced from state-preserving extraction to the problem of guaranteed extraction.
We now describe how we achieve guaranteed extraction for a wide class of Σ-protocols. Informally,
we require that the protocol satisfies two important properties in order to perform guaranteed
extraction:

• Collapsing: Prover responses can be measured undetectably provided that they are valid.

• 𝑘-special soundness: It is possible to obtain a witness given 𝑘 accepting protocol transcripts
(𝑎, 𝑟1, 𝑧1, . . . , 𝑟𝑘, 𝑧𝑘) with distinct 𝑟𝑖 (for the same first prover message 𝑎).

Both of these restrictions can be relaxed substantially16 (see Sections 3.5, 5 and 8.4 for more
details), but we focus on this case for the technical overview.

Theorem 2.6 (See Theorem 8.2). Any public-coin interactive argument satisfying collapsing and
𝑘-special soundness is a post-quantum proof of knowledge with guaranteed extraction (in EQPT𝑚).

We consider Theorem 2.6 to be an interesting result in its own right and expect it to be useful
in future work. We now describe our proof of Theorem 2.6 over the course of several steps:

15The verifier sends an instance-dependent commitment [BMO90, IOS97, MV03] of a bit to the prover (which is
perfectly binding in the proof of ZK) and demonstrates knowledge of the bit and its opening.

16We highlight that the PoK subroutine in the [GMW86] graph non-isomorphism protocol is not collapsing; it is
only collapsing onto its responses of 0 challenge bits; however, it turns out that this property is still sufficient to
obtain guaranteed extraction for the subroutine (see Sections 5.3 and 8.4).

18

• We begin by describing an abstract template that generalizes the [CMSZ21] extraction proce-
dure in Section 2.3.1. In this template, the extractor repeatedly (1) queries the adversary on
i.i.d. random challenges and then (2) applies a “repair procedure” to restore the adversary’s
success probability.

• In Section 2.3.2, we describe a natural “first attempt” at guaranteed extraction based on
the [CMSZ21] template.

• We then observe in Section 2.3.3 that the entire template is unlikely to achieve guaranteed ex-
traction in expected polynomial time. Perhaps surprisingly (and unlike the classical setting),
querying the adversary on i.i.d. challenges appears too slow for this extraction task.

• In Section 2.3.4, we introduce a new extraction template in which the adversary is entangled
with a superposition of challenges, and the challenge is only measured once the adversary is
guaranteed to give an accepting response.

• While this new template is a promising idea, we are still far from achieving guaranteed
extraction. For the rest of the overview (Sections 2.3.5 to 2.3.7), we outline several technical
challenges in instantiating this approach, eventually leading to our final extraction procedure
and analysis.

2.3.1 An Abstract [CMSZ21] Extraction Template

[CMSZ21] recently showed that protocols satisfying collapsing and 𝑘-special soundness are post-
quantum proofs of knowledge. Unlike our setting of guaranteed extraction, the [CMSZ21] extractor
Extract𝑃 *(𝑥, 𝛾) is given as advice an error parameter 𝛾 and and extracts from cheating provers 𝑃 *
(that may have some initial quantum state) that are convincing with probability 𝛾* ≥ 𝛾. The
extractor’s success probability is roughly 𝛾

2 .
At a high level, our abstract template makes use of two core subroutines that we call Estimate

and Transform. We describe the correctness properties required of Estimate and Transform below,
and also describe their particular instantiations in [CMSZ21].

Jordan’s lemma and singular vector algorithms. Let ΠA,ΠB be projectors on a Hilbert space
ℋ with corresponding binary projective measurements A = (ΠA, I−ΠA) and B = (ΠB, I−ΠB).
Recall that Jordan’s lemma [Jor75] states that ℋ can be decomposed as a direct sum ℋ = ⨁︀

𝒮𝑗 of
two-dimensional invariant subspaces 𝒮𝑗 , where in each 𝒮𝑗 , the projectors ΠA and ΠB act as rank-
one projectors |𝑣𝑗,1⟩⟨𝑣𝑗,1| and |𝑤𝑗,1⟩⟨𝑤𝑗,1|.17 The vectors |𝑣𝑗,1⟩ and |𝑤𝑗,1⟩ are also left and right
singular vectors of ΠAΠB with singular value √𝑝𝑗 , where 𝑝𝑗 := |⟨𝑣𝑗,1|𝑤𝑗,1⟩|2. This decomposition
allows us to define on ℋ the projective measurement Jor = (ΠJor

𝑗) onto the Jordan subspaces 𝒮𝑗
(i.e., image(ΠJor

𝑗) = 𝒮𝑗). For an arbitrary state |𝜓⟩, we define the Jordan spectrum of |𝜓⟩ to be the
distribution of 𝑝𝑗 induced by Jor.

We will make use of procedures Estimate,Transform satisfying the following properties.
17There will also be one-dimensional subspaces, which we ignore in this overview since they can be viewed as

“degenerate” two-dimensional subspaces.

19

• The Jordan subspaces 𝒮𝑗 are invariant18 under EstimateA,B and TransformA,B. Equivalently,
EstimateA,B and TransformA,B should commute with Jor. This property is important for argu-
ing about the output behavior of Estimate and Transform on arbitrary states.

• EstimateA,B: on input |𝑆𝑗⟩ ∈ 𝒮𝑗 , output 𝑝 ≈ 𝑝𝑗 ; the residual state remains in 𝒮𝑗 .

• TransformA,B maps each |𝑣𝑗,1⟩ to |𝑤𝑗,1⟩. We have no requirements on any other state in 𝒮𝑗
except that it remains in 𝒮𝑗 .

[CMSZ21] implement a version of EstimateA,B (following [MW05]) with 𝜀 accuracy by alternating
A and B for 𝑡 = poly(𝜆)/𝜀2 steps. The output is 𝑝 = 𝑑/(𝑡−1) where 𝑑 is the number of occurrences
of 𝑏𝑖 = 𝑏𝑖+1 among the outcomes 𝑏1, 𝑏2, . . . , 𝑏𝑡. With probability 1− 2𝜆, we have |𝑝− 𝑝𝑗 | ≤ 𝜀. They
(implicitly) implement TransformA,B by alternating measurements A and B back and forth until
B→ 1, with an expected running time of 𝑂(1/𝑝𝑗) on 𝒮𝑗 .

The [CMSZ21] Extractor. We now use the abstract procedures (Estimate,Transform) to de-
scribe (a slightly simplified version of) the [CMSZ21] extractor. Let |+𝑅⟩ℛ denote the uniform
superposition over challenges on register ℛ and let ℋ denote the register containing the prover’s
state. Let V𝑟 = (Π𝑉,𝑟, I−Π𝑉,𝑟) denote a binary projective measurement on ℋ that measures
whether 𝑃 * returns a valid response on 𝑟.

The extraction technique makes crucial use of two measurements: the first is U = (ΠU, I−ΠU),
where ΠU := Iℋ⊗ |+𝑅⟩⟨+𝑅|ℛ is the projective measurement of whether the challenge register ℛ is
uniform. The second is C = (ΠC, I−ΠC), where ΠC := (Π𝑉,𝑟𝑖)ℋ ⊗

∑︀
𝑟∈𝑅 |𝑟⟩⟨𝑟|ℛ is the projective

measurement that runs the prover on the challenge on ℛ and checks whether the prover wins. The
extraction procedure is described in Fig. 3 below.

Figure 3: The [CMSZ21] extractor with generic procedures Estimate,Transform

1. Generate a first verifier message vk and run 𝑃 *(vk)→ 𝑎 to obtain a classical first prover
message 𝑎 once and for all. Let |𝜓⟩ denote the state of 𝑃 * after it returns 𝑎.

2. Run EstimateU,C to accuracy 𝛾/4 on |𝜓⟩ |+𝑅⟩, which outputs an estimate 𝑝 of the ad-
versary’s success probability and then discard ℛ;a abort if 𝑝 < 𝛾/2 (this occurs with
probability at most 1−𝛾/2). Subtract 𝛾/4 from 𝑝 so that 𝑝 represents a reasonable lower
bound on the success probability. Set an error parameter 𝜀 = 𝛾2

2𝜆𝑘 for the rest of the
procedure and fix 𝑁 = 𝜆𝑘/𝑝.

3. We now want to generate 𝑘 accepting transcripts. For 𝑖 from 1 to 𝑁 :

(a) Sample a uniformly random challenge 𝑟𝑖 and apply V𝑟𝑖 to the current state |𝜓𝑖⟩.
(b) If the output is 𝑏𝑖 = 1, measure the response 𝑧. This is (computationally) unde-

tectable by the protocol’s collapsing property, so we ignore this step for now.
(c) Let 𝐸 be a unitary such that applying 𝐸 to ℋ ⊗𝒲 (where 𝒲 is an appropriate-

size ancilla initialized to |0⟩𝒲) and then discarding 𝒲 is equivalent to running

18We allow for decoherence, so we ask that every element of 𝒮𝑗 is mapped to a mixed state where every component
is in 𝒮𝑗 .

20

EstimateU,C for 𝜆𝑝/𝜀2 steps on ℋ ⊗ ℛ (where ℛ is initialized to |+𝑅⟩ℛ) and then
discarding ℛ.
We repair the success probability by initializing 𝒲 = |0⟩𝒲 and then running
TransformD,G on ℋ ⊗ 𝒲 where, roughly speaking, D is a projective measurement
corresponding to the disturbance caused by step (a), and G is a projective measure-
ment that determines whether the adversary’s success probability is good, meaning
at least 𝑝− 𝜀. More precisely:

• G = (Π𝑝,𝜀, I−Π𝑝,𝜀) returns 1 if, after applying 𝐸, the estimate is at least 𝑝−𝜀.b

• D = (Π𝑟𝑖,𝑏𝑖
, I−Π𝑟𝑖,𝑏𝑖

) returns 1 if 𝒲 = |0⟩𝒲 and applying V𝑟𝑖 returns 𝑏𝑖.
If TransformD,G has not terminated within 𝑇 calls to D and G, abort (this occurs
with probability at most 𝑂(1/𝑇)). Otherwise, apply 𝐸, trace out 𝒲, re-initialize
ℛ to |+𝑅⟩ and then run EstimateU,C for 𝜆𝑝/𝜀2 steps to obtain a new probability
estimate 𝑝′. If 𝑝′ < 𝑝− 2𝜀, abort. Finally, discard ℛ and re-define 𝑝 := 𝑝′.

aWe implement EstimateU,C so that the residual state is in image(ΠU). This means that after EstimateU,C

finishes, ℛ is unentangled from ℋ, which allows us to discard it. While this is not always possible when running
EstimateU,C on an arbitrary initial state, we show that this can be achieved here.

bIn our actual construction/proof, we replace this call to Estimate (and the additional call at the end of Step
3c) with a weaker primitive that only computes the threshold instead of fully estimating 𝑝. This change makes
it easier to instantiate the primitive.

2.3.2 Guaranteed extraction, first attempt

The [CMSZ21] algorithm, interpreted in terms of the abstract procedures Estimate,Transform, will
serve as our initial template for extraction. We now consider whether it can be modified to achieve
guaranteed extraction.

Syntactic Changes. The first issues with the [CMSZ21] extraction procedure are syntactic in
nature. Namely, we want an extraction procedure that works for any 𝑃 *, with no a priori lower
bound 𝛾 on the success probability of 𝑃 *. Of course, an extractor Extract𝑃 * that extracts with
probability close to 1 given an arbitrary 𝑃 * is impossible to achieve (imagine a 𝑃 * with negligible
success probability), so the game is also changed as described in Definition 2.3. In terms of the
[CMSZ21] template, the change is as follows:

• After obtaining (𝑎, |𝜓⟩), measure C on |𝜓⟩ |+𝑅⟩ and terminate if the outcome is 0.

• Otherwise, the state is (re-normalized) ΠC(|𝜓⟩ |+𝑅⟩), and the goal is to extract with proba-
bility 1− negl.

Variable-Runtime Estimation. Since we are given no a priori lower bound 𝛾 on the success
probability of 𝑃 *, there is no fixed additive precision 𝜀 for which the initial Estimate in Step 2
guarantees successful extraction — the initial state |𝜓⟩ |+𝑅⟩ could be concentrated on subspaces
𝒮𝑗 such that 𝑝𝑗 ≪ 𝜀, in which case the estimation procedure almost certainly returns 0.

To remedy this issue, we define a variable-length variant of EstimateA,B with the guarantee that
for every 𝑗 and every state in 𝒮𝑗 , EstimateA,B returns 𝑝𝑗 to within constant (factor 2) multiplicative
accuracy with probability 1−2−𝜆. With regard to instantiation, we note that the [MW05, CMSZ21]
implementation of EstimateA,B can be modified to be variable-length: simply continue alternating

21

Π𝐴,Π𝐵 until sufficiently many (𝑑 = poly(𝜆)) 𝑏𝑖 = 𝑏𝑖+1 occur, so that the estimate 𝑑
𝑡−1 (where 𝑡 is

the number of measurements performed) is reasonably concentrated around its expectation.
Thus, we begin with the natural idea that Step 2 should be modified to use this variable-length

Estimate. We remark that variable-length Estimate is not required in later steps: the output 𝑝 of
Step 2 can be used to set the parameters (𝜀,𝑁) for the rest of the procedure.

With this modification, our extractor never aborts in Step 2, but it also no longer runs in strict
polynomial time. How do we analyze its runtime? First, one can compute that when run on a
state in 𝒮𝑗 , the expected running time of this procedure is (up to factors of poly(𝜆)) roughly 1

𝑝𝑗
.

This might seem concerning, because this expectation could be large (even superpolynomial) if 𝑝𝑗
is very small. However, what we care about is the runtime of EstimateU,C on the (re-normalized)
state ΠC(|𝜓⟩ |+𝑅⟩). Writing |𝜓⟩ |+𝑅⟩ = ∑︀

𝑗 𝛼𝑗 |𝑣𝑗,1⟩, we see that ΠC(|𝜓⟩ |+𝑅⟩) = ∑︀
𝑗 𝛼𝑗
√
𝑝𝑗 |𝑤𝑗,1⟩.

To calculate the overall expected runtime, we use the fact that EstimateU,C commutes with the
projective measurement Jor that outputs 𝑗 on each subspace 𝒮𝑗 . This implies that the expected
runtime of Estimate on our state is the weighted linear combination of its expected runtime on the
eigenstates |𝑣𝑗,1⟩, namely

1
𝛾*

∑︁
𝑗

|𝛼𝑗 |2𝑝𝑗 ·
1
𝑝𝑗

= 1
𝛾*
,

where 𝛾* = ||ΠC(|𝜓⟩ |+𝑅⟩)||2 is the probability that C → 1 in the initial execution.19 Thus, the
overall expected runtime equals 𝛾* · 1

𝛾* = 1, so Step 2 of the procedure is efficient!

Our first attempt. With the changes above, Step 2 of the extraction procedure now has zero
error and runs in expected polynomial time (EQPT𝑚).

The other source of non-negligible extraction error from [CMSZ21] is in the cutoff 𝑇 imposed
on TransformD,G. By removing this cutoff, we obtain a procedure that is somewhat closer to the
goal of guaranteed extraction in expected polynomial time, described in Fig. 4 below.

Figure 4: Guaranteed extraction (Attempt 1)

1. After obtaining (𝑎, |𝜓⟩), apply C to |𝜓⟩ |+𝑅⟩ and terminate if the measurement returns
0. Otherwise, let |𝜑⟩ denote the resulting state on ℋ⊗ℛ.

2. Run the variable-length EstimateU,C on |𝜑⟩, obtaining output 𝑝, and then discard ℛ.a
Divide 𝑝 by 2 to obtain a lower bound on the resulting success probability. Set 𝜀 = 𝑝2

2𝜆𝑘
and 𝑁 = 𝜆𝑘/𝑝.

3. Run Step 3 of the original [CMSZ21] extractor as in Fig. 3, with the parameters 𝑝, 𝜀,𝑁 .
Instead of imposing a time limit 𝑇 , the procedure TransformD,G is allowed to run until
completionb (G→ 1).

aAs before, we ensure that the residual state after EstimateU,C is in image(ΠU), so ℛ is unentangled.
bTo avoid a computation that runs for infinite time, one should at the very least impose an exponential 2𝜆

time cutoff, which can be shown to incur only a 2−𝜆 correctness error.

19One way to see this is to notice that applying Jor after running EstimateU,C clearly cannot affect the runtime of
EstimateU,C. Then Jor can be commuted to occur before EstimateU,C.

22

2.3.3 Problem: Step 3 is not expected poly-time.

Unfortunately, the “first attempt” above does not satisfy Definition 2.3. The issue lies in its runtime:
we argued before that over the randomness of Extract𝑃 * , Step 2 runs in expected polynomial time.
However, we did not analyze Step 3, which is the main loop for generating transcripts. Here is a
rough estimate for its runtime.

Recall that Step 3 loops the following steps for each 𝑖 = 1, . . . , 𝜆𝑘/𝑝:

• Run the prover 𝑃 * on a random challenge 𝑟𝑖. This takes a fixed poly(𝜆) amount of time.

• Then, regardless of whether 𝑃 * was successful, the residual prover state |𝜑𝑖⟩ must be repaired
to have success probability ≈ 𝑝.

It turns out that as currently written, the expected runtime of the repair step is (up to poly(𝜆)
factors) equal to the runtime of a fixed-length Estimate procedure with precision ≈ 𝑝2 (this ensures
that after 1/𝑝 repair steps, the total success probability loss must be at most 𝑝). Moreover,
this runtime is intuitively necessary for any possible repair procedure, since repairing the success
probability should be at least as hard as computing whether it is above the acceptable threshold.

In our setting, the [MW05, CMSZ21] estimation procedure requires 1/𝑝3 time to obtain a
𝑝2-accurate estimate in the relevant parameter regime.20 Since Step 3 performs this loop 1

𝑝 times
(omitting the 𝜆𝑘 factor), the total runtime will be at least 1

𝑝4 . This is too long for the “conditioning”
of Step 1 to save us: if the initial state at the beginning of Step 1 is |𝜓⟩ |+𝑅⟩ ∈ 𝒮𝑗 , the expected
runtime of Step 3 is 𝑝𝑗 · 1

𝑝4
𝑗

= 1
𝑝3

𝑗
, which can be arbitrarily large (when 𝑝𝑗 is small).

Idea: Use a faster Estimate? Given how we have phrased the extractor in terms of abstract
(Estimate,Transform) algorithms, a natural idea for improving the runtime is to use an imple-
mentation of the abstract Estimate algorithm that is faster than the [MW05]-based one used in
[CMSZ21]. Indeed, if we use the procedure described in [NWZ09] to implement EstimateU,C, we
obtain a quadratic speedup: the runtime of EstimateU,C in Step 3c can be improved from 1

𝑝3 to 1
𝑝3/2 .

This speedup will be relevant to our eventual solution, but it does not resolve the problem.
The back-of-the envelope calculation now just says that the expected runtime of Step 3 on a state
|𝜓⟩ |+𝑅⟩ ∈ 𝒮𝑗 is 𝑝𝑗 · 𝑝−5/2

𝑗 = 𝑝
−3/2
𝑗 , which is still unbounded.

So are we doomed? Indeed, this runtime calculation seems problematic for the entire [CMSZ21]
template that we abstracted, by the following reasoning:

• On a state with initial estimate 𝑝, each choice of 𝑟𝑖 will only produce an accepting transcript
with probability≈ 𝑝, so we must try≈ 𝑘/𝑝 choices of i.i.d. 𝑟𝑖 to obtain 𝑘 accepting transcripts.

• Therefore, as long as the repair step takes super-constant time (as a function of 1/𝑝), the
overall extraction procedure will take too long.

This seems to indicate a dead end for extractors that follow the standard rewinding template
of repeatedly running 𝑃 * on random 𝑟 to obtain accepting transcripts.

20As written in [CMSZ21], the estimation procedure runs in 1/𝑝4 time, but a factor of 𝑝 can be saved because
(roughly speaking) the estimate only needs to achieve 𝑝2 accuracy when 𝑝𝑗 is close to 𝑝.

23

2.3.4 Solution: A New Rewinding Template

We solve our unbounded runtime issue by abandoning “classical” rewinding, in the following sense:
unlike prior extraction procedures [Unr12, CMSZ21], our extractor will not follow the standard
approach of obtaining transcripts by feeding uniformly random 𝑟𝑖 to 𝑃 *. Instead, we will generate
accepting transcripts (𝑟𝑖, 𝑧𝑖) via an inherently quantum procedure so that every generated transcript
is accepting (as opposed to only a 𝑝 fraction of them).

We accomplish this by using the procedure Transform, which was previously only used for
state repair, to generate the transcripts. Consider a prover state |𝜓𝑖⟩ at the beginning of Step 3.
By definition, |𝜓𝑖⟩ |+𝑅⟩ ∈ image(ΠU), so applying TransformU,C to |𝜓𝑖⟩ |+𝑅⟩ produces a state in
image(ΠC). Now if the challenge register ℛ is measured (obtaining a string 𝑟𝑖), the residual prover
state is guaranteed to produce an accepting response on 𝑟𝑖!

Moreover, the extraction procedure can afford to run TransformU,C: since |𝜓𝑖⟩ |+𝑅⟩ has been
constructed to lie almost entirely in subspaces 𝒮𝑗 such that 𝑝𝑗 ≥ 𝑝− 𝜀, the expected running time
of TransformU,C can be shown to be roughly21 1

𝑝 .
This gives us a potential new template for extraction: we modify the main loop (Step 3) as in

Fig. 5.

Figure 5: Our new extraction template

1. After obtaining (𝑎, |𝜓⟩), apply C to |𝜓⟩ |+𝑅⟩ and terminate if the measurement returns
0. Otherwise, let |𝜑⟩ denote the resulting state on ℋ⊗ℛ.

2. Run the variable-length EstimateU,C on |𝜑⟩, obtaining output 𝑝. Divide 𝑝 by 2 to obtain
a lower bound on the resulting success probability. Set 𝜀 = 𝑝

4𝑘 .

3. For 𝑖 from 1 to 𝑘:

(a) Given current prover state |𝜓𝑖⟩, apply TransformU,C to |𝜓𝑖⟩ |+𝑅⟩. Call the resulting
state |𝜑C⟩.

(b) Obtain a guaranteed accepting transcript (𝑟𝑖, 𝑧𝑖) by measuring the ℛ register of |𝜑C⟩
and then running 𝑃 * on 𝑟𝑖. As before, measuring 𝑧𝑖 is computationally undetectable.

(c) Run the Repair Step (3c) as in Fig. 3 by calling TransformD,G and re-estimating 𝑝.

We emphasize two crucial efficiency gains from this new extraction template:

• As already mentioned, the main loop now has 𝑘 steps instead of 𝑘/𝑝, since each transcript is
now guaranteed to be accepting.

• Since only 𝑘 repair operations are now required, the error parameter 𝜀 for Π𝑝,𝜀 can be set to
≈ 𝑝 instead of ≈ 𝑝2.

Correctness Analysis. We remark that even the correctness of this new extraction procedure
is unclear. In the case of 𝑘-special sound protocols, we need the extraction procedure to produce 𝑘
accepting transcripts with distinct 𝑟𝑖; previously, this was guaranteed because each 𝑟𝑖 was sampled

21For technical reasons, we cut off Transform after an exponential number of steps so that the component of
|𝜓𝑖⟩ |+𝑅⟩ lying in “bad” 𝒮𝑗 (i.e., where 𝑝𝑗 is tiny) does not ruin the expected running time.

24

i.i.d., so (w.h.p.) no pair of them coincide. Here, 𝑟𝑖 is not uniformly random — it has been sampled
by measuring the ℛ register of some state in ΠC.

In order to analyze the behavior of this extractor, it is important to understand the state |𝜑C⟩
obtained after applying TransformU,C. Of course, we have an explicit representation ∑︀𝑗 𝛼𝑗

√
𝑝𝑗 |𝑤𝑗,1⟩

for it, but it is not clear a priori how this helps.
To prove correctness, we analyze the state |𝜑C⟩ using what we call the Pseudoinverse Lemma

(Lemma 7.1), which states that |𝜑C⟩ can be viewed as a conditional state obtained by starting with
a state |𝜑U⟩ = |𝜓U⟩ |+𝑅⟩ ∈ image(ΠU) and post-selecting (i.e., conditioning) on a C-measurement of
|𝜑U⟩ outputting 1. Crucially, this pseudoinverse state has a precisely characterized (U,C)-Jordan
spectrum related to the Jordan spectrum of |𝜑𝐶⟩. We emphasize that the state |𝜑U⟩ does not
actually exist in the extraction procedure; it is just a tool for the analysis.

Using the pseudoinverse lemma, one can show that the probability a C-measurement of |𝜑U⟩
returns 1 is ≈ 𝑝, which implies that the joint distribution of (𝑟1, . . . , 𝑟𝑘) comes from a “random
enough” distribution that we formalize as “admissible” (Definition 5.5). This is shown by the
following reasoning: since measuring ℛ commutes with C, it is as if we have an initially uniformly
random 𝑟𝑖 (obtained from measuring ℛ of |𝜑U⟩) that is “output” with probability ≈ 𝑝 (when C
returns 1). This is sufficient to argue about correctness properties of the extractor.

Runtime Analysis Idea. Analyzing the runtime of TransformD,G also turns out to be significantly
more subtle than in the [CMSZ21] setting. The basic idea is to show that (within a reasonable
amount of time) TransformD,G returns a state on ℋ ⊗ 𝒲 to image(Π𝑝,𝜀) after it was “initially”
disturbed by the binary measurement D. In [CMSZ21], this is literally true: the disturbance is
measuring (Π𝑉,𝑟, I − Π𝑉,𝑟) for randomly sampled 𝑟 on the prover state |𝜓𝑖⟩. One can then show
that an expected constant number of (D,G)-measurements returns the state to G by appealing to
the statistics of the (D,G) Marriott-Watrous distribution.

However, in our setting, the “disturbance” is quite different: the amplified state |𝜑C⟩ ∈
image(ΠC) consists of a prover state entangled with the challenge register ℛ in a way that is
guaranteed to produce an accepting transcript. |𝜑C⟩ is then disturbed by measuring its ℛ register,
and the measurement D being applied in TransformD,G depends on this ℛ measurement outcome.
Since the ℛ measurement can disturb |𝜑C⟩ by a large amount (unlike D), it is not a priori clear
why TransformD,G should return the state to image(Π𝑝,𝜀).

At a high level, we show how to bound the runtime of this new procedure by appealing to
the pseudoinverse state |𝜑U⟩, again! In more detail, using the pseudoinverse lemma, the state on
ℋ⊗𝒲 obtained after measuring ℛ on |𝜑C⟩ (along with initializing 𝒲 to |0⟩) can be alternatively
thought of as the state obtained by:

• Sampling 𝑟𝑖 proportional to the probability 𝜁𝑟𝑖 of |𝜓U⟩ successfully answering 𝑟𝑖, and

• Outputting (normalized) Π𝑟𝑖(|𝜓U⟩ ⊗ |0⟩𝒲), where Π𝑟𝑖 := Π𝑟𝑖,1.

This conditioning argument allows us to appeal to the same “return to Π𝑝,𝜀” principle to show
that TransformD,G indeed “returns” the state to image(Π𝑝,𝜀), as if it had “started out” as the state
|𝜑U⟩ |0⟩𝒲 , which only exists in the analysis!

25

2.3.5 Problem: Step 3 is still not expected poly-time.

The premise of our new extraction template was to speed up the extraction process by getting
rid of excess work from running state repair in situations where no accepting transcript was ob-
tained. Previously, we computed the expected runtime to perform 𝑁 ≈ 𝑘/𝑝 repair steps in Fig. 3
(conditioned on a successful initial execution and initial estimate 𝑝) to be 𝑝𝑁/𝜀2 ≈ 1/𝑝4, since the
runtime of each repair step was equivalent (up to a constant factor) to the runtime of G, which was
𝑝/𝜀2, and 𝜀 ≈ 𝑝2. As noted above, with our new template we now only have to perform 𝑁 = 𝑘
repair steps, and the error parameter 𝜀 can now be ≈ 𝑝. With these improvements alone, one might
hope to perform 𝑁 repair steps in 𝑝𝑁/𝜀2 = 𝑝(𝑘)(1/𝑝2) ≈ 1/𝑝 time. This would result in expected
polynomial runtime for the overall extractor when factoring in the conditioning.

Perhaps surprisingly, the above reasoning is incorrect! This new extraction procedure is still
not expected QPT: the expected runtime of 𝑁 repair steps will be ≈ 1

𝑝2 , not 1
𝑝 .

Why does this happen? It turns out that in this new extraction template, each repair step
(which previously made expected 𝑂(1) calls to G) must now make an expected 𝑂(1/𝑝) calls to G,
cancelling out the factor-1/𝑝 savings in 𝑁 obtained by using TransformU,C to generate transcripts.

Indeed, the pseudoinverse-based runtime analysis above for TransformD,G implies that each repair
step must now make

1
𝜁𝑅

∑︁
𝑟

𝜁𝑟 ·
1
𝜁𝑟

= 1
𝜁𝑅
≈ 1/𝑝

calls to G (where 𝜁𝑅 = ∑︀
𝑟 𝜁𝑟 ≈ 𝑝 is the normalization factor for the 𝑟𝑖-distribution). This results

in an overall expected running time of 1
𝑝 calls to G if 𝑝 was initially measured. Essentially, this is

saying that while obtaining an accepting transcript (𝑟𝑖, 𝑧𝑖) causes limited enough disturbance that
repair can work, it causes more disturbance than a binary measurement, resulting in a factor of
1/𝑝 increase in the repair time.

2.3.6 Solution: Use faster Estimate and Transform

Despite the less-than-expected speedup observed in Section 2.3.5, it turns out that we nevertheless
made significant progress. The reason is that the bottleneck to obtaining a faster extraction proce-
dure is now in the running times of Estimate and Transform, so we can hope to obtain an expected
polynomial time procedure by using faster algorithms for EstimateU,C and TransformD,G.

As discussed above, speeding up the fixed-length EstimateU,C in G is relatively straightforward
by appealing to [NWZ09];22 this results in an expected running time of 1√

𝑝 for G.
However, implementing a fast version of TransformD,G achieving 1− negl(𝜆) correctness (which

is required for our extraction procedure to have negligible error) is less straightforward. Some
implementations in the literature (e.g., [GSLW19]) achieve this correctness guarantee, but only
given a known (inverse polynomial) lower bound on the eigenvalue 𝑞𝑗 (associated with (D,G)-
Jordan subspace 𝒯𝑗). We have no such lower bound for our state 1

𝜁𝑟
Π𝑟(|𝜑U⟩ |0⟩𝒲). Our resolution

is to first apply a variable-length fast phase estimation algorithm (implemented by repeatedly
running [NWZ09] to increasing precision, or singular value discrimination [GSLW19] with decreasing
thresholds, until we obtain a multiplicative estimate of the phase) and then run a fixed-length
fast TransformD,G using the estimated phase to lower bound the eigenvalue. The fixed-length fast
TransformD,G can be done using [GSLW19]; it is also possible to use a more elementary algorithm

22For technical reasons, we use a different algorithm due to [GSLW19], but a variant of [NWZ09] would also suffice.

26

combining fast amplitude amplification [BHMT02] with ideas from [Wat06] for achieving 1−negl(𝜆)
correctness.

To summarize, we obtain a final 1/𝑝 speedup by combining a 1/√𝑝 speedup from using a faster
EstimateU,C with a 1/√𝑝 speedup from using a faster TransformD,G. The fact that the latter speedup
is actually realized turns out to be subtle to argue.

2.3.7 Last Problem: Measuring 𝑧 ruins the runtime guarantee

Unfortunately, we are still not done! There is one subtle issue with our extractor that we have
ignored so far: our runtime analysis was only valid ignoring the effect of measuring the prover
response 𝑧. Since all transcripts after running TransformU,C are accepting by construction, the
collapsing property of the protocol implies that measuring 𝑧 is computationally undetectable, so
one might assume that the runtime analysis extends immediately.

However, the expected running time of an algorithm is not an efficiently testable property of the
input state. This is not just an issue with our proof strategy: the version of the above extractor
where 𝑧 is measured does not run in expected polynomial time.

In a nutshell, the issue is that a computationally undetectable measurement can still cause a
state’s eigenvalues (either {𝑝𝑗}, in JorU,C, or {𝑞𝑗}, in JorG,D) to change by a negligible but nonzero
amount, affecting the subsequent runtime of TransformD,G. This negligible change can have an
enormous effect on the expected runtime of the extractor, because if the runtime of a procedure
is inversely proportional to the disturbed eigenvalue 𝑝 = 𝑝 − negl, an overall expected runtime
expression can now contain terms of the form 𝑝

𝑝−negl , which can be unbounded when 𝑝 is also
negligible. Interestingly, such issues have long been known to exist in the classical setting: these

𝑝
𝑝−negl terms are the major technical difficulty in obtaining a classical simulator for the [GK96]
protocol. This classical analogy inspires our resolution.

Solution: Estimate repair time before measuring 𝑧. We modify our extractor so that in each
loop iteration, all procedures occurring after the 𝑧-measurement have a pre-determined runtime.
Previously, after 𝑧 was measured, we ran a fast variable-length Transform by running a the variable-
length EstimateD,G to determine a time bound 𝑡, and then running a 𝑡-time TransformD,G. Instead of
this, we will run EstimateD,G before 𝑧 is measured. This allows us to compute a runtime bound for
TransformD,G before the 𝑧 measurement disturbs the state, preserving the expected running time
of the entire procedure. This results in the final extraction procedure described in Fig. 6 below.

Figure 6: Our final extraction procedure

1. After obtaining (𝑎, |𝜓⟩), apply C to |𝜓⟩ |+𝑅⟩ and terminate if the measurement returns
0. Otherwise, let |𝜑⟩ denote the resulting state on ℋ⊗ℛ.

2. Run the variable-length EstimateU,C on |𝜑⟩, obtaining output 𝑝. Divide 𝑝 by 2 to obtain
a lower bound on the resulting success probability. Set 𝜀 = 𝑝

4𝑘 and 𝑁 = 𝑘.

3. For 𝑖 from 1 to 𝑁 :

(a) Given prover state |𝜓𝑖⟩, apply TransformU,C |𝜓𝑖⟩ |+𝑅⟩. Call the resulting state |𝜑C⟩.
(b) Measure (and discard) the ℛ register of |𝜑C⟩ to obtain a classical challenge 𝑟𝑖.

27

(c) Initialize𝒲 to |0⟩𝒲 and call the variable-length EstimateD,G, which outputs a value
𝑞. We require that the output state is in the image of Π𝑟𝑖 .

(d) Measure the response 𝑧𝑖.
(e) We repair the success probability by running TransformD,G on ℋ⊗𝒲 for 𝜆√

𝑞 oracle
steps. If the resulting state is not in the image of Π𝑝,𝜀, abort.
Trace out 𝒲 and run EstimateU,C for 𝜆√𝑝/𝜀 steps to obtain a new probability
estimate 𝑝′. If 𝑝′ < 𝑝− 2𝜀, abort. Finally, discard ℛ and re-define 𝑝 := 𝑝′.

By making this change, we incur an additional correctness error for the extractor, because the
collapsing measurement may decrease the probability that TransformD,G successfully maps the state
to Π𝑝,𝜀. However, this error is negligible because this correctness property is efficiently checkable
(unlike the expected runtime). Thus, this procedure achieves both expected polynomial runtime23

and the desired correctness guarantees.

2.3.8 Putting everything together

To summarize, we gave a new extraction template along with a particular instantiation that achieves
expected polynomial runtime, by leveraging four different algorithmic improvements:

1. By generating accepting transcripts with TransformU,C, we now only have to generate 𝑘 tran-
scripts and repair 𝑘 prover states (instead of 𝑘/𝑝).

2. (1) allows us to relax the error parameter 𝜀 by a factor of 1/𝑝 (speeding up G).
3. Using a fast algorithm for Estimate from the literature [NWZ09, GSLW19] saves a factor of

1/√𝑝 runtime.
4. Using a new fast, variable-runtime algorithm for Transform saves another factor of 1/√𝑝.

Finally, we implement the variable-length Transform in two phases (variable-length phase estimation
followed by fixed-length Transform) and interleave the measurement of the response 𝑧 between them,
so that this 𝑧-measurement has no effect on the runtime.

We remark that the overall analysis of our extractor is rather involved (as we have omitted
additional details in this overview); we refer the reader to Section 8 for a full analysis.

2.4 Post-Quantum ZK for [GK96]

In this section we give an overview of our proof that the Goldreich–Kahan (GK) protocol is post-
quantum zero-knowledge (Theorem 1.4). Our simulator makes use of some of the techniques
described in Section 2.3, but the simulation strategy is quite different to our other results. In
particular, our simulator does not make use of state-preserving extraction.

We first recall the Goldreich–Kahan construction of a constant-round zero-knowledge proof
system for NP. Let (𝑃Σ, 𝑉Σ) be a Σ-protocol for NP satisfying special honest verifier zero knowledge

23It remains to be argued that measuring 𝑧𝑗 does not affect the running time of subsequent variable-runtime steps.
This turns out to hold because the runtime of future loop iterations can be guaranteed by the correctness properties
of the re-estimation step, which hold for an arbitrary re-estimation input state.

28

(SHVZK)24 and let Com be a statistically hiding, computationally binding commitment. [GK96]
construct a zero knowledge protocol (𝑃, 𝑉) as described in Fig. 7.

𝑃 (𝑥,𝑤) 𝑉 (𝑥)

Sample commitment key ck. ck

com Sample Σ-protocol challenge 𝑟 ← 𝑅.
Commit to 𝑟:
com = Com(ck, 𝑟;𝜔) for 𝜔 ← {0, 1}𝜆.

Compute (𝑎, st)← 𝑃Σ(𝑥,𝑤) 𝑎

𝑟, 𝜔

If Com(ck, 𝑟;𝜔) ̸= com, abort.
Compute 𝑧 ← 𝑃Σ(st, 𝑟)

𝑧 Accept if (𝑎, 𝑟, 𝑧) is an
accepting Σ-protocol transcript for 𝑥.

Figure 7: The [GK96] Zero Knowledge Proof System for NP.

Soundness of the [GK96] protocol holds against unbounded 𝑃 * and therefore extends immedi-
ately to the quantum setting.

Recap: the naïve classical simulator. As observed by [GK96], there is a natural naïve simu-
lator for their protocol that, for reasons analogous to Section 2.3.7, turns out to have an unbounded
expected runtime. To build intuition for our quantum simulation strategy, we will first recall the
naïve classical simulator and show how to extend it to a naïve quantum simulator (while temporar-
ily ignoring the runtime issue). Then, by using the technique described in Section 2.3.7, we will
improve this to a full EQPT𝑐 quantum simulator.

The naïve classical simulator does the following:
1. Call 𝑉 * on a random commitment key ck to obtain a commitment com.
2. Sample (𝑎′, 𝑧′)← SHVZK.Sim(0).
3. Run 𝑉 * on 𝑎′ to obtain a challenge-opening pair (𝑟′, 𝜔′). If 𝜔′ is not a valid opening of com

to 𝑟′, terminate the simulation and output the current view of 𝑉 *.
4. Rewinding step. Sample (𝑎, 𝑧)← SHVZK.Sim(𝑟′) and run 𝑉 * on 𝑎. If the output (𝑟, 𝜔) is

not a valid message-opening pair, repeat this step from the beginning.
5. Respond with 𝑧 and output 𝑉 *’s view.

To see that this simulator outputs the correct view for 𝑉 *, consider two hybrid steps:
• First, switch to a hybrid simulator in which the sample (𝑎′, 𝑧′) ← SHVZK.Sim(0) is instead

computed by running the honest prover 𝑃 (𝑥,𝑤). The indistinguishability between this hy-
brid simulator and the real simulator follows from the fact that 𝑎′ sampled as (𝑎′, 𝑧′) ←
SHVZK.Sim(0) is computationally indistinguishable from the honestly generated 𝑎′.

24Recall that the special honest-verifier zero-knowledge property guarantees the existence of a randomized simu-
lation algorithm SHVZK.Sim(𝑟) that takes any Σ-protocol challenge 𝑟 ∈ 𝑅 as input and outputs a tuple (𝑎, 𝑧) such
that the distribution of (𝑎, 𝑟, 𝑧) is indistinguishable from the distribution of transcripts arising from an honest prover
interaction on challenge 𝑟.

29

• Next, switch to a second hybrid simulator in which the honest prover is also used in the
rewinding step to generate the (𝑎, 𝑧) samples rather than SHVZK.Sim(𝑟′) (where 𝑧 is gen-
erated by running the honest prover on (𝑎, 𝑟′)). This is indistinguishable from the previous
hybrid simulator by the SHVZK property, and moreover, by the computational binding of
the commitment, the 𝑟 obtained in Step 4 must be 𝑟′ except with negl(𝜆) probability. More-
over, conditioned on 𝑟 = 𝑟′, the second hybrid produces the same distribution as the honest
interaction.

We now show how to extend this simulator to the quantum setting.

Our “naïve” quantum simulator. Step 1 of the naïve classical simulator will be unchanged in
the quantum setting, so we focus on devising quantum verisons of Steps 2,3, and 4 while assuming
ck, com are fixed throughout.

Let |𝜓⟩𝒱 be the state of the malicious verifier immediately after it sends com. We let registers
𝒜,𝒵 denote registers containing the messages 𝑎, 𝑧 in the Σ-protocol and let ℳ be a register that
will contain the random coins for SHVZK.Sim (or the honest prover later on). Let |Sim𝑟⟩ for any
𝑟 ∈ 𝑅 be the state |Sim𝑟⟩𝒜,𝒵,ℳ = ∑︀

𝛼𝜇 |SHVZK.Sim(𝑟;𝜇), 𝜇⟩ obtained by running SHVZK.Sim on
a uniform superposition of its random coins 𝜇.

We define binary projective measurements analogous to the U and C measurements used in our
state-preserving extractor. However, instead of a single U measurement, we will have for each 𝑟 ∈ 𝑅
a measurement S𝑟 = (ΠS,𝑟, I−ΠS,𝑟) on 𝒱 ⊗ 𝒜 ⊗ 𝒵 ⊗ℳ where ΠS,𝑟 := I𝒱 ⊗ |Sim𝑟⟩⟨Sim𝑟|𝒜,𝒵,ℳ.
The idea behind the C = (ΠC, I−ΠC) measurement is the same as before: it measures whether
the malicious verifier 𝑉 * returns a valid opening when run on the challenge 𝒜. Note that C acts as
identity on 𝒵,ℳ.

The next steps of the quantum simulator are a direct analogue of the corresponding steps in
the classical simulator:

2*. Initialize 𝒜⊗𝒵 ⊗ℳ to |Sim0⟩.

3*. Measure |𝜓⟩𝒱 ⊗ |𝑃 ⟩𝒜,𝒵,ℳ with C. If the outcome of C is 0 (the opening is invalid), terminate
the simulation at this step: measure 𝒜 to obtain 𝑎′, compute and measure the verifier’s
response (𝑟′, 𝜔′) and return (ck, com, 𝑎′, (𝑟′, 𝜔′), 𝑧 = ⊥) along with 𝒱. If the outcome of C is
1, we will have to rewind. First, compute the verifier’s response and measure it to obtain 𝑟′.

When the opening is invalid (C outputs 0), the SHVZK guarantee informally implies that these
steps computationally simulate the view of 𝑉 *.

The hard case is when the opening is valid (C outputs 1). At this stage of the simulation, the
state on 𝒱 ⊗ 𝒜 ⊗ 𝒵 is ΠC(|𝜓⟩𝒱 |Sim0⟩𝒜,𝒵) (up to normalization). Intuitively, we want to “swap”
|Sim0⟩𝒜,𝒵,ℳ for |Sim𝑟′⟩𝒜,𝒵,ℳ, but the application of ΠC has entangled the 𝒜 register with 𝒱. We
will therefore apply an operation to disentangle these registers, then swap |Sim0⟩ for |Sim𝑟′⟩, and
then “undo” the disentangling operation. We do this by defining a unitary 𝑈 that is the coherent
implementation of the following variable-length computation on 𝒱 ⊗ 𝒜 ⊗ 𝒵 ⊗ℳ ⊗ ℛ: measure
ℛ to obtain 𝑟, and then run a variable-length TransformC,S𝑟 on 𝒱 ⊗ 𝒜 ⊗ 𝒵 ⊗ℳ.25 Recall that
implementing a variable-length computation coherently requires additional ancilla registers𝒲,ℬ,𝒬

25The register ℛ is required for the definition of 𝑈 and should not be confused with the sub-register of 𝒱 that we
measure to obtain the verifier’s response.

30

(see Section 1.3); we will suppress these registers for this overview, but we emphasize that they
must be all be initialized to |0⟩.

The simulator then continues as follows.

4*. Run the following steps:

(a) Initialize ℛ to |0⟩ and apply 𝑈 to ΠC(|𝜓⟩𝒱 |Sim0⟩𝒜,𝒵,ℳ)⊗ |0⟩ℛ. On 𝒱 ⊗𝒜⊗𝒵 ⊗ℳ,
this maps image(ΠC) to image(ΠS,0), which yields a state of the form |𝜓′⟩𝒱 |Sim0⟩𝒜,𝒵,ℳ.
Importantly, this (carefully!) breaks the entanglement between 𝒱 and 𝒜.

(b) Now the simulator can easily swap |Sim0⟩ out for |Sim𝑟′⟩.
(c) Finally, the simulator changes the ℛ register from |0⟩ℛ to |𝑟′⟩ℛ, and then applies 𝑈 †

and traces out ℛ. This step maps the state on back from image(ΠS,𝑟′) to image(ΠC).

5*. Measure 𝒜 to obtain 𝑎, compute and measure the verifier’s response (𝑟, 𝜔), measure 𝒵 to
obtain 𝑧, and output (ck, com, 𝑎, (𝑟, 𝜔), 𝑧) along with 𝒱.

This simulator can be written as an EQPT𝑐 computation, but we defer the details of this to our
full proof (Section 13). For this overview, we will focus on proving the simulation guarantee.

Inspired by classical proof, we prove that our simulator produces the correct view for 𝑉 * by
considering two hybrid simulators. To describe the hybrid simulators, we define states |𝑃 ⟩ and
|𝑃𝑟⟩ for any 𝑟 ∈ 𝑅 corresponding to responses of the honest prover:

• Let |𝑃 ⟩𝒜,𝒵,ℳ be the state from running the honest prover 𝑃𝑥,𝑤 on a uniform superposition of
random coins 𝜇 to generate a first message 𝑃𝑥,𝑤(𝜇), i.e., |𝑃 ⟩𝒜,𝒵,ℳ = ∑︀

𝜇 |𝑃𝑥,𝑤(𝜇)⟩𝒜 |0⟩𝒵 |𝜇⟩ℳ
• For any 𝑟 ∈ 𝑅, let |𝑃𝑟⟩ be the same as |𝑃 ⟩𝒜,𝒵,ℳ, except 𝒵 additionally contains the honest

prover’s response to 𝑟, i.e., |𝑃𝑟⟩𝒜,𝒵,ℳ = ∑︀
𝜇 |𝑃𝑥,𝑤(𝜇)⟩𝒜 |𝑃𝑥,𝑤(𝑟;𝜇)⟩𝒵 |𝜇⟩ℳ

The hybrid simulators are essentially quantum versions of the classical ones:

• The first hybrid simulator behaves the same as the original simulator except that every-
where the simulator uses |Sim0⟩, the hybrid simulator uses |𝑃 ⟩ instead. The amplification
in Step 4*(𝑎) is now onto image(|𝑃 ⟩⟨𝑃 |) rather than image(S0). Moreover, in Step 4*𝑏, the
simulator swaps |𝑃 ⟩ out for |Sim𝑟′⟩.

• The second hybrid simulator is the same as the first, except every appearance of |Sim𝑟′⟩ is
replaced with |𝑃𝑟′⟩. In particular, in Step 4*(𝑏), the simulator swaps |𝑃 ⟩ out for |𝑃𝑟′⟩. The
(inverse) amplification in Step 4*(𝑐) is now from image(|𝑃𝑟′⟩⟨𝑃𝑟′ |) onto image(ΠC).

Proving indistinguishability of these hybrids requires some care. Intuitively, we want to invoke
the SHVZK property to claim that |Sim0⟩ and |𝑃 ⟩ are indistinguishable given just the reduced
density matrices on the 𝒜 register (for the first hybrid) and that |Sim𝑟′⟩ and |𝑃𝑟′⟩ are indistin-
guishable given just the reduced density matrices on 𝒜⊗ 𝒵 (for the second hybrid). However, we
have to ensure that the application of Transform — which makes use of projections onto these states
— does not make this distinguishing task any easier.

We resolve this by proving a general lemma (Lemma 13.1) about quantum computational indis-
tinguishability that may be of independent interest, which we briefly elaborate on here. Consider
the states |𝜏𝑏⟩ := ∑︀

𝜇 |𝜇⟩𝒳 |𝐷𝑏(𝜇)⟩𝒴 where 𝐷0, 𝐷1 are computationally indistinguishable classi-
cal distributions with randomness 𝜇. If we are only given access to 𝒴, then distinguishing |𝜏0⟩

31

from |𝜏1⟩ is clearly hard (since Tr𝒳 (|𝜏𝑏⟩⟨𝜏𝑏|) is a random classical sample from 𝐷𝑏). Lemma 13.1
strengthens this claim: it states that guessing 𝑏 remains hard even given an oracle implementing
the corresponding binary-outcome measurement

(︁
|𝜏𝑏⟩⟨𝜏𝑏|𝒳 ,𝒴 , I− |𝜏𝑏⟩⟨𝜏𝑏|𝒳 ,𝒴

)︁
.

By combining this lemma with the fact that our Transform procedure can always be truncated
(in a further hybrid argument) to have strict poly(𝜆, 1/𝜀)-runtime with 𝜀-accuracy, we can prove
the desired indistinguishability claims.

From the naïve simulator to the full simulator. The problem with both the classical and
quantum naïve simulators presented above is that their expected runtime is not polynomial. The
issue is conceptually the same as in Section 2.3.7. Consider a malicious verifier 𝑉 * that gives a
valid response with negligible probability 𝑝 when run on 𝑎 sampled as (𝑎, 𝑧)← SHVZK.Sim(0), and
succeeds with probability 𝑝 − negl when run on 𝑎 sampled as (𝑎, 𝑧) ← SHVZK.Sim(𝑟). Then the
expected running time is 𝑝

𝑝−negl , which can be unbounded for small 𝑝.
The solution described in [GK96] is therefore to estimate the running time of the rewinding step

before making the computational switch. That is, if the simulator obtains a valid response before
the rewinding step, then it keeps running the 𝑉 * on samples from SHVZK.Sim(0) until it obtains 𝜆
additional valid responses. This gives the simulator an accurate estimate of the success probability
of 𝑉 *, which it uses to bound the running time of the subsequent rewinding step.

We give a quantum simulator in EQPT𝑐 for the [GK96] protocol that implements the analogous
quantum version of this estimation trick. As in Section 2.3.7, the idea is to first compute an upper
bound on the runtime of the Transform step (equivalently, a lower bound on the singular values)
after measuring C in Step 3* before measuring 𝑟. This estimate is computed using a variable-
length EstimateS0,C procedure, and since the Transform step has now been restricted to run in fixed
polynomial time, we achieve the desired 𝑝 · 1/𝑝 = 1 cancellation in the expected running time.

Implementing this properly requires several tweaks to our simulator. In particular, the simula-
tor no longer measures the verifier’s challenge 𝑟′ directly in Step 3*; recording 𝑟′ is now delegated
to 𝑈 , since this step must be performed “in between” Estimate and Transform. That is, we must
modify 𝑈 so that instead of just performing (a coherent implementation of) Transform, it runs the
following steps coherently: (1) perform a variable-length Estimate, where Estimate is parameter-
ized by the same projectors as Transform (2) compute and measure the verifier’s response (3) run
Transform using the time bound computed from Estimate. We defer further details to the full proof
(Section 13). We remark that just as in Section 2.3.7, the negl(𝜆) error incurred by the collapsing
measurement moves into the correctness error of the simulation.

2.5 Related Work

Post-Quantum Zero-Knowledge. The first construction of a zero-knowledge protocol secure
against quantum adversaries is due to Watrous [Wat06]. Roughly speaking, [Wat06] shows that
“partial simulators” that succeed with an inverse polynomial probability that is independent of
the verifier state can be extended to full post-quantum zero-knowledge simulators. This technique
handles sequential repetitions of classical Σ-protocols and has been used as a subroutine in other
contexts (e.g., [BS20, BCKM21, CCY21, ACL21]), but its applicability is limited to somewhat spe-
cial situations. Nevertheless, most prior post-quantum zero-knowledge results have relied crucially
on the [Wat06] technique.

[BS20, AL20] recently introduced a beautiful non-black-box technique that, in particular, achieves

32

constant-round zero knowledge arguments for NP with strict polynomial time simulation [BS20].
As discussed above, the use of non-black-box techniques is necessary to achieve strict polynomial
time simulation in the classical [BL02] and quantum [CCLY21b] settings (and in the quantum
setting this extends to EQPT𝑚 simulation).

Finally, recent work [CCY21] showed that the Goldreich–Kahan protocol achieves post-quantum
𝜀-zero knowledge. This is closely related to our Theorem 1.4, and so we present a detailed compar-
ison below.

Comparison with [CCY21]. Post-quantum 𝜀-zero-knowledge of the Goldreich–Kahan protocol
was analyzed previously in [CCY21]. Our simulation strategy for Theorem 1.4 is related to that
of [CCY21] in that the two simulators both consider the Jordan decomposition for essentially the
same pair of projectors, but the two simulators are otherwise quite different.

At a high level, [CCY21] constructs a (highly non-trivial) quantum analogue of the following
classical simulator: given error parameter 𝜀, repeat poly(1/𝜀) times: sample 𝑎 ← Sim(0) and run
𝑉 * on 𝑎. If 𝑉 * ever opens correctly, record its response 𝑟. Then, run a single execution of the
protocol using (𝑎, 𝑧)← Sim(𝑟) and output the result.

More concretely, the [CCY21] simulator first attempts to extract the verifier’s challenge 𝑟 in
poly(1/𝜀) time, and then attempts to generate an accepting transcript in a single final interaction
with the verifier. However, if the verifier aborts in this final interaction, the simulation fails; this is
roughly because successfully extracting 𝑟 skews the verifier’s state towards not aborting. To obtain a
full simulator, they use an idea from [BS20]: (1) design a “partial simulator” that randomly guesses
whether the verifier will abort in its final invocation, then achieves 𝜀-simulation conditioned on a
correct guess; (2) apply [Wat06]-rewinding to “amplify” onto executions where the guess is correct.

It is natural to ask whether the above simulation strategy would have sufficed to prove Theo-
rem 1.4 (instead of writing down a new simulator). We remark that this is unlikely; their simulator
seems to be tailored to 𝜀-ZK and, moreover, does not address what [GK96] describe as the main
technical challenge in the classical setting: handling verifiers that abort with all but negligible
probability. In more detail:

• Their non-aborting simulator (like the classical analogue above) always tries to extract 𝑟.
To achieve negligible simulation error, this extraction must succeed with all but negligible
probability for any adversary that with inverse polynomial probability does not abort. This
would require that the simulator run in superpolynomial time.
Our simulator, as well as essentially all classical black-box ZK simulators, address this issue
by first measuring whether the verifier aborts, and then only proceeding with the simulation
in the non-aborting case.

• By Markov’s inequality and the gentle measurement lemma, expected polynomial time sim-
ulation implies 𝜀-simulation in time 𝑂(1/𝜀2). As a function of 𝜀, the [CCLY21b] simulator
runs in some large polynomial time (as currently written, they appear to achieve runtime
1/𝜀6, although it is likely unoptimized). Thus, even a hypothetical variable-runtime version
of their simulator would not be expected polynomial time. In particular, the [Wat06, BS20]
“guessing” compiler appears to cause a quadratic blowup in the runtime of their non-aborting
simulator (due to a required smaller accuracy parameter).

• The [Wat06, BS20] “guessing” compiler adds an additional layer of complexity onto the
[CCY21] simulator that is incompatible with the EQPT𝑐 definition in the sense that given

33

an EQPT𝑐 partial simulator, the [Wat06, BS20] “guessing” compiler would not produce a
procedure in EQPT𝑐.

We also achieve some improvements over [CCY21] unrelated to the simulation accuracy:

• [CCY21] require that the underlying sigma protocol satisfies a delayed witness property,
which is not required in the classical setting. Our “projector indistinguishability” lemma
(Lemma 13.1; see also Section 2.4) enables us to handle arbitrary sigma protocols.

• [CCY21] require that the verifier commit to the sigma protocol challenge 𝑟 using a strong
collapse-binding commitment. Using a new proof technique (see Section 4), we show that
standard collapse-binding suffices.

Post-Quantum Extraction. As previously discussed, there is a line of prior work [Unr12,
Unr16b, CMSZ21] that achieves forms of post-quantum extraction that do not preserve the prover
state. Below we briefly discuss prior work on state-preserving post-quantum extraction.

[BS20] directly constructs a state-preserving extractable commitment with non-black-box extrac-
tion in order to achieve their zero-knowledge result. Their construction makes use of post-quantum
fully homomorphic encryption (for quantum circuits). Their extractor homomorphically evaluates
the adversarial sender.

[BS20] also shows that constant-round zero-knowledge arguments and post-quantum secure
function evaluation generically imply constant-round state-preserving extractable commitments.
Combining this with [Wat06] yields a polynomial-round state-preserving extractable commitment
scheme. Since this result also holds in the “𝜀 setting,” plugging in [CCY21] implies a constant-
round 𝜀 state-preserving extractable commitment, although this protocol would have many rounds
and is only privately verifiable.

All of the above results achieve computationally state-preserving extraction. [ACL21] con-
structs a polynomial-round state-preserving extractable commitment scheme with statistical state
preservation. They use the [Wat06] simulation technique as the core of their extraction procedure,
applied to a new construction where statistical state preservation is possible.

Comparison with [CCLY21a]. In concurrent work, Chia et al. give constructions of state-
preserving extractable commitments and arguments of knowledge for NP and QMA with 𝜀-guarantees.
Their results are incomparable with ours. In particular, we focus on:

• Achieving negligible error in extraction and simulation, and
• Analyzing existing protocols with minimal modification.

On the other hand, the focus in [CCLY21a] is on:

• Proving existential results (“there exist constant-round protocols satisfying...”), and
• Minimizing the cryptographic assumptions required.

In more detail, their protocols make only black-box use of (polynomially secure) post-quantum
one way functions (PQ-OWFs) and achieve 𝜀-extraction and 𝜀-simulation in strict QPT, whereas
ours rely on (e.g.) collapsing hash functions or superpolynomially secure PQ-OWFs and achieve
negligible-error extraction (in EQPT𝑚) and simulation (in EQPT𝑐).

34

Another interesting point of comparison is that both this work and [CCLY21a] encounter the
same “overextraction” problem, where an adversary in a parallel-repeated protocol can put different
witnesses into different “slots” and may then detect which witness the extractor obtained. We
resolve this issue (where it arises) by using a commit-and-prove based compiler, which leads to
non-black-box use of cryptography and superpolynomial assumptions, but minimizes modification
of the protocols and preserves round complexity (3 or 4, depending on the application). [CCLY21a]
resolve this instead using verifiable secret sharing, which increases round complexity but makes
black-box use of standard PQ-OWFs. It remains an open question to determine whether there
exist 𝜀-secure protocols with minimal round complexity from black-box use of standard PQ-OWFs,
and whether there exist constant-round EQPT𝑐-simulatable protocols that make black-box use of
one-way functions.

Finally, we note that if one allows for arbitrary constant round complexity, our techniques
imply EQPT𝑐-extractable commitments based on polynomially-secure one-way functions (that is,
complexity leveraging is not necessary if we allow for additional rounds). This can be achieved in
the following scheme (which is a simple modification of other constructions in this work):

• The committer sends two (Naor) commitments, 𝑐1 and 𝑐2, to the message 𝑚.

• The committer proves via an 𝜀-zero knowledge argument [CCY21] that 𝑐1 and 𝑐2 are com-
mitments to the same message.

• The committer sends a post-quantum WI argument of knowledge of an opening to one of 𝑐1, 𝑐2
(without disclosing which one). We assume that this AoK has EQPT𝑚-guaranteed extraction.

The fact that this scheme is a (state-preserving) extractable commitment follows from the soundness
of the 𝜀-ZK argument and the EQPT𝑚-guaranteed extraction of the AoK (very similarly to our
commit-and-prove based compiler). Specifically, the overall extractor verifies the 𝜀-ZK argument
and then coherently runs the AoK-guaranteed extractor. A (computational) distinguisher between
the real and simulated post-execution states then constitutes an attack on the soundness of the 𝜀-ZK
argument (as 𝑐1 and 𝑐2 will necessarily encode different messages). The hiding of the commitment
follows from the 𝜀-ZK of the first argument system, the WI of the second argument system, and
the hiding of the Naor commitments.

Thus, we append (non-concurrently, after the appearance of [CCLY21a]) the following corollary
of our work:

Corollary 2.7. Assuming post-quantum one-way functions, there exists a constant-round EQPT𝑐-
extractable commitment scheme and a constant-round WI argument of knowledge for NP with
EQPT𝑐 state-preserving extraction.

We thank Nir Bitansky for discussion of this implication.

3 Preliminaries
The security parameter is denoted by 𝜆. A function 𝑓 : N → [0, 1] is negligible, denoted 𝑓(𝜆) =
negl(𝜆), if it decreases faster than the inverse of any polynomial. A probability is overwhelming
if is at least 1 − negl(𝜆) for a negligible function negl(𝜆). For any positive integer 𝑛, let [𝑛] :=
{1, 2, . . . , 𝑛}. For a set 𝑅, we write 𝑟 ← 𝑅 to denote a uniformly random sample 𝑟 drawn from 𝑅.

35

3.1 Quantum Preliminaries and Notation

Quantum information. A (pure) quantum state is a vector |𝜓⟩ in a complex Hilbert space ℋ
with ‖ |𝜓⟩‖ = 1; in this work, ℋ is finite-dimensional. We denote by S(ℋ) the space of Hermitian
operators on ℋ. A density matrix is a positive semi-definite operator 𝜌 ∈ S(ℋ) with Tr(𝜌) = 1. A
density matrix represents a probabilistic mixture of pure states (a mixed state); the density matrix
corresponding to the pure state |𝜓⟩ is |𝜓⟩⟨𝜓|. Typically we divide a Hilbert space into registers,
e.g. ℋ = ℋ1 ⊗ℋ2. We sometimes write, e.g., 𝜌ℋ1 to specify that 𝜌 ∈ S(ℋ1).

A unitary operation is a complex square matrix 𝑈 such that 𝑈𝑈 † = I. The operation 𝑈
transforms the pure state |𝜓⟩ to the pure state 𝑈 |𝜓⟩, and the density matrix 𝜌 to the density
matrix 𝑈𝜌𝑈 †.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. A projective measurement
is a collection of projectors P = (Π𝑖)𝑖∈𝑆 such that ∑︀𝑖∈𝑆 Π𝑖 = I. This implies that Π𝑖Π𝑗 = 0 for
distinct 𝑖 and 𝑗 in 𝑆. The application of P to a pure state |𝜓⟩ yields outcome 𝑖 ∈ 𝑆 with probability
𝑝𝑖 = ‖Π𝑖 |𝜓⟩‖2; in this case the post-measurement state is |𝜓𝑖⟩ = Π𝑖 |𝜓⟩ /

√
𝑝𝑖. We refer to the post-

measurement state Π𝑖 |𝜓⟩ /
√
𝑝𝑖 as the result of applying P to |𝜓⟩ and post-selecting (conditioning)

on outcome 𝑖. A state |𝜓⟩ is an eigenstate of P if it is an eigenstate of every Π𝑖.
A two-outcome projective measurement is called a binary projective measurement, and is written

as P = (Π, I−Π), where Π is associated with the outcome 1, and I−Π with the outcome 0.
General (non-unitary) evolution of a quantum state can be represented via a completely-positive

trace-preserving (CPTP) map 𝑇 : S(ℋ) → S(ℋ′). We omit the precise definition of these maps in
this work; we only use the facts that they are trace-preserving (for every 𝜌 ∈ S(ℋ) it holds that
Tr(𝑇 (𝜌)) = Tr(𝜌)) and linear.

For every CPTP map 𝑇 : S(ℋ) → S(ℋ) there exists a unitary dilation 𝑈 that operates on an
expanded Hilbert space ℋ⊗𝒦, so that 𝑇 (𝜌) = Tr𝒦(𝑈(𝜌⊗ |0⟩⟨0|𝒦)𝑈 †). This is not unique; however,
if 𝑇 is described as a circuit then there is a dilation 𝑈𝑇 represented by a circuit of size 𝑂(|𝑇 |).

For Hilbert spaces 𝒜,ℬ the partial trace over ℬ is the unique CPTP map Trℬ : S(𝒜⊗ℬ)→ S(𝒜)
such that Trℬ(𝜌𝐴 ⊗ 𝜌𝐵) = Tr(𝜌𝐵)𝜌𝐴 for every 𝜌𝐴 ∈ S(𝒜) and 𝜌𝐵 ∈ S(ℬ).

A general measurement is a CPTP map M : S(ℋ) → S(ℋ ⊗ 𝒪), where 𝒪 is an ancilla reg-
ister holding a classical outcome. Specifically, given measurement operators {𝑀𝑖}𝑁𝑖=1 such that∑︀𝑁
𝑖=1𝑀𝑖𝑀

†
𝑖 = I and a basis { |𝑖⟩}𝑁𝑖=1 for 𝒪, M(𝜌) := ∑︀𝑁

𝑖=1(𝑀𝑖𝜌𝑀
†
𝑖 ⊗ |𝑖⟩⟨𝑖|

𝒪). We sometimes im-
plicitly discard the outcome register. A projective measurement is a general measurement where
the 𝑀𝑖 are projectors. A measurement induces a probability distribution over its outcomes given
by Pr[𝑖] = Tr

(︁
|𝑖⟩⟨𝑖|𝒪M(𝜌)

)︁
; we denote sampling from this distribution by 𝑖← M(𝜌).

The trace distance between states 𝜌,𝜎, denoted 𝑑(𝜌,𝜎), is defined as 1
2 Tr

(︁√︀
(𝜌− 𝜎)2

)︁
. The

trace distance is contractive under CPTP maps (for any CPTP map 𝑇 , 𝑑(𝑇 (𝜌), 𝑇 (𝜎)) ≤ 𝑑(𝜌,𝜎)).
It follows that for any measurement M, the statistical distance between the distributions M(𝜌) and
M(𝜎) is bounded by 𝑑(𝜌,𝜎). We have the following gentle measurement lemma, which bounds how
much a state is disturbed by applying a measurement whose outcome is almost certain.

Lemma 3.1 (Gentle Measurement [Win99]). Let 𝜌 ∈ S(ℋ) and P = (Π, I−Π) be a binary projec-
tive measurement on ℋ such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ := Π𝜌Π
Tr(Π𝜌)

36

be the state after applying P to 𝜌 and post-selecting on obtaining outcome 1. Then

𝑑(𝜌,𝜌′) ≤ 2
√
𝛿.

Definition 3.2. A real-valued measurement M on ℋ is (𝜀, 𝛿)-almost-projective if applying M
twice in a row to any state 𝜌 ∈ S(ℋ) produces measurement outcomes 𝑝, 𝑝′ where

Pr
[︀⃒⃒
𝑝− 𝑝′

⃒⃒
≤ 𝜀

]︀
≥ 1− 𝛿.

Quantum algorithms. In this work, a quantum adversary is a family of quantum circuits
{Adv𝜆}𝜆∈N represented classically using some standard universal gate set. A quantum adversary
is polynomial-size if there exists a polynomial 𝑝 and 𝜆0 ∈ N such that for all 𝜆 > 𝜆0 it holds that
|Adv𝜆| ≤ 𝑝(𝜆) (i.e., quantum adversaries have classical non-uniform advice).

3.2 Black-Box Access to Quantum Algorithms

Let 𝐴 be a polynomial-time quantum algorithm with internal state 𝜌 ∈ D(ℋ) whose behavior is
specified by a unitary 𝑈 on 𝒳 ⊗ℋ. A quantum oracle algorithm 𝑆𝐴 with black-box access to (𝐴,𝜌)
is restricted to acting on ℋ (which is initially set 𝜌) by applying the unitary 𝑈 or 𝑈 †, but can
freely manipulate 𝒳 and an arbitrary external register 𝒴.

Black-box access models sometimes permit the 𝑈 and 𝑈 † gates to be controlled on any external
registers (i.e., any registers other than the registers 𝒵 ⊗ ℋ to which 𝑈 is applied). We note that
none of the black-box algorithms in this work require controlled access to 𝑈,𝑈 †. This is because
our black-box use of 𝑈,𝑈 † takes the form 𝑈 †(Iℋ ⊗ 𝑉𝒳 ,𝒴1)𝑈 where 𝑉 is a unitary acting only on
𝒳 ⊗ 𝒴1, and we can replace 𝑈,𝑈 † controlled on 𝒴2, with 𝑉 controlled on 𝒴2.

Algorithms with classical input and output. We also consider the special case of quantum
algorithms that take classical “challenge” 𝑟 and produce classical “response” 𝑧. Writing 𝒳 = ℛ⊗𝒵,
an algorithm of this form is specified by a unitary 𝑈 on ℛ⊗𝒵 ⊗ℋ of the form ∑︀

𝑟 |𝑟⟩⟨𝑟|ℛ⊗𝑈
(𝑟)
𝒵,ℋ.

For example, 𝑆𝐴 can run 𝐴 on a superposition of inputs by instantiating ℛ⊗𝒵 to ∑︀𝑟 |𝑟⟩ℛ⊗ |0⟩𝒵
and then applying 𝑈 .

We note that this definition is consistent with the notions of interactive quantum machines
and oracle access to an interactive quantum machine used in e.g. [Unr12] and other works on
post-quantum zero-knowledge.

We remark that our formalism is tailored to the two-message challenge-response setting. While
the protocols we analyze in this paper will have more than two messages of interaction, our analysis
will typically center around two particular messages in the middle of a longer execution, and 𝜌 will
be the intermediate state of the interactive algorithm right before the next challenge is sent. We
also point out that the unitary 𝑈 can be treated as independent of the (classical) protocol transcript
before challenge 𝑟 is sent, since we can assume this transcript is saved in 𝜌.

3.3 Jordan’s Lemma

We state Jordan’s lemma and its relation to the singular value decomposition.

Lemma 3.3 ([Jor75]). For any two Hermitian projectors ΠA and ΠB on a Hilbert space ℋ, there
exists an orthogonal decomposition of ℋ = ⨁︀

𝑗 𝒮𝑗 into one-dimensional and two-dimensional sub-
spaces {𝒮𝑗}𝑗 (the Jordan subspaces), where each 𝒮𝑗 is invariant under both ΠA and ΠB. Moreover:

37

• in each one-dimensional space, ΠA and ΠB act as identity or rank-zero projectors; and
• in each two-dimensional subspace 𝒮𝑗, ΠA and ΠB are rank-one projectors. In particular, there

exist distinct orthogonal bases { |𝑣𝑗,1⟩ , |𝑣𝑗,0⟩} and { |𝑤𝑗,1⟩ , |𝑤𝑗,0⟩} for 𝒮𝑗 such that ΠA projects
onto |𝑣𝑗,1⟩ and ΠB projects onto |𝑤𝑗,1⟩.

A simple proof of Jordan’s lemma can be found in [Reg06].
For each 𝑗, the vectors |𝑣𝑗,1⟩ and |𝑤𝑗,1⟩ are corresponding left and right singular vectors of the

matrix ΠAΠB with singular value 𝑠𝑗 = | ⟨𝑣𝑗,1|𝑤𝑗,1⟩ |. The same is true for |𝑣𝑗,0⟩ and |𝑤𝑗,0⟩ with
respect to (I−ΠA)(I−ΠB).

3.4 Commitment Schemes

A commitment scheme consists of a pair of PPT algorithms Gen,Commit with the following prop-
erties.

Statistical/computational hiding. For an adversary Adv, define the experiment ExpAdv
hide(𝜆) as

follows.

1. Adv(1𝜆) sends (ck,𝑚0,𝑚1) to the challenger.
2. The challenger flips a coin 𝑏 ∈ {0, 1} and returns com := Commit(ck,𝑚𝑏) to the adversary.
3. The adversary outputs a bit 𝑏′. The experiment outputs 1 if 𝑏 = 𝑏′.

We say that (Gen,Commit) is statistically (resp. computationally) hiding if for all unbounded (resp.
non-uniform QPT) adversaries Adv,

|Pr
[︁
ExpAdv

hide(𝜆) = 1
]︁
− 1/2| = negl(𝜆) .

Statistical/computational binding. For an adversary Adv, define the experiment ExpAdv
bind(𝜆)

as follows.

1. The challenger generates ck← Gen(1𝜆).
2. Adv(ck) sends (𝑚0, 𝜔0,𝑚1, 𝜔1) to the challenger.
3. The experiment outputs 1 if Commit(ck,𝑚0, 𝜔0) = Commit(ck,𝑚1, 𝜔1).

We say that (Gen,Commit) is statistically (resp. computationally) binding if for all unbounded
(resp. non-uniform QPT) adversaries Adv,

Pr
[︁
ExpAdv

bind(𝜆) = 1
]︁

= negl(𝜆) .

Collapse binding. For an adversary Adv, define the experiment ExpAdv
cl (𝜆) as follows.

1. The challenger generates ck← Gen(1𝜆).
2. Adv(ck) sends a commitment com and a quantum state 𝜌 on registers ℳ⊗𝒲.
3. The challenger flips a coin 𝑏 ∈ {0, 1}. If 𝑏 = 0, the challenger does nothing. Otherwise, the

challenger measures ℳ in the computational basis.
4. The challenger returns registersℳ⊗𝒲 to the adversary, who outputs a bit 𝑏′. The experiment

outputs 1 if 𝑏 = 𝑏′.

38

We say that Adv is valid if measuring the output of Adv(ck) in the computational basis yields, with
probability 1, (com,𝑚, 𝜔) such that Commit(ck,𝑚, 𝜔) = com.

We say that (Gen,Commit) is collapse-binding if for all valid non-uniform QPT adversaries Adv,

|Pr
[︁
ExpAdv

cl (𝜆) = 1
]︁
− 1/2| = negl(𝜆) .

3.5 Preliminaries on Interactive Arguments

An interactive argument for an NP-language 𝐿 consists of a pair of interactive algorithms 𝑃, 𝑉 :

• The prover algorithm 𝑃 is given as input an NP statement 𝑥 and an NP witness 𝑤 for 𝑥.

• The verifier algorithm 𝑉 is given as input an NP statement 𝑥; at the end of the interaction,
it outputs a bit 𝑏 (interpreted as “accept”/“reject”).

The minimal requirement we ask of such a protocol is completeness, which states that when
the honest 𝑃, 𝑉 algorithms are executed on a valid instance-witness pair (𝑥,𝑤), the verifier should
accept with probability 1− negl(𝜆).

We typically consider interactive arguments consisting of either 3 or 4 messages. In many (but
not all) settings we assume that the argument system is public-coin (in the second-to-last round),
meaning that the second-to-last message (or challenge) is a uniformly random string 𝑟 from some
domain. We will use the following notation to denote messages in any such protocol:

• For 4-message public-coin protocols, we use vk to denote the first verifier message.
• We denote the first prover message by 𝑎.
• We denote the verifier challenge by 𝑟.
• We denote the prover response by 𝑧.
• We denote the verification predicate by 𝑉 (vk, 𝑎, 𝑟, 𝑧).

We consider 3-message protocols as a special case of 4-message protocols in which vk = ⊥.
A key property of interactive protocols considered in this work is collapsing (and relaxations

thereof), defined below.

Definition 3.4 (Collapsing Protocol [Unr16b, LZ19, DFMS19]). An interactive protocol (𝑃, 𝑉)
is collapsing if for every polynomial-size interactive quantum adversary 𝐴 (where 𝐴 may have an
arbitrary polynomial-size auxiliary input quantum advice state),⃒⃒⃒

Pr[CollapseExpt(0, 𝐴) = 1]− Pr[CollapseExpt(1, 𝐴) = 1]
⃒⃒⃒
≤ negl(𝜆).

For 𝑏 ∈ {0, 1}, the experiment CollapseExpt(𝑏, 𝐴) is defined as follows:

1. The challenger runs the interaction ⟨𝐴, 𝑉 ⟩ between 𝐴 (acting as a malicious prover) and
the honest verifier 𝑉 , stopping just before the measurement the register 𝒵 containing the
malicious prover’s final message. Let 𝜏 ′ be the transcript up to this point excluding the final
prover message.

2. The challenger applies a unitary 𝑈 to compute the verifier’s decision bit 𝑉 (𝜏 ′,𝒵) onto a fresh
ancilla, measures the ancilla, and then applies 𝑈 †. If the measurement outcome is 0, the
experiment aborts.

39

3. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger measures the 𝒵 register in the
computational basis and discards the result.

4. The challenger returns the 𝒵 register to 𝐴. Finally 𝐴 outputs a bit 𝑏′, which is the output of
the experiment.

Definition 3.4 captures the collapsing property of Kilian’s interactive argument system [Kil92]
(as well as other Σ-protocols that make use of “strongly collapsing commitments” [CCY21]), but
does not accurately capture protocols that make use of commitments satisfying statistical binding
but not “strict binding” [Unr12]. To capture these protocols, we introduce a partial-collapsing
definition.

For a 3 or 4-message interactive protocol (𝑃, 𝑉), let 𝑇 denote the set of transcript prefixes 𝜏pre
(i.e., the first message 𝑎 in a 3-message protocol or the first two messages (vk, 𝑎) in a 4-message
protocol), let 𝑅 denote the set of challenges 𝑟 (the second-to-last message) and let 𝑍 denotes the
set of possible responses 𝑧 (the final message). Informally, such a protocol is partially collapsing
with respect to a function 𝑓 : 𝑇 ×𝑅×𝑍 → {0, 1}* if the prover cannot detect a measurement of 𝑓 .

Definition 3.5 (Partially Collapsing Protocol). Let 𝑓 : 𝑇 ×𝑅×𝑍 → {0, 1}* be a public efficiently
computable function. A 3 or 4-message interactive protocol (𝑃, 𝑉) is partially collapsing with
respect to 𝑓 if for every polynomial-size interactive quantum adversary 𝐴 (where 𝐴 may have an
arbitrary polynomial-size auxiliary input quantum advice state),⃒⃒⃒

Pr[PCollapseExpt(0, 𝑓, 𝐴) = 1]− Pr[PCollapseExpt(1, 𝑓, 𝐴) = 1]
⃒⃒⃒
≤ negl(𝜆).

For 𝑏 ∈ {0, 1}, the experiment PCollapseExpt(𝑏, 𝑓, 𝐴) is defined as follows:

1. The challenger runs the interaction ⟨𝐴, 𝑉 ⟩ between 𝐴 (acting as a malicious prover) and
the honest verifier 𝑉 , stopping just before the measurement the register 𝒵 containing the
malicious prover’s final message. Let (𝜏pre, 𝑟) be the transcript up to this point (i.e., excluding
the final prover message).

2. The challenger applies a unitary 𝑈 to compute the verifier’s decision bit 𝑉 (𝜏 ′,𝒵) onto a fresh
ancilla, measures the ancilla, and then applies 𝑈 †. If the measurement outcome is 0, the
experiment aborts.

3. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger initializes a fresh ancilla 𝒴 to
|0⟩𝒴 , applies the unitary 𝑈𝑓 (acting on 𝒵 ⊗ 𝒴) that computes 𝑓(𝜏pre, 𝑟, ·) on 𝒵 and XORs
the output onto 𝒴, measures 𝒴 and discards the result, and then applies 𝑈 †𝑓 .

4. The challenger returns the 𝒵 register to 𝐴. Finally 𝐴 outputs a bit 𝑏′, which is the output of
the experiment.

Definition 3.5 captures the collapsing property of standard commit-and-open Σ-protocols [GMW86,
Blu86] that make use of statistically binding (or, more generally, standard collapse-binding [Unr16b,
CCY21]) commitments by setting 𝑓 to output the part of 𝑧 corresponding to the committed message
(but not the opening). In some other cases (a subroutine of the [GMW86] graph non-isomorphism
protocol, as well as the [LS91] “reverse Hamiltonicity” Σ-protocol) we will use more complicated
definitions of 𝑓 that measure different pieces of information depending on the challenge 𝑟.

Finally, we recall the definition of special honest-verifier zero knowledge.

40

Definition 3.6 (Special honest-verifier zero knowledge). A 3-message sigma protocol (𝑃Σ, 𝑉Σ) is
special honest verifier zero knowledge (SHVZK) if there exists an algorithm SHVZK.Sim such that
for all (𝑥,𝑤) ∈ R and challenges 𝑟 ∈ 𝑅, the distributions

SHVZK.Sim(𝑥, 𝑟) and (𝑎, 𝑧)← 𝑃Σ(𝑥,𝑤, 𝑟)

are computationally indistinguishable.

4 Standard Collapse-Binding Implies Unique Messages
Recall that the standard collapse-binding security property ensures that if an efficient adversary
produces a superposition of valid message-opening pairs (𝑚,𝜔) to a commitment 𝑐, then it can-
not detect whether a measurement of 𝑚 is performed. There is an apparent deficiency with
this definition as compared to the classical binding definition, which Unruh (implicitly) observes
in [Unr12, Unr16b]: collapse-binding does not seem to imply that an adversary cannot give valid
openings to two different messages if the openings themselves are not measured.

This issue has received relatively little attention, in part because circumventing it turns out
to be fairly easy in many cases by either modifying the underlying protocol, or by simply as-
suming “strong” collapse-binding [CCY21] where the measurement of the message and opening is
undetectable. For example:

• In [Unr12], Unruh introduces the notion of a strict-binding commitment, defined so that
for any commitment 𝑐, there is a unique valid message-opening pair (𝑚,𝜔). Unruh shows
that standard Σ-protocols (such as GMW 3-coloring and Blum Hamiltonicity) are sound
when instantiated with strict-binding commitments, but due to the issue described above, is
unable to prove that these protocols are sound when instantiated with a statistically-binding
commitment.

• In [Unr16b], Unruh gives a generic transformation which converts a classically secure Σ-
protocol into a quantum proof of knowledge by committing to the responses to each challenge
in advance. However, in many Σ-protocols (e.g. [GMW86, Blu86]) the response already
consists of an opening to a commitment; are these protocols secure if the commitment is
collapse-binding?

• This issue also arises in [CCY21], which explicitly asks for a strong collapse-binding commit-
ment to instantiate their Σ-protocols. (They do note that a statistically binding commitment
also suffices via a different argument.)

We believe this is an unsatisfying state of affairs. Collapse-binding is widely accepted as the
quantum analogue of classical computational binding, but as the above examples illustrate, there
are many natural settings where it is unclear whether it can be used as a drop-in replacement
for classically binding commitments. Given this issue, a natural suggestion would be to treat
strong collapse-binding as the quantum analogue of classical binding. However, we suggest that
any definition of quantum computationally binding should at least capture statistically binding
commitments. Statistically binding commitments do not generically satisfy strong collapse-binding,
but are (standard) collapse-binding. Worse, strong collapse-binding is not a “robust” notion: we
can make any commitment scheme lose its strong collapse-binding property by adding a single bit
to the opening that the receiver ignores.

41

In this section, we resolve this difficulty and show that standard collapse-binding generically
implies that an adversary cannot give two valid openings for two different messages, even when the
openings are left unmeasured. This simplifies some of the proofs in this work, and also implies that
strong collapse-binding and strict binding are unnecessary in the above examples.

Towards proving this, we first formalize a natural security property that captures the fact that
a quantum adversary should only be able to open to a unique message.

Let Com = (Gen,Commit) be a non-interactive commitment scheme. Define the following
challenger-adversary interaction ExpAdv

𝑢𝑛𝑖𝑞(𝜆) where Adv = (Adv1,Adv2) is a two-phase adversary.

1. The challenger generates ck← Gen(𝜆).

2. Run Adv1(ck) to output a classical commitment string com, a classical message 𝑚1 and a
superposition of openings on register 𝒲. It also returns its internal state ℋ, which is passed
onto Adv2.

3. The challenger measures whether𝒲 contains a valid opening for 𝑚1 with respect to com and
aborts (and outputs 0) if not.

4. Run Adv2(ck) on (ℋ,𝒲). It outputs another message 𝑚2 and a superposition of openings on
register 𝒲. If 𝑚2 = 𝑚1 then the experiment aborts and outputs 0.

5. The challenger measures whether 𝒲 contains a valid opening for 𝑚2 with respect to com. If
so, the experiment outputs 1, otherwise 0.

Definition 4.1. We say that a commitment is unique-message binding if it can only be opened to
a unique message if for all QPT adversaries Adv,

Pr
[︁
ExpAdv

𝑢𝑛𝑖𝑞(𝜆) = 1
]︁

= negl(𝜆).

Lemma 4.2. Any collapse-binding commitment Com satisfies unique-message binding.

We remark that the unique-message binding definition and this lemma easily extend to in-
teractive collapse-binding commitments. However, we will focus on the non-interactive case for
simplicity. Our proof is reminiscent of the “control qubit” trick used by Unruh in [Unr16a] to prove
that collapse-binding implies a notion called sum-binding.

Proof. Suppose that Adv = (Adv1,Adv2) satisfies Pr
[︁
ExpAdv

𝑢𝑛𝑖𝑞(𝜆) = 1
]︁

= 𝜀(𝜆) = 𝜀. Then we con-
struct an adversary Adv′ that obtains advantage 𝜀/8 in the collapsing game for Com as follows:

1. Upon receiving ck from the challenger, Adv′ does the following:

(a) Run Adv1(ck) to obtain a classical commitment com, a classical message 𝑚1 (on register
ℳ), and registers 𝒲,ℋ.

(b) Measure whether 𝒲 contains a valid opening for 𝑚1 with respect to com; if the opening
is invalid, abort and output a random 𝑏′.26

26To match the syntax of the collapsing game, the “abort” works as follows: Adv′(ck) initializes ℳ⊗𝒲 to some
valid commitment, sends it to the challenger, ignores the registers it gets back, and then outputs a random 𝑏′.

42

(c) Next, prepares an ancilla qubit ℬ in the state |+⟩ℬ and then apply the unitary 𝑈 defined
as

𝑈 = |1⟩⟨1|ℬ ⊗ 𝑈
Adv2
ℋ,ℳ,𝒲 + |0⟩⟨0|ℬ ⊗ Iℋ,ℳ,𝒲 .

where 𝑈Adv2 is a unitary description of Adv2 (the action of Adv2 on ℋ⊗ℳ⊗𝒲 is unitary
without loss of generality). That is, the unitary 𝑈 has two branches of computation: it
does nothing when ℬ = 0, and it runs Adv2 when ℬ = 1.

(d) Next apply the binary projective measurement (Πck,com,𝑚1 , I−Πck,com,𝑚1) where

Πck,com,𝑚1 := |0⟩⟨0|ℬ ⊗ Iℋ,ℳ,𝒲 + |1⟩⟨1|ℬ ⊗ Iℋ ⊗
∑︁

𝑚,𝜔 : �̸�=𝑚1∧
Commit(ck,𝑚,𝜔)=com

|𝑚,𝜔⟩⟨𝑚,𝜔|ℳ,𝒲 .

This measurement checks that after applying 𝑈 , the output of Adv2 (when ℬ = 1) is a
valid message and opening (𝑚,𝜔) where 𝑚 ̸= 𝑚1. If this measurement rejects, abort
and output a random 𝑏′.

(e) Finally, send ℳ⊗𝒲 to the collapsing challenger.

2. When the collapsing challenger returns ℳ⊗𝒲, apply 𝑈 †.

3. Perform the binary projective measurement (Π+, I−Π+) where Π+ := |+⟩⟨+|ℬ ⊗ Iℋ,ℳ,𝒲 . If
the measurement outcome is 1 (corresponding to |+⟩), then Adv′ outputs 𝑏′ = 0 (i.e., guesses
that the collapsing challenger did not measure the message). Otherwise, it outputs 𝑏′ = 1.

We now compute the probability that Adv′ outputs 𝑏′ = 𝑏 for each choice of the collapsing
challenge bit 𝑏.

If 𝑏 = 1, then Adv′ guesses correctly (outputs 𝑏′ = 1) with probability exactly 1/2. This is
because if Adv′ aborts, it outputs 1 with probability 1/2 by definition, and if it does not abort, then
it sends the collapsing challenger ℳ⊗𝒲 where a measurement of the ℳ register will completely
determine the ℬ register. In particular, if the outcome of the ℳ measurement is 𝑚1, ℬ collapses
to |0⟩; otherwise, ℬ collapses to |1⟩. In either case, the probability that the measurement of
(Π+, I−Π+) returns 0 (making Adv′ output 𝑏′ = 1) is exactly 1/2.

We now consider the case 𝑏 = 0. Let 𝜌 = ∑︀
ck,com,𝑚1 𝜌ck,com,𝑚1 +𝜌⊥ be the state onℳ⊗𝒲⊗ℋ

after Step 1b, where 𝜌ck,com,𝑚1 is the (subnormalized) state corresponding to outcomes ck, com,𝑚1
and the outcome “valid” in Step 1b, and 𝜌⊥ is the (subnormalized) state corresponding to the
outcome “invalid” in Step 1b.

Recall that in the case 𝑏 = 0, the collapsing challenger does nothing toℳ⊗𝒲. Thus the effect
of Steps 1c, 1d and 2 is to apply a binary projective measurement

(︁
Π′ck,com,𝑚1

, I−Π′ck,com,𝑚1

)︁
where

Π′ck,com,𝑚1
:= 𝑈 †Πck,com,𝑚1𝑈 . From the description of the experiment, it holds that

Pr
[︀
𝑏′ = 0

]︀
= 1

2 Tr(𝜌⊥) + 1
2

∑︁
ck,com,𝑚1

Tr
(︁
(I−Π′ck,com,𝑚1)(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)

)︁
+

∑︁
ck,com,𝑚1

Tr
(︁
Π+Π′ck,com,𝑚1(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)Π′ck,com,𝑚1

)︁
≥ 1

2 −
1
2

∑︁
ck,com,𝑚1

Tr
(︁
Π′ck,com,𝑚1(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)

)︁

43

+
∑︁

ck,com,𝑚1

Tr(𝜌ck,com,𝑚1)

⎛⎝Tr
(︁
Π′ck,com,𝑚1

(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)
)︁

Tr(𝜌ck,com,𝑚1)

⎞⎠2

≥ 1
2 −

1
2

∑︁
ck,com,𝑚1

Tr
(︁
Π′ck,com,𝑚1(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)

)︁

+

(︁∑︀
ck,com,𝑚1 Tr

(︁
Π′ck,com,𝑚1

(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)
)︁)︁2

∑︀
ck,com,𝑚1 Tr(𝜌ck,com,𝑚1)

where the latter inequality is Jensen, and the former is the following:

Claim 4.3. If ΠA𝜌 = 𝜌 then Tr(ΠAΠB𝜌ΠB) ≥ Tr(ΠB𝜌)2/Tr(𝜌).

Proof. Tr(ΠB𝜌) = Tr(ΠB𝜌ΠA) = Tr(ΠAΠB𝜌) ≤
√︀

Tr(ΠAΠB𝜌ΠBΠA) Tr(𝜌), where the inequality is
by Cauchy-Schwarz.

Let 𝛾 := ∑︀
ck,com,𝑚1 Tr(𝜌ck,com,𝑚1). Observe that∑︀ck,com,𝑚1 Tr

(︁
Π′ck,com,𝑚1

(|+⟩⟨+| ⊗ 𝜌ck,com,𝑚1)
)︁

=
(𝛾 + 𝜀)/2. It follows that

Pr
[︀
𝑏′ = 0

]︀
= 1

2 −
1
4(𝛾 + 𝜀) + 1

4 ·
(𝛾 + 𝜀)2

𝛾
≥ 1

2 + 𝜀

4 .

Thus the overall probability that Adv′ guesses a random 𝑏 correctly in the collapsing experiment
is at least 1/2 + 𝜀(𝜆)/8.

5 Generalized Notions of Special Soundness
Let (𝑃, 𝑉) denote a 3 or 4-message public-coin interactive proof or argument system. Let 𝑇 denote
the set of transcript prefixes 𝜏pre (i.e., the first message in a 3-message protocol or the first two
messages in a 4-message protocol), 𝑅 denotes the set of challenges 𝑟 (the second-to-last message)
and 𝑍 denotes the set of possible responses 𝑧 (the final message). The instance 𝑥 is assumed to be
part of 𝜏pre, which allows us to capture protocols in which the instance is adaptively chosen by the
prover in its first message.

We introduce generalizations of the special soundness property to capturing situations where

1. the special soundness extractor is able to produce a witness given only a function 𝑓(𝑧) of the
response 𝑧, and/or

2. the extractor is only required to succeed (with some 1− negl(𝜆) probability) when the chal-
lenges are sampled from an “admissible distribution.”

The second property is related to the notion of probabilistic special soundness due to [CMSZ21].27

Throughout this section, 𝑘 will be a parameter specifying the number of (partial) transcripts
required to extract.

27A similar (but not identical) definition appears in an older version of [CMSZ21]: https://arxiv.org/pdf/2103.
08140v1.pdf.

44

https://arxiv.org/pdf/2103.08140v1.pdf
https://arxiv.org/pdf/2103.08140v1.pdf

5.1 Generalized Special Soundness Definitions

We first recall the standard definition of 𝑘 special soundness.

Definition 5.1 (𝑘-special soundness). An interactive protocol (𝑃, 𝑉) is 𝑘-special-sound if there
exists an efficient extractor SSExtract : 𝑇 × (𝑅 × 𝑍)𝑘 → {0, 1}* such that given 𝜏pre, (𝑟𝑖, 𝑧𝑖)𝑖∈[𝑘]
where each 𝑟𝑖 is distinct and for each 𝑖, (𝜏pre, 𝑟𝑖, 𝑧𝑖) is an accepting transcript, SSExtract(𝜏pre, 𝑟𝑖, 𝑧𝑖)
outputs a valid witness 𝑤 for the instance 𝑥 with probability 1.

In order to generalize this definition, we consider interactive protocols (𝑃, 𝑉) with a “consis-
tency” predicate 𝑔 : 𝑇 × (𝑅×{0, 1}*)* → {0, 1}. The argument {0, 1}* corresponds to some partial
information 𝑦 about a response 𝑧. The consistency predicate should have the property that if
𝑔(𝜏pre, (𝑟𝑖, 𝑦𝑖)𝑖∈[𝑘]) = 1, then 𝑔(𝜏pre, (𝑟𝑖, 𝑦𝑖)𝑖∈𝐺) = 1 for all subsets 𝐺 ⊂ [𝑘]. For any positive integer
𝑘, we define the set Consistent𝑘 to be the subset of 𝑇 × (𝑅 × {0, 1}*)𝑘 on which 𝑔 outputs 1. We
can extend 𝑘 special soundness to allow the SSExtract algorithm to produce a witness given only
partial information 𝑦𝑖 of the responses 𝑧𝑖 provided that the “partial transcripts” satisfy consistency.

Definition 5.2 ((𝑘, 𝑔)-special soundness). An interactive protocol (𝑃, 𝑉) is (𝑘, 𝑔)-special-sound
if there exists an efficient extractor SSExtract𝑔 : 𝑇 × (𝑅 × {0, 1}*)* → {0, 1} such that given
(𝜏pre, (𝑟𝑖, 𝑦𝑖)𝑖∈[𝑘]) ∈ Consistent𝑘 where each 𝑟𝑖 is distinct and for each 𝑖, SSExtract𝑔(𝜏pre, 𝑟𝑖, 𝑦𝑖) out-
puts a valid witness 𝑤 with probability 1.

Notice that all 𝑘-special-sound protocols with super-polynomial size challenge space are (𝑘, 𝑔)-
probabilistic-special sound for the “trivial” consistency predicate 𝑔 that simply checks (interpreting
𝑦𝑖 = 𝑧𝑖 as a full response) whether all the transcripts are accepting.

Claim 5.3. For any 𝑘-special-sound protocol (𝑃, 𝑉), there exists a consistency predicate 𝑔 such
that (𝑃, 𝑉) is (𝑘, 𝑔)-special-sound.

Proof. Define 𝑔 to output 1 on input 𝜏pre, (𝑟𝑖, 𝑦𝑖)𝑖∈[𝑘] if and only if each (𝜏pre, 𝑟𝑖, 𝑦𝑖) is an accepting
transcript. It follows that the original SSExtract in the special soundness definition satisfies the
requirements of the (𝑘, 𝑔)-special soundness definition.

When the challenge space 𝑅 is super-polynomial-size, we can generalize this definition even
further so that the extractor need not succeed on worst-case 𝑘-tuples of distinct challenges, but
only on 𝑘-tuples sampled from an “admissible distribution.”

Definition 5.4 (𝑄-admissible distribution). A distribution 𝐷𝑘 over 𝑅𝑘 is admissible if there exists
a negligible function negl(𝜆) and a sampling procedure Samp such that 𝐷𝑘 is negl(𝜆)-close to the
output distribution of the following process:

• Samp makes, in expectation, 𝑄(𝜆) classical queries to an oracle 𝑂𝑅 that outputs a uniformly
random challenge 𝑟 ← 𝑅 each time it is queried.

• Samp must produce its outputs as follows. Let 𝑄total be the total number of queries it makes
to 𝑂𝑅. Samp specifies a set {𝑖1, . . . , 𝑖𝑘} ⊆ [𝑄total], and its output is defined to be 𝑟𝑖1 , . . . , 𝑟𝑖𝑘
where 𝑟𝑖 is the 𝑖th output of the uniform sampling oracle 𝑂𝑅.
We stress that Samp may use an arbitrary (e.g., even inefficient) process to select the set
{𝑖1, . . . , 𝑖𝑘}. Moreover, the output challenges 𝑟𝑖1 , . . . , 𝑟𝑖𝑘 do not necessarily have distinct
values (this can occur if the sampling oracle 𝑂𝑅 outputs the same challenge more than once).

45

Definition 5.5 (admissible distribution). A distribution 𝐷𝑘 over 𝑅𝑘 is admissible if there exists
𝑄 = poly(𝜆) such that 𝐷𝑘 is a 𝑄-admissible distribution (Definition 5.4).

Definition 5.6 ((𝑘, 𝑔)-probabilistic special soundness). An interactive protocol (𝑃, 𝑉) with consis-
tency predicate 𝑔 is (𝑘, 𝑔)-probabilistic-special-sound if there exists an efficient extractor SSExtract :
𝑇 × (𝑅 × {0, 1}*)𝑘 → {0, 1}* such that for any distribution 𝐷 supported on Consistent𝑘 whose
marginal distribution on 𝑅𝑘 is admissible,

Pr
(𝜏pre,(𝑟𝑖,𝑦𝑖)𝑖∈[𝑘])←𝐷

[PSSExtract𝑔(𝜏pre, (𝑟𝑖, 𝑦𝑖)𝑖∈[𝑘])→ 𝑤 ∧ 𝑤 is a valid witness for 𝑥] = 1− negl(𝜆)

Note that (𝑘, 𝑔)-probabilistic special soundness (PSS) is only meaningful when the challenge
space 𝑅 has super-polynomial size. When 𝑅 is polynomial, an admissible distribution 𝐷𝑘 can
simply output (𝑟, . . . , 𝑟) (the same challenge repeated 𝑘 times) since there exists a Samp that
simply queries 𝑂𝑅 until it outputs the same challenge 𝑘 times.

However, when |𝑅| is superpolynomial, (𝑘, 𝑔)-PSS is a relaxation of (𝑘, 𝑔)-special soundness.

Claim 5.7. When 𝑅 = 2𝜔(log 𝜆), any (𝑘, 𝑔)-special-sound protocol is also (𝑘, 𝑔)-probabilistic-special-
sound.

Proof. It suffices to prove that the probability any admissible distribution outputs the same chal-
lenge 𝑟 more than once is negl(𝜆). By the definition of an admissible distribution, its output is
negl(𝜆)-close to the output of an arbitrary sampling algorithm that makes an expected poly(𝜆)
number of queries to a uniform sampling oracle 𝑂𝑅 over 𝑅, and then outputs a size-𝑘 subset of the
oracle responses.

Suppose towards a contradiction that there exists constant 𝑐 such that for infinitely many
𝜆 ∈ N, the sampling oracle 𝑂𝑅 outputs a repeated challenge with probability 1/𝜆𝑐. Let 𝑑 be a
constant such that the expected number of queries to the uniform sampling oracle 𝑂𝑅 is 𝑂(𝜆𝑑).
If 0 ≤ 𝑞 ≤ 𝜆𝑑+𝑐+1 oracle queries have already been made, the probability that the next oracle
query allows finding a collision is at most 𝜆𝑑+𝑐+1/|𝑅|. This implies that finding a collision within
𝜆𝑑+𝑐+1 queries is at most 𝜆2𝑑+2𝑐+2/|𝑅|. Thus, to find a collision with probability at least 1/𝜆𝑐,
the number of oracle queries must be at least 𝜆𝑑+𝑐+1 with probability at least 1/𝜆𝑐−𝜆2𝑑+2𝑐+2/|𝑅|,
which implies the expected number of oracle queries is at least 𝜆𝑑+𝑐+1(1/𝜆𝑐 − 𝜆2𝑑+2𝑐+2/|𝑅|) =
𝜆𝑑+1 − 𝜆3𝑑+3𝑐+3/|𝑅|. Since 𝑅 = 2𝜔(log 𝜆), there exists a constant 𝜆0 such that for all 𝜆 > 𝜆0, this
expectation is 𝜆𝑑+1− 𝜆3𝑑+3𝑐+3/|𝑅| > 𝜆𝑑+1− 1. This contradicts our assumption that the expected
number of queries to the sampling oracle is 𝑂(𝜆𝑑).

5.2 A Special Soundness Parallel Repetition Theorem

Although it is well-known that 2-special soundness is preserved under parallel repetition, the situ-
ation is more complicated for generalized special soundness notions (and even 𝑘-special soundness
for larger values of 𝑘). We state and prove a useful theorem about the parallel repetition of special
sound protocols.

Lemma 5.8. If Σ = (𝑃, 𝑉) is a (𝑘, 𝑔)-special-sound protocol, then the 𝑡 = Ω(𝑘2 log2(𝜆))-fold parallel
repetition Σ𝑡 is (𝑘2, 𝑔𝑡)-probabilistic special sound where 𝑔𝑡 outputs 1 if and only (1) the arguments
𝑦𝑖 consist of 𝑡 formally separated components, and (2) 𝑔 outputs 1 on each of the 𝑡 components.

46

Proof. Let Consistent𝑘2 be the set of 𝑘-tuples of shared-prefix partial transcripts of Σ𝑡 on which
𝑔𝑡 outputs 1. Let 𝐷 be a distribution supported on Consistent𝑘2 whose marginal distribution on
(𝑅𝑡)𝑘2 is admissible.

We construct PSSExtract𝑔𝑡 for Σ𝑡 that takes as input

(𝜏pre,𝑗)𝑗∈[𝑡], ((𝑟𝑗,𝑖)𝑗∈[𝑡], (𝑦𝑗,𝑖)𝑗∈[𝑡])𝑖∈[𝑘2] ← 𝐷

and does the following:

1. Look for 𝑗 ∈ [𝑡] such that {𝑟𝑗,𝑖}𝑖∈[𝑘2] consists of 𝑘 distinct challenges. If no such 𝑗 exists,
abort and output ⊥.

2. If such a 𝑗 exists, let 𝐻 be a size-𝑘 subset of [𝑘2] such that {𝑟𝑗,𝑖}𝑖∈𝐻 consists of 𝑘 dis-
tinct challenges, and let SSExtract𝑔 be the (𝑘, 𝑔)-special-soundness extractor for Σ. Run
SSExtract𝑔(𝜏pre,𝑗 , (𝑟𝑗,𝑖, 𝑦𝑗,𝑖)𝑖∈𝐻)→ 𝑤 and output 𝑤.

First, we note that
𝑔(𝜏pre,𝑗 , (𝑟𝑗,𝑖, 𝑦𝑗,𝑖)𝑖∈𝐻) = 1

follows from
𝑔𝑡((𝜏pre,𝑗)𝑗∈[𝑡], ((𝑟𝑗,𝑖)𝑗∈[𝑡], (𝑦𝑗,𝑖)𝑗∈[𝑡])𝑖∈[𝑘2]) = 1.

Thus, it suffices to prove that this extractor aborts with probability negl(𝜆). Define BAD ⊂ 𝑅𝑡𝑘2

to be the set of all 𝑡𝑘2-tuples (𝑟𝑗,𝑖)𝑗∈[𝑡],𝑖∈[𝑘2] such that for all 𝑗 ∈ [𝑡], the 𝑘2-tuple (𝑟𝑗,𝑖)𝑖∈[𝑘2] does
not contain 𝑘 distinct challenges.

Suppose (𝑟𝑗,𝑖)𝑗∈[𝑡],𝑖∈[𝑘2] is sampled uniformly at random from 𝑅𝑡𝑘
2 . Then we have

Pr
(𝑟𝑗,𝑖)𝑗∈[𝑡],𝑖∈[𝑘2]←𝑅𝑡𝑘2

[(𝑟𝑗,𝑖)𝑗∈[𝑡],𝑖∈[𝑘2] ∈ BAD] ≤
(︂
𝑘

𝑒𝑘

)︂𝑡
.

This follows from the fact that for any fixed 𝑗, the probability that (𝑟𝑗,𝑖)𝑖∈[𝑘2] does not contain 𝑘

distinct challenges is at most 𝑘((𝑘 − 1)/𝑘)𝑘2 ≤ 𝑘/𝑒𝑘.
By the definition of an admissible distribution (Definition 5.5), the marginal distribution of

𝐷Σ𝑡 on (𝑅𝑡)𝑘2 is the result of the following process (up to negl(𝜆) statistical distance): make
an expected poly(𝜆) number of classical queries to a uniform sampling oracle 𝑂𝑅𝑡 over 𝑅𝑡, re-
ceiving a set of challenges 𝐴, and then (using an arbitrary procedure) output any size-𝑘2 subset
{(𝑟1,1, . . . , 𝑟𝑡,1), . . . , (𝑟1,𝑘2 , . . . , 𝑟𝑡,𝑘2)} of 𝐴 of 𝑘2 challenges. The extractor aborts if (𝑟𝑗,𝑖)𝑗∈[𝑡],𝑖∈[𝑘2] ∈
BAD.

Let 𝑑 be a constant such that the expected number of queries to the uniform sampling oracle 𝑂𝑅𝑡

is 𝑂(𝜆𝑑). Suppose towards a contradiction that the extractor aborts with non-negligible probability,
i.e., there exists a constant 𝑐 such that for infinitely many 𝜆 ∈ N, the extractor aborts with
probability at least 1/𝜆𝑐. If 0 ≤ 𝑞 ≤ 𝜆𝑑+𝑐+1 oracle queries have already been made, the probability
that the next oracle query allows finding a size-𝑘2 subset of outputs in BAD is at most

(𝜆𝑑+𝑐+1)𝑘2
(︂
𝑘

𝑒𝑘

)︂𝑘2 log2(𝜆)
.

47

Moreover, there exists a constant 𝜆0 such that for all 𝜆 > 𝜆0, this can be upper bounded as

(𝜆𝑑+𝑐+1)𝑘2
(︂
𝑘

𝑒𝑘

)︂𝑘2 log2(𝜆)
<

(︃
2𝑘2+𝑘2 log(𝑘)

𝑒𝑘3

)︃log2(𝜆)

< (1/2)log2(𝜆) = 1/𝜆log(𝜆).

Thus for all 𝜆 > 𝜆0, the probability of finding a size-𝑘2 subset of oracle outputs in BAD within
𝜆𝑑+𝑐+1 oracle queries is at most 𝜆𝑑+𝑐+1/𝜆log(𝜆); this implies that finding a size-𝑘2 subset of oracle
outputs in BAD with probability 1/𝜆𝑐 requires making at least 𝜆𝑑+𝑐+1 oracle queries with probability
at least 1/𝜆𝑐 − 𝜆𝑑+𝑐+1/𝜆log(𝜆). Then for 𝜆 > 𝜆0, the expected number of queries is at least
(𝜆𝑑+𝑐+1)(1/𝜆𝑐 − 𝜆𝑑+𝑐+1/𝜆log(𝜆)) = 𝜆𝑑+1 − 𝜆2𝑑+2𝑐+2/𝜆log(𝜆). Since 𝑐 and 𝑑 are constants, there
exists 𝜆′0 such that for 𝜆 > 𝜆′0, the expected number of queries is at least 𝜆𝑑+1−1. This contradicts
our assumption that the number expected number of queries to the uniform sampling oracle is
𝑂(𝜆𝑑).

5.3 Examples of Probabilistic Special Sound Protocols

We now show that many classical interactive proofs-of-knowledge (or arguments-of-knowledge)
satisfy probabilistic special soundness. It was already noted above that (parallel repetitions of)
standard special sound protocols satisfy the notion. Here, we highlight three other cases: commit-
and-open protocols (where 𝑔 is only given partial transcripts), Kilian’s protocol, and a subroutine
of the [GMW86] graph non-isomorphism protocol.

5.3.1 The “one-out-of-two” graph isomorphism subroutine

In order to prove Theorem 1.2, we consider the following proof-of-knowledge subroutine of the
[GMW86] graph non-isomorphism protocol:

• The subroutine instance is three graphs 𝐺0, 𝐺1, 𝐻. The prover28 wants to prove that there
exists a bit 𝑏 such that 𝐺𝑏 is isomorphic to 𝐻. To do so, they execute a parallel repetition of
the following protocol.

• The prover picks a random permutations 𝜎0, 𝜎1, a random bit 𝑐, and sends (𝐻0 = 𝜎0(𝐺𝑐), 𝐻1 =
𝜎1(𝐺1−𝑐)) to the verifier.

• The verifier sends a random bit 𝑟.

• If 𝑟 = 0, the prover sends (𝑐, 𝜎0, 𝜎1) and the verifier checks that (𝐻0 = 𝜎0(𝐺𝑐), 𝐻1 = 𝜎1(𝐺1−𝑐))
was computed correctly.

• If 𝑟 = 1, the prover sends (𝑐⊕ 𝑏, 𝜎𝑐⊕𝑏𝜋), where 𝜋 is an isomorphism mapping 𝐻 to 𝐺𝑏. The
verifier then checks that (𝜎𝑐⊕𝑏𝜋)𝐻 = 𝐻𝑐⊕𝑏.

In the classical setting, this is generally viewed as a proof of knowledge of (𝑏, 𝜋). However,
we consider it as a proof of knowledge of the bit 𝑏, in the situation where 𝐺0 and 𝐺1 are not
isomorphic. We will formalize this in two different ways: first by showing that the protocol is
(2, 𝑔)-special sound for a natural consistency predicate 𝑔, and then by showing that it is (2, 𝑔′)-PSS

28The [GMW86] verifier acts as the prover in this subroutine.

48

for a more complicated predicate 𝑔′ that we have to use to be compatible with the protocol’s limited
partial collapsing property.

First, we define an (inefficient) consistency predicate 𝑔, which is given as input 𝜏pre an arbitrary
number of pairs (r, c) ∈ {0, 1}𝜆 × {0, 1}𝜆 (rejecting if the input is not of this form). 𝑔 outputs 1 if
the following conditions hold for all ℓ ∈ [𝜆]:

• If 𝑟ℓ = 0, the graphs (𝐻0,ℓ, 𝐻1,ℓ) are isomorphic to (𝐺𝑐ℓ
, 𝐺1−𝑐ℓ

).

• If 𝑟ℓ = 1, the graph 𝐻𝑐ℓ,ℓ is isomorphic to 𝐻.

The following claim then holds immediately by transitivity of graph isomorphism. The extrac-
tor, given (r, c) and (r′, c′) simply chooses an ℓ such that 𝑟ℓ ̸= 𝑟′ℓ and outputs 𝑏 = 𝑐ℓ ⊕ 𝑐′ℓ.

Claim 5.9. If 𝐺0 and 𝐺1 are not isomorphic, then the [GMW86] subroutine satisfies (2, 𝑔)-special
soundness, where the extractor outputs the bit 𝑏.

Finally, we define the predicate 𝑔′ to be a slight modification of 𝑔: for the first pair (𝑟(1), 𝑐(1)),
𝑔′ ignores29 the bits 𝑐(1)

ℓ for 𝑖 such that 𝑟(1)
ℓ = 1. The protocol will then not be (2, 𝑔′)-special sound

(e.g. a first transcript with 𝑟(1) = 1𝜆 would provide no information), it will be (2, 𝑔′)-PSS.

Claim 5.10. If 𝐺0 and 𝐺1 are not isomorphic, then the [GMW86] subroutine satisfies (2, 𝑔′)-PSS,
where the extractor outputs the bit 𝑏.

Proof. This follows from the claim that if (𝑟(1), 𝑟(2)) ∈ {0, 1}𝜆 × {0, 1}𝜆 is sampled according to
an admissible distribution, then with all but negl(𝜆) probability, there exists an index ℓ such that
𝑟

(1)
ℓ = 0 and 𝑟

(2)
ℓ = 1. This can be argued using the same reasoning as in the proof of Claim 5.7,

since the probability that two uniformly random 𝜆-bit strings 𝑟(1) and 𝑟(2) do not have an index
ℓ ∈ [𝜆] such that 𝑟(1)

ℓ = 0 and 𝑟
(2)
ℓ = 1 is negl(𝜆).

5.3.2 Commit-and-Open Protocols

The next class of examples we discuss is that of commit-and-open protocols. In particular, we
are interested in characterizing a special soundness property where the extractor is only given the
opened messages in the prover’s response (and not their openings).

Definition 5.11. Let Com denote a (possibly keyed) non-interactive commitment scheme. A
commit-and-open protocol is a (3 or 4 message) protocol for an NP language 𝐿 of the following
form:

• (Optional first verifier message) If Com is keyed, the verifier samples and sends the commit-
ment key ck for Com.

• The prover, given a witness 𝑤 for some statement 𝑥 ∈ 𝐿, computes a string 𝑦 ∈ {0, 1}𝑁 and
sends a bitwise commitment 𝑎 = Com(ck, 𝑦) to the verifier.

• The verifier samples a string 𝑟 that encodes a subset 𝑆 ⊂ [𝑁] and sends 𝑟 to the prover.

• The prover sends openings to {𝑦𝑖}𝑖∈𝑆 .
29Alternatively, we could define 𝑔′ to require inputs with these 𝑐(1)

ℓ omitted.

49

• The verifier checks that each opening to 𝑦𝑖 (for 𝑖 ∈ 𝑆 is valid and then computes some function
Check(𝑦𝑆) on the opened bits.

We say that such a protocol satisfies “commit-and-open 𝑘-special soundness” if there exists an
extractor Extract(𝑥, 𝑦) satisfying the following property. For every instance 𝑥 and every collection of
𝑘 distinct sets 𝑆1, . . . , 𝑆𝑘 (represented by strings (𝑟1, . . . , 𝑟𝑘), for any string 𝑦 such that Check(𝑦𝑆𝑖) =
1 for all 𝑖, 𝑤 = Extract(𝑥, 𝑦) is a valid NP-witness for 𝑥.

It is not hard to see that the “commit-and-open” 𝑘-special soundness property, combined with
the (computational/statistical) binding of the commitment scheme, implies a standard (computa-
tional/statistical) 𝑘-special soundness property of the Σ-protocol. However, we consider “commit-
and-open 𝑘-special soundness” explicitly in order to satisfy (probabilistic) special soundness with
respect to partial transcripts.

This definition captures extremely common Σ-protocols, such as:

• The [GMW86] Σ-protocol for 3-coloring.

• A slight variant of the [Blu86] Σ-protocol for Hamiltonicity30

• Protocols following the “MPC-in-the-head” paradigm [IKOS07].

To view this in terms of generalized 𝑘-special soundness, define a consistency predicate 𝑔 as
follows: on input (𝜏pre, (𝑟𝑖, {𝑚𝑖,ℓ}ℓ∈𝑆𝑖

)𝑖∈[𝑘]), output 1 if and only if

• For any pair of sets 𝑆𝑖, 𝑆𝑗 (corresponding to challenges 𝑟𝑖, 𝑟𝑗), for any ℓ ∈ 𝑆𝑖 ∩ 𝑆𝑗 , we have
𝑚𝑖,ℓ = 𝑚𝑗,ℓ. That is, the “opened" message subsets are mutually consistent.

• For all 𝑖 ∈ [𝑘], Check({𝑚𝑖,ℓ}ℓ∈𝑆𝑖
) = 1.

. With this formalism in place, the following claim is immediate.

Claim 5.12. Any protocol satisfying commit-and-open 𝑘-special soundness (as described in Defi-
nition 5.11) is (𝑘, 𝑔)-special sound.

5.3.3 Kilian’s Protocol

We briefly recall Kilian’s protocol [Kil92] instantiated with a collapsing hash function:

1. The verifier samples a collapsing hash function ℎ← 𝐻𝜆 and sends ℎ to the prover.

2. Let ℎMerkle be the Merkle hash function corresponding to ℎ. The prover uses 𝑤 to compute
a PCP 𝜋, and then sends rt = ℎMerkle(𝜋) to the verifier.

3. The verifier samples random coins 𝑟 and sends them to the prover.

4. The prover computes the set of the PCP indices 𝑞𝑟 that the PCP verifier with randomness 𝑟
would check. It sends the corresponding values 𝜋[𝑞𝑟] along with the Merkle openings of rt on
the positions 𝑞𝑟.

30In this variant, in addition to committing to a permuted graph 𝜋(𝐺), the prover commits to the permutation 𝜋
and the permuted cycle 𝜋 ∘ 𝜎. On the 0 challenge, the prover additionally opens the commitment to 𝜋, and on the 1
challenge, the prover additionally opens the commitment to 𝜋 ∘ 𝜎.

50

5. Finally, the verifier accepts if all the Merkle openings are valid and 𝑉PCP,𝑥(𝑟, 𝜋[𝑞𝑟]) = 1, i.e.,
the PCP verifier with randomness 𝑟 accepts 𝜋[𝑞𝑟].

We will instantiate Kilian’s protocol with a PCP of knowledge, defined as follows. Let WINPCP,𝑥(𝜋)
denote the probability that 𝜋 is accepted by the PCP verifier.

Definition 5.13 (PCP of Knowledge). A PCP has knowledge error 𝜅PCP(𝜆) if there is an extractor
EPCP such that given any PCP 𝜋 where WINPCP,𝑥(𝜋) > 𝜅PCP, the extractor EPCP(𝜋)→ 𝑤 outputs
a valid witness 𝑤 for 𝑥 with probability 1.

The following claim is due to [CMSZ21], though we have slightly rewritten it to match our
definition of 𝑘-PSS.

Claim 5.14. Kilian’s protocol instantiated with a PCP with knowledge error 𝜅PCP(𝜆) = negl(𝜆)
proof length ℓ(𝜆), and alphabet-size Σ(𝜆) is (𝑘, 𝑔)-PSS where 𝑘 = ℓ log(|Σ|) and the consistency
function 𝑔 outputs 1 on (𝜏pre, (𝑟𝑖, 𝑧𝑖)𝑖∈[𝑘]) if (1) for each 𝑖, the response 𝑧𝑖 contains PCP answers
𝜋[𝑞𝑟𝑖] such that 𝑉PCP(𝑥, 𝑟𝑖, 𝜋[𝑞𝑟𝑖]) = 1, and (2) for every 𝑖 ̸= 𝑖′ the answers 𝜋[𝑞𝑟𝑖] and 𝜋[𝑞𝑟𝑖′] agree
on all indices in 𝑞𝑟𝑖 ∩ 𝑞𝑟𝑖′ .

Proof. Our extractor PSSExtract𝑔 takes as input (𝜏pre, (𝑟𝑖, 𝑧𝑖)𝑖∈[𝑘]) and generates a witness as follows:

1. Generate a PCP string 𝜋 ∈ Σℓ as follows. For each 𝑡 ∈ [ℓ], check if 𝑡 ∈ 𝑞𝑟𝑖 for any 𝑖. If so,
pick such an 𝑖 arbitrarily and set 𝜋[𝑡] according to the value specified in 𝑧𝑖 (the choice of 𝑖
does not matter since the input satisfies consistency with respect to 𝑔). If there is no such 𝑖,
set 𝜋[𝑡] arbitrarily.

2. Run EPCP(𝜋)→ 𝑤 and output 𝑤.

We prove that Step 1 constructs a PCP 𝜋 where WINPCP,𝑥(𝜋) > 𝜅PCP with 1− negl(𝜆) probability
whenever (𝜏pre, (𝑟𝑖, 𝑧𝑖)𝑖∈[𝑘]) is sampled from a distribution supported on Consistent𝑘 (i.e., the subset
of 𝑇 × (𝑅× 𝑍)𝑘 where 𝑔 outputs 1) whose marginal distribution on 𝑅𝑘 is admissible.

It suffices to prove that if (𝑟1, . . . , 𝑟𝑘) are output by Samp (where Samp makes an expected
poly(𝜆) number of queries to a uniform sampling oracle 𝑂𝑅 and then outputs a size-𝑘 subset of
the outputs of 𝑂𝑟) then the probability there exists 𝜋 ∈ Σℓ such that (1) WINPCP,𝑥(𝜋) ≤ 𝜅PCP
and (2) 𝑉PCP,𝑥(𝑟𝑖, 𝜋[𝑞𝑟𝑖]) = 1 for all 𝑖 ∈ [𝑘] is negl(𝜆). This follows by invoking the definition of an
admissible distribution, and observing that any 𝜋 resulting from Step 1 satisfies (2) by construction,
which means that WINPCP,𝑥(𝜋) > 𝜅PCP with probability 1− negl(𝜆).

Let 𝑑 be a constant such that for all 𝜆 > 𝜆𝑑, Samp makes at most 𝜆𝑑 queries to the sampling
oracle 𝑂𝑟. Suppose towards contradiction that there exists a constant 𝑐 such that for infinitely many
𝜆, the probability that Samp outputs (𝑟1, . . . , 𝑟𝑘) such that with probability at least 1/𝜆𝑐, there
exists 𝜋 ∈ Σℓ satisfying conditions (1) and (2) above. Thus, for infinitely many 𝜆, the probability
that Samp makes 2𝜆𝑐+𝑑 queries (or more) to its sampling oracle 𝑂𝑅 is at most 1/(2𝜆𝑐) by Markov’s
inequality. This means that even if Samp makes at most 2𝜆𝑐+𝑑 queries to its sampling oracle, it
still succeeds with probability at least 1/(2𝜆𝑐) for infinitely many 𝜆.

Consider any fixed PCP 𝜋 such that WINPCP,𝑥(𝜋) ≤ 𝜅PCP. The probability that the PCP is
accepting on at least 𝑘 challenges out of 2𝜆𝑐+𝑑 uniformly random challenges is at most

𝜅𝑘PCP ·
(︃

2𝜆𝑐+𝑑
𝑘

)︃
≤ 𝜅𝑘PCP(2𝜆𝑐+𝑑)𝑘.

51

By taking a union bound over all 𝜋 ∈ Σℓ we conclude that given 2𝜆𝑐+𝑑 uniformly random challenges,
the probability there exists a PCP 𝜋 such that WINPCP,𝑥(𝜋) ≤ 𝜅PCP and 𝜋 is accepting on at least
𝑘 of the 2𝜆𝑐+𝑑 challenges is at most

|Σ|ℓ𝜅𝑘PCP(2𝜆𝑐+𝑑)𝑘 = (|Σ| · (2𝜆𝑐+𝑑𝜅PCP)log(|Σ|))ℓ,

where we have plugged in 𝑘 = ℓ log(|Σ|). Since 𝜅PCP = negl(𝜆), there exists 𝜆0 such that
2𝜆𝑐+𝑑𝜅PCP <

1
4 for all 𝜆 > 𝜆0. Then for all 𝜆 > 𝜆0, we have

(|Σ| · (2𝜆𝑐+𝑑𝜅PCP)log(|Σ|))ℓ < 1
|Σ|ℓ

Since the PCP alphabet size is at least |Σ| ≥ 2 and the PCP length is at least ℓ ≥ 𝜆, the probability
that Samp succeeds when restricted to making at at most 2𝜆𝑐+𝑑 queries to 𝑂𝑅 is at most 𝑂(1/2𝜆),
which is a contradiction.

6 Singular Vector Algorithms
In this section we give algorithms for working with states that are singular vectors of a matrix
ΠAΠB, where ΠA,ΠB are projectors. In Section 6.2 we give an algorithm that transforms left
singular vectors to right singular vectors with negligible error. The runtime of the algorithm
depends on the corresponding singular value.

Notation. Throughout this section we will consider the interaction between two binary projective
measurements A = (ΠA, I−ΠA) ,B = (ΠB, I−ΠB).

We consider the matrix ΠAΠB and its singular value decomposition 𝑉 Σ𝑊 †. Recall that 𝑉,𝑊
are unitary and Σ is a diagonal matrix. The columns of 𝑉 (resp. 𝑊) are the left (resp. right)
singular vectors of ΠAΠB, and the entries on the diagonal of Σ are the singular values 𝑠𝑗 . Note
that the singular value decomposition is not in general unique; for the purposes of this section we
fix one arbitrarily.

We denote left (resp. right) singular vectors of ΠAΠB with 𝑠𝑗 > 0 by |𝑣𝑗,1⟩ (resp. |𝑤𝑗,1⟩). Define
𝒮𝑗 := span(|𝑣𝑗,1⟩ , |𝑤𝑗,1⟩). If 𝑠𝑗 < 1, then 𝒮𝑗 is two-dimensional. The 𝒮𝑗 correspond to the Jordan
subspaces of (ΠA,ΠB). As such, we also have |𝑣𝑗,0⟩ , |𝑤𝑗,0⟩ ∈ 𝒮𝑗 . A straightforward calculation
shows that these are left and right singular vectors of (I−ΠA)(I−ΠB) with singular value 𝑠𝑗 . The
Jordan subspace values 𝑝𝑗 are the squares of the corresponding singular values. In our setting it is
more natural to use the squares (since they correspond to probabilities), and so the guarantees in
this section are stated with respect to the squared singular values.

6.1 Fixed-Runtime Algorithms

In this section we recall a selection of algorithms for manipulating singular vectors of ΠAΠB. All of
these algorithms make black-box use of 𝑈A, 𝑈B; we consider their complexity as circuits with 𝑈A, 𝑈B
gates. All of these algorithms take as input some threshold 𝑎 ∈ (0, 1], such that their correctness
guarantee will hold for singular vectors of value at least 𝑎, and their running time is linear in 1/𝑎.

The first algorithm Transform implements a fixed-runtime singular vector transformation, taking
left singular vectors to their corresponding right singular vectors.

52

Theorem 6.1 (Singular vector transformation [GSLW19]). There is a uniform family of circuits
{Transform𝑎,𝛿}𝑎,𝛿∈(0,1] with 𝑈A, 𝑈B gates, of size 𝑂(log(1/𝛿)/

√
𝑎), such that the following holds. Let

|𝑣𝑗,1⟩ be a left singular vector of ΠAΠB with singular value 𝑠𝑗. If 𝑎 ≤ 𝑠2
𝑗 , Transform𝑎,𝛿[A→ B](|𝑣𝑗,1⟩)

outputs the state |𝑤𝑗,1⟩ with probability at least 1 − 𝛿. Moreover, for all 𝑎, 𝒮𝑗 is invariant under
Transform𝑎,𝛿.

The second algorithm Threshold implements a measurement determining, given a threshold 𝑏
and a singular vector with singular value 𝑠𝑗 , whether 𝑠2

𝑗 ≥ 𝑏 or 𝑠2
𝑗 ≤ 𝑏 − 𝜀 (and otherwise has no

guarantee).

Theorem 6.2 (Singular value threshold [GSLW19]). There is an algorithm Threshold which, for
all binary projective measurements A,B, given black-box access to operators 𝑈A, 𝑈B, achieves the
following guarantee. Given 𝛿 > 0, 𝑏 ≥ 𝜀 > 0 and a state |𝑣𝑗,1⟩ which is a left singular vector of
ΠAΠB with singular value 𝑠𝑗:

• if 𝑠2
𝑗 ≥ 𝑏, then Pr

[︁
ThresholdA,B

𝑝,𝜀,𝛿(|𝑣𝑗,1⟩)→ 1
]︁
≥ 1− 𝛿, and

• if 𝑠2
𝑗 ≤ 𝑏− 𝜀, then Pr

[︁
ThresholdA,B

𝑝,𝜀,𝛿(|𝑣𝑗,1⟩)→ 1
]︁
≤ 𝛿.

Moreover, 𝒮𝑗 is invariant under Threshold, and if the outcome is 1 the post-measurement state is
|𝑣𝑗,1⟩. Threshold runs in time 𝑂(log(1/𝛿)

√
𝑏/𝜀).

Next, we describe an algorithm which, with access to 𝑈A, 𝑈B, can “flip” a singular vector state
from image(I−ΠA) to image(ΠA) using ΠB, provided that the singular value is sufficiently far from
both 0 and 1.

Lemma 6.3. Let ΠA,ΠB be projectors. There is an algorithm Flip𝜀[ΠA,ΠB] which, on input a state
|𝑣𝑗,0⟩ that is a left singular vector of ΠAΠB with 𝜀 ≤ 𝑠2

𝑗 ≤ 3/4, outputs the state |𝑣𝑗,1⟩ with probability
1− 𝛿 in time 𝑂(log(1/𝛿)/

√
𝜀). Flip is invariant on the subspace spanned by { |𝑣𝑗,1⟩ , |𝑣𝑗,0⟩}.

Proof. The algorithm operates as follows:
1. Apply A,B in an alternating fashion until either A → 1, B → 1 or 3 log(1/𝛿) measurements

have been applied.
2. If A→ 1, stop.
3. If B→ 1, apply Transform𝜀,𝛿[ΠB,ΠA].

The lemma follows since the probability that Step 1 takes more than 𝑘 steps is (3/4)𝑘, and then
by the guarantee of Transform.

6.2 Variable-Runtime Singular Vector Transformation (vrSVT)

In this section we describe our variable-runtime SVT algorithm. In fact, for technical reasons
our algorithm consists of two parts: a variable-runtime singular value estimation procedure which
preserves singular vectors, and a singular vector transformation procedure which transforms left
singular vectors to right singular vectors, whose running time is fixed given a classical input from
the estimation procedure.

Below we give a proof of Theorem 6.4 that makes use of the singular value discrimination
and singular vector transformation algorithms of [GSLW19]. We note that it is possible to prove
Theorem 6.4 via more “elementary” means using high-probability phase estimation [NWZ09] and

53

amplitude amplification. Indeed, phase estimation for (2I−ΠA)(2I−ΠB) is equivalent to singular
value estimation for ΠAΠB and amplitude amplification can be viewed as a (non-coherent) singular
vector transformation.

Theorem 6.4 (Two-stage variable-runtime singular vector transformation). Let A = (ΠA, I−ΠA),
B = (ΠB, I−ΠB) be projective measurements. There is a pair of algorithms VarEstimate[ΠA � ΠB]
and Transform[ΠB → ΠA] with 𝑈A and 𝑈B gates with the following properties. Let |𝑤𝑗,1⟩ be a left
singular vector of ΠAΠB with singular value 𝑠𝑗 > 0, and let |𝑣𝑗,1⟩ be the corresponding right singular
vector. Then

1. The subspace 𝒮𝑗 is invariant under both VarEstimate and Transform.

2. The running time of VarEstimate(|𝑣𝑗,1⟩) is 𝑂(log(1/𝛿)/𝑠𝑗) with probability 1−𝛿 and 𝑂(log(1/𝛿)/𝛿)
with probability 1.

3. The output (𝑞, |𝜓⟩)← VarEstimate(|𝑣𝑗,1⟩) is such that |𝜓⟩ = |𝑤𝑗,1⟩ with probability 1− 𝛿.

4. The running time of Transform(𝑞, |𝜓′⟩), where (𝛾, |𝜓⟩)← VarEstimate(|𝑣𝑗,1⟩) and |𝜓′⟩ is any
state, is 𝑂(log(1/𝛿)/𝑠𝑗) with probability 1− 𝛿 and at most 1/𝛿 with probability 1.

5. The output state of Transform(VarEstimate(|𝑣𝑗,1⟩)) is |𝑤𝑗,1⟩ with probability 1− 𝛿.

The Transform procedure above can be instantiated directly via the singular vector transforma-
tion algorithm of [GSLW19], see Theorem 6.1.

We describe an implementation of VarEstimate using the singular value discrimination algorithm
(Theorem 6.2). For a binary projective measurement A, let Ā denote the same measurement with
the outcome labels reversed. For 𝑘 in the procedure below, define 𝑏 := 2−𝑘 and 𝜀 := 2−𝑘−1.

1. Set 𝑏 := 0, 𝑘 := 0. Repeat the following two steps until 𝑏 = 1 or 𝑘 ≥ ⌈log(1/𝛿)⌉:
(a) Set 𝑘 ← 𝑘 + 1.
(b) Apply B, obtaining outcome 𝑐.
(c) If 𝑐 = 1, apply ThresholdA,B(𝛾, 𝜀, 𝛿/ log(1/𝛿)) obtaining outcome 𝑏 ∈ {0, 1}.
(d) If 𝑐 = 0, apply ThresholdĀ,B̄(𝛾, 𝜀, 𝛿/ log(1/𝛿)) obtaining outcome 𝑏 ∈ {0, 1}.

2. Apply B, obtaining outcome 𝑐. If 𝑐 = 0, apply Flip2−𝑘−1 [A,B].
3. Output 2−𝑘−1.

Lemma 6.5 (Variable-runtime singular value estimation). Let |𝑣𝑗,1⟩ be a left singular vector with
singular value 𝑠𝑗. Let 𝛿 > 0. VarEstimate𝛿[A � B](|𝑣𝑗,1⟩ , 𝛿) runs in time 𝑂(log(1/𝛿)/𝑠𝑗) with
probability 1 − 𝛿 and 𝑂(log(1/𝛿)/𝛿) with probability 1. Moreover, VarEstimate outputs 𝑎 in the
range max(𝛿, 𝑠2

𝑗)/4 ≤ 𝑎 ≤ max(𝛿, 𝑠2
𝑗) with probability 1− 𝛿.

Proof. First, observe that 𝑘 iterations of Step 1 take time 𝑂(log(1/𝛿) · 2𝑘). Since VarEstimate
terminates within ⌈log(1/𝛿)⌉ iterations of Step 1 with probability 1, VarEstimate runs in time
𝑂(log(1/𝛿)/𝛿) with probability 1.

The probability that the singular value discrimination algorithm outputs 1 when 2−𝑘 > 2𝑠𝑗
is at most 𝛿/(log(1/𝛿)). Similarly, the probability that it outputs 1 when 2−𝑘 ≤ 𝑠𝑗 is at least
1 − 𝛿/(log(1/𝛿)). By a union bound, with probability at least 1 − 𝛿 the algorithm either stops in
the first iteration where 2−𝑘 ≤ 2𝑠𝑗 (so 𝑠𝑗 < 2−𝑘 ≤ 2𝑠𝑗) or in the following iteration (𝑠𝑗/2 < 2−𝑘 ≤

54

𝑠𝑗). Thus 2−𝑘 ∈ [𝑠𝑗/2, 2𝑠𝑗], so 2−𝑘−1 ∈ [𝑠𝑗/4, 𝑠𝑗] as required. The running time in this case is
𝑂(log(1/𝛿)/𝑠𝑗).

If 𝑠𝑗 ≥ 1/2 then the algorithm stops after one iteration in state |𝑤𝑗,1⟩ with probability 1 − 𝛿.
Otherwise the probability that log(1/𝛿) alternating measurements A,B are applied with only 0
outcomes is at most 𝛿. If Step 2 terminates with B → 1, then the resulting state is |𝑤𝑗,1⟩.
Otherwise, the resulting state is |𝑣𝑗,1⟩. In this case the Transform algorithm rotates the state to
|𝑤𝑗,1⟩ with probability 1− 𝛿.

The next two claims follow directly from the correctness and subspace invariance guarantees of
Threshold and VarEstimate.

Corollary 6.6. For any state 𝜌, 𝛿 > 0, 𝜀 : [0, 1]→ [𝛿, 1]:

Pr
[︁
Threshold𝑝,𝜀(𝑝),𝛿(VarEstimate(𝜌)) = 1

]︁
≥ 1− 2𝛿,

where 𝑝 is the classical output from VarEstimate.

Corollary 6.7. For any state 𝜌, 𝛿 > 0, 𝜀 ∈ [𝛿, 1]:

Pr
[︃
𝑏1 = 1 ∧ 𝑏2 = 0

⃒⃒⃒⃒
⃒ (𝑏1,𝜌1)← Threshold𝑝,𝜀,𝛿(𝜌)

(𝑏2,𝜌2)← Threshold𝑝−𝜀,𝜀,𝛿(𝜌1)

]︃
≤ 2𝛿 .

Moreover,

Pr
[︃
𝑏1 = 1 ∧ 𝑝𝑗 < 𝑝− 𝜀

⃒⃒⃒⃒
⃒ (𝑏1,𝜌1)← Threshold𝑝,𝜀,𝛿(𝜌)

𝑗 ← MJor[A,B](𝜌1)

]︃
≤ 𝛿 .

7 Pseudoinverse Lemma
In this section we show that for binary projective measurements A,B any state |𝜓A⟩ in the image
of ΠA, there is a state |𝜓B⟩ in the image of B such that |𝜓A⟩ is (approximately) obtained by
applying A to |𝜓B⟩ and conditioning on obtaining a 1. Moreover, if |𝜓A⟩ has Jordan spectrum
that is concentrated around eigenvalue 𝑝, then |𝜓A⟩ has the same property. We refer to this as the
“pseudoinverse lemma” because |𝜓B⟩ is obtained from |𝜓A⟩ by applying the pseudoinverse of the
matrix ΠAΠB.

Lemma 7.1 (Pseudoinverse Lemma). Let A,B be binary projective measurements, and let {𝒮𝑗}𝑗 be
the induced Jordan decomposition. Let ΠJor

𝑗 be the projection on to 𝒮𝑗 and let 𝑝𝑗 be the eigenvalue
of 𝒮𝑗. Let 𝜌 be a state such that Tr(ΠA𝜌) = 1 and let Π0 := ∑︀

𝑗,𝑝𝑗=0 ΠJor
𝑗 . Let 𝐸 := ∑︀

𝑗,𝑝𝑗>0
1
𝑝𝑗

ΠJor
𝑗 .

There exists a “pseudoinverse” state 𝜌′ with Tr(ΠB𝜌′) = 1 such that all of the following are true:

1. Tr(ΠA𝜌′) = 1−Tr(Π0𝜌)
Tr(𝐸𝜌) ,

2. 𝑑
(︁
𝜌, ΠA𝜌′ΠA

Tr(ΠA𝜌′)

)︁
≤ 2

√︁
Tr(Π0𝜌),

3. for all 𝑗 such that 𝑝𝑗 > 0 it holds that Tr
(︁
ΠJor
𝑗 𝜌′

)︁
= Tr(ΠJor

𝑗 𝜌)
𝑝𝑗 ·Tr(𝐸𝜌) , and

4. for all 𝑗 such that 𝑝𝑗 = 0 it holds that Tr
(︁
ΠJor
𝑗 𝜌′

)︁
= 0.

An important consequence of (3) and (4) is that for all 𝑗, if Tr
(︁
ΠJor
𝑗 𝜌

)︁
= 0 then Tr

(︁
ΠJor
𝑗 𝜌′

)︁
= 0.

55

Proof. Let 𝐶 := ΠAΠB, and note that |𝑣𝑗,1⟩ , |𝑤𝑗,1⟩ are corresponding left and right singular vectors
of 𝐶 with singular value √𝑝𝑗 . Hence 𝐶 = ∑︀

𝑝𝑗>0
√
𝑝𝑗 |𝑣𝑗,1⟩ ⟨𝑤𝑗,1|. Let 𝐶+ be the pseudoinverse of

𝐶, i.e., 𝐶+ = ∑︀
𝑝𝑗>0

1√
𝑝𝑗
|𝑤𝑗,1⟩ ⟨𝑣𝑗,1|. Define

𝜌′ := 𝐶+𝜌(𝐶+)†
Tr(𝐶+𝜌(𝐶+)†) .

Since Tr(ΠA𝜌) = 1, we have Tr(ΠB𝜌′) = 1. We also have

Tr
(︁
𝐶+𝜌(𝐶+)†

)︁
= Tr

(︁
(𝐶𝐶†)+𝜌

)︁
=
∑︁
𝑗

1
𝑝𝑗
⟨𝑣𝑗,1|𝜌 |𝑣𝑗,1⟩ = Tr(𝐸𝜌). (1)

Next, observe that since 𝐶𝐶+ = ∑︀
𝑝𝑗>0 |𝑣𝑗,1⟩⟨𝑣𝑗,1| = I−Π0, we have

ΠA𝜌′ΠA = ΠA

(︃
𝐶+𝜌(𝐶+)†

Tr(𝐶+𝜌(𝐶+)†)

)︃
ΠA

= ΠA

(︃
𝐶+𝜌(𝐶+)†

Tr(𝐸𝜌)

)︃
ΠA

= ΠAΠB

(︃
𝐶+𝜌(𝐶+)†

Tr(𝐸𝜌)

)︃
ΠBΠA

= 1
Tr(𝐸𝜌)𝐶𝐶

+𝜌(𝐶𝐶+)†

= 1
Tr(𝐸𝜌)(I−Π0)𝜌(I−Π0). (2)

Given these calculations, we can prove the claimed properties (1-3) in the lemma statement:

• Proof of (1). Taking the trace of both sides of Eq. (2), we see that

Tr
(︀
ΠA𝜌′

)︀
= Tr

(︀
ΠA𝜌′ΠA

)︀
= 1

Tr(𝐸𝜌) Tr ((I−Π0)𝜌(I−Π0)) = Tr ((I−Π0)𝜌)
Tr(𝐸𝜌) = 1− Tr (Π0𝜌)

Tr(𝐸𝜌) .

• Proof of (2). Given Eq. (2) and the trace calculation above, we have that

ΠA𝜌′ΠA
Tr(ΠA𝜌′) = 1

1− Tr(Π0𝜌)(I−Π0)𝜌(I−Π0)

The inequality 𝑑
(︁
𝜌, ΠA𝜌′ΠA

Tr(ΠA𝜌′)

)︁
≤ 2

√︁
Tr(Π0𝜌) now follows from Lemma 3.1 (gentle measure-

ment).

• Proof of (3). For all 𝑗 such that 𝑝𝑗 > 0, making use of the same calculation as Eq. (1), we
have

Tr
(︁
ΠJor
𝑗 𝜌′

)︁
=

Tr
(︁
ΠJor
𝑗 𝐶+𝜌(𝐶+)†

)︁
Tr(𝐶+𝜌(𝐶+)†) =

Tr
(︁
𝐶+ΠJor

𝑗 𝜌(𝐶+)†
)︁

Tr(𝐸𝜌) =
Tr
(︁
𝐸 ΠJor

𝑗 𝜌
)︁

Tr(𝐸𝜌) =
Tr
(︁

1
𝑝𝑗

ΠJor
𝑗 𝜌

)︁
Tr(𝐸𝜌) .

56

• Proof of (4). This follows immediately from the fact that Π0𝐶
+ = 𝐶+Π0 = 0.

This completes the proof of Lemma 7.1.

We conclude this section by showing that under a mild condition, any state 𝜌 that is close to
image(ΠA) has a nearby state in image(ΠA) with the same Jordan decomposition.

Claim 7.2. Let 𝜌 be any state. Let ΠJor
stuck project on to one-dimensional subspaces 𝒮𝑗 in the

image of I − ΠA. There exists a state 𝜎 such that for all 𝑗, Tr
(︁
ΠJor
𝑗 𝜎

)︁
= Tr

(︁
ΠJor
𝑗 𝜌

)︁
, Tr(ΠA𝜎) =

1− Tr
(︁
ΠJor

stuck · 𝜌
)︁
, and 𝑑(𝜌,𝜎) ≤

√︀
1− Tr(ΠA𝜌).

Proof. Define a unitary 𝑈 which is invariant on the 𝒮𝑗 and, in each two-dimensional 𝒮𝑗 , rotates
|𝑣𝑗,0⟩ to |𝑣𝑗,1⟩. Formally,

𝑈 :=
∑︁

𝑗,𝑝𝑗 /∈{0,1}
(|𝑣𝑗,1⟩ ⟨𝑣𝑗,0|+ |𝑣𝑗,0⟩ ⟨𝑣𝑗,1|) + I𝒮(1) ,

where 𝒮(1) is the direct sum of the 1D subspaces. Set

𝜎 := ΠA𝜌ΠA + 𝑈(𝐼 −ΠA)𝜌(𝐼 −ΠA)𝑈 †.

8 Post-Quantum Guaranteed Extraction
In this section, we give a post-quantum extraction procedure for various 3- and 4-message public-
coin interactive protocols. In particular, we will consider interactive protocols satisfying partial
collapsing (Definition 3.5) with respect to some class of efficiently computable functions 𝐹 = {𝑓 :
𝑇 × 𝑅 × 𝑍 → {0, 1}*}. Our goal is to establish guaranteed extraction, defined below (essentially
matching Definition 2.3).

Definition 8.1. (𝑃Σ, 𝑉Σ) is a post-quantum proof of knowledge with guaranteed extraction if it
has an extractor Extract𝑃 * of the following form.

1. Extract𝑃 * first runs the cheating prover 𝑃 * to generate a (classical) first message 𝑎 along with
an instance 𝑥 (in a 4-message protocol, this requires first sampling a random vk and running
𝑃 *(vk) to obtain 𝑥, 𝑎).

2. Extract𝑃 * runs 𝑃 * coherently on the superposition ∑︀
𝑟∈𝑅 |𝑟⟩ of all challenges to obtain a

superposition ∑︀𝑟,𝑧 𝛼𝑟,𝑧 |𝑟, 𝑧⟩ over challenge-response pairs.31

3. Extract𝑃 * then computes (in superposition) the verifier’s decision 𝑉 (𝑥, 𝑎, 𝑟, 𝑧) and measures
it. If the measurement outcome is 0, the extractor gives up.

4. If the measurement outcome is 1, run some quantum procedure FindWitness𝑃 * that outputs
a string 𝑤.

We require that the following two properties hold.

• Correctness (guaranteed extraction): The probability that the initial measurement re-
turns 1 but the output witness 𝑤 is not a valid witness for 𝑥 is negl(𝜆).

31In general, the response 𝑧 will be entangled with the prover’s state; here we suppress this dependence.

57

• Efficiency: For any QPT 𝑃 *, the procedure Extract𝑃 * is in EQPT𝑚.

We remark that this definition is written to capture (first-message) adaptive soundness, where
the prover 𝑃 * is allowed to choose the instance 𝑥 when it sends its first message. One could
alternatively define a non-adaptive variant of this definition in which the instance 𝑥 is fixed in
advance (and this section’s results would hold in this setting as well). Definition 8.1 suffices for
our purposes since none of the 4-message protocols we consider have the first verifier message vk
depend on 𝑥 (in all cases we consider, vk is just a commitment key or hash function key), and the
protocols all satisfy adaptive soundness.

8.0.1 Notation

Let ℛ denote a register with the basis { |𝑟⟩}𝑟∈𝑅 and let |+𝑅⟩ℛ := 1√
|𝑅|

∑︀
𝑟∈𝑅 |𝑟⟩. Let ℋ denote

the prover’s state (including its workspace), and let 𝑈𝑟 denote the unitary on ℋ that the prover
applies on challenge 𝑟. Let 𝒵 denote the subregister of ℋ that the prover measures to obtain its
response 𝑧 after applying 𝑈𝑟.

Define the projector

Π𝑉,𝑟 = 𝑈 †𝑟

⎛⎝ ∑︁
𝑧:𝑉 (𝑟,𝑧)=1

|𝑧⟩⟨𝑧|𝒵 ⊗ I

⎞⎠𝑈𝑟
which intuitively projects onto subspace of ℋ where the prover gives an accepting response on
challenge 𝑟.

Define the binary projective measurement C = (ΠC, I−ΠC) where

ΠC =
∑︁
𝑟

|𝑟⟩⟨𝑟|ℛ ⊗Π𝑉,𝑟,

and U = (ΠU, I−ΠU) where
ΠU = |+𝑅⟩⟨+𝑅|ℛ ⊗ Iℋ.

8.1 Description of the Extractor

We first give a full description of an extraction procedure Extract, defined for any partially collapsing
protocol.

The threshold unitary. Consider the following measurement procedure T𝑝,𝜀,𝛿 on ℋ, parame-
terized by threshold 𝑝, accuracy 𝜀 and error 𝛿.

• Initialize a fresh register ℛ to |+𝑅⟩ℛ.
• Run ThresholdU,C

𝑝,𝜀,𝛿 on ℋ⊗ℛ , obtaining outcome 𝑏.
• Trace out ℛ and output 𝑏.

We define 𝑈𝑝,𝜀,𝛿 to be a coherent implementation of T𝑝,𝜀,𝛿. 𝑈𝑝,𝜀,𝛿 acts on ℋ⊗𝒲⊗ℬ where𝒲⊗ℬ
is an ancilla register: 𝒲 contains the algorithm’s workspace and ℬ is a single qubit containing the
measurement outcome. In particular, applying 𝑈𝜀,𝛿 to |𝜓⟩ℋ |0⟩𝒲,ℬ, measuring ℬ, and then tracing
out 𝒲 implements the above measurement.

58

The repair measurements. We define the two projective measurements D𝑟 = (Π𝑟, I−Π𝑟) ,G𝑝,𝜀,𝛿 =
(Π𝑝,𝜀,𝛿, I−Π𝑝,𝜀,𝛿) for our repair step.

For any 𝑝, 𝜀, 𝛿 > 0, define the projector Π𝑝,𝜀,𝛿 on ℋ⊗𝒲 ⊗ℬ as follows:

Π𝑝,𝜀,𝛿 := 𝑈 †𝑝,𝜀,𝛿(Iℋ,𝒲 ⊗ |1⟩⟨1|ℬ)𝑈𝑝,𝜀,𝛿.

For any 𝑟 ∈ 𝑅, we define the projector Π𝑟 on ℋ⊗𝒲 as

Π𝑟 := (Π𝑉,𝑟)ℋ ⊗ |0⟩⟨0|𝒲 .

We describe the extraction procedure Extract𝑃 *
𝑉 (𝑥). The procedure is defined with respect to 𝑘

efficiently computable functions 𝑓1, . . . , 𝑓𝑘 : 𝑇 ×𝑅× 𝑍 → {0, 1}*.

1. Initial Execution. Use 𝑃 * to generate (vk, 𝑎), and let |𝜓⟩ denote the residual prover
state. Apply C = (ΠC, I−ΠC) to |𝜓⟩ℋ ⊗ |+𝑅⟩ℛ. If 0, terminate (note that we do not
consider this an “abort”.) Otherwise:

2. Estimate success probability. Run VarEstimate[C � U] (as defined in Section 6.2)
with 1

2 -multiplicative error and failure probability 𝛿 = 1/2𝜆, outputting a value 𝑝. Note
that since the input state is in ΠC, the algorithm produces an output state in ΠC with
probability 1− 𝛿.
Abort if 𝑝 < 𝜆𝑘

√
𝛿. Define 𝜀 = 𝑝

4𝑘 .

3. Main Loop. Repeat the following “main loop” for 𝑖 from 1 to 𝑘:

(a) Lower bound success probability. Run ThresholdC,U
𝑝,𝜀,𝛿 on ℋ ⊗ ℛ, obtaining

outcome 𝑏. Abort if 𝑏 = 0. Update 𝑝 := 𝑝− 𝜀.
(b) Measure the challenge. Measure the ℛ register, obtaining a particular challenge

𝑟𝑖 ∈ 𝑅. Discard the ℛ register.
(c) Estimate the running time of Transform. Initialize the 𝒲 register to |0⟩𝒲

and run VarEstimate[D𝑟 � G𝑝,𝜀,𝛿] with 1
2 -multiplicative error and failure probability

𝛿 = 2−𝜆, obtaining classical output 𝑞. Since the input state is in Π𝑟, the algorithm
produces an output state in Π𝑟 with probability 1− 𝛿.

(d) Record part of the accepting response. Make a partial measurement of the
prover response 𝑧𝑖; specifically, measure 𝑦𝑖 = 𝑓𝑖(𝑧𝑖).a If 𝑖 = 𝑘, go to Step 4.

(e) Transform onto good states. Apply Transform𝑞[D𝑟 → G𝑝,𝜀,𝛿] with failure proba-
bility 𝛿 = 2−𝜆.

(f) Next, apply 𝑈𝑝,𝜀,𝛿 and then discard the 𝒲 register. Update 𝑝 := 𝑝− 𝜀.
(g) Transform onto accepting executions. Re-initialize ℛ to |+𝑅⟩ and then apply

Transform𝑝[U→ C]; abort if this procedure fails.

4. Output (vk, 𝑎, 𝑟1, 𝑦1, · · · , 𝑟𝑘, 𝑦𝑘).

59

The above procedure deterministically terminates and aborts if it has not already stopped
after 𝑂(𝑘)/

√
𝛿 steps, for 𝛿 := 2−𝜆.

aFormally, we (1) apply the prover unitary 𝑈𝑟* to ℋ, (2) apply the projective measurement
(︀
Π𝑦

)︀
𝑦

for
Π𝑦 =

∑︀
𝑧:𝑓𝑖(𝑧)=𝑦

|𝑧⟩⟨𝑧|𝒵 ⊗ Iℋ′ (where ℋ = 𝒵 ⊗ℋ′), and (3) apply 𝑈†
𝑟* to ℋ.

8.2 Partial Transcript Extraction Theorem

Our most general extraction theorem is stated for any partially collapsing protocol, but is only
guaranteed to output partial transcripts (rather than a witness). In Section 8.4, we show how this
theorem can be used to establish guaranteed extraction of a witness.

Theorem 8.2. For any 4-message public-coin interactive argument satisfying partial collapsing
(Definition 3.4) with respect to the functions 𝑓1, . . . , 𝑓𝑘−1 (but not necessarily 𝑓𝑘), the procedure
Extract𝑉 has the following properties for any instance 𝑥.

1. Efficiency: For any QPT prover 𝑃 *, Extract𝑃 *
𝑉 runs in expected polynomial time (EQPT𝑚).

More formally, the number of calls that Extract𝑃 *
𝑉 makes to 𝑃 * is a classical random variable

whose expectation is a fixed polynomial in 𝑘, 𝜆.

2. Correctness: Extract aborts with negligible probability.

3. Distribution of outputs: For every choice of (vk, 𝑎), let 𝛾 = 𝛾vk,𝑎 denote the success
probability of 𝑃 * conditioned on first two messages (vk, 𝑎). Then, if 𝛾 > 𝛿1/3, the distribution
of (𝑟1, . . . , 𝑟𝑘) (conditioned on (vk, 𝑎) and a successful first execution) is 𝑂(1/𝛾)-admissible
(Definition 5.5).

8.3 Proof of Theorem 8.2

8.3.1 Intermediate State Notation

Our extraction procedure and analysis make use of four relevant registers:

• A challenge randomness register ℛ,
• A prover state register ℋ, and
• A phase estimation workspace register 𝒲.
• A one qubit register ℬ that contains a bit 𝑏 where 𝑏 = 1 indicates that the computation has

not aborted during a sub-computation.

We now establish some conventions:

• states written using the letter 𝜌 satisfy 𝜌 ∈ S(ℬ ⊗ ℋ ⊗ ℛ) or 𝜌 ∈ S(ℋ ⊗ℛ), where we use
S(ℋ) to denote the space of Hermitian operators on ℋ;

• states using the letter 𝜎 satisfy 𝜎 ∈ S(ℬ ⊗ℋ⊗𝒲) or 𝜎 ∈ S(ℋ⊗𝒲);
• states using the letter 𝜑 satisfy 𝜑 ∈ S(ℬ ⊗ℋ) or 𝜑 ∈ S(ℋ);
• states using the letter 𝜏 satisfy 𝜏 ∈ S(ℋ⊗𝒲 ⊗ℛ)

With these conventions in mind, we define some intermediate states related to the extraction
procedure:

60

• Let 𝜓 denote the prover state after (vk, 𝑎) is generated.
• Let 𝜌

(2)
ℬ,ℋ,ℛ denote the state obtained at the end of Step 2.

• For each iteration of the Step 3 loop, we define the following states:
– Let 𝜌

(init)
ℬ,ℋ,ℛ denote the state at the beginning of Step 3. The register ℬ is initialized

to |1⟩⟨1|. For the rest of the loop iteration, ℬ is set to |0⟩⟨0| if the computation
aborts.

– Let 𝜌
(C)
ℬ,ℋ,ℛ denote the state at the end of Step 3a.

– Let 𝜑
(3𝑏)
ℬ,ℋ,ℛ denote the state at the end of Step 3b.

– Let 𝜎
(3𝑐)
ℬ,ℋ,𝒲 denote the state at the end of Step 3c.

– Let 𝜎
(3𝑒)
ℬ,ℋ,𝒲 denote the state immediately before the𝒲 register is traced out during

Step 3e.
– Let 𝜑

(3𝑓)
ℬ,ℋ denote the state at the end of Step 3f.

– Let 𝜌
(3𝑔)
ℬ,ℋ,ℛ denote the state at the end of Step 3g.

As in Lemma 7.1, let the Jordan decomposition of ℋ ⊗ ℛ corresponding to ΠC,ΠU be {𝒮𝑗}𝑗
where subspace 𝒮𝑗 is associated with the eigenvalue/success probability 𝑝𝑗 . Let ΠJor

𝑗 the projection
onto 𝒮𝑗 , i.e., image(ΠJor

𝑗) = 𝒮𝑗 . Define the following projections on ℋ⊗ℛ:

• ΠJor
0 := ∑︀

𝑗,𝑝𝑗=0 ΠJor
𝑗

• ΠJor
≥𝑝 = ∑︀

𝑗:𝑝𝑗≥𝑝 ΠJor
𝑗

• ΠJor
<𝑝 = ∑︀

𝑗:𝑝𝑗<𝑝 ΠJor
𝑗

We additionally define the following projectors on ℬ ⊗ℋ⊗ℛ.

ΠJor
Bad = |1⟩⟨1|ℬ ⊗ΠJor

<𝑝 and ΠJor
Good = Iℬ,ℋ,ℛ −ΠJor

Bad.

Claim 8.3. For any estimate 𝑝 and any state 𝜌
(init)
ℬ,ℋ,ℛ such that Tr

(︁
(Iℬ ⊗ΠC)𝜌(init)

ℬ,ℋ,ℛ

)︁
= 1, the

state 𝜌
(C)
ℬ,ℋ,ℛ obtained by running 𝑏 ← ThresholdC,U

𝑝,𝜀,𝛿 (and then redefining 𝑝 := 𝑝 − 𝜀) and setting
ℬ = |𝑏⟩⟨𝑏| satisfies

Tr
(︁
ΠJor

Bad𝜌
(C)
ℬ,ℋ,ℛ

)︁
≤ 𝛿.

Proof. When ThresholdC,U
𝑝,𝜀,𝛿 returns 0, the computation aborts. Therefore, the lemma follows im-

mediately from the almost-projectivity of Threshold (Corollary 6.7).

8.3.2 Analysis of Steps 1 and 2

We first show that Steps 1 and 2 run in expected polynomial time, and bound the statistic E[1/𝑝·𝑋1],
where 𝑝 is the output of Step 2 and 𝑋1 is the indicator for the event “Step 1 does not abort”.

Lemma 8.4. The expected runtime of Steps 1 and 2 is 𝑂(1). Moreover,

E[1/𝑝 ·𝑋1] = 𝑂(1).

61

Proof. Let |𝜓⟩ denote the state of 𝑃 * after (ck, 𝑎) are generated. Then, consider the (U,C)-Jordan
decomposition

|𝜓⟩ ⊗ |+𝑅⟩ =
∑︁
𝑗

𝛼𝑗 |𝑣𝑗,1⟩ ,

where each |𝑣𝑗,1⟩ ∈ 𝒮𝑗 ∩ image(ΠU). Let 𝛾 = ∑︀
𝑗 |𝛼𝑗 |2𝑝𝑗 denote the initial success probability of

|𝜓⟩.
Step 1 runs in a fixed polynomial time and aborts with probability 1− 𝛾. Otherwise, Step 2 is

run on the residual state
1
√
𝛾

∑︁
𝑗

𝛼𝑗
√
𝑝𝑗 |𝑤𝑗,1⟩ ,

where |𝑤𝑗,1⟩ is a basis vector in 𝒮𝑗 ∩ image(ΠC). Lemma 6.5 tells us that both the runtime of
VarEstimateC,U on this state (making oracle use of C,U) and the expectation of 1/𝑝 (where 𝑝 is the
output of Step 2) are at most a constant times

1
𝛾

∑︁
𝑗

𝛼2
𝑗𝑝𝑗 ·

1
𝑝𝑗

+ 𝛿 · 1/𝛿 ≤ 1
𝛾

∑︁
𝑗

𝛼2
𝑗 + 1 = 1

𝛾
+ 1,

so since Pr[Step 1 does not abort] = 𝛾, the overall expected value bounds are as claimed.

8.3.3 The Pseudoinverse State

As defined earlier, let 𝜌
(C)
ℬ,ℋ,ℛ denote the state at the end of Step 3a (for some arbitrary iteration of

Step 3). We prove some important properties of the subsequent states in the execution of Step 3.
We begin with Step 3b, which measures the ℛ register, obtaining a challenge 𝑟 and resulting

state 𝜑
(3𝑏)
ℬ,ℋ. Let

𝜌
′(C)
ℬ,ℋ,ℛ =

ΠJor
Good𝜌

(C)
ℬ,ℋ,ℛΠJor

Good

Tr
(︁
ΠJor

Good𝜌
(C)
ℬ,ℋ,ℛ

)︁
denote the residual state; we write 𝜌

′(C)
ℬ,ℋ,ℛ = 𝛼0 |0⟩⟨0|ℬ ⊗ 𝜌

′(C,0)
ℋ,ℛ +𝛼1 |1⟩⟨1|ℬ ⊗ 𝜌

′(C,1)
ℋ,ℛ . By Claim 8.3,

we have that:

Claim 8.5. Tr
(︁
ΠJor

Good𝜌
(C)
ℬ,ℋ,ℛ

)︁
≥ 1− 𝛿

By gentle measurement, it then follows that

𝑑(𝜌(C)
ℬ,ℋ,ℛ,𝜌

′(C)
ℬ,ℋ,ℛ) ≤ 2

√
𝛿.

Let 𝜌
(U)
ℬ,ℋ,ℛ = 𝛼0 |0⟩⟨0|ℬ ⊗ 𝜌

(U,0)
ℋ,ℛ + 𝛼1 |1⟩⟨1|ℬ ⊗ 𝜌

(U,1)
ℋ,ℛ where 𝜌

(U,1)
ℋ,ℛ denotes the state guaranteed

to exist by applying Lemma 7.1 with B = U and A = C on 𝜌
′(C,1)
ℋ,ℛ . Recall from Lemma 7.1 that

Tr
(︁
ΠU𝜌

(U,1)
ℋ,ℛ

)︁
= 1, since Tr

(︁
ΠJor

0 𝜌
′(C,1)
ℋ,ℛ

)︁
= 0. Moreover, we also have:

Claim 8.6.

𝜌
′(C,1)
ℋ,ℛ =

ΠC𝜌
(U,1)
ℋ,ℛ ΠC

Tr
(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁ .

62

Proof. 𝜌
(C,1)
ℋ,ℛ is a state satisfying Tr

(︁
ΠC𝜌

(C,1)
ℋ,ℛ

)︁
= 1, and 𝜌

′(C,1)
ℋ,ℛ is then a (re-normalized) projection

of 𝜌
(C,1)
ℋ,ℛ onto (U,C)-Jordan subspaces with bounded Jordan 𝑝𝑗-value. Therefore, 𝜌

′(C,1)
ℋ,ℛ also satisfies

Tr
(︁
ΠC𝜌

′(C,1)
ℋ,ℛ

)︁
= 1.

From Lemma 7.1 (Property 2) we then have

𝑑(𝜌′(C,1)
ℋ,ℛ ,

ΠC𝜌
(U,1)
ℋ,ℛ ΠC

Tr
(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁) ≤ 2
√︂

Tr
(︁
Π0𝜌

′(C,1)
ℋ,ℛ

)︁
= 0,

which implies 𝜌
′(C,1)
ℋ,ℛ = ΠC𝜌

(U,1)
ℋ,ℛ ΠC/Tr

(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁
.

Finally, because Tr
(︁
ΠJor

Bad𝜌
′(C)
ℬ,ℋ,ℛ

)︁
= 0, Lemma 7.1 (Property 3) tells us that Tr

(︁
ΠJor

Bad𝜌
(U)
ℬ,ℋ,ℛ

)︁
= 0

as well.
Define 𝑝U = Tr

(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁
to be the normalization factor above, which is equal to the (C-)success

probability of 𝜌
(U,1)
ℋ,ℛ .

Claim 8.7. 𝑝U ≥ 𝑝.

Proof. Since Tr
(︁
ΠJor
≥𝑝𝜌

(U,1)
ℋ,ℛ

)︁
= 1 and ΠC commutes with each ΠJor

𝑗 , we have:

Tr
(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁
= Tr

(︁
ΠCΠJor

≥𝑝𝜌
(U,1)
ℋ,ℛ

)︁
= Tr

⎛⎝ ∑︁
𝑗:𝑝𝑗≥𝑝

ΠCΠJor
𝑗 𝜌

(U,1)
ℋ,ℛ

⎞⎠
≥ 𝑝Tr

⎛⎝ ∑︁
𝑗:𝑝𝑗≥𝑝

ΠJor
𝑗 𝜌

(U,1)
ℋ,ℛ

⎞⎠
= 𝑝.

Since Tr
(︁
ΠU𝜌

(U,1)
ℋ,ℛ

)︁
= 1, it can be written in the form 𝜑

(U,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|. For each 𝑟, we define

𝜁𝑟 := Tr
(︁
Π𝑉,𝑟𝜑

(U,1)
ℋ

)︁
to be the success probability of 𝜑

(U,1)
ℋ on 𝑟. Finally, define 𝜁𝑅 = ∑︀

𝑟 𝜁𝑟.
We now proceed to analyze the state 𝜑

(3𝑏)
ℬ,ℋ. To do so, we first define 𝜑

′(3𝑏)
ℬ,ℋ to be the state at

the end of Step 3b when 𝜌
′(C)
ℬ,ℋ,ℛ is used in place of 𝜌

(C)
ℬ,ℋ,ℛ. We know that 𝑑(𝜑(3𝑏)

ℬ,ℋ,𝜑
′(3𝑏)
ℬ,ℋ) ≤ 2

√
𝛿,

so this characterization will suffice.

Claim 8.8. The state 𝜑
′(3𝑏)
ℬ,ℋ is a mixed state with the following form: with probability 𝛼0, it is in

the abort state. Otherwise, with conditional probability 𝜁𝑟/𝜁𝑅, Step 3g measures challenge 𝑟 and
the resulting state is |1⟩⟨1|ℬ ⊗

Π𝑉,𝑟𝜑
(U,1)
ℋ Π𝑉,𝑟

𝜁𝑟
.

Proof. By definition of the pseudoinverse state 𝜌
(U,1)
ℋ,ℛ = 𝜑

(U,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|, we can write 𝜌

′(C,1)
ℋ,ℛ as

𝜌
′(C,1)
ℋ,ℛ = ΠC(𝜑(U,1)

ℋ ⊗ |+𝑅⟩⟨+𝑅|)ΠC

Tr
(︁
ΠC(𝜑(U,1)

ℋ ⊗ |+𝑅⟩⟨+𝑅|)
)︁ .

63

Since ΠC = ∑︀
𝑟∈𝑅 Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|, we can write

ΠC(𝜑(U,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|)ΠC = (

∑︁
𝑟∈𝑅

Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|)
(︁
𝜑

(U,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|

)︁
(
∑︁
𝑟∈𝑅

Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|)

= 1
|𝑅|

∑︁
𝑟∈𝑅

Π𝑉,𝑟𝜑
(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟| .

Thus, we can rewrite 𝜌
′(C,1)
ℋ,ℛ as

ΠC(𝜑(U,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|)ΠC

Tr
(︁
ΠC(𝜑(U,1)

ℋ ⊗ |+𝑅⟩⟨+𝑅|)
)︁ =

1
|𝑅|
∑︀
𝑟∈𝑅 Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|

Tr
(︁

1
|𝑅|
∑︀
𝑟∈𝑅 Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|

)︁
=

1
|𝑅|
∑︀
𝑟∈𝑅 Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|

1
|𝑅|
∑︀
𝑟∈𝑅 𝜁𝑟

=
∑︀
𝑟∈𝑅 Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|
𝜁𝑅

.

Therefore, the probability of obtaining 𝑟 after measuring ℛ of 𝜌
′(C)
ℬ,ℋ,ℛ is

Tr
(︁
(I⊗ |𝑟⟩⟨𝑟|)∑︀𝑟′∈𝑅 Π𝑉,𝑟′𝜑

(U,1)
ℋ Π𝑉,𝑟′ ⊗ |𝑟′⟩⟨𝑟′|

)︁
𝜁𝑅

=
Tr
(︁
Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟 ⊗ |𝑟⟩⟨𝑟|

)︁
𝜁𝑅

= 𝜁𝑟
𝜁𝑅
,

and the post-measurement state is Π𝑉,𝑟𝜑
(U,1)
ℋ Π𝑉,𝑟. Thus, the state 𝜑

′(3𝑏)
ℬ,ℋ is as claimed.

In particular, Claim 8.8 tells us that the ratio 𝜁𝑅
|𝑅| is exactly Tr(ΠC𝜌

(U,1)
ℋ,ℛ) = 𝑝U.

We begin our analysis of the repair step by defining the following states:

1. 𝜎
(U,1)
ℋ,𝒲 := 𝜑

(U,1)
ℋ ⊗ |0⟩⟨0|𝒲 . Here, 𝜑

(U,1)
ℋ is the state satisfying 𝜌

(U,1)
ℋ,ℛ = 𝜑

(U,1)
ℋ ⊗ |0⟩⟨0|ℛ.

2. 𝜎
(𝑟,1)
ℋ,𝒲 := Π𝑟𝜎

(U,1)
ℋ,𝒲Π𝑟/𝜁𝑟.

By Claim 8.8 we can view our variant of Steps 3b to 3e as follows:

• With probability 𝛼0, abort. Otherwise:

• A challenge is sampled so that each string 𝑟 occurs with probability 𝜁𝑟

𝜁𝑅

• If the string 𝑟 is sampled, initialize the state to |1⟩⟨1|ℬ ⊗ 𝜎
(𝑟,1)
ℋ,𝒲 .

Unfortunately, the state 𝜎
(U,1)
ℋ,𝒲 only satisfies Tr

(︁
Π𝑝,𝜀𝜎

(U,1)
ℋ,𝒲

)︁
≥ 1− 𝛿 (it is not quite fully in the

image of Π𝑝,𝜀). With this in mind, we define two additional states:

3. ̃︀𝜎(U,1)
ℋ,𝒲 := Π𝑝,𝜀𝜎

(U,1)
ℋ,𝒲 Π𝑝,𝜀

Tr
(︁

Π𝑝,𝜀𝜎
(U,1)
ℋ,𝒲

)︁ . Since Tr
(︁
Π𝑝,𝜀𝜎

(U,1)
ℋ,𝒲

)︁
= 1 − 𝛿, we have 𝑑(𝜎(U,1)

ℋ,𝒲 , ̃︀𝜎(U,1)
ℋ,𝒲) ≤ 2

√
𝛿

by Lemma 3.1.

64

4. ̃︀𝜎(𝑟,1)
ℋ,𝒲 := Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲Π𝑟/Tr
(︁
Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
.

Let ̃︀𝜁𝑟 := Tr
(︁
Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
, and observe that ̃︀𝜁𝑟 ∈ [𝜁𝑟 ± 2

√
𝛿]. Define ̃︀𝜁𝑅 := ∑︀

𝑟∈𝑅
̃︀𝜁𝑟 and ̃︀𝑝U := ̃︀𝜁𝑅/|𝑅|.

Claim 8.9. |̃︀𝑝U − 𝑝U| ≤ 2
√
𝛿

Proof. For every string 𝑟, we have that

|𝜁𝑟 − ̃︀𝜁𝑟| = ⃒⃒⃒
Tr(Π𝑟(𝜎(U,1)

ℋ,𝒲 − ̃︀𝜎(U,1)
ℋ,𝒲)

⃒⃒⃒
≤ 2
√
𝛿

since ||𝜎(U,1)
ℋ,𝒲 − ̃︀𝜎(U,1)

ℋ,𝒲 || ≤ 2
√
𝛿. Therefore, we have that⃒⃒⃒⃒

⃒ 𝜁𝑅|𝑅| − ̃︀𝜁𝑅
|𝑅|

⃒⃒⃒⃒
⃒ ≤ 2

√
𝛿

by subadditivity.

Consider the following two mixed states

𝜏ℋ,ℛ,𝒲 :=
∑︁
𝑟

𝜁𝑟
𝜁𝑅
|𝑟⟩⟨𝑟| ⊗

Π𝑟𝜎
(U,1)
ℋ,𝒲Π𝑟

𝜁𝑟
, and

̃︀𝜏ℋ,ℛ,𝒲 :=
∑︁
𝑟

̃︀𝜁𝑟̃︀𝜁𝑅 |𝑟⟩⟨𝑟| ⊗
Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲Π𝑟̃︀𝜁𝑟 .

We claim that these two mixed states are close in trace distance.

Claim 8.10. ||𝜏 − ̃︀𝜏 ||1 ≤ 4
√
𝛿

𝑝U
.

To see this, we first note that ⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒̃︀𝜏 − ̃︀𝜁𝑅

𝜁𝑅
̃︀𝜏 ⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1

= |1−
̃︀𝜁𝑅
𝜁𝑅
| · ||̃︀𝜏 ||1

=
⃒⃒⃒⃒
⃒1− ̃︀𝜁𝑅

𝜁𝑅

⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
1−

̃︀𝑝U
𝑝U

⃒⃒⃒⃒
≤ 2
√
𝛿

𝑝U

Moreover, we have that⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝜏 − ̃︀𝜁𝑅

𝜁𝑅
̃︀𝜏 ⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1

= 1
𝜁𝑅

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒∑︁
𝑟

|𝑟⟩⟨𝑟| ⊗Π𝑟(𝜎(U,1)
ℋ,𝒲 − ̃︀𝜎(U,1)

ℋ,𝒲)Π𝑟

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
1

≤ |𝑅|
𝜁𝑅
· ||𝜎(U,1)

ℋ,𝒲 − ̃︀𝜎(U,1)
ℋ,𝒲 ||1

65

≤ |𝑅|
𝜁𝑅
· 2
√
𝛿

= 2
√
𝛿

𝑝U
.

Thus, we conclude that ||𝜏 − ̃︀𝜏 ||1 ≤ 2
√
𝛿

𝑝U
+ 2
√
𝛿

𝑝U
≤ 4

√
𝛿

𝑝U
by the triangle inequality.

This trace bound will allow us to analyze correctness and bound the expected runtime of the
extractor by appealing to properties of the state ̃︀𝜏 .

8.3.4 Runtime Analysis

In this section, we bound the expected running time of Ext (proving property (1) of Theorem 8.2).

Theorem 8.11. For any QPT 𝑃 *, Ext𝑃 * runs in EQPT𝑚.

We note that Lemma 8.4 already showed that the expected running time of Steps 1 and 2 is
𝑂(1) calls to (U,C).

Next, we show that the expected runtime of the main loop (Step 3) is also poly(𝜆). To prove
this, we make use of the syntactic property (enforced by the definition of Step 3g) that for every
𝑖 ∈ {0, 1, . . . , 𝑘}, the state 𝜌

(C,init)
ℬ,ℋ,ℛ at the beginning of the 𝑖th iteration of Step 3 is in image(ΠC)

(provided that the computation has not aborted). We then show

Lemma 8.12. Let 𝑝 be an arbitrary real number output by Step 2, and let 𝜌
(C,init)
ℬ,ℋ,ℛ be an arbitrary

non-aborted state (i.e. ℬ is initialized to |1⟩⟨1|ℬ) that is in the image of ΠC.
Then, the expected runtime of one iteration of Step 3 on 𝜌

(C,init)
ℬ,ℋ,ℛ is poly(𝜆)/𝑝.

Proof. We analyze the running time assuming that the collapsing measurement of Step 3d is not
performed. This is without loss of generality; the steps following the (partial) collapsing measure-
ment have a fixed runtime (as a function of previously computed parameters in the execution), so
the collapsing measurement cannot affect the overall expected running time.32

First, note that Steps 3a and 3g run in a fixed poly(𝜆)/√𝑝 time by Theorem 6.1. Thus, we
focus on Steps 3c and 3e.

We bound the expected runtime of Steps 3c and 3e via the following hybrid argument.

• Hyb0: This is the real procedure, assuming that Step 3d is not performed.

• Hyb1: In this hybrid, the ℛ-measurement outcome and residual state 𝜑
(3𝑏)
ℬ,ℋ is prepared dif-

ferently:

– With probability 𝛼0, abort. Otherwise:
– The challenge 𝑟 is sampled with probability equal to 𝜁𝑟/𝜁𝑅.

– If the string 𝑟 is sampled, initialize the state to |1⟩⟨1|ℬ ⊗
Π𝑉,𝑟𝜑

(U,1)
ℋ Π𝑉,𝑟

𝜁𝑟
.

This is an alternate description of the state 𝜌
′(C)
ℬ,ℋ,ℛ.

32We only remove the collapsing measurement of the current loop iteration; previous collapsing measurements are
baked into the (arbitrary) state 𝜌

(C,init)
ℬ,ℋ,ℛ .

66

• Hyb2: In this hybrid, the state at the beginning of Step 3c (which is usually 𝜑
(3𝑏)
ℬ,ℋ ⊗ |0⟩⟨0|𝒲)

is prepared differently:

– With probability 𝛼0, abort. Otherwise:
– A challenge is sampled so that each string 𝑟 occurs with probability ̃︀𝜁𝑟/̃︀𝜁𝑅
– If the string 𝑟 is sampled, initialize the state to ̃︀𝜎(𝑟,1)

ℋ,𝒲 .

Claim 8.13. The expected running times of Hyb0, Hyb1 differ by at most 𝑂(𝑘), and the expected
running times of Hyb1 and Hyb2 differ by at most 𝑂(𝑘/𝑝).

Proof. The worst-case running time of Ext is bounded to be 𝑘/
√
𝛿 by definition. We will combine

this with trace distance bounds to prove the claim.
For Hyb0 and Hyb1, we note that the running time of Steps 3c and 3e can be viewed as a

classical distribution over integers obtained via applying a CPTP map to the input state, which
is either 𝜌

(C)
ℬ,ℋ,ℛ or 𝜌

′(C)
ℬ,ℋ,ℛ. Since trace distance is contractive under CPTP maps, we conclude

that these integer distributions are 2
√
𝛿-close in statistical distance. Since (as integers) they are

(𝑘/
√
𝛿)-bounded, we conclude that their expectations differ by 𝑂(𝑘).

The argument is similar for Hyb1 and Hyb2, except that the running time of Steps 3c and 3e
can instead be viewed as a classical distribution obtained via a CPTP map from either 𝜏 or ̃︀𝜏 ,
which have trace distance at most 4

√
𝛿

𝑝U
≤ 4

√
𝛿

𝑝 .

Thus, it suffices to bound the expected runtime in the procedure Hyb2.
Without Step 3d, we can view Steps 3c and 3e as a variable-runtime TransformD𝑟→G𝑝,𝜀,𝛿 with

respect to the projectors (Π𝑟,Π𝑝,𝜀), where 𝑟 is sampled from the above distribution. We first analyze
the runtime of this procedure for a fixed value of 𝑟.

Let Jor𝑟 = (ΠJor𝑟
𝑗)𝑗 denote the Jordan measurement corresponding to projections (Π𝑟,Π𝑝,𝜀),

and let 𝑞𝑗 denote the eigenvalue associated with ΠJor𝑟
𝑗 . Define the Jordan weights of ̃︀𝜎(U)

ℬ,ℋ,𝒲 as the
vector (𝑦Jor𝑟

𝑗)𝑗 where
𝑦Jor𝑟
𝑗 := Tr

(︁
ΠJor𝑟
𝑗 ̃︀𝜎(U)

ℬ,ℋ,𝒲

)︁
.

Then, the Jordan weights of ̃︀𝜎(𝑟)
ℬ,ℋ,𝒲 are (𝑧Jor𝑟

𝑗)𝑗 where

𝑧Jor𝑟
𝑗 := 𝑞𝑗𝑦

Jor𝑟
𝑗 /̃︀𝜁𝑟.

Claim 8.14. Given the string 𝑟 and state ̃︀𝜎(𝑟)
ℬ,ℋ,𝒲 as input, Steps 3c to 3e make an expected

poly(𝜆) · 1/
√︁̃︀𝜁𝑟 calls to Π𝑝,𝜀 and Π𝑟.

Proof. By Theorem 6.4, the expected running time (in number of calls to Π𝑟,Π𝑝,𝜀) of Steps 3c to 3e
on a state with Jordan weights (𝑞𝑗𝑦Jor𝑟

𝑗 /̃︀𝜁𝑟)𝑗 is

∑︁
𝑗

𝑞𝑗𝑦
Jor𝑟
𝑗̃︀𝜁𝑟 · poly(𝜆)

√
𝑞𝑗

≤ poly(𝜆)

⎯⎸⎸⎷∑︁
𝑗

𝑞𝑗𝑦
Jor𝑟
𝑗̃︀𝜁𝑟𝑞𝑗

= poly(𝜆)
√︃

1̃︀𝜁𝑟 .
This completes the proof of Claim 8.14.

67

By Claim 8.14, along with the fact that Π𝑝,𝜀 is implemented in a fixed poly(𝜆)/√𝑝 time, the
expected running time of Steps 3c to 3e in Hyb2 is:

∑︁
𝑟∈𝑅

̃︀𝜁𝑟̃︀𝜁𝑅 · poly(𝜆)√︁̃︀𝜁𝑟𝑝 = poly(𝜆)
√
𝑝

∑︁
𝑟∈𝑅

̃︀𝜁𝑟̃︀𝜁𝑅 · 1√︁̃︀𝜁𝑟
≤ poly(𝜆)

√
𝑝

⎯⎸⎸⎷∑︁
𝑟∈𝑅

̃︀𝜁𝑟̃︀𝜁𝑅 · 1̃︀𝜁𝑟
= poly(𝜆)

√
𝑝

√︃
|𝑅|̃︀𝜁𝑅

= poly(𝜆)
√
𝑝

√︃
1̃︀𝑝U

≤ poly(𝜆)√︁
𝑝(𝑝− 2

√
𝛿)

≤ poly(𝜆)
𝑝

(3)

where the first inequality is an application of Jensen’s inequality, the second inequality holds by
Claim 8.9, and the last inequality holds by the abort condition in Step 2 (𝑝 drops by a factor of at
most 2 in the entire process).

This completes the proof of Lemma 8.12.

Finally, combining Lemma 8.12 with Lemma 8.4 along with the fact that throughout the ex-
traction procedure, the updated value of 𝑝 is at most a factor of 2 smaller than the initial output
of Step 2, we conclude that the overall expected running time of Step 3 is at most E[poly(𝜆)/𝑝] ≤
poly(𝜆), completing the proof of Theorem 8.11.

8.3.5 Correctness of the repair step

In this section, we prove that Extract aborts with negligible probability (property (2) of Theo-
rem 8.2).

Lemma 8.15. The probability that the procedure aborts is negligible.

Proof. By Theorem 8.11, the probability that the procedure aborts because it ran for too long is
𝑂(poly(𝜆)/

√
𝛿) = negl(𝜆).

By Lemma 8.4, E[1/𝑝 ·𝑋] = 𝑂(1), where 𝑋 is the indicator for whether Step 1 outputs 1. Hence
by Claim 8.16 (proven below) and Corollary 6.6 (which implies that the first iteration of Step 3a
only aborts with negligible probability), the probability that any iteration of the loop aborts when
we remove Step 3d is at most

𝑘 ·𝑂(
√
𝛿)E[1/𝑝 ·𝑋] = 𝑂(

√
𝛿).

Then by the collapsing guarantee (applied to the measurements of 𝑦1, . . . , 𝑦𝑘−1; it is not necessary
for 𝑦𝑘), and by Theorem 8.11, the probability that any iteration of the loop aborts is negligible.

68

Claim 8.16. Let 𝜌 ∈ S(ℋ ⊗ℛ) be a state such that Tr(ΠC𝜌ℋ,ℛ) = 1, and consider running two
iterations of Step 3 in sequence on 𝜌ℋ,ℛ, with the following modifications:

• Step 3d is not applied, and

• The 𝑂(𝑘)/
√
𝛿 runtime cutoff has been removed.

Then, for any choice of 𝑝 ∈ [0, 1], the probability that the first iteration (with initial value 𝑝) does
not abort in Step 3a and the second iteration aborts in Step 3a is at most 𝑂(

√
𝛿/𝑝).

Also, the probability that an iteration of Step 3 (where Step 3d is not applied) does not abort in
Step 3a but does abort in Step 3g is at most 𝑂(

√
𝛿/𝑝).

Proof. For a projector Π, we write Πℬ to denote the projection

|0⟩⟨0|ℬ ⊗ I + |1⟩⟨1|ℬ ⊗Π.

Let ℬ store the output of Threshold in the first application of Step 3a. Recall that in Section 8.3.3
we have defined the following states:

• 𝜌
(C)
ℬ,ℋ,ℛ denotes the state after applying Step 3a (i.e., coherently applying Threshold to 𝜌ℋ,ℛ

where the output is stored on ℬ). The extraction procedure now re-defines/updates 𝑝 := 𝑝−𝜀.
Note that Tr

(︁
(ΠJor
≥𝑝)ℬ𝜌

(C)
ℬ,ℋ,ℛ

)︁
≥ 1− 𝛿 (Claim 8.5).

• 𝜌
(C,𝑏)
ℋ,ℛ := ⟨𝑏|ℬ 𝜌

(C)
ℬ,ℋ,ℛ |𝑏⟩ℬ /𝑞 where 𝑞 := Tr

(︁
⟨𝑏|ℬ 𝜌

(C)
ℬ,ℋ,ℛ |𝑏⟩ℬ

)︁
. We may assume 𝑞 > 0 or else

the claim holds trivially.

• 𝜌
′(C)
ℬ,ℋ,ℛ :=

(︀
ΠJor

≥𝑝

)︀ℬ
𝜌

(C)
ℬ,ℋ,ℛ

(︀
ΠJor

≥𝑝

)︀ℬ

Tr
(︁(︀

ΠJor
≥𝑝

)︀ℬ
𝜌

(C)
ℬ,ℋ,ℛ

)︁ is the result of projecting 𝜌
(C)
ℬ,ℋ,ℛ onto eigenvalues ≥ 𝑝 (for the

Jordan decomposition corresponding to ΠC,ΠU) when ℬ = 1.

• 𝜌
′(C,1)
ℋ,ℛ := ⟨1|ℬ 𝜌

′(C)
ℬ,ℋ,ℛ |1⟩ℬ /𝑞′ where 𝑞′ := Tr

(︁
⟨1|ℬ 𝜌

′(C,1)
ℬ,ℋ,ℛ |1⟩ℬ

)︁
. Note that Tr

(︁
ΠC𝜌

′(C,1)
ℋ,ℛ

)︁
= 1.

• 𝜌
(U,1)
ℋ,ℛ denotes the pseudoinverse of 𝜌

′(C,1)
ℋ,ℛ with respect to (U,C) as guaranteed by the pseu-

doinverse lemma (Lemma 7.1); by definition, Tr
(︁
ΠU𝜌

(U,1)
ℋ,ℛ

)︁
= 1. Moreover Tr

(︁
ΠC𝜌

(U,1)
ℋ,ℛ

)︁
≥ 𝑝

(Claim 8.7) since all the (ΠC,ΠU)-Jordan-eigenvalues of 𝜌
′(C,1)
ℋ,ℛ are at least 𝑝, which implies

the same property holds for the pseudoinverse state.

• 𝜑
(U,1)
ℋ := Trℛ(𝜌(U,1)

ℋ,ℛ). Note that since Tr
(︁
ΠU𝜌

(U,1)
ℋ,ℛ

)︁
= 1, we have 𝜌

(U,1)
ℋ,ℛ = 𝜑

(U,1)
ℋ ⊗ |+⟩⟨+|ℛ.

• 𝜌
′(3𝑏,1)
ℋ,ℛ :=

∑︀
𝑟

Π𝑉,𝑟𝜑
(U,1)
ℋ Π𝑉,𝑟⊗|𝑟⟩⟨𝑟|

|𝑅|·Tr
(︁

ΠC𝜌
(U,1)
ℋ,ℛ

)︁ is within trace distance 2
√
𝛿 of the state after measuring the

ℛ register in Step 3b but before discarding ℛ (Claim 8.8).

• 𝜎
(U,1)
ℋ,𝒲 := 𝜑

(U,1)
ℋ ⊗ |0⟩⟨0|𝒲 . We have that Tr

(︁
Π𝑝,𝜀,𝛿𝜎

(U,1)
ℋ,𝒲

)︁
≥ 1 − 𝛿 because Threshold𝑝,𝜀,𝛿

outputs 1 on 𝜌
(U,1)
ℋ,ℛ with probability 1− 𝛿 by the Jordan spectrum guarantee of Lemma 7.1.

69

• ̃︀𝜎(U,1)
ℋ,𝒲 := Π𝑝,𝜀,𝛿𝜎(U,1)Π𝑝,𝜀,𝛿

Tr(Π𝑝,𝜀,𝛿𝜎(U,1)) . By the gentle measurement lemma (Lemma 3.1), we have 𝑑(𝜑(U,1)
ℋ ⊗

|0⟩⟨0|𝒲 , ̃︀𝜎(U,1)
ℋ,𝒲) ≤ 2

√
𝛿.

• ̃︀𝜎(𝑟,1)
ℋ,𝒲 := Π𝑟̃︀𝜎(U,1)

ℋ,𝒲 Π𝑟̃︀𝜁𝑟
where ̃︀𝜁𝑟 := Tr

(︁
Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
for all 𝑟 ∈ 𝑅.

• ̃︀𝜏ℋ,𝒲,ℛ := ∑︀
𝑟
̃︀𝜁𝑟̃︀𝜁𝑅

̃︀𝜎(𝑟,1)
ℋ,𝒲 ⊗ |𝑟⟩⟨𝑟| for ̃︀𝜁𝑅 = ∑︀

𝑟
̃︀𝜁𝑟. By Claim 8.10, we have that ̃︀𝜏ℋ,𝒲,ℛ is within

trace distance 4
√
𝛿

𝑝 of the state 𝜏 = 𝜌
′(3𝑏,1)
ℋ,ℛ ⊗ |0⟩⟨0|𝒲 .

We now consider the application of the variable-runtime singular vector transform performed
across Steps 3c and 3e (recall that we omit Step 3d for this analysis). We consider applying these
steps to the state ̃︀𝜎(𝑟,1)

ℋ,𝒲 . Note that Steps 3c and 3e commute with MJor[D𝑟,G𝑝,𝜀,𝛿]. Hence writing̃︀𝜎(3𝑒,𝑟,1)
ℋ,𝒲 for the state after applying Steps 3c and 3e to ̃︀𝜎(𝑟,1)

ℋ,𝒲 , we have

Tr
(︁
ΠJor𝑟
𝑗 ̃︀𝜎(3𝑒,𝑟,1)

ℋ,𝒲

)︁
= Tr

(︁
ΠJor𝑟
𝑗 ̃︀𝜎(𝑟,1)

ℋ,𝒲

)︁
=
𝑞𝑗 Tr

(︁
ΠJor𝑟
𝑗 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
̃︀𝜁𝑟

where ΠJor𝑟
𝑗 is the 𝑗-th element of MJor[D𝑟,G𝑝,𝜀,𝛿]. Let ΠJor𝑟

G𝑝,𝜀,𝛿,stuck be defined (analogous to ΠJor
stuck

in Claim 7.2) as ΠJor
stuck := ∑︀

𝑗∈𝑆 ΠJor𝑟
𝑗 where 𝑆 is the set of all 𝑗 where 𝒮𝑗 is a one-dimensional

Jordan subspace 𝒮𝑗 ∈ image(I−Π𝑝,𝜀,𝛿). We now invoke Claim 7.2 to “rotate” the state ̃︀𝜎(3𝑒,𝑟,1)
ℋ,𝒲 into

image(Π𝑝,𝜀,𝛿) while preserving the Jordan spectrum, which is possible as long as the component of
the state in ΠJor𝑟

G𝑝,𝜀,𝛿,stuck is 0. This is satisfied here because Tr
(︁
ΠJor𝑟

stuck ̃︀𝜎(3𝑒,𝑟,1)
ℋ,𝒲

)︁
= Tr

(︁
ΠJor𝑟

stuck ̃︀𝜎(U,1)
ℋ,𝒲

)︁
= 0

since ̃︀𝜎(U,1)
ℋ,𝒲 was defined so that Tr

(︁
Π𝑝,𝜀,𝛿 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
= 1.

Additionally, by the guarantee of Theorem 6.4, Tr
(︁
Π𝑝,𝜀,𝛿 ̃︀𝜎(3𝑒,𝑟,1)

ℋ,𝒲

)︁
≥ 1− 𝛿. Hence by Claim 7.2,

there exists a state ̃︀𝜎(G,𝑟,1)
ℋ,𝒲 with the same Jordan spectrum as ̃︀𝜎(3𝑒,𝑟,1)

ℋ,𝒲 , Tr
(︁
Π𝑝,𝜀,𝛿 ̃︀𝜎(G,𝑟,1)

ℋ,𝒲

)︁
= 1 and

𝑑(̃︀𝜎(G,𝑟,1)
ℋ,𝒲 , ̃︀𝜎(3𝑒,𝑟,1)

ℋ,𝒲) ≤
√
𝛿. Note that ̃︀𝜎(G,𝑟,1)

ℋ,𝒲 also has the same Jordan spectrum of ̃︀𝜎(𝑟,1)
ℋ,𝒲

Consider the pseudoinverse state ̃︀𝜎(D,𝑟,1)
ℋ,𝒲 under (D𝑟,G𝑝,𝜀,𝛿) of ̃︀𝜎(G,𝑟,1)

ℋ,𝒲 . Since the Jordan spectrum
of ̃︀𝜎(G,𝑟,1)

ℋ,𝒲 ∈ image(Π𝑝,𝜀,𝛿) is identical to the Jordan spectrum of ̃︀𝜎(𝑟,1)
ℋ,𝒲 ∈ image(Π𝑟), and ̃︀𝜎(U,1)

ℋ,𝒲 is
the pseudoinverse under (G𝑝,𝜀,𝛿,D𝑟) of ̃︀𝜎(𝑟,1)

ℋ,𝒲 , it follows that

Tr
(︁
Π𝑝,𝜀,𝛿 ̃︀𝜎(D,𝑟,1)

ℋ,𝒲

)︁
= Tr

(︁
Π𝑟 ̃︀𝜎(U,1)

ℋ,𝒲

)︁
= ̃︀𝜁𝑟,

and moreover ̃︀𝜎(G,𝑟,1)
ℋ,𝒲 = Π𝑝,𝜀,𝛿 ̃︀𝜎(D,𝑟,1)

ℋ,𝒲 Π𝑝,𝜀,𝛿/̃︀𝜁𝑟.
Hence, if the state before Step 3c is ∑︀𝑟

̃︀𝜁𝑟̃︀𝜁𝑅

̃︀𝜎(𝑟,1)
ℋ,𝒲 (which is 4

√
𝛿

𝑝 close to the actual state before
Step 3c) then the state after Step 3e is 𝑂(

√
𝛿)-close to the following state:

̃︀𝜎(3𝑒,1)
ℋ,𝒲 := 1̃︀𝜁𝑅

∑︁
𝑟

Π𝑝,𝜀,𝛿

(︁̃︀𝜎(D,𝑟,1)
ℋ,𝒲

)︁
Π𝑝,𝜀,𝛿.

Therefore, writing ̃︀𝜎(D,𝑟,1)
ℋ,𝒲 = ̃︀𝜑(D,𝑟,1)

ℋ ⊗ |0⟩⟨0|𝒲 (̃︀𝜎(D,𝑟,1)
ℋ,𝒲 has this form since ̃︀𝜎(D,𝑟,1)

ℋ,𝒲 ∈ image(Π𝑟)),
the state at the end of Step 3f is 𝑂(

√
𝛿)-close to

̃︀𝜑(3𝑓,1)
ℋ := 1̃︀𝜁𝑅

∑︁
𝑟∈𝑅

𝑀𝑝,𝜀,𝛿

(︁ ̃︀𝜑(D,𝑟,1)
ℋ

)︁
𝑀 †𝑝,𝜀,𝛿,

70

where 𝑀𝑝,𝜀,𝛿 is the measurement element of T𝑝,𝜀,𝛿 that corresponds to a 1 outcome.
By the guarantee of Threshold (Theorem 6.2), it holds that for all states 𝜑 ∈ S(ℋ),

Tr
(︁
ΠJor
<𝑝−𝜀𝑀𝑝,𝜀,𝛿𝜑𝑀

†
𝑝,𝜀,𝛿

)︁
≤ 𝛿,

and so by linearity,

Tr
(︁
ΠJor
<𝑝−𝜀

̃︀𝜑(3𝑓,1)
ℋ

)︁
= 1̃︀𝜁𝑅

∑︁
𝑟∈𝑅

Tr
(︁
ΠJor
<𝑝−𝜀𝑀𝑝,𝜀,𝛿

(︁ ̃︀𝜑(D,𝑟,1)
ℋ

)︁
𝑀 †𝑝,𝜀,𝛿

)︁
≤ 1̃︀𝜁𝑅 · |𝑅| · 𝛿
≤ 𝛿

𝑝− 2
√
𝛿

(4)

= 𝑂(𝛿/𝑝),

where Eq. (4) holds by Claim 8.9. It follows from the guarantees of the fixed-runtime singular
vector transform (Theorem 6.1) that the state at the end of Step 3g is 𝑂(𝛿)-close to the statẽ︀𝜌(3𝑔,1)
ℋ,ℛ = Transform𝑝−𝜀[U→ C](̃︀𝜑(3𝑓,1)

ℋ ⊗ |+𝑅⟩⟨+𝑅|ℛ), which has the property that

Tr
(︁
(I−ΠC)ΠJor

≥𝑝−𝜀(̃︀𝜑(3𝑓,1)
ℋ ⊗ |+𝑅⟩⟨+𝑅|ℛ)

)︁
≤ 𝛿.

Combining this with Tr
(︁
ΠJor
<𝑝−𝜀

̃︀𝜑(3𝑓,1)
ℋ

)︁
= 𝑂(𝛿/𝑝), we conclude that if the state before Step 3c is∑︀

𝑟
̃︀𝜁𝑟̃︀𝜁𝑅

̃︀𝜎(𝑟,1)
ℋ,𝒲 , then the probability that Step 3g aborts is at most 𝑂(𝛿/𝑝). Additionally, the guarantee

of Threshold (Theorem 6.2) implies that in the next iteration of Step 3, the probability that Step 3a
aborts on ̃︀𝜌(3𝑔,1)

ℋ,ℛ is also at most 𝑂(𝛿/𝑝). By a trace distance argument, the probability that Step 3g
or the subsequent Step 3a aborts in a real execution of Step 3 (with the modifications as in the
statement of Claim 8.16) when the first Step 3a did not abort is at most 𝑂(

√
𝛿/𝑝). This completes

the proof of Claim 8.16.

8.3.6 Correctness of Transcript Generation

Finally, we prove property (3) of Theorem 8.2.

Lemma 8.17. For every 𝜏pre = (vk, 𝑎), let 𝛾 = 𝛾vk,𝑎 denote the initial success probability of 𝑃 *
conditioned on 𝜏pre. Then, if 𝛾 > 𝛿1/3, the distribution 𝐷𝑘 on (𝑟1, . . . , 𝑟𝑘) (conditioned on (vk, 𝑎)
and a successful first execution) is 𝑂(1/𝛾)-admissible (Definition 5.5).

This follows by appealing to the following claim in each round, making use of the fact that the ex-
pectation of 1/𝑝 conditioned on an accepting initial execution is equal33 to 1/𝛾; the 𝑂(

√
𝛿)-closeness

from the claim also degrades to 𝑂(
√
𝛿/𝛾) when conditioning on an accepting initial execution.

Claim 8.18. Consider the distribution 𝐷 supported on 𝑅∪{⊥} obtained running a single iteration
of Step 3 with parameter 𝑝 on an arbitrary state 𝜌 ∈ S(ℋ ⊗ℛ) with Tr(ΠC𝜌) = 1 (where 𝑟 := ⊥

33Here (and elsewhere) we informally make use of the fact that the “current” value of 𝑝 in any iteration of Step 3
is always at least 𝑝0/2, where 𝑝0 is the initial estimated 𝑝.

71

if Extract aborts). There exists a procedure Samp that makes expected 𝑂(1/𝑝) queries to uniform
sampling oracle 𝑂𝑅 (but can otherwise behave arbitrarily and inefficiently) that outputs a distribu-
tion 𝑂(

√
𝛿)-close to 𝐷, and if the output of Samp is not ⊥ then is one of the responses to its oracle

queries.

Proof. Samp initially behaves similarly to Extract: apply Threshold𝑝,𝜀,𝛿 to 𝜌; if Threshold outputs
0 then output ⊥. Let 𝜌

(C)
ℬ,ℋ,ℛ be the state after applying Threshold, and (as in Extract) re-set

𝑝 := 𝑝− 𝜀.

As before, let 𝜌
′(C)
ℬ,ℋ,ℛ :=

(︀
ΠJor

≥𝑝

)︀ℬ
𝜌

(C)
ℬ,ℋ,ℛ

(︀
ΠJor

≥𝑝

)︀ℬ

Tr
(︁(︀

ΠJor
≥𝑝

)︀ℬ
𝜌

(C)
ℬ,ℋ,ℛ

)︁ . Let 𝜌
(U,1)
ℋ,ℛ be the pseudoinverse of 𝜌

′(C,1)
ℋ,ℛ =

⟨1|ℬ 𝜌
′(C)
ℬ,ℋ,ℛ |1⟩ℬ /Tr

(︁
⟨1|ℬ 𝜌

′(C,1)
ℬ,ℋ,ℛ |1⟩ℬ

)︁
as guaranteed by the pseudoinverse lemma (Lemma 7.1).

We have by Lemmas 3.1 and 7.1 that 𝑑(𝜌C
ℬ,ℋ,ℛ,𝜌

′C
ℬ,ℋ,ℛ) ≤ 2

√
𝛿 and 𝜌′C,1ℋ,ℛ = Π𝐶𝜌

(U,1)
ℋ,ℛ Π𝐶

Tr
(︁

ΠC𝜌
(U,1)
ℋ,ℛ

)︁ . Finally,

write 𝜌
(U,1)
ℋ,ℛ = 𝜑

(U,1)
ℋ ⊗ |+⟩⟨+|ℛ.

Samp now behaves differently than Extract. Samp “clones” 𝜑
(U,1)
ℋ (recall that Samp can be an

arbitrary function) and repeats the following until 𝑏 = 1: query 𝑂𝑅, obtaining 𝑟 ∈ 𝑅; on a fresh
copy of 𝜑

(U,1)
ℋ , measure whether the verifier accepts on challenge 𝑟 (i.e., (Π𝑉,𝑟, I−Π𝑉,𝑟)), obtaining

bit 𝑏. Output 𝑟 if 𝑏 = 1.
Let 𝑝U := Tr

(︁
ΠC𝜑

(U,1)
ℋ

)︁
; we have that 𝑝U ≥ 𝑝 by Claim 8.7. Hence, the expected number of

queries Samp makes is 1/𝑝. Observe that 𝑝U is the probability that a uniform 𝑟 is accepted. Let
𝜁𝑟 := Tr

(︁
Π𝑉,𝑟𝜑

(U,1)
ℋ

)︁
; 𝜁𝑟 is the probability that 𝑟 is accepted. Then, for every 𝑟* ∈ 𝑅,

Pr
Samp

[𝑟 = 𝑟*] =
∞∑︁
𝑛=0

Pr[𝑟1, . . . , 𝑟𝑛 rejected] Pr[𝑟𝑛+1 = 𝑟*, 𝑟* accepted] =
∞∑︁
𝑛=0

(1−𝑝U)𝑛 · 𝜁𝑟
*

|𝑅|
= 𝜁𝑟*

𝑝U · |𝑅|
.

Consider now the distribution on 𝑟 obtained by measuring ℛ on state 𝜌
′(C,1)
ℋ,ℛ : for every 𝑟*,

Pr[𝑟 = 𝑟*] = Tr
(︁
|𝑟*⟩⟨𝑟*|𝜌′(C,1)

ℋ,ℛ

)︁
=

Tr
(︁
|𝑟*⟩⟨𝑟*|ΠC𝜌

(U,1)
ℋ,ℛ ΠC

)︁
𝑝U

=
Tr
(︁
Π𝑉,𝑟*𝜑

(U,1)
ℋ

)︁
𝑝U · |𝑅|

= 𝜁𝑟*

𝑝U · |𝑅|

since (Iℋ ⊗ |𝑟*⟩⟨𝑟*|)ΠC = Π𝑉,𝑟* ⊗ |𝑟*⟩⟨𝑟*| and |𝑟*⟩⟨𝑟*|𝜌(U,1)
ℋ,ℛ |𝑟*⟩⟨𝑟*| = 1

|𝑅|𝜑
(U,1)
ℋ ⊗ |𝑟*⟩⟨𝑟*|ℛ.

Overall, 𝐷 is obtained by measuring (ℬ,ℛ) on the state 𝜌
(C)
ℬ,ℋ,ℛ, which is 𝑂(

√
𝛿)-close to 𝜌

′(C)
ℬ,ℋ,ℛ;

the claim follows by contractivity of trace distance.

Having established properties (1), (2), and (3), we have proved Theorem 8.2!

8.4 Obtaining Guaranteed Extraction

In this section, we combine the guarantees of Theorem 8.2 with additional analysis to prove that
all of the example protocols from Section 5.3 have guaranteed extractors (additionally assuming
partial collapsing where necessary). We remark that handling the graph isomorphism subroutine
requires a slight modification of the Theorem 8.2, which we detail below.

We begin with a general-purpose corollary of Theorem 8.2 for the case of protocols satisfying
(𝑘, 𝑔)-PSS (Definition 5.6) in addition to 𝑓1, . . . , 𝑓𝑘−1-partial collapsing (which was assumed in
Theorem 8.2).

72

Corollary 8.19. Let (𝑃Σ, 𝑉Σ) be a 3- or 4- message public coin interactive argument with a con-
sistency function 𝑔 : 𝑇 × (𝑅× {0, 1}*)* → {0, 1}, and let 𝑓1, . . . , 𝑓𝑘 be functions. Suppose that:

• The protocol is partially collapsing with respect to 𝑓1, . . . , 𝑓𝑘−1, and

• The protocol is (𝑘, 𝑔)-PSS for some 𝑘 = poly(𝜆).

Then, one of the two following conclusions holds:

1. The extractor from Theorem 8.2 composed with the PSS extractor PSSExtract satisfies guar-
anteed extraction, OR

2. The extractor from Theorem 8.2 outputs a 𝑘-tuple of partial transcripts (𝑟1, 𝑦1, . . . , 𝑟𝑘, 𝑦𝑘)
such that 𝑔(𝜏pre, 𝑟1, 𝑦1, . . . , 𝑟𝑘, 𝑦𝑘) = 0 (the transcripts are inconsistent) with non-negligible
probability.

Proof. Suppose that conclusion (1) is false, meaning that there exist infinitely many 𝜆 and a
constant 𝑐 such that the extractor from Theorem 8.2 has an accepting initial execution but the
call to PSSExtract fails to produce a witness with probability at least 1/𝜆𝑐. We know that the
Theorem 8.2 extractor aborts with negligible probability, so we also assume that the extractor does
not abort here. Then, by an averaging argument, with probability at least 1

2𝜆𝑐 over the distribution
of (vk, 𝑎), the above event conditioned on (vk, 𝑎) holds with probability at least 1

2𝜆𝑐 . This in
particular implies that 𝛾vk,𝑎 (as defined in Theorem 8.2) is at least 1

2𝜆𝑐 for these choices of (vk, 𝑎).
Then, property (3) of Theorem 8.2 implies that the distribution of (𝑟1, . . . , 𝑟𝑘) is admissible for
these choices of (vk, 𝑎) (and choices of 𝜆). Thus, the (𝑘, 𝑔)-PSS property of (𝑃Σ, 𝑉Σ) implies that
for every such (vk, 𝑎), the 𝑘-tuple of partial transcripts must be inconsistent with probability at least

1
2𝜆𝑐 (as otherwise PSSExtract would succeed with 1 − negl probability). Therefore, assuming that
conclusion (1) is false, the probability that the 𝑘-tuple of transcripts output by the Theorem 8.2
extractor are inconsistent is at least 1

4𝜆2𝑐 for infinitely many 𝜆, implying conclusion (2).

Finally, we apply Corollary 8.19 to obtain guaranteed extractors for all of the Section 5.3
example protocols (along with a general result for 𝑘-special sound protocols).

Corollary 8.20. If (𝑃Σ, 𝑉Σ) is (fully) collapsing and 𝑘-special sound, and |𝑅| = 2𝜔(log 𝜆), then the
protocol has guaranteed extraction.

Proof. Since (𝑃Σ, 𝑉Σ) is 𝑘-special sound and |𝑅| = 2𝜔(log 𝜆), we know that the protocol is (𝑘, 𝑔)-
PSS for the “trivial” transcript consistency predicate 𝑔. Therefore, Corollary 8.19 applies to this
protocol (where the extractor sets 𝑓1 = . . . = 𝑓𝑘 = Id). However, conclusion (2) of Corollary 8.19
cannot happen because the consistency predicate of PSSExtract in this case simply checks that the
transcripts are accepting, which is guaranteed by the fact that (𝑟𝑖, 𝑦𝑖 = 𝑧𝑖) was a measurement
outcome of a state in Π𝐶 .

Corollary 8.21. If (𝑃Σ, 𝑉Σ) is a commit-and-open protocol (Definition 5.11) satisfying commit-
and-open 𝑘-special soundness and 𝑅 = 2𝜔(log 𝜆) (either natively or enforced by parallel repetition),
and the commitment scheme is instantiated using a collapse-binding commitment [Unr16b], then
the protocol has a guaranteed extractor.

73

Proof. Under the hypotheses of the corollary (along with Claims 5.3 and 5.7), the protocol satis-
fies either (𝑘, 𝑔)-PSS (if it has a natively superpolynomial challenge space) or (𝑘2 log2(𝜆), 𝑔)-PSS
(if parallel repeated; see Lemma 5.8), where 𝑔 is a predicate that enforces the constraint that all
opened messages are consistent with each other. We set 𝑓1 = . . . = 𝑓𝑘 = 𝑓 where 𝑓(𝑧) outputs
the substring of 𝑧 corresponding to the opened messages (and not the openings). Then, the The-
orem 8.2 extraction procedure does not violate 𝑔-consistency by the unique-message binding of
the commitment scheme (shown in Lemma 4.2). Thus, Corollary 8.19 implies that (𝑃Σ, 𝑉Σ) has a
guaranteed extraction procedure.

Corollary 8.22. Kilian’s succinct argument system [Kil92], when instantiated using a collapsing
hash function and a PCP of knowledge, has a guaranteed extraction procedure.

Proof. We know from Claim 5.14 the [Kil92] succinct argument system is (1) (fully) collapsing,
and (2) (𝑘, 𝑔)-PSS for 𝑘 = poly(𝑛, 𝜆) and 𝑔 defined so that when 𝑧𝑖 and 𝑧𝑗 contain overlapping
leaves of the Merkle tree, the leaf values are equal. We set 𝑓1 = . . . = 𝑓𝑘 = Id, and observe
that the Theorem 8.2 extractor does not violate 𝑔-consistency, because if it output two transcripts
(𝑟1, 𝑧1), (𝑟2, 𝑧2) with inconsistent leaf values, since the transcripts are accepting (they were obtained
by measuring a state in Π𝐶), this would violate the collision-resistance (implied by collapsing) of
the hash family. Thus, by Corollary 8.19, the protocol has a guaranteed extractor.

Corollary 8.23. The one-out-of-two graph isomorphism subroutine has a guaranteed extraction
procedure that extracts the bit 𝑏 (when 𝐺0 and 𝐺1 are not isomorphic).

Proof. By Claim 5.10, this protocol is (2, 𝑔′)-PSS where 𝑔′ is the following asymmetric function:

• For the first partial transcript (𝜏pre, 𝑟
(1), 𝑐(1)), 𝑔′ checks that for all 𝑖 such that 𝑟𝑖 = 0,

(𝐻0,𝑖, 𝐻1,𝑖) are isomorphic to (𝐺
𝑐

(1)
𝑖

, 𝐺1−𝑐(1)
𝑖

).

• For the second partial transcript (𝜏pre, 𝑟
(2), 𝑐(2)), 𝑔′ additionally checks that for all 𝑖 such that

𝑟𝑖 = 1, 𝐻
𝑐

(2)
𝑖 ,𝑖

is isomorphic to 𝐻.

We define the following pair of functions 𝑓1, 𝑓2:

• 𝑓1(𝜏pre, 𝑟, 𝑧) outputs the following substring of 𝑧. For every 𝑖 such that 𝑟𝑖 = 0, the substring
includes the bit 𝑐𝑖 (where 𝑧𝑖 = (𝑐𝑖, 𝜎0,𝑖, 𝜎1,𝑖)).

• 𝑓2(𝜏pre, 𝑟, 𝑧) outputs the substring 𝑐 (the distinguished single bit of each 𝑧𝑖).

We note that the graph isomorphism subprotocol is 𝑓1-collapsing; this follows from the fact that for
any accepting transcript (𝜏pre, 𝑟, 𝑧), the bits 𝑐𝑖 (for 𝑟𝑖 = 0) are information-theoretically determined
as a function of (𝐺0, 𝐺1, 𝐻0,𝑖, 𝐻1,𝑖).

Thus, if we instantiate the Theorem 8.2 extractor using (𝑓1, 𝑓2) (note that we require no prop-
erties of 𝑓2) we have that Corollary 8.19 applies. Moreover, 𝑔′-consistency of the transcripts output
by the extractor is not violated, because it is formally implied by the fact that they were ob-
tained by partially measuring a state in Π𝐶 (any accepting partial transcript (𝑟𝑖, 𝑐𝑖) satisfies the
condition checked by 𝑔′). Thus, we conclude that the protocol has a guaranteed extractor by
Corollary 8.19.

74

9 Expected Polynomial Time for Quantum Simulators
We introduce a notion of efficient computation we call coherent-runtime expected quantum poly-
nomial time (EQPT𝑐). We then formalize a new definition of post-quantum zero-knowledge with
EQPT𝑐 simulation.

9.1 Quantum Turing Machines

We recall the definition of a quantum Turing machine (QTM) of Deutsch [Deu85]. A QTM is a tuple
(Σ, 𝑄, 𝛿, 𝑞0, 𝑞𝑓) where Σ is a finite set of symbols, 𝑄 is a finite set of states, 𝛿 : 𝑄×Σ→ C𝑄×Σ×{−1,0,1}

is a transition function, and 𝑞0, 𝑞𝑓 are the initial and final (halting) states respectively.
We fix registers 𝒬 containing the state, ℐ containing the position of the tape head, and 𝒯

containing the tape. A configuration state of a Turing machine is a vector |𝑞, 𝑖,T⟩ ∈ 𝒬 ⊗ ℐ ⊗ 𝒯
where 𝑞 ∈ 𝑄 is the current state, 𝑖 ∈ N is the location of the tape head, and T ∈ Σ* is the (finite)
contents of the tape.

A transition is given by the map 𝑈𝛿, which acts on basis states as follows:

|𝑞, 𝑖, 𝑇 ⟩ ↦→
∑︁
𝑞′∈𝑄

∑︁
𝑎∈Σ

∑︁
𝑑∈{−1,0,1}

𝛼𝑞′,𝑎,𝑑,𝑏 |𝑞′, 𝑖+ 𝑑,T𝑖→𝑎⟩

where 𝛿(𝑞,T𝑖) = ∑︀
𝑞′,𝑎,𝑑 𝛼𝑞′,𝑎,𝑑 |𝑞′, 𝑎, 𝑑⟩. 𝛿 is a valid transition function if and only if 𝑈𝛿 is unitary.

The definition of QTMs generalises to multiple tapes in the natural way. We will consider QTMs
having a separate input/output tape on register 𝒜 (with head position in ℐin).

The execution of a 𝑇 -bounded QTM proceeds as follows.

1. Initialize register 𝒬 to |𝑞0⟩, ℐ, ℐin to |0⟩, and 𝒯 to the empty tape state |∅⟩.
2. Repeat the following for at most 𝑇 steps:

(a) Apply the measurement Π𝑓 = (|𝑞𝑓 ⟩⟨𝑞𝑓 | , I− |𝑞𝑓 ⟩⟨𝑞𝑓 |) to 𝒬. If the outcome is 1, halt and
discard all registers except 𝒜.

(b) Apply 𝑈𝛿.

The output 𝑀(𝜌) of a QTM 𝑀 on input 𝜌 ∈ S(𝒜) is the state on 𝒜 when the machine halts. The
running time 𝑡𝑀 (𝜌) of 𝑀 on input 𝜌 is the number of iterations of Step 2. Note that both of
these quantities are random variables. We say that 𝑀(𝜌) uses space 𝑆 if 𝑆 is the minimum integer
such that, at every computation step, ℐ has zero amplitude on integers greater than 𝑆.

Definition 9.1. The expected running time 𝐸𝑀 (𝑛) of a QTM 𝑀 is the maximum over all 𝑛-qubit
states 𝜌 of E[𝑡𝑀 (𝜌)]. A 𝑇 -bounded QTM 𝑀 (for some 𝑇 ≤ exp(𝑛)) is EQPT𝑚 if there exists a
polynomial 𝑝 such that 𝐸𝑀 (𝑛) ≤ 𝑝(𝑛) for all 𝑛. The space complexity 𝑆𝑀 (𝑛) is the maximum 𝑆
such that 𝑀(𝜌) uses space 𝑆, taken over all 𝑛-qubit states 𝜌.

9.2 Coherent-Runtime EQPT

Definition 9.2. A D-circuit is a quantum circuit 𝐶 with special gates {𝐺𝑖, 𝐺−1
𝑖 })𝑘𝑖=1 with the

following restriction: for each 𝑖, there is a single 𝐺𝑖 gate and a single 𝐺−1
𝑖 gate acting on a

designated register 𝒳𝑖, where 𝐺𝑖 acts before 𝐺−1
𝑖 . All other gates may act arbitrarily on 𝒴⊗⨂︀𝑘

𝑖=1𝒳𝑖,
for some register 𝒴. For any CPTP maps Φ𝑖 : S(𝒳𝑖) → S(𝒳𝑖), 𝐶[Φ1, . . . ,Φ𝑘] : S(𝒴 ⊗⨂︀𝑘

𝑖=1𝒳𝑖) →
S(𝒴 ⊗⨂︀𝑘

𝑖=1𝒳𝑖) is the superoperator defined as follows:

75

1. For each 𝑖, 𝑈𝑖 be a unitary dilation of Φ𝑖. That is, let 𝒵𝑖 be an ancilla Hilbert space and 𝑈Φ
unitary on 𝒳𝑖 ⊗𝒵𝑖 such that Φ(𝜎) = Tr𝒵𝑖(𝑈𝑖(𝜎 ⊗ |0⟩⟨0|𝒵𝑖

)𝑈 †𝑖) for all 𝜎 ∈ S(𝒳𝑖).
2. Construct a circuit 𝐶 ′ on 𝒴 ⊗⨂︀𝑘

𝑖=1(𝒳𝑖 ⊗ 𝒵𝑖) from 𝐶 by replacing 𝐺𝑖 with 𝑈𝑖 and 𝐺−1
𝑖 with

𝑈 †𝑖 for each 𝑖.
3. Let 𝐶 be the superoperator 𝜌 ↦→ Tr𝒵(𝐶 ′(𝜌⊗⨂︀𝑘

𝑖=1 |0⟩⟨0|𝒵𝑖
)).

Since all choices of 𝑈𝑖 are equivalent up to a local isometry on 𝒵𝑖, the map 𝐶[Φ1, . . . ,Φ𝑘] is well-
defined.

We are now ready to define our notion of coherent-runtime expected quantum polynomial time.

Definition 9.3. A sequence of CPTP maps {Φ𝑛}𝑛∈N is a EQPT𝑐 computation if there exist a uni-
form family of D-circuits {𝐶𝑛}𝑛∈N and EQPT𝑚 computations𝑀1, . . . ,𝑀𝑘 such that 𝐶𝑛[𝑀1, . . . ,𝑀𝑘] =
Φ𝑛 for all 𝑛. The running time of an EQPT𝑐 computation is defined to be |𝐶𝑛| + 2∑︀𝑘

𝑖=1𝐸𝑀𝑖(𝑛),
and the space complexity is defined to be 𝑆(𝐶𝑛)+∑︀𝑘

𝑖=1 𝑆𝑀𝑖(𝑛) where 𝐶𝑛 operates on 𝑆(𝐶𝑛) qubits.

We show that any EQPT𝑐 computation can be approximated to any desired inverse polynomial
precision by a polynomial-size quantum circuit. We first show the following claim. Let |init⟩ :=
|𝑞0⟩𝒬 |0, 0⟩ℐ,ℐin

|∅⟩𝒯 .

Claim 9.4. Let 𝑀 be a 𝑇 -bounded QTM running in expected time 𝑡 and space 𝑆, and let 𝑈 be the
unitary dilation of 𝑀 as in Fig. 1. For all 𝛾 : N → (0, 1], there is a uniform sequence of unitary
circuits {𝑉𝑛}𝑛 on 𝑂(𝑆(𝑛)) qubits of size 𝑂(𝑡(𝑛)/𝛾(𝑛)2) such that for every unitary 𝐴 on 𝒜 and
state |𝜓⟩ ∈ 𝒜: ⃦⃦⃦

(𝑈 †(I⊗𝐴)𝑈 − 𝑉 †𝑛 (I⊗𝐴)𝑉𝑛) |𝜓⟩ |init⟩ |0⟩ℬ
⃦⃦⃦
≤ 𝛾(𝑛).

Proof. Let 𝑉 be the unitary given by truncating 𝑈 to just after the 𝜏 -th iteration of 𝑈𝛿, where
𝜏 := ⌈𝑡/4𝛾2⌉. The proof proceeds by showing that 𝑉, 𝑉 † simulates 𝑈,𝑈 † exactly in branches where
the running time is at most 𝜏 , and the total amplitude of branches where the running time is
greater than 𝜏 is small.

Let Π := |𝑇 − 𝜏⟩⟨𝑇 − 𝜏 |ℬ. Observe that for every state |𝜓⟩ ∈ 𝒜,

Π𝑈 |𝜓⟩ |init⟩ |0⟩ℬ = Π𝑓𝑈
𝑇−𝜏
inc 𝑉 |𝜓⟩ |init⟩ |0⟩ℬ ,

because Π projects on to computations that finish in at most 𝜏 steps, and once the computation
finishes, the remaining 𝑇 − 𝜏 controlled-𝑈inc are all applied.

Moreover, for every state |𝜑⟩ ∈ 𝒜 ⊗𝒲 and 𝑇 − 𝜏 ≤ 𝑢 ≤ 𝑇 − 1,

𝑈 † |𝜑⟩ |𝑞𝑓 ⟩𝒬 |𝑢⟩ℬ = 𝑉 †(𝑈 †inc)𝑇−𝜏 |𝜑⟩ |𝑞𝑓 ⟩𝒬 |𝑢⟩ℬ ,

since the first 𝑇−𝜏 controlled applications of 𝑈 †𝛿 act as the identity and the first 𝑇−𝜏 controlled-𝑈 †inc
gates are all applied. Hence

𝑈 †(I⊗𝐴)Π𝑈 |𝜓⟩ |init⟩ |0𝑇 ⟩ℬ = 𝑉 †(I⊗𝐴)Π𝑓𝑉 |𝜓⟩ |init⟩ |0𝑇 ⟩ℬ .

The claim follows since, by Markov’s inequality,

‖(𝐼 −Π)𝑈 |𝜓⟩ |init⟩ |0⟩ℬ‖ ≤
√︁
𝑡/𝜏 ≤ 𝛾(𝑛)/2.

76

Lemma 9.5. For any EQPT𝑐 computation {Φ𝑛}𝑛 with running time 𝑡 and space complexity 𝑆,
and 𝜀 : N → (0, 1], there is a uniform sequence of (standard) quantum circuits {𝐶𝑛}𝑛 of size
𝑂(𝑡(𝑛)/𝜀(𝑛)2) on 𝑆(𝑛) qubits such that 𝑑(Φ𝑛(𝜌), 𝐶𝑛(𝜌)) ≤ 𝜀(𝑛) for all 𝜌.

Proof. Let 𝐷𝑛 be a D-circuit and 𝑀1, . . . ,𝑀𝑘 such that Φ𝑛 = 𝐷𝑛[𝑀1, . . . ,𝑀𝑘], and let 𝑈𝑛 be the
unitary circuit obtained by replacing each 𝐺𝑖, 𝐺−1

𝑖 with the corresponding coherent implementation
of 𝑀𝑖 as in Fig. 1. Let 𝑈 ′𝑛 be as 𝑈𝑛, but where the 𝐺𝑖-gates are replaced with unitaries 𝑉𝑖 as
guaranteed by Claim 9.4, with 𝛾(𝑛) := 𝜀(𝑛)/𝑘. The circuit 𝐶𝑛 is obtained by initializing the
ancillas to |init⟩ |0⟩ℬ, applying 𝑈 ′𝑛, and then tracing out the ancillas.

We make use of the fidelity distance 𝑑𝐹 , defined in [Wat06] to be

𝑑𝐹 (𝜌,𝜎) := inf{‖ |𝜓⟩ − |𝜑⟩‖ : |𝜓⟩ , |𝜑⟩ purify 𝜌,𝜎, respectively}.

[Wat06] shows that 𝑑𝐹 (𝜌,𝜎) ≥ 𝑑(𝜌,𝜎). We can choose the purifications 𝑈𝑛 |𝜓⟩ |init⟩ |0⟩ of Φ𝑛(|𝜓⟩)
and 𝑈 ′𝑛 |𝜓⟩ |0⟩ of 𝐶𝑛(|𝜓⟩). By Claim 9.4, and the triangle inequality, the distance between these
states is at most 𝜀(𝑛).

9.3 Zero Knowledge with EQPT𝑐 Simulation

Given our definition of EQPT𝑐 above, we now formally define zero-knowledge with EQPT𝑐 simulation
for interactive protocols.

For an interactive protocol (𝑃, 𝑉), let out𝑉 *⟨𝑃, 𝑉 *⟩ denote the output of 𝑉 * after interacting
with 𝑃 .

Definition 9.6. An interactive argument is black-box statistical (resp. computational) post-
quantum zero knowledge if there exists an EQPT𝑐 simulator Sim such that for all polynomial-size
quantum malicious verifiers 𝑉 * and all (𝑥,𝑤) ∈ 𝑅𝐿, the distributions

out𝑉 *⟨𝑃 (𝑥,𝑤), 𝑉 *⟩ and Sim𝑉 *(𝑥)

are statistically (resp. quantum computationally) indistinguishable.

By Claim 9.4, any EQPT𝑐-zero knowledge protocol also satisfies (post-quantum) 𝜀-zero knowl-
edge. In Appendix A, we show that EQPT𝑐-ZK is strictly stronger than 𝜀-ZK by proving a formal
separation between them.

10 State-Preserving Extraction
So far, we have constructed EQPT𝑚 guaranteed extractors for various protocols of interest (Sec-
tion 8) and established the EQPT𝑐 model that allows for state-preserving extraction (Section 9). In
this section, we prove a generalization of Lemma 2.4, showing how to convert a EQPT𝑚 guaranteed
extractor into a state-preserving EQPT𝑐 extractor.

In Section 10.1, we write down an explicit reduction from state-preserving extraction to guar-
anteed extraction and prove Lemma 10.3, which gives a condition (Definition 10.2) under which
the reduction is valid (intuitively capturing “computational uniqueness” of the witness given the
first message of the protocol). Then, in Section 10.2, we show examples to which Lemma 10.3 ap-
plies; namely, protocols for languages with unique (partial) witnesses and general commit-and-prove
protocols. Finally, in Section 10.3, we conclude Theorems 1.8 and 1.9.

77

10.1 From Guaranteed Extraction to State-Preserving Extraction

We first recall our definition of state-preserving proofs of knowledge (Definition 2.2).

Definition 10.1. An interactive protocol Π is defined to be a state-preserving argument (resp.
proof) of knowledge if there exists an extractor Ext(·) with the following properties:

• Syntax: For any quantum algorithm 𝑃 * and auxiliary state |𝜓⟩, Ext𝑃 *,|𝜓⟩ outputs a protocol
transcript 𝜏 , prover state |𝜓′⟩, and witness 𝑤.

• Extraction Efficiency: If 𝑃 * is a QPT algorithm, 𝐸𝑃 *,|𝜓⟩ runs in expected quantum poly-
nomial time (EQPT𝑐).

• Extraction Correctness: the probability that 𝜏 is an accepting transcript but 𝑤 is an
invalid NP witness is negligible.

• State-Preserving: the pair (𝜏, |𝜓′⟩) is computationally (resp. statistically) indistinguishable
from a transcript-state pair (𝜏*, |𝜓*⟩) obtained through an honest one-time interaction with
𝑃 *(·, |𝜓⟩) (where |𝜓*⟩ is the prover’s residual state).

We now introduce the notion of “witness-binding” protocols, i.e., protocols that are collapse-
binding to functions of the witness 𝑤. For an adversary Adv and an interactive protocols (𝑃, 𝑉)
we define a witness-binding experiment ExpAdv

wb (𝑏,Pred, 𝑓, 𝜆) parameterized by a challenge bit 𝑏, a
predicate Pred and a function 𝑓 .

1. The challenger generates the first verifier message vk and sends it to Adv; skip this step if the
protocol is a 3-message protocol.

2. Adv replies with a classical instance 𝑥, classical first prover message 𝑎, and a quantum state
on registers 𝒲witness ⊗ 𝒴aux.

3. The challenger performs a binary-outcome projective measurement to learn the output of
Pred(𝑥, vk, 𝑎, ·, ·) on 𝒲witness ⊗ 𝒴aux. If the output is 0, the experiment aborts.

4. If 𝑏 = 0, the challenger does nothing. If 𝑏 = 1, the challenger initializes a fresh ancilla 𝒦
to |0⟩𝒦, applies the unitary 𝑈𝑓 (acting on 𝒲witness ⊗𝒦) that computes 𝑓(·) on 𝒲witness and
XORs the output onto 𝒦, measures 𝒦, and then applies 𝑈 †𝑓 .

5. The challenger returns the 𝒲witness ⊗ 𝒴aux registers to Adv. Finally, Adv outputs a bit 𝑏′,
which is the output of the experiment (if the experiment has not aborted).

Definition 10.2 ((Pred, 𝑓)-binding to the witness). A 3 or 4-message protocol is witness bind-
ing with respect to predicate Pred and function 𝑓 if for any computationally bounded quantum
adversary Adv,⃒⃒⃒

Pr
[︁
ExpAdv

wb (0,Pred, 𝑓, 𝜆) = 1
]︁
− Pr

[︁
ExpAdv

wb (1,Pred, 𝑓, 𝜆) = 1
]︁⃒⃒⃒
≤ negl(𝜆).

Next, we write down a general-purpose reduction from state-preserving extraction to guaranteed
extraction and show (Lemma 10.3) that the reduction is valid under an appropriate witness-binding
assumption.

78

Lemma 10.3. Suppose that (𝑃Σ, 𝑉Σ) is a post-quantum proof/argument of knowledge with guar-
anteed extraction. We optionally assume that the extractor Extract𝑃 * outputs some auxiliary infor-
mation 𝑦 in addition to the witness 𝑤. We then make the following additional assumptions with
respect to a predicate Pred:

• The protocol (𝑃Σ, 𝑉Σ) is (Pred, 𝑓 = Id)-witness binding, and

• The tuple (𝑤, 𝑦) output by the guaranteed extractor Extract𝑃 * satisfies Pred(vk, 𝑥, 𝑎, 𝑤, 𝑦) = 1
with 1− negl probability.

Then, (𝑃Σ, 𝑉Σ) is a state-preserving proof/argument of knowledge with EQPT𝑐 extraction.

Remark 10.4. This lemma is stated with respect to 𝑓 = Id to match the state-preserving proof of
knowledge abstraction; however, we also consider (Corollary 10.7) versions of this reduction where
𝑓 ̸= Id.

Proof. We want to show that (𝑃Σ, 𝑉Σ) is a state-preserving proof/argument of knowledge. We
begin by describing our candidate state-preserving extractor Extract𝑃

*
.

Construction 10.5. Let Extract𝑃 * be a post-quantum guaranteed extractor (Definition 8.1). We
present an EQPT𝑐 extractor Extract𝑃

*
that has the form of an EQPT𝑐 computation (see Fig. 2)

where the unitary 𝑈 is a coherent implementation of the following EQPT𝑚 computation on input
register ℋ⊗ℛ⊗ 𝒮:

1. Measure ℛ⊗ 𝒮 with the projective measurement

(|+𝑅⟩⟨+𝑅|ℛ ⊗ |0⟩⟨0|𝒮 , I− |+𝑅⟩⟨+𝑅|ℛ ⊗ |0⟩⟨0|𝒮) .

If the output is 0, abort.

2. If the output is 1, we are guaranteed that ℛ⊗ 𝒮 is |+𝑅⟩ℛ ⊗ |0⟩𝒮 . Run Extract𝑃 * on prover
state ℋ using ℛ as the superposition of challenges (in Step 2 of Definition 8.1). We assume
that the randomness Extract𝑃 * uses to sample a classical random vk is generated by applying
a Hadamard to a subregister of 𝒮.
Write everything that is measured/obtained during the execution of Extract𝑃 * onto subreg-
isters of 𝒮. This includes the instance 𝑥, the first two messages of the 4-message protocol
(vk, 𝑎), the bit 𝑏 indicating the verifier’s decision (i.e., whether the prover succeeds when run
on the uniform superposition of challenges), and the extracted output (𝑤, 𝑦) (if 𝑏 = 1, 𝑤 is a
valid witness for 𝑥 and Pred(𝑥, vk, 𝑎, 𝑤, 𝑦) = 1 with 1− negl(𝜆) probability).

The fact that the above computation is in EQPT𝑚 follows from the fact that Extract𝑃 * is EQPT𝑚.
Let 𝑈 denote its coherent implementation (as in Section 9, 𝑈 is a unitary on ℋ ⊗ℛ ⊗ 𝒮 and an
exponential-size ancilla register).

Our state-preserving EQPT𝑐 extractor Extract𝑃
*

takes as input a prover state on ℋ and does
the following.

Extract𝑃
*

:

1. Initialize additional registers ℛ⊗ 𝒮 to |+𝑅⟩ℛ |0⟩𝒮 .
2. Apply 𝑈 .

79

3. Measure the subregister of 𝒮 containing (𝑥, vk, 𝑎, 𝑏, 𝑤) where 𝑤 = 0 is interpreted as ⊥. Note
that 𝒮 contains a subregister corresponding to 𝑦, but 𝑦 is not measured here.

4. Apply 𝑈 †.
5. Run the prover 𝑃 * on first message vk to obtain 𝑥, 𝑎 (again). Then run 𝑃 * on challenge ℛ.

Measure ℛ to obtain 𝑟, and measure the register of ℋ corresponding to its output to obtain
𝑧. Output (𝑥, vk, 𝑎, 𝑟, 𝑧, 𝑤) and ℋ.

First, we note that the above procedure is EQPT𝑐 by construction. To prove the extraction
correctness guarantee, it suffices to show that when 𝑏 = 1, the witness 𝑤 is valid with 1− negl(𝜆)
probability, and that when 𝑏 = 0, the extractor outputs a rejecting transcript. The former statement
follows immediately from the assumption that Extract𝑃 * is a guaranteed extractor. For the latter,
observe (using the definition of Extract𝑃 * and the fact that 𝑈 is a coherent implementation of
Extract𝑃 *) that when 𝑏 = 0, the state on ℋ⊗ℛ after running 𝑃 * to obtain 𝑎 in Step 5 corresponds
to a rejecting execution, so the transcript measured in Step 5 will be rejecting.

It remains to argue that the state-preserving extractor satisfies the indistinguishability prop-
erty. Observe that Extract𝑃

*
can be rewritten so that vk, 𝑥, 𝑎, 𝑏 are no longer obtained by running

Extract𝑃 * coherently as 𝑈 and then measuring those values afterwards, but instead by running
those steps accroding to the standard EQPT𝑚 implementation of Extract𝑃 * . Thus the only part
of Extract𝑃 * that is written as a coherent implementation of a variable runtime procedure is the
FindWitness𝑃 * subroutine; let 𝑈FW denote the coherent implementation of FindWitness𝑃 * . Note
that while FindWitness𝑃 * is technically not EQPT𝑚 on its own (i.e., there exist inputs that could
make it run for too long), the fact that Extract𝑃 * is EQPT𝑚 ensures that 𝑈FW is only applied on
inputs where it runs for expected polynomial time.

Given the above definitions, the output of Extract𝑃
*

is perfectly equivalent to the following:

1. Sample a random vk, and run the prover 𝑃 * to obtain 𝑥, 𝑎.
2. Initialize ℛ to |+𝑅⟩ℛ and measure C (this is the binary projective measurement on ℋ ⊗ℛ

defined in Section 8.0.1 that measures whether the verifier accepts when the prover with state
ℋ is run on the challenge ℛ).

3. If C = 1, apply 𝑈FW. Otherwise if C = 0, set 𝑤 = ⊥ and skip to Step 6.
4. Measure the subregister corresponding to the part of the output of 𝑈FW containing 𝑤. Note

that there is also a subregister corresponding to 𝑦, but 𝑦 is not measured.
5. Apply 𝑈 †FW.
6. Measure ℛ to obtain 𝑟 and run the prover 𝑃 * on 𝑟 to obtain its response 𝑧.
7. Output (𝑥, vk, 𝑎, 𝑟, 𝑧, 𝑤) and ℋ.

Let Hybrid0 be identical to Extract𝑃
*

except that Step 7 is modified to output (𝑥, vk, 𝑎, 𝑟, 𝑧) and
ℋ (i.e., omitting 𝑤). To show computational indistinguishability, it suffices to show that the output
of Hybrid0 is computational indistinguishable from Hybrid1 defined as follows:

1. Sample a random vk, and run the prover 𝑃 * to obtain 𝑥, 𝑎.
2. Initialize ℛ to |+𝑅⟩ℛ and measure C (this is the binary projective measurement on ℋ ⊗ℛ

defined in Section 8.0.1 that measures whether the verifier accepts when the prover with state
ℋ is run on the challenge ℛ).

3. Measure ℛ to obtain 𝑟 and run the prover 𝑃 * on 𝑟 to obtain its response 𝑧.
4. Output (𝑥, vk, 𝑎, 𝑟, 𝑧) and ℋ.

80

Hybrid1 corresponds to an honest execution of 𝑃 * since the measurement of C commutes with
the measurement of ℛ.

By assumption, in Hybrid0, the reduced density 𝜌𝒮 of 𝒮 satisfies Tr(ΠValid𝜌𝒮) = 1 − negl(𝜆),
where ΠValid checks that either 𝑏 = 0 or (1) 𝑤 is a valid witness for 𝑥 and (2) Pred(vk, 𝑥, 𝑎, 𝑤, 𝑦) = 1.
Therefore, the indistinguishability of Hybrid0 and Hybrid1 should intuitively follow from the witness-
binding property, since if the measurement of 𝑤 is skipped, then 𝑈FW cancels out with 𝑈 †FW.
However, to appeal to the guarantee that measuring 𝑤 is undetectable, we need to ensure that 𝑈FW
corresponds to an efficient operation.

We handle this by considering a fixed polynomial-time truncation of 𝑈FW. Suppose that a
distinguisher can distinguish Hybrid0 from Hybrid1 with non-negligible advantage 𝜀(𝜆). Then we can
modify Hybrid0 to use 𝑈FW,𝜀, a coherent implementation of a strict poly(𝜆, 1/𝜀)-runtime algorithm
that approximates FindWitness𝑃 * to precision 𝜀/2. Now the same distinguisher must distinguish
between Hybrid0,𝜀 and Hybrid1 with advantage 𝜀/2, where Hybrid0,𝜀 is the following:

1. Sample a random vk, and run the prover 𝑃 * to obtain 𝑥, 𝑎.
2. Initialize ℛ to |+𝑅⟩ℛ and measure C.
3. If C = 1, apply 𝑈FW,𝜀. Otherwise if C = 0, set 𝑤 = ⊥ and skip to Step 6.
4. Measure a subregister of the output register of 𝑈FW,𝜀 to obtain 𝑤.
5. Apply 𝑈 †FW,𝜀.
6. Measure ℛ to obtain 𝑟 and run the prover 𝑃 * on 𝑟 to obtain its response 𝑧.
7. Output (𝑥, vk, 𝑎, 𝑟, 𝑧) and ℋ.

Since 𝜀(𝜆) is at least 1/𝜆𝑐 for some constant 𝑐 for infinitely many 𝜆, it follows that 𝑈FW,𝜀 and
𝑈 †FW,𝜀 are poly(𝜆)-runtime algorithms for infinitely many 𝜆. Then a distinguisher that distinguishes
between Hybrid0,𝜀 and Hybrid1 contradicts the witness-binding property of (𝑃, 𝑉).

10.2 Applying Lemma 10.3

We now show that the witness-binding hypotheses in Lemma 10.3 are satisfied in two cases of
interest: protocols for unique-witness (or partial witness) languages (Corollary 10.6), and commit-
and-prove protocols (Corollary 10.8).

Corollary 10.6. Let 𝐿 ∈ UP be a language with unique NP witnesses. Then, if 𝐿 has a post-
quantum proof of knowledge with guaranteed extraction, it also has a post-quantum state-preserving
proof of knowledge.

Proof. This follows immediately from the fact that any protocol for a UP language is (Pred, 𝑓)-
witness binding for Pred = 1 (the trivial predicate) and 𝑓 = Id (because there is a unique valid
witness). Since Pred = 1, any guaranteed extractor also satisfies the Pred-hypothesis of Lemma 10.3,
so we are done.

We briefly state how Corollary 10.6 can be extended to languages 𝐿 with unique partial wit-
nesses, provided that the extractor only measures a function 𝑓(𝑤) that is a deterministic function
of the instance 𝑥.

Corollary 10.7. Let 𝐿 ∈ NP, and let 𝑓 be an efficient function such that for all instances 𝑥 ∈ 𝐿
and all witnesses 𝑤 ∈ 𝑅𝑥, 𝑓(𝑥,𝑤) = 𝑔(𝑥) is equal to some fixed (possibly inefficient) function of 𝑥.

81

Suppose that 𝐿 has a proof/argument of knowledge (𝑃Σ, 𝑉Σ) with guaranteed extraction. Then,
a modified variant of Extract (Construction 10.5), in which only 𝑓(𝑥,𝑤) is measured instead of 𝑤,
is a state-preserving proof/argument of knowledge extractor for (𝑃Σ, 𝑉Σ) that outputs 𝑔(𝑥).

This holds by the same reasoning as Corollary 10.6: the hypothesis of Corollary 10.7 implies
that any protocol for 𝐿 is (Pred = 1, 𝑓)-witness binding, and so the reduction from Lemma 10.3
applies (when 𝑓(𝑥,𝑤) is measured rather than 𝑤).

10.2.1 Commit-and-Prove Protocols

Let (𝑃Σ, 𝑉Σ) denote a post-quantum proof/argument of knowledge with guaranteed extraction
(Definition 8.1). Recall that Definition 8.1 has been designed to capture (first-message) adaptive
soundness, in which the prover 𝑃 * can adaptively choose the instance 𝑥 as it sends its first message.

Then, we consider a commit-and-prove compiled protocol (𝑃Com, 𝑉Com) using (𝑃Σ, 𝑉Σ) and a
commitment scheme Com. (𝑃Com, 𝑉Com) is executed as follows:

• 𝑉Com sends a first message for (𝑃Σ, 𝑉Σ) (if the protocol has four messages). Moreover, if Com
is a two-message commitment scheme, 𝑉Com sends a commitment key ck.

• 𝑃Com then sends:

– A commitment com = Com(ck, 𝑤) to a witness 𝑤 for the underlying language 𝐿, and
– A first prover message for an execution of (𝑃Σ, 𝑉Σ) for the statement “∃𝑤, 𝑟 such that

com = Com(ck, 𝑤; 𝑟) and 𝑤 is an NP-witness for 𝑥 ∈ 𝐿.

• 𝑃Com and 𝑉Com then complete the execution of (𝑃Σ, 𝑉Σ).

Corollary 10.8. If (𝑃Σ, 𝑉Σ) is a post-quantum proof/argument of knowledge with guaranteed ex-
traction for all NP languages and Com is a collapse-binding commitment scheme, then the commit-
and-prove compiled protocol is a state-preserving proof/argument of knowledge.

Proof. We first remark that since (𝑃Σ, 𝑉Σ) is a post-quantum proof/argument of knowledge with
guaranteed extraction, the commit-and-prove composed protocol is also immediately a post-quantum
proof/argument of knowledge with guaranteed extraction. Namely, Extract𝑃 * interprets the cheat-
ing prover as an adaptive-input cheating prover for (𝑃Σ, 𝑉Σ) with respect to the language

𝐿ck,com =
{︀
(𝑤,𝜔) : 𝑤 ∈ 𝑅𝑥 and Com(ck, 𝑤;𝜔) = com

}︀
and runs the guaranteed extractor for (𝑃Σ, 𝑉Σ). Morevoer, this extraction procedure outputs both
an NP-witness 𝑤 and commitment randomness 𝜔 such that com = Com(ck, 𝑤;𝜔); we treat 𝜔 as
auxiliary information 𝑦.

We then define Pred(𝑥, (ck, vk), (com, 𝑎), 𝑤, 𝜔) to output 1 if and only if Com(ck, 𝑤;𝜔) = com.
Then, we observe that the commit-and-prove protocol is (Pred, Id)-witness binding (for the language
𝐿) by the collapse-binding of the commitment scheme Com. Moreover, the correctness property of
Extract𝑃 * further guarantees that Pred(𝑥, (ck, vk), (com, 𝑎), 𝑤, 𝜔) = 1 with probability 1− negl(𝜆).

Thus, we conclude that Lemma 10.3 applies, and so the commit-and-prove protocol has a state-
preserving extractor.

82

10.3 Concluding Theorems 1.8 and 1.9

Finally, we describe how to conclude the results of Theorems 1.8 and 1.9. We begin with Theo-
rem 1.8, re-stated below.

Theorem 10.9 (Theorem 1.8). Assuming collapsing hash functions exist, there exists a 4-message
public-coin state-preserving succinct argument of knowledge for NP.

Proof. Given a collapsing hash function family H, we construct a state-preserving succinct argument
of knowledge for NP as follows:

• First, we define Kilian’s succinct argument system (see Section 5.3.3) with respect to H.
By Corollary 8.22, this argument system is a post-quantum argument of knowledge with
guaranteed extraction.

• Next, we apply the commit-and-prove compiler (Corollary 10.8) using the collapse-binding
commitment scheme Com(ck = ℎ,𝑚) = ℎ(𝑚). This commitment scheme does not formally
satisfy any hiding property, but it is succinct, which is what is relevant for Theorem 1.8.

Corollary 10.8 tells us that the resulting composed protocol is a state-preserving argument of
knowledge for NP. Moreover, it satisfies all of the properties (4-message, public-coin, succinct)
claimed in the theorem statement.

Next, we prove Theorem 1.9, re-stated below.

Theorem 10.10. Assuming collapsing hash functions or super-polynomially secure one-way func-
tions, there exists a 4-message public-coin state-preserving witness-indistinguishable argument (in
the case of collapsing) or proof (in the case of OWFs) of knowledge. Assuming super-polynomially
secure non-interactive commitments, there exists a 3-message PoK achieving the same properties.

Proof. All three variants of this theorem are proved via the same approach: combining commit-
and-prove with a (strong) witness-indistinguishable Σ-protocol.

Formally, let Com denote a (possibly keyed) non-interactive commitment scheme. We use Com
to instantiate a commit-and-open Σ-protocol (Definition 5.11) such as the [GMW87b] protocol
for graph 3-coloring or the (potentially modified) [Blu86] protocol for Hamiltonicity. We do a
sufficient parallel repetition of the commit-and-open protocol so that its challenge space satisfies
|𝑅| = 2𝑡 for 𝑡 ≤ poly(𝜆)34 and it achieves negl(𝜆) soundness error. Then, Corollary 8.21 tells us
that this protocol is a post-quantum proof/argument of knowledge (depending on whether Com is
statistically or collapse-binding) with guaranteed extraction.

Next, we additionally assume (as is the case for [GMW87b, Blu86]) that the Σ-protocol satisfies
special honest-verifier zero knowledge (Definition 3.6). In fact, we assume that it satisfies SHVZK
against quantum adversaries that run in time 2𝑡 ·poly(𝜆), which holds (for these examples) provided
that Com is computationally hiding against 2𝑡 · poly(𝜆)-time adversaries.

Under this assumption, Watrous’ rewinding lemma [Wat06] implies that the Σ-protocol has a
time 2𝑡 · poly(𝜆) malicious verifier post-quantum simulator.

We now plug this Σ-protocol into the commit-and-prove compiler (Corollary 10.8), again making
use of the commitment scheme Com (for simplicity of the proof, we assume here that a different

34Using [Blu86], one can set 𝑡 = poly(log 𝜆).

83

commitment key is used, although this is not necessary). Corollary 10.8 tells us that the resulting
protocol is a state-preserving proof/argument of knowledge (again depending on whether Com is
statistically binding).

It remains to show WI of the commit-and-prove protocol. That is, we want to show that for
every malicious verifier 𝑉 * (and maliciously chosen commitment key ck), a commitment com =
Com(ck, 𝑤1) and the view of 𝑉 * in an execution of the Σ-protocol is computationally indistinguish-
able from the analogous state when a second witness 𝑤2 is instead used. This is argued via the
usual hybrid argument:

• Define Hybrid0,𝑏 to be Com(ck, 𝑤𝑏) along with the actual Σ-protocol view of 𝑉 *.

• Define Hybrid1,𝑏 to consist of com = Com(ck, 𝑤𝑏) along with a 2𝑡 ·poly(𝜆)-time simulated view
of 𝑉 * on input (ck, com). We have that Hybrid1,𝑏 ≈𝑐 Hybrid0,𝑏 by the super-polynomial time
simulatability of the Σ-protocol (as discussed above).

• Finally, we have that Hybrid1,0 ≈𝑐 Hybrid1,1 by the (already assumed) 2𝑡 · poly(𝜆)-hiding of
Com.

To conclude the theorem statement, it suffices to instantiate Com in three ways:

• Assuming 2𝑡 · poly(𝜆)-secure non-interactive commitments (e.g. [BOV03, GHKW17, LS19]),
one obtains the claimed 3-message protocol.

• Assuming 2𝑡 · poly(𝜆)-secure one-way functions, one obtains the OWF-based 4-message pro-
tocol.

• Assuming polynomially-secure collapsing hash functions, one obtains the collapsing-based 4-
message protocol by defining Com(ℎ,𝑚; 𝑟, 𝑠) = (ℎ(𝑟), 𝑠, ⟨𝑟, 𝑠⟩⊕𝑚). This commitment scheme
is statistically hiding (i.e. hiding against unbounded adversaries), and so WI of the commit-
and-prove protocol holds unconditionally, while the AoK property relies on collapsing.

This completes the proof of Theorem 1.9.

11 The [GMW86] GNI Protocol is EQPT𝑐 Zero Knowledge
In this section, we show that our state-preserving extraction results imply the post-quantum ZK
of the graph non-isomorphism protocol, proving Theorem 1.2. We begin by giving a description
of the GNI protocol in Fig. 8. Our description achieves soundness error 1/2 (as does the orig-
inal [GMW86]), but can be extended to the negligible soundness case (without increasing the
number of rounds) with essentially the same proof of (post-quantum) ZK.

Next, we give a slightly more abstract description of the protocol using instance-dependent
commitments [BMO90, IOS97, MV03].

Construction 11.1. Fix a language 𝐿, let IDC be a non-interactive instance-dependent commit-
ment35 [BMO90, IOS97, MV03] for 𝐿, and let PoK be a statistically witness-indistinguishable proof
of knowledge of the committed bit for IDC. Then, we define the following interactive proof system
for the complement language 𝐿.

35That is, when 𝑥 ∈ 𝐿, a commitment Com(𝑥,𝑚) statistically hides the message 𝑚. When 𝑥 ̸∈ 𝐿, a commitment
Com(𝑥,𝑚) statistically binds the committer to 𝑚.

84

𝑃 (𝐺0, 𝐺1) 𝑉 (𝐺0, 𝐺1)

𝐻, {𝐺𝑖,0, 𝐺𝑖,1}𝑖∈[𝑛] 𝜋 ← 𝑆𝑛, 𝑏← {0, 1}, 𝐻 = 𝜋(𝐺𝑏)
𝑏1, . . . , 𝑏𝑛 ← {0, 1}
∀𝑖 ∈ [𝑛], 𝛽 ∈ {0, 1}:
𝜋𝑖,𝛽 ← 𝑆𝑛, 𝐺𝑖,𝛽 := 𝜋𝑖,𝛽(𝐺𝛽+𝑏𝑖)

𝑣 ← {0, 1}𝑛 𝑣

{𝑚𝑖}𝑖∈[𝑛] If 𝑣𝑖 = 0, set 𝑚𝑖 = 𝑏𝑖, 𝜋𝑖,0, 𝜋𝑖,1.
If 𝑣𝑖 = 1, set 𝑚𝑖 = 𝑏⊕ 𝑏𝑖, 𝜋𝑖,𝑏⊕𝑏𝑖 ∘ 𝜋

−1

If 𝑣𝑖 = 0, for 𝑚𝑖 = 𝑏𝑖, 𝜋𝑖,0, 𝜋𝑖,1, check:
(𝜋−1

𝑖,0 (𝐺𝑖,0), 𝜋−1
𝑖,1 (𝐺𝑖,1)) = (𝐺𝑏𝑖 , 𝐺1−𝑏𝑖).

If 𝑣𝑖 = 1, for 𝑚𝑖 = 𝑐𝑖, 𝜎, check:
𝜎(𝐻) = 𝐺𝑖,𝑐𝑖 .

If the check fails, abort.
Otherwise, find 𝑏′ such that 𝐺𝑏′ ≃ 𝐻.

𝑏′

Accept if 𝑏′ = 𝑏.

Figure 8: The Zero Knowledge Proof System for Graph Non-Isomorphism.

1. The verifier commits to a bit 𝑏 ∈ {0, 1} using IDC and sends it to the prover.

2. The prover and verifier engage in PoK where the verifier proves knowledge of 𝑏.

3. If the prover accepts in PoK, then it sends 𝑏′ as determined by the verifier’s commitment.

4. The verifier accepts if 𝑏′ = 𝑏.

[GMW86] instantiates this framework for the language 𝐿 consisting of pairs of isomorphic graphs
(and so 𝐿 consists of pairs of non-isomorphic graphs, up to well-formedness of the string 𝑥).

Let GIComm be the following instance-dependent commitment scheme: GIComm((𝐺0, 𝐺1), 𝑏;𝜋) =
𝜋(𝐺𝑏) := 𝐻. Observe that if 𝐺0, 𝐺1 are isomorphic then this commitment is perfectly hiding, and
if they are not then it is perfectly binding. Moreover, this commitment scheme admits a proof of
knowledge of the committed bit as follows.

1. The prover chooses 𝑏1, . . . , 𝑏𝜆 ∈ {0, 1} uniformly at random and sends commitments 𝐶𝑖,0 :=
GIComm((𝐺0, 𝐺1), 𝑏𝑖;𝜎𝑖,0) and 𝐶𝑖,1 := GIComm((𝐺0, 𝐺1), 𝑏𝑖 ⊕ 1;𝜎𝑖,1).

2. The verifier sends a random string 𝑣 ∈ {0, 1}𝜆.

3. The prover sends 𝑏𝑖 and opens 𝐶𝑖,0, 𝐶𝑖,1 for all 𝑖 such that 𝑣𝑖 = 0. The prover sends 𝑐𝑖 := 𝑏⊕𝑏𝑖,
𝜏𝑖 := 𝜎𝑖,𝑐𝑖 ∘ 𝜋−1 for all 𝑖 such that 𝑣𝑖 = 1.

4. The verifier accepts if the received openings are valid when 𝑣𝑖 = 0, and 𝐶𝑖,𝑐𝑖 = 𝜏𝑖(𝐻) when
𝑣𝑖 = 1, where 𝐻 is the commitment graph.

Classically, we obtain 𝑏 by rewinding to find two accepting transcripts with 𝑣𝑖 ̸= 𝑣′𝑖; then
𝑏 = 𝑐𝑖 ⊕ 𝑏𝑖.

85

Lemma 11.2. If (𝐺0, 𝐺1) are non-isomorphic then the above protocol is a statistically state-
preserving proof of knowledge of the committed message for GIComm.

Proof. We have already shown (Corollary 8.23) that this protocol has a guaranteed extractor, be-
cause when 𝐺0 and 𝐺1 are not isomorphic, this protocol is collapsing onto the 𝑏𝑖 part of 0-challenge
responses (as 𝑏𝑖 is fixed by the commitments 𝐶𝑖,0, 𝐶𝑖,1) and the protocol is (2, 𝑔)-probabilistically
special sound (where 𝑔 checks (for the first challenge-partial response pair) the correctness of the
0 challenge response bits 𝑏𝑖 for 𝑣𝑖 = 0 and (for the second challenge-partial response pair) the
correctness of all 𝑏𝑖 (𝑣𝑖 = 0) and 𝑐𝑖 (𝑣𝑖 = 1)).

Moreover, the language 𝐿𝐺0,𝐺1 = {𝐻 : ∃(𝑏, 𝜋) such that 𝜋𝐺𝑏 ≃ 𝐻} has partial unique witnesses:
for any 𝐻 ∈ 𝐿𝐺0,𝐺1 , the bit 𝑏 is uniquely determined (given that 𝐺0 and 𝐺1 are not isomorphic).
Thus, the state-preserving reduction of Lemma 10.3 applies (see Corollary 10.7), so this protocol
has a state-preserving extractor.

Finally, we note that Lemma 11.2 immediately implies that the GNI protocol is post-quantum
(statistical) zero knowledge. We assume without loss of generality that the cheating verifier 𝑉 * has
a “classical” first message by replacing 𝑉 * (with auxiliary state |𝜓⟩) with (𝑉 *,𝜌) for the mixed
state 𝜌 obtained by running 𝑈𝑉 * on |𝜓⟩ to generate a first message, measuring it, and running
𝑈 †𝑉 * .

The simulator is then described as follows:

• Given cheating verifier 𝑉 * with classical first message (com, pok1), run the state-preserving
PoK extractor on 𝑉 * (which now acts as a PoK cheating prover).

• If the transcript generated by the state-preserving extractor is accepting, then output the bit
𝑏 in the “partial witness” slot of the extractor’s output. Otherwise, send an aborting message.

The (statistical) zero knowledge property of this simulator follows immediately from the state-
preserving property of the extractor. Moreover, the simulator inherits the EQPT𝑐 structure directly
from the extractor (with additional fixed polynomial-time pre- and post-processing). This completes
the proof of Theorem 1.2.

12 The [FS90] Protocol is EQPT𝑐 Zero Knowledge
We recall the Feige-Shamir 4-message zero knowledge argument system for NP. This protocol uses
three primitives as building blocks:

• A non-interactive commitment scheme Com.

• The 3-message WI argument of knowledge AoK constructed in Section 10.3. We note that
AoK is public-coin.

• A 3-message delayed-witness WI argument of knowledge dAoK.

We will argue security using the particular instantiations of AoK, dAoK due to subtleties arising
from the concurrent composition. Unlike AoK, we do not require that dAoK is state-preserving.
The protocol is executed as follows.

86

• The verifier sends the following strings as its first message:

– Two commitments 𝑐0, 𝑐1 generated as 𝑐𝑖 = Com(0; 𝑟𝑖) for i.i.d. random strings 𝑟𝑖. For the
post-quantum variant, following [Unr12, Unr16b], we additionally include commitments
𝑐′𝑖 = Com(𝑟𝑖; 𝜌𝑖) to the two random strings 𝑟0, 𝑟1.

– A first (prover) message of AoK corresponding to the statement “∃𝑖, 𝑟𝑖, 𝜌𝑖 such that
𝑐𝑖 = Com(0; 𝑟𝑖) and 𝑐′𝑖 = Com(𝑟𝑖; 𝜌𝑖).” By default, the verifier uses (𝑏, 𝑟𝑏, 𝜌𝑏) as its
witness for a randomly chosen bit 𝑏.

• The prover sends two strings as its first message:

– A second (verifier) message of AoK (which is a uniformly random string).
– A first (prover) message of dAoK corresponding to the statement “𝑥 ∈ 𝐿 or ∃𝑖, 𝑟𝑖, 𝜌𝑖 such

that 𝑐𝑖 = Com(0; 𝑟𝑖) and 𝑐′𝑖 = Com(𝑟𝑖; 𝜌𝑖).” No witness is required.

• The verifier sends two strings as its second message:

– A third (prover) message of AoK, computed using (𝑏, 𝑟𝑏, 𝜌𝑏).
– A second (verifier) message of dAoK (which is a uniformly random string).

• Finally, the prover sends the third message of dAoK. The prover uses a witness 𝑤 for 𝑥 ∈ 𝐿
to generate this message.

12.1 Building Block: Delayed-Witness Proofs of Knowledge

In order to instantiate the Feige-Shamir protocol, we need a post-quantum instantiation of dAoK.
In particular, we need:

Lemma 12.1. Assume that post-quantum non-interactive commitments exist. Then, there exists
a delayed-witness Σ-protocol for NP that is witness indistinguishable against quantum verifiers and
is a post-quantum proof of knowledge with negligible knowledge error.

Lemma 12.1 does not immediately follow from extraction techniques such as [Unr12, Lemma
7] or [CMSZ21] because the canonical delayed-witness Σ-protocol [LS91] is not collapsing, and
these works only give results for collapsing protocols. Nonetheless, we show that (similar to the
one-out-of-two graph isomorphism subprotocol of [GMW86]) making use of a variant (2, 𝑔)-PSS
(Definition 5.6), a simple modification of Unruh’s rewinding technique [Unr12] suffices to prove
Lemma 12.1.

12.1.1 The [LS91] Protocol

We begin by recalling the [LS91] Σ-protocol for graph Hamiltonicity. The protocol uses a non-
interactive commitment scheme Com as a building block, and is executed as follows.

• The prover, given as input the security parameter 1𝜆 and an input length 1𝑛,36 sends 𝜆
commitments com𝑖 to adjacency matrices of i.i.d. random cycle graphs on 𝑛 vertices (i.e.,
graphs 𝐻𝑖 = 𝜎𝑖𝐶𝑛 that are random permutations of a fixed cycle graph on 𝑛 vertices).

36Note that the prover does not even need to know the instance 𝑥 to compute this message; however, we consider
an a priori fixed statement 𝑥 to make sense of the proof-of-knowledge property.

87

• The verifier sends a uniformly random string 𝑟 ← {0, 1}𝜆.

• For the third round, the prover is given a graph 𝐺 and a fixed 𝑛-cycle represented by a
permutation 𝜋 mapping 𝐶𝑛 to 𝐺. The prover then sends the following messages.

– For each 𝑖 such that 𝑟𝑖 = 0, the prover sends a full opening of the 𝑖th commitment com𝑖.
– For each 𝑖 such that 𝑟𝑖 = 1, the prover sends 𝜎𝑖𝜋−1 and opens the substring of com𝑖

consisting of commitments to each non-edge of 𝜎𝑖𝜋−1(𝐺).

• For each 𝑖 such that 𝑟𝑖 = 0, the verifier checks that com𝑖 was correctly opened to the adjacency
matrix of a cycle graph. For each 𝑖 such that 𝑟𝑖 = 1, the verifier checks that every matrix
entry opened is a valid decommitment to 0.

By the perfect binding of Com, we know that this protocol satisfies 2-special soundness. In fact, it
is the parallel repetition of a protocol satisfying 2-special soundness: for any index 𝑖, a commitment
string 𝑎𝑖 along with a valid response 𝑧0 to 𝑟𝑖 = 0 and a valid response 𝑧1 to 𝑟𝑖 = 1 can be used
to compute a Hamiltonian cycle in 𝐺. Indeed, it satisfies a variant of special soundness (implicitly
related to (2, 𝑔′)-PSS) described here:

Claim 12.2. There exists an extractor SSExtract(𝑎, 𝑟1, 𝑧
(1)
1,𝑖 , 𝑟2, 𝑧2,𝑖) for the [LS91] protocol such

that SSExtract outputs a valid NP witness under the following conditions:

• 𝑟1,𝑖 = 0, 𝑟2,𝑖 = 1.

• (𝑎𝑖, 𝑟2,𝑖, 𝑧2,𝑖) is an accepting transcript.

• There exists a response 𝑧1,𝑖 xwith prefix 𝑧(1)
1,𝑖 such that (𝑎𝑖, 𝑟1,𝑖, 𝑧1,𝑖) is an accepting transcript.

Here, 𝑧(1) denotes the part of a response 𝑧 consisting of the messages opened (but not the commit-
ment randomness).

Moreover, we note that the protocol is partially collapsing on 0-challenges: given a tuple (𝑥, 𝑎, 𝑟)
and a state |𝜑⟩ = ∑︀

𝑧 𝛼𝑧 |𝑧⟩, any accepting response 𝑧𝑖 such that 𝑟𝑖 = 0 can be partially measured
— namely, the committed bits (but not the openings) can be measured — without disturbing |𝜑⟩.
This is sufficient to prove Lemma 12.1.

12.1.2 Proof of Lemma 12.1

The fact that this protocol is witness indistinguishable follows from the fact that it is a parallel
repetition of a post-quantum ZK protocol [Wat06]. What remains is to establish the proof-of-
knowledge property.

We consider the following variant of Unruh’s approach to knowledge extraction [Unr12]:

1. Given a cheating prover 𝑃 *, first generate a (classical) first message 𝑎 from 𝑃 *. Let |𝜓⟩
denote the internal state of 𝑃 * at this point.

2. Sample a uniformly random challenge 𝑟, compute the 𝑃 * unitary 𝑈𝑟 |𝜓⟩, which writes its
response onto some register 𝒵. Apply the one-bit measurement (Π𝑉,𝑟, I − Π𝑉,𝑟) that checks
whether 𝑉 (𝑥, 𝑎, 𝑟, 𝑧) = 1.

88

3. If the measurement returns 1, additionally measure every register 𝒵(1)
𝑖 (the opened messages,

but not the commitment randomness) corresponding to 𝑟𝑖 = 0.

4. Apply 𝑈 †𝑟 to the prover state.

5. Sample an independent random challenge 𝑟′ and apply 𝑈𝑟′ . Apply the one-bit measurement
(Π𝑉,𝑟′ , I−Π𝑉,𝑟′).

6. If the measurement returns 1, additionally measure the entire response 𝒵.

7. If both measurements returned 1, and there exists an index 𝑖 such that 𝑟𝑖 = 0 and 𝑟′𝑖 = 1,
compute SSExtract(𝑥, com𝑖, 0, 𝑧(1)

𝑖 , 1, 𝑧′𝑖) where 𝑧(1)
𝑖 is the first partially measured response in

location 𝑖 and 𝑧′𝑖 is the second measured response in location 𝑖. Otherwise, abort.

To show that this extraction procedure works, we first consider the variant in which no response
measurements are applied (Step 3 and Step 6 are omitted). Then, by Unruh’s rewinding lemma
[Unr12, Lemma 7], if 𝑈𝑟 |𝜓⟩ produces an accepting response with probability at least 𝜀 (over the
randomness of 𝑟), then the two binary measurements applied above will both return 1 with prob-
ability at least 𝜀3. Then, by the fact that the protocol is partially collapsing on 0-challenges, this
continues to hold even if the measurement in Step 3 is applied.

Finally, since the probability that i.i.d. uniform strings 𝑟, 𝑟′ do not have an index 𝑖 such that
𝑟𝑖 = 0 and 𝑟′𝑖 = 1 is (3/4)𝜆 = negl(𝜆), we conclude that with probability 𝜀3 − negl(𝜆), the above
extractor produces partial accepting response 𝑧(1)

𝑖 and accepting response 𝑧′𝑖 for some 𝑖 such that
𝑟𝑖 = 0 and 𝑟′𝑖 = 1, and so SSExtract successfully outputs a witness. If 𝑃 * is convincing with initial
non-negligible probability 𝛾, then with probability at least 𝛾

2 , |𝜓⟩ is at least 𝛾
2 -convincing, and

so SSExtract outputs a valid witness with probability at least Ω(𝛾3). This completes the proof of
Lemma 12.1.

12.2 Proof of Security for the [FS90] protocol

We now prove the security of the Feige-Shamir protocol using suitable building blocks (Com,AoK, dAoK).

Theorem 12.3. Suppose that:

• Com is a post-quantum non-interactive commitment scheme,

• AoK is the 3-message state-preserving WI proof of knowledge for NP (with EQPT𝑐 extraction)
from Section 10.3.

• dAoK is the argument system from Lemma 12.1.

Then, the Feige-Shamir protocol is both sound and zero-knowledge against QPT adversaries. The
zero-knowledge simulator is EQPT𝑐.

Combining Theorem 12.3 with the results of Section 10 implies Theorem 1.3.
We remark that the theorem is non-generic with respect to AoK, dAoK due to complications in

the security proof coming from the fact that AoK and dAoK are executed simultaneously.

89

Proof. We first prove soundness, followed by ZK.

Proof of Soundness. Suppose that 𝑥 ̸∈ 𝐿 and 𝑃 * is a QPT prover that convinces 𝑉 with non-
negligible probability. Given such a 𝑃 *, we define a cheating prover 𝑃 *dAoK for the underlying dAoK
that is given as additional auxiliary input strings (𝑐0, 𝑐

′
0, 𝑐1, 𝑐

′
1, 𝑏, 𝑟𝑏, 𝜌𝑏) such that 𝑐𝑏 = Com(0; 𝑟𝑏)

and 𝑐′𝑏 = Com(𝑟𝑏; 𝜌𝑏). 𝑃 *dAoK simply emulates 𝑃 * while generating AoK messages using its auxiliary
input. That is:

• 𝑃 *dAoK generates a message aok1 using its auxiliary input and calls 𝑃 * on (𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1, aok1).

This results in a 𝑃 *-message (aok2, daok1). 𝑃 *dAoK returns daok1.

• Upon receiving a verifier challenge 𝑟, 𝑃 *dAoK computes an honestly generated message aok3
(deterministic37 and independent of 𝑟) using its auxiliary input and calls 𝑃 * on (aok3, 𝑟).
This results in a 𝑃 *-message daok3, which 𝑃 *dAoK outputs.

If the auxiliary input (𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1, 𝑏, 𝑟𝑏, 𝜌𝑏) is sampled from the correct distribution, 𝑃 *dAoK

perfectly emulates the interaction of 𝑃 * and the honest Feige-Shamir verifier, so 𝑃 *dAoK is convinc-
ing with non-negligible probability 𝜀 by assumption. Thus, the dAoK knowledge extractor from
Lemma 12.1 outputs a valid witness for the statement “∃𝑖, 𝑟𝑖, 𝜌𝑖 such that 𝑐𝑖 = Com(0; 𝑟𝑖) and
𝑐′𝑖 = Com(𝑟𝑖; 𝜌𝑖)” with probability at least Ω(𝜀3).

Claim 12.4. The probability that the dAoK extractor succeeds and 𝑖 ̸= 𝑏 is also Ω(𝜀3).

Proof. If this is not the case, then we obtain an algorithm breaking the WI property of AoK. For a
fixed statement (𝑐0, 𝑐

′
0, 𝑐1, 𝑐

′
1), the algorithm 𝑉 *dAoK, given an honestly generated message aok1, calls

(aok2, dAoK1)← 𝑃 *(𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1, aok1) and returns the message aok2. Given a fixed response aok3,

𝑉 *dAoK emulates the dAoK extractor from Lemma 12.1 by sampling i.i.d. strings 𝑟, 𝑟′ for dAoK and
re-using the message aok3. Then, if the extractor returns a valid witness (𝑖, 𝑟𝑖, 𝜌𝑖), 𝑉 *dAoK returns
the bit 𝑖. If not, 𝑉 *dAoK guesses at random.

Since this faithfully emulates the execution of the dAoK extractor on 𝑃 *dAoK and we assumed
that it succeeds with probability Ω(𝜀3), we conclude that the WI property of AoK with respect to
𝑉 *dAoK implies the claim.

However, this implies that the dAoK extractor breaks the computational hiding property of Com.
This is because if 𝑐1−𝑏 were instead sampled as Com(1; 𝑟1−𝑏) and 𝑐′1−𝑏 sampled as Com(𝑟1−𝑏; 𝜌1−𝑏),
it is information theoretically impossible for the dAoK extractor to output a witness such that 𝑖 ̸= 𝑏.
This concludes the proof of soundness.

Proof of ZK. We assume without loss of generality that the cheating verifier 𝑉 * has a “classical”
first message (𝑐0, 𝑐

′
0, 𝑐1, 𝑐

′
1, aok1) by replacing 𝑉 * (with auxiliary state |𝜓⟩) with (𝑉 *,𝜌) for the

mixed state 𝜌 obtained by running 𝑈𝑉 * on |𝜓⟩ to generate a first message, measuring it, and
running 𝑈 †𝑉 * .

By the construction of AoK (see Corollary 10.8 and Theorem 10.10) we know that the tuple
(𝑐0, 𝑐

′
0, 𝑐1, 𝑐

′
1, aok1) uniquely determines a witness td = (𝑏, 𝑟𝑏, 𝜌𝑏) that the AoK extractor can ever

output (if such a witness exists; otherwise, we define td to be ⊥). We non-uniformly include td in
the description of the 𝑉 * state 𝜌 without loss of generality (this does not affect the simulator, only
the analysis).

37If randomness is required to generate this message, let it be fixed in advance in 𝑃 *
dAoK’s internal state.

90

• Construct a first message daok1 using the honest dAoK prover algorithm.

• For fixed classical strings (𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1, aok1, daok1), define an AoK cheating prover 𝑃 *AoK

with the following description:

– Send aok1

– On challenge 𝑠, call 𝑉 * on (𝑠, daok1). Upon receiving (aok3, 𝑟), return aok3.

• Run the state-preserving extractor Extract𝑃 *
AoK,daok1,𝜌, outputting the (unique possible)

witness td along with a 𝑃 *AoK-view (which includes a 𝑉 *-view in it).

• If the output witness is ⊥, send an aborting final message. Otherwise, compute daok3
using td.

Figure 9: The Feige-Shamir protocol simulator

Our black-box zero-knowledge simulator is defined in Fig. 9:
We claim that this achieves negligible simulation accuracy. We prove this via a hybrid argument:

• Hyb0: This is the simulated view of 𝑉 *.

• Hyb1: This is the same as Hyb0, except that daok3 is computed using an NP-witness 𝑤 for 𝑥.

• Hyb2: This is the real view of 𝑉 *.

The indistinguishability of Hyb2 and Hyb1 follows immediately from the state-preserving prop-
erty of AoK, as the view of 𝑃 *AoK contains an entire correctly emulated view of 𝑉 *.

The indistinguishability of Hyb1 and Hyb0 follows from the witness indistinguishability of dAoK.
To prove this, we assume for the sake of contradiction that Hyb1 and Hyb0 are distinguishable by a
polynomial-time distinguisher 𝐷 with non-negligible advantage 𝜀. Then, we construct the following
two additional hybrids:

• Hyb′0: This is simulated view of 𝑉 *, except that Extract is replaced by a poly(𝜆, 1/𝜀)-size
oracle algorithm that achieves accuracy 𝜀

4 .

• Hyb′1: This is the same as Hyb′0 except that daok3 is computed using an NP-witness 𝑤 for 𝑥.

By a hybrid argument, we conclude that 𝐷 also distinguishes Hyb′0 and Hyb′1 with advantage
𝜀/2. We claim that this breaks the witness indistinguishability of dAoK. Define a dAoK verifier
𝑉 *dAoK operating as follows

• 𝑉 *dAoK has the state 𝜌 as auxiliary input (including 𝑐0, 𝑐
′
0, 𝑐1, 𝑐

′
1, aok1, td). 𝑉 *dAoK wants to

distinguish between proofs using witness 𝑤 and proofs using witness td.

• 𝑉 *dAoK receives daok1 from the prover. It then calls (the 𝜀/4-truncated) Extract𝑃 *
AoK,daok1,𝜌,

which returns a 𝑃 *AoK-view. 𝑉 *dAoK sends the challenge 𝑟 from the 𝑃 *AoK-view to the prover.

• Finally, upon receiving daok3 from the prover, 𝑉 *dAoK outputs the emulated 𝑉 * view.

91

𝑉 *dAoK has been constructed to be (aux-input) QPT, and (along with the distinguisher𝐷) violates
the WI property of dAoK, giving the claimed contradiction.

We conclude that the Feige-Shamir protocol is ZK, as desired. We note that the zero-knowledge
simulator inherits the EQPT𝑐 structure of the AoK state-preserving extractor (with some additional
fixed poly-time pre- and post-processing).

13 The [GK96] Protocol is EQPT𝑐 Zero Knowledge
In this section we show that the Goldreich–Kahan constant-round proof system for NP is post-
quantum zero knowledge by giving an EQPT𝑐 simulator. In Section 13.1 we give a technical lemma
about the distinguishability of certain purifications that will be of central importance in the proof.
In Section 13.2 we describe our quantum simulator.

13.1 Indistinguishability of Projections onto Indistinguishable States

Consider the states |𝐷𝑏⟩ := ∑︀
𝑥 |𝑥⟩𝒳 |𝐷𝑏(𝑥)⟩𝒴 where 𝐷0, 𝐷1 are computationally indistinguishable

(w.r.t. quantum adversaries) efficiently sampleable classical distributions with random coins 𝑥 (in
a slight abuse of notation, 𝐷𝑏 denotes both the distribution and the sampler). If we are only given
access to 𝒴, then distinguishing |𝐷0⟩ from |𝐷1⟩ is clearly hard since Tr𝒳 (|𝐷𝑏⟩⟨𝐷𝑏|) is equivalent
to a random classical sample from 𝐷𝑏.

In this subsection, we show that this indistinguishability generically extends to the setting where
we additionally give the distinguisher access to the projection |𝐷𝑏⟩⟨𝐷𝑏| on 𝒳 ⊗𝒴. This is formalized
by giving the distinguisher an additional one-qubit register 𝒪 and black-box access (see Section 3.2)
to the unitary 𝑈𝑏 and its inverse acting on 𝒳 ⊗ 𝒴 ⊗𝒪 defined as

𝑈𝑏 := |𝐷𝑏⟩⟨𝐷𝑏|𝒳 ,𝒴 ⊗Xℬ + (I𝒳 ,𝒴 − |𝐷𝑏⟩⟨𝐷𝑏|𝒳 ,𝒴)⊗ Iℬ,

where Xℬ denotes the bit-flip operator on ℬ. In particular, it is no longer the case that access
to |𝜏𝑏⟩ is equivalent to a random classical sample from 𝐷𝑏, since the distinguisher’s access to 𝑈𝑏
means the 𝒳 is no longer independent of its view. Nevertheless, we prove the following.

Lemma 13.1. If there exists a polynomial-time quantum oracle distinguisher 𝑆𝑈𝑏 without direct
access to 𝒳 achieving⃒⃒⃒

Pr
[︁
𝑆𝑈0(|𝐷0⟩𝒳 ,𝒴) = 1

]︁
− Pr

[︁
𝑆𝑈1(|𝐷1⟩𝒳 ,𝒴) = 1

]︁⃒⃒⃒
≥ 1/poly(𝜆),

then there exists a polynomial-time quantum algorithm 𝑆 that distinguishes classical samples from
the distributions 𝐷0 and 𝐷1.

Our proof will make use of two results by Zhandry [Zha12, Zha15], which we restate here for
convenience. In the following, quantum oracle access to a function 𝑓 : 𝑋 → 𝑌 refers to black-box
access to the unitary that maps |𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑓(𝑥)⊕ 𝑦⟩ for all 𝑥, 𝑦.

Theorem 13.2 (Theorem 1.1 of [Zha12]). Let 𝐷0 and 𝐷1 be efficiently sampleable distributions on
a set 𝑌 , and let 𝑋 be some other set. Let 𝑂0 and 𝑂1 be the distributions of functions from 𝑋 to
𝑌 where for each 𝑥 ∈ 𝑋, 𝑂𝑏(𝑥) is chosen independently according to 𝐷𝑏. Then if 𝐴 is an efficient
quantum algorithm that can distinguish quantum access to the oracle 𝑂0 from quantum access to the
oracle 𝑂1, we can construct an efficient quantum algorithm 𝐵 that distinguishes classical samples
from 𝐷0 and 𝐷1.

92

Theorem 13.3 ([Zha15]). An efficient quantum algorithm cannot distinguish between quantum
access to an oracle 𝑓 implementing a random function 𝑋 → 𝑋 and an oracle 𝜋 implementing a
random permutation 𝑋 → 𝑋.

Proof. By Theorem 13.2, it suffices for us to show that if there exists a distinguisher 𝑆𝑈𝑏 that
distinguishes |𝐷0⟩𝒳 ,𝒴 from |𝐷1⟩𝒳 ,𝒴 without directly accessing the 𝒳 register, then there is an
algorithm to distinguish between quantum oracle access to 𝐷0 ∘ 𝑓 and 𝐷1 ∘ 𝑓 (where 𝐷𝑏 ∘ 𝑓 is the
composed function 𝐷𝑏(𝑓(·))) where 𝑓 : 𝑋 → 𝑋 is a random function.

By Theorem 13.3, we observe that it suffices to show that 𝑆𝑈𝑏 implies an algorithm to distinguish
between quantum oracle access to 𝐷0 ∘ 𝜋 and 𝐷1 ∘ 𝜋 for a random permutation 𝜋 : 𝑋 → 𝑋.

Given quantum oracle access to 𝐷𝑏 ∘ 𝜋, we can implement a unitary 𝑉𝑏,𝜋 that maps |0⟩𝒳 ,𝒴 to
the state |𝐷𝑏,𝜋⟩ := ∑︀

𝑥 |𝑥⟩ |𝐷𝑏(𝜋(𝑥))⟩ as follows: apply a Hadamard to 𝒳 , then apply the 𝐷𝑏 ∘ 𝜋
oracle to 𝒳 ⊗ 𝒴.

We can use 𝑆 to distinguish 𝑏 = 0 from 𝑏 = 1 as follows. We prepare the state |𝐷𝑏,𝜋⟩𝒳 ,𝒴 using
𝑉𝑏,𝜋. Using 𝑉𝑏,𝜋 we can also implement the operation

𝑈𝑏,𝜋 := |𝐷𝑏,𝜋⟩⟨𝐷𝑏,𝜋| ⊗Xℬ + (I− |𝐷𝑏,𝜋⟩⟨𝐷𝑏,𝜋|)⊗ Iℬ

as follows: apply 𝑉 †𝑏,𝜋 to 𝒳 ⊗ 𝒴, apply |0⟩⟨0|𝒳 ,𝒴 ⊗Xℬ + (I− |0⟩⟨0|𝒳 ,𝒴)⊗ Iℬ, then apply 𝑉𝑏,𝜋. We
can therefore run 𝑆𝑈𝑏,𝜋 |𝐷𝑏,𝜋⟩.

Since 𝑆𝑈𝑏 does not act on 𝒳 except via its oracle, and |𝐷𝑏⟩ is related to |𝐷𝑏,𝜋⟩ by a unitary
acting on 𝒳 only, it holds that

Tr𝒳 (𝑆𝑈𝑏,𝜋 (|𝐷𝑏,𝜋⟩⟨𝐷𝑏,𝜋|)) = Tr𝒳 (𝑆𝑈𝑏(|𝐷𝑏⟩⟨𝐷𝑏|)),

which completes the proof.

13.2 Quantum Simulator

We begin by describing a variable-runtime EQPT𝑚 estimation procedure that will be a useful
subroutine in our quantum zero-knowledge simulator for [GK96]. Following Theorem 6.4, let
VarEstimate and Transform be the first and second stages of the variable-runtime singular vector
transform (vrSVT). For binary projective measurements A,B,C on𝒜, we define a “estimate-disturb-
transform” procedure EDT[A,B,C]. Intuitively, this procedure first uses VarEstimate to compute
an upper bound on the running time of Transform[A → B], but then disturbs the state with the
measurement C before running Transform[A → B]. However, to ensure that VarEstimate does not
run for unbounded time, the input is first “conditioned” by applying B followed by A, and only
proceeding if both measurements return 1.

Formally, the procedure takes an input state on 𝒜 and does the following:
EDT[A,B,C]:

1. Apply B to 𝒜, obtaining outcome 𝑏1.
2. Apply A to 𝒜, obtaining outcome 𝑏2.
3. If 𝑏1 = 0 or 𝑏2 = 0, stop and output (0,⊥).
4. Otherwise, run VarEstimate𝛿[A � B] on 𝒜, obtaining classical output 𝑦.
5. Apply C to 𝒜, obtaining outcome 𝑐.
6. Run Transform𝑦[A→ B] on 𝒜.
7. Output 𝒜 and (1, 𝑐).

Let ̂︂EDT[A,B,C] denote a coherent implementation of this procedure.

93

Claim 13.4. For any efficient measurements A,B,C, EDT[A,B,C] is EQPT𝑚.

Proof. Since EDT[A,B,C] commutes with MJor[A,B], it suffices to analyze its running time for states
contained within a single Jordan subspace. Let |𝜓𝑗⟩ := 𝛼 |𝑤𝑗,1⟩+ 𝛽 |𝑤𝑗,0⟩. Then

Pr[𝑏1 = 𝑏2 = 1] = |𝛼|2 Pr[A(|𝑤𝑗,1⟩)→ 1] ≤ 𝑝𝑗 .

Note that C does not affect the running time of Transform𝑦. Hence the expected running time of
this procedure on |𝜓𝑗⟩ is

𝑂((𝑝𝑗 · log(1/𝛿)/√𝑝𝑗 + 1) · (𝑡A + 𝑡B)) = 𝑂(log(1/𝛿) · (𝑡A + 𝑡B)).

It follows that this procedure is EQPT𝑚.

We define the states and measurements used in the simulator.

• For 𝑟 ∈ 𝑅, let |Sim𝑟⟩ := 1√
2𝜆

∑︀
𝜇 |𝜇⟩ |SHVZK.Sim(𝑟;𝜇)⟩.

• Let MSim := (ΠSim, I−ΠSim), where ΠSim := ∑︀
𝑟 |𝑟⟩⟨𝑟| ⊗ |Sim𝑟⟩⟨Sim𝑟| ⊗ I.

• Let Mℛ := (Π𝑟)𝑟∈𝑅, where Π𝑟 := 𝑈 †𝑉 * |𝑟⟩⟨𝑟|ℛ 𝑈𝑉 * .
• Let Mcom := (Πcom, I−Πcom), where

Πcom :=
∑︁
𝑟,𝜔

Commit(ck,𝑟,𝜔)=com

|𝑟, 𝜔⟩⟨𝑟, 𝜔| .

Sim𝑉 * :
1. Run 𝑉 *(ck) for ck← Gen(1𝜆) to obtain a commitment com.
2. Generate the state |0⟩ℛ′ |Sim0⟩ℳ,𝒜,𝒵 .
3. Apply ̂︂EDT[Mcom,MSim,Mℛ], obtaining outcome (𝑏, 𝑟) (in superposition). Measure
𝑏.

4. If 𝑏 = 1, measure 𝑟 and replace the state on ℛ′,ℳ,𝒜,𝒵 with |𝑟⟩ℛ′ |Sim𝑟⟩ℳ,𝒜,𝒵 .
5. Apply ̂︂EDT[Mcom,MSim,Mℛ]†.
6. Measure register 𝒜, obtaining outcome 𝑎. Apply 𝑈𝑉 * and measure ℛ,𝒲 to obtain

(𝑟′, 𝜔); if Commit(𝑟′, 𝜔) ̸= com, stop and output the view of 𝑉 *. Otherwise, measure
𝒵, obtaining outcome 𝑧. Send 𝑧 to 𝑉 * and output the view of 𝑉 *.

Lemma 13.5. If Com is a collapse-binding commitment then Sim𝑉 *(𝜌) is computationally indis-
tinguishable from out𝑉 *⟨𝑃, 𝑉 *⟩. Sim𝑉 * is an EQPT𝑐 algorithm.

Proof. By Claim 13.4, 𝑃 [Mcom,MSim,Mℛ] is EQPT𝑚, and so Sim𝑉 * is EQPT𝑐.
We consider three hybrid simulators 𝐻1, 𝐻2, 𝐻3, as follows. All three are provided with some

witness 𝑤 such that (𝑥,𝑤) ∈ R. We first define 𝐻1.
𝐻𝑉 *

1 (𝑥,𝑤):
1. Run 𝑉 *(ck) for ck← Gen(1𝜆) to obtain a commitment com.
2. Generate the state |𝑃 ⟩ := ∑︀

𝜇 |𝜇⟩ℳ |𝑃Σ(𝑥,𝑤;𝜇)⟩𝒜.
3. Let M𝑃 := (|𝑃 ⟩⟨𝑃 | , I− |𝑃 ⟩⟨𝑃 |). Apply ̂︂EDT[Mcom,M𝑃 ,Mℛ], obtaining outcome

(𝑏, 𝑟) (in superposition). Measure 𝑏.
4-6. As in Sim.

94

𝐻1 is indistinguishable from Sim by Lemma 13.1: 𝐻1 is obtained from Sim by replacing |Sim0⟩
and MSim with |𝑃 ⟩ and M𝑃 and interacts only with the 𝒜 register, and the distributions on 𝑎
induced by (𝑎, 𝑧)← SHVZK.Sim(0;𝜇) and 𝑎← 𝑃Σ(𝑥,𝑤;𝜇′) are computationally indistinguishable.

𝐻𝑉 *
2 (𝑥,𝑤):

1-3. As in 𝐻1.
4. If 𝑏 = 1, measure 𝑟 and replace the state on ℳ,𝒜,𝒵 with

|𝑃𝑟⟩ =
∑︁
𝜇

|𝜇⟩ℳ |𝑃Σ(𝑥,𝑤;𝜇)⟩𝒜 |𝑃Σ(𝑥,𝑤, 𝑟;𝜇)⟩𝒵 .

5. Let M𝑃,𝑟 := (|𝑃𝑟⟩⟨𝑃𝑟| , I− |𝑃𝑟⟩⟨𝑃𝑟|). Apply ̂︂EDT[Mcom,M𝑃,𝑟,Mℛ]†.
6. As in Sim.

By the SHVZK guarantee, the distributions on (𝑎, 𝑧) given by 𝑎← 𝑃Σ(𝑥,𝑤;𝜇), 𝑧 ← 𝑃Σ(𝑥,𝑤, 𝑟;𝜇)
and (𝑎, 𝑧) ← SHVZK.Sim(𝑟;𝜇′) are computationally indistinguishable. Hence by Lemma 13.1, 𝐻1
and 𝐻2 are computationally indistinguishable.

By the correctness guarantee of Transform, if 𝑏 = 1 then the state at the beginning of Step 4 has
Tr(|𝑃 ⟩⟨𝑃 |𝜌) ≥ 1− 𝛿. Note that |𝑃 ⟩ and |𝑃𝑟⟩ are related by an efficient local isometry 𝑇𝑟 : ℳ→
ℳ⊗𝒵. Hence Step 4 is

√
𝛿-close in trace distance to an application of this isometry. Switching

to this state, we can commute the isometry through ̂︂EDT[Mcom,M𝑃,𝑟,Mℛ]†, which conjugates it tô︂EDT[Mcom,M𝑃 ,Mℛ]†. This leads to the third hybrid, below.
𝐻𝑉 *

3 (𝑥,𝑤):
1-3. As in 𝐻2.

4. If 𝑏 = 1, measure 𝑟.
5. Apply ̂︂EDT[Mcom,M𝑃 ,Mℛ]†.
6. Apply 𝑈𝑉 * and measure ℛ,𝒲 to obtain (𝑟′, 𝜔). If Commit(𝑟′, 𝜔) ̸= com, stop and

output the view of 𝑉 *. Otherwise, apply 𝑇𝑟′ to ℳ and measure 𝒵, obtaining
outcome 𝑧. Send 𝑧 to 𝑉 * and output the view of 𝑉 *.

𝐻3 is statistically close to 𝐻2 provided that Pr[𝑟 = 𝑟′] = 1− negl(𝜆). Moreover, the collapsing
property of the commitment implies that Step 4 is computationally undetectable. If this step is
removed then the effect of Steps 3 and 5 is simply to apply Mcom; the output is then precisely the
view of 𝑉 * in a real execution.

Finally, we have that by 𝑟 = 𝑟′ with all but negligible probability by the unique message-binding
of the commitment scheme (Lemma 4.2).

Acknowledgments
We thank Nir Bitansky, Zvika Brakerski, Ran Canetti, Yael Kalai, Vinod Vaikuntanathan, and
Mark Zhandry for helpful discussions. NS was supported by DARPA under Agreement No.
HR00112020023. This research was conducted in part while AL and FM were interns at NTT
Research.

References
[AAB+19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Rupak

Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu Chen, Jimmy Chen,

95

Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks
Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith Guerin,
Steve Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf Hoffmann,
Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyan-
tyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa,
Dave Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod Ryan
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni,
Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby,
Andre Petukhov, John Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas
Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Tre-
vithick, Amit Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam
Zalcman, Hartmut Neven, and John Martinis. Quantum supremacy using a programmable
superconducting processor. Nature, 574:505–510, 2019.

[ACL21] Prabhanjan Ananth, Kai-Min Chung, and Rolando L. La Placa. On the concurrent composition
of quantum zero-knowledge. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 346–374, Virtual Event, August 2021. Springer, Heidelberg.

[AL20] Prabhanjan Ananth and Rolando L. La Placa. Secure quantum extraction protocols. In Rafael
Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 123–
152. Springer, Heidelberg, November 2020.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th FOCS, pages 474–483. IEEE Computer
Society Press, October 2014.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115.
IEEE Computer Society Press, October 2001.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.

[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way functions
imply secure computation in a quantum world. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 467–496, Virtual Event, August 2021.
Springer, Heidelberg.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 370–390. Springer, Heidelberg, November 2018.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification
and estimation. Quantum Computation and Information, page 53–74, 2002.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box
barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091–1102. ACM
Press, June 2019.

[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. In 34th
ACM STOC, pages 484–493. ACM Press, May 2002.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the
International Congress of Mathematicians, volume 1, page 2. Citeseer, 1986.

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant rounds.
In Proceedings of the twenty-second annual ACM symposium on Theory of Computing, pages
482–493, 1990.

96

[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In Dan
Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 299–315. Springer, Heidelberg,
August 2003.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-box
simulation technique. In 53rd FOCS, pages 223–232. IEEE Computer Society Press, October
2012.

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 401–427. Springer, Heidelberg, March 2015.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In Kon-
stantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, 52nd ACM STOC, pages 269–279. ACM Press, June 2020.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on computing,
26(5):1411–1473, 1997.

[CCLY21a] Nai-Hui Chia, Kai-Min Chung, Xiao Liang, and Takashi Yamakawa. Post-quantum simulatable
extraction with minimal assumptions: Black-box and constant-round. CoRR, abs/2111.08665,
2021.

[CCLY21b] Nai-Hui Chia, Kai-Min Chung, Qipeng Liu, and Takashi Yamakawa. On the impossibility of
post-quantum black-box zero-knowledge in constant rounds. FOCS ’21, 2021.

[CCY21] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. A black-box approach to post-quantum
zero-knowledge in constant rounds. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 315–345, Virtual Event, August 2021. Springer, Heidelberg.

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum succinct
arguments: breaking the quantum rewinding barrier. FOCS ’21, 2021.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching
programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, August
2018.

[Deu85] David Deutsch. Quantum theory, the Church–Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
400(1818):97–117, 1985.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat–Shamir
transformation in the quantum random-oracle model. In Proceedings of the 39th Annual Inter-
national Cryptology Conference, CRYPTO ’19, pages 356–383, 2019.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th ACM STOC,
pages 409–418. ACM Press, May 1998.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd
ACM STOC, pages 416–426. ACM Press, May 1990.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to
constructing and proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part II, volume 10678 of LNCS, pages 537–566. Springer, Heidelberg, November
2017.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof sys-
tems for NP. Journal of Cryptology, 9(3):167–190, June 1996.

97

[GLSV21] Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is in
MiniQCrypt. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of LNCS, pages 531–561. Springer, Heidelberg, October 2021.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages
174–187. IEEE Computer Society Press, October 1986.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer, Heidelberg, August 1987.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736–749,
2021.

[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value trans-
formation and beyond: exponential improvements for quantum matrix arithmetics. In Moses
Charikar and Edith Cohen, editors, 51st ACM STOC, pages 193–204. ACM Press, June 2019.

[HXY19] Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model with
auxiliary input. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 584–614. Springer, 2019.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages
21–30. ACM Press, June 2007.

[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive.
Journal of Cryptology, 10(1):37–50, December 1997.

[Jor75] Camille Jordan. Essai sur la géométrie à 𝑛 dimensions. Bulletin de la Société mathématique de
France, 3:103–174, 1875.

[JT20] Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques and ap-
plications to concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part III, volume 12552 of LNCS, pages 414–443. Springer, Heidelberg, November 2020.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732. ACM Press, May 1992.

[KL05] Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies in simulation-
based security proofs. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 128–149.
Springer, Heidelberg, February 2005.

[LP98] Noah Linden and Sandu Popescu. The halting problem for quantum computers. arXiv preprint
quant-ph/9806054, 1998.

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In
Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages
353–365. Springer, Heidelberg, August 1991.

98

[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments.
Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/279.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat–Shamir. In Proceedings of the
39th Annual International Cryptology Conference, CRYPTO ’19, pages 326–355, 2019.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers:
Lattice problems and more. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
282–298. Springer, Heidelberg, August 2003.

[MW05] Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Computational Complexity,
14(2):122–152, 2005.

[Mye97] John M Myers. Can a universal quantum computer be fully quantum? Physical Review Letters,
78(9):1823, 1997.

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum Informa-
tion & Computation, 9(11&12):1053–1068, 2009.

[Oza98a] Masanao Ozawa. Quantum nondemolition monitoring of universal quantum computers. Physical
Review Letters, 80(3):631, 1998.

[Oza98b] Masanao Ozawa. Quantum Turing machines: local transition, preparation, measurement, and
halting. arXiv preprint quant-ph/9809038, 1998.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic
round-complexity. In 43rd FOCS, pages 366–375. IEEE Computer Society Press, November
2002.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way
functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 403–418. Springer,
Heidelberg, March 2009.

[Reg06] Oded Regev. Fast amplification of QMA (lecture notes), Spring 2006.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 191–202. Springer, Heidelberg, February 2004.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152. Springer, Heidelberg, April
2012.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129–146. Springer,
Heidelberg, May 2014.

[Unr16a] Dominique Unruh. Collapse-binding quantum commitments without random oracles. In Pro-
ceedings of the 22nd International Conference on the Theory and Applications of Cryptology and
Information Security, ASIACRYPT ’16, pages 166–195, 2016.

[Unr16b] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 497–527.
Springer, Heidelberg, May 2016.

[Wat06] John Watrous. Zero-knowledge against quantum attacks. In Jon M. Kleinberg, editor, 38th
ACM STOC, pages 296–305. ACM Press, May 2006.

99

https://eprint.iacr.org/2019/279

[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans-
actions on Information Theory, 45(7):2481–2485, 1999.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698
of LNCS, pages 127–156. Springer, Heidelberg, October 2021.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687.
IEEE Computer Society Press, October 2012.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Inf.
Comput., 15(7&8):557–567, 2015.

A Separating EQPT𝑐-Zero Knowledge and 𝜀-Zero Knowledge
In this section, we prove the following two separation results:

• There exists a 2-round challenger-adversary security game such that:

– For every 𝜀, a poly(𝜆) · 1/𝜀-time adversary can win the game with probability 1− 𝜀, but
– Under reasonable computational assumptions (against fixed-time quantum algorithms),

no EQPT𝑐 adversary can win the game with probability 1− negl(𝜆)

In fact, this separation can be strengthened so that the poly(𝜆) · 1/𝜀-time adversary can win
the game with probability 1− 𝜀𝑐 for an arbitrarily large constant 𝑐.

• There exists an argument system Π for a non-trivial language such that:

– Under standard computational assumptions, Π is computationally sound and (black-box)
post-quantum 𝜀-ZK, but

– Under reasonable computational assumptions (against fixed-time quantum algorithms),
Π is not EQPT𝑐-ZK with black-box simulation.

We begin by describing the new computational assumption required for this separation, which
is a form of post-quantum fine-grained one-way functions/pseudorandom generators.

A.1 Post-Quantum Fine-Grained One-Way Functions and Pseudorandom Gen-
erators

We consider a family of functions ℱ = {𝑓𝑇,𝜆 : [𝑇]→ {0, 1}𝑚(𝑇,𝜆)}, so that for every 𝜆, 𝑇 ∈ N, 𝑓𝑇,𝜆
has domain [𝑇]. We say that ℱ is efficiently computable if there exists a (bivariate) polynomial 𝑝
such that for all 𝜆, 𝑇 ∈ N, 𝑓𝑇,𝜆 can be computed in time 𝑝(𝜆, log 𝑇).

We now state two hardness assumptions on ℱ , capturing the hardness of inverting functions in
ℱ , and the hardness of distinguishing function outputs 𝑓𝑇,𝜆(𝑥) (for 𝑥← [𝑇]) from random strings
𝑦 ← {0, 1}𝑚(𝑇,𝜆).

Definition A.1 (Fine-Grained (Exponentially Hard) One-Way Functions). We say that ℱ is (fine-
grained) exponentially one-way if there exists a constant 𝑐 such that the following holds: for every
𝑇 = poly(𝜆) and every quantum adversary 𝒜 running in (fixed) time 1

2𝜆𝑇
𝑐 · time(𝑓𝑇,𝜆) (where

time(𝑓𝑇,𝜆) denotes the time required to compute 𝑓𝑇,𝜆), the probability that 𝒜(𝑓𝑇,𝜆(𝑥)) inverts 𝑓𝑇,𝜆
(for 𝑥← [𝑇]) is at most 1

2𝜆 .

100

Definition A.2 (Fine-Grained (Exponentially Hard) Pseudorandom Generators). We say that ℱ
is a (fine-grained) exponentially secure PRG if there exists a constant 𝑐 such that the following
holds: for every 𝑇 ≥ 𝜆 and every quantum adversary 𝒜 running in (fixed) time 1

2𝜆𝑇
𝑐 · time(𝑓𝑇,𝜆),

𝒜(𝑦) distinguishes the distributions 𝑦 ← 𝑈𝑚, 𝑦 ← 𝑓𝑇,𝜆(𝑥← [𝑇]) with advantage at most 1
2𝜆 .

We note that Definitions A.1 and A.2 are instantiable in the quantum random oracle model:
the OWF/PRG is simply a restriction of a random oracle to a 𝑇 -sized domain, where we set the
output length 𝑚 = 2𝜆. In the QROM, by definition of the model we have time(𝑓𝑇,𝜆) = 1. Then,
Definitions A.1 and A.2 hold by invoking the “one-way to hiding lemma” [Unr14] (allowing for any
constant 𝑐 < 1/2 in the definitions). The security definitions also hold in non-uniform variants of
the QROM [HXY19].

A.2 The Separations

Using Definition A.1, we first separate the power of 𝜀-approximate strict polynomial time from the
EQPT𝑐 model in winning a concrete security game.

Lemma A.3. Let ℱ = {𝑓𝑇,𝜆} denote a parametrized family of functions. There exists a game 𝒢
between a polynomial-time challenger 𝒞 and an adversary 𝒜 with the following properties:

• For every 𝜀, there exists a poly(𝜆) · 1/𝜀-time (classical) adversary winning 𝒢 with probability
1− 𝜀.

• Assume that ℱ is a family of exponentially hard fine-grained post-quantum one-way functions
(Definition A.1). Then, no EQPT𝑐 adversary can win 𝒢 with 1− negl probability.

Proof. Let ℱ be as above. We describe the game 𝒢.

• The challenger samples 𝜆 bits 𝑏1, . . . , 𝑏𝜆 uniformly at random as well as 2𝜆 strings 𝑥1, . . . , 𝑥𝜆
with 𝑥𝑖 ← [2𝑖].

• The challenger computes 𝑦𝑖 = 𝑓2𝑖,𝜆(𝑥𝑖) for every 𝑖 and sends (𝑦1, . . . , 𝑦𝜆) to the adversary.

• The adversary returns inputs (𝑧1, 𝑏
′
1, . . . , 𝑧𝜆, 𝑏

′
𝜆) to the challenger.

• The adversary wins if there exists an index 𝑖 such that 𝑏𝑖 = 𝑏′𝑖 and 𝑓𝑖(𝑧𝑖) = 𝑦𝑖.

First, we show that there exists a poly(𝜆)/𝜀-time 𝒜 that wins 𝒢 with probability 1 − 𝜀. This
adversary simply brute-force inverts 𝑦1, . . . , 𝑦𝑘 for 𝑘 = log(1/𝜀) and guesses each 𝑏′𝑖 uniformly at
random. Since the domain size of 𝑓𝑖 is equal to 2𝑖, this takes time poly(𝜆)∑︀𝑘

𝑖=1 2𝑖 ≤ poly(𝜆)2𝑘+1 =
poly(𝜆)/𝜀. This adversary wins 𝒢 as long as 𝑏𝑖 = 𝑏′𝑖 for some 1 ≤ 𝑖 ≤ 𝑘, which holds with probability
1− 2−𝑘 = 1− 𝜀.

Next, we show hardness under the fine-grained OWF assumption. Suppose that an EQPT𝑐
adversary 𝒜 wins 𝒢 with 1 − negl(𝜆) probability. For any constant 𝑐, we will contradict the 𝑐-
exponential hardness of ℱ .

Let 𝑇 = poly(𝜆) denote the expected running time of 𝒜 and 𝑘 = 3
𝑐 log(𝑇). Then, we note that

Pr
[︀
𝒜 wins | 𝑏𝑖 ̸= 𝑏′𝑖 for all 𝑖 ≤ 𝑘

]︀
= 1− negl(𝜆).

101

This is because the event “𝑏𝑖 ̸= 𝑏′𝑖 for all 𝑖 ≤ 𝑘” holds with probability 1/𝑇 3/𝑐. Note that the
expected running time of 𝒜 remains the same conditioned on the above event, because the view of
𝒜 is independent of the event.

We now invoke the approximation lemma (Claim 9.4), which states that 𝒜 can be replaced
by a quantum circuit 𝒜′ of size 𝑂(𝑇ℓ2) ≤ 𝑂(𝑇 3) (where ℓ denotes the number of coherent im-
plementations of EQPT𝑚 procedures in the description of 𝒜) preserving the above probability
up to 1

2 additive error. By the definition of 𝒢, this means that if we sample 𝑦1, . . . , 𝑦𝜆 as in 𝒢
and call 𝒜′(𝑦1, . . . , 𝑦𝜆) (obtaining 𝑧1, . . . , 𝑧𝜆)), with probability at least 1

2 , there exists an index
𝑖 > 𝑘 = 3/𝑐 log(𝑇) such that 𝑓𝑖(𝑧𝑖) = 𝑦𝑖. Since 𝒜′ runs in time at most 𝑇 3, this contradicts the
𝑐-exponential hardness of ℱ .

We note that Lemma A.3 could be strengthened to allow the poly(𝜆) · 1/𝜀-time attacks to
succeed with probability 1−𝜀𝑐′ for an arbitrarily large constant 𝑐′, by fine-tuning the parameters in
the construction/proof. We also note that the only feature of EQPT𝑐 that we relied upon was the
ability to truncate the computation; the above proof strategy also separates EQPT𝑚 and classical
EPT from 𝜀-approximate computation.

Next, we extend Lemma A.3 to a separation between post-quantum 𝜀-ZK and EQPT𝑐-ZK.
Ruling out forms of zero knowledge simulation is quite a tricky task; to get a provable result, we
make use of a wide variety of (standard) cryptographic primitives along with the game 𝒢 above.

Theorem A.4. Assume the existence of the following cryptographic primitives (potentially with
subexponential security):

1. A post-quantum non-interactive witness-indistinguishable (NIWI) proof system [BOV03, BP15],

2. A post-quantum witness encryption scheme [CVW18, GP21, WW21].

3. A state-preserving WI argument system for NP (Theorem 1.9).

4. A post-quantum 2-message oblivious transfer scheme [BD18],

5. A post-quantum non-interactive commitment scheme [LS19], and

6. A post-quantum pseudorandom function family [Zha12].

Additionally, assume the existence of post-quantum fine-grained PRGs (Definition A.2), and assume
that NP∩ coNP is hard-on-average against subexponential time quantum algorithms.38 Then, there
exists an interactive argument system Π for a hard language (inside the complexity class NP∩coNP),
such that:

• Π is post-quantum computationally sound and post-quantum (black-box) 𝜀-zero knowledge.

• Π is not EQPT𝑐-zero knowledge with black-box simulation (this part requires the fine-grained
PRG assumption).

We remark that in Theorem A.4, the 𝜀-ZK simulator can have runtime dependence 1
𝜀2 on 𝜀,

matching what is achieved by truncations of (some) actual EQPT𝑐-ZK simulators (Theorem 1.3).
38The latter follows from the subexponential quantum hardness of LWE.

102

Proof. The basic idea is to modify the Feige-Shamir protocol so as to embed a copy of the security
game 𝒢 into the simulation task. However, the game 𝒢 is not publicly verifiable, so (following prior
works, e.g., [BKP19]) this embedding requires checking 𝒢 under a secure function evaluation.

Further modifications are required to completely rule out the possibility that the protocol is
EQPT𝑐-ZK: we must prevent an EQPT𝑐 simulator from being able to use any form of rewinding to
its advantage.

The full protocol Π for an arbitrary NP ∩ coNP language 𝐿 is as follows.

• The prover selects bits 𝑏′1, . . . , 𝑏′𝜆 (they can all be zero for the honest prover). For every 𝑖, the
prover sets ct𝑖 to be a witness encryption of 𝑏′𝑖 under the statement that 𝑥 ∈ 𝐿. The prover
the sends to the verifier all ct𝑖 and a NIWI proof that all ct𝑖 are valid witness encryption
ciphertexts OR that 𝑥 ∈ 𝐿, using a witness for 𝑥 ∈ 𝐿. (this is simply an instance-dependent
non-interactive extractable commitment scheme)

• The verifier samples 𝑥1, . . . , 𝑥𝜆, 𝑏1, . . . , 𝑏𝜆 as in the game 𝒢. The verifier computes 𝑦𝑖 = 𝑓𝑖(𝑥𝑖),
and sends to the prover (𝑦1, . . . , 𝑦𝜆, 𝜋), where 𝜋 is a NIWI proof that either (1) all 𝑦𝑖 are in the
image of 𝑓𝑖, or (2) the NP-statement 𝑥 is in 𝐿. Finally, the verifier sends witness encryptions
�̂�𝑖 of each 𝑏𝑖 under the statement that 𝑥 ∈ 𝐿, OT messages OT.Com(𝑏1), . . . ,OT.Com(𝑏𝜆),
and sends a NIWI proof that these �̂�𝑖 and OT messages are well-formed and consistent with
each other (with respect to some 𝑏𝑖) or that 𝑥 ∈ 𝐿.

• The prover sends commitments com𝑖 to strings 𝑧1, . . . , 𝑧𝜆. The honest prover can set all of
these strings to 0.

• The verifier sends two commitments 𝑐0 = Com(0; 𝑟0), 𝑐1 = Com(0; 𝑟1) and two commitments
𝑐′𝑖 = Com(𝑟𝑖; 𝜌𝑖).

• The verifier proves to the prover (using the state-preserving argument of knowledge) that it
knows at least one (𝑟𝑖, 𝜌𝑖).

• The prover commits to a bit 𝛽 and sends the commitment to the verifier.

• The prover garbles a circuit whose input is a string (𝑏1, . . . , 𝑏𝜆) and whose output is a NIWI
proof (using the NP-witness 𝑤) that either 𝑥 ∈ 𝐿 or both of the following hold: (1) 𝑐𝛽 =
Com(0; 𝑟𝛽) (for some 𝑟𝛽) and 𝑐′𝛽 is a commitment to 𝑟𝛽, where 𝛽 is the bit committed above,
and (2) there exists a 𝑗 such that 𝑏𝑗 = 𝑏′𝑗 and 𝑓𝑗(𝑧𝑗) = 𝑦𝑗 , where 𝑧𝑗 and 𝑏′𝑗 are consistent with
the prover’s first and second messages.

• The prover sends this garbled circuit, and sends the input labels to the circuit using the OT.

• The verifier decodes the OT messages, evaluates the garbled circuit, and verifies the NIWI
proof output by the circuit.

We sketch why this protocol satisfies soundness and post-quantum 𝜀-ZK but is not EQPT𝑐-ZK.

𝜀-ZK. The 𝜀-ZK simulator first samples each 𝑏′𝑗 uniformly at random, computes witness encryp-
tion ciphertexts honestly, and sends a NIWI proof using the witness encryption randomness as
input.

103

Then, the simulator sets 𝑘 = log(1/𝜀) and (given 𝑦1, . . . , 𝑦𝜆) brute-force inverts each 𝑦𝑗 for
1 ≤ 𝑗 ≤ 𝑘. It then commits to all of the inverses (and 0 strings otherwise). Next, it runs the
state-preserving AoK extractor (to accuracy 𝜀/2) on the cheating verifier, obtaining strings 𝑖, 𝑟𝑖, 𝜌𝑖,
and then commits to 𝛽 = 𝑖. Finally, the simulator garbles a circuit that outputs a NIWI proof
using the trapdoor witness (𝑖, 𝑟𝑖, 𝜌𝑖) and the decommitments to 𝛽, 𝑧𝑗 , 𝑏′𝑗 (for a choice of 𝑗 such that
𝑏′𝑗 = 𝑏𝑗).

To see that this simulation is accurate, we note that it is computationally indistinguishable
from a hybrid simulator in which the first NIWI proof is computed using a witness for 𝑥 ∈ 𝐿.
Next, we note that (in this hybrid) there exists a 𝑗 ≤ 𝑘 such that 𝑏𝑗 = 𝑏′𝑗 with probability 1 − 𝜀
by the security of the prover’s witness encryption.39 Simulation security then follows by the hiding
of the prover’s commitments, the sender privacy of the OT, the simulation security of the garbled
circuit (where the circuit and input are non-uniformly hard-wired in this security reduction), and
the witness indistinguishability of the NIWI (where the statement and pair of witnesses are again
hard-wired nonuniformly).

Soundness. This largely follows the proof of soundness of the Feige-Shamir protocol and in
particular completely ignores the game 𝒢.

Specifically, let 𝑖* denote the index (chosen at random) used by the verifier in the state-
preserving AoK (denoting which commitment it is using as its witness). Let 𝛽 denote the bit
committed to by the adversarial prover 𝑃 *. We claim that if 𝑃 * breaks the soundness of the pro-
tocol with non-negligible probability, then 𝑃 * also simultaneously breaks soundness and satisfies
𝛽 ̸= 𝑖* with non-negligible probability. This follows from the witness indistinguishability of the
AoK, which we assume holds even against attacks with the power to break the commitment to 𝛽
(by setting security parameters appropriately). Then, we switch 𝑐1−𝑖* to be a commitment to 1 by
invoking the hiding of the commitment (even against adversaries that can break the commitment
to 𝛽). At this point, 𝑃 * violates the soundness of the final NIWI, as the relevant NP statement is
false.

The protocol is not EQPT𝑐-ZK. This step combines the proof technique of Lemma A.3 with
the above soundness analysis strategy. We eventually want to show that an EQPT𝑐 simulator will
violate the soundness of the prover’s final NIWI, by switching to a world in which that NIWI
statement is false.

We consider the following cheating verifier 𝑉 * and distinguisher 𝐷:

• 𝑉 * has hardwired outputs 𝑦1, . . . , 𝑦𝜆 as well as a hard-wired NIWI proof 𝜋 that each 𝑦𝑖 is in
the image of 𝑓𝑖 or that 𝑥 ∈ 𝐿.

• 𝑉 * has a hardwired PRF seed 𝑠.

• 𝑉 * generates its first message using the hardwired 𝑦1, . . . , 𝑦𝜆, 𝜋, and by computing (𝑏1, . . . 𝑏𝜆, 𝑟) =
PRF𝑠(𝛼), where 𝛼 denotes the prover’s message, and uses 𝑟 to generate the OT commitments,
witness encryption ciphertexts, and associated NIWI proofs.

• Otherwise, 𝑉 * acts as the honest verifier.
39The reduction from witness encryption security uses a witness for 𝑥 ∈ 𝐿 to decrypt the verifier ’s witness encryp-

tion; the soundness of the verifier’s NIWI says that these decrypted messages will be the 𝑏𝑖.

104

• The distinguisher 𝐷 has all of 𝑉 *’s auxiliary input. The distinguisher simply checks whether
the transcript is accepting (by applying the PRF to generate the required OT randomness in
order to decode the prover’s last message).

Suppose that there exists an EQPT𝑐 black-box simulator 𝑆* that (on every (𝑥,𝑤) pair) simulates
the view of 𝑉 * with respect to distinguisher 𝐷. This distinguisher 𝐷 outputs 1 with probability 1
in the real world, and so 𝐷 will output 1 on the view generated by 𝑆* with 1− negl probability.

Without loss of generality, we assume that 𝑆* has maximum runtime cutoff of 2𝜆 (any 𝑆* can be
cut off at this runtime and maintain its negligible-accurate simulation by Claim 9.4). Moreover, we
assume that there are efficiently samplable distributions on 𝐿 and 𝐿 cannot be decided by 2𝜆-time
quantum algorithms with advantage 2−𝜆.

The above implies that (1) the distinguisher 𝐷 must still output 1 for randomly sampled 𝑥* ∈ 𝐿
(using the distribution above). Moreover, the expected running time of 𝑆* on this new distribution
remains polynomial by the (2𝜆, 2−𝜆)-hardness of 𝐿 vs. 𝐿.40

We next change the definition of 𝑉 * to use a truly random function instead of a pseudorandom
function. 𝐷 must still output 1 in this hybrid by the security of the PRF (in the quantum query
model for PRF security [Zha12]), as PRF security continues to hold against EQPT𝑐-adversaries by
Claim 9.4. We assume (2𝜆, 2−𝜆)-security of the PRF to preserve the expected runtime of 𝑆*.

We next change 𝑉 * to output NIWI proofs using a witness for 𝑥 ∈ 𝐿 (rather than the random-
ness it used to generate its commitments and ciphertexts). This holds assuming the 2−|𝛼|-witness
indistinguishability of the verifier’s NIWI (which we may assume); to see this, represent the truly
random function as a 2|𝛼|-length truth table, and have the security reduction guess which input 𝛼
𝑆* will eventually output. And again by invoking the WI of the NIWI (this time with advantage
2−|𝛼| · 2−𝜆, we may assume that the expected runtime of 𝑆* in this hybrid remains the same (up to
negligible difference).

For the following analysis, let 𝑘 = 𝑂(log(𝑇)), where 𝑇 denotes the expected runtime of 𝑆* (we
will specify 𝑘 fully later). We claim that the event “𝑏′𝑖 ̸= 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑘” holds in the current
hybrid with probability 2−𝑘. This holds assuming the (2|𝛼|, 2−|𝛼|)-receiver privacy of the OT, by
a similar argument to the above paragraph; we note that 𝑏′ can be extracted efficiently from the
witness encryption ciphertexts using a witness for 𝑥 ∈ 𝐿. Thus, in the above hybrid, 𝐷 must also
output 1 with 1−negl probability conditioned on 𝑏′𝑖 ̸= 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑘, and the expected running
time of 𝑆* again does not change noticeably by OT receiver privacy.

In the current hybrid, the string (𝑏1, . . . , 𝑏𝜆, 𝑟) is computed by 𝑉 * using a 2|𝛼|-length truth
table of random strings, and we condition on the event “𝑏𝑖 ̸= 𝑏′𝑖 for all 1 ≤ 𝑖 ≤ 𝑘,” where 𝑏′𝑖 can be
extracted efficiently from the prover’s message. We now re-define 𝑉 * to compute 𝑏𝑖 = 1−𝑏′𝑖 for 𝑖 < 𝑘
(rather than using an oracle/truth table) and note that this produces an identical distribution.

Finally, we again modify 𝑉 * to compute all of its randomness using a PRF seed, but continuing
to set 𝑏𝑖 = 1 − 𝑏′𝑖 for 𝑖 < 𝑘. This does not change the experiment outcome noticeably by PRF
security.

Next, we replace 𝑆* by a 𝑂(𝑇ℓ2) ≤ 𝑂(𝑇 3)-oracle runtime approximation using Claim 9.4, so
that 𝐷 still outputs 1 with probability at least 1

2 in the hybrid.
Finally, we are able to make use of the fine-grained pseudorandomness of ℱ . Letting 𝑐 denote

the constant parameter in this assumption, we select 𝑘 in the above argument so that the pseudo-
randomness assumption is valid against adversaries with the runtime of the current hybrid for all

40This holds because the simulator has a maximum runtime cutoff of 2𝜆; in general, expected running time is not
preserved by computational indistinguishability.

105

𝑓𝑗 with 𝑗 > 𝑘. The oracle runtime of 𝑆* is simply 𝑂(𝑇 3), and the oracle runs in a fixed poly(𝜆)
time (independent of the constant implicit in 𝑘), so an appropriate choice of 𝑘 will exist.

This means that 𝐷 will output 1 with probability at least 1
4 even if all 𝑦𝑗 (𝑗 > 𝑘) are sampled

uniformly at random (rather than using 𝑓𝑗).
We conclude that this experiment contradicts the soundness of the (last-message) NIWI. The

correctness of the OT + garbled circuit construction implies that 𝐷 decodes a valid NIWI proof of
the NP statement described in the protocol. But the NP statement is now false: 𝑥 ̸∈ 𝐿, 𝑏′𝑗 ̸= 𝑏𝑗 for
all 𝑗 ≤ 𝑘, and 𝑦𝑗 has no 𝑓𝑗-inverse (with all but negligible probability) for all 𝑗 > 𝑘. Thus, we have
a contradiction, and so an EQPT𝑐 𝑆* does not exist.

106

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

