Post-Quantum Zero Knowledge, Revisited

or: How to Do Quantum Rewinding Undetectably

Alex Lombardi
alexlombardi@alum.mit.edu
MIT*

Fermi Ma
fermima@alum.mit.edu
Simons Institute \& UC Berkeley*

Nicholas Spooner
nicholas.spooner@warwick.ac.uk
University of Warwick ${ }^{\dagger}$

September 23, 2022

Abstract

When do classical zero-knowledge protocols remain secure against quantum attacks? In this work, we develop the techniques, tools, and abstractions necessary to answer this question for foundational protocols: 1. We prove that the Goldreich-Micali-Wigderson protocol for graph non-isomorphism and the Feige-Shamir protocol for NP remain zero-knowledge against quantum adversaries. At the heart of our proof is a new quantum rewinding technique that enables extracting information from multiple invocations of a quantum adversary without disturbing its state. 2. We prove that the Goldreich-Kahan protocol for NP is post-quantum zero knowledge using a simulator that can be seen as a natural quantum extension of the classical simulator. Our results achieve negligible simulation error, appearing to contradict a recent impossibility result due to Chia-Chung-Liu-Yamakawa (FOCS 2021). This brings us to our final contribution: 3. We introduce coherent-runtime expected quantum polynomial time, a simulation notion that (1) precisely captures all of our zero-knowledge simulators, (2) cannot break any polynomial hardness assumptions, (3) implies strict polynomial-time ε-simulation and (4) is not subject to the CCLY impossibility. In light of our positive results and the CCLY negative results, we propose coherent-runtime simulation to be the appropriate quantum analogue of classical expected polynomial-time simulation.

[^0]
Contents

1 Introduction 1
1.1 Challenges 1
1.2 This Work 3
1.3 Expected Quantum Polynomial-Time Simulation 4
1.4 Results on Zero Knowledge 6
1.5 Results on Extraction 7
1.6 Additional Results 9
2 Technical Overview 9
2.1 Defining Expected Quantum Polynomial Time Simulation 9
2.2 Post-Quantum ZK for [GMW86] and [FS90] from Guaranteed Extraction 14
2.3 Achieving Guaranteed Extraction 18
2.4 Post-Quantum ZK for [GK96] 28
2.5 Related Work 32
3 Preliminaries 35
3.1 Quantum Preliminaries and Notation 36
3.2 Black-Box Access to Quantum Algorithms 37
3.3 Jordan's Lemma 37
3.4 Commitment Schemes 38
3.5 Preliminaries on Interactive Arguments 39
4 Standard Collapse-Binding Implies Unique Messages 41
5 Generalized Notions of Special Soundness 44
5.1 Generalized Special Soundness Definitions 45
5.2 A Special Soundness Parallel Repetition Theorem 46
5.3 Examples of Probabilistic Special Sound Protocols 48
6 Singular Vector Algorithms 52
6.1 Fixed-Runtime Algorithms 52
6.2 Variable-Runtime Singular Vector Transformation (vrSVT) 53
7 Pseudoinverse Lemma 55
8 Post-Quantum Guaranteed Extraction 57
8.1 Description of the Extractor 58
8.2 Partial Transcript Extraction Theorem 60
8.3 Proof of Theorem 8.2 60
8.4 Obtaining Guaranteed Extraction 72
9 Expected Polynomial Time for Quantum Simulators 75
9.1 Quantum Turing Machines 75
9.2 Coherent-Runtime EQPT 75
9.3 Zero Knowledge with EQPT_{c} Simulation 77
10 State-Preserving Extraction 77
10.1 From Guaranteed Extraction to State-Preserving Extraction 78
10.2 Applying Lemma 10.3 81
10.3 Concluding Theorems 1.8 and 1.9 83
11 The [GMW86] GNI Protocol is EQPT ${ }_{c}$ Zero Knowledge 84
12 The [FS90] Protocol is EQPT ${ }_{c}$ Zero Knowledge 86
12.1 Building Block: Delayed-Witness Proofs of Knowledge 87
12.2 Proof of Security for the [FS90] protocol 89
13 The [GK96] Protocol is EQPT ${ }_{c}$ Zero Knowledge 92
13.1 Indistinguishability of Projections onto Indistinguishable States 92
13.2 Quantum Simulator 93
Acknowledgments 95
References 95
A Separating EQPT ${ }_{c}$-Zero Knowledge and ε-Zero Knowledge 100
A. 1 Post-Quantum Fine-Grained One-Way Functions and Pseudorandom Generators 100
A. 2 The Separations 101

1 Introduction

Zero-knowledge protocols [GMR85] are a fundamental tool in modern cryptography in which a prover convinces a verifier that some statement is true without revealing any additional information. This security property is formalized via simulation: the view of any malicious efficient verifier V^{*} can be simulated in polynomial time (without access to, e.g., an NP witness for the statement).

Although the zero-knowledge property sounds almost paradoxical, [GMR85] showed that zeroknowledge protocols exist for non-trivial languages (e.g., for Quadratic Residuosity). This sparked a sequence of foundational works over the next decade, including: zero-knowledge protocols for graph isomorphism/non-isomorphism and all of NP [GMW86], constant-round zero-knowledge protocols for NP [GK96, FS90] (based on two different paradigms), and applications to general-purpose secure computation [GMW87a].

However, since these foundational results were established, our conception of what constitutes efficient computation has fundamentally changed. Both in theory [Sho94] and in practice [AAB ${ }^{+}$19], quantum computers appear to have capabilities beyond that of any efficient classical computer. Thus, in order to have a satisfying and complete theory of cryptography, it is imperative to analyze security against (efficient) quantum attacks. In this work, we ask:

When do classical zero-knowledge protocols remain secure against quantum attacks?
At a minimum, such protocols must be based on post-quantum cryptographic assumptions. Subject to this constraint, one could hope that any "reasonable" protocol should remain secure against quantum attack, but we are extremely far from having such a result.

To highlight our lack of understanding, consider the protocols (discussed above) from the original works of [GMW86, GK96, FS90]. ${ }^{1}$ Of these, the only ones known to be zero knowledge against quantum attack are those amenable to the rewinding technique of Watrous [Wat06]. ${ }^{2}$ Specifically, [Wat06] proves security for a very restricted class of protocols: (sequential repetitions of) 3-message public-coin protocols with logarithmic-length verifier messages.

As a result, the post-quantum security of some of the most basic protocols in cryptography remains completely unclear. For instance, Watrous's technique applies to the standard [GMW86] zero-knowledge proof system for graph isomorphism but does not apply to the related protocol for graph non-isomorphism from the same work. ${ }^{3}$ And while [Wat06] suffices to analyze the super-constant round [GMW86] protocol for NP (based on graph 3-coloring), it cannot handle the constant-round protocols of [GK96, FS90].

1.1 Challenges

We highlight two key issues that must be resolved in order to answer our question. The first is technical in nature; the second is more conceptual.

1. State-Preserving Quantum Rewinding. For all of the protocols discussed above, classical zero knowledge is proved by rewinding the malicious verifier to simulate its view. Classical rewinding is completely inapplicable to quantum adversaries since a single execution might

[^1]irreversibly disturb the adversary's state. While there has been significant progress in devising quantum-compatible rewinding strategies [Wat06, Unr12, CCY21, CMSZ21], these techniques are fundamentally incapable of the kind of rewinding we need.

The abstract rewinding technique common to the [GMW86, GK96, FS90] protocols is sometimes referred to as "extract-and-simulate": the simulator must first extract information from the malicious verifier and then use this information to simulate its view. It is this problem of simultaneous extraction and state preservation (for simulation) that prior work cannot solve:

- Even in simple cases where the simulator only needs to extract from a single protocol execution (as in the [GK96] protocol), the problem of achieving negligible accuracy simulation is particularly challenging. A recent work [CCY21] shows how to simulate in this setting with inverse polynomial simulation accuracy - achieving a relaxed security notion called ε-zero-knowledge [DNS98].
- The situation is especially dire in the more general (and more common) setting when extraction requires information from multiple protocol executions as in the [GMW86] graph non-isomorphism (GNI) protocol and the [FS90] protocol for NP. For these protocols, no post-quantum simulation strategies are known, even for weaker definitions such as ε-zero-knowledge. In fact, recent progress [CMSZ21] on extracting from multiple protocol executions is specifically designed for (and only works in) a setting where extraction without simulation suffices.

2. Defining Zero Knowledge. A key insight of [GMR85] was to capture a malicious verifier's "lack of knowledge" by simulation: the view of any efficient malicious verifier can be efficiently simulated. However, from the beginning, the precise definition of "efficient" was different for the verifier and the simulator: specifically, even though the verifier must run in fixed polynomial time, the simulator was only required to run in expected polynomial time.
Allowing the simulator to run for expected polynomial time was essential for the [GMR85] zero-knowledge protocol for quadratic non-residuosity (one out of their two constructions) and similarly essential for many subsequent protocols [GMW86, GK96, FS90]. Later, it was shown that for these and other protocols, (black-box ${ }^{4}$) strict polynomial-time simulation is impossible [BL02]. Thus, it turns out that expected polynomial time simulation is the appropriate computational model for capturing the classical zero knowledge of these protocols.
However, these definitional issues have not been resolved in the post-quantum setting. Unlike in the classical setting, the standard formulation of a quantum Turing machine [BV97] is intentionally restricted to fixed-runtime computation.
Thus - even putting aside the difficulty of quantum rewinding - proving post-quantum zero knowledge for the [GMW86, GK96, FS90] protocols requires identifying an appropriate model of efficient simulation. This question turns out to be surprisingly subtle: in fact, a recent work [CCLY21b] shows that for one natural formulation ${ }^{5}$ of (black-box) expected quantum polynomial-time simulation, zero knowledge is impossible for these protocols.
[^2]
1.2 This Work

In this work, we develop the techniques, tools, and abstractions required to resolve the above challenges. We employ these techniques to settle the post-quantum security of the [GMW86, GK96, FS90] protocols and more broadly establish conditions under which classical protocols remain postquantum secure. In more detail, our contributions are as follows.
(1) We formally study the notion of expected runtime for quantum simulators. We give a formal description of the model implicit in the impossibility result of [CCLY21b], which we call measured-runtime expected quantum polynomial time (EQPT m_{m}), and formulate a new model we call coherent-runtime expected quantum polynomial time (EQPT_{c}) that avoids this impossibility result. At a high level, the EQPT_{c} model grants the simulator the ability to coherently run an EQPT_{m} computation (and its inverse). In particular, the runtime of the computation is left in superposition and may be uncomputed. We argue that this model is an appropriate analogue of classical expected polynomial time simulation by (i) providing a natural definition of the expected work performed by such a computation, and (ii) showing that any expected-time- $T \mathrm{EQPT}_{c}$ computation can be approximated to error ε using $T \cdot$ poly $(1 / \varepsilon)$-size quantum circuits; in particular, any protocol that is EQPT_{c}-zero-knowledge is also ε-ZK.

Contribution (1) makes negligible-accuracy zero-knowledge simulation for our protocols plausible. Our main technical contributions are in actually constructing EQPT_{c}-zero knowledge simulators.
(2) We give a quantum analogue of the extract-and-simulate paradigm used in many classical zero-knowledge protocols (such as the [GMW86] GNI protocol and [FS90]), in which a simulator uses information extracted from multiple protocol transcripts to simulate the verifier's view. The key difficulty in the quantum setting is state-preserving extraction: to obtain this information without causing any noticeable disturbance to the verifier's quantum state, beyond what is caused by a single protocol execution.
While the recent techniques of [CMSZ21] allow extracting from multiple protocol transcripts, a major problem is that their extractor strongly disturbs the adversary's state. We revisit the [CMSZ21] approach for extraction and, using several additional ideas, construct a statepreserving extractor for a broad class of protocols. Using this extraction technique, we prove that the original [GMW86] protocol for graph non-isomorphism and some instantiations of the [FS90] protocol for NP are EQPT_{c}-zero-knowledge against quantum adversaries.
(3) We next turn our attention to the Goldreich-Kahan [GK96] zero-knowledge proof system for NP. Informally, analyzing the [GK96] proof system presents different challenges as compared to [GMW86, FS90] because in the latter protocols, rewinding is used for extraction (after which simulation is straight-line), while in the [GK96] protocol, rewinding is used for the simulation step (while extraction is trivial/straight-line).
Nevertheless, we show that some of our techniques are also applicable in this setting. We prove that the [GK96] protocol is EQPT_{c}-zero-knowledge against quantum adversaries. Our simulator can be viewed as a natural quantum extension of the classical simulator.
Previously, [CCY21] used different techniques to show that the [GK96] protocol is ε-zeroknowledge against quantum adversaries, but their simulation strategy cannot achieve negligible accuracy even in the EQPT_{c} setting.

We now discuss these contributions in more detail.

1.3 Expected Quantum Polynomial-Time Simulation

We consider the problem of defining zero knowledge in the quantum setting. To do so, we recall the state of affairs in the classical setting. As explained in the original paper [GMR85], zero-knowledge is a security property that captures the intuition that a verifier cannot learn new information from interacting with the prover in a protocol; this is formalized via an efficient simulator. But what do we mean by "efficient"? The standard complexity-theoretic notion of efficiency is strict polynomial time, which we think of as simulators that can be implemented "in the real world."

However, as discussed above, this turns out to be insufficient for capturing actual simulation strategies. The solution, proposed (innocuously) in [GMR85], is to consider expected polynomial time simulation. But this has relaxed the computational model in which the simulator operates! This begs the question:

What constitutes a reasonable computational model for a zero-knowledge simulator?
One response to this question would be to require that the simulator can be implemented "in the real world." However, expected polynomial time (EPT) simulation does not satisfy this condition: any negligibly-accurate implementation of an EPT simulator requires super-polynomial resources.

Does this mean that (classical) zero knowledge with EPT simulation is a useless definition? Definitely not - a zero-knowledge simulator is a mental experiment and is not run in real life!

Mathematically, zero-knowledge simulators are used in security/hardness reductions: by simulation security, an adversary can be analyzed by replacing parts of its view with simulated versions. A zero-knowledge simulator in computational model \mathcal{C} can then be used in any reduction where we can reason about the limitations of \mathcal{C}-computation. Expected polynomial-time simulators are therefore certainly useful, because it is often possible to reason about security properties against expected polynomial time attacks. ${ }^{6}$ Thus, because we can use EPT simulators in security proofs, the fact that an EPT simulator cannot actually be run is irrelevant.

The Quantum Setting. We are now ready to discuss models for quantum zero-knowledge simulation. We begin with the EQPT m_{m} model implicit in [CCLY21b], which is one potential analogue to classical expected polynomial time simulation as per the above discussion.

While [CCLY21b] do not formally define EQPT, ${ }^{7}$ implicit in their result is a computational model which we call measured-runtime EQPT $\left(\mathrm{EQPT}_{m}\right)$. EQPT_{m} is a class of quantum simulators that run for an expected polynomial number of steps when executed as follows: at each step, the simulator applies a fixed, constant-size quantum circuit U, followed by a measurement to determine whether to halt or perform another step.

More formally, an EQPT_{m} simulator operates on a quantum register \mathcal{A} containing the initial input state $|\psi\rangle_{\mathcal{A}}$, a memory/worktape register \mathcal{W} and a "halt" qubit \mathcal{Q} (initialized to $|0\rangle$). Then, it repeats the following steps until it halts:

[^3]1. measure \mathcal{Q} and halt if the outcome is 1 ; and
2. apply a fixed "transition" unitary U to $\mathcal{A} \otimes \mathcal{Q} \otimes \mathcal{W}$.

The result of the computation is the residual state on \mathcal{A} once the computation has halted. Using this model, we can give a more precise formulation of the [CCLY21b] theorem: black-box EQPT ${ }_{m}$ zero-knowledge simulators for constant-round protocols do not exist.

However, this does not rule out the possibility of post-quantum zero-knowledge simulation in some other reasonable computational model. In this work, we define a new model, which we call coherent-runtime expected quantum polynomial time $\left(\mathrm{EQPT}_{c}\right)$, and show that zero-knowledge simulation is possible in this model. We motivate and describe our model below.
EQPT_{c} provides the simulator with a single additional power: it can run an EQPT_{m} procedure coherently, perform some operation on the result, and then apply the inverse of the same procedure. Why does this help? The key observation underlying the [CCLY21b] result is that measuring the simulator's runtime - which is unavoidable in the EQPT m_{m} model - noticeably disturbs the verifier's state. In contrast, in an EQPT_{c} computation, the running time of the underlying EQPT ${ }_{m}$ procedure is left in superposition, and may be uncomputed by performing the inverse! As a result, the [CCLY21b] impossibility does not apply to EQPT_{c} simulation.

Understanding EQPT_{c} Simulation. Why is EQPT_{c} a reasonable computational model for a zero-knowledge simulator? We address this in two ways:
(1) We prove that any EQPT_{c} computation has strict polynomial-time approximations:

Lemma 1.1 (informal, see Claim 9.4). Any EQPT_{c} computation can be approximated with ε accuracy by a quantum circuit of size $\operatorname{poly}(\lambda, 1 / \varepsilon)$.

Importantly, this lemma ensures that EQPT_{c} computations cannot break any post-quantum polynomial hardness assumptions (unless, of course, the assumptions are false). This lemma also implies that (black-box) zero-knowledge with EQPT_{c} simulation implies (black-box) ε-zero-knowledge with strict quantum polynomial time simulation.
(2) We give a natural interpretation of "expected runtime" - compatible with Lemma 1.1 under which the expected runtime of any EQPT_{c} computation is polynomial.

Taking these points together with the [CCLY21b] impossibility, we propose EQPT ${ }_{c}$ to be the appropriate quantum analogue to classical expected polynomial time zero knowledge simulation. Of course, this only makes sense if interesting protocols satisfy EQPT_{c}-zero knowledge; establishing this is the focus of this work.

We discuss and further motivate the definition of EQPT_{c}, including a thorough comparison to the weaker notion of ε-ZK, in Section 2.1; we define the model formally in Section 9. In Appendix A we give a formal separation between ε-ZK and zero knowledge with EQPT_{c} simulation.

With this discussion in mind, we proceed to describe our results on post-quantum zero-knowledge and extraction in more detail.

1.4 Results on Zero Knowledge

Our main results regarding post-quantum zero knowledge are as follows. First, we show that the [GMW86] graph non-isomorphism protocol is zero knowledge against quantum verifiers.

Theorem 1.2. The [GMW86] 4-message proof system for graph non-isomorphism is post-quantum (statistical) zero knowledge with EQPT_{c} simulation.

The [GMW86] GNI protocol follows a somewhat general template using instance-dependent commitments [BMO90, IOS97, MV03]; we believe Theorem 1.2 should extend to other instantiations of this paradigm (e.g. for lattice problems).

With some additional work, we use similar techniques to show how to instantiate the FeigeShamir [FS90] paradigm in the post-quantum setting.

Theorem 1.3. Assuming super-polynomially secure non-interactive commitments, a particular instantiation of the [FS90] 4-message argument system for NP is post-quantum zero-knowledge with EQPT_{c} simulation. ${ }^{8}$

We emphasize that neither of the above results was previously known even in the ε-ZK setting.
Finally, using a different approach, we show that the Goldreich-Kahan [GK96] proof system is EQPT_{c}-ZK.

Theorem 1.4. When instantiated using a collapse-binding and statistically-hiding commitment scheme, the [GK96] protocol is post-quantum zero-knowledge with EQPT_{c} simulation.

This strengthens the ε-ZK result of [CCY21]. As a bonus, the simulator we construct in Theorem 1.4 bears a strong(er) resemblance to the classical [GK96] simulator, giving a clean conceptual understanding of constant-round zero knowledge in the quantum setting.

Proving Theorems 1.2 and 1.3. The core technical challenge in proving Theorem 1.2 and Theorem 1.3 is achieving post-quantum state-preserving extraction. We briefly elaborate on the connection between zero knowledge and extraction, using the graph non-isomorphism protocol as an example.

Recall that in the GNI protocol, the prover P wants to convince the verifier V that two graphs G_{0}, G_{1} are not isomorphic. To do so, the verifier sends a random isomorphic copy H of G_{b} for a uniformly random bit b, to which the prover returns $b .{ }^{9}$ However, to ensure zero-knowledge, the verifier first gives a proof of knowledge (PoK) that H is isomorphic to either G_{0} or G_{1}; this PoK is instantiated using a variant of the parallel-repeated graph isomorphism Σ-protocol. Intuitively, this ensures that a malicious verifier V^{*} already knows b and hence does not learn anything new from the interaction.

The classical zero-knowledge simulator for the GNI protocol performs the following steps:

1. Run V^{*} until the final PoK message; if the PoK is invalid, output an aborting transcript.
2. Extract an isomorphism π satisfying $\pi(H)=G_{b}$ for some b using multiple valid PoK responses from V^{*} (obtained by rewinding).

[^4]3. Simulate the view of V^{*} in an real interaction by returning b (computed efficiently from π).

As long as the extraction step has negligible failure probability (i.e., conditioned on a valid initial PoK execution, the extractor produces π with $1-\operatorname{negl}(\lambda)$ probability) this correctly simulates the view of V^{*} in an interaction with the honest prover.

One might hope to translate this approach to the post-quantum setting by instantiating the extraction step using existing quantum rewinding techniques (e.g., [CMSZ21]). However, we immediately encounter two problems:

- First, none of these techniques can achieve negligible ${ }^{10}$ failure probability.
- Second, the view of V^{*} includes its internal quantum state at the end of the interaction. Unfortunately, all existing extraction techniques significantly disturb this state.

We therefore need a quantum extraction technique with two properties: (1) extraction succeeds with $1-\operatorname{negl}(\lambda)$ probability (conditioned on an accepting initial execution), and moreover (2) the extractor does not cause any noticeable state disturbance (beyond that of the initial execution). We call an extractor achieving these properties state-preserving (see Definition 2.2). Devising a general-purpose state-preserving extraction technique is one of the primary technical contributions of this work.

1.5 Results on Extraction

Towards achieving state-preserving extraction, we consider extractors satisfying only property (1), which we call guaranteed extraction. As we will explain, under certain conditions on the protocol, guaranteed extraction generically yields state-preserving extraction.

One of our primary technical results is a general extraction theorem (Theorem 8.2) that implies guaranteed extraction for a broad class of protocols. While our main theorem is complex to state in full generality, a useful special case is the following:

Theorem 1.5 (informal, see Theorem 8.2). Any collapsing k-special-sound Σ-protocol is a postquantum proof of knowledge with guaranteed extraction (in EQPT_{m}).

Our full theorem statement is significantly more general: it captures a broad class of 3- and 4 -message protocols that satisfy substantially relaxed collapsing and special soundness notions.

We then show that guaranteed extraction generically implies state-preserving extraction if the protocol is "witness binding": at a high level, this means that the protocol execution serves as a (collapse-binding) commitment to the output of the extractor. Looking ahead, a key step in our proofs of Theorems 1.2 and 1.3 is to show that the relevant PoK subroutines satisfy (weak forms of) witness binding.

Lemma 1.6 (informal, see Lemma 10.3). Any witness binding post-quantum proof of knowledge with guaranteed extraction (in EQPT_{m}) has state-preserving extraction (in EQPT_{c}).

Note that this lemma turns an EQPT_{m} guaranteed extractor into an EQPT_{c} state-preserving extractor. The following corollary is immediate from the above results.

[^5]Corollary 1.7 (informal). Any collapsing k-special-sound sigma protocol satisfying witness binding is a post-quantum proof of knowledge with state-preserving extraction (in EQP_{c}).

We stress that the informal statements above are illustrative; our formal theorems (Theorem 8.2 and Lemma 10.3) are significantly more general, and this generality is necessary for our main results.

We remark that in both Theorem 1.5 and Corollary 1.7, the computational model of the extractor cannot be further improved. As an easy consequence of our results, achieving either EQPT m state-preserving extraction or strict polynomial-time (black-box) guaranteed extraction for this class of protocols would contradict [CCLY21b].

1.5.1 Example Applications

We now highlight a number of example applications of Theorem 1.5 and Corollary 1.7 beyond our main results on zero knowledge. As a first example, we improve upon the [CMSZ21] analysis of the [Kil92] succinct argument system.
Theorem 1.8. The [Kil92] protocol, when instantiated with a collapsing hash function, is a postquantum succinct argument of knowledge for NP with guaranteed extraction. Moreover, there is a (4-message public-coin)"commit-and-prove" variant of the [Kil92] protocol with state-preserving extraction. ${ }^{11}$

Next, we construct state-preserving witness-indistinguishable (WI) protocols. Here we have three related constructions achieving slightly different properties under different computational assumptions. A key component of these results is the application of Corollary 1.7 to a commit-and-open sigma protocol (e.g. the [GMW86] protocol for 3-coloring).

Theorem 1.9. Assuming collapsing hash functions or super-polynomially secure one-way functions, there exists a 4-message public-coin post-quantum witness-indistinguishable argument (in the case of collapsing)/proof (in the case of OWFs) of knowledge with state-preserving extraction. Assuming super-polynomially secure non-interactive commitments, there exists a 3-message PoK achieving the same properties.
The latter construction is used to prove Theorem 1.3.
One important special case of Theorem 1.9 is extractable commitments [PRS02, PW09]. An extractable commitment scheme ExtCom has the property that a committed message m can be extracted given black-box access to an adversarial committer. Analogously to the setting of proofs-of-knowledge, we consider "state-preserving" extractable commitments (see, e.g., [BS20, GLSV21, BCKM21]), in which the extractor must simulate the entire view of the adversarial committer in addition to extracting the message. This variant of extractable commitments is very useful; for example, it is exactly the property necessary to prove the post-quantum security of the [Ros04] zero-knowledge proof system for NP. An immediate corollary of Theorem 1.9 is a new construction of state-preserving extractable commitments.

Corollary 1.10 (Extractable commitments). Assuming super-polynomially secure non-interactive commitments, there exists a 3-message public-coin post-quantum statistically-binding extractable commitment scheme. Assuming super-polynomially secure one-way functions, there exists a 4message scheme with the same properties. Finally, assuming (polynomially secure) collapsing hash functions, there exists a 4-message public-coin collapse-binding extractable commitment scheme.

[^6]We leave open the problem of using these techniques to achieve a statistically-binding extractable commitment scheme (in 3 or 4 messages) from polynomial assumptions.

More generally, we expect our guaranteed and state-preserving extraction results to be useful for future applications, in the context of zero-knowledge and beyond.

1.6 Additional Results

We briefly mention some additional contributions:

1. In Section 4, we resolve an issue related to the use of (standard) collapse-binding commitments in reductions in which not all commitments openings are measured. This allows us to avoid placing additional requirements on the [GK96] protocol (beyond the standard collapse-binding requirement for post-quantum security). In addition, some results in [Unr12, Unr16b, CCY21] can be generalized or simplified.
2. We prove a general lemma (Lemma 13.1) about post-quantum computational indistinguishability that may be of independent interest: we show that if two classical distributions D_{0} and D_{1} are quantum computationally indistinguishable, then guessing b given the \mathcal{B} register of $\left|\psi_{b}\right\rangle_{\mathcal{A} \mathcal{B}}=\sum_{r}|r\rangle_{\mathcal{A}}\left|D_{b}(r)\right\rangle_{\mathcal{B}}$ remains hard even given an oracle for the projective measurement onto $\left|\psi_{b}\right\rangle$. This lemma allows us to instantiate the [GK96] protocol with any post-quantum special honest-verifier ZK sigma protocol for NP (previously, [CCY21] proved ε-ZK for [GK96] with a delayed witness sigma protocol).
3. We give a formal separation between ZK with EQPT_{c} simulation and $\varepsilon-\mathrm{ZK}$ in Appendix A. Our proof strategy also separates classical ZK with EPT simulation and classical ε-ZK; to the best of our knowledge, no such separation was known before.

2 Technical Overview

In this section, we describe our techniques for proving our results on state-preserving extraction (Theorems 1.8 and 1.9) and post-quantum zero knowledge (Theorem 1.2, Theorem 1.3, and Theorem 1.4). Finally, we discuss related work in Section 2.5.

2.1 Defining Expected Quantum Polynomial Time Simulation

In order to clearly present our results on zero knowledge, we begin with a detailed discussion of our model of expected quantum polynomial time simulation and how it relates to the [CCLY21b] impossibility result.

Why is EQPT simulation hard to define? Recall from Section 1.3 that [CCLY21b] rules out zero-knowledge simulators in a class of computations that we formalize as measured-runtime expected quantum polynomial-time $\left(\mathrm{EQPT}_{m}\right)$. An EQPT m_{m} computation takes as input a state $|\psi\rangle_{\mathcal{A}}$, initializes an S-qubit workspace register $|0\rangle_{\mathcal{W}}$ and state register $\left|q_{0}\right\rangle_{\mathcal{Q}}$ (where $\left|q_{0}\right\rangle$ denotes the initial state of a quantum Turing machine), then repeatedly applies some fixed transition unitary U_{δ} to $\mathcal{A} \otimes \mathcal{W} \otimes \mathcal{B} \otimes \mathcal{Q}$. After each application of U_{δ}, \mathcal{Q} is measured (applying some $\left(\Pi_{f}, \mathbf{I}-\Pi_{f}\right)$) to determine if the computation is in the "halt state" $\left|q_{f}\right\rangle$; the computation halts if the outcome of this measurement is 1 . To avoid the complications of unbounded running time, we also enforce
that the computation halts (always) after $T=2^{n}$ steps. A computation is EQPT_{m} if the expected number of steps before halting is polynomial for all inputs $|\psi\rangle_{\mathcal{A}}$.

Our EQPT m_{m} definition is based on the definition of a quantum Turing machine (QTM) given in the seminal work of Deutsch [Deu85] (though we use a halt state [Oza98a] in place of Deutsch's halt qubit). Note that the operation of a QTM is unitary except for the measurement of whether the machine has halted. The validity of this "halting scheme" was the subject of some debate in a sequence of later works [Mye97, Oza98a, LP98, Oza98b].

While the particulars of this debate are not so important here, there was a clear message: the reversibility of a QTM implies that the runtime of any QTM computation is always effectively measured, even if there is no explicit monitoring of the halt state. Intuitively, this is because a QTM that has halted must, when reversed, know when to "un-halt"; this requires counting the number of computation steps since the machine halted.

It was observed by [LP98] that this prevents "useful interference" between branches of a QTM computation with different runtimes. That is, each branch of the computation is entangled with a description of its runtime, which prevents the branches from interfering with one another. Because interference is crucial in the design of efficient quantum algorithms, this is considered a major drawback of the QTM model. The now-standard definitions of efficient quantum computation [BV97, BBBV97] deliberately avoid this problem by restricting quantum Turing machines to have a fixed runtime; these QTMs are effectively uniform quantum circuit families.

This phenomenon underpins the [CCLY21b] impossibility result. Both in the classical [BL02] and quantum [CCLY21b] settings, there do not exist strict polynomial time black-box simulators for constant-round protocols. It follows that such a simulator must have a variable runtime. By the observation of [LP98], simulation branches with different runtimes do not interfere. [CCLY21b] leverage this by designing an adversary that can detect this absence of interference.

Can we avoid measuring the runtime? The above discussion suggests that the EQPT ${ }_{m}$ model (i.e., quantum Turing machines in Deutsch's model [Deu85] with expected polynomial runtime) may not capture arbitrary efficient quantum computation. In particular, we ask whether it is possible to formalize a model in which the runtime is not measured. Such a model could potentially avoid the [CCLY21b] impossibility result.

Our solution is to formalize computations in which the runtime of an EQPT m_{m} subcomputation is left in superposition and can later be uncomputed. To describe our formalism in more detail, we first briefly discuss coherent computation.

Coherent computation. It is well known that any quantum operation Φ on a state $|\psi\rangle$ can be realized in three steps: (1) prepare some ancilla qubits in a fixed state $|0\rangle$; (2) apply a unitary operation U_{Φ} to both $|\psi\rangle$ and the ancilla; (3) discard (trace out) the ancilla. We refer to U_{Φ} as a unitary dilation of $\Phi . U_{\Phi}$ is not uniquely determined by Φ, but all such dilations are related by an isometry acting only on the ancilla system.

Since an EQPT_{m} computation is a quantum operation, it has a unitary dilation. In fact, we can choose a unitary dilation with a natural explicit form that we call a "coherent implementation", as shown in Fig. 1.

The unitary circuit U in Fig. 1 is of exponential size (although it may operate on polynomiallymany qubits if the original QTM uses strict polynomial space). However, as long as the ancilla $\mathcal{W} \otimes \mathcal{B}$ is initialized to zero and \mathcal{Q} is initialized to $\left|q_{0}\right\rangle$, the effect of U on \mathcal{A} is identical to the

Figure 1: A coherent implementation U (unitary dilation) of a quantum Turing machine with transition function δ, space complexity S and strict time bound $T=2^{n} . \mathcal{B}$ is an n-qubit register containing an integer in $\{0, \ldots, T-1\}$. $U_{\text {inc }}$ is the unitary $\sum_{i=0}^{T-1}|i+1(\bmod T)\rangle\langle i|$, whose application is controlled on \mathcal{Q} containing the halt state $\left|q_{f}\right\rangle$. The open circles indicate that U_{δ} is controlled on \mathcal{B} containing $|0\rangle$. The number of repetitions is T. See Section 9.1 for more details.

Figure 2: The structure of an EQPT_{c} circuit.
original EQPT_{m} computation. Indeed, the only difference from the original computation is that the runtime t is written (as $T-t$) on \mathcal{B} and left in superposition. This means, in particular, that circuits making a single black-box query to a coherent implementation U of an EQPT m_{m} computation (and that cannot otherwise access \mathcal{B}) can only perform EQPT_{m} computations.

Our formalism: coherent-runtime EQPT. The advantage of moving to coherent implementations is that, unlike the original computation, U has an inverse U^{\dagger}. A coherent-runtime EQPT $\left(\mathrm{EQPT}_{c}\right)$ computation is allowed to invoke both U and U^{\dagger} in a restricted way, as depicted in Fig. 2.

Note that, because all unitary dilations are equivalent up to local isometry, the map computed by an EQPT_{c} computation is independent of the particular choice of unitary dilation U. In particular, while the dilation in Fig. 1 is useful for proving properties of EQPT_{c}, it is not part of the definition.

What is the runtime of an EQPT_{c} computation? While the application of U is clearly efficient by itself (stopping at this point and discarding the ancilla registers is the same as running the original EQPT m_{m} computation), the efficiency of performing U^{\dagger} is less immediate. We analyze this in two ways:

- We prove (Claim 9.4) that any EQPT_{c} computation has strict polynomial-time approximations (obtained by simultaneously truncating U and U^{\dagger} to the same fixed runtime). This tells us that EQPT_{c} algorithms do not implement "inefficient" computations.
- We give a natural interpretation of "expected runtime" under which the expected runtime of U^{\dagger} (as applied in Fig. 2) is equal to the expected runtime of U.

Together, these give us a motivated definition of the expected runtime of an EQPT ${ }_{c}$ computation.
Claim 9.4 is proved in Section 9. In this overview, we focus on the expected runtime interpretation. For simplicity, we assume that $C_{1}=C_{3}=\mathbf{I}$ and that the computation always halts "naturally" in at most T steps.

Consider the projective measurement $\mathrm{M}_{\mathcal{B}}=\left(\Pi_{t}=U^{\dagger}|T-t\rangle\left\langle T-\left.t\right|_{\mathcal{B}} U\right)_{t=0}^{T-1}\right.$; that is, Π_{t} projects on branches of the computation that run in time t. Let $U_{\leq t}$ be the truncation of U to just after the t-th controlled application of U_{δ}. Observe that after applying U followed by C_{2} on input state $|\phi\rangle$, the state of the system can be written as

$$
|\Psi\rangle=\sum_{t=1}^{T} \sqrt{p_{t}}|T-t\rangle_{\mathcal{B}}\left|q_{f}\right\rangle_{\mathcal{Q}}\left|\phi_{t}\right\rangle_{\mathcal{W}, \mathcal{X}}=\sum_{t=1}^{T}\left(\mathbf{I} \otimes C_{2}\right) U_{\mathrm{inc}}^{T-t} U_{\leq t} \Pi_{t}|0\rangle_{\mathcal{B}}\left|q_{0}\right\rangle_{\mathcal{Q}}|0\rangle_{\mathcal{W}}|\phi\rangle_{\mathcal{X}}
$$

for some states $\left|\phi_{t}\right\rangle$ where p_{t} is the probability that the EQPT ${ }_{m}$ computation halts in t steps. The latter equality holds because if the computation halts at step t, the effect of the last $T-t$ steps of U is only to increment $\mathcal{B}(T-t)$ times (and C_{2} does not act on \mathcal{B}).

Since U is a coherent implementation of an EQPT_{m} computation, we know that

$$
\sum_{t} p_{t} \cdot t=\operatorname{poly}(\lambda) .
$$

Now, for any state $|\psi\rangle$ on $\mathcal{W} \otimes \mathcal{X}$, we can also express an application of U^{\dagger} to $\mathcal{B} \otimes \mathcal{Q} \otimes \mathcal{W} \otimes \mathcal{X}$ in terms of the unitaries $U_{\leq t}^{\dagger}$. Specifically, for each t we have

$$
U^{\dagger}|T-t\rangle_{\mathcal{B}}\left|q_{f}\right\rangle_{\mathcal{Q}}|\psi\rangle=U_{\leq t}^{\dagger}|0\rangle_{\mathcal{B}}\left|q_{f}\right\rangle_{\mathcal{Q}}|\psi\rangle
$$

because the effect of the first $T-t$ steps of U^{\dagger} on this state is only to decrement \mathcal{B}. Since the states $|T-t\rangle$ are orthogonal for distinct t, the final state of the system (after the entire EQPT_{c} computation) is

$$
U^{\dagger}|\Psi\rangle=\sum_{t=1}^{T} \sqrt{p_{t}}\left(U_{\leq t}\right)^{\dagger}|0\rangle_{\mathcal{B}}\left|q_{f}\right\rangle_{\mathcal{Q}}\left|\phi_{t}\right\rangle_{\mathcal{W}, \mathcal{X}}=\sum_{t=0}^{T} U_{\leq t}^{\dagger}\left(\mathbf{I} \otimes C_{2}\right) U_{\leq t} \Pi_{t}|0\rangle_{\mathcal{B}}\left|q_{0}\right\rangle_{\mathcal{Q}}|0\rangle_{\mathcal{W}}|\phi\rangle_{\mathcal{X}}
$$

We can interpret this to mean that within the "branch" of the superposition where U ran in time t, the running time of U^{\dagger} is also t, even if an arbitrary computation C_{2} has been applied to \mathcal{X} in between the applications of U and U^{\dagger}. This gives an intuitive explanation for how EQPT ${ }_{c}$ computations are efficient: they simply compute a superposition with amplitudes $\left(\sqrt{p_{t}}\right)_{t}$ over branches in which U and U^{\dagger} together ran for $2 t$ steps, such that the expectation $\sum_{t} p_{t} \cdot t$ is polynomial! Curiously, the [LP98] reversibility issue indicates that such a computation cannot be implemented by an EQPT_{m} quantum Turing machine, which is what necessitates our new EQPT_{c} definition.

With all of this as motivation, we define the expected running time of an EQPT ${ }_{c}$ computation of the form ($U, C_{1}=\mathbf{I}, C_{2}, C_{3}=\mathbf{I}$) to be the appropriate linear combination of the branch runtimes, which is

$$
\sum_{t}\left|\alpha_{t}\right|^{2} \cdot\left(2 t+\operatorname{time}\left(C_{2}\right)\right)=2 \cdot \operatorname{time}(U)+\operatorname{time}\left(C_{2}\right),
$$

where time (U) is the expected running time of U as an EQPT ${ }_{m}$ computation and time $\left(C_{2}\right)$ is the (strict) running time of C_{2}. Claim 9.4 (whose proof makes use of this analysis) provides additional justification for this definition.
EQPT_{c} vs. black-box access. How does EQPT_{c} differ from the conceptually simpler model of a quantum circuit with black-box access to U, U^{\dagger} ? The answer is in the treatment of the ancillas: typically, black-box access to a unitary means that the unitary and its inverse can be invoked multiple times on the same registers. For EQPT computations, this causes a problem: our arguments that EQPT_{c} computations are efficient crucially rely on the well-formedness of the ancillas. As such, we must ensure that EQPT_{c} computations access U, U^{\dagger} in the restricted way depicted in Fig. 2. We note that deviating from this template leads to problems: one can show that there is an EQPT m_{m} computation with dilation U such that applying U, U^{\dagger}, U to the same ancillas enables arbitrary exponential-time computation. This is analogous to the phenomenon observed by [KL05] for classical computations with oracle access to EPT machines.

Generalization. The above concerns notwithstanding, everything we have discussed so far extends to a more general case where we may invoke unitary dilations U_{i} of multiple EQPT m_{m} computations (or the same computation multiple times). Such computations must follow the same structure as the single- U case - in particular, we initialize a fresh ancilla for each $\left(U_{i}, U_{i}^{\dagger}\right)$ pair - but may otherwise be freely interleaved. We give this more general definition in Definition 9.3; however, all of our simulators are actually of the simpler form depicted in Fig. 2.

Comparing $\mathrm{EQPT}_{c}-\mathbf{Z K}$ and $\varepsilon-\mathbf{Z K}$. Another way to avoid the [CCLY21b] impossibility result is to settle for the relaxed notion of ε-zero knowledge [DNS98]: a protocol is $\varepsilon-\mathrm{ZK}$ if a malicious verifier's view can be simulated up to ε error in (fixed) time poly $(1 / \varepsilon)$. We noted above that EQPT c^{-} ZK implies (post-quantum) ε-ZK. One can ask: is there any advantage to obtaining EQPT c_{c}-ZK?

Primarily, our goals are to (1) obtain a quantum analogue to classical expected polynomial time simulation, and (2) show that protocols satisfy as strong a security property as possible. We briefly discuss three ways in which $\mathrm{EQPT}_{c}-\mathrm{ZK}$ is demonstrably stronger than ε-ZK.

1. Stronger Security Implications. As originally discussed when ε-ZK was defined in the classical setting [DNS98], the security guarantees implied by $\varepsilon-Z \mathrm{~K}$ are quantitatively worse than those implied by negligible-accurate ZK (and this holds even with expected running time simulators). Specifically, imagine that a ZK protocol is executed in an environment where a computational hardness assumption \mathcal{A} is believed to hold. One would like to say that \mathcal{A} remains valid against the verifier even after interacting with the prover.
Zero knowledge says that if V^{*} can violate \mathcal{A} in time T with advantage δ, then $S^{V^{*}}$ can violate \mathcal{A} with advantage $\delta-\operatorname{negl}(\lambda)$ in expected time $T^{O(1)}$ (or even $T \cdot \operatorname{poly}(\lambda)$ if the simulator is black-box). ε-ZK says that $S^{V^{*}}$ can violate \mathcal{A} with (e.g.) advantage $\delta / 2$ in time poly $(T, 1 / \delta)$, which may be far larger than T (in situations where $\delta \ll 1 / T$). This additional dependence on $1 / \delta$ yields a significantly worse security guarantee.
2. How do you know ε ? In the definition of $\varepsilon-\mathrm{ZK}$, the simulator takes ε as input. What is ε ? This depends on the application and the attack in question. The security reduction discussed above is non-uniform in the sense that it somehow needs to know the required accuracy parameter ε. In the quantum setting, this issue seems more serious because ε may not even be physically accessible.
3. Formal Separations. Finally, the distinction between $\mathrm{EQPT}_{c}-\mathrm{ZK}$ and $\varepsilon-\mathrm{ZK}$ can be made explicit in the form of separations between $\mathrm{EQPT}_{c^{-}}$and ε-security. Specifically, we prove:

Proposition 2.1 (informal, see Theorem A.4). There exists a (post-quantum) ε-zero knowledge protocol that is not (black-box) EQPT ${ }_{c}$-zero knowledge.

Physical feasibility. We emphasize that the feasibility of physical implementation is not the chief concern when evaluating simulation models. Nonetheless, we briefly discuss physical interpretations of EQPT ${ }_{c}$. Like EQPT ${ }_{m}$ (and classical EPT), implementing an EQPT_{c} simulator using a standard (quantum) circuit requires super-polynomially many gates. However, one could conceive of running an EQPT_{m} simulator as follows: an experimenter runs the computation until it halts, paying for more computational resources as she goes. While no polynomial amount of resources would suffice to achieve negligible simulation accuracy, the expected cost of this experiment is polynomial.
EQPT_{c} simulation does not have this property: an external experimenter must always run the simulation for superpolynomial time to achieve negligible simulation accuracy. We suggest, however, that there is a "physical" interpretation of EQPT ${ }_{c}$ that arises from the interpretation of EQPT_{m} above. EQPT_{c} simulation considers the EQPT_{m} experimenter described above as part of the computation. More precisely, her actions can be viewed as a unitary on an expanded system; an EQPT_{c} simulator has the power to reverse this unitary.

Having established our computational model for simulation/extraction, we now give a detailed overview of our simulation and extraction techniques.

2.2 Post-Quantum ZK for [GMW86] and [FS90] from Guaranteed Extraction

The central idea behind our proofs of post-quantum ZK for the [GMW86] GNI protocol (Theorem 1.2) and (some instantiations of) the [FS90] protocol for NP (Theorem 1.3) is state-preserving extraction, which was informally described in Section 1.5. Before we continue, we provide more precise definition.

Definition 2.2 (State-Preserving Extraction). An interactive protocol Π is defined to be a statepreserving argument (resp. proof) of knowledge if there exists an extractor Ext ${ }^{(\cdot)}$ with the following properties:

- Syntax: For any quantum algorithm P^{*} and auxiliary state $|\psi\rangle$, Ext ${ }^{P^{*},|\psi\rangle}$ outputs a protocol transcript τ, prover state $\left|\psi^{\prime}\right\rangle$, and witness w.
- Extraction Efficiency: If P^{*} is a QPT algorithm, $E^{P^{*}(\cdot),|\psi\rangle}$ runs in expected quantum polynomial time (EQPT ${ }_{c}$).
- Extraction Correctness: the probability that τ is an accepting transcript but w is an invalid NP witness is negligible.
- State-Preserving: the pair $\left(\tau,\left|\psi^{\prime}\right\rangle\right)$ is computationally (resp. statistically) indistinguishable from a transcript-state pair $\left(\tau^{*},\left|\psi^{*}\right\rangle\right)$ obtained through an honest one-time interaction with $P^{*}(\cdot,|\psi\rangle)$ (where $\left|\psi^{*}\right\rangle$ is the prover's residual state).

Given a state-preserving extractor of the appropriate "one-out-of-two graph isomorphism" subroutine, proving the post-quantum ZK for the [GMW86] GNI protocol (Theorem 1.2) follows easily, as simulating a cheating verifier immediately reduces to performing a state-preserving extraction of the verifier's (uniquely determined) bit b such that $H \simeq G_{b}$. Proving post-quantum ZK for the [FS90] protocol (Theorem 1.3) is more complicated because the Feige-Shamir protocol is a
concurrent composition of two different protocols; we refer the reader to Section 12 for details on its analysis.

In this subsection, we show that state-preserving extraction reduces to achieving a weaker notion we call guaranteed extraction; achieving the latter will be the focus of Section 2.3.

Consider a 3 -message ${ }^{12}$ public coin classical proof of knowledge (P_{Σ}, V_{Σ}) satisfying special soundness: ${ }^{13}$ for any prover first message a and any pair of accepting transcripts $(a, r, z),\left(a, r^{\prime}, z^{\prime}\right)$ on different challenges $r \neq r^{\prime}$, it is possible to extract a witness from ($a, r, z, r^{\prime}, z^{\prime}$). For any such protocol, in the classical setting, it is possible to extract a witness from a cheating prover P^{*} as follows:

- Given a cheating prover P^{*}, the extractor first generates a single transcript (a, r, z) by running P^{*} to obtain a, and then running it on a random r to get z. If the transcript is rejecting, the extractor gives up.
- If the transcript is accepting, the extractor rewinds P^{*} to the point after a was sent, and then repeatedly sends i.i.d. challenges r_{1}, r_{2}, \ldots until P^{*} produces another accepting transcript.

As long as the prover has significantly greater than $2^{-\lambda}$ probability of convincing the verifier, the second accepting transcript $\left(a, r^{\prime}, z^{\prime}\right)$ produced will satisfy $r \neq r^{\prime}$ with all but negligible probability, and thus a witness can be computed. In other words, this extractor guarantees (with all but negligible probability) that a witness is extracted conditioned on an initial accepting execution. Moreover, for any efficient P^{*}, the expected runtime of this procedure is poly (λ), since if P^{*} (with some fixed random coins) is convincing with probability p, the expected number of rewinds in this procedure is $\frac{1}{p}$ and thus the overall expected number of rewinds is $p \cdot \frac{1}{p}=1$.

In the quantum setting, one might hope for a similar "guaranteed" extractor, but prior works [Unr12, Unr16b, CMSZ21] fail to achieve this. Indeed, [Unr12, Page 32] explicitly asks whether something of this nature is possible.

Our first idea is to abstractly define a quantum analogue of this "guaranteed" extraction property and show that under certain conditions, it generically implies state-preserving extraction. Since the classical problem can only be solved in expected polynomial time, there is again an ambiguity in what the quantum efficiency notion should be. However, it turns out that there is no [CCLY21b]-type impossibility result for the problem of guaranteed extraction, so we demand the stronger EQPT m_{m} extraction efficiency notion.

Definition 2.3 (Guaranteed Extraction). $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof of knowledge with guaranteed extraction if it has an extractor Extract ${ }^{P^{*}}$ of the following form.

- Extract $P^{P^{*}}$ first runs the cheating prover P^{*} to generate a (classical) first message a.
- Extract ${ }^{P^{*}}$ runs P^{*} coherently on the superposition $\sum_{r \in R}|r\rangle$ of all challenges to obtain a superposition $\sum_{r, z} \alpha_{r, z}|r, z\rangle$ over challenge-response pairs. ${ }^{14}$
- Extract ${ }^{P^{*}}$ then computes (in superposition) the verifier's decision $V(x, a, r, z)$ and measures it. If the measurement outcome is 0 , the extractor gives up.

[^7]- If the measurement outcome is 1 , run some quantum procedure FindWitness ${ }^{P^{*}}$ that outputs a string w.

We require that the following two properties hold.

- Correctness (guaranteed extraction): The probability that the initial measurement returns 1 but the output witness w is invalid is $\operatorname{negl}(\lambda)$.
- Efficiency: For any QPT P^{*}, the procedure Extract ${ }^{P^{*}}$ is in EQPT ${ }_{m}$.

A key difference between our definition and the classical setting is that our extractor leaves the first transcript in superposition (over the possible random challenges r) and only measures whether the transcript is accepting. While it might seem reasonable to define guaranteed extraction where the extractor first runs the adversary to obtain a classical first transcript, the additional state disturbance would make $\operatorname{negl}(\lambda)$ failure probability extraction impossible.

We claim that under suitable conditions, guaranteed extraction generically implies state-preserving extraction, where the extractor will be EQPT_{c} rather than EQPT_{m}. We describe the simplest example of these conditions: when the NP language itself is in UP (i.e. witnesses are unique).

Lemma 2.4 (see Lemma 10.3). If $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof of knowledge with guaranteed extraction for a language with unique witnesses, then $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a state-preserving proof of knowledge with EQPT_{c} extraction.

Lemma 2.4 can be extended to higher generality. For example, informally:

1. We can also extract "partial witnesses" that are uniquely determined by the instance x.
2. We can extract undetectably when the first message a "binds" the prover to a single witness in the sense that the guaranteed extractor will only output this one witness (even if many others exist).
3. This can also be extended to certain protocols whose first messages are informally "collapsebinding" [Unr16b] to the witness.

These generalizations are formalized in Section 10 using the notion of a "witness-binding protocol" (Definition 10.2). In this overview, we give a proof for the "unique witness" setting.

Proof sketch. Let Extract ${ }^{P^{*}}$ be a post-quantum guaranteed extractor with associated subroutine FindWitness ${ }^{P^{*}}$. We will present an EQPT ${ }_{c}$ extractor $\overline{\text { Extract }}{ }^{P^{*}}$ that has the form of an EQPT ${ }_{c}$ computation (see Fig. 2) where the unitary U is a coherent implementation of FindWitness ${ }^{P^{*}}$.

Remark 2.5. This is an oversimplification of our real state-preserving extractor. In particular, Extract ${ }^{P^{*}}$ as described in this overview does not fit the EQPT_{c} model because FindWitness ${ }^{P^{*}}$ is not necessarily an EQPT_{m} computation - its running time is only expected polynomial when viewed as a subroutine of Extract ${ }^{P^{*}}$, which runs FindWitness ${ }^{P^{*}}$ with some probability (which may be negligible) and moreover, only runs it on inputs consistent with the verifier decision $V(x, a, r, z)=1$. In Section 10, we formally demonstrate that our state-preserving extractor is EQPT_{c} by showing that it can be written in the form of Fig. 2 where the unitary U is a coherent implementation of the EQPT_{m} procedure Extract ${ }^{P^{*}}$.

Our (simplified) EQPT ${ }_{c}$ extractor $\overline{\text { Extract }}^{P^{*}}$ is defined as follows.

- Given P^{*}, generate a first message a and superposition $\sum_{r, z} \alpha_{r, z}|r, z\rangle$ as in Extract $P^{P^{*}}$.
- Compute the verifier's decision bit $V(x, a, r, z)$ in superposition and then measure it. If the measurement outcome is 0 , measure r, z and terminate, outputting $(a, r, z, w=\perp)$ along with the current prover state.
- If the measurement outcome is 1 , let $|\psi\rangle_{\mathcal{H}}$ denote the current prover state. For simplicity, assume that $|\psi\rangle_{\mathcal{H}}$ includes the superposition over (r, z) and space to write the extracted witness. The next steps are:
$-\operatorname{Run} U$ on input $|\psi\rangle_{\mathcal{H}} \otimes|0\rangle_{\mathcal{B}, \mathcal{W}}$.
- Measure the sub-register of \mathcal{H} containing the witness w.
- Run U^{\dagger}.
- Measure the sub-register of \mathcal{H} containing the current transcript r, z.
- Return (a, r, z, w) and the residual prover state (i.e., the rest of $\mathcal{H})$.

Extraction correctness follows from the correctness of FindWitness ${ }^{P^{*}}$. Moreover, one can see that $\overline{\text { Extract }}{ }^{P^{*}}$ is state-preserving by considering two cases:

- Case 1: The initial measurement returns 0 . In this case, the transcript (r, z) is immediately measured, and the resulting (sub-normalized) state exactly matches the component of the post-interaction P^{*} view corresponding to when the verifier rejects.
- Case 2: The initial measurement returns 1. In this case, the procedure FindWitness ${ }^{P^{*}}$ would output a valid witness with probability 1 - negl, so the output register of $U\left(|\psi\rangle_{\mathcal{A}} \otimes|0\rangle_{\mathcal{B}, \mathcal{W}}\right)$ contains a valid witness with probability 1 - negl. Since we assumed that the language L is in UP, this witness register is actually deterministic, so measuring it is computationally (even statistically!) undetectable, and hence after applying U^{\dagger} the resulting state $\left|\psi^{\prime}\right\rangle$ is computationally indistinguishable from $|\psi\rangle$. Thus, the output of the extractor the measured witness w along with a view that is computationally indistinguishable from the view of P^{*} corresponding to when the verifier accepts.

This completes the proof sketch.
How do we apply Lemma 2.4? We now describe how to instantiate Σ-protocols so that the reduction in Lemma 2.4 applies (see Section 10.2).

First, we note that the un-repeated variants of standard proofs of knowledge [GMW86, Blu86] are "witness-binding" in the informal sense of the generalization (2); an extractor run on such protocols will only output a witness consistent with the commitment string a. However, since the un-repeated protocols only have constant (or worse) soundness error, there is no guaranteed extraction procedure for them (even in the classical setting).

In order to obtain negligible soundness error, these protocols are typically repeated in parallel; in this case, we do show guaranteed extraction procedures, but the protocols lose the witnessbinding property (2). This is because each "slot" of the parallel repetition may be consistent with
a different witness, and the extractor has no clear way of outputting a canonical one. In this case, measuring the witness potentially disturbs the prover's state by collapsing it to be consistent with the measured witness, which would not happen in the honest execution.

We resolve this issue using commit-and-prove. Given a generic Σ-protocol for which we have a guaranteed extractor, we consider a modified protocol in which the prover sends a (collapsing or statistically binding) commitment com $=\operatorname{Com}(w)$ to its NP-witness along with a Σ-protocol proof of knowledge of an opening of com to a valid NP-witness. When the extractor Extract P^{*} of Lemma 2.4 is applied to this protocol composition, the procedure FindWitness ${ }^{P^{*}}$ (which is run coherently as U) actually obtains both an NP witness w and an opening of com to w. Therefore, the collapsing property of Com says that w can be measured undetectably. In other words, the commit-and-prove compiler enforces a computational uniqueness property sufficient for Lemma 2.4 to apply. It also turns out that the (original, unmodified) [GMW86] graph-nonisomorphism protocol can be viewed as using this commit-and-prove paradigm, ${ }^{15}$ which is one way to understand the proof of Theorem 1.2.

Finally, we remark that this commit-and-prove compiler is the cause of the super-polynomial assumptions in Theorems 1.3 and 1.9. This is because in order to show that a commit-and-prove protocol remains witness-indistinguishable, it must be argued that the proof of knowledge does not compromise the hiding of Com, which we only know how to argue by simulating the proof of knowledge in superpolynomial time (and assuming that Com is superpolynomially secure). This issue does not arise when Com is statistically hiding and the Σ-protocol is statistically witnessindistinguishable.

2.3 Achieving Guaranteed Extraction

So far, we have reduced from state-preserving extraction to the problem of guaranteed extraction. We now describe how we achieve guaranteed extraction for a wide class of Σ-protocols. Informally, we require that the protocol satisfies two important properties in order to perform guaranteed extraction:

- Collapsing: Prover responses can be measured undetectably provided that they are valid.
- k-special soundness: It is possible to obtain a witness given k accepting protocol transcripts $\left(a, r_{1}, z_{1}, \ldots, r_{k}, z_{k}\right)$ with distinct r_{i} (for the same first prover message a).

Both of these restrictions can be relaxed substantially ${ }^{16}$ (see Sections 3.5, 5 and 8.4 for more details), but we focus on this case for the technical overview.

Theorem 2.6 (See Theorem 8.2). Any public-coin interactive argument satisfying collapsing and k-special soundness is a post-quantum proof of knowledge with guaranteed extraction (in EQPT_{m}).

We consider Theorem 2.6 to be an interesting result in its own right and expect it to be useful in future work. We now describe our proof of Theorem 2.6 over the course of several steps:

[^8]- We begin by describing an abstract template that generalizes the [CMSZ21] extraction procedure in Section 2.3.1. In this template, the extractor repeatedly (1) queries the adversary on i.i.d. random challenges and then (2) applies a "repair procedure" to restore the adversary's success probability.
- In Section 2.3.2, we describe a natural "first attempt" at guaranteed extraction based on the [CMSZ21] template.
- We then observe in Section 2.3.3 that the entire template is unlikely to achieve guaranteed extraction in expected polynomial time. Perhaps surprisingly (and unlike the classical setting), querying the adversary on i.i.d. challenges appears too slow for this extraction task.
- In Section 2.3.4, we introduce a new extraction template in which the adversary is entangled with a superposition of challenges, and the challenge is only measured once the adversary is guaranteed to give an accepting response.
- While this new template is a promising idea, we are still far from achieving guaranteed extraction. For the rest of the overview (Sections 2.3.5 to 2.3.7), we outline several technical challenges in instantiating this approach, eventually leading to our final extraction procedure and analysis.

2.3.1 An Abstract [CMSZ21] Extraction Template

[CMSZ21] recently showed that protocols satisfying collapsing and k-special soundness are postquantum proofs of knowledge. Unlike our setting of guaranteed extraction, the [CMSZ21] extractor Extract ${ }^{P^{*}}(x, \gamma)$ is given as advice an error parameter γ and and extracts from cheating provers P^{*} (that may have some initial quantum state) that are convincing with probability $\gamma^{*} \geq \gamma$. The extractor's success probability is roughly $\frac{\gamma}{2}$.

At a high level, our abstract template makes use of two core subroutines that we call Estimate and Transform. We describe the correctness properties required of Estimate and Transform below, and also describe their particular instantiations in [CMSZ21].

Jordan's lemma and singular vector algorithms. Let Π_{A}, Π_{B} be projectors on a Hilbert space \mathcal{H} with corresponding binary projective measurements $\mathrm{A}=\left(\Pi_{\mathrm{A}}, \mathbf{I}-\Pi_{\mathrm{A}}\right)$ and $\mathrm{B}=\left(\Pi_{\mathrm{B}}, \mathbf{I}-\Pi_{\mathrm{B}}\right)$. Recall that Jordan's lemma [Jor75] states that \mathcal{H} can be decomposed as a direct sum $\mathcal{H}=\oplus \mathcal{S}_{j}$ of two-dimensional invariant subspaces \mathcal{S}_{j}, where in each \mathcal{S}_{j}, the projectors Π_{A} and Π_{B} act as rankone projectors $\left|v_{j, 1}\right\rangle\left\langle v_{j, 1}\right|$ and $\left|w_{j, 1}\right\rangle\left\langle w_{j, 1}\right| .{ }^{17}$ The vectors $\left|v_{j, 1}\right\rangle$ and $\left|w_{j, 1}\right\rangle$ are also left and right singular vectors of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with singular value $\sqrt{p_{j}}$, where $p_{j}:=\left|\left\langle v_{j, 1} \mid w_{j, 1}\right\rangle\right|^{2}$. This decomposition allows us to define on \mathcal{H} the projective measurement Jor $=\left(\Pi_{j}^{\text {Jor }}\right)$ onto the Jordan subspaces \mathcal{S}_{j} (i.e., image $\left(\Pi_{j}^{\text {Jor }}\right)=\mathcal{S}_{j}$). For an arbitrary state $|\psi\rangle$, we define the Jordan spectrum of $|\psi\rangle$ to be the distribution of p_{j} induced by Jor.

We will make use of procedures Estimate, Transform satisfying the following properties.

[^9]- The Jordan subspaces \mathcal{S}_{j} are invariant ${ }^{18}$ under Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ and Transform ${ }^{\mathrm{A}, \mathrm{B}}$. Equivalently, Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ and Transform ${ }^{\mathrm{A}, \mathrm{B}}$ should commute with Jor. This property is important for arguing about the output behavior of Estimate and Transform on arbitrary states.
- Estimate ${ }^{\mathrm{A}, \mathrm{B}}:$ on input $\left|S_{j}\right\rangle \in \mathcal{S}_{j}$, output $p \approx p_{j}$; the residual state remains in \mathcal{S}_{j}.
- Transform ${ }^{\mathrm{A}, \mathrm{B}}$ maps each $\left|v_{j, 1}\right\rangle$ to $\left|w_{j, 1}\right\rangle$. We have no requirements on any other state in \mathcal{S}_{j} except that it remains in \mathcal{S}_{j}.
[CMSZ21] implement a version of Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ (following [MW05]) with ε accuracy by alternating A and B for $t=\operatorname{poly}(\lambda) / \varepsilon^{2}$ steps. The output is $p=d /(t-1)$ where d is the number of occurrences of $b_{i}=b_{i+1}$ among the outcomes $b_{1}, b_{2}, \ldots, b_{t}$. With probability $1-2^{\lambda}$, we have $\left|p-p_{j}\right| \leq \varepsilon$. They (implicitly) implement Transform ${ }^{\mathrm{A}, \mathrm{B}}$ by alternating measurements A and B back and forth until B $\rightarrow 1$, with an expected running time of $O\left(1 / p_{j}\right)$ on \mathcal{S}_{j}.

The [CMSZ21] Extractor. We now use the abstract procedures (Estimate, Transform) to describe (a slightly simplified version of) the [CMSZ21] extractor. Let $\left|+_{R}\right\rangle_{\mathcal{R}}$ denote the uniform superposition over challenges on register \mathcal{R} and let \mathcal{H} denote the register containing the prover's state. Let $\mathrm{V}_{r}=\left(\Pi_{V, r}, \mathbf{I}-\Pi_{V, r}\right)$ denote a binary projective measurement on \mathcal{H} that measures whether P^{*} returns a valid response on r.

The extraction technique makes crucial use of two measurements: the first is $\mathrm{U}=\left(\Pi_{U}, \mathbf{I}-\Pi_{U}\right)$, where $\Pi_{U}:=\mathbf{I}_{\mathcal{H}} \otimes\left|+_{R}\right\rangle\left\langle+\left._{R}\right|_{\mathcal{R}}\right.$ is the projective measurement of whether the challenge register \mathcal{R} is uniform. The second is $\mathrm{C}=\left(\Pi_{\mathrm{C}}, \mathbf{I}-\Pi_{\mathrm{C}}\right)$, where $\Pi_{\mathrm{C}}:=\left(\Pi_{V, r_{i}}\right)_{\mathcal{H}} \otimes \sum_{r \in R}|r\rangle\left\langle\left.\right|_{\mathcal{R}}\right.$ is the projective measurement that runs the prover on the challenge on \mathcal{R} and checks whether the prover wins. The extraction procedure is described in Fig. 3 below.

Figure 3: The [CMSZ21] extractor with generic procedures Estimate, Transform

1. Generate a first verifier message vk and run $P^{*}(\mathrm{vk}) \rightarrow a$ to obtain a classical first prover message a once and for all. Let $|\psi\rangle$ denote the state of P^{*} after it returns a.
2. Run Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ to accuracy $\gamma / 4$ on $|\psi\rangle\left|+_{R}\right\rangle$, which outputs an estimate p of the adversary's success probability and then discard $\mathcal{R} ;{ }^{a}$ abort if $p<\gamma / 2$ (this occurs with probability at most $1-\gamma / 2$). Subtract $\gamma / 4$ from p so that p represents a reasonable lower bound on the success probability. Set an error parameter $\varepsilon=\frac{\gamma^{2}}{2 \lambda k}$ for the rest of the procedure and fix $N=\lambda k / p$.
3. We now want to generate k accepting transcripts. For i from 1 to N :
(a) Sample a uniformly random challenge r_{i} and apply $\bigvee_{r_{i}}$ to the current state $\left|\psi_{i}\right\rangle$.
(b) If the output is $b_{i}=1$, measure the response z. This is (computationally) undetectable by the protocol's collapsing property, so we ignore this step for now.
(c) Let E be a unitary such that applying E to $\mathcal{H} \otimes \mathcal{W}$ (where \mathcal{W} is an appropriatesize ancilla initialized to $|0\rangle_{\mathcal{W}}$) and then discarding \mathcal{W} is equivalent to running
[^10]Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ for $\lambda p / \varepsilon^{2}$ steps on $\mathcal{H} \otimes \mathcal{R}$ (where \mathcal{R} is initialized to $\left|+_{R}\right\rangle_{\mathcal{R}}$) and then discarding \mathcal{R}.
We repair the success probability by initializing $\mathcal{W}=|0\rangle_{\mathcal{W}}$ and then running Transform ${ }^{\mathrm{D}, \mathrm{G}}$ on $\mathcal{H} \otimes \mathcal{W}$ where, roughly speaking, D is a projective measurement corresponding to the disturbance caused by step (a), and G is a projective measurement that determines whether the adversary's success probability is good, meaning at least $p-\varepsilon$. More precisely:

- $\mathrm{G}=\left(\Pi_{p, \varepsilon}, \mathbf{I}-\Pi_{p, \varepsilon}\right)$ returns 1 if, after applying E, the estimate is at least $p-\varepsilon .{ }^{b}$ - $\mathrm{D}=\left(\Pi_{r_{i}, b_{i}}, \mathbf{I}-\Pi_{r_{i}, b_{i}}\right)$ returns 1 if $\mathcal{W}=|0\rangle_{\mathcal{W}}$ and applying $\mathrm{V}_{r_{i}}$ returns b_{i}.

If Transform ${ }^{\mathrm{D}, \mathrm{G}}$ has not terminated within T calls to D and G , abort (this occurs with probability at most $O(1 / T)$). Otherwise, apply E, trace out \mathcal{W}, re-initialize \mathcal{R} to $\left|+{ }_{R}\right\rangle$ and then run Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ for $\lambda p / \varepsilon^{2}$ steps to obtain a new probability estimate p^{\prime}. If $p^{\prime}<p-2 \varepsilon$, abort. Finally, discard \mathcal{R} and re-define $p:=p^{\prime}$.

[^11]
2.3.2 Guaranteed extraction, first attempt

The [CMSZ21] algorithm, interpreted in terms of the abstract procedures Estimate, Transform, will serve as our initial template for extraction. We now consider whether it can be modified to achieve guaranteed extraction.

Syntactic Changes. The first issues with the [CMSZ21] extraction procedure are syntactic in nature. Namely, we want an extraction procedure that works for any P^{*}, with no a priori lower bound γ on the success probability of P^{*}. Of course, an extractor Extract ${ }^{P^{*}}$ that extracts with probability close to 1 given an arbitrary P^{*} is impossible to achieve (imagine a P^{*} with negligible success probability), so the game is also changed as described in Definition 2.3. In terms of the [CMSZ21] template, the change is as follows:

- After obtaining $(a,|\psi\rangle)$, measure C on $|\psi\rangle\left|+_{R}\right\rangle$ and terminate if the outcome is 0 .
- Otherwise, the state is (re-normalized) $\Pi_{\mathrm{C}}\left(|\psi\rangle\left|+_{R}\right\rangle\right)$, and the goal is to extract with probability 1 - negl.

Variable-Runtime Estimation. Since we are given no a priori lower bound γ on the success probability of P^{*}, there is no fixed additive precision ε for which the initial Estimate in Step 2 guarantees successful extraction - the initial state $|\psi\rangle\left|{ }_{R}\right\rangle$ could be concentrated on subspaces \mathcal{S}_{j} such that $p_{j} \ll \varepsilon$, in which case the estimation procedure almost certainly returns 0 .

To remedy this issue, we define a variable-length variant of Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ with the guarantee that for every j and every state in \mathcal{S}_{j}, Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ returns p_{j} to within constant (factor 2) multiplicative accuracy with probability $1-2^{-\lambda}$. With regard to instantiation, we note that the [MW05, CMSZ21] implementation of Estimate ${ }^{\mathrm{A}, \mathrm{B}}$ can be modified to be variable-length: simply continue alternating
Π_{A}, Π_{B} until sufficiently many $(d=\operatorname{poly}(\lambda)) b_{i}=b_{i+1}$ occur, so that the estimate $\frac{d}{t-1}$ (where t is the number of measurements performed) is reasonably concentrated around its expectation.

Thus, we begin with the natural idea that Step 2 should be modified to use this variable-length Estimate. We remark that variable-length Estimate is not required in later steps: the output p of Step 2 can be used to set the parameters (ε, N) for the rest of the procedure.

With this modification, our extractor never aborts in Step 2, but it also no longer runs in strict polynomial time. How do we analyze its runtime? First, one can compute that when run on a state in \mathcal{S}_{j}, the expected running time of this procedure is (up to factors of poly (λ)) roughly $\frac{1}{p_{j}}$. This might seem concerning, because this expectation could be large (even superpolynomial) if p_{j} is very small. However, what we care about is the runtime of Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ on the (re-normalized) state $\Pi_{\mathbb{C}}\left(|\psi\rangle\left|+_{R}\right\rangle\right)$. Writing $|\psi\rangle\left|+_{R}\right\rangle=\sum_{j} \alpha_{j}\left|v_{j, 1}\right\rangle$, we see that $\Pi_{\mathbb{C}}\left(|\psi\rangle\left|+_{R}\right\rangle\right)=\sum_{j} \alpha_{j} \sqrt{p_{j}}\left|w_{j, 1}\right\rangle$.

To calculate the overall expected runtime, we use the fact that Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ commutes with the projective measurement Jor that outputs j on each subspace \mathcal{S}_{j}. This implies that the expected runtime of Estimate on our state is the weighted linear combination of its expected runtime on the eigenstates $\left|v_{j, 1}\right\rangle$, namely

$$
\frac{1}{\gamma^{*}} \sum_{j}\left|\alpha_{j}\right|^{2} p_{j} \cdot \frac{1}{p_{j}}=\frac{1}{\gamma^{*}}
$$

where $\gamma^{*}=\| \Pi_{C}\left(|\psi\rangle\left|+_{R}\right\rangle\right) \|^{2}$ is the probability that $C \rightarrow 1$ in the initial execution. ${ }^{19}$ Thus, the overall expected runtime equals $\gamma^{*} \cdot \frac{1}{\gamma^{*}}=1$, so Step 2 of the procedure is efficient!

Our first attempt. With the changes above, Step 2 of the extraction procedure now has zero error and runs in expected polynomial time (EQPT m_{m}).

The other source of non-negligible extraction error from [CMSZ21] is in the cutoff T imposed on Transform ${ }^{\text {D,G }}$. By removing this cutoff, we obtain a procedure that is somewhat closer to the goal of guaranteed extraction in expected polynomial time, described in Fig. 4 below.

Figure 4: Guaranteed extraction (Attempt 1)

1. After obtaining $(a,|\psi\rangle)$, apply C to $|\psi\rangle\left|+_{R}\right\rangle$ and terminate if the measurement returns 0 . Otherwise, let $|\phi\rangle$ denote the resulting state on $\mathcal{H} \otimes \mathcal{R}$.
2. Run the variable-length Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ on $|\phi\rangle$, obtaining output p, and then discard $\mathcal{R} .{ }^{a}$ Divide p by 2 to obtain a lower bound on the resulting success probability. Set $\varepsilon=\frac{p^{2}}{2 \lambda k}$ and $N=\lambda k / p$.
3. Run Step 3 of the original [CMSZ21] extractor as in Fig. 3, with the parameters p, ε, N. Instead of imposing a time limit T, the procedure Transform $^{\mathrm{D}, \mathrm{G}}$ is allowed to run until completion $^{b}(\mathrm{G} \rightarrow 1)$.

[^12]${ }^{19}$ One way to see this is to notice that applying Jor after running Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ clearly cannot affect the runtime of
Estimate ${ }^{\mathrm{U}, \mathrm{C}}$. Then Jor can be commuted to occur before Estimate ${ }^{\mathrm{U}, \mathrm{C}}$.

2.3.3 Problem: Step 3 is not expected poly-time.

Unfortunately, the "first attempt" above does not satisfy Definition 2.3. The issue lies in its runtime: we argued before that over the randomness of Extract ${ }^{P^{*}}$, Step 2 runs in expected polynomial time. However, we did not analyze Step 3, which is the main loop for generating transcripts. Here is a rough estimate for its runtime.

Recall that Step 3 loops the following steps for each $i=1, \ldots, \lambda k / p$:

- Run the prover P^{*} on a random challenge r_{i}. This takes a fixed poly (λ) amount of time.
- Then, regardless of whether P^{*} was successful, the residual prover state $\left|\phi_{i}\right\rangle$ must be repaired to have success probability $\approx p$.

It turns out that as currently written, the expected runtime of the repair step is (up to poly (λ) factors) equal to the runtime of a fixed-length Estimate procedure with precision $\approx p^{2}$ (this ensures that after $1 / p$ repair steps, the total success probability loss must be at most p). Moreover, this runtime is intuitively necessary for any possible repair procedure, since repairing the success probability should be at least as hard as computing whether it is above the acceptable threshold.

In our setting, the [MW05, CMSZ21] estimation procedure requires $1 / p^{3}$ time to obtain a p^{2}-accurate estimate in the relevant parameter regime. ${ }^{20}$ Since Step 3 performs this loop $\frac{1}{p}$ times (omitting the λk factor), the total runtime will be at least $\frac{1}{p^{4}}$. This is too long for the "conditioning" of Step 1 to save us: if the initial state at the beginning of Step 1 is $|\psi\rangle\left|+{ }_{R}\right\rangle \in \mathcal{S}_{j}$, the expected runtime of Step 3 is $p_{j} \cdot \frac{1}{p_{j}^{4}}=\frac{1}{p_{j}^{3}}$, which can be arbitrarily large (when p_{j} is small).

Idea: Use a faster Estimate? Given how we have phrased the extractor in terms of abstract (Estimate, Transform) algorithms, a natural idea for improving the runtime is to use an implementation of the abstract Estimate algorithm that is faster than the [MW05]-based one used in [CMSZ21]. Indeed, if we use the procedure described in [NWZ09] to implement Estimate ${ }^{\mathrm{U}, \mathrm{C}}$, we obtain a quadratic speedup: the runtime of Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ in Step 3c can be improved from $\frac{1}{p^{3}}$ to $\frac{1}{p^{3 / 2}}$.

This speedup will be relevant to our eventual solution, but it does not resolve the problem. The back-of-the envelope calculation now just says that the expected runtime of Step 3 on a state $|\psi\rangle\left|{ }_{R}\right\rangle \in \mathcal{S}_{j}$ is $p_{j} \cdot p_{j}^{-5 / 2}=p_{j}^{-3 / 2}$, which is still unbounded.

So are we doomed? Indeed, this runtime calculation seems problematic for the entire [CMSZ21] template that we abstracted, by the following reasoning:

- On a state with initial estimate p, each choice of r_{i} will only produce an accepting transcript with probability $\approx p$, so we must try $\approx k / p$ choices of i.i.d. r_{i} to obtain k accepting transcripts.
- Therefore, as long as the repair step takes super-constant time (as a function of $1 / p$), the overall extraction procedure will take too long.

This seems to indicate a dead end for extractors that follow the standard rewinding template of repeatedly running P^{*} on random r to obtain accepting transcripts.

[^13]
2.3.4 Solution: A New Rewinding Template

We solve our unbounded runtime issue by abandoning "classical" rewinding, in the following sense: unlike prior extraction procedures [Unr12, CMSZ21], our extractor will not follow the standard approach of obtaining transcripts by feeding uniformly random r_{i} to P^{*}. Instead, we will generate accepting transcripts (r_{i}, z_{i}) via an inherently quantum procedure so that every generated transcript is accepting (as opposed to only a p fraction of them).

We accomplish this by using the procedure Transform, which was previously only used for state repair, to generate the transcripts. Consider a prover state $\left|\psi_{i}\right\rangle$ at the beginning of Step 3. By definition, $\left|\psi_{i}\right\rangle\left|+_{R}\right\rangle \in$ image $\left(\Pi_{\mathrm{U}}\right)$, so applying Transform ${ }^{\mathrm{U}, \mathrm{C}}$ to $\left|\psi_{i}\right\rangle\left|+_{R}\right\rangle$ produces a state in image $\left(\Pi_{\mathrm{C}}\right)$. Now if the challenge register \mathcal{R} is measured (obtaining a string r_{i}), the residual prover state is guaranteed to produce an accepting response on r_{i} !

Moreover, the extraction procedure can afford to run Transform ${ }^{\mathrm{U}, \mathrm{C}}$: since $\left|\psi_{i}\right\rangle\left|+{ }_{R}\right\rangle$ has been constructed to lie almost entirely in subspaces \mathcal{S}_{j} such that $p_{j} \geq p-\varepsilon$, the expected running time of Transform ${ }^{\mathrm{U}, \mathrm{C}}$ can be shown to be roughly ${ }^{21} \frac{1}{p}$.

This gives us a potential new template for extraction: we modify the main loop (Step 3) as in Fig. 5.

Figure 5: Our new extraction template

1. After obtaining $(a,|\psi\rangle)$, apply C to $|\psi\rangle\left|{ }_{R}\right\rangle$ and terminate if the measurement returns 0 . Otherwise, let $|\phi\rangle$ denote the resulting state on $\mathcal{H} \otimes \mathcal{R}$.
2. Run the variable-length Estimate $\mathrm{e}^{\mathrm{U}, \mathrm{C}}$ on $|\phi\rangle$, obtaining output p. Divide p by 2 to obtain a lower bound on the resulting success probability. Set $\varepsilon=\frac{p}{4 k}$.
3. For i from 1 to k :
(a) Given current prover state $\left|\psi_{i}\right\rangle$, apply Transform ${ }^{\mathrm{U}, \mathrm{C}}$ to $\left|\psi_{i}\right\rangle\left|+{ }_{R}\right\rangle$. Call the resulting state $\left|\phi_{\mathrm{C}}\right\rangle$.
(b) Obtain a guaranteed accepting transcript $\left(r_{i}, z_{i}\right)$ by measuring the \mathcal{R} register of $\left|\phi_{\mathrm{C}}\right\rangle$ and then running P^{*} on r_{i}. As before, measuring z_{i} is computationally undetectable.
(c) Run the Repair Step (3c) as in Fig. 3 by calling Transform ${ }^{\mathrm{D}, \mathrm{G}}$ and re-estimating p.

We emphasize two crucial efficiency gains from this new extraction template:

- As already mentioned, the main loop now has k steps instead of k / p, since each transcript is now guaranteed to be accepting.
- Since only k repair operations are now required, the error parameter ε for $\Pi_{p, \varepsilon}$ can be set to $\approx p$ instead of $\approx p^{2}$.

Correctness Analysis. We remark that even the correctness of this new extraction procedure is unclear. In the case of k-special sound protocols, we need the extraction procedure to produce k accepting transcripts with distinct r_{i}; previously, this was guaranteed because each r_{i} was sampled

[^14]i.i.d., so (w.h.p.) no pair of them coincide. Here, r_{i} is not uniformly random - it has been sampled by measuring the \mathcal{R} register of some state in Π_{C}.

In order to analyze the behavior of this extractor, it is important to understand the state $\left|\phi_{\mathrm{C}}\right\rangle$ obtained after applying Transform ${ }^{\mathrm{U}, \mathrm{C}}$. Of course, we have an explicit representation $\sum_{j} \alpha_{j} \sqrt{p_{j}}\left|w_{j, 1}\right\rangle$ for it, but it is not clear a priori how this helps.

To prove correctness, we analyze the state $\left|\phi_{\mathrm{C}}\right\rangle$ using what we call the Pseudoinverse Lemma (Lemma 7.1), which states that $\left|\phi_{C}\right\rangle$ can be viewed as a conditional state obtained by starting with a state $\left|\phi_{\mathrm{U}}\right\rangle=\left|\psi_{\mathrm{U}}\right\rangle\left|+{ }_{R}\right\rangle \in$ image $\left(\Pi_{\mathrm{U}}\right)$ and post-selecting (i.e., conditioning) on a C-measurement of $\left|\phi_{\mathrm{U}}\right\rangle$ outputting 1. Crucially, this pseudoinverse state has a precisely characterized (U, C)-Jordan spectrum related to the Jordan spectrum of $\left|\phi_{C}\right\rangle$. We emphasize that the state $\left|\phi_{U}\right\rangle$ does not actually exist in the extraction procedure; it is just a tool for the analysis.

Using the pseudoinverse lemma, one can show that the probability a C-measurement of $\left|\phi_{\mathbf{U}}\right\rangle$ returns 1 is $\approx p$, which implies that the joint distribution of $\left(r_{1}, \ldots, r_{k}\right)$ comes from a "random enough" distribution that we formalize as "admissible" (Definition 5.5). This is shown by the following reasoning: since measuring \mathcal{R} commutes with C , it is as if we have an initially uniformly random r_{i} (obtained from measuring \mathcal{R} of $\left|\phi_{\mathrm{u}}\right\rangle$) that is "output" with probability $\approx p$ (when C returns 1). This is sufficient to argue about correctness properties of the extractor.

Runtime Analysis Idea. Analyzing the runtime of Transform ${ }^{\mathrm{D}, \mathrm{G}}$ also turns out to be significantly more subtle than in the [CMSZ21] setting. The basic idea is to show that (within a reasonable amount of time) Transform ${ }^{\mathrm{D}, \mathrm{G}}$ returns a state on $\mathcal{H} \otimes \mathcal{W}$ to image $\left(\Pi_{p, \varepsilon}\right)$ after it was "initially" disturbed by the binary measurement D . In [CMSZ21], this is literally true: the disturbance is measuring $\left(\Pi_{V, r}, \mathbf{I}-\Pi_{V, r}\right)$ for randomly sampled r on the prover state $\left|\psi_{i}\right\rangle$. One can then show that an expected constant number of (D, G)-measurements returns the state to G by appealing to the statistics of the (D, G) Marriott-Watrous distribution.

However, in our setting, the "disturbance" is quite different: the amplified state $\left|\phi_{\mathrm{C}}\right\rangle \in$ image $\left(\Pi_{\mathrm{C}}\right)$ consists of a prover state entangled with the challenge register \mathcal{R} in a way that is guaranteed to produce an accepting transcript. $\left|\phi_{\mathrm{C}}\right\rangle$ is then disturbed by measuring its \mathcal{R} register, and the measurement D being applied in Transform ${ }^{\mathrm{D}, \mathrm{G}}$ depends on this \mathcal{R} measurement outcome. Since the \mathcal{R} measurement can disturb $\left|\phi_{\mathrm{C}}\right\rangle$ by a large amount (unlike D), it is not a priori clear why Transform ${ }^{\mathrm{D}, \mathrm{G}}$ should return the state to image $\left(\Pi_{p, \varepsilon}\right)$.

At a high level, we show how to bound the runtime of this new procedure by appealing to the pseudoinverse state $\left|\phi_{\mathrm{u}}\right\rangle$, again! In more detail, using the pseudoinverse lemma, the state on $\mathcal{H} \otimes \mathcal{W}$ obtained after measuring \mathcal{R} on $\left|\phi_{\mathrm{C}}\right\rangle$ (along with initializing \mathcal{W} to $|0\rangle$) can be alternatively thought of as the state obtained by:

- Sampling r_{i} proportional to the probability $\zeta_{r_{i}}$ of $\left|\psi_{\mathbf{U}}\right\rangle$ successfully answering r_{i}, and
- Outputting (normalized) $\Pi_{r_{i}}\left(\left|\psi_{\mathbf{U}}\right\rangle \otimes|0\rangle_{\mathcal{W}}\right)$, where $\Pi_{r_{i}}:=\Pi_{r_{i}, 1}$.

This conditioning argument allows us to appeal to the same "return to $\Pi_{p, \varepsilon}$ " principle to show that Transform ${ }^{\mathrm{D}, \mathrm{G}}$ indeed "returns" the state to image $\left(\Pi_{p, \varepsilon}\right)$, as if it had "started out" as the state $\left|\phi_{\mathrm{U}}\right\rangle|0\rangle_{\mathcal{W}}$, which only exists in the analysis!

2.3.5 Problem: Step 3 is still not expected poly-time.

The premise of our new extraction template was to speed up the extraction process by getting rid of excess work from running state repair in situations where no accepting transcript was obtained. Previously, we computed the expected runtime to perform $N \approx k / p$ repair steps in Fig. 3 (conditioned on a successful initial execution and initial estimate p) to be $p N / \varepsilon^{2} \approx 1 / p^{4}$, since the runtime of each repair step was equivalent (up to a constant factor) to the runtime of G , which was p / ε^{2}, and $\varepsilon \approx p^{2}$. As noted above, with our new template we now only have to perform $N=k$ repair steps, and the error parameter ε can now be $\approx p$. With these improvements alone, one might hope to perform N repair steps in $p N / \varepsilon^{2}=p(k)\left(1 / p^{2}\right) \approx 1 / p$ time. This would result in expected polynomial runtime for the overall extractor when factoring in the conditioning.

Perhaps surprisingly, the above reasoning is incorrect! This new extraction procedure is still not expected QPT: the expected runtime of N repair steps will be $\approx \frac{1}{p^{2}}$, not $\frac{1}{p}$.

Why does this happen? It turns out that in this new extraction template, each repair step (which previously made expected $O(1)$ calls to G) must now make an expected $O(1 / p)$ calls to G , cancelling out the factor $-1 / p$ savings in N obtained by using Transform ${ }^{U, C}$ to generate transcripts.

Indeed, the pseudoinverse-based runtime analysis above for Transform ${ }^{\mathrm{D}, \mathrm{G}}$ implies that each repair step must now make

$$
\frac{1}{\zeta_{R}} \sum_{r} \zeta_{r} \cdot \frac{1}{\zeta_{r}}=\frac{1}{\zeta_{R}} \approx 1 / p
$$

calls to G (where $\zeta_{R}=\sum_{r} \zeta_{r} \approx p$ is the normalization factor for the r_{i}-distribution). This results in an overall expected running time of $\frac{1}{p}$ calls to G if p was initially measured. Essentially, this is saying that while obtaining an accepting transcript $\left(r_{i}, z_{i}\right)$ causes limited enough disturbance that repair can work, it causes more disturbance than a binary measurement, resulting in a factor of $1 / p$ increase in the repair time.

2.3.6 Solution: Use faster Estimate and Transform

Despite the less-than-expected speedup observed in Section 2.3.5, it turns out that we nevertheless made significant progress. The reason is that the bottleneck to obtaining a faster extraction procedure is now in the running times of Estimate and Transform, so we can hope to obtain an expected polynomial time procedure by using faster algorithms for Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ and Transform ${ }^{\mathrm{D}, \mathrm{G}}$.

As discussed above, speeding up the fixed-length Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ in G is relatively straightforward by appealing to [NWZ09]; ${ }^{22}$ this results in an expected running time of $\frac{1}{\sqrt{p}}$ for G .

However, implementing a fast version of Transform ${ }^{\text {D,G }}$ achieving $1-\operatorname{negl}(\lambda)$ correctness (which is required for our extraction procedure to have negligible error) is less straightforward. Some implementations in the literature (e.g., [GSLW19]) achieve this correctness guarantee, but only given a known (inverse polynomial) lower bound on the eigenvalue q_{j} (associated with (D, G)Jordan subspace $\left.\mathcal{T}_{j}\right)$. We have no such lower bound for our state $\frac{1}{\zeta_{r}} \Pi_{r}\left(|\phi \mathrm{U}\rangle|0\rangle_{\mathcal{W}}\right)$. Our resolution is to first apply a variable-length fast phase estimation algorithm (implemented by repeatedly running [NWZ09] to increasing precision, or singular value discrimination [GSLW19] with decreasing thresholds, until we obtain a multiplicative estimate of the phase) and then run a fixed-length fast Transform ${ }^{\mathrm{D}, \mathrm{G}}$ using the estimated phase to lower bound the eigenvalue. The fixed-length fast Transform ${ }^{\text {D,G }}$ can be done using [GSLW19]; it is also possible to use a more elementary algorithm

[^15]combining fast amplitude amplification [BHMT02] with ideas from [Wat06] for achieving $1-\operatorname{negl}(\lambda)$ correctness.

To summarize, we obtain a final $1 / p$ speedup by combining a $1 / \sqrt{p}$ speedup from using a faster Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ with a $1 / \sqrt{p}$ speedup from using a faster $\operatorname{Transform}^{\mathrm{D}, \mathrm{G}}$. The fact that the latter speedup is actually realized turns out to be subtle to argue.

2.3.7 Last Problem: Measuring z ruins the runtime guarantee

Unfortunately, we are still not done! There is one subtle issue with our extractor that we have ignored so far: our runtime analysis was only valid ignoring the effect of measuring the prover response z. Since all transcripts after running Transform ${ }^{U, C}$ are accepting by construction, the collapsing property of the protocol implies that measuring z is computationally undetectable, so one might assume that the runtime analysis extends immediately.

However, the expected running time of an algorithm is not an efficiently testable property of the input state. This is not just an issue with our proof strategy: the version of the above extractor where z is measured does not run in expected polynomial time.

In a nutshell, the issue is that a computationally undetectable measurement can still cause a state's eigenvalues (either $\left\{p_{j}\right\}$, in Jor ${ }^{\mathrm{U}, \mathrm{C}}$, or $\left\{q_{j}\right\}$, in Jor ${ }^{\mathrm{G}, \mathrm{D}}$) to change by a negligible but nonzero amount, affecting the subsequent runtime of Transform ${ }^{\mathrm{D}, \mathrm{G}}$. This negligible change can have an enormous effect on the expected runtime of the extractor, because if the runtime of a procedure is inversely proportional to the disturbed eigenvalue $\tilde{p}=p-$ negl, an overall expected runtime expression can now contain terms of the form $\frac{p}{p-\text { negl }}$, which can be unbounded when p is also negligible. Interestingly, such issues have long been known to exist in the classical setting: these $\frac{p}{p-\text { negl }}$ terms are the major technical difficulty in obtaining a classical simulator for the [GK96] protocol. This classical analogy inspires our resolution.

Solution: Estimate repair time before measuring z. We modify our extractor so that in each loop iteration, all procedures occurring after the z-measurement have a pre-determined runtime. Previously, after z was measured, we ran a fast variable-length Transform by running a the variablelength Estimate ${ }^{\mathrm{D}, \mathrm{G}}$ to determine a time bound t, and then running a t-time Transform ${ }^{\mathrm{D}, \mathrm{G}}$. Instead of this, we will run Estimate ${ }^{\mathrm{D}, \mathrm{G}}$ before z is measured. This allows us to compute a runtime bound for Transform ${ }^{\mathrm{D}, \mathrm{G}}$ before the z measurement disturbs the state, preserving the expected running time of the entire procedure. This results in the final extraction procedure described in Fig. 6 below.

Figure 6: Our final extraction procedure

1. After obtaining $(a,|\psi\rangle)$, apply C to $|\psi\rangle\left|+_{R}\right\rangle$ and terminate if the measurement returns 0 . Otherwise, let $|\phi\rangle$ denote the resulting state on $\mathcal{H} \otimes \mathcal{R}$.
2. Run the variable-length Estimate $\mathrm{e}^{\mathrm{U}, \mathrm{C}}$ on $|\phi\rangle$, obtaining output p. Divide p by 2 to obtain a lower bound on the resulting success probability. Set $\varepsilon=\frac{p}{4 k}$ and $N=k$.
3. For i from 1 to N :
(a) Given prover state $\left|\psi_{i}\right\rangle$, apply Transform ${ }^{\mathrm{U}, \mathrm{C}}\left|\psi_{i}\right\rangle\left|+{ }_{R}\right\rangle$. Call the resulting state $\left|\phi_{\mathrm{C}}\right\rangle$.
(b) Measure (and discard) the \mathcal{R} register of $\left|\phi_{\mathrm{C}}\right\rangle$ to obtain a classical challenge r_{i}.
(c) Initialize \mathcal{W} to $|0\rangle_{\mathcal{W}}$ and call the variable-length Estimate ${ }^{\mathrm{D}, \mathrm{G}}$, which outputs a value q. We require that the output state is in the image of $\Pi_{r_{i}}$.
(d) Measure the response z_{i}.
(e) We repair the success probability by running $\operatorname{Transform}{ }^{\mathrm{D}, \mathrm{G}}$ on $\mathcal{H} \otimes \mathcal{W}$ for $\frac{\lambda}{\sqrt{q}}$ oracle steps. If the resulting state is not in the image of $\Pi_{p, \varepsilon}$, abort.
Trace out \mathcal{W} and run Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ for $\lambda \sqrt{p} / \varepsilon$ steps to obtain a new probability estimate p^{\prime}. If $p^{\prime}<p-2 \varepsilon$, abort. Finally, discard \mathcal{R} and re-define $p:=p^{\prime}$.

By making this change, we incur an additional correctness error for the extractor, because the collapsing measurement may decrease the probability that Transform ${ }^{\mathrm{D}, \mathrm{G}}$ successfully maps the state to $\Pi_{p, \varepsilon}$. However, this error is negligible because this correctness property is efficiently checkable (unlike the expected runtime). Thus, this procedure achieves both expected polynomial runtime ${ }^{23}$ and the desired correctness guarantees.

2.3.8 Putting everything together

To summarize, we gave a new extraction template along with a particular instantiation that achieves expected polynomial runtime, by leveraging four different algorithmic improvements:

1. By generating accepting transcripts with Transform ${ }^{\mathrm{U}, \mathrm{C}}$, we now only have to generate k transcripts and repair k prover states (instead of k / p).
2. (1) allows us to relax the error parameter ε by a factor of $1 / p$ (speeding up G).
3. Using a fast algorithm for Estimate from the literature [NWZ09, GSLW19] saves a factor of $1 / \sqrt{p}$ runtime.
4. Using a new fast, variable-runtime algorithm for Transform saves another factor of $1 / \sqrt{p}$.

Finally, we implement the variable-length Transform in two phases (variable-length phase estimation followed by fixed-length Transform) and interleave the measurement of the response z between them, so that this z-measurement has no effect on the runtime.

We remark that the overall analysis of our extractor is rather involved (as we have omitted additional details in this overview); we refer the reader to Section 8 for a full analysis.

2.4 Post-Quantum ZK for [GK96]

In this section we give an overview of our proof that the Goldreich-Kahan (GK) protocol is postquantum zero-knowledge (Theorem 1.4). Our simulator makes use of some of the techniques described in Section 2.3, but the simulation strategy is quite different to our other results. In particular, our simulator does not make use of state-preserving extraction.

We first recall the Goldreich-Kahan construction of a constant-round zero-knowledge proof system for NP. Let $\left(P_{\Sigma}, V_{\Sigma}\right)$ be a Σ-protocol for NP satisfying special honest verifier zero knowledge

[^16](SHVZK) ${ }^{24}$ and let Com be a statistically hiding, computationally binding commitment. [GK96] construct a zero knowledge protocol (P, V) as described in Fig. 7.

Figure 7: The [GK96] Zero Knowledge Proof System for NP.
Soundness of the [GK96] protocol holds against unbounded P^{*} and therefore extends immediately to the quantum setting.

Recap: the naïve classical simulator. As observed by [GK96], there is a natural naïve simulator for their protocol that, for reasons analogous to Section 2.3.7, turns out to have an unbounded expected runtime. To build intuition for our quantum simulation strategy, we will first recall the naïve classical simulator and show how to extend it to a naïve quantum simulator (while temporarily ignoring the runtime issue). Then, by using the technique described in Section 2.3.7, we will improve this to a full EQPT_{c} quantum simulator.

The naïve classical simulator does the following:

1. Call V^{*} on a random commitment key ck to obtain a commitment com.
2. Sample $\left(a^{\prime}, z^{\prime}\right) \leftarrow \operatorname{SHVZK} . \operatorname{Sim}(0)$.
3. Run V^{*} on a^{\prime} to obtain a challenge-opening pair $\left(r^{\prime}, \omega^{\prime}\right)$. If ω^{\prime} is not a valid opening of com to r^{\prime}, terminate the simulation and output the current view of V^{*}.
4. Rewinding step. Sample $(a, z) \leftarrow \operatorname{SHVZK} . \operatorname{Sim}\left(r^{\prime}\right)$ and run V^{*} on a. If the output (r, ω) is not a valid message-opening pair, repeat this step from the beginning.
5. Respond with z and output V^{*} 's view.

To see that this simulator outputs the correct view for V^{*}, consider two hybrid steps:

- First, switch to a hybrid simulator in which the sample $\left(a^{\prime}, z^{\prime}\right) \leftarrow \operatorname{SHVZK} . \operatorname{Sim}(0)$ is instead computed by running the honest prover $P(x, w)$. The indistinguishability between this hybrid simulator and the real simulator follows from the fact that a^{\prime} sampled as $\left(a^{\prime}, z^{\prime}\right) \leftarrow$ SHVZK. $\operatorname{Sim}(0)$ is computationally indistinguishable from the honestly generated a^{\prime}.

[^17]- Next, switch to a second hybrid simulator in which the honest prover is also used in the rewinding step to generate the (a, z) samples rather than $\operatorname{SHVZK} \cdot \operatorname{Sim}\left(r^{\prime}\right)$ (where z is generated by running the honest prover on $\left.\left(a, r^{\prime}\right)\right)$. This is indistinguishable from the previous hybrid simulator by the SHVZK property, and moreover, by the computational binding of the commitment, the r obtained in Step 4 must be r^{\prime} except with $\operatorname{negl}(\lambda)$ probability. Moreover, conditioned on $r=r^{\prime}$, the second hybrid produces the same distribution as the honest interaction.

We now show how to extend this simulator to the quantum setting.

Our "nä̈ve" quantum simulator. Step 1 of the naïve classical simulator will be unchanged in the quantum setting, so we focus on devising quantum verisons of Steps 2,3 , and 4 while assuming ck , com are fixed throughout.

Let $|\psi\rangle_{\mathcal{V}}$ be the state of the malicious verifier immediately after it sends com. We let registers \mathcal{A}, \mathcal{Z} denote registers containing the messages a, z in the Σ-protocol and let \mathcal{M} be a register that will contain the random coins for SHVZK.Sim (or the honest prover later on). Let $\left|\operatorname{Sim}_{r}\right\rangle$ for any $r \in R$ be the state $\left|\operatorname{Sim}_{r}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}=\sum \alpha_{\mu}|\operatorname{SHVZK} . \operatorname{Sim}(r ; \mu), \mu\rangle$ obtained by running SHVZK.Sim on a uniform superposition of its random coins μ.

We define binary projective measurements analogous to the U and C measurements used in our state-preserving extractor. However, instead of a single U measurement, we will have for each $r \in R$ a measurement $\mathrm{S}_{r}=\left(\Pi_{\mathrm{S}, r}, \mathbf{I}-\Pi_{\mathrm{S}, r}\right)$ on $\mathcal{V} \otimes \mathcal{A} \otimes \mathcal{Z} \otimes \mathcal{M}$ where $\Pi_{\mathrm{S}, r}:=\mathbf{I}_{\mathcal{V}} \otimes\left|\operatorname{Sim}_{r}\right\rangle\left\langle\left.\operatorname{Sim}_{r}\right|_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}\right.$. The idea behind the $\mathrm{C}=\left(\Pi_{\mathrm{C}}, \mathbf{I}-\Pi_{\mathrm{C}}\right)$ measurement is the same as before: it measures whether the malicious verifier V^{*} returns a valid opening when run on the challenge \mathcal{A}. Note that C acts as identity on \mathcal{Z}, \mathcal{M}.

The next steps of the quantum simulator are a direct analogue of the corresponding steps in the classical simulator:

2*. Initialize $\mathcal{A} \otimes \mathcal{Z} \otimes \mathcal{M}$ to $\left|\operatorname{Sim}_{0}\right\rangle$.
3*. Measure $|\psi\rangle_{\mathcal{V}} \otimes|P\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$ with C . If the outcome of C is 0 (the opening is invalid), terminate the simulation at this step: measure \mathcal{A} to obtain a^{\prime}, compute and measure the verifier's response ($r^{\prime}, \omega^{\prime}$) and return (ck, com, $a^{\prime},\left(r^{\prime}, \omega^{\prime}\right), z=\perp$) along with \mathcal{V}. If the outcome of C is 1, we will have to rewind. First, compute the verifier's response and measure it to obtain r^{\prime}.

When the opening is invalid (C outputs 0), the SHVZK guarantee informally implies that these steps computationally simulate the view of V^{*}.

The hard case is when the opening is valid (C outputs 1). At this stage of the simulation, the state on $\mathcal{V} \otimes \mathcal{A} \otimes \mathcal{Z}$ is $\Pi_{\mathbb{C}}\left(|\psi\rangle_{\mathcal{V}}\left|\operatorname{Sim}_{0}\right\rangle_{\mathcal{A}, \mathcal{Z}}\right)$ (up to normalization). Intuitively, we want to "swap" $\left|\operatorname{Sim}_{0}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$ for $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$, but the application of Π_{C} has entangled the \mathcal{A} register with \mathcal{V}. We will therefore apply an operation to disentangle these registers, then swap $\left|\operatorname{Sim}_{0}\right\rangle$ for $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle$, and then "undo" the disentangling operation. We do this by defining a unitary U that is the coherent implementation of the following variable-length computation on $\mathcal{V} \otimes \mathcal{A} \otimes \mathcal{Z} \otimes \mathcal{M} \otimes \mathcal{R}$: measure \mathcal{R} to obtain r, and then run a variable-length $\operatorname{Transform}^{\mathrm{C}, \mathrm{S}_{r}}$ on $\mathcal{V} \otimes \mathcal{A} \otimes \mathcal{Z} \otimes \mathcal{M} .{ }^{25}$ Recall that implementing a variable-length computation coherently requires additional ancilla registers $\mathcal{W}, \mathcal{B}, \mathcal{Q}$

[^18](see Section 1.3); we will suppress these registers for this overview, but we emphasize that they must be all be initialized to $|0\rangle$.

The simulator then continues as follows.
4*. Run the following steps:
(a) Initialize \mathcal{R} to $|0\rangle$ and apply U to $\Pi_{\mathcal{C}}\left(|\psi\rangle_{\mathcal{V}}\left|\operatorname{Sim}_{0}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}\right) \otimes|0\rangle_{\mathcal{R}}$. On $\mathcal{V} \otimes \mathcal{A} \otimes \mathcal{Z} \otimes \mathcal{M}$, this maps image $\left(\Pi_{\mathrm{C}}\right)$ to image $\left(\Pi_{\mathrm{s}, 0}\right)$, which yields a state of the form $\left|\psi^{\prime}\right\rangle_{\mathcal{V}}\left|\operatorname{Sim}_{0}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$. Importantly, this (carefully!) breaks the entanglement between \mathcal{V} and \mathcal{A}.
(b) Now the simulator can easily swap $\left|\operatorname{Sim}_{0}\right\rangle$ out for $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle$.
(c) Finally, the simulator changes the \mathcal{R} register from $|0\rangle_{\mathcal{R}}$ to $\left|r^{\prime}\right\rangle_{\mathcal{R}}$, and then applies U^{\dagger} and traces out \mathcal{R}. This step maps the state on back from image $\left(\Pi_{\mathrm{S}, r^{\prime}}\right)$ to image $\left(\Pi_{\mathrm{C}}\right)$.

5*. Measure \mathcal{A} to obtain a, compute and measure the verifier's response (r, ω), measure \mathcal{Z} to obtain z, and output (ck, com, $a,(r, \omega), z$) along with \mathcal{V}.

This simulator can be written as an EQPT_{c} computation, but we defer the details of this to our full proof (Section 13). For this overview, we will focus on proving the simulation guarantee.

Inspired by classical proof, we prove that our simulator produces the correct view for V^{*} by considering two hybrid simulators. To describe the hybrid simulators, we define states $|P\rangle$ and $\left|P_{r}\right\rangle$ for any $r \in R$ corresponding to responses of the honest prover:

- Let $|P\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$ be the state from running the honest prover $P_{x, w}$ on a uniform superposition of random coins μ to generate a first message $P_{x, w}(\mu)$, i.e., $|P\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}=\sum_{\mu}\left|P_{x, w}(\mu)\right\rangle_{\mathcal{A}}|0\rangle_{\mathcal{Z}}|\mu\rangle_{\mathcal{M}}$
- For any $r \in R$, let $\left|P_{r}\right\rangle$ be the same as $|P\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}$, except \mathcal{Z} additionally contains the honest prover's response to r, i.e., $\left|P_{r}\right\rangle_{\mathcal{A}, \mathcal{Z}, \mathcal{M}}=\sum_{\mu}\left|P_{x, w}(\mu)\right\rangle_{\mathcal{A}}\left|P_{x, w}(r ; \mu)\right\rangle_{\mathcal{Z}}|\mu\rangle_{\mathcal{M}}$
The hybrid simulators are essentially quantum versions of the classical ones:
- The first hybrid simulator behaves the same as the original simulator except that everywhere the simulator uses $\left|\operatorname{Sim}_{0}\right\rangle$, the hybrid simulator uses $|P\rangle$ instead. The amplification in Step $4^{*}(a)$ is now onto image $(|P\rangle\langle P|)$ rather than image $\left(\mathrm{S}_{0}\right)$. Moreover, in Step $4^{*} b$, the simulator swaps $|P\rangle$ out for $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle$.
- The second hybrid simulator is the same as the first, except every appearance of $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle$ is replaced with $\left|P_{r^{\prime}}\right\rangle$. In particular, in Step $4^{*}(b)$, the simulator swaps $|P\rangle$ out for $\left|P_{r^{\prime}}\right\rangle$. The (inverse) amplification in Step $4^{*}(c)$ is now from image $\left(\left|P_{r^{\prime}}\right\rangle\left\langle P_{r^{\prime}}\right|\right)$ onto image $\left(\Pi_{\mathrm{C}}\right)$.

Proving indistinguishability of these hybrids requires some care. Intuitively, we want to invoke the SHVZK property to claim that $\left|\operatorname{Sim}_{0}\right\rangle$ and $|P\rangle$ are indistinguishable given just the reduced density matrices on the \mathcal{A} register (for the first hybrid) and that $\left|\operatorname{Sim}_{r^{\prime}}\right\rangle$ and $\left|P_{r^{\prime}}\right\rangle$ are indistinguishable given just the reduced density matrices on $\mathcal{A} \otimes \mathcal{Z}$ (for the second hybrid). However, we have to ensure that the application of Transform - which makes use of projections onto these states - does not make this distinguishing task any easier.

We resolve this by proving a general lemma (Lemma 13.1) about quantum computational indistinguishability that may be of independent interest, which we briefly elaborate on here. Consider the states $\left|\tau_{b}\right\rangle:=\sum_{\mu}|\mu\rangle_{\mathcal{X}}\left|D_{b}(\mu)\right\rangle_{\mathcal{Y}}$ where D_{0}, D_{1} are computationally indistinguishable classical distributions with randomness μ. If we are only given access to \mathcal{Y}, then distinguishing $\left|\tau_{0}\right\rangle$
from $\left|\tau_{1}\right\rangle$ is clearly hard (since $\operatorname{Tr} \mathcal{X}\left(\left|\tau_{b}\right\rangle\left\langle\tau_{b}\right|\right)$ is a random classical sample from D_{b}). Lemma 13.1 strengthens this claim: it states that guessing b remains hard even given an oracle implementing the corresponding binary-outcome measurement $\left(\left|\tau_{b}\right\rangle\left\langle\left.\tau_{b}\right|_{\mathcal{X}, \mathcal{Y}}, \mathbf{I}-\mid \tau_{b}\right\rangle\left\langle\left.\tau_{b}\right|_{\mathcal{X}, \mathcal{Y}}\right)\right.$.

By combining this lemma with the fact that our Transform procedure can always be truncated (in a further hybrid argument) to have strict $\operatorname{poly}(\lambda, 1 / \varepsilon)$-runtime with ε-accuracy, we can prove the desired indistinguishability claims.

From the naïve simulator to the full simulator. The problem with both the classical and quantum naïve simulators presented above is that their expected runtime is not polynomial. The issue is conceptually the same as in Section 2.3.7. Consider a malicious verifier V^{*} that gives a valid response with negligible probability p when run on a sampled as $(a, z) \leftarrow \operatorname{SHVZK}$. Sim (0), and succeeds with probability p - negl when run on a sampled as $(a, z) \leftarrow \operatorname{SHVZK} . \operatorname{Sim}(r)$. Then the expected running time is $\frac{p}{p-\text { negl }}$, which can be unbounded for small p.

The solution described in [GK96] is therefore to estimate the running time of the rewinding step before making the computational switch. That is, if the simulator obtains a valid response before the rewinding step, then it keeps running the V^{*} on samples from SHVZK.Sim(0) until it obtains λ additional valid responses. This gives the simulator an accurate estimate of the success probability of V^{*}, which it uses to bound the running time of the subsequent rewinding step.

We give a quantum simulator in EQPT_{c} for the [GK96] protocol that implements the analogous quantum version of this estimation trick. As in Section 2.3.7, the idea is to first compute an upper bound on the runtime of the Transform step (equivalently, a lower bound on the singular values) after measuring C in Step 3* before measuring r. This estimate is computed using a variablelength Estimate ${ }^{\mathrm{S}_{0}, \mathrm{C}}$ procedure, and since the Transform step has now been restricted to run in fixed polynomial time, we achieve the desired $p \cdot 1 / p=1$ cancellation in the expected running time.

Implementing this properly requires several tweaks to our simulator. In particular, the simulator no longer measures the verifier's challenge r^{\prime} directly in Step 3^{*}; recording r^{\prime} is now delegated to U, since this step must be performed "in between" Estimate and Transform. That is, we must modify U so that instead of just performing (a coherent implementation of) Transform, it runs the following steps coherently: (1) perform a variable-length Estimate, where Estimate is parameterized by the same projectors as Transform (2) compute and measure the verifier's response (3) run Transform using the time bound computed from Estimate. We defer further details to the full proof (Section 13). We remark that just as in Section 2.3.7, the negl (λ) error incurred by the collapsing measurement moves into the correctness error of the simulation.

2.5 Related Work

Post-Quantum Zero-Knowledge. The first construction of a zero-knowledge protocol secure against quantum adversaries is due to Watrous [Wat06]. Roughly speaking, [Wat06] shows that "partial simulators" that succeed with an inverse polynomial probability that is independent of the verifier state can be extended to full post-quantum zero-knowledge simulators. This technique handles sequential repetitions of classical Σ-protocols and has been used as a subroutine in other contexts (e.g., [BS20, BCKM21, CCY21, ACL21]), but its applicability is limited to somewhat special situations. Nevertheless, most prior post-quantum zero-knowledge results have relied crucially on the [Wat06] technique.
[BS20, AL20] recently introduced a beautiful non-black-box technique that, in particular, achieves
constant-round zero knowledge arguments for NP with strict polynomial time simulation [BS20]. As discussed above, the use of non-black-box techniques is necessary to achieve strict polynomial time simulation in the classical [BL02] and quantum [CCLY21b] settings (and in the quantum setting this extends to EQPT ${ }_{m}$ simulation).

Finally, recent work [CCY21] showed that the Goldreich-Kahan protocol achieves post-quantum ε-zero knowledge. This is closely related to our Theorem 1.4, and so we present a detailed comparison below.

Comparison with [CCY21]. Post-quantum ε-zero-knowledge of the Goldreich-Kahan protocol was analyzed previously in [CCY21]. Our simulation strategy for Theorem 1.4 is related to that of [CCY21] in that the two simulators both consider the Jordan decomposition for essentially the same pair of projectors, but the two simulators are otherwise quite different.

At a high level, [CCY21] constructs a (highly non-trivial) quantum analogue of the following classical simulator: given error parameter ε, repeat $\operatorname{poly}(1 / \varepsilon)$ times: sample $a \leftarrow \operatorname{Sim}(0)$ and run V^{*} on a. If V^{*} ever opens correctly, record its response r. Then, run a single execution of the protocol using $(a, z) \leftarrow \operatorname{Sim}(r)$ and output the result.

More concretely, the [CCY21] simulator first attempts to extract the verifier's challenge r in poly $(1 / \varepsilon)$ time, and then attempts to generate an accepting transcript in a single final interaction with the verifier. However, if the verifier aborts in this final interaction, the simulation fails; this is roughly because successfully extracting r skews the verifier's state towards not aborting. To obtain a full simulator, they use an idea from [BS20]: (1) design a "partial simulator" that randomly guesses whether the verifier will abort in its final invocation, then achieves ε-simulation conditioned on a correct guess; (2) apply [Wat06]-rewinding to "amplify" onto executions where the guess is correct.

It is natural to ask whether the above simulation strategy would have sufficed to prove Theorem 1.4 (instead of writing down a new simulator). We remark that this is unlikely; their simulator seems to be tailored to ε-ZK and, moreover, does not address what [GK96] describe as the main technical challenge in the classical setting: handling verifiers that abort with all but negligible probability. In more detail:

- Their non-aborting simulator (like the classical analogue above) always tries to extract r. To achieve negligible simulation error, this extraction must succeed with all but negligible probability for any adversary that with inverse polynomial probability does not abort. This would require that the simulator run in superpolynomial time.
Our simulator, as well as essentially all classical black-box ZK simulators, address this issue by first measuring whether the verifier aborts, and then only proceeding with the simulation in the non-aborting case.
- By Markov's inequality and the gentle measurement lemma, expected polynomial time simulation implies ε-simulation in time $O\left(1 / \varepsilon^{2}\right)$. As a function of ε, the [CCLY21b] simulator runs in some large polynomial time (as currently written, they appear to achieve runtime $1 / \varepsilon^{6}$, although it is likely unoptimized). Thus, even a hypothetical variable-runtime version of their simulator would not be expected polynomial time. In particular, the [Wat06, BS20] "guessing" compiler appears to cause a quadratic blowup in the runtime of their non-aborting simulator (due to a required smaller accuracy parameter).
- The [Wat06, BS20] "guessing" compiler adds an additional layer of complexity onto the [CCY21] simulator that is incompatible with the EQPT_{c} definition in the sense that given
an EQPT_{c} partial simulator, the [Wat06, BS20] "guessing" compiler would not produce a procedure in EQPT_{c}.

We also achieve some improvements over [CCY21] unrelated to the simulation accuracy:

- [CCY21] require that the underlying sigma protocol satisfies a delayed witness property, which is not required in the classical setting. Our "projector indistinguishability" lemma (Lemma 13.1; see also Section 2.4) enables us to handle arbitrary sigma protocols.
- [CCY21] require that the verifier commit to the sigma protocol challenge r using a strong collapse-binding commitment. Using a new proof technique (see Section 4), we show that standard collapse-binding suffices.

Post-Quantum Extraction. As previously discussed, there is a line of prior work [Unr12, Unr16b, CMSZ21] that achieves forms of post-quantum extraction that do not preserve the prover state. Below we briefly discuss prior work on state-preserving post-quantum extraction.
[BS20] directly constructs a state-preserving extractable commitment with non-black-box extraction in order to achieve their zero-knowledge result. Their construction makes use of post-quantum fully homomorphic encryption (for quantum circuits). Their extractor homomorphically evaluates the adversarial sender.
[BS20] also shows that constant-round zero-knowledge arguments and post-quantum secure function evaluation generically imply constant-round state-preserving extractable commitments. Combining this with [Wat06] yields a polynomial-round state-preserving extractable commitment scheme. Since this result also holds in the " ε setting," plugging in [CCY21] implies a constantround ε state-preserving extractable commitment, although this protocol would have many rounds and is only privately verifiable.

All of the above results achieve computationally state-preserving extraction. [ACL21] constructs a polynomial-round state-preserving extractable commitment scheme with statistical state preservation. They use the [Wat06] simulation technique as the core of their extraction procedure, applied to a new construction where statistical state preservation is possible.

Comparison with [CCLY21a]. In concurrent work, Chia et al. give constructions of statepreserving extractable commitments and arguments of knowledge for NP and QMA with ε-guarantees. Their results are incomparable with ours. In particular, we focus on:

- Achieving negligible error in extraction and simulation, and
- Analyzing existing protocols with minimal modification.

On the other hand, the focus in [CCLY21a] is on:

- Proving existential results ("there exist constant-round protocols satisfying..."), and
- Minimizing the cryptographic assumptions required.

In more detail, their protocols make only black-box use of (polynomially secure) post-quantum one way functions (PQ-OWFs) and achieve ε-extraction and ε-simulation in strict QPT, whereas ours rely on (e.g.) collapsing hash functions or superpolynomially secure PQ-OWFs and achieve negligible-error extraction (in EQPT_{m}) and simulation (in EQPT ${ }_{c}$).

Another interesting point of comparison is that both this work and [CCLY21a] encounter the same "overextraction" problem, where an adversary in a parallel-repeated protocol can put different witnesses into different "slots" and may then detect which witness the extractor obtained. We resolve this issue (where it arises) by using a commit-and-prove based compiler, which leads to non-black-box use of cryptography and superpolynomial assumptions, but minimizes modification of the protocols and preserves round complexity (3 or 4, depending on the application). [CCLY21a] resolve this instead using verifiable secret sharing, which increases round complexity but makes black-box use of standard PQ-OWFs. It remains an open question to determine whether there exist ε-secure protocols with minimal round complexity from black-box use of standard PQ-OWFs, and whether there exist constant-round EQPT_{c}-simulatable protocols that make black-box use of one-way functions.

Finally, we note that if one allows for arbitrary constant round complexity, our techniques imply EQPT_{c}-extractable commitments based on polynomially-secure one-way functions (that is, complexity leveraging is not necessary if we allow for additional rounds). This can be achieved in the following scheme (which is a simple modification of other constructions in this work):

- The committer sends two (Naor) commitments, c_{1} and c_{2}, to the message m.
- The committer proves via an ε-zero knowledge argument [CCY21] that c_{1} and c_{2} are commitments to the same message.
- The committer sends a post-quantum WI argument of knowledge of an opening to one of c_{1}, c_{2} (without disclosing which one). We assume that this AoK has EQPT m_{m}-guaranteed extraction.

The fact that this scheme is a (state-preserving) extractable commitment follows from the soundness of the ε-ZK argument and the EQPT_{m}-guaranteed extraction of the AoK (very similarly to our commit-and-prove based compiler). Specifically, the overall extractor verifies the ε-ZK argument and then coherently runs the AoK-guaranteed extractor. A (computational) distinguisher between the real and simulated post-execution states then constitutes an attack on the soundness of the ε-ZK argument (as c_{1} and c_{2} will necessarily encode different messages). The hiding of the commitment follows from the ε-ZK of the first argument system, the WI of the second argument system, and the hiding of the Naor commitments.

Thus, we append (non-concurrently, after the appearance of [CCLY21a]) the following corollary of our work:

Corollary 2.7. Assuming post-quantum one-way functions, there exists a constant-round $\mathrm{EQPT}_{c^{-}}$ extractable commitment scheme and a constant-round WI argument of knowledge for NP with EQPT_{c} state-preserving extraction.

We thank Nir Bitansky for discussion of this implication.

3 Preliminaries

The security parameter is denoted by λ. A function $f: \mathbb{N} \rightarrow[0,1]$ is negligible, denoted $f(\lambda)=$ $\operatorname{negl}(\lambda)$, if it decreases faster than the inverse of any polynomial. A probability is overwhelming if is at least $1-\operatorname{negl}(\lambda)$ for a negligible function $\operatorname{negl}(\lambda)$. For any positive integer n, let $[n]:=$ $\{1,2, \ldots, n\}$. For a set R, we write $r \leftarrow R$ to denote a uniformly random sample r drawn from R.

3.1 Quantum Preliminaries and Notation

Quantum information. A (pure) quantum state is a vector $|\psi\rangle$ in a complex Hilbert space \mathcal{H} with $\||\psi\rangle \|=1$; in this work, \mathcal{H} is finite-dimensional. We denote by $\mathbf{S}(\mathcal{H})$ the space of Hermitian operators on \mathcal{H}. A density matrix is a positive semi-definite operator $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H})$ with $\operatorname{Tr}(\boldsymbol{\rho})=1$. A density matrix represents a probabilistic mixture of pure states (a mixed state); the density matrix corresponding to the pure state $|\psi\rangle$ is $|\psi\rangle\langle\psi|$. Typically we divide a Hilbert space into registers, e.g. $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. We sometimes write, e.g., $\boldsymbol{\rho}^{\mathcal{H}_{1}}$ to specify that $\boldsymbol{\rho} \in \mathbf{S}\left(\mathcal{H}_{1}\right)$.

A unitary operation is a complex square matrix U such that $U U^{\dagger}=\mathbf{I}$. The operation U transforms the pure state $|\psi\rangle$ to the pure state $U|\psi\rangle$, and the density matrix $\boldsymbol{\rho}$ to the density matrix $U \rho U^{\dagger}$.

A projector Π is a Hermitian operator $\left(\Pi^{\dagger}=\Pi\right)$ such that $\Pi^{2}=\Pi$. A projective measurement is a collection of projectors $\mathrm{P}=\left(\Pi_{i}\right)_{i \in S}$ such that $\sum_{i \in S} \Pi_{i}=\mathbf{I}$. This implies that $\Pi_{i} \Pi_{j}=0$ for distinct i and j in S. The application of P to a pure state $|\psi\rangle$ yields outcome $i \in S$ with probability $p_{i}=\| \Pi_{i}|\psi\rangle \|^{2}$; in this case the post-measurement state is $\left|\psi_{i}\right\rangle=\Pi_{i}|\psi\rangle / \sqrt{p_{i}}$. We refer to the postmeasurement state $\Pi_{i}|\psi\rangle / \sqrt{p_{i}}$ as the result of applying P to $|\psi\rangle$ and post-selecting (conditioning) on outcome i. A state $|\psi\rangle$ is an eigenstate of P if it is an eigenstate of every Π_{i}.

A two-outcome projective measurement is called a binary projective measurement, and is written as $P=(\Pi, \mathbf{I}-\Pi)$, where Π is associated with the outcome 1 , and $\mathbf{I}-\Pi$ with the outcome 0 .

General (non-unitary) evolution of a quantum state can be represented via a completely-positive trace-preserving (CPTP) map $T: \mathbf{S}(\mathcal{H}) \rightarrow \mathbf{S}\left(\mathcal{H}^{\prime}\right)$. We omit the precise definition of these maps in this work; we only use the facts that they are trace-preserving (for every $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H})$ it holds that $\operatorname{Tr}(T(\boldsymbol{\rho}))=\operatorname{Tr}(\boldsymbol{\rho}))$ and linear.

For every CPTP map $T: \mathbf{S}(\mathcal{H}) \rightarrow \mathbf{S}(\mathcal{H})$ there exists a unitary dilation U that operates on an expanded Hilbert space $\mathcal{H} \otimes \mathcal{K}$, so that $T(\boldsymbol{\rho})=\operatorname{Tr}_{\mathcal{K}}\left(U\left(\left.\rho \otimes|0\rangle 0\right|^{\mathcal{K}}\right) U^{\dagger}\right)$. This is not unique; however, if T is described as a circuit then there is a dilation U_{T} represented by a circuit of size $O(|T|)$.

For Hilbert spaces \mathcal{A}, \mathcal{B} the partial trace over \mathcal{B} is the unique CPTP map $\operatorname{Tr}_{\mathcal{B}}: \mathbf{S}(\mathcal{A} \otimes \mathcal{B}) \rightarrow \mathbf{S}(\mathcal{A})$ such that $\operatorname{Tr}_{\mathcal{B}}\left(\boldsymbol{\rho}_{A} \otimes \boldsymbol{\rho}_{B}\right)=\operatorname{Tr}\left(\boldsymbol{\rho}_{B}\right) \boldsymbol{\rho}_{A}$ for every $\boldsymbol{\rho}_{A} \in \mathbf{S}(\mathcal{A})$ and $\boldsymbol{\rho}_{B} \in \mathbf{S}(\mathcal{B})$.

A general measurement is a CPTP map $\mathrm{M}: \mathbf{S}(\mathcal{H}) \rightarrow \mathbf{S}(\mathcal{H} \otimes \mathcal{O})$, where \mathcal{O} is an ancilla register holding a classical outcome. Specifically, given measurement operators $\left\{M_{i}\right\}_{i=1}^{N}$ such that $\sum_{i=1}^{N} M_{i} M_{i}^{\dagger}=\mathbf{I}$ and a basis $\{|i\rangle\}_{i=1}^{N}$ for $\mathcal{O}, \mathrm{M}(\boldsymbol{\rho}):=\sum_{i=1}^{N}\left(M_{i} \boldsymbol{\rho} M_{i}^{\dagger} \otimes \mid i\left\langle\left. i\right|^{\mathcal{O}}\right)\right.$. We sometimes implicitly discard the outcome register. A projective measurement is a general measurement where the M_{i} are projectors. A measurement induces a probability distribution over its outcomes given by $\operatorname{Pr}[i]=\operatorname{Tr}\left(|i\rangle\left\langle\left. i\right|^{\mathcal{O}} \mathrm{M}(\boldsymbol{\rho})\right)\right.$; we denote sampling from this distribution by $i \leftarrow \mathrm{M}(\boldsymbol{\rho})$.

The trace distance between states $\boldsymbol{\rho}, \boldsymbol{\sigma}$, denoted $d(\boldsymbol{\rho}, \boldsymbol{\sigma})$, is defined as $\frac{1}{2} \operatorname{Tr}\left(\sqrt{(\boldsymbol{\rho}-\boldsymbol{\sigma})^{2}}\right)$. The trace distance is contractive under CPTP maps (for any CPTP map $T, d(T(\boldsymbol{\rho}), T(\boldsymbol{\sigma})) \leq d(\boldsymbol{\rho}, \boldsymbol{\sigma})$). It follows that for any measurement M , the statistical distance between the distributions $\mathrm{M}(\rho)$ and $\mathrm{M}(\boldsymbol{\sigma})$ is bounded by $d(\boldsymbol{\rho}, \boldsymbol{\sigma})$. We have the following gentle measurement lemma, which bounds how much a state is disturbed by applying a measurement whose outcome is almost certain.

Lemma 3.1 (Gentle Measurement [Win99]). Let $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H})$ and $\mathrm{P}=(\Pi, \mathbf{I}-\Pi)$ be a binary projective measurement on \mathcal{H} such that $\operatorname{Tr}(\Pi \boldsymbol{\rho}) \geq 1-\delta$. Let

$$
\rho^{\prime}:=\frac{\Pi \rho \Pi}{\operatorname{Tr}(\Pi \rho)}
$$

be the state after applying P to $\boldsymbol{\rho}$ and post-selecting on obtaining outcome 1. Then

$$
d\left(\boldsymbol{\rho}, \boldsymbol{\rho}^{\prime}\right) \leq 2 \sqrt{\delta}
$$

Definition 3.2. A real-valued measurement M on \mathcal{H} is (ε, δ)-almost-projective if applying M twice in a row to any state $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H})$ produces measurement outcomes p, p^{\prime} where

$$
\operatorname{Pr}\left[\left|p-p^{\prime}\right| \leq \varepsilon\right] \geq 1-\delta .
$$

Quantum algorithms. In this work, a quantum adversary is a family of quantum circuits $\left\{\operatorname{Adv}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ represented classically using some standard universal gate set. A quantum adversary is polynomial-size if there exists a polynomial p and $\lambda_{0} \in \mathbb{N}$ such that for all $\lambda>\lambda_{0}$ it holds that $\left|\operatorname{Adv}_{\lambda}\right| \leq p(\lambda)$ (i.e., quantum adversaries have classical non-uniform advice).

3.2 Black-Box Access to Quantum Algorithms

Let A be a polynomial-time quantum algorithm with internal state $\rho \in \mathrm{D}(\mathcal{H})$ whose behavior is specified by a unitary U on $\mathcal{X} \otimes \mathcal{H}$. A quantum oracle algorithm S^{A} with black-box access to ($A, \boldsymbol{\rho}$) is restricted to acting on \mathcal{H} (which is initially set $\boldsymbol{\rho}$) by applying the unitary U or U^{\dagger}, but can freely manipulate \mathcal{X} and an arbitrary external register \mathcal{Y}.

Black-box access models sometimes permit the U and U^{\dagger} gates to be controlled on any external registers (i.e., any registers other than the registers $\mathcal{Z} \otimes \mathcal{H}$ to which U is applied). We note that none of the black-box algorithms in this work require controlled access to U, U^{\dagger}. This is because our black-box use of U, U^{\dagger} takes the form $U^{\dagger}\left(\mathbf{I}_{\mathcal{H}} \otimes V_{\mathcal{X}, \mathcal{Y}_{1}}\right) U$ where V is a unitary acting only on $\mathcal{X} \otimes \mathcal{Y}_{1}$, and we can replace U, U^{\dagger} controlled on \mathcal{Y}_{2}, with V controlled on \mathcal{Y}_{2}.

Algorithms with classical input and output. We also consider the special case of quantum algorithms that take classical "challenge" r and produce classical "response" z. Writing $\mathcal{X}=\mathcal{R} \otimes \mathcal{Z}$, an algorithm of this form is specified by a unitary U on $\mathcal{R} \otimes \mathcal{Z} \otimes \mathcal{H}$ of the form $\sum_{r}|r\rangle\left\langle\left. r\right|_{\mathcal{R}} \otimes U_{\mathcal{Z}, \mathcal{H}}^{(r)}\right.$. For example, S^{A} can run A on a superposition of inputs by instantiating $\mathcal{R} \otimes \mathcal{Z}$ to $\sum_{r}|r\rangle_{\mathcal{R}} \otimes|0\rangle_{\mathcal{Z}}$ and then applying U.

We note that this definition is consistent with the notions of interactive quantum machines and oracle access to an interactive quantum machine used in e.g. [Unr12] and other works on post-quantum zero-knowledge.

We remark that our formalism is tailored to the two-message challenge-response setting. While the protocols we analyze in this paper will have more than two messages of interaction, our analysis will typically center around two particular messages in the middle of a longer execution, and $\boldsymbol{\rho}$ will be the intermediate state of the interactive algorithm right before the next challenge is sent. We also point out that the unitary U can be treated as independent of the (classical) protocol transcript before challenge r is sent, since we can assume this transcript is saved in ρ.

3.3 Jordan's Lemma

We state Jordan's lemma and its relation to the singular value decomposition.
Lemma 3.3 ([Jor75]). For any two Hermitian projectors Π_{A} and Π_{B} on a Hilbert space \mathcal{H}, there exists an orthogonal decomposition of $\mathcal{H}=\bigoplus_{j} \mathcal{S}_{j}$ into one-dimensional and two-dimensional subspaces $\left\{\mathcal{S}_{j}\right\}_{j}$ (the Jordan subspaces), where each \mathcal{S}_{j} is invariant under both Π_{A} and Π_{B}. Moreover:

- in each one-dimensional space, Π_{A} and Π_{B} act as identity or rank-zero projectors; and
- in each two-dimensional subspace $\mathcal{S}_{j}, \Pi_{\mathrm{A}}$ and Π_{B} are rank-one projectors. In particular, there exist distinct orthogonal bases $\left\{\left|v_{j, 1}\right\rangle,\left|v_{j, 0}\right\rangle\right\}$ and $\left\{\left|w_{j, 1}\right\rangle,\left|w_{j, 0}\right\rangle\right\}$ for \mathcal{S}_{j} such that Π_{A} projects onto $\left|v_{j, 1}\right\rangle$ and Π_{B} projects onto $\left|w_{j, 1}\right\rangle$.

A simple proof of Jordan's lemma can be found in [Reg06].
For each j, the vectors $\left|v_{j, 1}\right\rangle$ and $\left|w_{j, 1}\right\rangle$ are corresponding left and right singular vectors of the matrix $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with singular value $s_{j}=\left|\left\langle v_{j, 1} \mid w_{j, 1}\right\rangle\right|$. The same is true for $\left|v_{j, 0}\right\rangle$ and $\left|w_{j, 0}\right\rangle$ with respect to $\left(\mathbf{I}-\Pi_{A}\right)\left(\mathbf{I}-\Pi_{B}\right)$.

3.4 Commitment Schemes

A commitment scheme consists of a pair of PPT algorithms Gen, Commit with the following properties.

Statistical/computational hiding. For an adversary Adv, define the experiment Exp hide (λ) as follows.

1. $\operatorname{Adv}\left(1^{\lambda}\right)$ sends $\left(c k, m_{0}, m_{1}\right)$ to the challenger.
2. The challenger flips a coin $b \in\{0,1\}$ and returns com := Commit(ck, m_{b}) to the adversary.

3 . The adversary outputs a bit b^{\prime}. The experiment outputs 1 if $b=b^{\prime}$.
We say that (Gen, Commit) is statistically (resp. computationally) hiding if for all unbounded (resp. non-uniform QPT) adversaries Adv,

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\text {hide }}^{\text {Adv }}(\lambda)=1\right]-1 / 2\right|=\operatorname{negl}(\lambda) .
$$

Statistical/computational binding. For an adversary Adv, define the experiment Exp bind (λ) as follows.

1. The challenger generates $\mathrm{ck} \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$.
2. $\operatorname{Adv}(\mathrm{ck})$ sends $\left(m_{0}, \omega_{0}, m_{1}, \omega_{1}\right)$ to the challenger.
3. The experiment outputs 1 if Commit(ck, $\left.m_{0}, \omega_{0}\right)=\operatorname{Commit}\left(\mathrm{ck}, m_{1}, \omega_{1}\right)$.

We say that (Gen, Commit) is statistically (resp. computationally) binding if for all unbounded (resp. non-uniform QPT) adversaries Adv,

$$
\operatorname{Pr}\left[\operatorname{Exp}_{\text {bind }}^{\text {Adv }}(\lambda)=1\right]=\operatorname{negl}(\lambda) .
$$

Collapse binding. For an adversary Adv, define the experiment $\operatorname{Exp}_{\mathrm{cl}}^{\text {Adv }}(\lambda)$ as follows.

1. The challenger generates $\mathrm{ck} \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$.
2. $\operatorname{Adv}(\mathrm{ck})$ sends a commitment com and a quantum state $\boldsymbol{\rho}$ on registers $\mathcal{M} \otimes \mathcal{W}$.
3. The challenger flips a coin $b \in\{0,1\}$. If $b=0$, the challenger does nothing. Otherwise, the challenger measures \mathcal{M} in the computational basis.
4. The challenger returns registers $\mathcal{M} \otimes \mathcal{W}$ to the adversary, who outputs a bit b^{\prime}. The experiment outputs 1 if $b=b^{\prime}$.

We say that Adv is valid if measuring the output of $\operatorname{Adv}(\mathrm{ck})$ in the computational basis yields, with probability 1 , (com, m, ω) such that Commit (ck, m, ω) $=$ com.

We say that (Gen, Commit) is collapse-binding if for all valid non-uniform QPT adversaries Adv,

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\mathrm{cl}}^{\operatorname{Adv}}(\lambda)=1\right]-1 / 2\right|=\operatorname{negl}(\lambda) .
$$

3.5 Preliminaries on Interactive Arguments

An interactive argument for an NP-language L consists of a pair of interactive algorithms P, V :

- The prover algorithm P is given as input an NP statement x and an NP witness w for x.
- The verifier algorithm V is given as input an NP statement x; at the end of the interaction, it outputs a bit b (interpreted as "accept"/"reject").

The minimal requirement we ask of such a protocol is completeness, which states that when the honest P, V algorithms are executed on a valid instance-witness pair (x, w), the verifier should accept with probability $1-\operatorname{negl}(\lambda)$.

We typically consider interactive arguments consisting of either 3 or 4 messages. In many (but not all) settings we assume that the argument system is public-coin (in the second-to-last round), meaning that the second-to-last message (or challenge) is a uniformly random string r from some domain. We will use the following notation to denote messages in any such protocol:

- For 4-message public-coin protocols, we use vk to denote the first verifier message.
- We denote the first prover message by a.
- We denote the verifier challenge by r.
- We denote the prover response by z.
- We denote the verification predicate by $V(\mathrm{vk}, a, r, z)$.

We consider 3-message protocols as a special case of 4-message protocols in which vk $=\perp$.
A key property of interactive protocols considered in this work is collapsing (and relaxations thereof), defined below.

Definition 3.4 (Collapsing Protocol [Unr16b, LZ19, DFMS19]). An interactive protocol (P, V) is collapsing if for every polynomial-size interactive quantum adversary A (where A may have an arbitrary polynomial-size auxiliary input quantum advice state),

$$
|\operatorname{Pr}[\operatorname{CollapseExpt}(0, A)=1]-\operatorname{Pr}[\operatorname{CollapseExpt}(1, A)=1]| \leq \operatorname{negl}(\lambda) .
$$

For $b \in\{0,1\}$, the experiment CollapseExpt (b, A) is defined as follows:

1. The challenger runs the interaction $\langle A, V\rangle$ between A (acting as a malicious prover) and the honest verifier V, stopping just before the measurement the register \mathcal{Z} containing the malicious prover's final message. Let τ^{\prime} be the transcript up to this point excluding the final prover message.
2. The challenger applies a unitary U to compute the verifier's decision bit $V\left(\tau^{\prime}, \mathcal{Z}\right)$ onto a fresh ancilla, measures the ancilla, and then applies U^{\dagger}. If the measurement outcome is 0 , the experiment aborts.
3. If $b=0$, the challenger does nothing. If $b=1$, the challenger measures the \mathcal{Z} register in the computational basis and discards the result.
4. The challenger returns the \mathcal{Z} register to A. Finally A outputs a bit b^{\prime}, which is the output of the experiment.

Definition 3.4 captures the collapsing property of Kilian's interactive argument system [Kil92] (as well as other Σ-protocols that make use of "strongly collapsing commitments" [CCY21]), but does not accurately capture protocols that make use of commitments satisfying statistical binding but not "strict binding" [Unr12]. To capture these protocols, we introduce a partial-collapsing definition.

For a 3 or 4-message interactive protocol (P, V), let T denote the set of transcript prefixes $\tau_{\text {pre }}$ (i.e., the first message a in a 3 -message protocol or the first two messages (vk,a) in a 4-message protocol), let R denote the set of challenges r (the second-to-last message) and let Z denotes the set of possible responses z (the final message). Informally, such a protocol is partially collapsing with respect to a function $f: T \times R \times Z \rightarrow\{0,1\}^{*}$ if the prover cannot detect a measurement of f.

Definition 3.5 (Partially Collapsing Protocol). Let $f: T \times R \times Z \rightarrow\{0,1\}^{*}$ be a public efficiently computable function. A 3 or 4 -message interactive protocol (P, V) is partially collapsing with respect to f if for every polynomial-size interactive quantum adversary A (where A may have an arbitrary polynomial-size auxiliary input quantum advice state),

$$
|\operatorname{Pr}[\operatorname{PCollapseExpt}(0, f, A)=1]-\operatorname{Pr}[\operatorname{PCollapseExpt}(1, f, A)=1]| \leq \operatorname{negl}(\lambda) .
$$

For $b \in\{0,1\}$, the experiment PCollapse $\operatorname{Expt}(b, f, A)$ is defined as follows:

1. The challenger runs the interaction $\langle A, V\rangle$ between A (acting as a malicious prover) and the honest verifier V, stopping just before the measurement the register \mathcal{Z} containing the malicious prover's final message. Let ($\tau_{\text {pre }}, r$) be the transcript up to this point (i.e., excluding the final prover message).
2. The challenger applies a unitary U to compute the verifier's decision bit $V\left(\tau^{\prime}, \mathcal{Z}\right)$ onto a fresh ancilla, measures the ancilla, and then applies U^{\dagger}. If the measurement outcome is 0 , the experiment aborts.
3. If $b=0$, the challenger does nothing. If $b=1$, the challenger initializes a fresh ancilla \mathcal{Y} to $|0\rangle_{\mathcal{Y}}$, applies the unitary U_{f} (acting on $\left.\mathcal{Z} \otimes \mathcal{Y}\right)$ that computes $f\left(\tau_{\text {pre }}, r, \cdot\right)$ on \mathcal{Z} and XORs the output onto \mathcal{Y}, measures \mathcal{Y} and discards the result, and then applies U_{f}^{\dagger}.
4. The challenger returns the \mathcal{Z} register to A. Finally A outputs a bit b^{\prime}, which is the output of the experiment.

Definition 3.5 captures the collapsing property of standard commit-and-open Σ-protocols [GMW86, Blu86] that make use of statistically binding (or, more generally, standard collapse-binding [Unr16b, CCY21]) commitments by setting f to output the part of z corresponding to the committed message (but not the opening). In some other cases (a subroutine of the [GMW86] graph non-isomorphism protocol, as well as the [LS91] "reverse Hamiltonicity" Σ-protocol) we will use more complicated definitions of f that measure different pieces of information depending on the challenge r.

Finally, we recall the definition of special honest-verifier zero knowledge.

Definition 3.6 (Special honest-verifier zero knowledge). A 3-message sigma protocol (P_{Σ}, V_{Σ}) is special honest verifier zero knowledge (SHVZK) if there exists an algorithm SHVZK.Sim such that for all $(x, w) \in \mathfrak{R}$ and challenges $r \in R$, the distributions

$$
\operatorname{SHVZK} \cdot \operatorname{Sim}(x, r) \quad \text { and } \quad(a, z) \leftarrow P_{\Sigma}(x, w, r)
$$

are computationally indistinguishable.

4 Standard Collapse-Binding Implies Unique Messages

Recall that the standard collapse-binding security property ensures that if an efficient adversary produces a superposition of valid message-opening pairs (m, ω) to a commitment c, then it cannot detect whether a measurement of m is performed. There is an apparent deficiency with this definition as compared to the classical binding definition, which Unruh (implicitly) observes in [Unr12, Unr16b]: collapse-binding does not seem to imply that an adversary cannot give valid openings to two different messages if the openings themselves are not measured.

This issue has received relatively little attention, in part because circumventing it turns out to be fairly easy in many cases by either modifying the underlying protocol, or by simply assuming "strong" collapse-binding [CCY21] where the measurement of the message and opening is undetectable. For example:

- In [Unr12], Unruh introduces the notion of a strict-binding commitment, defined so that for any commitment c, there is a unique valid message-opening pair (m, ω). Unruh shows that standard Σ-protocols (such as GMW 3-coloring and Blum Hamiltonicity) are sound when instantiated with strict-binding commitments, but due to the issue described above, is unable to prove that these protocols are sound when instantiated with a statistically-binding commitment.
- In [Unr16b], Unruh gives a generic transformation which converts a classically secure Σ protocol into a quantum proof of knowledge by committing to the responses to each challenge in advance. However, in many Σ-protocols (e.g. [GMW86, Blu86]) the response already consists of an opening to a commitment; are these protocols secure if the commitment is collapse-binding?
- This issue also arises in [CCY21], which explicitly asks for a strong collapse-binding commitment to instantiate their Σ-protocols. (They do note that a statistically binding commitment also suffices via a different argument.)

We believe this is an unsatisfying state of affairs. Collapse-binding is widely accepted as the quantum analogue of classical computational binding, but as the above examples illustrate, there are many natural settings where it is unclear whether it can be used as a drop-in replacement for classically binding commitments. Given this issue, a natural suggestion would be to treat strong collapse-binding as the quantum analogue of classical binding. However, we suggest that any definition of quantum computationally binding should at least capture statistically binding commitments. Statistically binding commitments do not generically satisfy strong collapse-binding, but are (standard) collapse-binding. Worse, strong collapse-binding is not a "robust" notion: we can make any commitment scheme lose its strong collapse-binding property by adding a single bit to the opening that the receiver ignores.

In this section, we resolve this difficulty and show that standard collapse-binding generically implies that an adversary cannot give two valid openings for two different messages, even when the openings are left unmeasured. This simplifies some of the proofs in this work, and also implies that strong collapse-binding and strict binding are unnecessary in the above examples.

Towards proving this, we first formalize a natural security property that captures the fact that a quantum adversary should only be able to open to a unique message.

Let Com $=$ (Gen, Commit) be a non-interactive commitment scheme. Define the following challenger-adversary interaction $\operatorname{Exp}_{\text {uniq }}^{\operatorname{Adv}}(\lambda)$ where $\operatorname{Adv}=\left(\operatorname{Adv}_{1}, \operatorname{Adv}_{2}\right)$ is a two-phase adversary.

1. The challenger generates $\mathrm{ck} \leftarrow \operatorname{Gen}(\lambda)$.
2. Run $\operatorname{Adv}_{1}(c k)$ to output a classical commitment string com, a classical message m_{1} and a superposition of openings on register \mathcal{W}. It also returns its internal state \mathcal{H}, which is passed onto Adv_{2}.
3. The challenger measures whether \mathcal{W} contains a valid opening for m_{1} with respect to com and aborts (and outputs 0) if not.
4. Run $\operatorname{Adv}_{2}(\mathrm{ck})$ on $(\mathcal{H}, \mathcal{W})$. It outputs another message m_{2} and a superposition of openings on register \mathcal{W}. If $m_{2}=m_{1}$ then the experiment aborts and outputs 0 .
5. The challenger measures whether \mathcal{W} contains a valid opening for m_{2} with respect to com. If so, the experiment outputs 1 , otherwise 0 .

Definition 4.1. We say that a commitment is unique-message binding if it can only be opened to a unique message if for all QPT adversaries Adv,

$$
\operatorname{Pr}\left[\operatorname{Exp}_{u n i q}^{\operatorname{Adv}}(\lambda)=1\right]=\operatorname{negl}(\lambda)
$$

Lemma 4.2. Any collapse-binding commitment Com satisfies unique-message binding.
We remark that the unique-message binding definition and this lemma easily extend to interactive collapse-binding commitments. However, we will focus on the non-interactive case for simplicity. Our proof is reminiscent of the "control qubit" trick used by Unruh in [Unr16a] to prove that collapse-binding implies a notion called sum-binding.

Proof. Suppose that $\operatorname{Adv}=\left(\operatorname{Adv}_{1}, \operatorname{Adv}_{2}\right)$ satisfies $\operatorname{Pr}\left[\operatorname{Exp}_{u n i q}^{\operatorname{Adv}}(\lambda)=1\right]=\varepsilon(\lambda)=\varepsilon$. Then we construct an adversary Adv^{\prime} that obtains advantage $\varepsilon / 8$ in the collapsing game for Com as follows:

1. Upon receiving ck from the challenger, Adv^{\prime} does the following:
(a) Run $\operatorname{Adv}_{1}(\mathrm{ck})$ to obtain a classical commitment com, a classical message m_{1} (on register $\mathcal{M})$, and registers \mathcal{W}, \mathcal{H}.
(b) Measure whether \mathcal{W} contains a valid opening for m_{1} with respect to com; if the opening is invalid, abort and output a random $b^{\prime} .^{26}$

[^19](c) Next, prepares an ancilla qubit \mathcal{B} in the state $|+\rangle_{\mathcal{B}}$ and then apply the unitary U defined as
$$
U=|1\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes U_{\mathcal{H}, \mathcal{M}, \mathcal{W}}^{\mathrm{Adv}_{2}}+\mid 0\right\rangle\left\langle\left. 0\right|_{\mathcal{B}} \otimes \mathbf{I}_{\mathcal{H}, \mathcal{M}, \mathcal{W}} .\right.
$$
where $U^{\mathrm{Adv}_{2}}$ is a unitary description of Adv_{2} (the action of Adv_{2} on $\mathcal{H} \otimes \mathcal{M} \otimes \mathcal{W}$ is unitary without loss of generality). That is, the unitary U has two branches of computation: it does nothing when $\mathcal{B}=0$, and it runs Adv_{2} when $\mathcal{B}=1$.
(d) Next apply the binary projective measurement $\left(\Pi_{c k, c o m, m_{1}}, \mathbf{I}-\Pi_{\mathrm{ck}, \text { com }, m_{1}}\right)$ where
\[

\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}:=|0\rangle\left\langle\left. 0\right|_{\mathcal{B}} \otimes \mathbf{I}_{\mathcal{H}, \mathcal{M}, \mathcal{W}}+\mid 1\right\rangle\left\langle\left.\left. 1\right|_{\mathcal{B}} \otimes \mathbf{I}_{\mathcal{H}} \otimes \sum_{$$
\begin{array}{c}
m, \omega: m \neq m_{1} \wedge \\
\operatorname{Commit}(c k, m, \omega)=\operatorname{com}
\end{array}
$$} \right\rvert\, m, \omega\right\rangle\left\langle m,\left.\omega\right|_{\mathcal{M}, \mathcal{W}} .\right.
\]

This measurement checks that after applying U, the output of Adv_{2} (when $\mathcal{B}=1$) is a valid message and opening (m, ω) where $m \neq m_{1}$. If this measurement rejects, abort and output a random b^{\prime}.
(e) Finally, send $\mathcal{M} \otimes \mathcal{W}$ to the collapsing challenger.
2. When the collapsing challenger returns $\mathcal{M} \otimes \mathcal{W}$, apply U^{\dagger}.
3. Perform the binary projective measurement $\left(\Pi_{+}, \mathbf{I}-\Pi_{+}\right)$where $\Pi_{+}:=|+\rangle\left\langle+\left.\right|_{\mathcal{B}} \otimes \mathbf{I}_{\mathcal{H}, \mathcal{M}, \mathcal{W}}\right.$. If the measurement outcome is 1 (corresponding to $|+\rangle$), then Adv' outputs $b^{\prime}=0$ (i.e., guesses that the collapsing challenger did not measure the message). Otherwise, it outputs $b^{\prime}=1$.

We now compute the probability that Adv' outputs $b^{\prime}=b$ for each choice of the collapsing challenge bit b.

If $b=1$, then Adv' guesses correctly (outputs $b^{\prime}=1$) with probability exactly $1 / 2$. This is because if Adv $^{\prime}$ aborts, it outputs 1 with probability $1 / 2$ by definition, and if it does not abort, then it sends the collapsing challenger $\mathcal{M} \otimes \mathcal{W}$ where a measurement of the \mathcal{M} register will completely determine the \mathcal{B} register. In particular, if the outcome of the \mathcal{M} measurement is m_{1}, \mathcal{B} collapses to $|0\rangle$; otherwise, \mathcal{B} collapses to $|1\rangle$. In either case, the probability that the measurement of $\left(\Pi_{+}, \mathbf{I}-\Pi_{+}\right)$returns 0 (making Adv' output $b^{\prime}=1$) is exactly $1 / 2$.

We now consider the case $b=0$. Let $\boldsymbol{\rho}=\sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}+\boldsymbol{\rho}_{\perp}$ be the state on $\mathcal{M} \otimes \mathcal{W} \otimes \mathcal{H}$ after Step 1b, where $\boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}$ is the (subnormalized) state corresponding to outcomes ck, com, m_{1} and the outcome "valid" in Step 1b, and ρ_{\perp} is the (subnormalized) state corresponding to the outcome "invalid" in Step 1b.

Recall that in the case $b=0$, the collapsing challenger does nothing to $\mathcal{M} \otimes \mathcal{W}$. Thus the effect of Steps $1 \mathrm{c}, 1 \mathrm{~d}$ and 2 is to apply a binary projective measurement $\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}, \mathbf{I}-\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\right)$ where $\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}:=U^{\dagger} \Pi_{\mathrm{ck}, \mathrm{com}, m_{1}} U$. From the description of the experiment, it holds that

$$
\begin{aligned}
\operatorname{Pr}\left[b^{\prime}=0\right]= & \frac{1}{2} \operatorname{Tr}\left(\boldsymbol{\rho}_{\perp}\right)+\frac{1}{2} \sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\left(\mathbf{I}-\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\right)\left(|+\rangle+\mid \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right) \\
& +\sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\Pi_{+} \Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\rangle+\mid \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right) \Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\right) \\
\geq & \frac{1}{2}-\frac{1}{2} \sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\rangle\langle+| \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\left(\frac{\operatorname{Tr}\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\rangle\langle+| \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right)}{\operatorname{Tr}\left(\boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)}\right)^{2} \\
\geq & \frac{1}{2}-\frac{1}{2} \sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\rangle\langle+| \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right) \\
& +\frac{\left(\sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\rangle\langle+| \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right)\right)^{2}}{\sum_{\mathrm{ck}, \mathrm{com}, m_{1}} \operatorname{Tr}\left(\boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)}
\end{aligned}
$$

where the latter inequality is Jensen, and the former is the following:
Claim 4.3. If $\Pi_{A} \boldsymbol{\rho}=\boldsymbol{\rho}$ then $\operatorname{Tr}\left(\Pi_{\mathrm{A}} \Pi_{\mathrm{B}} \boldsymbol{\rho} \Pi_{\mathrm{B}}\right) \geq \operatorname{Tr}\left(\Pi_{\mathrm{B}} \boldsymbol{\rho}\right)^{2} / \operatorname{Tr}(\boldsymbol{\rho})$.
Proof. $\operatorname{Tr}\left(\Pi_{B} \boldsymbol{\rho}\right)=\operatorname{Tr}\left(\Pi_{B} \boldsymbol{\rho} \Pi_{A}\right)=\operatorname{Tr}\left(\Pi_{A} \Pi_{B} \boldsymbol{\rho}\right) \leq \sqrt{\operatorname{Tr}\left(\Pi_{A} \Pi_{B} \boldsymbol{\rho} \Pi_{B} \Pi_{A}\right) \operatorname{Tr}(\boldsymbol{\rho})}$, where the inequality is by Cauchy-Schwarz.

Let $\gamma:=\sum_{\text {ck,com }, m_{1}} \operatorname{Tr}\left(\boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)$. Observe that $\sum_{\mathrm{ck}, \text { com }, m_{1}} \operatorname{Tr}\left(\Pi_{\mathrm{ck}, \mathrm{com}, m_{1}}^{\prime}\left(|+\gamma+| \otimes \boldsymbol{\rho}_{\mathrm{ck}, \mathrm{com}, m_{1}}\right)\right)=$ $(\gamma+\varepsilon) / 2$. It follows that

$$
\operatorname{Pr}\left[b^{\prime}=0\right]=\frac{1}{2}-\frac{1}{4}(\gamma+\varepsilon)+\frac{1}{4} \cdot \frac{(\gamma+\varepsilon)^{2}}{\gamma} \geq \frac{1}{2}+\frac{\varepsilon}{4} .
$$

Thus the overall probability that Adv' guesses a random b correctly in the collapsing experiment is at least $1 / 2+\varepsilon(\lambda) / 8$.

5 Generalized Notions of Special Soundness

Let (P, V) denote a 3 or 4-message public-coin interactive proof or argument system. Let T denote the set of transcript prefixes $\tau_{\text {pre }}$ (i.e., the first message in a 3 -message protocol or the first two messages in a 4-message protocol), R denotes the set of challenges r (the second-to-last message) and Z denotes the set of possible responses z (the final message). The instance x is assumed to be part of $\tau_{\text {pre }}$, which allows us to capture protocols in which the instance is adaptively chosen by the prover in its first message.

We introduce generalizations of the special soundness property to capturing situations where

1. the special soundness extractor is able to produce a witness given only a function $f(z)$ of the response z, and/or
2. the extractor is only required to succeed (with some $1-\operatorname{negl}(\lambda)$ probability) when the challenges are sampled from an "admissible distribution."

The second property is related to the notion of probabilistic special soundness due to [CMSZ21]. ${ }^{27}$
Throughout this section, k will be a parameter specifying the number of (partial) transcripts required to extract.

[^20]
5.1 Generalized Special Soundness Definitions

We first recall the standard definition of k special soundness.
Definition 5.1 (k-special soundness). An interactive protocol (P, V) is k-special-sound if there exists an efficient extractor SSExtract : $T \times(R \times Z)^{k} \rightarrow\{0,1\}^{*}$ such that given $\tau_{\text {pre }},\left(r_{i}, z_{i}\right)_{i \in[k]}$ where each r_{i} is distinct and for each $i,\left(\tau_{\text {pre }}, r_{i}, z_{i}\right)$ is an accepting transcript, $\operatorname{SSExtract}\left(\tau_{\text {pre }}, r_{i}, z_{i}\right)$ outputs a valid witness w for the instance x with probability 1 .

In order to generalize this definition, we consider interactive protocols (P, V) with a "consistency" predicate $g: T \times\left(R \times\{0,1\}^{*}\right)^{*} \rightarrow\{0,1\}$. The argument $\{0,1\}^{*}$ corresponds to some partial information y about a response z. The consistency predicate should have the property that if $g\left(\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in[k]}\right)=1$, then $g\left(\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in G}\right)=1$ for all subsets $G \subset[k]$. For any positive integer k, we define the set Consistent ${ }_{k}$ to be the subset of $T \times\left(R \times\{0,1\}^{*}\right)^{k}$ on which g outputs 1 . We can extend k special soundness to allow the SSExtract algorithm to produce a witness given only partial information y_{i} of the responses z_{i} provided that the "partial transcripts" satisfy consistency.

Definition 5.2 (k, g)-special soundness). An interactive protocol (P, V) is (k, g)-special-sound if there exists an efficient extractor SSExtract ${ }_{g}: T \times\left(R \times\{0,1\}^{*}\right)^{*} \rightarrow\{0,1\}$ such that given $\left(\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in[k]}\right) \in$ Consistent $_{k}$ where each r_{i} is distinct and for each $i, \operatorname{SSExtract}_{g}\left(\tau_{\text {pre }}, r_{i}, y_{i}\right)$ outputs a valid witness w with probability 1 .

Notice that all k-special-sound protocols with super-polynomial size challenge space are (k, g) -probabilistic-special sound for the "trivial" consistency predicate g that simply checks (interpreting $y_{i}=z_{i}$ as a full response) whether all the transcripts are accepting.

Claim 5.3. For any k-special-sound protocol (P, V), there exists a consistency predicate g such that (P, V) is (k, g)-special-sound.

Proof. Define g to output 1 on input $\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in[k]}$ if and only if each $\left(\tau_{\text {pre }}, r_{i}, y_{i}\right)$ is an accepting transcript. It follows that the original SSExtract in the special soundness definition satisfies the requirements of the (k, g)-special soundness definition.

When the challenge space R is super-polynomial-size, we can generalize this definition even further so that the extractor need not succeed on worst-case k-tuples of distinct challenges, but only on k-tuples sampled from an "admissible distribution."

Definition 5.4 (Q-admissible distribution). A distribution D_{k} over R^{k} is admissible if there exists a negligible function $\operatorname{negl}(\lambda)$ and a sampling procedure Samp such that D_{k} is $\operatorname{negl}(\lambda)$-close to the output distribution of the following process:

- Samp makes, in expectation, $Q(\lambda)$ classical queries to an oracle O_{R} that outputs a uniformly random challenge $r \leftarrow R$ each time it is queried.
- Samp must produce its outputs as follows. Let $Q_{\text {total }}$ be the total number of queries it makes to O_{R}. Samp specifies a set $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\left[Q_{\text {total }}\right]$, and its output is defined to be $r_{i_{1}}, \ldots, r_{i_{k}}$ where r_{i} is the i th output of the uniform sampling oracle O_{R}.
We stress that Samp may use an arbitrary (e.g., even inefficient) process to select the set $\left\{i_{1}, \ldots, i_{k}\right\}$. Moreover, the output challenges $r_{i_{1}}, \ldots, r_{i_{k}}$ do not necessarily have distinct values (this can occur if the sampling oracle O_{R} outputs the same challenge more than once).

Definition 5.5 (admissible distribution). A distribution D_{k} over R^{k} is admissible if there exists $Q=\operatorname{poly}(\lambda)$ such that D_{k} is a Q-admissible distribution (Definition 5.4).

Definition 5.6 ((k, g)-probabilistic special soundness). An interactive protocol (P, V) with consistency predicate g is (k, g)-probabilistic-special-sound if there exists an efficient extractor SSExtract : $T \times\left(R \times\{0,1\}^{*}\right)^{k} \rightarrow\{0,1\}^{*}$ such that for any distribution D supported on Consistent ${ }_{k}$ whose marginal distribution on R^{k} is admissible,

$$
\operatorname{Pr}_{\left(\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in[k]}\right) \leftarrow D}\left[\operatorname{PSSExtract}{ }_{g}\left(\tau_{\text {pre }},\left(r_{i}, y_{i}\right)_{i \in[k]}\right) \rightarrow w \wedge w \text { is a valid witness for } x\right]=1-\operatorname{negl}(\lambda)
$$

Note that (k, g)-probabilistic special soundness (PSS) is only meaningful when the challenge space R has super-polynomial size. When R is polynomial, an admissible distribution D_{k} can simply output (r, \ldots, r) (the same challenge repeated k times) since there exists a Samp that simply queries O_{R} until it outputs the same challenge k times.

However, when $|R|$ is superpolynomial, (k, g)-PSS is a relaxation of (k, g)-special soundness.
Claim 5.7. When $R=2^{\omega(\log \lambda)}$, any (k, g)-special-sound protocol is also (k, g)-probabilistic-specialsound.

Proof. It suffices to prove that the probability any admissible distribution outputs the same challenge r more than once is negl (λ). By the definition of an admissible distribution, its output is $\operatorname{negl}(\lambda)$-close to the output of an arbitrary sampling algorithm that makes an expected poly (λ) number of queries to a uniform sampling oracle O_{R} over R, and then outputs a size- k subset of the oracle responses.

Suppose towards a contradiction that there exists constant c such that for infinitely many $\lambda \in \mathbb{N}$, the sampling oracle O_{R} outputs a repeated challenge with probability $1 / \lambda^{c}$. Let d be a constant such that the expected number of queries to the uniform sampling oracle O_{R} is $O\left(\lambda^{d}\right)$. If $0 \leq q \leq \lambda^{d+c+1}$ oracle queries have already been made, the probability that the next oracle query allows finding a collision is at most $\lambda^{d+c+1} /|R|$. This implies that finding a collision within λ^{d+c+1} queries is at most $\lambda^{2 d+2 c+2} /|R|$. Thus, to find a collision with probability at least $1 / \lambda^{c}$, the number of oracle queries must be at least λ^{d+c+1} with probability at least $1 / \lambda^{c}-\lambda^{2 d+2 c+2} /|R|$, which implies the expected number of oracle queries is at least $\lambda^{d+c+1}\left(1 / \lambda^{c}-\lambda^{2 d+2 c+2} /|R|\right)=$ $\lambda^{d+1}-\lambda^{3 d+3 c+3} /|R|$. Since $R=2^{\omega(\log \lambda)}$, there exists a constant λ_{0} such that for all $\lambda>\lambda_{0}$, this expectation is $\lambda^{d+1}-\lambda^{3 d+3 c+3} /|R|>\lambda^{d+1}-1$. This contradicts our assumption that the expected number of queries to the sampling oracle is $O\left(\lambda^{d}\right)$.

5.2 A Special Soundness Parallel Repetition Theorem

Although it is well-known that 2-special soundness is preserved under parallel repetition, the situation is more complicated for generalized special soundness notions (and even k-special soundness for larger values of k). We state and prove a useful theorem about the parallel repetition of special sound protocols.

Lemma 5.8. If $\Sigma=(P, V)$ is a (k, g)-special-sound protocol, then the $t=\Omega\left(k^{2} \log ^{2}(\lambda)\right)$-fold parallel repetition Σ^{t} is $\left(k^{2}, g^{t}\right)$-probabilistic special sound where g^{t} outputs 1 if and only (1) the arguments y_{i} consist of t formally separated components, and (2) g outputs 1 on each of the t components.

Proof. Let Consistent $k_{k^{2}}$ be the set of k-tuples of shared-prefix partial transcripts of Σ^{t} on which g^{t} outputs 1. Let D be a distribution supported on Consistent ${ }_{k^{2}}$ whose marginal distribution on $\left(R^{t}\right)^{k^{2}}$ is admissible.

We construct PSSExtract $g_{g^{t}}$ for Σ^{t} that takes as input

$$
\left(\tau_{\text {pre }, j}\right)_{j \in[t]},\left(\left(r_{j, i}\right)_{j \in[t]},\left(y_{j, i}\right)_{j \in[t]}\right)_{i \in\left[k^{2}\right]} \leftarrow D
$$

and does the following:

1. Look for $j \in[t]$ such that $\left\{r_{j, i}\right\}_{i \in\left[k^{2}\right]}$ consists of k distinct challenges. If no such j exists, abort and output \perp.
2. If such a j exists, let H be a size- k subset of $\left[k^{2}\right]$ such that $\left\{r_{j, i}\right\}_{i \in H}$ consists of k distinct challenges, and let SSExtract ${ }_{g}$ be the (k, g)-special-soundness extractor for Σ. Run $\operatorname{SSExtract}_{g}\left(\tau_{\text {pre }, j},\left(r_{j, i}, y_{j, i}\right)_{i \in H}\right) \rightarrow w$ and output w.

First, we note that

$$
g\left(\tau_{\text {pre }, j},\left(r_{j, i}, y_{j, i}\right)_{i \in H}\right)=1
$$

follows from

$$
g^{t}\left(\left(\tau_{\text {pre }, j}\right)_{j \in[t]},\left(\left(r_{j, i}\right)_{j \in[t]},\left(y_{j, i}\right)_{j \in[t]}\right)_{i \in\left[k^{2}\right]}\right)=1 .
$$

Thus, it suffices to prove that this extractor aborts with probability negl (λ). Define BAD $\subset R^{t k^{2}}$ to be the set of all $t k^{2}$-tuples $\left(r_{j, i}\right)_{j \in[t], i \in\left[k^{2}\right]}$ such that for all $j \in[t]$, the k^{2}-tuple $\left(r_{j, i}\right)_{i \in\left[k^{2}\right]}$ does not contain k distinct challenges.

Suppose $\left(r_{j, i}\right)_{j \in[t], i \in\left[k^{2}\right]}$ is sampled uniformly at random from $R^{t k^{2}}$. Then we have

$$
\operatorname{Pr}_{\left(r_{j, i}\right)_{j \in[t], i \in\left[k^{2}\right]} \leftarrow R^{t k^{2}}}\left[\left(r_{j, i}\right)_{j \in[t], i \in\left[k^{2}\right]} \in \mathrm{BAD}\right] \leq\left(\frac{k}{e^{k}}\right)^{t} .
$$

This follows from the fact that for any fixed j, the probability that $\left(r_{j, i}\right)_{i \in\left[k^{2}\right]}$ does not contain k distinct challenges is at most $k((k-1) / k)^{k^{2}} \leq k / e^{k}$.

By the definition of an admissible distribution (Definition 5.5), the marginal distribution of $D_{\Sigma^{t}}$ on $\left(R^{t}\right)^{k^{2}}$ is the result of the following process (up to negl (λ) statistical distance): make an expected poly (λ) number of classical queries to a uniform sampling oracle $O_{R^{t}}$ over R^{t}, receiving a set of challenges A, and then (using an arbitrary procedure) output any size- k^{2} subset $\left\{\left(r_{1,1}, \ldots, r_{t, 1}\right), \ldots,\left(r_{1, k^{2}}, \ldots, r_{t, k^{2}}\right)\right\}$ of A of k^{2} challenges. The extractor aborts if $\left(r_{j, i}\right)_{j \in[t], i \in\left[k^{2}\right]} \in$ BAD.

Let d be a constant such that the expected number of queries to the uniform sampling oracle $O_{R^{t}}$ is $O\left(\lambda^{d}\right)$. Suppose towards a contradiction that the extractor aborts with non-negligible probability, i.e., there exists a constant c such that for infinitely many $\lambda \in \mathbb{N}$, the extractor aborts with probability at least $1 / \lambda^{c}$. If $0 \leq q \leq \lambda^{d+c+1}$ oracle queries have already been made, the probability that the next oracle query allows finding a size- k^{2} subset of outputs in BAD is at most

$$
\left(\lambda^{d+c+1}\right)^{k^{2}}\left(\frac{k}{e^{k}}\right)^{k^{2} \log ^{2}(\lambda)}
$$

Moreover, there exists a constant λ_{0} such that for all $\lambda>\lambda_{0}$, this can be upper bounded as

$$
\left(\lambda^{d+c+1}\right)^{k^{2}}\left(\frac{k}{e^{k}}\right)^{k^{2} \log ^{2}(\lambda)}<\left(\frac{2^{k^{2}+k^{2} \log (k)}}{e^{k^{3}}}\right)^{\log ^{2}(\lambda)}<(1 / 2)^{\log ^{2}(\lambda)}=1 / \lambda^{\log (\lambda)}
$$

Thus for all $\lambda>\lambda_{0}$, the probability of finding a size- k^{2} subset of oracle outputs in BAD within λ^{d+c+1} oracle queries is at most $\lambda^{d+c+1} / \lambda^{\log (\lambda)}$; this implies that finding a size- k^{2} subset of oracle outputs in BAD with probability $1 / \lambda^{c}$ requires making at least λ^{d+c+1} oracle queries with probability at least $1 / \lambda^{c}-\lambda^{d+c+1} / \lambda^{\log (\lambda)}$. Then for $\lambda>\lambda_{0}$, the expected number of queries is at least $\left(\lambda^{d+c+1}\right)\left(1 / \lambda^{c}-\lambda^{d+c+1} / \lambda^{\log (\lambda)}\right)=\lambda^{d+1}-\lambda^{2 d+2 c+2} / \lambda^{\log (\lambda)}$. Since c and d are constants, there exists λ_{0}^{\prime} such that for $\lambda>\lambda_{0}^{\prime}$, the expected number of queries is at least $\lambda^{d+1}-1$. This contradicts our assumption that the number expected number of queries to the uniform sampling oracle is $O\left(\lambda^{d}\right)$.

5.3 Examples of Probabilistic Special Sound Protocols

We now show that many classical interactive proofs-of-knowledge (or arguments-of-knowledge) satisfy probabilistic special soundness. It was already noted above that (parallel repetitions of) standard special sound protocols satisfy the notion. Here, we highlight three other cases: commit-and-open protocols (where g is only given partial transcripts), Kilian's protocol, and a subroutine of the [GMW86] graph non-isomorphism protocol.

5.3.1 The "one-out-of-two" graph isomorphism subroutine

In order to prove Theorem 1.2, we consider the following proof-of-knowledge subroutine of the [GMW86] graph non-isomorphism protocol:

- The subroutine instance is three graphs G_{0}, G_{1}, H. The prover ${ }^{28}$ wants to prove that there exists a bit b such that G_{b} is isomorphic to H. To do so, they execute a parallel repetition of the following protocol.
- The prover picks a random permutations σ_{0}, σ_{1}, a random bit c, and sends $\left(H_{0}=\sigma_{0}\left(G_{c}\right), H_{1}=\right.$ $\left.\sigma_{1}\left(G_{1-c}\right)\right)$ to the verifier.
- The verifier sends a random bit r.
- If $r=0$, the prover sends $\left(c, \sigma_{0}, \sigma_{1}\right)$ and the verifier checks that $\left(H_{0}=\sigma_{0}\left(G_{c}\right), H_{1}=\sigma_{1}\left(G_{1-c}\right)\right)$ was computed correctly.
- If $r=1$, the prover sends $\left(c \oplus b, \sigma_{c \oplus b} \pi\right)$, where π is an isomorphism mapping H to G_{b}. The verifier then checks that $\left(\sigma_{c \oplus b} \pi\right) H=H_{c \oplus b}$.

In the classical setting, this is generally viewed as a proof of knowledge of (b, π). However, we consider it as a proof of knowledge of the bit b, in the situation where G_{0} and G_{1} are not isomorphic. We will formalize this in two different ways: first by showing that the protocol is $(2, g)$-special sound for a natural consistency predicate g, and then by showing that it is $\left(2, g^{\prime}\right)$-PSS

[^21]for a more complicated predicate g^{\prime} that we have to use to be compatible with the protocol's limited partial collapsing property.

First, we define an (inefficient) consistency predicate g, which is given as input $\tau_{\text {pre }}$ an arbitrary number of pairs $(\mathbf{r}, \mathbf{c}) \in\{0,1\}^{\lambda} \times\{0,1\}^{\lambda}$ (rejecting if the input is not of this form). g outputs 1 if the following conditions hold for all $\ell \in[\lambda]$:

- If $r_{\ell}=0$, the graphs $\left(H_{0, \ell}, H_{1, \ell}\right)$ are isomorphic to $\left(G_{c_{\ell}}, G_{1-c_{\ell}}\right)$.
- If $r_{\ell}=1$, the graph $H_{c_{\ell}, \ell}$ is isomorphic to H.

The following claim then holds immediately by transitivity of graph isomorphism. The extractor, given (\mathbf{r}, \mathbf{c}) and $\left(\mathbf{r}^{\prime}, \mathbf{c}^{\prime}\right)$ simply chooses an ℓ such that $r_{\ell} \neq r_{\ell}^{\prime}$ and outputs $b=c_{\ell} \oplus c_{\ell}^{\prime}$.

Claim 5.9. If G_{0} and G_{1} are not isomorphic, then the [GMW86] subroutine satisfies $(2, g)$-special soundness, where the extractor outputs the bit b.

Finally, we define the predicate g^{\prime} to be a slight modification of g : for the first pair $\left(r^{(1)}, c^{(1)}\right)$, g^{\prime} ignores ${ }^{29}$ the bits $c_{\ell}^{(1)}$ for i such that $r_{\ell}^{(1)}=1$. The protocol will then not be $\left(2, g^{\prime}\right)$-special sound (e.g. a first transcript with $r^{(1)}=1^{\lambda}$ would provide no information), it will be $\left(2, g^{\prime}\right)$-PSS.

Claim 5.10. If G_{0} and G_{1} are not isomorphic, then the [GMW86] subroutine satisfies $\left(2, g^{\prime}\right)$-PSS, where the extractor outputs the bit b.
Proof. This follows from the claim that if $\left(r^{(1)}, r^{(2)}\right) \in\{0,1\}^{\lambda} \times\{0,1\}^{\lambda}$ is sampled according to an admissible distribution, then with all but negl (λ) probability, there exists an index ℓ such that $r_{\ell}^{(1)}=0$ and $r_{\ell}^{(2)}=1$. This can be argued using the same reasoning as in the proof of Claim 5.7, since the probability that two uniformly random λ-bit strings $r^{(1)}$ and $r^{(2)}$ do not have an index $\ell \in[\lambda]$ such that $r_{\ell}^{(1)}=0$ and $r_{\ell}^{(2)}=1$ is $\operatorname{negl}(\lambda)$.

5.3.2 Commit-and-Open Protocols

The next class of examples we discuss is that of commit-and-open protocols. In particular, we are interested in characterizing a special soundness property where the extractor is only given the opened messages in the prover's response (and not their openings).

Definition 5.11. Let Com denote a (possibly keyed) non-interactive commitment scheme. A commit-and-open protocol is a (3 or 4 message) protocol for an NP language L of the following form:

- (Optional first verifier message) If Com is keyed, the verifier samples and sends the commitment key ck for Com.
- The prover, given a witness w for some statement $x \in L$, computes a string $y \in\{0,1\}^{N}$ and sends a bitwise commitment $a=\operatorname{Com}(c k, y)$ to the verifier.
- The verifier samples a string r that encodes a subset $S \subset[N]$ and sends r to the prover.
- The prover sends openings to $\left\{y_{i}\right\}_{i \in S}$.

[^22]- The verifier checks that each opening to y_{i} (for $i \in S$ is valid and then computes some function Check $\left(y_{S}\right)$ on the opened bits.

We say that such a protocol satisfies "commit-and-open k-special soundness" if there exists an extractor $\operatorname{Extract}(x, y)$ satisfying the following property. For every instance x and every collection of k distinct sets S_{1}, \ldots, S_{k} (represented by strings $\left(r_{1}, \ldots, r_{k}\right)$, for any string y such that Check $\left(y_{S_{i}}\right)=$ 1 for all $i, w=\operatorname{Extract}(x, y)$ is a valid NP-witness for x.

It is not hard to see that the "commit-and-open" k-special soundness property, combined with the (computational/statistical) binding of the commitment scheme, implies a standard (computational/statistical) k-special soundness property of the Σ-protocol. However, we consider "commit-and-open k-special soundness" explicitly in order to satisfy (probabilistic) special soundness with respect to partial transcripts.

This definition captures extremely common Σ-protocols, such as:

- The [GMW86] Σ-protocol for 3 -coloring.
- A slight variant of the [Blu86] Σ-protocol for Hamiltonicity ${ }^{30}$
- Protocols following the "MPC-in-the-head" paradigm [IKOS07].

To view this in terms of generalized k-special soundness, define a consistency predicate g as follows: on input $\left(\tau_{\text {pre }},\left(r_{i},\left\{m_{i, \ell}\right\}_{\ell \in S_{i}}\right)_{i \in[k]}\right)$, output 1 if and only if

- For any pair of sets S_{i}, S_{j} (corresponding to challenges r_{i}, r_{j}), for any $\ell \in S_{i} \cap S_{j}$, we have $m_{i, \ell}=m_{j, \ell}$. That is, the "opened" message subsets are mutually consistent.
- For all $i \in[k], \operatorname{Check}\left(\left\{m_{i, \ell}\right\}_{\ell \in S_{i}}\right)=1$.
. With this formalism in place, the following claim is immediate.
Claim 5.12. Any protocol satisfying commit-and-open k-special soundness (as described in Definition 5.11) is (k, g)-special sound.

5.3.3 Kilian's Protocol

We briefly recall Kilian's protocol [Kil92] instantiated with a collapsing hash function:

1. The verifier samples a collapsing hash function $h \leftarrow H_{\lambda}$ and sends h to the prover.
2. Let $h_{\text {Merkle }}$ be the Merkle hash function corresponding to h. The prover uses w to compute a PCP π, and then sends $\mathrm{rt}=h_{\text {Merkle }}(\pi)$ to the verifier.
3. The verifier samples random coins r and sends them to the prover.
4. The prover computes the set of the PCP indices q_{r} that the PCP verifier with randomness r would check. It sends the corresponding values $\pi\left[q_{r}\right]$ along with the Merkle openings of $r t$ on the positions q_{r}.

[^23]5. Finally, the verifier accepts if all the Merkle openings are valid and $V_{\mathrm{PCP}, x}\left(r, \pi\left[q_{r}\right]\right)=1$, i.e., the PCP verifier with randomness r accepts $\pi\left[q_{r}\right]$.

We will instantiate Kilian's protocol with a PCP of knowledge, defined as follows. Let WIN $\mathrm{PCP}_{\mathrm{PC}, x}(\pi)$ denote the probability that π is accepted by the PCP verifier.

Definition 5.13 (PCP of Knowledge). A PCP has knowledge error $\kappa_{\mathrm{PCP}}(\lambda)$ if there is an extractor $\mathrm{E}_{\mathrm{PCP}}$ such that given any PCP π where $\mathrm{WIN}_{\mathrm{PCP}, x}(\pi)>\kappa_{\mathrm{PCP}}$, the extractor $\mathrm{E}_{\mathrm{PCP}}(\pi) \rightarrow w$ outputs a valid witness w for x with probability 1 .

The following claim is due to [CMSZ21], though we have slightly rewritten it to match our definition of k-PSS.

Claim 5.14. Kilian's protocol instantiated with a PCP with knowledge error $\kappa_{\mathrm{PCP}}(\lambda)=\operatorname{negl}(\lambda)$ proof length $\ell(\lambda)$, and alphabet-size $\Sigma(\lambda)$ is ($k, g)-P S S$ where $k=\ell \log (|\Sigma|)$ and the consistency function g outputs 1 on $\left(\tau_{\mathrm{pre}},\left(r_{i}, z_{i}\right)_{i \in[k]}\right)$ if (1) for each i, the response z_{i} contains PCP answers $\pi\left[q_{r_{i}}\right]$ such that $V_{\mathrm{PCP}}\left(x, r_{i}, \pi\left[q_{r_{i}}\right]\right)=1$, and (2) for every $i \neq i^{\prime}$ the answers $\pi\left[q_{r_{i}}\right]$ and $\pi\left[q_{r_{i_{i}}}\right]$ agree on all indices in $q_{r_{i}} \cap q_{r_{i^{\prime}}}$.

Proof. Our extractor PSSExtract $_{g}$ takes as input $\left(\tau_{\text {pre }},\left(r_{i}, z_{i}\right)_{i \in[k]}\right)$ and generates a witness as follows:

1. Generate a PCP string $\pi \in \Sigma^{\ell}$ as follows. For each $t \in[\ell]$, check if $t \in q_{r_{i}}$ for any i. If so, pick such an i arbitrarily and set $\pi[t]$ according to the value specified in z_{i} (the choice of i does not matter since the input satisfies consistency with respect to g). If there is no such i, set $\pi[t]$ arbitrarily.
2. Run $\mathrm{E}_{\mathrm{PCP}}(\pi) \rightarrow w$ and output w.

We prove that Step 1 constructs a PCP π where $\operatorname{WIN}_{\mathrm{PCP}, x}(\pi)>\kappa_{\mathrm{PCP}}$ with $1-\operatorname{negl}(\lambda)$ probability whenever $\left(\tau_{\text {pre }},\left(r_{i}, z_{i}\right)_{i \in[k]}\right)$ is sampled from a distribution supported on Consistent ${ }_{k}$ (i.e., the subset of $T \times(R \times Z)^{k}$ where g outputs 1$)$ whose marginal distribution on R^{k} is admissible.

It suffices to prove that if $\left(r_{1}, \ldots, r_{k}\right)$ are output by Samp (where Samp makes an expected poly (λ) number of queries to a uniform sampling oracle O_{R} and then outputs a size- k subset of the outputs of O_{r}) then the probability there exists $\pi \in \Sigma^{\ell}$ such that (1) $\mathrm{WIN}_{\mathrm{PCP}, x}(\pi) \leq \kappa_{\mathrm{PCP}}$ and (2) $V_{\mathrm{PCP}, x}\left(r_{i}, \pi\left[q_{r_{i}}\right]\right)=1$ for all $i \in[k]$ is negl (λ). This follows by invoking the definition of an admissible distribution, and observing that any π resulting from Step 1 satisfies (2) by construction, which means that $\mathrm{WIN}_{\mathrm{PCP}, x}(\pi)>\kappa_{\mathrm{PCP}}$ with probability $1-\operatorname{negl}(\lambda)$.

Let d be a constant such that for all $\lambda>\lambda_{d}$, Samp makes at most λ^{d} queries to the sampling oracle O_{r}. Suppose towards contradiction that there exists a constant c such that for infinitely many λ, the probability that Samp outputs $\left(r_{1}, \ldots, r_{k}\right)$ such that with probability at least $1 / \lambda^{c}$, there exists $\pi \in \Sigma^{\ell}$ satisfying conditions (1) and (2) above. Thus, for infinitely many λ, the probability that Samp makes $2 \lambda^{c+d}$ queries (or more) to its sampling oracle O_{R} is at most $1 /\left(2 \lambda^{c}\right)$ by Markov's inequality. This means that even if Samp makes at most $2 \lambda^{c+d}$ queries to its sampling oracle, it still succeeds with probability at least $1 /\left(2 \lambda^{c}\right)$ for infinitely many λ.

Consider any fixed PCP π such that $\mathrm{WIN}_{\mathrm{PCP}, x}(\pi) \leq \kappa_{\mathrm{PCP}}$. The probability that the PCP is accepting on at least k challenges out of $2 \lambda^{c+d}$ uniformly random challenges is at most

$$
\kappa_{\mathrm{PCP}}^{k} \cdot\binom{2 \lambda^{c+d}}{k} \leq \kappa_{\mathrm{PCP}}^{k}\left(2 \lambda^{c+d}\right)^{k}
$$

By taking a union bound over all $\pi \in \Sigma^{\ell}$ we conclude that given $2 \lambda^{c+d}$ uniformly random challenges, the probability there exists a PCP π such that $\mathrm{WIN}_{\mathrm{PCP}, x}(\pi) \leq \kappa_{\mathrm{PCP}}$ and π is accepting on at least k of the $2 \lambda^{c+d}$ challenges is at most

$$
|\Sigma|^{\ell} \kappa_{\mathrm{PCP}}^{k}\left(2 \lambda^{c+d}\right)^{k}=\left(|\Sigma| \cdot\left(2 \lambda^{c+d} \kappa_{\mathrm{PCP}}\right)^{\log (|\Sigma|)}\right)^{\ell},
$$

where we have plugged in $k=\ell \log (|\Sigma|)$. Since $\kappa_{\mathrm{PCP}}=\operatorname{negl}(\lambda)$, there exists λ_{0} such that $2 \lambda^{c+d} \kappa_{\text {PCP }}<\frac{1}{4}$ for all $\lambda>\lambda_{0}$. Then for all $\lambda>\lambda_{0}$, we have

$$
\left(|\Sigma| \cdot\left(2 \lambda^{c+d} \kappa_{\mathrm{PCP}}\right)^{\log (|\Sigma|)}\right)^{\ell}<\frac{1}{|\Sigma|^{\ell}}
$$

Since the PCP alphabet size is at least $|\Sigma| \geq 2$ and the PCP length is at least $\ell \geq \lambda$, the probability that Samp succeeds when restricted to making at at most $2 \lambda^{c+d}$ queries to O_{R} is at most $O\left(1 / 2^{\lambda}\right)$, which is a contradiction.

6 Singular Vector Algorithms

In this section we give algorithms for working with states that are singular vectors of a matrix $\Pi_{A} \Pi_{B}$, where Π_{A}, Π_{B} are projectors. In Section 6.2 we give an algorithm that transforms left singular vectors to right singular vectors with negligible error. The runtime of the algorithm depends on the corresponding singular value.

Notation. Throughout this section we will consider the interaction between two binary projective measurements $\mathrm{A}=\left(\Pi_{\mathrm{A}}, \mathbf{I}-\Pi_{\mathrm{A}}\right), \mathrm{B}=\left(\Pi_{\mathrm{B}}, \mathbf{I}-\Pi_{\mathrm{B}}\right)$.

We consider the matrix $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ and its singular value decomposition $V \Sigma W^{\dagger}$. Recall that V, W are unitary and Σ is a diagonal matrix. The columns of V (resp. W) are the left (resp. right) singular vectors of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$, and the entries on the diagonal of Σ are the singular values s_{j}. Note that the singular value decomposition is not in general unique; for the purposes of this section we fix one arbitrarily.

We denote left (resp. right) singular vectors of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with $s_{j}>0$ by $\left|v_{j, 1}\right\rangle$ (resp. $\left.\left|w_{j, 1}\right\rangle\right)$. Define $\mathcal{S}_{j}:=\operatorname{span}\left(\left|v_{j, 1}\right\rangle,\left|w_{j, 1}\right\rangle\right)$. If $s_{j}<1$, then \mathcal{S}_{j} is two-dimensional. The \mathcal{S}_{j} correspond to the Jordan subspaces of $\left(\Pi_{\mathrm{A}}, \Pi_{\mathrm{B}}\right)$. As such, we also have $\left|v_{j, 0}\right\rangle,\left|w_{j, 0}\right\rangle \in \mathcal{S}_{j}$. A straightforward calculation shows that these are left and right singular vectors of $\left(\mathbf{I}-\Pi_{\mathrm{A}}\right)\left(\mathbf{I}-\Pi_{\mathrm{B}}\right)$ with singular value s_{j}. The Jordan subspace values p_{j} are the squares of the corresponding singular values. In our setting it is more natural to use the squares (since they correspond to probabilities), and so the guarantees in this section are stated with respect to the squared singular values.

6.1 Fixed-Runtime Algorithms

In this section we recall a selection of algorithms for manipulating singular vectors of $\Pi_{A} \Pi_{B}$. All of these algorithms make black-box use of $U_{\mathrm{A}}, U_{\mathrm{B}}$; we consider their complexity as circuits with $U_{\mathrm{A}}, U_{\mathrm{B}}$ gates. All of these algorithms take as input some threshold $a \in(0,1]$, such that their correctness guarantee will hold for singular vectors of value at least a, and their running time is linear in $1 / a$.

The first algorithm Transform implements a fixed-runtime singular vector transformation, taking left singular vectors to their corresponding right singular vectors.

Theorem 6.1 (Singular vector transformation [GSLW19]). There is a uniform family of circuits $\left\{\text { Transform }_{a, \delta}\right\}_{a, \delta \in(0,1]}$ with $U_{\mathrm{A}}, U_{\mathrm{B}}$ gates, of size $O(\log (1 / \delta) / \sqrt{a})$, such that the following holds. Let $\left|v_{j, 1}\right\rangle$ be a left singular vector of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with singular value s_{j}. If $a \leq s_{j}^{2}$, $\operatorname{Transform}_{a, \delta}[\mathrm{~A} \rightarrow \mathrm{~B}]\left(\left|v_{j, 1}\right\rangle\right)$ outputs the state $\left|w_{j, 1}\right\rangle$ with probability at least $1-\delta$. Moreover, for all a, \mathcal{S}_{j} is invariant under Transform ${ }_{a, \delta}$.

The second algorithm Threshold implements a measurement determining, given a threshold b and a singular vector with singular value s_{j}, whether $s_{j}^{2} \geq b$ or $s_{j}^{2} \leq b-\varepsilon$ (and otherwise has no guarantee).

Theorem 6.2 (Singular value threshold [GSLW19]). There is an algorithm Threshold which, for all binary projective measurements A, B, given black-box access to operators $U_{\mathrm{A}}, U_{\mathrm{B}}$, achieves the following guarantee. Given $\delta>0, b \geq \varepsilon>0$ and a state $\left|v_{j, 1}\right\rangle$ which is a left singular vector of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with singular value s_{j} :

- if $s_{j}^{2} \geq b$, then $\operatorname{Pr}\left[\operatorname{Threshold}_{p, \varepsilon, \delta}^{\mathrm{A}, \mathrm{B}}\left(\left|v_{j, 1}\right\rangle\right) \rightarrow 1\right] \geq 1-\delta$, and
- if $s_{j}^{2} \leq b-\varepsilon$, then $\operatorname{Pr}\left[\operatorname{Threshold}_{p, \varepsilon, \delta}^{\mathrm{A}, \mathrm{B}}\left(\left|v_{j, 1}\right\rangle\right) \rightarrow 1\right] \leq \delta$.

Moreover, \mathcal{S}_{j} is invariant under Threshold, and if the outcome is 1 the post-measurement state is $\left|v_{j, 1}\right\rangle$. Threshold runs in time $O(\log (1 / \delta) \sqrt{b} / \varepsilon)$.

Next, we describe an algorithm which, with access to $U_{\mathrm{A}}, U_{\mathrm{B}}$, can "flip" a singular vector state from image $\left(\mathbf{I}-\Pi_{A}\right)$ to image $\left(\Pi_{A}\right)$ using Π_{B}, provided that the singular value is sufficiently far from both 0 and 1.

Lemma 6.3. Let Π_{A}, Π_{B} be projectors. There is an algorithm $\mathrm{Flip}_{\varepsilon}\left[\Pi_{A}, \Pi_{B}\right]$ which, on input a state $\left|v_{j, 0}\right\rangle$ that is a left singular vector of $\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$ with $\varepsilon \leq s_{j}^{2} \leq 3 / 4$, outputs the state $\left|v_{j, 1}\right\rangle$ with probability $1-\delta$ in time $O(\log (1 / \delta) / \sqrt{\varepsilon})$. Flip is invariant on the subspace spanned by $\left\{\left|v_{j, 1}\right\rangle,\left|v_{j, 0}\right\rangle\right\}$.

Proof. The algorithm operates as follows:

1. Apply A, B in an alternating fashion until either $\mathrm{A} \rightarrow 1$, $\mathrm{B} \rightarrow 1$ or $3 \log (1 / \delta)$ measurements have been applied.
2. If $\mathrm{A} \rightarrow 1$, stop.
3. If $\mathrm{B} \rightarrow 1$, apply $\operatorname{Transform}_{\varepsilon, \delta}\left[\Pi_{\mathrm{B}}, \Pi_{\mathrm{A}}\right]$.

The lemma follows since the probability that Step 1 takes more than k steps is $(3 / 4)^{k}$, and then by the guarantee of Transform.

6.2 Variable-Runtime Singular Vector Transformation (vrSVT)

In this section we describe our variable-runtime SVT algorithm. In fact, for technical reasons our algorithm consists of two parts: a variable-runtime singular value estimation procedure which preserves singular vectors, and a singular vector transformation procedure which transforms left singular vectors to right singular vectors, whose running time is fixed given a classical input from the estimation procedure.

Below we give a proof of Theorem 6.4 that makes use of the singular value discrimination and singular vector transformation algorithms of [GSLW19]. We note that it is possible to prove Theorem 6.4 via more "elementary" means using high-probability phase estimation [NWZ09] and
amplitude amplification. Indeed, phase estimation for $\left(2 \mathbf{I}-\Pi_{A}\right)\left(2 \mathbf{I}-\Pi_{B}\right)$ is equivalent to singular value estimation for $\Pi_{A} \Pi_{B}$ and amplitude amplification can be viewed as a (non-coherent) singular vector transformation.

Theorem 6.4 (Two-stage variable-runtime singular vector transformation). Let $\mathrm{A}=\left(\Pi_{\mathrm{A}}, \mathbf{I}-\Pi_{A}\right)$, $\mathrm{B}=\left(\Pi_{\mathrm{B}}, \mathbf{I}-\Pi_{\mathrm{B}}\right)$ be projective measurements. There is a pair of algorithms VarEstimate $\left[\Pi_{\mathrm{A}} \rightleftarrows \Pi_{\mathrm{B}}\right]$ and Transform $\left[\Pi_{\mathrm{B}} \rightarrow \Pi_{\mathrm{A}}\right]$ with U_{A} and U_{B} gates with the following properties. Let $\left|w_{j, 1}\right\rangle$ be a left singular vector of $\Pi_{A} \Pi_{\mathrm{B}}$ with singular value $s_{j}>0$, and let $\left|v_{j, 1}\right\rangle$ be the corresponding right singular vector. Then

1. The subspace \mathcal{S}_{j} is invariant under both VarEstimate and Transform.
2. The running time of $\operatorname{VarEstimate}\left(\left|v_{j, 1}\right\rangle\right)$ is $O\left(\log (1 / \delta) / s_{j}\right)$ with probability $1-\delta$ and $O(\log (1 / \delta) / \delta)$ with probability 1.
3. The output $(q,|\psi\rangle) \leftarrow \operatorname{VarEstimate}\left(\left|v_{j, 1}\right\rangle\right)$ is such that $|\psi\rangle=\left|w_{j, 1}\right\rangle$ with probability $1-\delta$.
4. The running time of $\operatorname{Transform}\left(q,\left|\psi^{\prime}\right\rangle\right)$, where $(\gamma,|\psi\rangle) \leftarrow \operatorname{VarEstimate}\left(\left|v_{j, 1}\right\rangle\right)$ and $\left|\psi^{\prime}\right\rangle$ is any state, is $O\left(\log (1 / \delta) / s_{j}\right)$ with probability $1-\delta$ and at most $1 / \delta$ with probability 1 .

The Transform procedure above can be instantiated directly via the singular vector transformation algorithm of [GSLW19], see Theorem 6.1.

We describe an implementation of VarEstimate using the singular value discrimination algorithm (Theorem 6.2). For a binary projective measurement A, let $\overline{\mathrm{A}}$ denote the same measurement with the outcome labels reversed. For k in the procedure below, define $b:=2^{-k}$ and $\varepsilon:=2^{-k-1}$.

1. Set $b:=0, k:=0$. Repeat the following two steps until $b=1$ or $k \geq\lceil\log (1 / \delta)\rceil$:
(a) Set $k \leftarrow k+1$.
(b) Apply B , obtaining outcome c.
(c) If $c=1$, apply Threshold ${ }^{\mathbf{A}, \mathrm{B}}(\gamma, \varepsilon, \delta / \log (1 / \delta))$ obtaining outcome $b \in\{0,1\}$.
(d) If $c=0$, apply Threshold ${ }^{\bar{A}, \bar{B}}(\gamma, \varepsilon, \delta / \log (1 / \delta))$ obtaining outcome $b \in\{0,1\}$.
2. Apply B, obtaining outcome c. If $c=0$, apply $\mathrm{Flip}_{2^{-k-1}}[\mathrm{~A}, \mathrm{~B}]$.
3. Output 2^{-k-1}.

Lemma 6.5 (Variable-runtime singular value estimation). Let $\left|v_{j, 1}\right\rangle$ be a left singular vector with singular value s_{j}. Let $\delta>0$. VarEstimate ${ }_{\delta}[\mathrm{A} \rightleftarrows \mathrm{B}]\left(\left|v_{j, 1}\right\rangle, \delta\right)$ runs in time $O\left(\log (1 / \delta) / s_{j}\right)$ with probability $1-\delta$ and $O(\log (1 / \delta) / \delta)$ with probability 1. Moreover, VarEstimate outputs a in the range $\max \left(\delta, s_{j}^{2}\right) / 4 \leq a \leq \max \left(\delta, s_{j}^{2}\right)$ with probability $1-\delta$.

Proof. First, observe that k iterations of Step 1 take time $O\left(\log (1 / \delta) \cdot 2^{k}\right)$. Since VarEstimate terminates within $\lceil\log (1 / \delta)\rceil$ iterations of Step 1 with probability 1, VarEstimate runs in time $O(\log (1 / \delta) / \delta)$ with probability 1.

The probability that the singular value discrimination algorithm outputs 1 when $2^{-k}>2 s_{j}$ is at most $\delta /(\log (1 / \delta))$. Similarly, the probability that it outputs 1 when $2^{-k} \leq s_{j}$ is at least $1-\delta /(\log (1 / \delta))$. By a union bound, with probability at least $1-\delta$ the algorithm either stops in the first iteration where $2^{-k} \leq 2 s_{j}$ (so $s_{j}<2^{-k} \leq 2 s_{j}$) or in the following iteration ($s_{j} / 2<2^{-k} \leq$
s_{j}. Thus $2^{-k} \in\left[s_{j} / 2,2 s_{j}\right]$, so $2^{-k-1} \in\left[s_{j} / 4, s_{j}\right]$ as required. The running time in this case is $O\left(\log (1 / \delta) / s_{j}\right)$.

If $s_{j} \geq 1 / 2$ then the algorithm stops after one iteration in state $\left|w_{j, 1}\right\rangle$ with probability $1-\delta$. Otherwise the probability that $\log (1 / \delta)$ alternating measurements A, B are applied with only 0 outcomes is at most δ. If Step 2 terminates with $\mathbf{B} \rightarrow 1$, then the resulting state is $\left|w_{j, 1}\right\rangle$. Otherwise, the resulting state is $\left|v_{j, 1}\right\rangle$. In this case the Transform algorithm rotates the state to $\left|w_{j, 1}\right\rangle$ with probability $1-\delta$.

The next two claims follow directly from the correctness and subspace invariance guarantees of Threshold and VarEstimate.

Corollary 6.6. For any state $\boldsymbol{\rho}, \delta>0, \varepsilon:[0,1] \rightarrow[\delta, 1]$:

$$
\operatorname{Pr}\left[\operatorname{Threshold}_{p, \varepsilon(p), \delta}(\operatorname{VarEstimate}(\boldsymbol{\rho}))=1\right] \geq 1-2 \delta
$$

where p is the classical output from VarEstimate.
Corollary 6.7. For any state $\boldsymbol{\rho}, \delta>0, \varepsilon \in[\delta, 1]$:

$$
\operatorname{Pr}\left[b_{1}=1 \wedge b_{2}=0 \left\lvert\, \begin{array}{c}
\left(b_{1}, \boldsymbol{\rho}_{1}\right) \underset{\left(b_{2}, \boldsymbol{\rho}_{2}\right) \leftarrow \text { Threshold }_{p, \varepsilon, \delta}(\boldsymbol{\rho})}{\leftarrow \text { Threshold }_{p-\varepsilon, \varepsilon, \delta}\left(\boldsymbol{\rho}_{1}\right)}
\end{array}\right.\right] \leq 2 \delta .
$$

Moreover,

$$
\operatorname{Pr}\left[b_{1}=1 \wedge p_{j}<p-\varepsilon \left\lvert\, \begin{array}{r}
\left(b_{1}, \boldsymbol{\rho}_{1}\right) \leftarrow \operatorname{Threshold}_{p, \varepsilon, \delta}(\boldsymbol{\rho}) \\
j \leftarrow \mathrm{M}_{\mathrm{Jor}}[\mathrm{~A}, \mathrm{~B}]\left(\boldsymbol{\rho}_{1}\right)
\end{array}\right.\right] \leq \delta .
$$

$7 \quad$ Pseudoinverse Lemma

In this section we show that for binary projective measurements $\boldsymbol{A}, \boldsymbol{B}$ any state $\left|\psi_{\boldsymbol{A}}\right\rangle$ in the image of Π_{A}, there is a state $\left|\psi_{B}\right\rangle$ in the image of B such that $\left|\psi_{\mathrm{A}}\right\rangle$ is (approximately) obtained by applying \mathbf{A} to $\left|\psi_{\boldsymbol{B}}\right\rangle$ and conditioning on obtaining a 1 . Moreover, if $\left|\psi_{\mathrm{A}}\right\rangle$ has Jordan spectrum that is concentrated around eigenvalue p, then $\left|\psi_{\mathrm{A}}\right\rangle$ has the same property. We refer to this as the "pseudoinverse lemma" because $\left|\psi_{\mathrm{B}}\right\rangle$ is obtained from $\left|\psi_{\mathrm{A}}\right\rangle$ by applying the pseudoinverse of the matrix $\Pi_{A} \Pi_{B}$.

Lemma 7.1 (Pseudoinverse Lemma). Let A, B be binary projective measurements, and let $\left\{\mathcal{S}_{j}\right\}_{j}$ be the induced Jordan decomposition. Let $\Pi_{j}^{\text {Jor }}$ be the projection on to \mathcal{S}_{j} and let p_{j} be the eigenvalue of \mathcal{S}_{j}. Let $\boldsymbol{\rho}$ be a state such that $\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}\right)=1$ and let $\Pi_{0}:=\sum_{j, p_{j}=0} \Pi_{j}^{\mathrm{Jor}}$. Let $E:=\sum_{j, p_{j}>0} \frac{1}{p_{j}} \Pi_{j}^{\mathrm{Jor}}$. There exists a "pseudoinverse" state ρ^{\prime} with $\operatorname{Tr}\left(\Pi_{\mathrm{B}} \boldsymbol{\rho}^{\prime}\right)=1$ such that all of the following are true:

1. $\operatorname{Tr}\left(\Pi_{\mathrm{A}} \rho^{\prime}\right)=\frac{1-\operatorname{Tr}\left(\Pi_{0} \rho\right)}{\operatorname{Tr}(E \rho)}$,
2. $d\left(\boldsymbol{\rho}, \frac{\Pi_{A} \rho^{\prime} \Pi_{\mathrm{A}}}{\operatorname{Tr}\left(\Pi_{\mathrm{A}} \rho^{\prime}\right)}\right) \leq 2 \sqrt{\operatorname{Tr}\left(\Pi_{0} \rho\right)}$,
3. for all j such that $p_{j}>0$ it holds that $\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \rho^{\prime}\right)=\frac{\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \rho\right)}{p_{j} \cdot \operatorname{Tr}(E \rho)}$, and
4. for all j such that $p_{j}=0$ it holds that $\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}^{\prime}\right)=0$.

An important consequence of (3) and (4) is that for all j, if $\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}\right)=0$ then $\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}^{\prime}\right)=0$.

Proof. Let $C:=\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}$, and note that $\left|v_{j, 1}\right\rangle,\left|w_{j, 1}\right\rangle$ are corresponding left and right singular vectors of C with singular value $\sqrt{p_{j}}$. Hence $C=\sum_{p_{j}>0} \sqrt{p_{j}}\left|v_{j, 1}\right\rangle\left\langle w_{j, 1}\right|$. Let C^{+}be the pseudoinverse of C, i.e., $C^{+}=\sum_{p_{j}>0} \frac{1}{\sqrt{p_{j}}}\left|w_{j, 1}\right\rangle\left\langle v_{j, 1}\right|$. Define

$$
\boldsymbol{\rho}^{\prime}:=\frac{C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}}{\operatorname{Tr}\left(C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)}
$$

Since $\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}\right)=1$, we have $\operatorname{Tr}\left(\Pi_{\mathrm{B}} \boldsymbol{\rho}^{\prime}\right)=1$. We also have

$$
\begin{equation*}
\operatorname{Tr}\left(C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)=\operatorname{Tr}\left(\left(C C^{\dagger}\right)^{+} \boldsymbol{\rho}\right)=\sum_{j} \frac{1}{p_{j}}\left\langle v_{j, 1}\right| \boldsymbol{\rho}\left|v_{j, 1}\right\rangle=\operatorname{Tr}(E \boldsymbol{\rho}) \tag{1}
\end{equation*}
$$

Next, observe that since $C C^{+}=\sum_{p_{j}>0}\left|v_{j, 1}\right\rangle\left\langle v_{j, 1}\right|=\mathbf{I}-\Pi_{0}$, we have

$$
\begin{align*}
\Pi_{\mathrm{A}} \boldsymbol{\rho}^{\prime} \Pi_{\mathrm{A}} & =\Pi_{\mathrm{A}}\left(\frac{C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}}{\operatorname{Tr}\left(C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)}\right) \Pi_{\mathrm{A}} \\
& =\Pi_{\mathrm{A}}\left(\frac{C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}}{\operatorname{Tr}(E \boldsymbol{\rho})}\right) \Pi_{\mathrm{A}} \\
& =\Pi_{\mathrm{A}} \Pi_{\mathrm{B}}\left(\frac{C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}}{\operatorname{Tr}(E \boldsymbol{\rho})}\right) \Pi_{\mathrm{B}} \Pi_{\mathrm{A}} \\
& =\frac{1}{\operatorname{Tr}(E \boldsymbol{\rho})} C C^{+} \boldsymbol{\rho}\left(C C^{+}\right)^{\dagger} \\
& =\frac{1}{\operatorname{Tr}(E \boldsymbol{\rho})}\left(\mathbf{I}-\Pi_{0}\right) \boldsymbol{\rho}\left(\mathbf{I}-\Pi_{0}\right) . \tag{2}
\end{align*}
$$

Given these calculations, we can prove the claimed properties (1-3) in the lemma statement:

- Proof of (1). Taking the trace of both sides of Eq. (2), we see that

$$
\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}^{\prime}\right)=\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}^{\prime} \Pi_{\mathrm{A}}\right)=\frac{1}{\operatorname{Tr}(E \boldsymbol{\rho})} \operatorname{Tr}\left(\left(\mathbf{I}-\Pi_{0}\right) \boldsymbol{\rho}\left(\mathbf{I}-\Pi_{0}\right)\right)=\frac{\operatorname{Tr}\left(\left(\mathbf{I}-\Pi_{0}\right) \boldsymbol{\rho}\right)}{\operatorname{Tr}(E \boldsymbol{\rho})}=\frac{1-\operatorname{Tr}\left(\Pi_{0} \boldsymbol{\rho}\right)}{\operatorname{Tr}(E \boldsymbol{\rho})}
$$

- Proof of (2). Given Eq. (2) and the trace calculation above, we have that

$$
\frac{\Pi_{\mathrm{A}} \boldsymbol{\rho}^{\prime} \Pi_{\mathrm{A}}}{\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}^{\prime}\right)}=\frac{1}{1-\operatorname{Tr}\left(\Pi_{0} \boldsymbol{\rho}\right)}\left(\mathbf{I}-\Pi_{0}\right) \boldsymbol{\rho}\left(\mathbf{I}-\Pi_{0}\right)
$$

The inequality $d\left(\boldsymbol{\rho}, \frac{\Pi_{A} \rho^{\prime} \Pi_{A}}{\operatorname{Tr}\left(\Pi_{A} \rho^{\prime}\right)}\right) \leq 2 \sqrt{\operatorname{Tr}\left(\Pi_{0} \boldsymbol{\rho}\right)}$ now follows from Lemma 3.1 (gentle measurement).

- Proof of (3). For all j such that $p_{j}>0$, making use of the same calculation as Eq. (1), we have

$$
\operatorname{Tr}\left(\Pi_{j}^{\text {Jor }} \boldsymbol{\rho}^{\prime}\right)=\frac{\operatorname{Tr}\left(\Pi_{j}^{\text {Jor }} C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)}{\operatorname{Tr}\left(C^{+} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)}=\frac{\operatorname{Tr}\left(C^{+} \Pi_{j}^{\text {Jor }} \boldsymbol{\rho}\left(C^{+}\right)^{\dagger}\right)}{\operatorname{Tr}(E \boldsymbol{\rho})}=\frac{\operatorname{Tr}\left(E \Pi_{j}^{\text {Jor }} \boldsymbol{\rho}\right)}{\operatorname{Tr}(E \boldsymbol{\rho})}=\frac{\operatorname{Tr}\left(\frac{1}{p_{j}} \Pi_{j}^{\text {Jor }} \boldsymbol{\rho}\right)}{\operatorname{Tr}(E \boldsymbol{\rho})}
$$

- Proof of (4). This follows immediately from the fact that $\Pi_{0} C^{+}=C^{+} \Pi_{0}=0$.

This completes the proof of Lemma 7.1.
We conclude this section by showing that under a mild condition, any state $\boldsymbol{\rho}$ that is close to image $\left(\Pi_{A}\right)$ has a nearby state in image $\left(\Pi_{A}\right)$ with the same Jordan decomposition.

Claim 7.2. Let $\boldsymbol{\rho}$ be any state. Let $\Pi_{\text {stuck }}^{\text {Jor }}$ project on to one-dimensional subspaces \mathcal{S}_{j} in the image of $\mathbf{I}-\Pi_{\mathrm{A}}$. There exists a state $\boldsymbol{\sigma}$ such that for all $j, \operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \boldsymbol{\sigma}\right)=\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}\right), \operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\sigma}\right)=$ $1-\operatorname{Tr}\left(\Pi_{\text {stuck }}^{\mathrm{Jor}} \cdot \boldsymbol{\rho}\right)$, and $d(\boldsymbol{\rho}, \boldsymbol{\sigma}) \leq \sqrt{1-\operatorname{Tr}\left(\Pi_{\mathrm{A}} \boldsymbol{\rho}\right)}$.

Proof. Define a unitary U which is invariant on the \mathcal{S}_{j} and, in each two-dimensional \mathcal{S}_{j}, rotates $\left|v_{j, 0}\right\rangle$ to $\left|v_{j, 1}\right\rangle$. Formally,

$$
U:=\sum_{j, p_{j} \notin\{0,1\}}\left(\left|v_{j, 1}\right\rangle\left\langle v_{j, 0}\right|+\left|v_{j, 0}\right\rangle\left\langle v_{j, 1}\right|\right)+\mathbf{I}_{\mathcal{S}^{(1)}},
$$

where $\mathcal{S}^{(1)}$ is the direct sum of the 1D subspaces. Set

$$
\boldsymbol{\sigma}:=\Pi_{\mathrm{A}} \rho \Pi_{\mathrm{A}}+U\left(I-\Pi_{\mathrm{A}}\right) \boldsymbol{\rho}\left(I-\Pi_{\mathrm{A}}\right) U^{\dagger}
$$

8 Post-Quantum Guaranteed Extraction

In this section, we give a post-quantum extraction procedure for various 3- and 4-message publiccoin interactive protocols. In particular, we will consider interactive protocols satisfying partial collapsing (Definition 3.5) with respect to some class of efficiently computable functions $F=\{f$: $\left.T \times R \times Z \rightarrow\{0,1\}^{*}\right\}$. Our goal is to establish guaranteed extraction, defined below (essentially matching Definition 2.3).

Definition 8.1. $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof of knowledge with guaranteed extraction if it has an extractor Extract ${ }^{P^{*}}$ of the following form.

1. Extract ${ }^{P^{*}}$ first runs the cheating prover P^{*} to generate a (classical) first message a along with an instance x (in a 4-message protocol, this requires first sampling a random vk and running $P^{*}(\mathrm{vk})$ to obtain $\left.x, a\right)$.
2. Extract P^{*} runs P^{*} coherently on the superposition $\sum_{r \in R}|r\rangle$ of all challenges to obtain a superposition $\sum_{r, z} \alpha_{r, z}|r, z\rangle$ over challenge-response pairs. ${ }^{31}$
3. Extract ${ }^{P^{*}}$ then computes (in superposition) the verifier's decision $V(x, a, r, z)$ and measures it. If the measurement outcome is 0 , the extractor gives up.
4. If the measurement outcome is 1 , run some quantum procedure FindWitness ${ }^{P^{*}}$ that outputs a string w.

We require that the following two properties hold.

- Correctness (guaranteed extraction): The probability that the initial measurement returns 1 but the output witness w is not a valid witness for x is $\operatorname{negl}(\lambda)$.

[^24]- Efficiency: For any QPT P^{*}, the procedure Extract ${ }^{P^{*}}$ is in EQPT ${ }_{m}$.

We remark that this definition is written to capture (first-message) adaptive soundness, where the prover P^{*} is allowed to choose the instance x when it sends its first message. One could alternatively define a non-adaptive variant of this definition in which the instance x is fixed in advance (and this section's results would hold in this setting as well). Definition 8.1 suffices for our purposes since none of the 4 -message protocols we consider have the first verifier message vk depend on x (in all cases we consider, vk is just a commitment key or hash function key), and the protocols all satisfy adaptive soundness.

8.0.1 Notation

Let \mathcal{R} denote a register with the basis $\{|r\rangle\}_{r \in R}$ and let $\left|+_{R}\right\rangle_{\mathcal{R}}:=\frac{1}{\sqrt{|R|}} \sum_{r \in R}|r\rangle$. Let \mathcal{H} denote the prover's state (including its workspace), and let U_{r} denote the unitary on \mathcal{H} that the prover applies on challenge r. Let \mathcal{Z} denote the subregister of \mathcal{H} that the prover measures to obtain its response z after applying U_{r}.

Define the projector

$$
\Pi_{V, r}=U_{r}^{\dagger}\left(\sum_{z: V(r, z)=1}|z\rangle\left\langle\left. z\right|_{\mathcal{Z}} \otimes \mathbf{I}\right) U_{r}\right.
$$

which intuitively projects onto subspace of \mathcal{H} where the prover gives an accepting response on challenge r.

Define the binary projective measurement $\mathrm{C}=\left(\Pi_{\mathrm{C}}, \mathbf{I}-\Pi_{\mathrm{C}}\right)$ where

$$
\Pi_{\mathrm{C}}=\sum_{r}|r\rangle\left\langle\left. r\right|_{\mathcal{R}} \otimes \Pi_{V, r},\right.
$$

and $\mathbf{U}=\left(\Pi_{\mathbf{U}}, \mathbf{I}-\Pi_{\mathbf{U}}\right)$ where

$$
\Pi_{U}=\left|+{ }_{R}\right\rangle\left\langle+\left.{ }_{R}\right|_{\mathcal{R}} \otimes \mathbf{I}_{\mathcal{H}} .\right.
$$

8.1 Description of the Extractor

We first give a full description of an extraction procedure Extract, defined for any partially collapsing protocol.

The threshold unitary. Consider the following measurement procedure $\mathrm{T}_{p, \varepsilon, \delta}$ on \mathcal{H}, parameterized by threshold p, accuracy ε and error δ.

- Initialize a fresh register \mathcal{R} to $\left|+{ }_{R}\right\rangle_{\mathcal{R}}$.
- Run Threshold ${ }_{p, \varepsilon, \delta}^{\mathrm{U}, \mathrm{C}}$ on $\mathcal{H} \otimes \mathcal{R}$, obtaining outcome b.
- Trace out \mathcal{R} and output b.

We define $U_{p, \varepsilon, \delta}$ to be a coherent implementation of $\mathrm{T}_{p, \varepsilon, \delta} . U_{p, \varepsilon, \delta}$ acts on $\mathcal{H} \otimes \mathcal{W} \otimes \mathcal{B}$ where $\mathcal{W} \otimes \mathcal{B}$ is an ancilla register: \mathcal{W} contains the algorithm's workspace and \mathcal{B} is a single qubit containing the measurement outcome. In particular, applying $U_{\varepsilon, \delta}$ to $|\psi\rangle_{\mathcal{H}}|0\rangle_{\mathcal{W}, \mathcal{B}}$, measuring \mathcal{B}, and then tracing out \mathcal{W} implements the above measurement.

The repair measurements. We define the two projective measurements $\mathrm{D}_{r}=\left(\Pi_{r}, \mathbf{I}-\Pi_{r}\right), \mathrm{G}_{p, \varepsilon, \delta}=$ ($\left.\Pi_{p, \varepsilon, \delta}, \mathbf{I}-\Pi_{p, \varepsilon, \delta}\right)$ for our repair step.

For any $p, \varepsilon, \delta>0$, define the projector $\Pi_{p, \varepsilon, \delta}$ on $\mathcal{H} \otimes \mathcal{W} \otimes \mathcal{B}$ as follows:

$$
\Pi_{p, \varepsilon, \delta}:=U_{p, \varepsilon, \delta}^{\dagger}\left(\mathbf{I}_{\mathcal{H}, \mathcal{W}} \otimes|1\rangle\left\langle\left. 1\right|_{\mathcal{B}}\right) U_{p, \varepsilon, \delta} .\right.
$$

For any $r \in R$, we define the projector Π_{r} on $\mathcal{H} \otimes \mathcal{W}$ as

$$
\Pi_{r}:=\left(\Pi_{V, r}\right)_{\mathcal{H}} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}} .\right.
$$

We describe the extraction procedure Extract ${ }_{V}^{P^{*}}(x)$. The procedure is defined with respect to k efficiently computable functions $f_{1}, \ldots, f_{k}: T \times R \times Z \rightarrow\{0,1\}^{*}$.

1. Initial Execution. Use P^{*} to generate (vk, a), and let $|\psi\rangle$ denote the residual prover state. Apply $\mathbf{C}=\left(\Pi_{\mathrm{C}}, \mathbf{I}-\Pi_{\mathrm{C}}\right)$ to $|\psi\rangle_{\mathcal{H}} \otimes\left|+{ }_{R}\right\rangle_{\mathcal{R}}$. If 0 , terminate (note that we do not consider this an "abort".) Otherwise:
2. Estimate success probability. Run VarEstimate[C $\rightleftarrows \mathrm{U}]$ (as defined in Section 6.2) with $\frac{1}{2}$-multiplicative error and failure probability $\delta=1 / 2^{\lambda}$, outputting a value p. Note that since the input state is in Π_{C}, the algorithm produces an output state in Π_{C} with probability $1-\delta$.
Abort if $p<\lambda k \sqrt{\delta}$. Define $\varepsilon=\frac{p}{4 k}$.
3. Main Loop. Repeat the following "main loop" for i from 1 to k :
(a) Lower bound success probability. Run Threshold ${ }_{p, \varepsilon, \delta}^{\mathrm{C}, \mathrm{U}}$ on $\mathcal{H} \otimes \mathcal{R}$, obtaining outcome b. Abort if $b=0$. Update $p:=p-\varepsilon$.
(b) Measure the challenge. Measure the \mathcal{R} register, obtaining a particular challenge $r_{i} \in R$. Discard the \mathcal{R} register.
(c) Estimate the running time of Transform. Initialize the \mathcal{W} register to $|0\rangle_{\mathcal{W}}$ and run VarEstimate $\left[\mathrm{D}_{r} \rightleftarrows \mathrm{G}_{p, \varepsilon, \delta}\right]$ with $\frac{1}{2}$-multiplicative error and failure probability $\delta=2^{-\lambda}$, obtaining classical output q. Since the input state is in Π_{r}, the algorithm produces an output state in Π_{r} with probability $1-\delta$.
(d) Record part of the accepting response. Make a partial measurement of the prover response z_{i}; specifically, measure $y_{i}=f_{i}\left(z_{i}\right) \cdot{ }^{a}$ If $i=k$, go to Step 4.
(e) Transform onto good states. Apply $\operatorname{Transform}_{q}\left[\mathrm{D}_{r} \rightarrow \mathrm{G}_{p, \varepsilon, \delta}\right]$ with failure probability $\delta=2^{-\lambda}$.
(f) Next, apply $U_{p, \varepsilon, \delta}$ and then discard the \mathcal{W} register. Update $p:=p-\varepsilon$.
(g) Transform onto accepting executions. Re-initialize \mathcal{R} to $\left|+_{R}\right\rangle$ and then apply Transform $_{p}[\mathrm{U} \rightarrow \mathrm{C}]$; abort if this procedure fails.
4. Output (vk, $\left.a, r_{1}, y_{1}, \cdots, r_{k}, y_{k}\right)$.

The above procedure deterministically terminates and aborts if it has not already stopped after $O(k) / \sqrt{\delta}$ steps, for $\delta:=2^{-\lambda}$.
${ }^{a}$ Formally, we (1) apply the prover unitary $U_{r^{*}}$ to \mathcal{H}, (2) apply the projective measurement $\left(\Pi_{y}\right)_{y}$ for $\Pi_{y}=\sum_{z: f_{i}(z)=y}|z\rangle\left\langle\left. z\right|_{\mathcal{Z}} \otimes \mathbf{I}_{\mathcal{H}^{\prime}}\right.$ (where $\mathcal{H}=\mathcal{Z} \otimes \mathcal{H}^{\prime}$), and (3) apply $U_{r^{*}}^{\dagger}$ to \mathcal{H}.

8.2 Partial Transcript Extraction Theorem

Our most general extraction theorem is stated for any partially collapsing protocol, but is only guaranteed to output partial transcripts (rather than a witness). In Section 8.4, we show how this theorem can be used to establish guaranteed extraction of a witness.

Theorem 8.2. For any 4-message public-coin interactive argument satisfying partial collapsing (Definition 3.4) with respect to the functions f_{1}, \ldots, f_{k-1} (but not necessarily f_{k}), the procedure Extract $_{V}$ has the following properties for any instance x.

1. Efficiency: For any $Q P T$ prover P^{*}, Extract $V_{V}^{P^{*}}$ runs in expected polynomial time (EQPT_{m}). More formally, the number of calls that Extract $P_{V}^{P^{*}}$ makes to P^{*} is a classical random variable whose expectation is a fixed polynomial in k, λ.
2. Correctness: Extract aborts with negligible probability.
3. Distribution of outputs: For every choice of (vk,a), let $\gamma=\gamma_{\mathrm{vk}, a}$ denote the success probability of P^{*} conditioned on first two messages (vk, a). Then, if $\gamma>\delta^{1 / 3}$, the distribution of (r_{1}, \ldots, r_{k}) (conditioned on (vk, a) and a successful first execution) is $O(1 / \gamma)$-admissible (Definition 5.5).

8.3 Proof of Theorem 8.2

8.3.1 Intermediate State Notation

Our extraction procedure and analysis make use of four relevant registers:

- A challenge randomness register \mathcal{R},
- A prover state register \mathcal{H}, and
- A phase estimation workspace register \mathcal{W}.
- A one qubit register \mathcal{B} that contains a bit b where $b=1$ indicates that the computation has not aborted during a sub-computation.

We now establish some conventions:

- states written using the letter $\boldsymbol{\rho}$ satisfy $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{B} \otimes \mathcal{H} \otimes \mathcal{R})$ or $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H} \otimes \mathcal{R})$, where we use $\mathbf{S}(\mathcal{H})$ to denote the space of Hermitian operators on \mathcal{H};
- states using the letter $\boldsymbol{\sigma}$ satisfy $\boldsymbol{\sigma} \in \mathbf{S}(\mathcal{B} \otimes \mathcal{H} \otimes \mathcal{W})$ or $\boldsymbol{\sigma} \in \mathbf{S}(\mathcal{H} \otimes \mathcal{W})$;
- states using the letter ϕ satisfy $\phi \in \mathbf{S}(\mathcal{B} \otimes \mathcal{H})$ or $\phi \in \mathbf{S}(\mathcal{H})$;
- states using the letter $\boldsymbol{\tau}$ satisfy $\boldsymbol{\tau} \in \mathbf{S}(\mathcal{H} \otimes \mathcal{W} \otimes \mathcal{R})$

With these conventions in mind, we define some intermediate states related to the extraction procedure:

- Let ψ denote the prover state after (vk, a) is generated.
- Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(2)}$ denote the state obtained at the end of Step 2.
- For each iteration of the Step 3 loop, we define the following states:
- Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\text {(init }}$ denote the state at the beginning of Step 3. The register \mathcal{B} is initialized to $|1\rangle\langle 1|$. For the rest of the loop iteration, \mathcal{B} is set to $|0\rangle\langle 0|$ if the computation aborts.
- Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ denote the state at the end of Step 3a.
- Let $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(33)}$ denote the state at the end of Step 3b.
- Let $\boldsymbol{\sigma}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(3)}$ denote the state at the end of Step 3c.
- Let $\boldsymbol{\sigma}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(3 e)}$ denote the state immediately before the \mathcal{W} register is traced out during Step 3 e.
- Let $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{(3 f)}$ denote the state at the end of Step 3f.
- Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(33)}$ denote the state at the end of Step 3g.

As in Lemma 7.1, let the Jordan decomposition of $\mathcal{H} \otimes \mathcal{R}$ corresponding to $\Pi_{\mathrm{C}}, \Pi_{\mathrm{U}}$ be $\left\{\mathcal{S}_{j}\right\}_{j}$ where subspace \mathcal{S}_{j} is associated with the eigenvalue/success probability p_{j}. Let Π_{j}^{Jor} the projection onto \mathcal{S}_{j}, i.e., image $\left(\Pi_{j}^{\text {Jor }}\right)=\mathcal{S}_{j}$. Define the following projections on $\mathcal{H} \otimes \mathcal{R}$:

- $\Pi_{0}^{\mathrm{Jor}}:=\sum_{j, p_{j}=0} \Pi_{j}^{\mathrm{Jor}}$
- $\Pi_{\geq p}^{\mathrm{Jor}}=\sum_{j: p_{j} \geq p} \Pi_{j}^{\mathrm{Jor}}$
- $\Pi_{<p}^{\mathrm{Jor}}=\sum_{j: p_{j}<p} \Pi_{j}^{\mathrm{Jor}}$

We additionally define the following projectors on $\mathcal{B} \otimes \mathcal{H} \otimes \mathcal{R}$.

$$
\Pi_{\text {Bad }}^{\text {Jor }}=|1\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \Pi_{<p}^{\text {Jor }} \quad \text { and } \quad \Pi_{\text {Good }}^{\text {Jor }}=\mathbf{I}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}-\Pi_{\text {Bad }}^{\text {Jor }} .\right.
$$

Claim 8.3. For any estimate p and any state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\text {init }}$ such that $\operatorname{Tr}\left(\left(\mathbf{I}_{\mathcal{B}} \otimes \Pi_{\mathcal{C}}\right) \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}\right)=1$, the state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ obtained by running $b \leftarrow$ Threshold $_{p, \varepsilon, \delta}^{\mathcal{C}, \mathrm{U}}$ (and then redefining $p:=p-\varepsilon$) and setting $\mathcal{B}=|b\rangle\langle b|$ satisfies

$$
\operatorname{Tr}\left(\Pi_{\mathrm{Bad}}^{\mathrm{Jor}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}\right) \leq \delta .
$$

Proof. When Threshold ${ }_{p, \varepsilon, \delta}^{\mathrm{C}, \mathrm{U}}$ returns 0, the computation aborts. Therefore, the lemma follows immediately from the almost-projectivity of Threshold (Corollary 6.7).

8.3.2 Analysis of Steps 1 and 2

We first show that Steps 1 and 2 run in expected polynomial time, and bound the statistic $\mathbb{E}\left[1 / p \cdot X_{1}\right]$, where p is the output of Step 2 and X_{1} is the indicator for the event "Step 1 does not abort".

Lemma 8.4. The expected runtime of Steps 1 and 2 is $O(1)$. Moreover,

$$
\mathbb{E}\left[1 / p \cdot X_{1}\right]=O(1)
$$

Proof. Let $|\psi\rangle$ denote the state of P^{*} after (ck, a) are generated. Then, consider the (U, C)-Jordan decomposition

$$
|\psi\rangle \otimes\left|+{ }_{R}\right\rangle=\sum_{j} \alpha_{j}\left|v_{j, 1}\right\rangle,
$$

where each $\left|v_{j, 1}\right\rangle \in \mathcal{S}_{j} \cap$ image $\left(\Pi_{U}\right)$. Let $\gamma=\sum_{j}\left|\alpha_{j}\right|^{2} p_{j}$ denote the initial success probability of $|\psi\rangle$.

Step 1 runs in a fixed polynomial time and aborts with probability $1-\gamma$. Otherwise, Step 2 is run on the residual state

$$
\frac{1}{\sqrt{\gamma}} \sum_{j} \alpha_{j} \sqrt{p_{j}}\left|w_{j, 1}\right\rangle,
$$

where $\left|w_{j, 1}\right\rangle$ is a basis vector in $\mathcal{S}_{j} \cap$ image $\left(\Pi_{\mathrm{C}}\right)$. Lemma 6.5 tells us that both the runtime of VarEstimate ${ }^{\mathrm{C}, \mathrm{U}}$ on this state (making oracle use of C, U) and the expectation of $1 / p$ (where p is the output of Step 2) are at most a constant times

$$
\frac{1}{\gamma} \sum_{j} \alpha_{j}^{2} p_{j} \cdot \frac{1}{p_{j}}+\delta \cdot 1 / \delta \leq \frac{1}{\gamma} \sum_{j} \alpha_{j}^{2}+1=\frac{1}{\gamma}+1,
$$

so since $\operatorname{Pr}[$ Step 1 does not abort $]=\gamma$, the overall expected value bounds are as claimed.

8.3.3 The Pseudoinverse State

As defined earlier, let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ denote the state at the end of Step 3a (for some arbitrary iteration of Step 3). We prove some important properties of the subsequent states in the execution of Step 3.

We begin with Step 3b, which measures the \mathcal{R} register, obtaining a challenge r and resulting state $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{(3 b)}$. Let

$$
\rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}=\frac{\Pi_{\mathrm{Good}}^{\mathrm{Jor}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})} \Pi_{\mathrm{Good}}^{\text {Jor }}}{\operatorname{Tr}\left(\Pi_{\mathrm{Good}}^{\mathrm{Jor}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{R})}\right)}
$$

denote the residual state; we write $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}=\alpha_{0}|0\rangle\left\langle\left. 0\right|_{\mathcal{B}} \otimes \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 0)}+\alpha_{1} \mid 1\right\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathbf{C}, 1)}\right.$. By Claim 8.3, we have that:
Claim 8.5. $\operatorname{Tr}\left(\Pi_{\text {Good }}^{\text {Jor }} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}\right) \geq 1-\delta$
By gentle measurement, it then follows that

$$
d\left(\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}, \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C})}\right) \leq 2 \sqrt{\delta} .
$$

Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{U})}=\alpha_{0}|0\rangle\left\langle\left. 0\right|_{\mathcal{B}} \otimes \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 0)}+\alpha_{1} \mid 1\right\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right.$ where $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}$ denotes the state guaranteed to exist by applying Lemma 7.1 with $\mathrm{B}=\mathrm{U}$ and $\mathrm{A}=\mathrm{C}$ on $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 1)}$. Recall from Lemma 7.1 that $\operatorname{Tr}\left(\Pi_{\cup} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)=1$, since $\operatorname{Tr}\left(\Pi_{0}^{\text {Jor }} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}\right)=0$. Moreover, we also have:

Claim 8.6.

$$
\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 1)}=\frac{\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)} \Pi_{\mathrm{C}}}{\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)} .
$$

Proof. $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{C}, 1)}$ is a state satisfying $\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{C}, 1)}\right)=1$, and $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ is then a (re-normalized) projection of $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{C}, 1)}$ onto (U, C)-Jordan subspaces with bounded Jordan p_{j}-value. Therefore, $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ also satisfies $\operatorname{Tr}\left(\Pi_{\mathrm{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}\right)=1$.

From Lemma 7.1 (Property 2) we then have

$$
d\left(\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 1)}, \frac{\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)} \Pi_{\mathcal{C}}}{\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, \mathcal{R}}\right)}\right) \leq 2 \sqrt{\operatorname{Tr}\left(\Pi_{0} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}\right)}=0
$$

which implies $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}=\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)} \Pi_{\mathrm{C}} / \operatorname{Tr}\left(\Pi_{\mathrm{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)$.
Finally, because $\operatorname{Tr}\left(\Pi_{\text {Bad }}^{\text {Jor }} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}\right)=0$, Lemma 7.1 (Property 3) tells us that $\operatorname{Tr}\left(\Pi_{\text {Bad }}^{\text {Jor }} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{U})}\right)=0$ as well.

Define $p_{\mathrm{U}}=\operatorname{Tr}\left(\Pi_{\mathrm{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)$ to be the normalization factor above, which is equal to the (C-)success probability of $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}$.

Claim 8.7. $p_{\mathrm{U}} \geq p$.
Proof. Since $\operatorname{Tr}\left(\Pi_{\geq p}^{\mathrm{Jor}} \rho_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)=1$ and Π_{C} commutes with each Π_{j}^{Jor}, we have:

$$
\begin{aligned}
\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right) & =\operatorname{Tr}\left(\Pi_{\mathrm{C}} \Pi_{\geq p}^{\mathrm{Jor}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right) \\
& =\operatorname{Tr}\left(\sum_{j: p_{j} \geq p} \Pi_{\mathrm{C}} \Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right) \\
& \geq p \operatorname{Tr}\left(\sum_{j: p_{j} \geq p} \Pi_{j}^{\mathrm{Jor}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right) \\
& =p .
\end{aligned}
$$

Since $\operatorname{Tr}\left(\Pi_{\boldsymbol{U}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)=1$, it can be written in the form $\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle{ }_{R}\right|$. For each r, we define $\zeta_{r}:=\operatorname{Tr}\left(\Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}\right)$ to be the success probability of $\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}$ on r. Finally, define $\zeta_{R}=\sum_{r} \zeta_{r}$.

We now proceed to analyze the state $\phi_{\mathcal{B}, \mathcal{H}}^{(3 b)}$. To do so, we first define $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{\prime(3 b)}$ to be the state at the end of Step 3 b when $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}$ is used in place of $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$. We know that $d\left(\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{(3 b)}, \boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{\prime(3 b)}\right) \leq 2 \sqrt{\delta}$, so this characterization will suffice.

Claim 8.8. The state $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{\prime(3 b)}$ is a mixed state with the following form: with probability α_{0}, it is in the abort state. Otherwise, with conditional probability ζ_{r} / ζ_{R}, Step $3 g$ measures challenge r and the resulting state is $|1\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \frac{\Pi_{V, r} \phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r}}{\zeta_{r}}\right.$.
Proof. By definition of the pseudoinverse state $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}=\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+_{R}\right\rangle\left\langle+_{R}\right|$, we can write $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ as

$$
\rho_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}=\frac{\Pi_{\mathrm{C}}\left(\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+_{R}\right\rangle\left\langle+_{R}\right|\right) \Pi_{\mathrm{C}}}{\operatorname{Tr}\left(\Pi_{\mathrm{C}}\left(\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+_{R}\right\rangle\left\langle{ }_{R}\right|\right)\right)}
$$

Since $\Pi_{C}=\sum_{r \in R} \Pi_{V, r} \otimes|r\rangle\langle r|$, we can write

$$
\begin{aligned}
\Pi_{\mathrm{C}}\left(\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle+{ }_{R}\right|\right) \Pi_{\mathrm{C}} & =\left(\sum_{r \in R} \Pi_{V, r} \otimes|r\rangle\langle r|\right)\left(\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle+{ }_{R}\right|\right)\left(\sum_{r \in R} \Pi_{V, r} \otimes|r\rangle\langle r|\right) \\
& =\frac{1}{|R|} \sum_{r \in R} \Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|
\end{aligned}
$$

Thus, we can rewrite $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ as

$$
\begin{aligned}
\frac{\Pi_{\mathrm{C}}\left(\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle+{ }_{R}\right|\right) \Pi_{\mathrm{C}}}{\operatorname{Tr}\left(\Pi_{\mathrm{C}}\left(\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|+_{R}\right\rangle\left\langle{ }_{R}\right|\right)\right)} & =\frac{\frac{1}{|R|} \sum_{r \in R} \Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|}{\operatorname{Tr}\left(\frac{1}{|R|} \sum_{r \in R} \Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|\right)} \\
& =\frac{\frac{1}{|R|} \sum_{r \in R} \Pi_{V, r} \phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|}{\frac{1}{|R|} \sum_{r \in R} \zeta_{r}} \\
& =\frac{\sum_{r \in R} \Pi_{V, r} \phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|}{\zeta_{R}}
\end{aligned}
$$

Therefore, the probability of obtaining r after measuring \mathcal{R} of $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C})}$ is

$$
\begin{aligned}
\frac{\operatorname{Tr}\left((\mathbf{I} \otimes|r\rangle\langle r|) \sum_{r^{\prime} \in R} \Pi_{V, r^{\prime}} \phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r^{\prime}} \otimes\left|r^{\prime}\right\rangle r^{\prime} \mid\right)}{\zeta_{R}} & =\frac{\operatorname{Tr}\left(\Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|\right)}{\zeta_{R}} \\
& =\frac{\zeta_{r}}{\zeta_{R}},
\end{aligned}
$$

and the post-measurement state is $\Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \Pi_{V, r}$. Thus, the state $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{\prime(3 b)}$ is as claimed.
In particular, Claim 8.8 tells us that the ratio $\frac{\zeta_{R}}{|R|}$ is exactly $\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)=p_{\mathrm{U}}$.
We begin our analysis of the repair step by defining the following states:

1. $\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}:=\left.\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}\right.$. Here, $\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}$ is the state satisfying $\left.\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}=\phi_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes \mid 0\right\rangle 0\right|_{\mathcal{R}}$.
2. $\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}:=\Pi_{r} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)} \Pi_{r} / \zeta_{r}$.

By Claim 8.8 we can view our variant of Steps 3 b to 3 e as follows:

- With probability α_{0}, abort. Otherwise:
- A challenge is sampled so that each string r occurs with probability $\frac{\zeta_{r}}{\zeta_{R}}$
- If the string r is sampled, initialize the state to $|1\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}\right.$.

Unfortunately, the state $\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}$ only satisfies $\operatorname{Tr}\left(\Pi_{p, \varepsilon} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \geq 1-\delta$ (it is not quite fully in the image of $\Pi_{p, \varepsilon}$). With this in mind, we define two additional states:
3. $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}:=\frac{\Pi_{p, \varepsilon} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathcal{U})} \Pi_{p, \varepsilon}}{\operatorname{Tr}\left(\Pi_{p, \varepsilon} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{((\mathcal{H}, \boldsymbol{1}}\right)}$. Since $\operatorname{Tr}\left(\Pi_{p, \varepsilon} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathcal{U}, 1)}\right)=1-\delta$, we have $d\left(\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathcal{U}, 1)}, \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \leq 2 \sqrt{\delta}$ by Lemma 3.1.
4. $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}:=\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)} \Pi_{r} / \operatorname{Tr}\left(\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)$.

Let $\widetilde{\zeta}_{r}:=\operatorname{Tr}\left(\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)$, and observe that $\widetilde{\zeta}_{r} \in\left[\zeta_{r} \pm 2 \sqrt{\delta}\right]$. Define $\widetilde{\zeta}_{R}:=\sum_{r \in R} \widetilde{\zeta}_{r}$ and $\widetilde{p}_{U}:=\widetilde{\zeta}_{R} /|R|$.
Claim 8.9. $\left|\widetilde{p}_{U}-p_{U}\right| \leq 2 \sqrt{\delta}$
Proof. For every string r, we have that

$$
\left|\zeta_{r}-\widetilde{\zeta}_{r}\right|=\mid \operatorname{Tr}\left(\Pi_{r}\left(\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}-\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \mid \leq 2 \sqrt{\delta}\right.
$$

since $\left\|\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}-\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right\| \leq 2 \sqrt{\delta}$. Therefore, we have that

$$
\left|\frac{\zeta_{R}}{|R|}-\frac{\widetilde{\zeta}_{R}}{|R|}\right| \leq 2 \sqrt{\delta}
$$

by subadditivity.
Consider the following two mixed states

$$
\begin{aligned}
\boldsymbol{\tau}_{\mathcal{H}, \mathcal{R}, \mathcal{W}} & :=\sum_{r} \frac{\zeta_{r}}{\zeta_{R}}|r\rangle\langle r| \otimes \frac{\Pi_{r} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)} \Pi_{r}}{\zeta_{r}}, \text { and } \\
\widetilde{\boldsymbol{\tau}}_{\mathcal{H}, \mathcal{R}, \mathcal{W}} & :=\sum_{r} \frac{\widetilde{\zeta}_{r}}{\widetilde{\zeta}_{R}}|r\rangle\langle r| \otimes \frac{\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)} \Pi_{r}}{\widetilde{\zeta}_{r}} .
\end{aligned}
$$

We claim that these two mixed states are close in trace distance.
Claim 8.10. $\|\boldsymbol{\tau}-\widetilde{\boldsymbol{\tau}}\|_{1} \leq \frac{4 \sqrt{\delta}}{p_{\mathrm{U}}}$.
To see this, we first note that

$$
\begin{aligned}
\left\|\widetilde{\boldsymbol{\tau}}-\frac{\widetilde{\zeta}_{R}}{\zeta_{R}} \widetilde{\boldsymbol{\tau}}\right\|_{1} & =\left|1-\frac{\widetilde{\zeta}_{R}}{\zeta_{R}}\right| \cdot\|\widetilde{\boldsymbol{\tau}}\|_{1} \\
& =\left|1-\frac{\widetilde{\zeta}_{R}}{\zeta_{R}}\right| \\
& =\left|1-\frac{\widetilde{p}_{U}}{p_{U}}\right| \\
& \leq \frac{2 \sqrt{\delta}}{p_{U}}
\end{aligned}
$$

Moreover, we have that

$$
\begin{aligned}
\left\|\boldsymbol{\tau}-\frac{\widetilde{\zeta}_{R}}{\zeta_{R}} \tilde{\boldsymbol{\tau}}\right\|_{1} & =\frac{1}{\zeta_{R}} \| \sum_{r}|r\rangle\langle r| \otimes \Pi_{r}\left(\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}-\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \Pi_{r} \|_{1} \\
& \leq \frac{|R|}{\zeta_{R}} \cdot\left\|\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}-\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right\|_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{|R|}{\zeta_{R}} \cdot 2 \sqrt{\delta} \\
& =\frac{2 \sqrt{\delta}}{p_{\mathrm{U}}} .
\end{aligned}
$$

Thus, we conclude that $\|\boldsymbol{\tau}-\widetilde{\boldsymbol{\tau}}\|_{1} \leq \frac{2 \sqrt{\delta}}{p_{U}}+\frac{2 \sqrt{\delta}}{p \cup} \leq \frac{4 \sqrt{\delta}}{p_{U}}$ by the triangle inequality.
This trace bound will allow us to analyze correctness and bound the expected runtime of the extractor by appealing to properties of the state $\widetilde{\boldsymbol{\tau}}$.

8.3.4 Runtime Analysis

In this section, we bound the expected running time of Ext (proving property (1) of Theorem 8.2).
Theorem 8.11. For any $Q P T P^{*}$, $\mathrm{Ext}^{P^{*}}$ runs in EQPT_{m}.
We note that Lemma 8.4 already showed that the expected running time of Steps 1 and 2 is $O(1)$ calls to (U, C).

Next, we show that the expected runtime of the main loop (Step 3) is also poly (λ). To prove this, we make use of the syntactic property (enforced by the definition of Step 3 g) that for every $i \in\{0,1, \ldots, k\}$, the state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C}, \text { init })}$ at the beginning of the i th iteration of Step 3 is in image $\left(\Pi_{\mathrm{C}}\right)$ (provided that the computation has not aborted). We then show

Lemma 8.12. Let p be an arbitrary real number output by Step 2, and let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C}, \text { init }}$ be an arbitrary non-aborted state (i.e. \mathcal{B} is initialized to $|1\rangle\left(\left.1\right|_{\mathcal{B}}\right)$ that is in the image of Π_{C}.

Then, the expected runtime of one iteration of Step 3 on $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C}, \mathrm{init})}$ is $\operatorname{poly}(\lambda) / p$.
Proof. We analyze the running time assuming that the collapsing measurement of Step 3d is not performed. This is without loss of generality; the steps following the (partial) collapsing measurement have a fixed runtime (as a function of previously computed parameters in the execution), so the collapsing measurement cannot affect the overall expected running time. ${ }^{32}$

First, note that Steps 3 a and 3 g run in a fixed $\operatorname{poly}(\lambda) / \sqrt{p}$ time by Theorem 6.1. Thus, we focus on Steps 3c and 3e.

We bound the expected runtime of Steps 3c and 3e via the following hybrid argument.

- Hyb_{0} : This is the real procedure, assuming that Step 3d is not performed.
- Hyb_{1} : In this hybrid, the \mathcal{R}-measurement outcome and residual state $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{(3 b)}$ is prepared differently:
- With probability α_{0}, abort. Otherwise:
- The challenge r is sampled with probability equal to ζ_{r} / ζ_{R}.
- If the string r is sampled, initialize the state to $|1\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \frac{\Pi_{V, r} \phi_{\mathcal{H}}^{(U, 1)} \Pi_{V, r}}{\zeta_{r}}\right.$.

This is an alternate description of the state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}$.

[^25]- Hyb_{2} : In this hybrid, the state at the beginning of Step 3c (which is usually $\boldsymbol{\phi}_{\mathcal{B}, \mathcal{H}}^{(3 b)} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}\right.$) is prepared differently:
- With probability α_{0}, abort. Otherwise:
- A challenge is sampled so that each string r occurs with probability $\widetilde{\zeta}_{r} / \widetilde{\zeta}_{R}$
- If the string r is sampled, initialize the state to $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$.

Claim 8.13. The expected running times of $\mathrm{Hyb}_{0}, \mathrm{Hyb}_{1}$ differ by at most $O(k)$, and the expected running times of Hyb_{1} and Hyb_{2} differ by at most $O(k / p)$.

Proof. The worst-case running time of Ext is bounded to be $k / \sqrt{\delta}$ by definition. We will combine this with trace distance bounds to prove the claim.

For Hyb_{0} and Hyb_{1}, we note that the running time of Steps 3c and 3 e can be viewed as a classical distribution over integers obtained via applying a CPTP map to the input state, which is either $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ or $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}$. Since trace distance is contractive under CPTP maps, we conclude that these integer distributions are $2 \sqrt{\delta}$-close in statistical distance. Since (as integers) they are $(k / \sqrt{\delta})$-bounded, we conclude that their expectations differ by $O(k)$.

The argument is similar for Hyb_{1} and Hyb_{2}, except that the running time of Steps 3 c and 3 e can instead be viewed as a classical distribution obtained via a CPTP map from either $\boldsymbol{\tau}$ or $\widetilde{\boldsymbol{\tau}}$, which have trace distance at most $\frac{4 \sqrt{\delta}}{p_{\mathrm{U}}} \leq \frac{4 \sqrt{\delta}}{p}$.
Thus, it suffices to bound the expected runtime in the procedure Hyb_{2}.
Without Step 3d, we can view Steps 3c and 3e as a variable-runtime Transform ${ }^{\mathrm{D}_{r} \rightarrow \mathrm{G}_{p, \varepsilon, \delta}}$ with respect to the projectors $\left(\Pi_{r}, \Pi_{p, \varepsilon}\right)$, where r is sampled from the above distribution. We first analyze the runtime of this procedure for a fixed value of r.

Let $\mathrm{Jor}_{r}=\left(\Pi_{j}^{\mathrm{Jor}_{r}}\right)_{j}$ denote the Jordan measurement corresponding to projections $\left(\Pi_{r}, \Pi_{p, \varepsilon}\right)$, and let q_{j} denote the eigenvalue associated with $\Pi_{j}^{\mathrm{Jor}_{r}}$. Define the Jordan weights of $\widetilde{\boldsymbol{\sigma}}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(\mathrm{U})}$ as the vector $\left(y_{j}^{\mathrm{Jor}_{r}}\right)_{j}$ where

$$
y_{j}^{\mathrm{Jor}_{r}}:=\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}_{r}} \tilde{\boldsymbol{\sigma}}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(\mathrm{U})}\right) .
$$

Then, the Jordan weights of $\widetilde{\boldsymbol{\sigma}}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(r)}$ are $\left(z_{j}^{\mathrm{Jor}_{r}}\right)_{j}$ where

$$
z_{j}^{\mathrm{Jor}_{r}}:=q_{j} y_{j}^{\mathrm{Jor}_{r}} / \widetilde{\zeta}_{r} .
$$

Claim 8.14. Given the string r and state $\widetilde{\boldsymbol{\sigma}}_{\mathcal{B}, \mathcal{H}, \mathcal{W}}^{(r)}$ as input, Steps 3c to 3e make an expected $\operatorname{poly}(\lambda) \cdot 1 / \sqrt{\widetilde{\zeta}_{r}}$ calls to $\Pi_{p, \varepsilon}$ and Π_{r}.

Proof. By Theorem 6.4, the expected running time (in number of calls to $\Pi_{r}, \Pi_{p, \varepsilon}$) of Steps 3c to 3e on a state with Jordan weights $\left(q_{j} y_{j}^{\mathrm{Jor}_{r}} / \widetilde{\zeta}_{r}\right)_{j}$ is

$$
\begin{aligned}
\sum_{j} \frac{q_{j} y_{j}^{\mathrm{Jor}_{r}}}{\widetilde{\zeta}_{r}} \cdot \frac{\operatorname{poly}(\lambda)}{\sqrt{q_{j}}} & \leq \operatorname{poly}(\lambda) \sqrt{\sum_{j} \frac{q_{j} y_{j}^{\mathrm{Jor}_{r}}}{\widetilde{\zeta}_{r} q_{j}}} \\
& =\operatorname{poly}(\lambda) \sqrt{\frac{1}{\widetilde{\zeta}_{r}}}
\end{aligned}
$$

This completes the proof of Claim 8.14.

By Claim 8.14, along with the fact that $\Pi_{p, \varepsilon}$ is implemented in a fixed poly $(\lambda) / \sqrt{p}$ time, the expected running time of Steps 3 c to 3 e in Hyb_{2} is:

$$
\begin{align*}
\sum_{r \in R} \frac{\widetilde{\zeta}_{r}}{\widetilde{\zeta}_{R}} \cdot \frac{\operatorname{poly}(\lambda)}{\sqrt{\widetilde{\zeta}_{r} p}} & =\frac{\operatorname{poly}(\lambda)}{\sqrt{p}} \sum_{r \in R} \frac{\widetilde{\zeta}_{r}}{\widetilde{\zeta}_{R}} \cdot \frac{1}{\sqrt{\widetilde{\zeta}_{r}}} \\
& \leq \frac{\operatorname{poly}(\lambda)}{\sqrt{p}} \sqrt{\sum_{r \in R} \frac{\widetilde{\zeta}_{r}}{\widetilde{\zeta}_{R}}} \cdot \frac{1}{\widetilde{\zeta}_{r}} \\
& =\frac{\operatorname{poly}(\lambda)}{\sqrt{p}} \sqrt{\frac{|R|}{\widetilde{\zeta}_{R}}} \\
& =\frac{\operatorname{poly}(\lambda)}{\sqrt{p}} \sqrt{\frac{1}{\widetilde{p}_{U}}} \\
& \leq \frac{\operatorname{poly}(\lambda)}{\sqrt{p(p-2 \sqrt{\delta})}} \\
& \leq \frac{\operatorname{poly}(\lambda)}{p} \tag{3}
\end{align*}
$$

where the first inequality is an application of Jensen's inequality, the second inequality holds by Claim 8.9, and the last inequality holds by the abort condition in Step 2 (p drops by a factor of at most 2 in the entire process).

This completes the proof of Lemma 8.12.

Finally, combining Lemma 8.12 with Lemma 8.4 along with the fact that throughout the extraction procedure, the updated value of p is at most a factor of 2 smaller than the initial output of Step 2, we conclude that the overall expected running time of Step 3 is at most $\mathbb{E}[\operatorname{poly}(\lambda) / p] \leq$ $\operatorname{poly}(\lambda)$, completing the proof of Theorem 8.11.

8.3.5 Correctness of the repair step

In this section, we prove that Extract aborts with negligible probability (property (2) of Theorem 8.2).

Lemma 8.15. The probability that the procedure aborts is negligible.
Proof. By Theorem 8.11, the probability that the procedure aborts because it ran for too long is $O(\operatorname{poly}(\lambda) / \sqrt{\delta})=\operatorname{negl}(\lambda)$.

By Lemma 8.4, $\mathbb{E}[1 / p \cdot X]=O(1)$, where X is the indicator for whether Step 1 outputs 1 . Hence by Claim 8.16 (proven below) and Corollary 6.6 (which implies that the first iteration of Step 3a only aborts with negligible probability), the probability that any iteration of the loop aborts when we remove Step 3d is at most

$$
k \cdot O(\sqrt{\delta}) \mathbb{E}[1 / p \cdot X]=O(\sqrt{\delta})
$$

Then by the collapsing guarantee (applied to the measurements of y_{1}, \ldots, y_{k-1}; it is not necessary for y_{k}), and by Theorem 8.11, the probability that any iteration of the loop aborts is negligible.

Claim 8.16. Let $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H} \otimes \mathcal{R})$ be a state such that $\operatorname{Tr}\left(\Pi_{C} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}\right)=1$, and consider running two iterations of Step 3 in sequence on $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}$, with the following modifications:

- Step 3d is not applied, and
- The $O(k) / \sqrt{\delta}$ runtime cutoff has been removed.

Then, for any choice of $p \in[0,1]$, the probability that the first iteration (with initial value p) does not abort in Step 3a and the second iteration aborts in Step 3a is at most $O(\sqrt{\delta} / p)$.

Also, the probability that an iteration of Step 3 (where Step 3d is not applied) does not abort in Step $3 a$ but does abort in Step $3 g$ is at most $O(\sqrt{\delta} / p)$.
Proof. For a projector Π, we write $\Pi^{\mathcal{B}}$ to denote the projection

$$
|0\rangle\left\langle\left. 0\right|_{\mathcal{B}} \otimes \mathbf{I}+\mid 1\right\rangle\left\langle\left. 1\right|_{\mathcal{B}} \otimes \Pi .\right.
$$

Let \mathcal{B} store the output of Threshold in the first application of Step 3a. Recall that in Section 8.3.3 we have defined the following states:

- $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ denotes the state after applying Step 3a (i.e., coherently applying Threshold to $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}$ where the output is stored on \mathcal{B}). The extraction procedure now re-defines/updates $p:=p-\varepsilon$. Note that $\operatorname{Tr}\left(\left(\Pi_{\geq p}^{\mathrm{Jor}}\right)^{\mathcal{B}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}\right) \geq 1-\delta($ Claim 8.5 $)$.
- $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{C}, b)}:=\left\langle\left. b\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})} \mid b\right\rangle_{\mathcal{B}} / q$ where $q:=\operatorname{Tr}\left(\left\langle\left. b\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})} \mid b\right\rangle_{\mathcal{B}}\right)$. We may assume $q>0$ or else the claim holds trivially.
- $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C})}:=\frac{\left(\Pi_{\geq p}^{\mathrm{Jor}}\right)^{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathcal{R}}\left(\Pi_{\geq p}^{\mathrm{Jor}}\right)^{\mathcal{B}}}{\left.\operatorname{Tr}\left(\Pi_{\geq p}^{\text {Oor }}\right)^{\mathcal{B}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}\right)}$ is the result of projecting $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$. Jordan decomposition corresponding to $\left.\Pi_{\mathrm{C}}, \Pi_{\mathrm{U}}\right)$ when $\mathcal{B}=1$.
- $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}:=\left\langle\left. 1\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C})} \mid 1\right\rangle_{\mathcal{B}} / q^{\prime}$ where $q^{\prime}:=\operatorname{Tr}\left(\left\langle\left. 1\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)} \mid 1\right\rangle_{\mathcal{B}}\right)$. Note that $\operatorname{Tr}\left(\Pi_{\mathrm{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}\right)=1$.
- $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}$ denotes the pseudoinverse of $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ with respect to (U, C) as guaranteed by the pseudoinverse lemma (Lemma 7.1); by definition, $\operatorname{Tr}\left(\Pi_{\cup} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathcal{U}, 1)}\right)=1$. Moreover $\operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right) \geq p$ (Claim 8.7) since all the $\left(\Pi_{\mathrm{C}}, \Pi_{\mathrm{U}}\right)$-Jordan-eigenvalues of $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}$ are at least p, which implies the same property holds for the pseudoinverse state.
- $\phi_{\mathcal{H}}^{(\mathrm{U}, 1)}:=\operatorname{Tr}_{\mathcal{R}}\left(\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)$. Note that since $\operatorname{Tr}\left(\Pi_{\cup} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\right)=1$, we have $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}=\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes|+\rangle\left\langle+\left.\right|_{\mathcal{R}}\right.$.
- $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(3 b, 1)}:=\frac{\sum_{r} \Pi_{V, r} \phi_{\mathcal{H}}^{(\mathcal{U}, 1)} \Pi_{V, r} \otimes|r\rangle\langle r|}{|R| \cdot \operatorname{Tr}\left(\Pi_{\mathcal{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathcal{U})}\right)}$ is within trace distance $2 \sqrt{\delta}$ of the state after measuring the \mathcal{R} register in Step 3b but before discarding \mathcal{R} (Claim 8.8).
- $\boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}:=\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}\right.$. We have that $\operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta} \boldsymbol{\sigma}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \geq 1-\delta{\text { because } \text { Threshold }_{p, \varepsilon, \delta}}$ outputs 1 on $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}$ with probability $1-\delta$ by the Jordan spectrum guarantee of Lemma 7.1.
- $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}:=\frac{\Pi_{p, \varepsilon, \delta} \boldsymbol{\sigma}^{(\mathbf{U}, 1)} \Pi_{p, \varepsilon, \delta}}{\operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta, \delta} \boldsymbol{\sigma}^{(\mathrm{U}, 1)}\right)}$. By the gentle measurement lemma (Lemma 3.1), we have $d\left(\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\right.$ $|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}, \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right) \leq 2 \sqrt{\delta}$.
- $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}:=\frac{\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(U, 1)} \Pi_{r}}{\widetilde{\zeta}_{r}}$ where $\widetilde{\zeta}_{r}:=\operatorname{Tr}\left(\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)$ for all $r \in R$.
- $\widetilde{\boldsymbol{\tau}}_{\mathcal{H}, \mathcal{W}, \mathcal{R}}:=\sum_{r} \frac{\widetilde{\zeta}_{r}}{\widetilde{\zeta}_{R}} \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)} \otimes|r\rangle\langle r|$ for $\widetilde{\zeta}_{R}=\sum_{r} \widetilde{\zeta}_{r}$. By Claim 8.10, we have that $\widetilde{\boldsymbol{\tau}}_{\mathcal{H}, \mathcal{W}, \mathcal{R}}$ is within trace distance $\frac{4 \sqrt{\delta}}{p}$ of the state $\boldsymbol{\tau}=\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(3 b, 1)} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}\right.$.
We now consider the application of the variable-runtime singular vector transform performed across Steps 3c and 3e (recall that we omit Step 3d for this analysis). We consider applying these steps to the state $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$. Note that Steps 3c and 3e commute with $\mathrm{M}_{\mathrm{Jor}}\left[\mathrm{D}_{r}, \mathrm{G}_{p, \varepsilon, \delta}\right]$. Hence writing $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}$ for the state after applying Steps 3 c and 3 e to $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$, we have

$$
\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}_{r}} \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}\right)=\operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}_{r}} \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}\right)=\frac{q_{j} \operatorname{Tr}\left(\Pi_{j}^{\mathrm{Jor}_{r}} \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)}{\widetilde{\zeta}_{r}}
$$

where $\Pi_{j}^{\mathrm{Jor}} r_{r}$ is the j-th element of $\mathrm{M}_{\mathrm{Jor}}\left[\mathrm{D}_{r}, \mathrm{G}_{p, \varepsilon, \delta}\right]$. Let $\Pi_{\mathrm{G}_{p, \varepsilon, \delta}, \text { stuck }}^{\mathrm{Jor}}$. be defined (analogous to $\Pi_{\text {stuck }}^{\mathrm{Jor}}$ in Claim 7.2) as $\Pi_{\text {stuck }}^{\mathrm{Jor}}:=\sum_{j \in S} \Pi_{j}^{\mathrm{Jor}_{r}}$ where S is the set of all j where \mathcal{S}_{j} is a one-dimensional Jordan subspace $\mathcal{S}_{j} \in \operatorname{image}\left(\mathbf{I}-\Pi_{p, \varepsilon, \delta}\right)$. We now invoke Claim 7.2 to "rotate" the state $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}$ into image $\left(\Pi_{p, \varepsilon, \delta}\right)$ while preserving the Jordan spectrum, which is possible as long as the component of the state in $\Pi_{G_{p, \varepsilon, \delta,}, \text { stuck }}^{\mathrm{Jor}_{r}}$ is 0 . This is satisfied here because $\operatorname{Tr}\left(\Pi_{\text {stuck }}^{\mathrm{Jor}} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}\right)=\operatorname{Tr}\left(\Pi_{\text {stuck }}^{\mathrm{Jor}} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)=0$ since $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}$ was defined so that $\operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(U, 1)}\right)=1$.

Additionally, by the guarantee of Theorem 6.4, $\operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}\right) \geq 1-\delta$. Hence by Claim 7.2, there exists a state $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)}$ with the same Jordan spectrum as $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}, \operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(G, r, 1)}\right)=1$ and $d\left(\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)}, \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, r, 1)}\right) \leq \sqrt{\delta}$. Note that $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)}$ also has the same Jordan spectrum of $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$

Consider the pseudoinverse state $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)}$ under $\left(\mathrm{D}_{r}, \mathrm{G}_{p, \varepsilon, \delta}\right)$ of $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)}$. Since the Jordan spectrum of $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)} \in \operatorname{image}\left(\Pi_{p, \varepsilon, \delta}\right)$ is identical to the Jordan spectrum of $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)} \in$ image $\left(\Pi_{r}\right)$, and $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}$ is the pseudoinverse under $\left(\mathrm{G}_{p, \varepsilon, \delta}, \mathrm{D}_{r}\right)$ of $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$, it follows that

$$
\operatorname{Tr}\left(\Pi_{p, \varepsilon, \delta} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)}\right)=\operatorname{Tr}\left(\Pi_{r} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{U}, 1)}\right)=\widetilde{\zeta}_{r},
$$

and moreover $\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{G}, r, 1)}=\Pi_{p, \varepsilon, \delta} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)} \Pi_{p, \varepsilon, \delta} / \widetilde{\zeta}_{r}$.
Hence, if the state before Step 3c is $\sum_{r} \frac{\widetilde{\zeta}_{r}}{\widehat{\zeta}_{R}} \widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, 1)}$ (which is $\frac{4 \sqrt{\delta}}{p}$ close to the actual state before Step 3c) then the state after Step 3e is $O(\sqrt{\delta})$-close to the following state:

$$
\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(3 e, 1)}:=\frac{1}{\widetilde{\zeta}_{R}} \sum_{r} \Pi_{p, \varepsilon, \delta}\left(\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)}\right) \Pi_{p, \varepsilon, \delta} .
$$

Therefore, writing $\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)}=\widetilde{\boldsymbol{\phi}}_{\mathcal{H}}^{(\mathrm{D}, r, 1)} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{W}}\left(\widetilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)}\right.\right.$ has this form since $\left.\tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(\mathrm{D}, r, 1)} \in \operatorname{image}\left(\Pi_{r}\right)\right)$, the state at the end of Step 3 f is $O(\sqrt{\delta})$-close to

$$
\widetilde{\phi}_{\mathcal{H}}^{(3 f, 1)}:=\frac{1}{\widetilde{\zeta}_{R}} \sum_{r \in R} M_{p, \varepsilon, \delta}\left(\widetilde{\phi}_{\mathcal{H}}^{(\mathrm{D}, r, 1)}\right) M_{p, \varepsilon, \delta}^{\dagger},
$$

where $M_{p, \varepsilon, \delta}$ is the measurement element of $\mathrm{T}_{p, \varepsilon, \delta}$ that corresponds to a 1 outcome.
By the guarantee of Threshold (Theorem 6.2), it holds that for all states $\boldsymbol{\phi} \in \mathbf{S}(\mathcal{H})$,

$$
\operatorname{Tr}\left(\Pi_{<p-\varepsilon}^{\mathrm{Jor}} M_{p, \varepsilon, \delta} \phi M_{p, \varepsilon, \delta}^{\dagger}\right) \leq \delta,
$$

and so by linearity,

$$
\begin{align*}
\operatorname{Tr}\left(\Pi_{<p-\varepsilon}^{\mathrm{Jor}} \widetilde{\phi}_{\mathcal{H}}^{(3 f, 1)}\right) & =\frac{1}{\widetilde{\zeta}_{R}} \sum_{r \in R} \operatorname{Tr}\left(\Pi_{<p-\varepsilon}^{\mathrm{Jor}} M_{p, \varepsilon, \delta}\left(\widetilde{\phi}_{\mathcal{H}}^{(\mathrm{D}, r, 1)}\right) M_{p, \varepsilon, \delta}^{\dagger}\right) \\
& \leq \frac{1}{\widetilde{\zeta}_{R}} \cdot|R| \cdot \delta \\
& \leq \frac{\delta}{p-2 \sqrt{\delta}} \tag{4}\\
& =O(\delta / p),
\end{align*}
$$

where Eq. (4) holds by Claim 8.9. It follows from the guarantees of the fixed-runtime singular vector transform (Theorem 6.1) that the state at the end of Step 3 g is $O(\delta)$-close to the state $\tilde{\boldsymbol{\rho}}_{\mathcal{H}, \mathcal{R}}^{(3 g, 1)}=\operatorname{Transform}_{p-\varepsilon}[\mathrm{U} \rightarrow \mathrm{C}]\left(\widetilde{\boldsymbol{\phi}}_{\mathcal{H}}^{(3 f, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle+\left._{R}\right|_{\mathcal{R}}\right)\right.$, which has the property that

$$
\operatorname{Tr}\left(\left(\mathbf{I}-\Pi_{\mathrm{C}}\right) \Pi_{\geq p-\varepsilon}^{\mathrm{Jor}}\left(\widetilde{\boldsymbol{\phi}}_{\mathcal{H}}^{(3 f, 1)} \otimes\left|+{ }_{R}\right\rangle\left\langle\left.{ }_{R}\right|_{\mathcal{R}}\right)\right) \leq \delta .\right.
$$

Combining this with $\operatorname{Tr}\left(\Pi_{<p-\varepsilon}^{\mathrm{Jor}} \widetilde{\boldsymbol{\phi}}_{\mathcal{H}}^{(3 f, 1)}\right)=O(\delta / p)$, we conclude that if the state before Step 3c is $\sum_{r} \frac{\widetilde{\zeta}_{r}}{\zeta_{R}} \tilde{\boldsymbol{\sigma}}_{\mathcal{H}, \mathcal{W}}^{(r, \mathcal{W}}$, then the probability that Step 3 g aborts is at most $O(\delta / p)$. Additionally, the guarantee of Threshold (Theorem 6.2) implies that in the next iteration of Step 3, the probability that Step 3a aborts on $\tilde{\boldsymbol{\rho}}_{\mathcal{H}, \mathcal{R}}^{(3 g, 1)}$ is also at most $O(\delta / p)$. By a trace distance argument, the probability that Step 3 g or the subsequent Step 3a aborts in a real execution of Step 3 (with the modifications as in the statement of Claim 8.16) when the first Step 3a did not abort is at most $O(\sqrt{\delta} / p)$. This completes the proof of Claim 8.16.

8.3.6 Correctness of Transcript Generation

Finally, we prove property (3) of Theorem 8.2.
Lemma 8.17. For every $\tau_{\mathrm{pre}}=(\mathrm{vk}, a)$, let $\gamma=\gamma_{\mathrm{vk}, a}$ denote the initial success probability of P^{*} conditioned on $\tau_{\text {pre }}$. Then, if $\gamma>\delta^{1 / 3}$, the distribution D_{k} on $\left(r_{1}, \ldots, r_{k}\right)$ (conditioned on (vk, a) and a successful first execution) is $O(1 / \gamma)$-admissible (Definition 5.5).

This follows by appealing to the following claim in each round, making use of the fact that the expectation of $1 / p$ conditioned on an accepting initial execution is equal ${ }^{33}$ to $1 / \gamma$; the $O(\sqrt{\delta})$-closeness from the claim also degrades to $O(\sqrt{\delta} / \gamma)$ when conditioning on an accepting initial execution.

Claim 8.18. Consider the distribution D supported on $R \cup\{\perp\}$ obtained running a single iteration of Step 3 with parameter p on an arbitrary state $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{H} \otimes \mathcal{R})$ with $\operatorname{Tr}\left(\Pi_{C} \boldsymbol{\rho}\right)=1$ (where $r:=\perp$

[^26]if Extract aborts). There exists a procedure Samp that makes expected $O(1 / p)$ queries to uniform sampling oracle O_{R} (but can otherwise behave arbitrarily and inefficiently) that outputs a distribution $O(\sqrt{\delta})$-close to D, and if the output of Samp is not \perp then is one of the responses to its oracle queries.
Proof. Samp initially behaves similarly to Extract: apply Threshold ${ }_{p, \varepsilon, \delta}$ to ρ; if Threshold outputs 0 then output \perp. Let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$ be the state after applying Threshold, and (as in Extract) re-set $p:=p-\varepsilon$.

As before, let $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}:=\frac{\left(\Pi_{\geq p}^{\mathrm{or}}\right)^{\mathcal{B}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}\left(\Pi_{\geq p}^{\mathrm{Jor}}\right)^{\mathcal{B}}}{\operatorname{Tr}\left(\left(\Pi_{\geq p}^{\text {or }}\right)^{\mathcal{B}} \rho_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C}}\right)}$. Let $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}$ be the pseudoinverse of $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)}=$ $\left\langle\left. 1\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})} \mid 1\right\rangle_{\mathcal{B}} / \operatorname{Tr}\left(\left\langle\left. 1\right|_{\mathcal{B}} \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C}, 1)} \mid 1\right\rangle_{\mathcal{B}}\right)$ as guaranteed by the pseudoinverse lemma (Lemma 7.1).

We have by Lemmas 3.1 and 7.1 that $d\left(\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\mathcal{C}}, \boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime \mathcal{C}}\right) \leq 2 \sqrt{\delta}$ and $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime \mathcal{C}, 1}=\frac{\Pi_{C} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathcal{U}, 1)} \Pi_{C}}{\operatorname{Tr}\left(\Pi_{C} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(u, 1)}\right)}$. Finally, write $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}=\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes|+\rangle\left\langle+\left.\right|_{\mathcal{R}}\right.$.

Samp now behaves differently than Extract. Samp "clones" $\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}$ (recall that Samp can be an arbitrary function) and repeats the following until $b=1$: query O_{R}, obtaining $r \in R$; on a fresh copy of $\boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}$, measure whether the verifier accepts on challenge r (i.e., $\left(\Pi_{V, r}, \mathbf{I}-\Pi_{V, r}\right)$), obtaining bit b. Output r if $b=1$.

Let $p_{\mathrm{U}}:=\operatorname{Tr}\left(\Pi_{\mathrm{C}} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}\right)$; we have that $p_{\mathrm{U}} \geq p$ by Claim 8.7. Hence, the expected number of queries Samp makes is $1 / p$. Observe that p_{U} is the probability that a uniform r is accepted. Let $\zeta_{r}:=\operatorname{Tr}\left(\Pi_{V, r} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}\right) ; \zeta_{r}$ is the probability that r is accepted. Then, for every $r^{*} \in R$,
$\operatorname{Pramp}_{\operatorname{Sar}}\left[r=r^{*}\right]=\sum_{n=0}^{\infty} \operatorname{Pr}\left[r_{1}, \ldots, r_{n}\right.$ rejected $] \operatorname{Pr}\left[r_{n+1}=r^{*}, r^{*}\right.$ accepted $]=\sum_{n=0}^{\infty}\left(1-p_{\mathrm{U}}\right)^{n} \cdot \frac{\zeta_{r^{*}}}{|R|}=\frac{\zeta_{r^{*}}}{p_{\mathrm{U}} \cdot|R|}$.
Consider now the distribution on r obtained by measuring \mathcal{R} on state $\boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 1)}$: for every r^{*},

$$
\operatorname{Pr}\left[r=r^{*}\right]=\operatorname{Tr}\left(\left|r^{*}\right\rangle\left\langle r^{*}\right| \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{\prime(\mathcal{C}, 1)}\right)=\frac{\operatorname{Tr}\left(\left|r^{*}\right\rangle\left\langle r^{*}\right| \Pi_{\mathrm{C}} \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)} \Pi_{\mathrm{C}}\right)}{p_{\mathrm{U}}}=\frac{\operatorname{Tr}\left(\Pi_{V, r^{*}} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)}\right)}{p_{\mathrm{U}} \cdot|R|}=\frac{\zeta_{r^{*}}}{p_{\mathrm{U}} \cdot|R|}
$$

since $\left(\mathbf{I}_{\mathcal{H}} \otimes\left|r^{*}\right\rangle\left\langle r^{*}\right|\right) \Pi_{\mathrm{C}}=\Pi_{V, r^{*}} \otimes\left|r^{*}\right\rangle\left\langle r^{*}\right|$ and $\left|r^{*}\right\rangle\left\langle r^{*}\right| \boldsymbol{\rho}_{\mathcal{H}, \mathcal{R}}^{(\mathrm{U}, 1)}\left|r^{*}\right\rangle\left\langle r^{*}\right|=\frac{1}{|R|} \boldsymbol{\phi}_{\mathcal{H}}^{(\mathrm{U}, 1)} \otimes\left|r^{*}\right\rangle\left\langle\left. r^{*}\right|_{\mathcal{R}}\right.$.
Overall, D is obtained by measuring $(\mathcal{B}, \mathcal{R})$ on the state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C})}$, which is $O(\sqrt{\delta})$-close to $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{\prime(\mathrm{C})}$; the claim follows by contractivity of trace distance.

Having established properties (1), (2), and (3), we have proved Theorem 8.2!

8.4 Obtaining Guaranteed Extraction

In this section, we combine the guarantees of Theorem 8.2 with additional analysis to prove that all of the example protocols from Section 5.3 have guaranteed extractors (additionally assuming partial collapsing where necessary). We remark that handling the graph isomorphism subroutine requires a slight modification of the Theorem 8.2, which we detail below.

We begin with a general-purpose corollary of Theorem 8.2 for the case of protocols satisfying (k, g)-PSS (Definition 5.6) in addition to f_{1}, \ldots, f_{k-1}-partial collapsing (which was assumed in Theorem 8.2).

Corollary 8.19. Let $\left(P_{\Sigma}, V_{\Sigma}\right)$ be a 3- or 4-message public coin interactive argument with a consistency function $g: T \times\left(R \times\{0,1\}^{*}\right)^{*} \rightarrow\{0,1\}$, and let f_{1}, \ldots, f_{k} be functions. Suppose that:

- The protocol is partially collapsing with respect to f_{1}, \ldots, f_{k-1}, and
- The protocol is (k, g)-PSS for some $k=\operatorname{poly}(\lambda)$.

Then, one of the two following conclusions holds:

1. The extractor from Theorem 8.2 composed with the PSS extractor PSSExtract satisfies guaranteed extraction, $O R$
2. The extractor from Theorem 8.2 outputs a k-tuple of partial transcripts $\left(r_{1}, y_{1}, \ldots, r_{k}, y_{k}\right)$ such that $g\left(\tau_{\text {pre }}, r_{1}, y_{1}, \ldots, r_{k}, y_{k}\right)=0$ (the transcripts are inconsistent) with non-negligible probability.

Proof. Suppose that conclusion (1) is false, meaning that there exist infinitely many λ and a constant c such that the extractor from Theorem 8.2 has an accepting initial execution but the call to PSSExtract fails to produce a witness with probability at least $1 / \lambda^{c}$. We know that the Theorem 8.2 extractor aborts with negligible probability, so we also assume that the extractor does not abort here. Then, by an averaging argument, with probability at least $\frac{1}{2 \lambda^{c}}$ over the distribution of (vk, a), the above event conditioned on (vk, a) holds with probability at least $\frac{1}{2 \lambda^{c}}$. This in particular implies that $\gamma_{\mathrm{vk}, a}$ (as defined in Theorem 8.2) is at least $\frac{1}{2 \lambda^{c}}$ for these choices of (vk, a). Then, property (3) of Theorem 8.2 implies that the distribution of $\left(r_{1}, \ldots, r_{k}\right)$ is admissible for these choices of (vk, a) (and choices of λ). Thus, the (k, g)-PSS property of $\left(P_{\Sigma}, V_{\Sigma}\right)$ implies that for every such (vk, a), the k-tuple of partial transcripts must be inconsistent with probability at least $\frac{1}{2 \lambda^{c}}$ (as otherwise PSSExtract would succeed with $1-$ negl probability). Therefore, assuming that conclusion (1) is false, the probability that the k-tuple of transcripts output by the Theorem 8.2 extractor are inconsistent is at least $\frac{1}{4 \lambda^{2 c}}$ for infinitely many λ, implying conclusion (2).

Finally, we apply Corollary 8.19 to obtain guaranteed extractors for all of the Section 5.3 example protocols (along with a general result for k-special sound protocols).

Corollary 8.20. If $\left(P_{\Sigma}, V_{\Sigma}\right)$ is (fully) collapsing and k-special sound, and $|R|=2^{\omega(\log \lambda)}$, then the protocol has guaranteed extraction.

Proof. Since $\left(P_{\Sigma}, V_{\Sigma}\right)$ is k-special sound and $|R|=2^{\omega(\log \lambda)}$, we know that the protocol is (k, g) PSS for the "trivial" transcript consistency predicate g. Therefore, Corollary 8.19 applies to this protocol (where the extractor sets $f_{1}=\ldots=f_{k}=\mathrm{ld}$). However, conclusion (2) of Corollary 8.19 cannot happen because the consistency predicate of PSSExtract in this case simply checks that the transcripts are accepting, which is guaranteed by the fact that $\left(r_{i}, y_{i}=z_{i}\right)$ was a measurement outcome of a state in Π_{C}.

Corollary 8.21. If $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a commit-and-open protocol (Definition 5.11) satisfying commit-and-open k-special soundness and $R=2^{\omega(\log \lambda)}$ (either natively or enforced by parallel repetition), and the commitment scheme is instantiated using a collapse-binding commitment [Unr16b], then the protocol has a guaranteed extractor.

Proof. Under the hypotheses of the corollary (along with Claims 5.3 and 5.7), the protocol satisfies either (k, g)-PSS (if it has a natively superpolynomial challenge space) or $\left(k^{2} \log ^{2}(\lambda), g\right)$-PSS (if parallel repeated; see Lemma 5.8), where g is a predicate that enforces the constraint that all opened messages are consistent with each other. We set $f_{1}=\ldots=f_{k}=f$ where $f(z)$ outputs the substring of z corresponding to the opened messages (and not the openings). Then, the Theorem 8.2 extraction procedure does not violate g-consistency by the unique-message binding of the commitment scheme (shown in Lemma 4.2). Thus, Corollary 8.19 implies that $\left(P_{\Sigma}, V_{\Sigma}\right)$ has a guaranteed extraction procedure.

Corollary 8.22. Kilian's succinct argument system [Kil92], when instantiated using a collapsing hash function and a PCP of knowledge, has a guaranteed extraction procedure.

Proof. We know from Claim 5.14 the [Kil92] succinct argument system is (1) (fully) collapsing, and $(2)(k, g)$-PSS for $k=\operatorname{poly}(n, \lambda)$ and g defined so that when z_{i} and z_{j} contain overlapping leaves of the Merkle tree, the leaf values are equal. We set $f_{1}=\ldots=f_{k}=I d$, and observe that the Theorem 8.2 extractor does not violate g-consistency, because if it output two transcripts $\left(r_{1}, z_{1}\right),\left(r_{2}, z_{2}\right)$ with inconsistent leaf values, since the transcripts are accepting (they were obtained by measuring a state in Π_{C}), this would violate the collision-resistance (implied by collapsing) of the hash family. Thus, by Corollary 8.19, the protocol has a guaranteed extractor.

Corollary 8.23. The one-out-of-two graph isomorphism subroutine has a guaranteed extraction procedure that extracts the bit b (when G_{0} and G_{1} are not isomorphic).

Proof. By Claim 5.10, this protocol is $\left(2, g^{\prime}\right)$-PSS where g^{\prime} is the following asymmetric function:

- For the first partial transcript $\left(\tau_{\text {pre }}, r^{(1)}, c^{(1)}\right), g^{\prime}$ checks that for all i such that $r_{i}=0$, $\left(H_{0, i}, H_{1, i}\right)$ are isomorphic to $\left(G_{c_{i}^{(1)}}, G_{1-c_{i}^{(1)}}\right)$.
- For the second partial transcript $\left(\tau_{\text {pre }}, r^{(2)}, c^{(2)}\right), g^{\prime}$ additionally checks that for all i such that $r_{i}=1, H_{c_{i}^{(2)}, i}$ is isomorphic to H.

We define the following pair of functions f_{1}, f_{2} :

- $f_{1}\left(\tau_{\text {pre }}, r, z\right)$ outputs the following substring of z. For every i such that $r_{i}=0$, the substring includes the bit c_{i} (where $z_{i}=\left(c_{i}, \sigma_{0, i}, \sigma_{1, i}\right)$).
- $f_{2}\left(\tau_{\text {pre }}, r, z\right)$ outputs the substring c (the distinguished single bit of each $\left.z_{i}\right)$.

We note that the graph isomorphism subprotocol is f_{1}-collapsing; this follows from the fact that for any accepting transcript $\left(\tau_{\text {pre }}, r, z\right)$, the bits c_{i} (for $r_{i}=0$) are information-theoretically determined as a function of $\left(G_{0}, G_{1}, H_{0, i}, H_{1, i}\right)$.

Thus, if we instantiate the Theorem 8.2 extractor using $\left(f_{1}, f_{2}\right)$ (note that we require no properties of f_{2}) we have that Corollary 8.19 applies. Moreover, g^{\prime}-consistency of the transcripts output by the extractor is not violated, because it is formally implied by the fact that they were obtained by partially measuring a state in Π_{C} (any accepting partial transcript $\left(r_{i}, c_{i}\right)$ satisfies the condition checked by g^{\prime}). Thus, we conclude that the protocol has a guaranteed extractor by Corollary 8.19.

9 Expected Polynomial Time for Quantum Simulators

We introduce a notion of efficient computation we call coherent-runtime expected quantum polynomial time $\left(\mathrm{EQPT}_{c}\right)$. We then formalize a new definition of post-quantum zero-knowledge with EQPT_{c} simulation.

9.1 Quantum Turing Machines

We recall the definition of a quantum Turing machine (QTM) of Deutsch [Deu85]. A QTM is a tuple $\left(\Sigma, Q, \delta, q_{0}, q_{f}\right)$ where Σ is a finite set of symbols, Q is a finite set of states, $\delta: Q \times \Sigma \rightarrow \mathbb{C}^{Q \times \Sigma \times\{-1,0,1\}}$ is a transition function, and q_{0}, q_{f} are the initial and final (halting) states respectively.

We fix registers \mathcal{Q} containing the state, \mathcal{I} containing the position of the tape head, and \mathcal{T} containing the tape. A configuration state of a Turing machine is a vector $|q, i, \mathbb{T}\rangle \in \mathcal{Q} \otimes \mathcal{I} \otimes \mathcal{T}$ where $q \in Q$ is the current state, $i \in \mathbb{N}$ is the location of the tape head, and $\mathbb{T} \in \Sigma^{*}$ is the (finite) contents of the tape.

A transition is given by the map U_{δ}, which acts on basis states as follows:

$$
|q, i, T\rangle \mapsto \sum_{q^{\prime} \in Q} \sum_{a \in \Sigma} \sum_{d \in\{-1,0,1\}} \alpha_{q^{\prime}, a, d, b}\left|q^{\prime}, i+d, \mathbb{T}_{i \rightarrow a}\right\rangle
$$

where $\delta\left(q, \mathbb{T}_{i}\right)=\sum_{q^{\prime}, a, d} \alpha_{q^{\prime}, a, d}\left|q^{\prime}, a, d\right\rangle$. δ is a valid transition function if and only if U_{δ} is unitary. The definition of QTMs generalises to multiple tapes in the natural way. We will consider QTMs having a separate input/output tape on register \mathcal{A} (with head position in $\left.\mathcal{I}_{\text {in }}\right)$.

The execution of a T-bounded QTM proceeds as follows.

1. Initialize register \mathcal{Q} to $\left|q_{0}\right\rangle, \mathcal{I}, \mathcal{I}_{\text {in }}$ to $|0\rangle$, and \mathcal{T} to the empty tape state $|\varnothing\rangle$.
2. Repeat the following for at most T steps:
(a) Apply the measurement $\Pi_{f}=\left(\left|q_{f}\right\rangle\left\langle q_{f}\right|, \mathbf{I}-\left|q_{f}\right\rangle\left\langle q_{f}\right|\right)$ to \mathcal{Q}. If the outcome is 1 , halt and discard all registers except \mathcal{A}.
(b) Apply U_{δ}.

The output $M(\boldsymbol{\rho})$ of a QTM M on input $\boldsymbol{\rho} \in \mathbf{S}(\mathcal{A})$ is the state on \mathcal{A} when the machine halts. The running time $t_{M}(\boldsymbol{\rho})$ of M on input $\boldsymbol{\rho}$ is the number of iterations of Step 2. Note that both of these quantities are random variables. We say that $M(\boldsymbol{\rho})$ uses space S if S is the minimum integer such that, at every computation step, \mathcal{I} has zero amplitude on integers greater than S.

Definition 9.1. The expected running time $E_{M}(n)$ of a QTM M is the maximum over all n-qubit states $\boldsymbol{\rho}$ of $\mathbb{E}\left[t_{M}(\boldsymbol{\rho})\right]$. A T-bounded QTM M (for some $T \leq \exp (n)$) is EQPT ${ }_{m}$ if there exists a polynomial p such that $E_{M}(n) \leq p(n)$ for all n. The space complexity $S_{M}(n)$ is the maximum S such that $M(\boldsymbol{\rho})$ uses space S, taken over all n-qubit states $\boldsymbol{\rho}$.

9.2 Coherent-Runtime EQPT

Definition 9.2. A D-circuit is a quantum circuit C with special gates $\left.\left\{G_{i}, G_{i}^{-1}\right\}\right)_{i=1}^{k}$ with the following restriction: for each i, there is a single G_{i} gate and a single G_{i}^{-1} gate acting on a designated register \mathcal{X}_{i}, where G_{i} acts before G_{i}^{-1}. All other gates may act arbitrarily on $\mathcal{Y} \otimes \bigotimes_{i=1}^{k} \mathcal{X}_{i}$, for some register \mathcal{Y}. For any CPTP maps $\Phi_{i}: \mathbf{S}\left(\mathcal{X}_{i}\right) \rightarrow \mathbf{S}\left(\mathcal{X}_{i}\right), C\left[\Phi_{1}, \ldots, \Phi_{k}\right]: \mathbf{S}\left(\mathcal{Y} \otimes \bigotimes_{i=1}^{k} \mathcal{X}_{i}\right) \rightarrow$ $\mathbf{S}\left(\mathcal{Y} \otimes \otimes_{i=1}^{k} \mathcal{X}_{i}\right)$ is the superoperator defined as follows:

1. For each i, U_{i} be a unitary dilation of Φ_{i}. That is, let \mathcal{Z}_{i} be an ancilla Hilbert space and U_{Φ} unitary on $\mathcal{X}_{i} \otimes \mathcal{Z}_{i}$ such that $\Phi(\boldsymbol{\sigma})=\operatorname{Tr}_{\mathcal{Z}_{i}}\left(U_{i}\left(\boldsymbol{\sigma} \otimes|0\rangle\left\langle\left. 0\right|_{\mathcal{Z}_{i}}\right) U_{i}^{\dagger}\right)\right.$ for all $\boldsymbol{\sigma} \in \mathbf{S}\left(\mathcal{X}_{i}\right)$.
2. Construct a circuit C^{\prime} on $\mathcal{Y} \otimes \otimes_{i=1}^{k}\left(\mathcal{X}_{i} \otimes \mathcal{Z}_{i}\right)$ from C by replacing G_{i} with U_{i} and G_{i}^{-1} with U_{i}^{\dagger} for each i.
3. Let C be the superoperator $\boldsymbol{\rho} \mapsto \operatorname{Tr}_{\mathcal{Z}}\left(C^{\prime}\left(\boldsymbol{\rho} \otimes \otimes_{i=1}^{k}|0\rangle\left\langle\left. 0\right|_{\mathcal{Z}_{i}}\right)\right)\right.$.

Since all choices of U_{i} are equivalent up to a local isometry on \mathcal{Z}_{i}, the map $C\left[\Phi_{1}, \ldots, \Phi_{k}\right]$ is welldefined.

We are now ready to define our notion of coherent-runtime expected quantum polynomial time.
Definition 9.3. A sequence of CPTP maps $\left\{\Phi_{n}\right\}_{n \in \mathbb{N}}$ is a $E Q P T_{c}$ computation if there exist a uniform family of D-circuits $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ and EQPT m_{m} computations M_{1}, \ldots, M_{k} such that $C_{n}\left[M_{1}, \ldots, M_{k}\right]=$ Φ_{n} for all n. The running time of an EQPT_{c} computation is defined to be $\left|C_{n}\right|+2 \sum_{i=1}^{k} E_{M_{i}}(n)$, and the space complexity is defined to be $S\left(C_{n}\right)+\sum_{i=1}^{k} S_{M_{i}}(n)$ where C_{n} operates on $S\left(C_{n}\right)$ qubits.

We show that any EQPT_{c} computation can be approximated to any desired inverse polynomial precision by a polynomial-size quantum circuit. We first show the following claim. Let \mid init $\rangle:=$ $\left|q_{0}\right\rangle_{\mathcal{Q}}|0,0\rangle_{\mathcal{I}, \mathcal{I}_{\text {in }}}|\varnothing\rangle_{\mathcal{T}}$.

Claim 9.4. Let M be a T-bounded $Q T M$ running in expected time t and space S, and let U be the unitary dilation of M as in Fig. 1. For all $\gamma: \mathbb{N} \rightarrow(0,1]$, there is a uniform sequence of unitary circuits $\left\{V_{n}\right\}_{n}$ on $O(S(n))$ qubits of size $O\left(t(n) / \gamma(n)^{2}\right)$ such that for every unitary A on \mathcal{A} and state $|\psi\rangle \in \mathcal{A}$:

$$
\left.\|\left(U^{\dagger}(\mathbf{I} \otimes A) U-V_{n}^{\dagger}(\mathbf{I} \otimes A) V_{n}\right)|\psi\rangle \mid \text { init }\right\rangle|0\rangle_{\mathcal{B}} \| \leq \gamma(n) .
$$

Proof. Let V be the unitary given by truncating U to just after the τ-th iteration of U_{δ}, where $\tau:=\left\lceil t / 4 \gamma^{2}\right\rceil$. The proof proceeds by showing that V, V^{\dagger} simulates U, U^{\dagger} exactly in branches where the running time is at most τ, and the total amplitude of branches where the running time is greater than τ is small.

Let $\Pi:=|T-\tau\rangle\left\langle T-\left.\tau\right|_{\mathcal{B}}\right.$. Observe that for every state $\left.\mid \psi\right\rangle \in \mathcal{A}$,

$$
\left.\Pi U|\psi\rangle \mid \text { init }\rangle|0\rangle_{\mathcal{B}}=\Pi_{f} U_{\mathrm{inc}}^{T-\tau} V|\psi\rangle \mid \text { init }\right\rangle|0\rangle_{\mathcal{B}},
$$

because Π projects on to computations that finish in at most τ steps, and once the computation finishes, the remaining $T-\tau$ controlled $-U_{\text {inc }}$ are all applied.

Moreover, for every state $|\phi\rangle \in \mathcal{A} \otimes \mathcal{W}$ and $T-\tau \leq u \leq T-1$,

$$
U^{\dagger}|\phi\rangle\left|q_{f}\right\rangle_{\mathcal{Q}}|u\rangle_{\mathcal{B}}=V^{\dagger}\left(U_{\mathrm{inc}}^{\dagger}\right)^{T-\tau}|\phi\rangle\left|q_{f}\right\rangle_{\mathcal{Q}}|u\rangle_{\mathcal{B}}
$$

since the first $T-\tau$ controlled applications of U_{δ}^{\dagger} act as the identity and the first $T-\tau$ controlled- $U_{\mathrm{inc}}^{\dagger}$ gates are all applied. Hence

$$
\left.\left.U^{\dagger}(\mathbf{I} \otimes A) \Pi U|\psi\rangle \mid \text { init }\right\rangle\left|0^{T}\right\rangle_{\mathcal{B}}=V^{\dagger}(\mathbf{I} \otimes A) \Pi_{f} V|\psi\rangle \mid \text { init }\right\rangle\left|0^{T}\right\rangle_{\mathcal{B}} .
$$

The claim follows since, by Markov's inequality,

$$
\|(I-\Pi) U|\psi\rangle \mid \text { init }\rangle|0\rangle_{\mathcal{B}} \| \leq \sqrt{t / \tau} \leq \gamma(n) / 2
$$

Lemma 9.5. For any EQPT_{c} computation $\left\{\Phi_{n}\right\}_{n}$ with running time t and space complexity S, and $\varepsilon: \mathbb{N} \rightarrow(0,1]$, there is a uniform sequence of (standard) quantum circuits $\left\{C_{n}\right\}_{n}$ of size $O\left(t(n) / \varepsilon(n)^{2}\right)$ on $S(n)$ qubits such that $d\left(\Phi_{n}(\boldsymbol{\rho}), C_{n}(\boldsymbol{\rho})\right) \leq \varepsilon(n)$ for all $\boldsymbol{\rho}$.

Proof. Let D_{n} be a D-circuit and M_{1}, \ldots, M_{k} such that $\Phi_{n}=D_{n}\left[M_{1}, \ldots, M_{k}\right]$, and let U_{n} be the unitary circuit obtained by replacing each G_{i}, G_{i}^{-1} with the corresponding coherent implementation of M_{i} as in Fig. 1. Let U_{n}^{\prime} be as U_{n}, but where the G_{i}-gates are replaced with unitaries V_{i} as guaranteed by Claim 9.4, with $\gamma(n):=\varepsilon(n) / k$. The circuit C_{n} is obtained by initializing the ancillas to \mid init $\rangle|0\rangle_{\mathcal{B}}$, applying U_{n}^{\prime}, and then tracing out the ancillas.

We make use of the fidelity distance d_{F}, defined in [Wat06] to be

$$
d_{F}(\boldsymbol{\rho}, \boldsymbol{\sigma}):=\inf \{\||\psi\rangle-|\phi\rangle \|:|\psi\rangle,|\phi\rangle \text { purify } \boldsymbol{\rho}, \boldsymbol{\sigma}, \text { respectively }\} .
$$

[Wat06] shows that $d_{F}(\boldsymbol{\rho}, \boldsymbol{\sigma}) \geq d(\boldsymbol{\rho}, \boldsymbol{\sigma})$. We can choose the purifications $U_{n}|\psi\rangle \mid$ init $\rangle|0\rangle$ of $\Phi_{n}(|\psi\rangle)$ and $U_{n}^{\prime}|\psi\rangle|0\rangle$ of $C_{n}(|\psi\rangle)$. By Claim 9.4, and the triangle inequality, the distance between these states is at most $\varepsilon(n)$.

9.3 Zero Knowledge with EQPT_{c} Simulation

Given our definition of EQPT_{c} above, we now formally define zero-knowledge with EQPT_{c} simulation for interactive protocols.

For an interactive protocol (P, V), let out $V^{*}\left\langle P, V^{*}\right\rangle$ denote the output of V^{*} after interacting with P.

Definition 9.6. An interactive argument is black-box statistical (resp. computational) postquantum zero knowledge if there exists an EQPT_{c} simulator Sim such that for all polynomial-size quantum malicious verifiers V^{*} and all $(x, w) \in R_{L}$, the distributions

$$
\operatorname{out}_{V^{*}}\left\langle P(x, w), V^{*}\right\rangle \quad \text { and } \quad \operatorname{Sim}^{V^{*}}(x)
$$

are statistically (resp. quantum computationally) indistinguishable.
By Claim 9.4, any EQPT c_{c}-zero knowledge protocol also satisfies (post-quantum) ε-zero knowledge. In Appendix A, we show that $\mathrm{EQPT}_{c}-\mathrm{ZK}$ is strictly stronger than ε-ZK by proving a formal separation between them.

10 State-Preserving Extraction

So far, we have constructed EQPT_{m} guaranteed extractors for various protocols of interest (Section 8) and established the EQPT_{c} model that allows for state-preserving extraction (Section 9). In this section, we prove a generalization of Lemma 2.4, showing how to convert a EQPT_{m} guaranteed extractor into a state-preserving EQPT_{c} extractor.

In Section 10.1, we write down an explicit reduction from state-preserving extraction to guaranteed extraction and prove Lemma 10.3, which gives a condition (Definition 10.2) under which the reduction is valid (intuitively capturing "computational uniqueness" of the witness given the first message of the protocol). Then, in Section 10.2, we show examples to which Lemma 10.3 applies; namely, protocols for languages with unique (partial) witnesses and general commit-and-prove protocols. Finally, in Section 10.3, we conclude Theorems 1.8 and 1.9.

10.1 From Guaranteed Extraction to State-Preserving Extraction

We first recall our definition of state-preserving proofs of knowledge (Definition 2.2).
Definition 10.1. An interactive protocol Π is defined to be a state-preserving argument (resp. proof) of knowledge if there exists an extractor Ext ${ }^{(\cdot)}$ with the following properties:

- Syntax: For any quantum algorithm P^{*} and auxiliary state $|\psi\rangle$, Ext ${ }^{P^{*},|\psi\rangle}$ outputs a protocol transcript τ, prover state $\left|\psi^{\prime}\right\rangle$, and witness w.
- Extraction Efficiency: If P^{*} is a QPT algorithm, $E^{P^{*},|\psi\rangle}$ runs in expected quantum polynomial time (EQPT_{c}).
- Extraction Correctness: the probability that τ is an accepting transcript but w is an invalid NP witness is negligible.
- State-Preserving: the pair $\left(\tau,\left|\psi^{\prime}\right\rangle\right)$ is computationally (resp. statistically) indistinguishable from a transcript-state pair $\left(\tau^{*},\left|\psi^{*}\right\rangle\right)$ obtained through an honest one-time interaction with $P^{*}(\cdot,|\psi\rangle)$ (where $\left|\psi^{*}\right\rangle$ is the prover's residual state).

We now introduce the notion of "witness-binding" protocols, i.e., protocols that are collapsebinding to functions of the witness w. For an adversary Adv and an interactive protocols (P, V) we define a witness-binding experiment $\operatorname{Exp}_{\mathrm{wb}}^{\mathrm{Adv}}(b, \operatorname{Pred}, f, \lambda)$ parameterized by a challenge bit b, a predicate Pred and a function f.

1. The challenger generates the first verifier message vk and sends it to Adv; skip this step if the protocol is a 3 -message protocol.
2. Adv replies with a classical instance x, classical first prover message a, and a quantum state on registers $\mathcal{W}_{\text {witness }} \otimes \mathcal{Y}_{\text {aux }}$.
3. The challenger performs a binary-outcome projective measurement to learn the output of $\operatorname{Pred}(x, \mathrm{vk}, a, \cdot, \cdot)$ on $\mathcal{W}_{\text {witness }} \otimes \mathcal{Y}_{\text {aux }}$. If the output is 0 , the experiment aborts.
4. If $b=0$, the challenger does nothing. If $b=1$, the challenger initializes a fresh ancilla \mathcal{K} to $|0\rangle_{\mathcal{K}}$, applies the unitary U_{f} (acting on $\mathcal{W}_{\text {witness }} \otimes \mathcal{K}$) that computes $f(\cdot)$ on $\mathcal{W}_{\text {witness }}$ and XORs the output onto \mathcal{K}, measures \mathcal{K}, and then applies U_{f}^{\dagger}.
5. The challenger returns the $\mathcal{W}_{\text {witness }} \otimes \mathcal{Y}_{\text {aux }}$ registers to Adv. Finally, Adv outputs a bit b^{\prime}, which is the output of the experiment (if the experiment has not aborted).

Definition 10.2 ((Pred, f)-binding to the witness). A 3 or 4 -message protocol is witness binding with respect to predicate Pred and function f if for any computationally bounded quantum adversary Adv,

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\mathrm{wb}}^{\mathrm{Adv}}(0, \operatorname{Pred}, f, \lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\mathrm{wb}}^{\mathrm{Adv}}(1, \operatorname{Pred}, f, \lambda)=1\right]\right| \leq \operatorname{negl}(\lambda)
$$

Next, we write down a general-purpose reduction from state-preserving extraction to guaranteed extraction and show (Lemma 10.3) that the reduction is valid under an appropriate witness-binding assumption.

Lemma 10.3. Suppose that $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof/argument of knowledge with guaranteed extraction. We optionally assume that the extractor Extract ${ }^{P^{*}}$ outputs some auxiliary information y in addition to the witness w. We then make the following additional assumptions with respect to a predicate Pred:

- The protocol $\left(P_{\Sigma}, V_{\Sigma}\right)$ is (Pred, $\left.f=\mathrm{Id}\right)$-witness binding, and
- The tuple (w, y) output by the guaranteed extractor Extract ${ }^{P^{*}}$ satisfies $\operatorname{Pred}(\mathrm{vk}, x, a, w, y)=1$ with 1 - negl probability.

Then, $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a state-preserving proof/argument of knowledge with EQPT_{c} extraction.
Remark 10.4. This lemma is stated with respect to $f=\mathrm{ld}$ to match the state-preserving proof of knowledge abstraction; however, we also consider (Corollary 10.7) versions of this reduction where $f \neq$ Id.

Proof. We want to show that $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a state-preserving proof/argument of knowledge. We begin by describing our candidate state-preserving extractor Extract ${ }^{P^{*}}$.
Construction 10.5. Let Extract ${ }^{P^{*}}$ be a post-quantum guaranteed extractor (Definition 8.1). We present an EQPT_{c} extractor $\overline{\mathrm{Extract}}^{P^{*}}$ that has the form of an EQPT ${ }_{c}$ computation (see Fig. 2) where the unitary U is a coherent implementation of the following EQPT_{m} computation on input register $\mathcal{H} \otimes \mathcal{R} \otimes \mathcal{S}$:

1. Measure $\mathcal{R} \otimes \mathcal{S}$ with the projective measurement

$$
\left(\left|+{ }_{R}\right\rangle\left\langle+\left.{ }_{R}\right|_{\mathcal{R}} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{\mathcal{S}}, \mathbf{I}-\mid+{ }_{R}\right\rangle\left\langle+\left.{ }_{R}\right|_{\mathcal{R}} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{\mathcal{S}}\right) .\right.
$$

If the output is 0 , abort.
2. If the output is 1 , we are guaranteed that $\mathcal{R} \otimes \mathcal{S}$ is $|+R\rangle_{\mathcal{R}} \otimes|0\rangle_{\mathcal{S}}$. Run Extract ${ }^{P^{*}}$ on prover state \mathcal{H} using \mathcal{R} as the superposition of challenges (in Step 2 of Definition 8.1). We assume that the randomness Extract ${ }^{P^{*}}$ uses to sample a classical random vk is generated by applying a Hadamard to a subregister of \mathcal{S}.
Write everything that is measured/obtained during the execution of Extract ${ }^{P^{*}}$ onto subregisters of \mathcal{S}. This includes the instance x, the first two messages of the 4 -message protocol (vk, a), the bit b indicating the verifier's decision (i.e., whether the prover succeeds when run on the uniform superposition of challenges), and the extracted output (w, y) (if $b=1, w$ is a valid witness for x and $\operatorname{Pred}(x, \mathrm{vk}, a, w, y)=1$ with $1-\operatorname{negl}(\lambda) \operatorname{probability})$.

The fact that the above computation is in EQPT m_{m} follows from the fact that Extract ${ }^{P^{*}}$ is EQPT_{m}. Let U denote its coherent implementation (as in Section $9, U$ is a unitary on $\mathcal{H} \otimes \mathcal{R} \otimes \mathcal{S}$ and an exponential-size ancilla register).

Our state-preserving EQPT_{c} extractor $\overline{\text { Extract }}^{P *}$ takes as input a prover state on \mathcal{H} and does the following.

Extract ${ }^{P^{*}}$:

1. Initialize additional registers $\mathcal{R} \otimes \mathcal{S}$ to $\left|+{ }_{R}\right\rangle_{\mathcal{R}}|0\rangle_{\mathcal{S}}$.
2. Apply U.
3. Measure the subregister of \mathcal{S} containing (x, vk, a, b, w) where $w=0$ is interpreted as \perp. Note that \mathcal{S} contains a subregister corresponding to y, but y is not measured here.
4. Apply U^{\dagger}.
5. Run the prover P^{*} on first message vk to obtain x, a (again). Then run P^{*} on challenge \mathcal{R}. Measure \mathcal{R} to obtain r, and measure the register of \mathcal{H} corresponding to its output to obtain z. Output ($x, \mathrm{vk}, a, r, z, w$) and \mathcal{H}.

First, we note that the above procedure is EQPT_{c} by construction. To prove the extraction correctness guarantee, it suffices to show that when $b=1$, the witness w is valid with $1-\operatorname{negl}(\lambda)$ probability, and that when $b=0$, the extractor outputs a rejecting transcript. The former statement follows immediately from the assumption that Extract ${ }^{P^{*}}$ is a guaranteed extractor. For the latter, observe (using the definition of Extract ${ }^{P^{*}}$ and the fact that U is a coherent implementation of Extract ${ }^{P^{*}}$) that when $b=0$, the state on $\mathcal{H} \otimes \mathcal{R}$ after running P^{*} to obtain a in Step 5 corresponds to a rejecting execution, so the transcript measured in Step 5 will be rejecting.

It remains to argue that the state-preserving extractor satisfies the indistinguishability property. Observe that $\overline{\text { Extract }} P^{*}$ can be rewritten so that vk, x, a, b are no longer obtained by running Extract ${ }^{P^{*}}$ coherently as U and then measuring those values afterwards, but instead by running those steps accroding to the standard EQPT m_{m} implementation of Extract ${ }^{P^{*}}$. Thus the only part of Extract ${ }^{P^{*}}$ that is written as a coherent implementation of a variable runtime procedure is the FindWitness ${ }^{P^{*}}$ subroutine; let $U_{\text {FW }}$ denote the coherent implementation of FindWitness ${ }^{P^{*}}$. Note that while FindWitness ${ }^{P^{*}}$ is technically not EQPT ${ }_{m}$ on its own (i.e., there exist inputs that could make it run for too long), the fact that Extract ${ }^{P^{*}}$ is EQPT_{m} ensures that U_{FW} is only applied on inputs where it runs for expected polynomial time.

Given the above definitions, the output of $\overline{\mathrm{Extract}}{ }^{\text {* }}$ is perfectly equivalent to the following:

1. Sample a random vk , and run the prover P^{*} to obtain x, a.
2. Initialize \mathcal{R} to $\left|+_{R}\right\rangle_{\mathcal{R}}$ and measure C (this is the binary projective measurement on $\mathcal{H} \otimes \mathcal{R}$ defined in Section 8.0.1 that measures whether the verifier accepts when the prover with state \mathcal{H} is run on the challenge \mathcal{R}).
3. If $\mathrm{C}=1$, apply U_{FW}. Otherwise if $\mathrm{C}=0$, set $w=\perp$ and skip to Step 6 .
4. Measure the subregister corresponding to the part of the output of $U_{\text {FW }}$ containing w. Note that there is also a subregister corresponding to y, but y is not measured.
5. Apply $U_{\mathrm{FW}}^{\dagger}$.
6. Measure \mathcal{R} to obtain r and run the prover P^{*} on r to obtain its response z.
7. Output ($x, \mathrm{vk}, a, r, z, w$) and \mathcal{H}.

Let Hybrid ${ }_{0}$ be identical to $\overline{\operatorname{Extract}}^{P *}$ except that Step 7 is modified to output (x, vk, a, r, z) and \mathcal{H} (i.e., omitting w). To show computational indistinguishability, it suffices to show that the output of Hybrid ${ }_{0}$ is computational indistinguishable from Hybrid_{1} defined as follows:

1. Sample a random vk , and run the prover P^{*} to obtain x, a.
2. Initialize \mathcal{R} to $\left|+_{R}\right\rangle_{\mathcal{R}}$ and measure C (this is the binary projective measurement on $\mathcal{H} \otimes \mathcal{R}$ defined in Section 8.0.1 that measures whether the verifier accepts when the prover with state \mathcal{H} is run on the challenge $\mathcal{R})$.
3. Measure \mathcal{R} to obtain r and run the prover P^{*} on r to obtain its response z.
4. Output (x, vk, a, r, z) and \mathcal{H}.

Hybrid $_{1}$ corresponds to an honest execution of P^{*} since the measurement of C commutes with the measurement of \mathcal{R}.

By assumption, in Hybrid $_{0}$, the reduced density $\rho_{\mathcal{S}}$ of \mathcal{S} satisfies $\operatorname{Tr}\left(\Pi_{\operatorname{Valid}} \rho_{\mathcal{S}}\right)=1-\operatorname{negl}(\lambda)$, where $\Pi_{\text {Valid }}$ checks that either $b=0$ or (1) w is a valid witness for x and $(2) \operatorname{Pred}(\mathrm{vk}, x, a, w, y)=1$. Therefore, the indistinguishability of Hybrid_{0} and Hybrid_{1} should intuitively follow from the witnessbinding property, since if the measurement of w is skipped, then $U_{\text {FW }}$ cancels out with $U_{\text {FW }}^{\dagger}$. However, to appeal to the guarantee that measuring w is undetectable, we need to ensure that $U_{\text {FW }}$ corresponds to an efficient operation.

We handle this by considering a fixed polynomial-time truncation of $U_{\text {FW }}$. Suppose that a distinguisher can distinguish Hybrid_{0} from Hybrid_{1} with non-negligible advantage $\varepsilon(\lambda)$. Then we can modify $\operatorname{Hybrid}_{0}$ to use $U_{\mathrm{FW}, \varepsilon}$, a coherent implementation of a strict poly $(\lambda, 1 / \varepsilon)$-runtime algorithm that approximates FindWitness ${ }^{P^{*}}$ to precision $\varepsilon / 2$. Now the same distinguisher must distinguish between Hybrid ${ }_{0, \varepsilon}$ and Hybrid ${ }_{1}$ with advantage $\varepsilon / 2$, where Hybrid ${ }_{0, \varepsilon}$ is the following:

1. Sample a random vk, and run the prover P^{*} to obtain x, a.
2. Initialize \mathcal{R} to $\left|+_{R}\right\rangle_{\mathcal{R}}$ and measure C.
3. If $\mathrm{C}=1$, apply $U_{\mathrm{FW}, \varepsilon}$. Otherwise if $\mathrm{C}=0$, set $w=\perp$ and skip to Step 6 .
4. Measure a subregister of the output register of $U_{\mathrm{FW}, \varepsilon}$ to obtain w.
5. Apply $U_{\mathrm{FW}, \varepsilon}^{\dagger}$.
6. Measure \mathcal{R} to obtain r and run the prover P^{*} on r to obtain its response z.
7. Output $(x, \mathrm{vk}, a, r, z)$ and \mathcal{H}.

Since $\varepsilon(\lambda)$ is at least $1 / \lambda^{c}$ for some constant c for infinitely many λ, it follows that $U_{\mathrm{FW}, \varepsilon}$ and $U_{\mathrm{FW}, \varepsilon}^{\dagger}$ are $\operatorname{poly}(\lambda)$-runtime algorithms for infinitely many λ. Then a distinguisher that distinguishes between $\operatorname{Hybrid}_{0, \varepsilon}$ and Hybrid ${ }_{1}$ contradicts the witness-binding property of (P, V).

10.2 Applying Lemma 10.3

We now show that the witness-binding hypotheses in Lemma 10.3 are satisfied in two cases of interest: protocols for unique-witness (or partial witness) languages (Corollary 10.6), and commit-and-prove protocols (Corollary 10.8).

Corollary 10.6. Let $L \in$ UP be a language with unique NP witnesses. Then, if L has a postquantum proof of knowledge with guaranteed extraction, it also has a post-quantum state-preserving proof of knowledge.

Proof. This follows immediately from the fact that any protocol for a UP language is (Pred, f)witness binding for Pred $=1$ (the trivial predicate) and $f=\operatorname{ld}$ (because there is a unique valid witness). Since Pred $=1$, any guaranteed extractor also satisfies the Pred-hypothesis of Lemma 10.3, so we are done.

We briefly state how Corollary 10.6 can be extended to languages L with unique partial witnesses, provided that the extractor only measures a function $f(w)$ that is a deterministic function of the instance x.

Corollary 10.7. Let $L \in N P$, and let f be an efficient function such that for all instances $x \in L$ and all witnesses $w \in R_{x}, f(x, w)=g(x)$ is equal to some fixed (possibly inefficient) function of x.

Suppose that L has a proof/argument of knowledge $\left(P_{\Sigma}, V_{\Sigma}\right)$ with guaranteed extraction. Then, a modified variant of $\overline{\text { Extract }}$ (Construction 10.5), in which only $f(x, w)$ is measured instead of w, is a state-preserving proof/argument of knowledge extractor for $\left(P_{\Sigma}, V_{\Sigma}\right)$ that outputs $g(x)$.

This holds by the same reasoning as Corollary 10.6: the hypothesis of Corollary 10.7 implies that any protocol for L is (Pred $=1, f)$-witness binding, and so the reduction from Lemma 10.3 applies (when $f(x, w)$ is measured rather than w).

10.2.1 Commit-and-Prove Protocols

Let $\left(P_{\Sigma}, V_{\Sigma}\right)$ denote a post-quantum proof/argument of knowledge with guaranteed extraction (Definition 8.1). Recall that Definition 8.1 has been designed to capture (first-message) adaptive soundness, in which the prover P^{*} can adaptively choose the instance x as it sends its first message.

Then, we consider a commit-and-prove compiled protocol ($P_{\text {Com }}, V_{\text {Com }}$) using (P_{Σ}, V_{Σ}) and a commitment scheme Com. ($P_{\text {Com }}, V_{\text {Com }}$) is executed as follows:

- $V_{\text {Com }}$ sends a first message for $\left(P_{\Sigma}, V_{\Sigma}\right)$ (if the protocol has four messages). Moreover, if Com is a two-message commitment scheme, $V_{\text {Com }}$ sends a commitment key ck.
- $P_{\text {Com }}$ then sends:
- A commitment com $=\operatorname{Com}(\mathrm{ck}, w)$ to a witness w for the underlying language L, and
- A first prover message for an execution of $\left(P_{\Sigma}, V_{\Sigma}\right)$ for the statement " $\exists w, r$ such that com $=\operatorname{Com}(\mathrm{ck}, w ; r)$ and w is an NP-witness for $x \in L$.
- $P_{\text {Com }}$ and $V_{\text {Com }}$ then complete the execution of $\left(P_{\Sigma}, V_{\Sigma}\right)$.

Corollary 10.8. If $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof/argument of knowledge with guaranteed extraction for all NP languages and Com is a collapse-binding commitment scheme, then the commit-and-prove compiled protocol is a state-preserving proof/argument of knowledge.

Proof. We first remark that since $\left(P_{\Sigma}, V_{\Sigma}\right)$ is a post-quantum proof/argument of knowledge with guaranteed extraction, the commit-and-prove composed protocol is also immediately a post-quantum proof/argument of knowledge with guaranteed extraction. Namely, Extract ${ }^{P^{*}}$ interprets the cheating prover as an adaptive-input cheating prover for $\left(P_{\Sigma}, V_{\Sigma}\right)$ with respect to the language

$$
L_{\mathrm{ck}, \mathrm{com}}=\left\{(w, \omega): w \in R_{x} \text { and Com }(\mathrm{ck}, w ; \omega)=\operatorname{com}\right\}
$$

and runs the guaranteed extractor for $\left(P_{\Sigma}, V_{\Sigma}\right)$. Morevoer, this extraction procedure outputs both an NP-witness w and commitment randomness ω such that com $=\operatorname{Com}(\mathrm{ck}, w ; \omega)$; we treat ω as auxiliary information y.

We then define $\operatorname{Pred}(x,(\mathrm{ck}, \mathrm{vk}),(\operatorname{com}, a), w, \omega)$ to output 1 if and only if $\operatorname{Com}(\mathrm{ck}, w ; \omega)=\operatorname{com}$. Then, we observe that the commit-and-prove protocol is (Pred, Id)-witness binding (for the language $L)$ by the collapse-binding of the commitment scheme Com. Moreover, the correctness property of Extract ${ }^{P^{*}}$ further guarantees that $\operatorname{Pred}(x,(\mathrm{ck}, \mathrm{vk}),(\operatorname{com}, a), w, \omega)=1$ with probability $1-\operatorname{negl}(\lambda)$.

Thus, we conclude that Lemma 10.3 applies, and so the commit-and-prove protocol has a statepreserving extractor.

10.3 Concluding Theorems 1.8 and 1.9

Finally, we describe how to conclude the results of Theorems 1.8 and 1.9. We begin with Theorem 1.8, re-stated below.

Theorem 10.9 (Theorem 1.8). Assuming collapsing hash functions exist, there exists a 4-message public-coin state-preserving succinct argument of knowledge for NP.

Proof. Given a collapsing hash function family H, we construct a state-preserving succinct argument of knowledge for NP as follows:

- First, we define Kilian's succinct argument system (see Section 5.3.3) with respect to H. By Corollary 8.22 , this argument system is a post-quantum argument of knowledge with guaranteed extraction.
- Next, we apply the commit-and-prove compiler (Corollary 10.8) using the collapse-binding commitment scheme Com $(\mathrm{ck}=h, m)=h(m)$. This commitment scheme does not formally satisfy any hiding property, but it is succinct, which is what is relevant for Theorem 1.8.

Corollary 10.8 tells us that the resulting composed protocol is a state-preserving argument of knowledge for NP. Moreover, it satisfies all of the properties (4-message, public-coin, succinct) claimed in the theorem statement.

Next, we prove Theorem 1.9, re-stated below.
Theorem 10.10. Assuming collapsing hash functions or super-polynomially secure one-way functions, there exists a 4-message public-coin state-preserving witness-indistinguishable argument (in the case of collapsing) or proof (in the case of OWFs) of knowledge. Assuming super-polynomially secure non-interactive commitments, there exists a 3-message PoK achieving the same properties.

Proof. All three variants of this theorem are proved via the same approach: combining commit-and-prove with a (strong) witness-indistinguishable Σ-protocol.

Formally, let Com denote a (possibly keyed) non-interactive commitment scheme. We use Com to instantiate a commit-and-open Σ-protocol (Definition 5.11) such as the [GMW87b] protocol for graph 3 -coloring or the (potentially modified) [Blu86] protocol for Hamiltonicity. We do a sufficient parallel repetition of the commit-and-open protocol so that its challenge space satisfies $|R|=2^{t}$ for $t \leq \operatorname{poly}(\lambda)^{34}$ and it achieves negl (λ) soundness error. Then, Corollary 8.21 tells us that this protocol is a post-quantum proof/argument of knowledge (depending on whether Com is statistically or collapse-binding) with guaranteed extraction.

Next, we additionally assume (as is the case for [GMW87b, Blu86]) that the Σ-protocol satisfies special honest-verifier zero knowledge (Definition 3.6). In fact, we assume that it satisfies SHVZK against quantum adversaries that run in time $2^{t} \cdot \operatorname{poly}(\lambda)$, which holds (for these examples) provided that Com is computationally hiding against $2^{t} \cdot \operatorname{poly}(\lambda)$-time adversaries.

Under this assumption, Watrous' rewinding lemma [Wat06] implies that the Σ-protocol has a time $2^{t} \cdot \operatorname{poly}(\lambda)$ malicious verifier post-quantum simulator.

We now plug this Σ-protocol into the commit-and-prove compiler (Corollary 10.8), again making use of the commitment scheme Com (for simplicity of the proof, we assume here that a different

[^27]commitment key is used, although this is not necessary). Corollary 10.8 tells us that the resulting protocol is a state-preserving proof/argument of knowledge (again depending on whether Com is statistically binding).

It remains to show WI of the commit-and-prove protocol. That is, we want to show that for every malicious verifier V^{*} (and maliciously chosen commitment key ck), a commitment com $=$ Com $\left(\mathrm{ck}, w_{1}\right)$ and the view of V^{*} in an execution of the Σ-protocol is computationally indistinguishable from the analogous state when a second witness w_{2} is instead used. This is argued via the usual hybrid argument:

- Define $\operatorname{Hybrid}_{0, b}$ to be Com (ck, w_{b}) along with the actual Σ-protocol view of V^{*}.
- Define Hybrid ${ }_{1, b}$ to consist of com $=$ Com $\left(\mathrm{ck}, w_{b}\right)$ along with a $2^{t} \cdot \operatorname{poly}(\lambda)$-time simulated view of V^{*} on input (ck, com). We have that Hybrid ${ }_{1, b} \approx_{c}$ Hybrid $_{0, b}$ by the super-polynomial time simulatability of the Σ-protocol (as discussed above).
- Finally, we have that $\operatorname{Hybrid}_{1,0} \approx_{c}$ Hybrid $_{1,1}$ by the (already assumed) $2^{t} \cdot \operatorname{poly}(\lambda)$-hiding of Com.

To conclude the theorem statement, it suffices to instantiate Com in three ways:

- Assuming $2^{t} \cdot \operatorname{poly}(\lambda)$-secure non-interactive commitments (e.g. [BOV03, GHKW17, LS19]), one obtains the claimed 3 -message protocol.
- Assuming $2^{t} \cdot \operatorname{poly}(\lambda)$-secure one-way functions, one obtains the OWF-based 4 -message protocol.
- Assuming polynomially-secure collapsing hash functions, one obtains the collapsing-based 4message protocol by defining $\operatorname{Com}(h, m ; r, s)=(h(r), s,\langle r, s\rangle \oplus m)$. This commitment scheme is statistically hiding (i.e. hiding against unbounded adversaries), and so WI of the commit-and-prove protocol holds unconditionally, while the AoK property relies on collapsing.

This completes the proof of Theorem 1.9.

11 The [GMW86] GNI Protocol is EQPT_{c} Zero Knowledge

In this section, we show that our state-preserving extraction results imply the post-quantum ZK of the graph non-isomorphism protocol, proving Theorem 1.2. We begin by giving a description of the GNI protocol in Fig. 8. Our description achieves soundness error 1/2 (as does the original [GMW86]), but can be extended to the negligible soundness case (without increasing the number of rounds) with essentially the same proof of (post-quantum) ZK.

Next, we give a slightly more abstract description of the protocol using instance-dependent commitments [BMO90, IOS97, MV03].
Construction 11.1. Fix a language L, let IDC be a non-interactive instance-dependent commitment ${ }^{35}$ [BMO90, IOS97, MV03] for L, and let PoK be a statistically witness-indistinguishable proof of knowledge of the committed bit for IDC. Then, we define the following interactive proof system for the complement language \bar{L}.

[^28]

Figure 8: The Zero Knowledge Proof System for Graph Non-Isomorphism.

1. The verifier commits to a bit $b \in\{0,1\}$ using IDC and sends it to the prover.
2. The prover and verifier engage in PoK where the verifier proves knowledge of b.
3. If the prover accepts in PoK, then it sends b^{\prime} as determined by the verifier's commitment.
4. The verifier accepts if $b^{\prime}=b$.
[GMW86] instantiates this framework for the language L consisting of pairs of isomorphic graphs (and so \bar{L} consists of pairs of non-isomorphic graphs, up to well-formedness of the string x).

Let GIComm be the following instance-dependent commitment scheme: $\operatorname{GIComm}\left(\left(G_{0}, G_{1}\right), b ; \pi\right)=$ $\pi\left(G_{b}\right):=H$. Observe that if G_{0}, G_{1} are isomorphic then this commitment is perfectly hiding, and if they are not then it is perfectly binding. Moreover, this commitment scheme admits a proof of knowledge of the committed bit as follows.

1. The prover chooses $b_{1}, \ldots, b_{\lambda} \in\{0,1\}$ uniformly at random and sends commitments $C_{i, 0}:=$ $\operatorname{GIComm}\left(\left(G_{0}, G_{1}\right), b_{i} ; \sigma_{i, 0}\right)$ and $C_{i, 1}:=\operatorname{GIComm}\left(\left(G_{0}, G_{1}\right), b_{i} \oplus 1 ; \sigma_{i, 1}\right)$.
2. The verifier sends a random string $v \in\{0,1\}^{\lambda}$.
3. The prover sends b_{i} and opens $C_{i, 0}, C_{i, 1}$ for all i such that $v_{i}=0$. The prover sends $c_{i}:=b \oplus b_{i}$, $\tau_{i}:=\sigma_{i, c_{i}} \circ \pi^{-1}$ for all i such that $v_{i}=1$.
4. The verifier accepts if the received openings are valid when $v_{i}=0$, and $C_{i, c_{i}}=\tau_{i}(H)$ when $v_{i}=1$, where H is the commitment graph.

Classically, we obtain b by rewinding to find two accepting transcripts with $v_{i} \neq v_{i}^{\prime}$; then $b=c_{i} \oplus b_{i}$.

Lemma 11.2. If $\left(G_{0}, G_{1}\right)$ are non-isomorphic then the above protocol is a statistically statepreserving proof of knowledge of the committed message for GIComm.

Proof. We have already shown (Corollary 8.23) that this protocol has a guaranteed extractor, because when G_{0} and G_{1} are not isomorphic, this protocol is collapsing onto the b_{i} part of 0 -challenge responses (as b_{i} is fixed by the commitments $C_{i, 0}, C_{i, 1}$) and the protocol is ($2, g$)-probabilistically special sound (where g checks (for the first challenge-partial response pair) the correctness of the 0 challenge response bits b_{i} for $v_{i}=0$ and (for the second challenge-partial response pair) the correctness of all $b_{i}\left(v_{i}=0\right)$ and $\left.c_{i}\left(v_{i}=1\right)\right)$.

Moreover, the language $L_{G_{0}, G_{1}}=\left\{H: \exists(b, \pi)\right.$ such that $\left.\pi G_{b} \simeq H\right\}$ has partial unique witnesses: for any $H \in L_{G_{0}, G_{1}}$, the bit b is uniquely determined (given that G_{0} and G_{1} are not isomorphic). Thus, the state-preserving reduction of Lemma 10.3 applies (see Corollary 10.7), so this protocol has a state-preserving extractor.

Finally, we note that Lemma 11.2 immediately implies that the GNI protocol is post-quantum (statistical) zero knowledge. We assume without loss of generality that the cheating verifier V^{*} has a "classical" first message by replacing V^{*} (with auxiliary state $|\psi\rangle$) with $\left(V^{*}, \boldsymbol{\rho}\right)$ for the mixed state $\boldsymbol{\rho}$ obtained by running $U_{V^{*}}$ on $|\psi\rangle$ to generate a first message, measuring it, and running $U_{V^{*}}^{\dagger}$.

The simulator is then described as follows:

- Given cheating verifier V^{*} with classical first message (com, pok ${ }_{1}$), run the state-preserving PoK extractor on V^{*} (which now acts as a PoK cheating prover).
- If the transcript generated by the state-preserving extractor is accepting, then output the bit b in the "partial witness" slot of the extractor's output. Otherwise, send an aborting message.

The (statistical) zero knowledge property of this simulator follows immediately from the statepreserving property of the extractor. Moreover, the simulator inherits the EQPT_{c} structure directly from the extractor (with additional fixed polynomial-time pre- and post-processing). This completes the proof of Theorem 1.2.

12 The [FS90] Protocol is EQPT ${ }_{c}$ Zero Knowledge

We recall the Feige-Shamir 4-message zero knowledge argument system for NP. This protocol uses three primitives as building blocks:

- A non-interactive commitment scheme Com.
- The 3-message WI argument of knowledge AoK constructed in Section 10.3. We note that AoK is public-coin.
- A 3-message delayed-witness WI argument of knowledge dAoK.

We will argue security using the particular instantiations of AoK, dAoK due to subtleties arising from the concurrent composition. Unlike AoK, we do not require that dAoK is state-preserving. The protocol is executed as follows.

- The verifier sends the following strings as its first message:
- Two commitments c_{0}, c_{1} generated as $c_{i}=\operatorname{Com}\left(0 ; r_{i}\right)$ for i.i.d. random strings r_{i}. For the post-quantum variant, following [Unr12, Unr16b], we additionally include commitments $c_{i}^{\prime}=\operatorname{Com}\left(r_{i} ; \rho_{i}\right)$ to the two random strings r_{0}, r_{1}.
- A first (prover) message of AoK corresponding to the statement " $\exists i, r_{i}, \rho_{i}$ such that $c_{i}=\operatorname{Com}\left(0 ; r_{i}\right)$ and $c_{i}^{\prime}=\operatorname{Com}\left(r_{i} ; \rho_{i}\right)$." By default, the verifier uses (b, r_{b}, ρ_{b}) as its witness for a randomly chosen bit b.
- The prover sends two strings as its first message:
- A second (verifier) message of AoK (which is a uniformly random string).
- A first (prover) message of dAoK corresponding to the statement " $x \in L$ or $\exists i, r_{i}, \rho_{i}$ such that $c_{i}=\operatorname{Com}\left(0 ; r_{i}\right)$ and $c_{i}^{\prime}=\operatorname{Com}\left(r_{i} ; \rho_{i}\right)$." No witness is required.
- The verifier sends two strings as its second message:
- A third (prover) message of AoK, computed using (b, r_{b}, ρ_{b}).
- A second (verifier) message of dAoK (which is a uniformly random string).
- Finally, the prover sends the third message of dAoK. The prover uses a witness w for $x \in L$ to generate this message.

12.1 Building Block: Delayed-Witness Proofs of Knowledge

In order to instantiate the Feige-Shamir protocol, we need a post-quantum instantiation of dAoK. In particular, we need:

Lemma 12.1. Assume that post-quantum non-interactive commitments exist. Then, there exists a delayed-witness Σ-protocol for NP that is witness indistinguishable against quantum verifiers and is a post-quantum proof of knowledge with negligible knowledge error.

Lemma 12.1 does not immediately follow from extraction techniques such as [Unr12, Lemma 7] or [CMSZ21] because the canonical delayed-witness Σ-protocol [LS91] is not collapsing, and these works only give results for collapsing protocols. Nonetheless, we show that (similar to the one-out-of-two graph isomorphism subprotocol of [GMW86]) making use of a variant ($2, g$)-PSS (Definition 5.6), a simple modification of Unruh's rewinding technique [Unr12] suffices to prove Lemma 12.1.

12.1.1 The [LS91] Protocol

We begin by recalling the [LS91] Σ-protocol for graph Hamiltonicity. The protocol uses a noninteractive commitment scheme Com as a building block, and is executed as follows.

- The prover, given as input the security parameter 1^{λ} and an input length $1^{n},{ }^{36}$ sends λ commitments com_{i} to adjacency matrices of i.i.d. random cycle graphs on n vertices (i.e., graphs $H_{i}=\sigma_{i} C_{n}$ that are random permutations of a fixed cycle graph on n vertices).

[^29]- The verifier sends a uniformly random string $r \leftarrow\{0,1\}^{\lambda}$.
- For the third round, the prover is given a graph G and a fixed n-cycle represented by a permutation π mapping C_{n} to G. The prover then sends the following messages.
- For each i such that $r_{i}=0$, the prover sends a full opening of the i th commitment com ${ }_{i}$.
- For each i such that $r_{i}=1$, the prover sends $\sigma_{i} \pi^{-1}$ and opens the substring of com ${ }_{i}$ consisting of commitments to each non-edge of $\sigma_{i} \pi^{-1}(G)$.
- For each i such that $r_{i}=0$, the verifier checks that com_{i} was correctly opened to the adjacency matrix of a cycle graph. For each i such that $r_{i}=1$, the verifier checks that every matrix entry opened is a valid decommitment to 0 .

By the perfect binding of Com, we know that this protocol satisfies 2-special soundness. In fact, it is the parallel repetition of a protocol satisfying 2 -special soundness: for any index i, a commitment string a_{i} along with a valid response z_{0} to $r_{i}=0$ and a valid response z_{1} to $r_{i}=1$ can be used to compute a Hamiltonian cycle in G. Indeed, it satisfies a variant of special soundness (implicitly related to $\left(2, g^{\prime}\right)$-PSS) described here:

Claim 12.2. There exists an extractor $\operatorname{SSExtract}\left(a, r_{1}, z_{1, i}^{(1)}, r_{2}, z_{2, i}\right)$ for the [LS91] protocol such that SSExtract outputs a valid NP witness under the following conditions:

- $r_{1, i}=0, r_{2, i}=1$.
- $\left(a_{i}, r_{2, i}, z_{2, i}\right)$ is an accepting transcript.
- There exists a response $z_{1, i}$ xwith prefix $z_{1, i}^{(1)}$ such that $\left(a_{i}, r_{1, i}, z_{1, i}\right)$ is an accepting transcript.

Here, $z^{(1)}$ denotes the part of a response z consisting of the messages opened (but not the commitment randomness).

Moreover, we note that the protocol is partially collapsing on 0-challenges: given a tuple (x, a, r) and a state $|\phi\rangle=\sum_{z} \alpha_{z}|z\rangle$, any accepting response z_{i} such that $r_{i}=0$ can be partially measured - namely, the committed bits (but not the openings) can be measured - without disturbing $|\phi\rangle$. This is sufficient to prove Lemma 12.1.

12.1.2 Proof of Lemma 12.1

The fact that this protocol is witness indistinguishable follows from the fact that it is a parallel repetition of a post-quantum ZK protocol [Wat06]. What remains is to establish the proof-ofknowledge property.

We consider the following variant of Unruh's approach to knowledge extraction [Unr12]:

1. Given a cheating prover P^{*}, first generate a (classical) first message a from P^{*}. Let $|\psi\rangle$ denote the internal state of P^{*} at this point.
2. Sample a uniformly random challenge r, compute the P^{*} unitary $U_{r}|\psi\rangle$, which writes its response onto some register \mathcal{Z}. Apply the one-bit measurement $\left(\Pi_{V, r}, \mathbf{I}-\Pi_{V, r}\right)$ that checks whether $V(x, a, r, z)=1$.
3. If the measurement returns 1 , additionally measure every register $\mathcal{Z}_{i}^{(1)}$ (the opened messages, but not the commitment randomness) corresponding to $r_{i}=0$.
4. Apply U_{r}^{\dagger} to the prover state.
5. Sample an independent random challenge r^{\prime} and apply $U_{r^{\prime}}$. Apply the one-bit measurement $\left(\Pi_{V, r^{\prime}}, \mathbf{I}-\Pi_{V, r^{\prime}}\right)$.
6. If the measurement returns 1 , additionally measure the entire response \mathcal{Z}.
7. If both measurements returned 1, and there exists an index i such that $r_{i}=0$ and $r_{i}^{\prime}=1$, compute $\operatorname{SSExtract}\left(x, \operatorname{com}_{i}, 0, z_{i}^{(1)}, 1, z_{i}^{\prime}\right)$ where $z_{i}^{(1)}$ is the first partially measured response in location i and z_{i}^{\prime} is the second measured response in location i. Otherwise, abort.

To show that this extraction procedure works, we first consider the variant in which no response measurements are applied (Step 3 and Step 6 are omitted). Then, by Unruh's rewinding lemma [Unr12, Lemma 7], if $U_{r}|\psi\rangle$ produces an accepting response with probability at least ε (over the randomness of r), then the two binary measurements applied above will both return 1 with probability at least ε^{3}. Then, by the fact that the protocol is partially collapsing on 0 -challenges, this continues to hold even if the measurement in Step 3 is applied.

Finally, since the probability that i.i.d. uniform strings r, r^{\prime} do not have an index i such that $r_{i}=0$ and $r_{i}^{\prime}=1$ is $(3 / 4)^{\lambda}=\operatorname{negl}(\lambda)$, we conclude that with probability $\varepsilon^{3}-\operatorname{negl}(\lambda)$, the above extractor produces partial accepting response $z_{i}^{(1)}$ and accepting response z_{i}^{\prime} for some i such that $r_{i}=0$ and $r_{i}^{\prime}=1$, and so SSExtract successfully outputs a witness. If P^{*} is convincing with initial non-negligible probability γ, then with probability at least $\frac{\gamma}{2},|\psi\rangle$ is at least $\frac{\gamma}{2}$-convincing, and so SSExtract outputs a valid witness with probability at least $\Omega\left(\gamma^{3}\right)$. This completes the proof of Lemma 12.1.

12.2 Proof of Security for the [FS90] protocol

We now prove the security of the Feige-Shamir protocol using suitable building blocks (Com, AoK, dAoK).
Theorem 12.3. Suppose that:

- Com is a post-quantum non-interactive commitment scheme,
- AoK is the 3-message state-preserving WI proof of knowledge for NP (with EQPT_{c} extraction) from Section 10.3.
- dAoK is the argument system from Lemma 12.1.

Then, the Feige-Shamir protocol is both sound and zero-knowledge against QPT adversaries. The zero-knowledge simulator is EQPT_{c}.

Combining Theorem 12.3 with the results of Section 10 implies Theorem 1.3.
We remark that the theorem is non-generic with respect to AoK, dAoK due to complications in the security proof coming from the fact that AoK and dAoK are executed simultaneously.

Proof. We first prove soundness, followed by ZK.
Proof of Soundness. Suppose that $x \notin L$ and P^{*} is a QPT prover that convinces V with nonnegligible probability. Given such a P^{*}, we define a cheating prover P_{dAok}^{*} for the underlying dAoK that is given as additional auxiliary input strings $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}, b, r_{b}, \rho_{b}\right)$ such that $c_{b}=\operatorname{Com}\left(0 ; r_{b}\right)$ and $c_{b}^{\prime}=\operatorname{Com}\left(r_{b} ; \rho_{b}\right) . P_{\mathrm{dAoK}}^{*}$ simply emulates P^{*} while generating AoK messages using its auxiliary input. That is:

- P_{dAok}^{*} generates a message aok ${ }_{1}$ using its auxiliary input and calls P^{*} on $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right.$, aok $\left.{ }_{1}\right)$. This results in a P^{*}-message $\left(\right.$ aok $_{2}$, daok $\left._{1}\right) . P_{\mathrm{dAok}}^{*}$ returns daok ${ }_{1}$.
- Upon receiving a verifier challenge r, P_{dAok}^{*} computes an honestly generated message aok ${ }_{3}$ (deterministic ${ }^{37}$ and independent of r) using its auxiliary input and calls P^{*} on (aok ${ }_{3}, r$). This results in a P^{*}-message daok ${ }_{3}$, which P_{dAok}^{*} outputs.

If the auxiliary input $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}, b, r_{b}, \rho_{b}\right)$ is sampled from the correct distribution, P_{dAok}^{*} perfectly emulates the interaction of P^{*} and the honest Feige-Shamir verifier, so P_{dAok}^{*} is convincing with non-negligible probability ε by assumption. Thus, the dAoK knowledge extractor from Lemma 12.1 outputs a valid witness for the statement " $\exists i, r_{i}, \rho_{i}$ such that $c_{i}=\operatorname{Com}\left(0 ; r_{i}\right)$ and $c_{i}^{\prime}=\operatorname{Com}\left(r_{i} ; \rho_{i}\right) "$ with probability at least $\Omega\left(\varepsilon^{3}\right)$.
Claim 12.4. The probability that the dAoK extractor succeeds and $i \neq b$ is also $\Omega\left(\varepsilon^{3}\right)$.
Proof. If this is not the case, then we obtain an algorithm breaking the WI property of AoK. For a fixed statement $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right)$, the algorithm V_{dAok}^{*}, given an honestly generated message aok ${ }_{1}$, calls $\left(\right.$ aok $\left._{2}, \mathrm{dAoK}_{1}\right) \leftarrow P^{*}\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right.$, aok $\left._{1}\right)$ and returns the message aok 2 . Given a fixed response aok ${ }_{3}$, V_{dAok}^{*} emulates the dAoK extractor from Lemma 12.1 by sampling i.i.d. strings r, r^{\prime} for dAoK and re-using the message aok ${ }_{3}$. Then, if the extractor returns a valid witness $\left(i, r_{i}, \rho_{i}\right), V_{\mathrm{dAok}}^{*}$ returns the bit i. If not, V_{dAok}^{*} guesses at random.

Since this faithfully emulates the execution of the dAoK extractor on P_{dAok}^{*} and we assumed that it succeeds with probability $\Omega\left(\varepsilon^{3}\right)$, we conclude that the WI property of AoK with respect to $V_{\text {dAok }}^{*}$ implies the claim.

However, this implies that the dAoK extractor breaks the computational hiding property of Com. This is because if c_{1-b} were instead sampled as $\operatorname{Com}\left(1 ; r_{1-b}\right)$ and c_{1-b}^{\prime} sampled as $\operatorname{Com}\left(r_{1-b} ; \rho_{1-b}\right)$, it is information theoretically impossible for the dAoK extractor to output a witness such that $i \neq b$. This concludes the proof of soundness.

Proof of ZK. We assume without loss of generality that the cheating verifier V^{*} has a "classical" first message $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right.$, aok $\left.{ }_{1}\right)$ by replacing V^{*} (with auxiliary state $\left.|\psi\rangle\right)$ with $\left(V^{*}, \boldsymbol{\rho}\right)$ for the mixed state ρ obtained by running $U_{V^{*}}$ on $|\psi\rangle$ to generate a first message, measuring it, and running $U_{V^{*}}^{\dagger}$.

By the construction of AoK (see Corollary 10.8 and Theorem 10.10) we know that the tuple $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right.$, aok ${ }_{1}$) uniquely determines a witness $\mathrm{td}=\left(b, r_{b}, \rho_{b}\right)$ that the AoK extractor can ever output (if such a witness exists; otherwise, we define td to be \perp). We non-uniformly include td in the description of the V^{*} state $\boldsymbol{\rho}$ without loss of generality (this does not affect the simulator, only the analysis).

[^30]- Construct a first message daok k_{1} using the honest dAoK prover algorithm.
- For fixed classical strings $\left(c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}\right.$, aok ${ }_{1}$, daok $\left.{ }_{1}\right)$, define an AoK cheating prover $P_{\text {Aok }}^{*}$ with the following description:
- Send aok ${ }_{1}$
- On challenge s, call V^{*} on $\left(s\right.$, daok $\left._{1}\right)$. Upon receiving (aok $_{3}, r$), return aok $_{3}$.
- Run the state-preserving extractor Extract ${ }^{\text {A००K }_{*}^{*}}$, daok $_{1}, \rho$, outputting the (unique possible) witness td along with a $P_{\text {Aok }}^{*}$-view (which includes a V^{*}-view in it).
- If the output witness is \perp, send an aborting final message. Otherwise, compute daok 3_{3} using td.

Figure 9: The Feige-Shamir protocol simulator

Our black-box zero-knowledge simulator is defined in Fig. 9:
We claim that this achieves negligible simulation accuracy. We prove this via a hybrid argument:

- Hyb_{0} : This is the simulated view of V^{*}.
- Hyb_{1} : This is the same as Hyb_{0}, except that daok ${ }_{3}$ is computed using an NP-witness w for x.
- Hyb_{2} : This is the real view of V^{*}.

The indistinguishability of Hyb_{2} and Hyb_{1} follows immediately from the state-preserving property of AoK, as the view of $P_{\text {AoK }}^{*}$ contains an entire correctly emulated view of V^{*}.

The indistinguishability of Hyb_{1} and Hyb_{0} follows from the witness indistinguishability of dAoK. To prove this, we assume for the sake of contradiction that Hyb_{1} and Hyb_{0} are distinguishable by a polynomial-time distinguisher D with non-negligible advantage ε. Then, we construct the following two additional hybrids:

- $\mathrm{Hyb}_{0}^{\prime}$: This is simulated view of V^{*}, except that Extract is replaced by a $\operatorname{poly}(\lambda, 1 / \varepsilon)$-size oracle algorithm that achieves accuracy $\frac{\varepsilon}{4}$.
- $\mathrm{Hyb}_{1}^{\prime}$: This is the same as $\mathrm{Hyb}_{0}^{\prime}$ except that daok ${ }_{3}$ is computed using an NP-witness w for x.

By a hybrid argument, we conclude that D also distinguishes $\mathrm{Hyb}_{0}^{\prime}$ and $\mathrm{Hyb}_{1}^{\prime}$ with advantage $\varepsilon / 2$. We claim that this breaks the witness indistinguishability of dAoK. Define a dAoK verifier $V_{\text {dAok }}^{*}$ operating as follows

- V_{dAok}^{*} has the state ρ as auxiliary input (including $c_{0}, c_{0}^{\prime}, c_{1}, c_{1}^{\prime}$, aok ${ }_{1}, \mathrm{td}$). V_{dAok}^{*} wants to distinguish between proofs using witness w and proofs using witness td.
- V_{dAoK}^{*} receives daok ${ }_{1}$ from the prover. It then calls (the $\varepsilon / 4$-truncated) Extract $P_{\text {Aok }}^{*}$, daok ${ }_{1}, \rho$, which returns a $P_{\text {Aok }}^{*}$-view. $V_{\text {dAok }}^{*}$ sends the challenge r from the $P_{\text {Aok }}^{*}$-view to the prover.
- Finally, upon receiving daok ${ }_{3}$ from the prover, V_{dAok}^{*} outputs the emulated V^{*} view.
V_{dAok}^{*} has been constructed to be (aux-input) QPT, and (along with the distinguisher D) violates the WI property of dAoK, giving the claimed contradiction.

We conclude that the Feige-Shamir protocol is ZK, as desired. We note that the zero-knowledge simulator inherits the EQPT ${ }_{c}$ structure of the AoK state-preserving extractor (with some additional fixed poly-time pre- and post-processing).

13 The [GK96] Protocol is EQPT ${ }_{c}$ Zero Knowledge

In this section we show that the Goldreich-Kahan constant-round proof system for NP is postquantum zero knowledge by giving an EQPT_{c} simulator. In Section 13.1 we give a technical lemma about the distinguishability of certain purifications that will be of central importance in the proof. In Section 13.2 we describe our quantum simulator.

13.1 Indistinguishability of Projections onto Indistinguishable States

Consider the states $\left|D_{b}\right\rangle:=\sum_{x}|x\rangle_{\mathcal{X}}\left|D_{b}(x)\right\rangle_{\mathcal{Y}}$ where D_{0}, D_{1} are computationally indistinguishable (w.r.t. quantum adversaries) efficiently sampleable classical distributions with random coins x (in a slight abuse of notation, D_{b} denotes both the distribution and the sampler). If we are only given access to \mathcal{Y}, then distinguishing $\left|D_{0}\right\rangle$ from $\left|D_{1}\right\rangle$ is clearly hard since $\operatorname{Tr} \mathcal{X}\left(\left|D_{b}\right\rangle\left\langle D_{b}\right|\right)$ is equivalent to a random classical sample from D_{b}.

In this subsection, we show that this indistinguishability generically extends to the setting where we additionally give the distinguisher access to the projection $\left|D_{b}\right\rangle\left\langle D_{b}\right|$ on $\mathcal{X} \otimes \mathcal{Y}$. This is formalized by giving the distinguisher an additional one-qubit register \mathcal{O} and black-box access (see Section 3.2) to the unitary U_{b} and its inverse acting on $\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{O}$ defined as

$$
U_{b}:=\left|D_{b}\right\rangle\left\langle\left. D_{b}\right|_{\mathcal{X}, \mathcal{Y}} \otimes \mathbf{X}_{\mathcal{B}}+\left(\mathbf{I}_{\mathcal{X}, \mathcal{Y}}-\left|D_{b}\right\rangle\left\langle\left. D_{b}\right|_{\mathcal{X}, \mathcal{Y}}\right) \otimes \mathbf{I}_{\mathcal{B}},\right.\right.
$$

where $\mathbf{X}_{\mathcal{B}}$ denotes the bit-flip operator on \mathcal{B}. In particular, it is no longer the case that access to $\left|\tau_{b}\right\rangle$ is equivalent to a random classical sample from D_{b}, since the distinguisher's access to U_{b} means the \mathcal{X} is no longer independent of its view. Nevertheless, we prove the following.
Lemma 13.1. If there exists a polynomial-time quantum oracle distinguisher $S^{U_{b}}$ without direct access to \mathcal{X} achieving

$$
\mid \operatorname{Pr}\left[S^{U_{0}}\left(\left|D_{0}\right\rangle_{\mathcal{X}, \mathcal{Y}}\right)=1\right]-\operatorname{Pr}\left[S^{U_{1}}\left(\left|D_{1}\right\rangle_{\mathcal{X}, \mathcal{Y}}\right)=1\right] \mid \geq 1 / \operatorname{poly}(\lambda),
$$

then there exists a polynomial-time quantum algorithm S that distinguishes classical samples from the distributions D_{0} and D_{1}.

Our proof will make use of two results by Zhandry [Zha12, Zha15], which we restate here for convenience. In the following, quantum oracle access to a function $f: X \rightarrow Y$ refers to black-box access to the unitary that maps $|x\rangle|y\rangle \rightarrow|x\rangle|f(x) \oplus y\rangle$ for all x, y.
Theorem 13.2 (Theorem 1.1 of [Zha12]). Let D_{0} and D_{1} be efficiently sampleable distributions on a set Y, and let X be some other set. Let O_{0} and O_{1} be the distributions of functions from X to Y where for each $x \in X, O_{b}(x)$ is chosen independently according to D_{b}. Then if A is an efficient quantum algorithm that can distinguish quantum access to the oracle O_{0} from quantum access to the oracle O_{1}, we can construct an efficient quantum algorithm B that distinguishes classical samples from D_{0} and D_{1}.

Theorem 13.3 ([Zha15]). An efficient quantum algorithm cannot distinguish between quantum access to an oracle f implementing a random function $X \rightarrow X$ and an oracle π implementing a random permutation $X \rightarrow X$.

Proof. By Theorem 13.2, it suffices for us to show that if there exists a distinguisher $S^{U_{b}}$ that distinguishes $\left|D_{0}\right\rangle_{\mathcal{X}, \mathcal{Y}}$ from $\left|D_{1}\right\rangle_{\mathcal{X}, \mathcal{Y}}$ without directly accessing the \mathcal{X} register, then there is an algorithm to distinguish between quantum oracle access to $D_{0} \circ f$ and $D_{1} \circ f$ (where $D_{b} \circ f$ is the composed function $D_{b}(f(\cdot))$) where $f: X \rightarrow X$ is a random function.

By Theorem 13.3, we observe that it suffices to show that $S^{U_{b}}$ implies an algorithm to distinguish between quantum oracle access to $D_{0} \circ \pi$ and $D_{1} \circ \pi$ for a random permutation $\pi: X \rightarrow X$.

Given quantum oracle access to $D_{b} \circ \pi$, we can implement a unitary $V_{b, \pi}$ that maps $|0\rangle_{\mathcal{X}, \mathcal{Y}}$ to the state $\left|D_{b, \pi}\right\rangle:=\sum_{x}|x\rangle\left|D_{b}(\pi(x))\right\rangle$ as follows: apply a Hadamard to \mathcal{X}, then apply the $D_{b} \circ \pi$ oracle to $\mathcal{X} \otimes \mathcal{Y}$.

We can use S to distinguish $b=0$ from $b=1$ as follows. We prepare the state $\left|D_{b, \pi}\right\rangle_{\mathcal{X}, \mathcal{Y}}$ using $V_{b, \pi}$. Using $V_{b, \pi}$ we can also implement the operation

$$
U_{b, \pi}:=\left|D_{b, \pi}\right\rangle\left\langle D_{b, \pi}\right| \otimes \mathbf{X}_{\mathcal{B}}+\left(\mathbf{I}-\left|D_{b, \pi}\right\rangle\left\langle D_{b, \pi}\right|\right) \otimes \mathbf{I}_{\mathcal{B}}
$$

as follows: apply $V_{b, \pi}^{\dagger}$ to $\mathcal{X} \otimes \mathcal{Y}$, apply $|0\rangle\left\langle\left. 0\right|_{\mathcal{X}, \mathcal{Y}} \otimes \mathbf{X}_{\mathcal{B}}+\left(\mathbf{I}-|0\rangle\left\langle\left. 0\right|_{\mathcal{X}, \mathcal{Y}}\right) \otimes \mathbf{I}_{\mathcal{B}}\right.\right.$, then apply $V_{b, \pi}$. We can therefore run $S^{U_{b, \pi}}\left|D_{b, \pi}\right\rangle$.

Since $S^{U_{b}}$ does not act on \mathcal{X} except via its oracle, and $\left|D_{b}\right\rangle$ is related to $\left|D_{b, \pi}\right\rangle$ by a unitary acting on \mathcal{X} only, it holds that

$$
\operatorname{Tr}_{\mathcal{X}}\left(S^{U_{b, \pi}}\left(\left|D_{b, \pi}\right\rangle\left\langle D_{b, \pi}\right|\right)\right)=\operatorname{Tr}_{\mathcal{X}}\left(S^{U_{b}}\left(\left|D_{b}\right\rangle\left\langle D_{b}\right|\right)\right)
$$

which completes the proof.

13.2 Quantum Simulator

We begin by describing a variable-runtime EQPT ${ }_{m}$ estimation procedure that will be a useful subroutine in our quantum zero-knowledge simulator for [GK96]. Following Theorem 6.4, let VarEstimate and Transform be the first and second stages of the variable-runtime singular vector transform (vrSVT). For binary projective measurements $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on \mathcal{A}, we define a "estimate-disturbtransform" procedure EDT $[A, B, C]$. Intuitively, this procedure first uses VarEstimate to compute an upper bound on the running time of $\operatorname{Transform}[A \rightarrow B]$, but then disturbs the state with the measurement C before running Transform $[A \rightarrow B]$. However, to ensure that VarEstimate does not run for unbounded time, the input is first "conditioned" by applying B followed by A, and only proceeding if both measurements return 1 .

Formally, the procedure takes an input state on \mathcal{A} and does the following:
EDT[A, B, C]:

1. Apply B to \mathcal{A}, obtaining outcome b_{1}.
2. Apply A to \mathcal{A}, obtaining outcome b_{2}.
3. If $b_{1}=0$ or $b_{2}=0$, stop and output $(0, \perp)$.
4. Otherwise, run $\operatorname{VarEstimate}_{\delta}[\mathrm{A} \rightleftarrows \mathrm{B}]$ on \mathcal{A}, obtaining classical output y.
5. Apply C to \mathcal{A}, obtaining outcome c.
6. Run Transform ${ }_{y}[\mathrm{~A} \rightarrow \mathrm{~B}]$ on \mathcal{A}.
7. Output \mathcal{A} and $(1, c)$.

Let $\widehat{\mathrm{EDT}}[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ denote a coherent implementation of this procedure.

Claim 13.4. For any efficient measurements A, B, C, EDT $[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ is EQPT_{m}.
Proof. Since EDT $[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ commutes with $\mathrm{M}_{\mathrm{Jor}}[\mathrm{A}, \mathrm{B}]$, it suffices to analyze its running time for states contained within a single Jordan subspace. Let $\left|\psi_{j}\right\rangle:=\alpha\left|w_{j, 1}\right\rangle+\beta\left|w_{j, 0}\right\rangle$. Then

$$
\operatorname{Pr}\left[b_{1}=b_{2}=1\right]=|\alpha|^{2} \operatorname{Pr}\left[\mathrm{~A}\left(\left|w_{j, 1}\right\rangle\right) \rightarrow 1\right] \leq p_{j} .
$$

Note that C does not affect the running time of $\operatorname{Transform}_{y}$. Hence the expected running time of this procedure on $\left|\psi_{j}\right\rangle$ is

$$
O\left(\left(p_{j} \cdot \log (1 / \delta) / \sqrt{p_{j}}+1\right) \cdot\left(t_{\mathrm{A}}+t_{\mathrm{B}}\right)\right)=O\left(\log (1 / \delta) \cdot\left(t_{\mathrm{A}}+t_{\mathrm{B}}\right)\right) .
$$

It follows that this procedure is EQPT_{m}.
We define the states and measurements used in the simulator.

- For $r \in R$, let $\left|\operatorname{Sim}_{r}\right\rangle:=\frac{1}{\sqrt{2^{\lambda}}} \sum_{\mu}|\mu\rangle|\operatorname{SHVZK} . \operatorname{Sim}(r ; \mu)\rangle$.
- Let $\mathrm{M}_{\mathrm{sim}}:=\left(\Pi_{\text {Sim }}, \mathbf{I}-\Pi_{\text {sim }}\right)$, where $\Pi_{\text {Sim }}:=\sum_{r}|r\rangle\langle r| \otimes\left|\operatorname{Sim}_{r}\right\rangle\left\langle\operatorname{Sim}_{r}\right| \otimes \mathbf{I}$.
- Let $\mathrm{M}_{\mathcal{R}}:=\left(\Pi_{r}\right)_{r \in R}$, where $\Pi_{r}:=U_{V^{*}}^{\dagger}|r\rangle\left\langle\left. r\right|_{\mathcal{R}} U_{V^{*}}\right.$.
- Let $\mathrm{M}_{\mathrm{com}}:=\left(\Pi_{\mathrm{com}}, \mathbf{I}-\Pi_{\mathrm{com}}\right)$, where

$$
\Pi_{\mathrm{com}}:=\sum_{\substack{r, \omega \\ \text { Commit }(\mathrm{ck}, r, \omega)=\mathrm{com}}}|r, \omega\rangle\langle r, \omega| .
$$

$\operatorname{Sim}^{V^{*}}$:

1. Run $V^{*}(\mathrm{ck})$ for $\mathrm{ck} \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ to obtain a commitment com.
2. Generate the state $|0\rangle_{\mathcal{R}^{\prime}}\left|\operatorname{Sim}_{0}\right\rangle_{\mathcal{M}, \mathcal{A}, \mathcal{Z}}$.
3. Apply EDT $\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{\text {Sim }}, \mathrm{M}_{\mathcal{R}}\right]$, obtaining outcome (b,r) (in superposition). Measure b.
4. If $b=1$, measure r and replace the state on $\mathcal{R}^{\prime}, \mathcal{M}, \mathcal{A}, \mathcal{Z}$ with $|r\rangle_{\mathcal{R}^{\prime}}\left|\operatorname{Sim}_{r}\right\rangle_{\mathcal{M}, \mathcal{A}, \mathcal{Z}}$.
5. Apply $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{\text {sim }}, \mathrm{M}_{\mathcal{R}}\right]^{\dagger}$.
6. Measure register \mathcal{A}, obtaining outcome a. Apply $U_{V^{*}}$ and measure \mathcal{R}, \mathcal{W} to obtain $\left(r^{\prime}, \omega\right)$; if $\operatorname{Commit}\left(r^{\prime}, \omega\right) \neq$ com, stop and output the view of V^{*}. Otherwise, measure \mathcal{Z}, obtaining outcome z. Send z to V^{*} and output the view of V^{*}.

Lemma 13.5. If Com is a collapse-binding commitment then $\operatorname{Sim}^{V^{*}}(\boldsymbol{\rho})$ is computationally indistinguishable from out $V^{*}\left\langle P, V^{*}\right\rangle . \operatorname{Sim}^{V^{*}}$ is an EQPT_{c} algorithm.

Proof. By Claim 13.4, $P\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{\mathrm{sim}}, \mathrm{M}_{\mathcal{R}}\right]$ is EQPT_{m}, and so $\mathrm{Sim}^{V^{*}}$ is EQPT_{c}.
We consider three hybrid simulators H_{1}, H_{2}, H_{3}, as follows. All three are provided with some witness w such that $(x, w) \in \mathfrak{R}$. We first define H_{1}.
$H_{1}^{V^{*}}(x, w):$

1. Run $V^{*}(\mathrm{ck})$ for $\mathrm{ck} \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$ to obtain a commitment com.
2. Generate the state $|P\rangle:=\sum_{\mu}|\mu\rangle_{\mathcal{M}}\left|P_{\Sigma}(x, w ; \mu)\right\rangle_{\mathcal{A}}$.
3. Let $\mathrm{M}_{P}:=(|P\rangle\langle P|, \mathbf{I}-|P\rangle\langle P|)$. Apply $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{P}, \mathrm{M}_{\mathcal{R}}\right]$, obtaining outcome (b, r) (in superposition). Measure b.
4-6. As in Sim.
H_{1} is indistinguishable from Sim by Lemma 13.1: H_{1} is obtained from Sim by replacing $\left|\operatorname{Sim}_{0}\right\rangle$ and $\mathrm{M}_{\text {sim }}$ with $|P\rangle$ and M_{P} and interacts only with the \mathcal{A} register, and the distributions on a induced by $(a, z) \leftarrow \operatorname{SHVZK} \cdot \operatorname{Sim}(0 ; \mu)$ and $a \leftarrow P_{\Sigma}\left(x, w ; \mu^{\prime}\right)$ are computationally indistinguishable.
$H_{2}^{V^{*}}(x, w)$:
1-3. As in H_{1}.
4. If $b=1$, measure r and replace the state on $\mathcal{M}, \mathcal{A}, \mathcal{Z}$ with

$$
\left|P_{r}\right\rangle=\sum_{\mu}|\mu\rangle_{\mathcal{M}}\left|P_{\Sigma}(x, w ; \mu)\right\rangle_{\mathcal{A}}\left|P_{\Sigma}(x, w, r ; \mu)\right\rangle_{\mathcal{Z}} .
$$

5. Let $\mathrm{M}_{P, r}:=\left(\left|P_{r}\right\rangle\left\langle P_{r}\right|, \mathbf{I}-\left|P_{r}\right\rangle\left\langle P_{r}\right|\right)$. Apply $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{P, r}, \mathrm{M}_{\mathcal{R}}\right]^{\dagger}$.
6. As in Sim.

By the SHVZK guarantee, the distributions on (a, z) given by $a \leftarrow P_{\Sigma}(x, w ; \mu), z \leftarrow P_{\Sigma}(x, w, r ; \mu)$ and $(a, z) \leftarrow \operatorname{SHVZK} . \operatorname{Sim}\left(r ; \mu^{\prime}\right)$ are computationally indistinguishable. Hence by Lemma 13.1, H_{1} and H_{2} are computationally indistinguishable.

By the correctness guarantee of Transform, if $b=1$ then the state at the beginning of Step 4 has $\operatorname{Tr}(|P\rangle\langle P| \boldsymbol{\rho}) \geq 1-\delta$. Note that $|P\rangle$ and $\left|P_{r}\right\rangle$ are related by an efficient local isometry $T_{r}: \mathcal{M} \rightarrow$ $\mathcal{M} \otimes \mathcal{Z}$. Hence Step 4 is $\sqrt{\delta}$-close in trace distance to an application of this isometry. Switching to this state, we can commute the isometry through $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{P, r}, \mathrm{M}_{\mathcal{R}}\right]^{\dagger}$, which conjugates it to $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\mathrm{com}}, \mathrm{M}_{P}, \mathrm{M}_{\mathcal{R}}\right]^{\dagger}$. This leads to the third hybrid, below.
$H_{3}^{V^{*}}(x, w)$:
1-3. As in H_{2}.
4. If $b=1$, measure r.
5. Apply $\widehat{\mathrm{EDT}}\left[\mathrm{M}_{\text {com }}, \mathrm{M}_{P}, \mathrm{M}_{\mathcal{R}}\right]^{\dagger}$.
6. Apply $U_{V^{*}}$ and measure \mathcal{R}, \mathcal{W} to obtain $\left(r^{\prime}, \omega\right)$. If Commit $\left(r^{\prime}, \omega\right) \neq$ com, stop and output the view of V^{*}. Otherwise, apply $T_{r^{\prime}}$ to \mathcal{M} and measure \mathcal{Z}, obtaining outcome z. Send z to V^{*} and output the view of V^{*}.
H_{3} is statistically close to H_{2} provided that $\operatorname{Pr}\left[r=r^{\prime}\right]=1-\operatorname{negl}(\lambda)$. Moreover, the collapsing property of the commitment implies that Step 4 is computationally undetectable. If this step is removed then the effect of Steps 3 and 5 is simply to apply $\mathrm{M}_{\text {com }}$; the output is then precisely the view of V^{*} in a real execution.

Finally, we have that by $r=r^{\prime}$ with all but negligible probability by the unique message-binding of the commitment scheme (Lemma 4.2).

Acknowledgments

We thank Nir Bitansky, Zvika Brakerski, Ran Canetti, Yael Kalai, Vinod Vaikuntanathan, and Mark Zhandry for helpful discussions. NS was supported by DARPA under Agreement No. HR00112020023. This research was conducted in part while AL and FM were interns at NTT Research.

References

$\left[\mathrm{AAB}^{+} 19\right]$ Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu Chen, Jimmy Chen,

Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf Hoffmann, Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574:505-510, 2019.
[ACL21] Prabhanjan Ananth, Kai-Min Chung, and Rolando L. La Placa. On the concurrent composition of quantum zero-knowledge. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 346-374, Virtual Event, August 2021. Springer, Heidelberg.
[AL20] Prabhanjan Ananth and Rolando L. La Placa. Secure quantum extraction protocols. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 123152. Springer, Heidelberg, November 2020.
[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof systems: The hardness of quantum rewinding. In 55th FOCS, pages 474-483. IEEE Computer Society Press, October 2014.
[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106-115. IEEE Computer Society Press, October 2001.
[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510-1523, 1997.
[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way functions imply secure computation in a quantum world. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 467-496, Virtual Event, August 2021. Springer, Heidelberg.
[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages 370-390. Springer, Heidelberg, November 2018.
[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Quantum Computation and Information, page 53-74, 2002.
[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond the black-box barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1091-1102. ACM Press, June 2019.
[BL02] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. In 34th ACM STOC, pages 484-493. ACM Press, May 2002.
[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of the International Congress of Mathematicians, volume 1, page 2. Citeseer, 1986.
[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. Perfect zero-knowledge in constant rounds. In Proceedings of the twenty-second annual ACM symposium on Theory of Computing, pages 482-493, 1990.
[BOV03] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of $L N C S$, pages 299-315. Springer, Heidelberg, August 2003.
[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-box simulation technique. In 53rd FOCS, pages 223-232. IEEE Computer Society Press, October 2012.
[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 401-427. Springer, Heidelberg, March 2015.
[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, 52nd ACM STOC, pages 269-279. ACM Press, June 2020.
[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on computing, 26(5):1411-1473, 1997.
[CCLY21a] Nai-Hui Chia, Kai-Min Chung, Xiao Liang, and Takashi Yamakawa. Post-quantum simulatable extraction with minimal assumptions: Black-box and constant-round. CoRR, abs/2111.08665, 2021.
[CCLY21b] Nai-Hui Chia, Kai-Min Chung, Qipeng Liu, and Takashi Yamakawa. On the impossibility of post-quantum black-box zero-knowledge in constant rounds. FOCS '21, 2021.
[CCY21] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. A black-box approach to post-quantum zero-knowledge in constant rounds. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of $L N C S$, pages 315-345, Virtual Event, August 2021. Springer, Heidelberg.
[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum succinct arguments: breaking the quantum rewinding barrier. FOCS '21, 2021.
[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branching programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577-607. Springer, Heidelberg, August 2018.
[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818):97-117, 1985.
[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir transformation in the quantum random-oracle model. In Proceedings of the 39th Annual International Cryptology Conference, CRYPTO '19, pages 356-383, 2019.
[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th ACM STOC, pages 409-418. ACM Press, May 1998.
[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM STOC, pages 416-426. ACM Press, May 1990.
[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to constructing and proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 537-566. Springer, Heidelberg, November 2017.
[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems for NP. Journal of Cryptology, 9(3):167-190, June 1996.
[GLSV21] Alex B. Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is in MiniQCrypt. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of $L N C S$, pages 531-561. Springer, Heidelberg, October 2021.
[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems (extended abstract). In 17th ACM STOC, pages 291-304. ACM Press, May 1985.
[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In ${ }^{2} 7$ th $F O C S$, pages 174-187. IEEE Computer Society Press, October 1986.
[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May 1987.
[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements in zeroknowledge, and a methodology of cryptographic protocol design. In Andrew M. Odlyzko, editor, CRYPTO'86, volume 263 of LNCS, pages 171-185. Springer, Heidelberg, August 1987.
[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 736-749, 2021.
[GSLW19] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 193-204. ACM Press, June 2019.
[HXY19] Minki Hhan, Keita Xagawa, and Takashi Yamakawa. Quantum random oracle model with auxiliary input. In International Conference on the Theory and Application of Cryptology and Information Security, pages 584-614. Springer, 2019.
[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21-30. ACM Press, June 2007.
[IOS97] Toshiya Itoh, Yuji Ohta, and Hiroki Shizuya. A language-dependent cryptographic primitive. Journal of Cryptology, 10(1):37-50, December 1997.
[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société mathématique de France, 3:103-174, 1875.
[JT20] Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques and applications to concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 414-443. Springer, Heidelberg, November 2020.
[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM STOC, pages 723-732. ACM Press, May 1992.
[KL05] Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies in simulationbased security proofs. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 128-149. Springer, Heidelberg, February 2005.
[LP98] Noah Linden and Sandu Popescu. The halting problem for quantum computers. arXiv preprint quant-ph/9806054, 1998.
[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO'90, volume 537 of $L N C S$, pages 353-365. Springer, Heidelberg, August 1991.
[LS19] Alex Lombardi and Luke Schaeffer. A note on key agreement and non-interactive commitments. Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.org/2019/279.
[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Proceedings of the 39th Annual International Cryptology Conference, CRYPTO '19, pages 326-355, 2019.
[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 282-298. Springer, Heidelberg, August 2003.
[MW05] Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Computational Complexity, 14(2):122-152, 2005.
[Mye97] John M Myers. Can a universal quantum computer be fully quantum? Physical Review Letters, 78(9):1823, 1997.
[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum Information \mathcal{F} Computation, $9(11 \& 12): 1053-1068,2009$.
[Oza98a] Masanao Ozawa. Quantum nondemolition monitoring of universal quantum computers. Physical Review Letters, 80(3):631, 1998.
[Oza98b] Masanao Ozawa. Quantum Turing machines: local transition, preparation, measurement, and halting. arXiv preprint quant-ph/9809038, 1998.
[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with logarithmic round-complexity. In $43 r d$ FOCS, pages 366-375. IEEE Computer Society Press, November 2002.
[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way functions. In Omer Reingold, editor, TCC 2009, volume 5444 of $L N C S$, pages 403-418. Springer, Heidelberg, March 2009.
[Reg06] Oded Regev. Fast amplification of QMA (lecture notes), Spring 2006.
[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 191-202. Springer, Heidelberg, February 2004.
[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS, pages 124-134. IEEE Computer Society Press, November 1994.
[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of $L N C S$, pages 135-152. Springer, Heidelberg, April 2012.
[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of $L N C S$, pages 129-146. Springer, Heidelberg, May 2014.
[Unr16a] Dominique Unruh. Collapse-binding quantum commitments without random oracles. In Proceedings of the 22nd International Conference on the Theory and Applications of Cryptology and Information Security, ASIACRYPT '16, pages 166-195, 2016.
[Unr16b] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and JeanSébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 497-527. Springer, Heidelberg, May 2016.
[Wat06] John Watrous. Zero-knowledge against quantum attacks. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 296-305. ACM Press, May 2006.
[Win99] Andreas J. Winter. Coding theorem and strong converse for quantum channels. IEEE Transactions on Information Theory, 45(7):2481-2485, 1999.
[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of $L N C S$, pages 127-156. Springer, Heidelberg, October 2021.
[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679-687. IEEE Computer Society Press, October 2012.
[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Inf. Comput., 15(7\&8):557-567, 2015.

A Separating EQPT_{c}-Zero Knowledge and ε-Zero Knowledge

In this section, we prove the following two separation results:

- There exists a 2-round challenger-adversary security game such that:
- For every ε, a poly $(\lambda) \cdot 1 / \varepsilon$-time adversary can win the game with probability $1-\varepsilon$, but
- Under reasonable computational assumptions (against fixed-time quantum algorithms), no EQPT_{c} adversary can win the game with probability $1-\operatorname{negl}(\lambda)$

In fact, this separation can be strengthened so that the $\operatorname{poly}(\lambda) \cdot 1 / \varepsilon$-time adversary can win the game with probability $1-\varepsilon^{c}$ for an arbitrarily large constant c.

- There exists an argument system Π for a non-trivial language such that:
- Under standard computational assumptions, Π is computationally sound and (black-box) post-quantum ε-ZK, but
- Under reasonable computational assumptions (against fixed-time quantum algorithms), Π is not $\mathrm{EQPT}_{c}-\mathrm{ZK}$ with black-box simulation.

We begin by describing the new computational assumption required for this separation, which is a form of post-quantum fine-grained one-way functions/pseudorandom generators.

A. 1 Post-Quantum Fine-Grained One-Way Functions and Pseudorandom Generators

We consider a family of functions $\mathcal{F}=\left\{f_{T, \lambda}:[T] \rightarrow\{0,1\}^{m(T, \lambda)}\right\}$, so that for every $\lambda, T \in \mathbb{N}, f_{T, \lambda}$ has domain $[T]$. We say that \mathcal{F} is efficiently computable if there exists a (bivariate) polynomial p such that for all $\lambda, T \in \mathbb{N}, f_{T, \lambda}$ can be computed in time $p(\lambda, \log T)$.

We now state two hardness assumptions on \mathcal{F}, capturing the hardness of inverting functions in \mathcal{F}, and the hardness of distinguishing function outputs $f_{T, \lambda}(x)$ (for $x \leftarrow[T]$) from random strings $y \leftarrow\{0,1\}^{m(T, \lambda)}$.
Definition A. 1 (Fine-Grained (Exponentially Hard) One-Way Functions). We say that \mathcal{F} is (finegrained) exponentially one-way if there exists a constant c such that the following holds: for every $T=\operatorname{poly}(\lambda)$ and every quantum adversary \mathcal{A} running in (fixed) time $\frac{1}{2 \lambda} T^{c} \cdot \operatorname{time}\left(f_{T, \lambda}\right)$ (where time $\left(f_{T, \lambda}\right)$ denotes the time required to compute $\left.f_{T, \lambda}\right)$, the probability that $\mathcal{A}\left(f_{T, \lambda}(x)\right)$ inverts $f_{T, \lambda}$ (for $x \leftarrow[T]$) is at most $\frac{1}{2 \lambda}$.

Definition A. 2 (Fine-Grained (Exponentially Hard) Pseudorandom Generators). We say that \mathcal{F} is a (fine-grained) exponentially secure PRG if there exists a constant c such that the following holds: for every $T \geq \lambda$ and every quantum adversary \mathcal{A} running in (fixed) time $\frac{1}{2 \lambda} T^{c} \cdot \operatorname{time}\left(f_{T, \lambda}\right)$, $\mathcal{A}(y)$ distinguishes the distributions $y \leftarrow U_{m}, y \leftarrow f_{T, \lambda}(x \leftarrow[T])$ with advantage at most $\frac{1}{2 \lambda}$.

We note that Definitions A. 1 and A. 2 are instantiable in the quantum random oracle model: the OWF/PRG is simply a restriction of a random oracle to a T-sized domain, where we set the output length $m=2 \lambda$. In the QROM, by definition of the model we have time $\left(f_{T, \lambda}\right)=1$. Then, Definitions A. 1 and A. 2 hold by invoking the "one-way to hiding lemma" [Unr14] (allowing for any constant $c<1 / 2$ in the definitions). The security definitions also hold in non-uniform variants of the QROM [HXY19].

A. 2 The Separations

Using Definition A.1, we first separate the power of ε-approximate strict polynomial time from the EQPT_{c} model in winning a concrete security game.

Lemma A.3. Let $\mathcal{F}=\left\{f_{T, \lambda}\right\}$ denote a parametrized family of functions. There exists a game \mathcal{G} between a polynomial-time challenger \mathcal{C} and an adversary \mathcal{A} with the following properties:

- For every ε, there exists a poly $(\lambda) \cdot 1 / \varepsilon$-time (classical) adversary winning \mathcal{G} with probability $1-\varepsilon$.
- Assume that \mathcal{F} is a family of exponentially hard fine-grained post-quantum one-way functions (Definition A.1). Then, no EQPT_{c} adversary can win \mathcal{G} with $1-\mathrm{negl}$ probability.

Proof. Let \mathcal{F} be as above. We describe the game \mathcal{G}.

- The challenger samples λ bits $b_{1}, \ldots, b_{\lambda}$ uniformly at random as well as 2λ strings $x_{1}, \ldots, x_{\lambda}$ with $x_{i} \leftarrow\left[2^{i}\right]$.
- The challenger computes $y_{i}=f_{2^{i}, \lambda}\left(x_{i}\right)$ for every i and sends $\left(y_{1}, \ldots, y_{\lambda}\right)$ to the adversary.
- The adversary returns inputs $\left(z_{1}, b_{1}^{\prime}, \ldots, z_{\lambda}, b_{\lambda}^{\prime}\right)$ to the challenger.
- The adversary wins if there exists an index i such that $b_{i}=b_{i}^{\prime}$ and $f_{i}\left(z_{i}\right)=y_{i}$.

First, we show that there exists a poly $(\lambda) / \varepsilon$-time \mathcal{A} that wins \mathcal{G} with probability $1-\varepsilon$. This adversary simply brute-force inverts y_{1}, \ldots, y_{k} for $k=\log (1 / \varepsilon)$ and guesses each b_{i}^{\prime} uniformly at random. Since the domain size of f_{i} is equal to 2^{i}, this takes time poly $(\lambda) \sum_{i=1}^{k} 2^{i} \leq \operatorname{poly}(\lambda) 2^{k+1}=$ $\operatorname{poly}(\lambda) / \varepsilon$. This adversary wins \mathcal{G} as long as $b_{i}=b_{i}^{\prime}$ for some $1 \leq i \leq k$, which holds with probability $1-2^{-k}=1-\varepsilon$.

Next, we show hardness under the fine-grained OWF assumption. Suppose that an EQPT c_{c} adversary \mathcal{A} wins \mathcal{G} with $1-\operatorname{negl}(\lambda)$ probability. For any constant c, we will contradict the c exponential hardness of \mathcal{F}.

Let $T=\operatorname{poly}(\lambda)$ denote the expected running time of \mathcal{A} and $k=\frac{3}{c} \log (T)$. Then, we note that

$$
\operatorname{Pr}\left[\mathcal{A} \text { wins } \mid b_{i} \neq b_{i}^{\prime} \text { for all } i \leq k\right]=1-\operatorname{negl}(\lambda) .
$$

This is because the event " $b_{i} \neq b_{i}^{\prime}$ for all $i \leq k$ " holds with probability $1 / T^{3 / c}$. Note that the expected running time of \mathcal{A} remains the same conditioned on the above event, because the view of \mathcal{A} is independent of the event.

We now invoke the approximation lemma (Claim 9.4), which states that \mathcal{A} can be replaced by a quantum circuit \mathcal{A}^{\prime} of size $O\left(T \ell^{2}\right) \leq O\left(T^{3}\right)$ (where ℓ denotes the number of coherent implementations of EQPT_{m} procedures in the description of \mathcal{A}) preserving the above probability up to $\frac{1}{2}$ additive error. By the definition of \mathcal{G}, this means that if we sample $y_{1}, \ldots, y_{\lambda}$ as in \mathcal{G} and call $\mathcal{A}^{\prime}\left(y_{1}, \ldots, y_{\lambda}\right)$ (obtaining $\left.z_{1}, \ldots, z_{\lambda}\right)$), with probability at least $\frac{1}{2}$, there exists an index $i>k=3 / c \log (T)$ such that $f_{i}\left(z_{i}\right)=y_{i}$. Since \mathcal{A}^{\prime} runs in time at most T^{3}, this contradicts the c-exponential hardness of \mathcal{F}.

We note that Lemma A. 3 could be strengthened to allow the poly $(\lambda) \cdot 1 / \varepsilon$-time attacks to succeed with probability $1-\varepsilon^{c^{\prime}}$ for an arbitrarily large constant c^{\prime}, by fine-tuning the parameters in the construction/proof. We also note that the only feature of EQPT ${ }_{c}$ that we relied upon was the ability to truncate the computation; the above proof strategy also separates EQPT m_{m} and classical EPT from ε-approximate computation.

Next, we extend Lemma A. 3 to a separation between post-quantum ε-ZK and EQPT ${ }_{c}$-ZK. Ruling out forms of zero knowledge simulation is quite a tricky task; to get a provable result, we make use of a wide variety of (standard) cryptographic primitives along with the game \mathcal{G} above.

Theorem A.4. Assume the existence of the following cryptographic primitives (potentially with subexponential security):

1. A post-quantum non-interactive witness-indistinguishable (NIWI) proof system [BOV03, BP15],
2. A post-quantum witness encryption scheme [CVW18, GP21, WW21].
3. A state-preserving WI argument system for NP (Theorem 1.9).
4. A post-quantum 2-message oblivious transfer scheme [BD18],
5. A post-quantum non-interactive commitment scheme [LS19], and
6. A post-quantum pseudorandom function family [Zha12].

Additionally, assume the existence of post-quantum fine-grained PRGs (Definition A.2), and assume that $\mathrm{NP} \cap$ coNP is hard-on-average against subexponential time quantum algorithms. ${ }^{38}$ Then, there exists an interactive argument system Π for a hard language (inside the complexity class NP $\cap c o N P$), such that:

- Π is post-quantum computationally sound and post-quantum (black-box) e-zero knowledge.
- Π is not EQPT_{c}-zero knowledge with black-box simulation (this part requires the fine-grained PRG assumption).

We remark that in Theorem A.4, the ε-ZK simulator can have runtime dependence $\frac{1}{\varepsilon^{2}}$ on ε, matching what is achieved by truncations of (some) actual EQPT_{c}-ZK simulators (Theorem 1.3).

[^31]Proof. The basic idea is to modify the Feige-Shamir protocol so as to embed a copy of the security game \mathcal{G} into the simulation task. However, the game \mathcal{G} is not publicly verifiable, so (following prior works, e.g., [BKP19]) this embedding requires checking \mathcal{G} under a secure function evaluation.

Further modifications are required to completely rule out the possibility that the protocol is EQPT_{c}-ZK: we must prevent an EQPT_{c} simulator from being able to use any form of rewinding to its advantage.

The full protocol Π for an arbitrary $\mathrm{NP} \cap$ coNP language L is as follows.

- The prover selects bits $b_{1}^{\prime}, \ldots, b_{\lambda}^{\prime}$ (they can all be zero for the honest prover). For every i, the prover sets ct_{i} to be a witness encryption of b_{i}^{\prime} under the statement that $x \in \bar{L}$. The prover the sends to the verifier all ct_{i} and a NIWI proof that all ct_{i} are valid witness encryption ciphertexts OR that $x \in L$, using a witness for $x \in L$. (this is simply an instance-dependent non-interactive extractable commitment scheme)
- The verifier samples $x_{1}, \ldots, x_{\lambda}, b_{1}, \ldots, b_{\lambda}$ as in the game \mathcal{G}. The verifier computes $y_{i}=f_{i}\left(x_{i}\right)$, and sends to the prover $\left(y_{1}, \ldots, y_{\lambda}, \pi\right)$, where π is a NIWI proof that either (1) all y_{i} are in the image of f_{i}, or (2) the NP-statement x is in \bar{L}. Finally, the verifier sends witness encryptions \hat{b}_{i} of each b_{i} under the statement that $x \in L$, OT messages OT.Com $\left(b_{1}\right), \ldots$, OT.Com $\left(b_{\lambda}\right)$, and sends a NIWI proof that these \hat{b}_{i} and OT messages are well-formed and consistent with each other (with respect to some b_{i}) or that $x \in \bar{L}$.
- The prover sends commitments com_{i} to strings $z_{1}, \ldots, z_{\lambda}$. The honest prover can set all of these strings to 0 .
- The verifier sends two commitments $c_{0}=\operatorname{Com}\left(0 ; r_{0}\right), c_{1}=\operatorname{Com}\left(0 ; r_{1}\right)$ and two commitments $c_{i}^{\prime}=\operatorname{Com}\left(r_{i} ; \rho_{i}\right)$.
- The verifier proves to the prover (using the state-preserving argument of knowledge) that it knows at least one (r_{i}, ρ_{i}).
- The prover commits to a bit β and sends the commitment to the verifier.
- The prover garbles a circuit whose input is a string $\left(b_{1}, \ldots, b_{\lambda}\right)$ and whose output is a NIWI proof (using the NP-witness w) that either $x \in L$ or both of the following hold: (1) $c_{\beta}=$ $\operatorname{Com}\left(0 ; r_{\beta}\right)$ (for some r_{β}) and c_{β}^{\prime} is a commitment to r_{β}, where β is the bit committed above, and (2) there exists a j such that $b_{j}=b_{j}^{\prime}$ and $f_{j}\left(z_{j}\right)=y_{j}$, where z_{j} and b_{j}^{\prime} are consistent with the prover's first and second messages.
- The prover sends this garbled circuit, and sends the input labels to the circuit using the OT.
- The verifier decodes the OT messages, evaluates the garbled circuit, and verifies the NIWI proof output by the circuit.

We sketch why this protocol satisfies soundness and post-quantum ε-ZK but is not EQPT_{c}-ZK.
ε-ZK. The ε-ZK simulator first samples each b_{j}^{\prime} uniformly at random, computes witness encryption ciphertexts honestly, and sends a NIWI proof using the witness encryption randomness as input.

Then, the simulator sets $k=\log (1 / \varepsilon)$ and (given $y_{1}, \ldots, y_{\lambda}$) brute-force inverts each y_{j} for $1 \leq j \leq k$. It then commits to all of the inverses (and 0 strings otherwise). Next, it runs the state-preserving AoK extractor (to accuracy $\varepsilon / 2$) on the cheating verifier, obtaining strings i, r_{i}, ρ_{i}, and then commits to $\beta=i$. Finally, the simulator garbles a circuit that outputs a NIWI proof using the trapdoor witness $\left(i, r_{i}, \rho_{i}\right)$ and the decommitments to $\beta, z_{j}, b_{j}^{\prime}$ (for a choice of j such that $b_{j}^{\prime}=b_{j}$).

To see that this simulation is accurate, we note that it is computationally indistinguishable from a hybrid simulator in which the first NIWI proof is computed using a witness for $x \in L$. Next, we note that (in this hybrid) there exists a $j \leq k$ such that $b_{j}=b_{j}^{\prime}$ with probability $1-\varepsilon$ by the security of the prover's witness encryption. ${ }^{39}$ Simulation security then follows by the hiding of the prover's commitments, the sender privacy of the OT, the simulation security of the garbled circuit (where the circuit and input are non-uniformly hard-wired in this security reduction), and the witness indistinguishability of the NIWI (where the statement and pair of witnesses are again hard-wired nonuniformly).

Soundness. This largely follows the proof of soundness of the Feige-Shamir protocol and in particular completely ignores the game \mathcal{G}.

Specifically, let i^{*} denote the index (chosen at random) used by the verifier in the statepreserving AoK (denoting which commitment it is using as its witness). Let β denote the bit committed to by the adversarial prover P^{*}. We claim that if P^{*} breaks the soundness of the protocol with non-negligible probability, then P^{*} also simultaneously breaks soundness and satisfies $\beta \neq i^{*}$ with non-negligible probability. This follows from the witness indistinguishability of the AoK, which we assume holds even against attacks with the power to break the commitment to β (by setting security parameters appropriately). Then, we switch $c_{1-i^{*}}$ to be a commitment to 1 by invoking the hiding of the commitment (even against adversaries that can break the commitment to β). At this point, P^{*} violates the soundness of the final NIWI, as the relevant NP statement is false.

The protocol is not EQPT_{c}-ZK. This step combines the proof technique of Lemma A. 3 with the above soundness analysis strategy. We eventually want to show that an EQPT ${ }_{c}$ simulator will violate the soundness of the prover's final NIWI, by switching to a world in which that NIWI statement is false.

We consider the following cheating verifier V^{*} and distinguisher D :

- V^{*} has hardwired outputs $y_{1}, \ldots, y_{\lambda}$ as well as a hard-wired NIWI proof π that each y_{i} is in the image of f_{i} or that $x \in \bar{L}$.
- V^{*} has a hardwired PRF seed s.
- V^{*} generates its first message using the hardwired $y_{1}, \ldots, y_{\lambda}, \pi$, and by computing $\left(b_{1}, \ldots b_{\lambda}, r\right)=$ $\mathrm{PRF}_{s}(\alpha)$, where α denotes the prover's message, and uses r to generate the OT commitments, witness encryption ciphertexts, and associated NIWI proofs.
- Otherwise, V^{*} acts as the honest verifier.

[^32]- The distinguisher D has all of V^{*} s auxiliary input. The distinguisher simply checks whether the transcript is accepting (by applying the PRF to generate the required OT randomness in order to decode the prover's last message).

Suppose that there exists an EQPT ${ }_{c}$ black-box simulator S^{*} that (on every (x, w) pair) simulates the view of V^{*} with respect to distinguisher D. This distinguisher D outputs 1 with probability 1 in the real world, and so D will output 1 on the view generated by S^{*} with $1-$ negl probability.

Without loss of generality, we assume that S^{*} has maximum runtime cutoff of 2^{λ} (any S^{*} can be cut off at this runtime and maintain its negligible-accurate simulation by Claim 9.4). Moreover, we assume that there are efficiently samplable distributions on L and \bar{L} cannot be decided by 2^{λ}-time quantum algorithms with advantage $2^{-\lambda}$.

The above implies that (1) the distinguisher D must still output 1 for randomly sampled $x^{*} \in \bar{L}$ (using the distribution above). Moreover, the expected running time of S^{*} on this new distribution remains polynomial by the $\left(2^{\lambda}, 2^{-\lambda}\right)$-hardness of L vs. $\bar{L} .{ }^{40}$

We next change the definition of V^{*} to use a truly random function instead of a pseudorandom function. D must still output 1 in this hybrid by the security of the PRF (in the quantum query model for PRF security [Zha12]), as PRF security continues to hold against EQPT ${ }_{c}$-adversaries by Claim 9.4. We assume $\left(2^{\lambda}, 2^{-\lambda}\right)$-security of the PRF to preserve the expected runtime of S^{*}.

We next change V^{*} to output NIWI proofs using a witness for $x \in \bar{L}$ (rather than the randomness it used to generate its commitments and ciphertexts). This holds assuming the $2^{-|\alpha|}$-witness indistinguishability of the verifier's NIWI (which we may assume); to see this, represent the truly random function as a $2^{|\alpha|}$-length truth table, and have the security reduction guess which input α S^{*} will eventually output. And again by invoking the WI of the NIWI (this time with advantage $2^{-|\alpha|} \cdot 2^{-\lambda}$, we may assume that the expected runtime of S^{*} in this hybrid remains the same (up to negligible difference).

For the following analysis, let $k=O\left(\log (T)\right.$), where T denotes the expected runtime of S^{*} (we will specify k fully later). We claim that the event " $b_{i}^{\prime} \neq b_{i}$ for all $1 \leq i \leq k$ " holds in the current hybrid with probability 2^{-k}. This holds assuming the $\left(2^{|\alpha|}, 2^{-|\alpha|}\right)$-receiver privacy of the OT, by a similar argument to the above paragraph; we note that b^{\prime} can be extracted efficiently from the witness encryption ciphertexts using a witness for $x \in \bar{L}$. Thus, in the above hybrid, D must also output 1 with 1 - negl probability conditioned on $b_{i}^{\prime} \neq b_{i}$ for all $1 \leq i \leq k$, and the expected running time of S^{*} again does not change noticeably by OT receiver privacy.

In the current hybrid, the string $\left(b_{1}, \ldots, b_{\lambda}, r\right)$ is computed by V^{*} using a $2^{|\alpha|}$-length truth table of random strings, and we condition on the event " $b_{i} \neq b_{i}^{\prime}$ for all $1 \leq i \leq k$," where b_{i}^{\prime} can be extracted efficiently from the prover's message. We now re-define V^{*} to compute $b_{i}=1-b_{i}^{\prime}$ for $i<k$ (rather than using an oracle/truth table) and note that this produces an identical distribution.

Finally, we again modify V^{*} to compute all of its randomness using a PRF seed, but continuing to set $b_{i}=1-b_{i}^{\prime}$ for $i<k$. This does not change the experiment outcome noticeably by PRF security.

Next, we replace S^{*} by a $O\left(T \ell^{2}\right) \leq O\left(T^{3}\right)$-oracle runtime approximation using Claim 9.4, so that D still outputs 1 with probability at least $\frac{1}{2}$ in the hybrid.

Finally, we are able to make use of the fine-grained pseudorandomness of \mathcal{F}. Letting c denote the constant parameter in this assumption, we select k in the above argument so that the pseudorandomness assumption is valid against adversaries with the runtime of the current hybrid for all

[^33]f_{j} with $j>k$. The oracle runtime of S^{*} is simply $O\left(T^{3}\right)$, and the oracle runs in a fixed poly (λ) time (independent of the constant implicit in k), so an appropriate choice of k will exist.

This means that D will output 1 with probability at least $\frac{1}{4}$ even if all $y_{j}(j>k)$ are sampled uniformly at random (rather than using f_{j}).

We conclude that this experiment contradicts the soundness of the (last-message) NIWI. The correctness of the OT + garbled circuit construction implies that D decodes a valid NIWI proof of the NP statement described in the protocol. But the NP statement is now false: $x \notin L, b_{j}^{\prime} \neq b_{j}$ for all $j \leq k$, and y_{j} has no f_{j}-inverse (with all but negligible probability) for all $j>k$. Thus, we have a contradiction, and so an $\mathrm{EQPT}_{c} S^{*}$ does not exist.

[^0]: *Part of this work was done while the author was an intern at NTT Research.
 ${ }^{\dagger}$ Work was chiefly conducted at Boston University.

[^1]: ${ }^{1}$ The protocols of [GMR85] are for languages in BQP, for which post-quantum zero knowledge is trivial.
 ${ }^{2}$ Recent work [CCY21] shows that the [GK96] protocol satisfies a relaxed notion called ε-zero-knowledge [DNS98]; we discuss this result in detail later.
 ${ }^{3}$ This was noted in [Unr12, ARU14].

[^2]: ${ }^{4}$ While non-black box simulation techniques exist [Bar01, BP12], including in the post-quantum setting [BS20], they seem to apply only to specially tailored protocols and do not help resolve our questions.
 ${ }^{5}$ [CCLY21b] does not precisely define a model, but a particular formulation is implicit in their result.

[^3]: ${ }^{6}$ A crude but sometimes effective method is to replace expected polynomial-time algorithms with a poly $(1 / \varepsilon)$ truncation; this introduces an ε error by Markov's inequality. However, more sophisticated methods exist that achieve significantly better bounds [JT20]. Expected running time is also a common efficiency metric in cryptanalysis.
 ${ }^{7}$ When defining quantum zero-knowledge simulation, [CCLY21b, Page 12] requires that the simulator is a quantum Turing machine with expected polynomial runtime, and refers to [BBBV97] (which uses the [BV97] definition of a quantum Turing machine) for the quantum Turing machine model. However, [BV97] restricts quantum Turing machines to have a fixed running time (see [BV97, Def 3.11]) in order to avoid difficult-to-resolve subtleties about quantum Turing machines with variable running time [Mye97, Oza98a, LP98, Oza98b]. We discuss this in depth in Section 2.1.

[^4]: ${ }^{8}$ We also prove that the instantiation is sound against quantum polynomial-time provers; this is non-trivial because, unlike other protocols in this section, [FS90] only achieves computational soundness.
 ${ }^{9}$ For this overview, we focus on the soundness $1 / 2$ case, but appropriate parallel repetition of this step reduces the soundness error.

[^5]: ${ }^{10}$ [CMSZ21] can achieve inverse polynomial knowledge error, but in a qualitatively (in addition to quantitatively) weaker sense than what we need.

[^6]: ${ }^{11}$ The modification to [Kil92] is necessary for witness-binding.

[^7]: ${ }^{12}$ Throughout our discussion of proofs of knowledge, we focus on the case of 3 - and 4 -message protocols. We sometimes ignore the first verifier message $v k$ in a 4 -message protocol for notational convenience.
 ${ }^{13}$ This particular special soundness assumption is also for convenience; we later describe generalizations of special soundness for which we have results.
 ${ }^{14}$ In general, the response z will be entangled with the prover's state; here we suppress this dependence.

[^8]: ${ }^{15}$ The verifier sends an instance-dependent commitment [BMO90, IOS97, MV03] of a bit to the prover (which is perfectly binding in the proof of ZK) and demonstrates knowledge of the bit and its opening.
 ${ }^{16}$ We highlight that the PoK subroutine in the [GMW86] graph non-isomorphism protocol is not collapsing; it is only collapsing onto its responses of 0 challenge bits; however, it turns out that this property is still sufficient to obtain guaranteed extraction for the subroutine (see Sections 5.3 and 8.4).

[^9]: ${ }^{17}$ There will also be one-dimensional subspaces, which we ignore in this overview since they can be viewed as "degenerate" two-dimensional subspaces.

[^10]: ${ }^{18}$ We allow for decoherence, so we ask that every element of \mathcal{S}_{j} is mapped to a mixed state where every component is in \mathcal{S}_{j}.

[^11]: ${ }^{a}$ We implement Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ so that the residual state is in image $\left(\Pi_{U}\right)$. This means that after Estimate ${ }^{U, C}$ finishes, \mathcal{R} is unentangled from \mathcal{H}, which allows us to discard it. While this is not always possible when running Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ on an arbitrary initial state, we show that this can be achieved here.
 ${ }^{b}$ In our actual construction/proof, we replace this call to Estimate (and the additional call at the end of Step 3c) with a weaker primitive that only computes the threshold instead of fully estimating p. This change makes it easier to instantiate the primitive.

[^12]: ${ }^{a}$ As before, we ensure that the residual state after Estimate ${ }^{\mathrm{U}, \mathrm{C}}$ is in image $\left(\Pi_{\mathrm{u}}\right)$, so \mathcal{R} is unentangled.
 ${ }^{b}$ To avoid a computation that runs for infinite time, one should at the very least impose an exponential 2^{λ} time cutoff, which can be shown to incur only a $2^{-\lambda}$ correctness error.

[^13]: ${ }^{20}$ As written in [CMSZ21], the estimation procedure runs in $1 / p^{4}$ time, but a factor of p can be saved because (roughly speaking) the estimate only needs to achieve p^{2} accuracy when p_{j} is close to p.

[^14]: ${ }^{21}$ For technical reasons, we cut off Transform after an exponential number of steps so that the component of $\left|\psi_{i}\right\rangle\left|+{ }_{R}\right\rangle$ lying in "bad" \mathcal{S}_{j} (i.e., where p_{j} is tiny) does not ruin the expected running time.

[^15]: ${ }^{22}$ For technical reasons, we use a different algorithm due to [GSLW19], but a variant of [NWZ09] would also suffice.

[^16]: ${ }^{23}$ It remains to be argued that measuring z_{j} does not affect the running time of subsequent variable-runtime steps. This turns out to hold because the runtime of future loop iterations can be guaranteed by the correctness properties of the re-estimation step, which hold for an arbitrary re-estimation input state.

[^17]: ${ }^{24}$ Recall that the special honest-verifier zero-knowledge property guarantees the existence of a randomized simulation algorithm SHVZK.Sim (r) that takes any Σ-protocol challenge $r \in R$ as input and outputs a tuple (a, z) such that the distribution of (a, r, z) is indistinguishable from the distribution of transcripts arising from an honest prover interaction on challenge r.

[^18]: ${ }^{25}$ The register \mathcal{R} is required for the definition of U and should not be confused with the sub-register of \mathcal{V} that we measure to obtain the verifier's response.

[^19]: ${ }^{26}$ To match the syntax of the collapsing game, the "abort" works as follows: $\mathrm{Adv}^{\prime}(\mathrm{ck})$ initializes $\mathcal{M} \otimes \mathcal{W}$ to some valid commitment, sends it to the challenger, ignores the registers it gets back, and then outputs a random b^{\prime}.

[^20]: ${ }^{27}$ A similar (but not identical) definition appears in an older version of [CMSZ21]: https://arxiv.org/pdf/2103. 08140v1.pdf.

[^21]: ${ }^{28}$ The [GMW86] verifier acts as the prover in this subroutine.

[^22]: ${ }^{29}$ Alternatively, we could define g^{\prime} to require inputs with these $c_{\ell}^{(1)}$ omitted.

[^23]: ${ }^{30}$ In this variant, in addition to committing to a permuted graph $\pi(G)$, the prover commits to the permutation π and the permuted cycle $\pi \circ \sigma$. On the 0 challenge, the prover additionally opens the commitment to π, and on the 1 challenge, the prover additionally opens the commitment to $\pi \circ \sigma$.

[^24]: ${ }^{31}$ In general, the response z will be entangled with the prover's state; here we suppress this dependence.

[^25]: ${ }^{32}$ We only remove the collapsing measurement of the current loop iteration; previous collapsing measurements are baked into the (arbitrary) state $\boldsymbol{\rho}_{\mathcal{B}, \mathcal{H}, \mathcal{R}}^{(\mathrm{C}, \text { init }}$.

[^26]: ${ }^{33}$ Here (and elsewhere) we informally make use of the fact that the "current" value of p in any iteration of Step 3 is always at least $p_{0} / 2$, where p_{0} is the initial estimated p.

[^27]: ${ }^{34}$ Using [Blu86], one can set $t=\operatorname{poly}(\log \lambda)$.

[^28]: ${ }^{35}$ That is, when $x \in L$, a commitment $\operatorname{Com}(x, m)$ statistically hides the message m. When $x \notin L$, a commitment $\operatorname{Com}(x, m)$ statistically binds the committer to m.

[^29]: ${ }^{36}$ Note that the prover does not even need to know the instance x to compute this message; however, we consider an a priori fixed statement x to make sense of the proof-of-knowledge property.

[^30]: ${ }^{37}$ If randomness is required to generate this message, let it be fixed in advance in P_{dAok}^{*} 's internal state.

[^31]: ${ }^{38}$ The latter follows from the subexponential quantum hardness of LWE.

[^32]: ${ }^{39}$ The reduction from witness encryption security uses a witness for $x \in L$ to decrypt the verifier's witness encryption; the soundness of the verifier's NIWI says that these decrypted messages will be the b_{i}.

[^33]: ${ }^{40}$ This holds because the simulator has a maximum runtime cutoff of 2^{λ}; in general, expected running time is not preserved by computational indistinguishability.

