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Abstract

Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied
over the discrete hypercube, recent years have seen increasing interest in extensions to settings like
the p-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number
of breakthrough applications including the resolution of Khot’s 2-2 Games Conjecture (Khot, Minzer,
Safra FOCS 2018). In this work, we develop a new theory of hypercontractivity on high dimensional
expanders (HDX), an important class of expanding complexes that has recently seen similarly impressive
applications in both coding theory and approximate sampling. Our results lead to a new understanding
of the structure of Boolean functions on HDX, including a tight analog of the KKL Theorem and a new
characterization of non-expanding sets.

Unlike previous settings satisfying hypercontractivity, HDX can be asymmetric, sparse, and very far
from products, which makes the application of traditional proof techniques challenging. We handle these
barriers with the introduction of two new tools of independent interest: a new explicit combinatorial
Fourier basis for HDX that behaves well under restriction, and a new local-to-global method for analyzing
higher moments. Interestingly, unlike analogous second moment methods that apply equally across all
types of expanding complexes, our tools rely inherently on simplicial structure. This suggests a new
distinction among high dimensional expanders based upon their behavior beyond the second moment.
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1 Introduction

Introduced over 50 years ago today, hypercontractivity remains one of the most powerful tools in the analysis
of boolean functions. Originally used to prove numerous landmark results on the discrete hypercube such
as the KKL Theorem [KKL88] and Majority is Stablest [MOO05], the study of hypercontractivity has
since seen a resurgence on extended domains such as the p-biased cube [KLLM19], slice [KMMS18], and
Grassmannian [KMS18]. Fascinatingly, these regimes all share a common thread: while hypercontractivity
doesn’t hold in general, it is satisfied for certain classes of pseudorandom functions. This recently discovered
phenomenon has led to a slew of breakthroughs, most famously including the resolution of Khot’s 2-2 Games
Conjecture [KMS18]. Unfortunately, the scope of these results is currently restricted, as all known proof
techniques rely on product structure or other strong symmetries, and no unifying theory is known to exist.

In this work we take the first substantive step towards solving this issue with the introduction of a new
theory of hypercontractivity for the general class of high dimensional expanders (HDX). HDX are a family
of expanding complexes that have seen an explosion of work in recent years, leading to major breakthroughs
across a number of areas including (among others) the recent construction of c3-LTCs [DEL+21], and
efficient approximate sampling for many important systems (e.g. for matroid bases [ALOV19], independent
sets [ALO20], Ising models [AJK+21], and more). Our results lead to a new understanding of the structure
of boolean functions on HDX, including a tight analog of the KKL Theorem, and a characterization of
non-expanding sets similar to that used in the proof of 2-2 Games [KMS18]. Proving such results previously
seemed out of reach since HDX are very far from products, asymmetric, and can be quite sparse. To handle
these challenges, we introduce a new set of tools including a new explicit Fourier decomposition and a local-
to-global method for analyzing higher order moments. Interestingly, unlike previous `2-based techniques
which apply equally across all types of expanding complexes, our methods rely crucially on the underlying
HDX structure being simplicial. This suggests a new stratification of spectral HDX based upon their behavior
beyond the second moment.

1.1 Contributions

Before jumping into a more detailed breakdown of our results, we start by giving an informal overview of our
main contributions within the broader context of classical Fourier analysis and the theory of high dimensional
expanders.

Classical Fourier Analysis: Classical Fourier Analysis on the discrete hypercube focuses on analyzing
functions f : {0, 1}n → R through their Fourier Expansion, a decomposition that breaks f into a series
of orthogonal “level functions,” each corresponding to the projection of f onto a certain eigenspace of the
(noisy) hypercube graph.1 At a basic level, a function’s Fourier decomposition gives a nice method for
understanding its second moment, since orthogonality allows one to move between this and the standard
basis freely (a result usually known as Parseval’s Theorem). On the other hand, in computer science, we are
usually interested in analyzing the special class of boolean functions f : {0, 1}n → {0, 1}. These functions
exhibit rich structure that Parseval’s Theorem isn’t equipped to capture—to understand them, we usually
need to look beyond the second moment.

Hypercontractivity, introduced in 1970 by Bonami [Bon70] (and later independently by Beckner [Bec75]
and Gross [Gro75]), is exactly the tool for the job. In its simplest form, hypercontractivity boils down to the
statement that the fourth moment of low levels of the Fourier decomposition should behave nicely. Namely
that the ith level of a boolean function f , denoted fi, should satisfy:

‖fi‖4 ≤ 2O(i) ‖fi‖2 . (1)

1More generally, these are the eigenspaces of the Hamming scheme.
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This deceptively simple observation, known in the above form as “Bonami’s Lemma” [Bon70], led to many
landmark results including the KKL Theorem [KKL88], noise-sensitivity of sparse functions [KKL88],
Friedgut’s Junta Theorem [Fri98], and Majority is Stablest [MOO05]. What’s more, hypercontractivity (and
its resulting applications) actually extend beyond the hypercube. After KKL’s seminal work, many authors
studied extensions and applications of hypercontractivity [BKK+92, Tal94, FK96, Fri98], but it wasn’t until
recently that tight analogs of Equation (1) were developed for general product spaces [KLLM19] as well as
for other structured domains such as the symmetric group [FKLM20] and Grassmannian [KMS18]. These
extended domains differ from the hypercube in that they are only hypercontractive for special classes of
pseudorandom functions, but are nevertheless responsible for an impressive set of applications including
analogs of classical results, a variety of new sharp threshold theorems [KLLM19, LM19, KLLM21], and
perhaps most famously the proof of the 2-2 Games Conjecture [KMS17, DKK+18b, DKK+18a, BKS18,
KMMS18, KMS18]. Unfortunately, despite the stark similarities between these settings, no unified theory
explaining the phenomenen exists. Further, all known techniques rely heavily on product structure or other
strong forms of symmetry, which makes it difficult to approach the problem in more general settings.

Fourier Analysis on HDX: High dimensional expanders (HDX) are a class of robustly connected com-
plexes that have seen an incredible amount of development and application throughout theoretical computer
science in the past few years, most famously in coding theory [DEL+21, EKZ20, JST21, KO21, KT21b,
DDHRZ20, JQST20, DHK+19] and approximate sampling [ALOV19, AL20, ALO20, CLV20, CLV21,
CGŠV21, FGYZ21, JPV21, Liu21, BCC+21], but also in agreement testing [DK17, DD19, KM20], CSP-
approximation [AJT19, BHKL20], and (implicitly) hardness of approximation [KMMS18, KMS18]. In this
work, we study a central notion of high dimensional expansion called two-sided local-spectral expansion,
originally developed by Dinur and Kaufman [DK17] to build sparse agreement testers. For simplicity, we’ll
often refer to these objects just as local-spectral expanders, but the reader should be aware we always refer to
the two-sided variant, not the weaker one-sided variant commonly used in approximate sampling.

Interestingly, local-spectral expanders are actually known to admit a (nascent) theory of Fourier analysis
[DDFH18, KO20]. Initial works in this area have focused on the development and application of Fourier
Decompositions and Parseval’s Theorem, and while the existing theory does have a few interesting applications
(e.g. an FKN theorem for HDX [FKN02, DDFH18], efficient CSP-approximation [AJT19, BHKL20]), it is
subject to the same limitations as original second moment methods on the hypercube: they simply don’t
capture the richer structure of boolean functions. Let’s consider a concrete and important example: the
expansion of pseudorandom sets (an analog of “sparse functions are noise-sensitive” on the hypercube).2

Traditionally proved via hypercontractivity, a variant of this result on the Grassmannian recently led to the
resolution of the 2-2 Games Conjecture [KMS18]. On the other hand, Bafna, Hopkins, Kaufman, and Lovett
[BHKL20] showed that second moment methods cannot recover such a result. While they are able to recover
some sort of characterization with these techniques, it necessarily decays as the dimension grows to infinity,
becoming trivial in the regime useful for hardness of approximation—if we want to do better, it appears we
need a theory of hypercontractivity.

This is easier said than done: local-spectral expanders look nothing like any object previously known
to satisfy hypercontractivity. They can be sparse, asymmetric, and very far from products. Moreover, there
are no known techniques for analyzing local-spectral expanders beyond the second moment.3 Even DDFH
and KO’s Fourier decompositions are intrinsically tied to second moment methods, since they are defined
by linear algebraic manipulation of the standard inner product. Surprisingly, it turns out that these barriers
are not inherent, and can be removed with the introduction of just two new tools: a combinatorial Fourier

2The connection lies in the fact that the noise-sensitivity result can equivalently be phrased as saying that small sets on the noisy
hypercube are expanding.

3We note that recent works in the sampling literature have considered entropic notions of high dimensional expansion, but the
underlying assumptions are much stronger than local-spectral expansion.
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decomposition for HDX, and a new local-to-global method to replace reliance on product structure in the
analysis of higher moments.

Our new decomposition is the natural analog of the standard Fourier decomposition on product spaces
(often called the “orthogonal” or “Efron-Stein” decomposition). It is equivalent to old decompositions in
an `2-sense (and therefore shares all relevant `2-based properties), but comes with a number of additional
benefits: it has simple explicit and recursive forms, and it behaves nicely under restriction. This allows us to
bring to bear much of the power of more traditional Fourier-analytic machinery, which often relies on these
same properties. Historically, however, applying this machinery in a useful fashion has also required the
underlying object to be a product, or to satisfy some other strong symmetry. Our second key observation is
that while individual variables in a local-spectral expander may be highly correlated, they look independent
on average. More concretely, this means that in the analysis of expectations (such as a higher moment), we
are free to treat the underlying variables as independent even if they actually exhibit a very high level of
correlation.

Hypercontractivity on HDX: Leveraging these tools, we build a theory of hypercontractivity on HDX.
Concretely, we prove that Equation (1) holds on local-spectral expanders for an appropriate notion of
pseudorandom functions—ones that are not concentrated in any local restrictions on the complex.4 Combined
with BHKL’s recent spectral analysis of higher order random walks (which, for the moment, we’ll think of
as analogs of the noisy hypercube graphs or Hamming scheme), this leads to the resolution of a number of
open questions in boolean function analysis. To start, we provide a tight characterization of (edge) expansion
on higher order random walks, which, unlike previous methods [BHKL20], does not decay with dimension.
This matches the version of the result on the Grassmannian which led to the resolution of the 2-2 Games
Conjecture [KMS18], and opens yet another avenue towards the use of HDX in hardness of approximation.
We also introduce natural analogs5 of two classic Fourier-analytic notions: influence and the noise operator.
Combining these with the above recovers tight variants of both the KKL Theorem and noise-sensitivity of
sparse (or in this case pseudorandom) functions.

Beyond these concrete applications, hypercontractivity on HDX also has interesting implications in the
broader context of discrete Fourier analysis and high dimensional expansion. For the former, our result
gives the first general class of hypercontractive objects beyond products, and combined with bounded degree
constructions [LSV05, KO18], the first example of hypercontractivity over any sparse object at all.6 For
the latter, our result suggests a new stratification among notions of local-spectral expansion. This requires
some additional explanation. While local-spectral expanders were originally introduced only over simplicial
complexes, they were quickly extended to more general settings such as the Grassmannian, or even to general
ranked posets [DDFH18]. While these classes of local-spectral expanders are essentially equivalent in an `2
sense [DDFH18, BHKL20, KT21a], our analysis of the fourth moment crucially relies on simplicial structure.
We conjecture that this is an inherent rather than technical barrier: only special classes of underlying objects
(e.g. Grassmannian, simplicial complexes) satisfy hypercontractivity, and thereby lead to the strongest known
form of spectral high dimensional expanders.

4In the high dimensional expansion literature, these restrictions are known as links.
5When applied to the embedding of the hypercube into a simplicial complex, these definitions return the standard notions.
6Formally, the notion of “sparseness” here requires a bit of explanation. Previous settings of hypercontractivity all have natural

representations as dense complexes. For instance, the hypercube complex has 2n vertices and 2n top-level faces, and even weakly
hypercontractive sparsifications like the short code [BGH+12] have quasi-polynomially many faces.
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2 Background

Before stating our results more formally, we give a quick overview of the theory of local-spectral expanders
and higher order random walks. Local-spectral expansion is a robust notion of connectivity on weighted
hypergraphs introduced by Dinur and Kaufman [DK17] in the context of agreement testing. As is standard in
the area, we will view d-uniform hypergraphs H ⊆

([n]
d

)
as (pure) simplicial complexes:

XH = X(0) ∪ . . . ∪X(d),

where X(d) = H , X(i) ⊆
(

[n]
i

)
is given by downward closure, and X(0) = ∅. We note that this notation

is off by one from much of the HDX literature which considers X(i) ⊆
(

[n]
i+1

)
. This notation is standard

in the topological literature (where an i-simplex indeed as i + 1 points), but is less natural for our purely
combinatorial work.

Most recent work on high dimensional expansion is based on the local-to-global paradigm, in which
local properties of a complex are lifted to a desired global property (e.g. mixing or agreement testing). The
main local structure of interest are called links. For every “i-face” τ ∈ X(i), the link of τ is the subcomplex
obtained by restriction to faces including τ :

Xτ = {σ : σ ∩ τ = ∅, σ ∪ τ ∈ X}.

A simplicial complex is said to be a γ-local-spectral expander if (the graph underlying) every link is a
γ-spectral expander.7

Higher order random walks are an analog of the standard walk on expander graphs that moves between
two vertices via an edge. Kaufman and Mass [KM16] observed that this process can be applied at any level
of a simplicial complex: one could move between edges via a triangle, or triangles via a pyramid. Formally,
these walks are defined as a composition of averaging operators, objects that have become ubiquitous tools
in the study of high dimensional expanders. Denote the space of functions {f : X(k)→ R} as Ck. For a
function f ∈ Ck, the (level k) Up and Down operators lift and lower f to level k+ 1 and k− 1 respectively
by averaging:

Ukf(τ) = E
σ⊂τ

[f(σ)],

Dkf(τ) = E
σ⊃τ

[f(σ)].

It will often be useful to compose the down or up operators multiple times to move between levels k and
i, we denote this by Dk

i = Di ◦ . . . ◦Dk and Uki = Uk ◦ . . . ◦ Ui. Informally, HD-walks are simply affine
combinations of composed averaging operators. For instance, the basic composition N i

k = Uk+i
k Dk+i

k , called
a canonical walk, is the random process which moves between two k-faces via a shared (k + i)-face.

3 Results

We now move to an informal description of our results. We view our work as having three main contributions.
First, we introduce and develop a new theory of Fourier analysis on high dimensional expanders. This includes
a new explicit Fourier decomposition, as well as a number of natural generalizations of Fourier-analytic ideas
such as influence and the noise operator to simplicial complexes. Second, we prove that our Fourier-analytic
decomposition satisfies a hypercontractive inequality for the special subclass of pseudorandom functions, and
use this fact to characterize the small set expansion of HD-walks and give a version of Bourgain’s Theorem
(an analog of KKL on product spaces) on HDX. Finally, en route to our hypercontractivity theorem, we
introduce a new method of localization on high dimensional expanders of independent interest that enables
local-to-global analysis of higher order moments.

7A graph is a γ-spectral expander if the second largest eigenvalue of its adjacency matrix is at most γ in absolute value.
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3.1 The Bottom-Up Decomposition

We start with a discussion of our new explicit Fourier-analytic decomposition. All previously known Fourier
bases on local-spectral expanders [KO20, DDFH18] are linear algebraic in nature, and have no known closed
form. While these decompositions certainly have their place and are sufficient for a number of interesting
applications [DDFH18, AJT19, BHKL20], they often fall short when finer-grained calculation is required.
To alleviate this issue, we introduce a new combinatorial decomposition on simplicial complexes that is
an analog of the classic orthogonal (sometimes called Efron-Stein) decomposition on product spaces. For
simplicity, we’ll start by introducing the decomposition in a simple recursive form, and give the explicit form
later in this section.

Definition 3.1 (Bottom-Up (Recursive Form)). Let X be a d-dimensional pure simplicial complex and
f ∈ Ck any function. Recursively define the ith level function(s) to be:

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U ijg↑j , f↑i =

(
k

i

)
Uki g↑i

We call f =
k∑
i=0

f↑i the Bottom-Up Decomposition.

Strictly speaking, while the consideration of this basis is new over general simplicial complexes, it was
first studied for the special case of the complete complex by [KMMS18]. There, the authors took advantage
of the complex’s near-product structure to show that the decomposition gives an (approximate) Fourier
basis close to the eigendecomposition of f with respect to the well-studied Johnson graphs. We prove that
the assumption of near-product structure is actually unnecessarily strong—it is enough for the underlying
complex to be sufficiently expanding.

Theorem 3.2 (Bottom-Up Properties (Informal Lemma 7.6+Theorem 7.8)). Let X be a two-sided γ-local-
spectral expander, and M an HD-walk. Then for any f ∈ Ck, and 0 ≤ i < j ≤ k:

1. 〈f↑i, f↑j〉 ≈ 0

2. ‖f‖22 ≈
k∑
i=0
‖f↑i‖22

3. ∃λi s.t. Mf↑i ≈ λif↑i

Theorem 3.2 is also very similar to an analogous result for the HD-Level-Set Decomposition in [DDFH18,
Theorem 1.3]. We will cover their definition in greater detail in Section 7. For the moment, it suffices to note

that their decomposition also breaks f into k + 1 Fourier levels, which we similarly denote by f =
k∑
i=0

f↓i. It

turns out that the similarities between the HD-Level-Set and Bottom-Up Decompositions are no accident—the
two decompositions are actually nearly equivalent.

Theorem 3.3 (Bottom-Up Approximates HD-Level-Set (Theorem 7.8)). Let X be a two-sided γ-local-
spectral expander and f ∈ Ck. Then the Bottom-Up and HD-Level-Set Decomposition are close in `2-norm:

‖f↑i − f↓i‖22 ≤ 2O(k)γ ‖f‖22 .

Similarly,
|〈f↑i, f↑i〉 − 〈f↓i, f↓i〉| ≤ 2O(k)γ ‖f‖22 .
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The main advantage of the Bottom-Up Decomposition then lies in its simple recursive structure and
explicit form, which we now describe.

Proposition 3.4 (Bottom-Up Explicit Form (Theorem 7.2)). Let X be a d-dimensional pure simplicial
complex, f ∈ Ck any function, and g↑i be as given in Definition 3.1. Then:

g↑i =
i∑

j=0

(−1)i−j
(
i

j

)
U ijD

k
j f,

or equivalently ∀τ ∈ X(i):
g↑i(τ) =

∑
σ⊆τ

(−1)|τ\σ| E
Xσ

[f ]

In Section 7, we will see how these properties are useful for analyzing finer-grained structures like
restriction that are often key to classical Fourier-analytic arguments. It is unknown how to analyze such
properties for prior linear algebraic decompositions, and determining whether the latter share similar structure
at this level remains an interesting open problem.

3.2 Hypercontractivity

Now that we have introduced our relevant Fourier-analytic decomposition, we turn our attention to the study
of hypercontractivity. Hypercontractivity is one of the most powerful tools in boolean function analysis and
is crucial to proving many of area’s key results (e.g. KKL [KKL88], FKN [FKN02], Majority is Stablest
[MOO05], sharp threshold theorems [FB99], etc.). Informally, hypercontractivity can be thought of as a
niceness condition on “low-degree” functions. We’ll start by considering a simple variant often called the
Bonami or Bonami-Beckner lemma, [Bon70] which states that a “degree-i” function p should satisfy:

‖p‖4 ≤ 2O(i) ‖p‖2 .

Classically, we might think of p as being a degree-i polynomial, corresponding to the ith Fourier level of a
boolean function. The corresponding statement in our context is therefore that the ith level of the Bottom-Up
Decomposition should satisfy an analogous inequality:

‖f↑i‖4 ≤ 2O(i) ‖f↑i‖2 . (2)

Unfortunately, it is well known that Equation (2) cannot hold in our setting, even over the complete complex.
However, it is possible that the inequality could hold for natural subclasses of functions. Indeed, such a
phenomenon is known to occur on general product distributions [KLLM19], where pseudorandom functions
satisfy a form of Equation (2).

Definition 3.5 (Pseudorandomness). Let X be a simplicial complex and f ∈ Ck. We say f is (ε, i)-
pseudorandom if it is sparse in every i-link in the following two senses:

1. For all τ ∈ X(i): ∣∣∣∣EXτ [f ]

∣∣∣∣ ≤ ε ‖f‖∞
2. For all τ ∈ X(i):

〈f |τ , f |τ 〉 ≤ ε ‖f‖2∞
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In applications, we will often only care about non-negative functions, in which case the second condition
can be removed completely (as it is implied by the first). We note that functions satisfying Definition 3.5 are
also sometimes called global since they are not concentrated in any local structure [KLLM19, LM19]. We
call them pseudorandom in keeping with prior literature on the Johnson and Grassmann graphs [KMMS18,
KMS18], and because they cannot be distinguished from an (ε-sparse) random function by examining density
inside links. Finally, note that Definition 3.5 requires f to be sparse. We conjecture that our results should
hold in the dense regime as well, and discuss this further in Section 4.

Hypercontractivity for restricted subclasses is still a very powerful tool. KLLM’s result, for instance,
led to the resolution of Majority is Stablest in the p-biased setting [LM19], and the resolution of several
conjectures in extremal combinatorics as well [KLLM21]. Unfortunately, their technique cannot be used to
analyze simplicial complexes. Unlike the complete complex (which is essentially a product space), bounded
degree HDX are necessarily quite far from products. Nevertheless, we prove that a variant of Equation (2)
continues to hold.

Theorem 3.6 (Hypercontractivity on HDX (Informal Theorem 8.1)). Let X be a sufficiently strong two-sided
γ-local-spectral expander and f ∈ Ck an (ε, i)-pseudorandom function. Then the following hypercontractive
inequality holds:

E[f4
↑i] ≤ 2O(i)εE[f2

↑i] ‖f‖
2
∞ + ckγ

1/2ε ‖f‖22 ‖f‖
2
∞ ,

where ck ≤ min{2O(k), kO(i)}.

Our overall framework for proving Theorem 3.6 roughly follows KMMS’ strategy for the complete
complex. However, even with analogous results for the Bottom-Up Decomposition in hand, most of their
techniques fail dramatically in our setting due to local-spectral expanders’ distinct lack of product structure.
In fact, Theorem 3.6 gives the first general class of hypercontractive objects beyond product spaces, and
combined with known bounded degree constructions of local-spectral expanders [LSV05, KO18], the first
example over any sparse domain at all. In Section 3.4, we’ll discuss how we tackle these traditionally
hard-to-handle structures with the introduction of a new notion of average-case independence that relates
closely to local-spectral expansion. Our method actually allows for analysis well beyond the 4th moment,
and can also be used to extend Theorem 3.6 to 2-to-2q hypercontractivity (where the 4-norm is replaced by a
higher 2q-norm). We focus on the 2-to-4 case in this work for simplicity.

Before moving on to applications of Theorem 3.6, it is worth discussing another typical form of hyper-
contractivity and how it translates to the setting of simplicial complexes. Hypercontractivity is frequently
expressed in terms of an object called the noise operator. On the hypercube, the noise operator Tρ acts as an
averaging process on boolean strings which replaces each coordinate with a random bit with probability 1−ρ.
In this context, hypercontractivity states that Tρ should act as a smoothing operator in the following sense:

‖Tρf‖4 ≤ ‖f‖2 (3)

for some constant ρ. While it is not immediately obvious how to define Tρ over a simplicial complex, one
can imagine a similar process where each vertex in a k-face is removed with probability 1− ρ, and is then
re-randomized over relevant k-faces. We formalize this procedure in terms of the averaging operators.

Definition 3.7 (Noise Operator). Let X be a d-dimensional pure simplicial complex. The noise operator
T kρ (X) : Ck → Ck at level k ≤ d of the complex is:

T kρ (X) =

k∑
i=0

(
k

i

)
(1− ρ)iρk−iUkk−iD

k
k−i.

We write just Tρ when clear from context.
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When applied to the hypercube complex,8 this natural analog returns exactly the standard boolean noise
operator Tρ. Combining standard arguments with the spectral properties of the Bottom-Up Decomposition,
we can also prove a variant of Equation (3) for pseudorandom functions on HDX. To state this result, it will
be useful to have a notion of degree: as on the hypercube, we say the degree of a function f is the largest i
such that f↑i is non-zero.

Corollary 3.8 (Informal Proposition 10.15). Let X be a sufficiently strong two-sided γ-local-spectral

expander and f ∈ Ck a degree i, (δ, i)-pseudorandom function for δ ≤ ε
∥∥∥ f
‖f‖∞

∥∥∥2

2
. Then for some constant

ρ = Θ(1):
‖Tρf‖4 ≤ ε

1/4 ‖f‖2 .

3.3 Applications

A classical application of hypercontractivity is to give what is known as a “level-i inequality” that bounds
low-level weight of a boolean function. We can use Theorem 3.6 to give an analog on HDX for pseudorandom
functions.

Theorem 3.9 (Level-i inequality (Informal Theorem 9.4)). Let X be a two-sided γ-local-spectral expander
with γ sufficiently small and f ∈ Ck an (ε, i)-pseudorandom boolean function of density α. Then the weight
on f↑i is bounded by:

〈f↑i, f↑i〉 ≤ 2O(i)ε1/3α.

Level-i inequalities have a plethora of applications in boolean Fourier analysis. We’ll look at the analog
of two classical applications: one to small-set expansion, and the other to the structure of functions with low
influence. Starting with the former, let’s recall the basic definition of edge-expansion.

Definition 3.10. Let M be a walk on the kth level of a simplicial complex X . The (edge) expansion of a
subset S ⊆ X(k) is the average probability of leaving S in a single step of the walk:

Φ(S) = E
v∼S

[M(v,X(k) \ S)],

where M(v,X(k) \ S) is the probability the walk leaves S starting from v.

Informally, a walk is called a small-set expander if all small subsets expand. Traditionally, the level-i
inequality on the discrete hypercube is used to show that the noisy hypercube graph is a small-set expander.
The analogous result on simplicial complexes, however, isn’t true: HD-walks (which generalize graphs like
the noisy hypercube) have well-known examples of small non-expanding sets: links [KMMS18, BHKL20].
Using Theorem 3.9, we can prove a converse to this result: any non-expanding set must be concentrated in a
link.

Theorem 3.11 (Characterizing non-expansion on HD-walks (Informal Theorem 9.3)). For every 0 < δ < 1,
there exists some ε > 0 and r ∈ N such that for all large enough k the following holds. For any HD-walk9

on a sufficiently strong two-sided local-spectral expander X and any subset S ⊆ X(k), if S has expansion at
most Φ(S) ≤ δ, then S is concentrated in a low-level link:

∃i ≤ r, s ∈ X(i) :
|Xs ∩ S|
|Xs|

≥ ε
8The hypercube complex has vertex set [n]× {0, 1}, where the first entry stands for a coordinate and the second entry a value.

The top level X(n) consists of all binary strings and is exactly the hypercube.
9Formally, this statement only holds for HD-walks such as NΘ(k)

k which exhibit sufficiently fast eigenvalue decay. We give a
more general formulation in the main body that holds for all HD-walks (see Theorem 9.3).
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Expansion is also closely related to a well-studied Fourier-analytic quantity called total influence. On
the boolean hypercube, the total influence of a function measures its total variability across each coordinate:

I[f ] =

n∑
i=1

Pr
x∼{0,1}n

[f(x) = f(x⊕ ei)]

where ei is the ith standard basis vector. One of the most celebrated results in the analysis of boolean
functions is the KKL Theorem [KKL88], which states that any function with low total influence must have an
influential coordinate. In domains beyond the hypercube (such as product spaces), total influence is usually
instead written equivalently as:

I[f ] = 〈f, Lf〉

where L is the (un-normalized) Laplacian operator (see Section 10 for more details). While the KKL
Theorem does not hold over product spaces (even say the p-biased hypercube), a useful analog known as
“Bourgain’s Sharp Threshold Theorem” [FB99, Appendix] does. Bourgain’s Theorem states that if a boolean
function has small total influence, there must exist a link (on the hypercube a subcube) in which the function
is much denser than expected.

We prove an analogous result for HDX. The Laplacian formulation of total influence has a natural
generalization on simplicial complexes:

IX [f ] = 〈f, k(I − Uk−1Dk)f〉

that returns the standard definition over the hypercube complex (see Section 10). Using Theorem 3.9, we
prove that any function with low total influence must be concentrated in a link.

Theorem 3.12 (Bourgain’s Theorem for HDX (Informal Theorem 10.5)). Let X be a sufficiently strong
two-sided γ-local-spectral expander, and f ∈ Ck a boolean function. Then for any 0 ≤ K ≤ k, if
I[f ] ≤ KVar(f), there exists i ≤ K and an i-face τ such that the link of τ is dense:

E
Xτ

[f ] ≥ 2−O(K).

Note that Theorem 10.5 is actually a bit weaker than Bourgain’s Theorem in the sense that it only promises
a link that is much denser than average when the function f is sparse. We conjecture that this result should
hold in the dense regime as well (see Section 4 for details). On the other hand, unlike Bourgain’s Theorem
(which has a density increase of 2−O(K2) rather than 2−O(K) for general functions), our result is tight.10

Proposition 3.13 (Bourgain’s Theorem Lower Bound (Informal Proposition 10.6)). Let c ≥ 1 be any constant
and K > 1 an integer. For all K � k � n, there exists a Boolean function f ∈ Ck on the k-dimensional
complete complex on n vertices satisfying:

1. The influence of f is small:
I[f ] ≤ KVar(f).

2. For every i ≤ cK, all i-links are sparse:

∀i ≤ cK, τ ∈ X(i) : E
Xτ

[f ] ≤ 2−Ω(K).

10A similar tight version of Bourgain’s Theorem for sparse functions on the p-biased cube was proved by [KLLM19].
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3.4 Localization (Average Independence)

Our hypercontractive inequality is derived from a new method of localization on high dimensional expanders
of independent interest. Localization itself is of course not new—indeed such techniques have recently
become synonymous with HDX. However, most prior work in the literature focuses on the localization of
second moments, whereas hypercontractivity requires the analysis of higher moments. Traditionally, analysis
beyond the second moment is difficult on HDX due to an inherent lack of product structure. We show that
this can often be circumvented by a new method of decorrelating variables.

Theorem 3.14. Let X be a d-dimensional two-sided γ-local-spectral expander and f ∈ Ck. Then for any
j ≤ d− k and τ ∈ X(j), the global and localized expectation of f over Xτ differ by an operator with small
spectral norm:

E
Xτ (k)

[f ]− E
X(k)

[f ] = Γf(τ)

where Γ : Ck → Cj satisfies ||Γ|| ≤ Ok,j(γ).

We emphasize that the first expectation in this definition is given by localizing rather than restricting f .
In other words we are averaging over k-faces in the link Xτ (which are (k+ j)-faces in the original complex)
rather than over k-faces in the original complex X that contain τ . This latter notion of restriction is also very
important in analysis of HDX. We discuss further in Section 6.

Theorem 3.14 should really be thought of as saying that, on average, f can be decorrelated from
“irrelevant” j-faces that don’t appear in the input. This is particularly useful when analyzing objects like
HDX with high correlation. To understand the technique a bit more concretely, let’s look at a basic example
application.

Let X be a γ-local-spectral expander. We will often be interested in analyzing certain expected products
on X . For instructive purposes, let’s take a look at an example of such a product with just two instances of
some g ∈ C2:

E
a∼X(1)

E
b∼Xa(1)

E
c∼Xab(1)

[
g(a, b)g(a, c)

]
= E

a∼X(1)
E

b∼Xa(1)

[
g(a, b) E

c∼Xab(1)
[g(a, c)]

]
. (4)

Notice that if we were working over a product space, the distribution of c ∼ Xab(1) would be the same as the
distribution of c ∼ Xa(1). This allows us to significantly simplify the above:

E
a∼X(1)

E
b∼Xa(1)

[
g(a, b) E

c∼Xab(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)] E

c∼Xa(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
.

On the other hand in an HDX (especially one of bounded degree), this could be far from true since b and c
can be highly correlated. Theorem 3.14 provides a simple technique for circumventing this issue. Let g|a be
the restriction of g to a, that is g|a(b) = g(a, b). Theorem 3.14 promises that

E
c∼Xab(1)

[g(a, c)] = E
c∼Xa(1)

[g(a, c)] + Γg|a(b),

where ‖Γ‖ ≤ O(γ). This allows us to recover the same form as above up to O(γ) error:

E
a∼X(1)

[
E

b∼Xa(1)
[g(a, b)] E

c∼Xab(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
+ E
a∼X(1)

[
E

b∼Xa(1)
[g(a, b) · Γg(b)]

]
≤ E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
+Og(γ),
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where we have ignored some terms in g for simplicity and the last step follows from an application of
Cauchy-Schwarz and the spectral norm (see Section 8 for details).

We emphasize that while Equation (4) in particular could also have been analyzed through a more direct
application of the swap walk, these standard techniques fail miserably when additional copies of g are
added. Since there will generally be j copies of g in analysis of the jth moment, this means that traditional
techniques cannot go beyond the second moment. On the other hand, our technique is applied individually to
each copy of g, so it is essentially irrelevant how many times it appears in the product.

4 Discussion

Before getting into the details and formalization of the above, we take a moment to give a more careful
treatment of some interesting open problems and related work.

4.1 Open Problems

Hypercontractivity, both on the cube and on extended domains, has led to an astounding number of applica-
tions since its introduction some 50 years ago. We recover just a small sample of these classical applications
in our work, and believe the theory will give rise to further results in the analysis of boolean functions.
However, rather than surveying a list of classical results one might wish to extend (we refer the reader to
O’Donnell’s excellent book [O’D14] for this), we’ll instead focus on three open problems we feel are most
directly raised by our work.

Perhaps the most obvious direction left open is to extend hypercontractivity to the dense regime. While
our definition of pseudorandomness implicitly assumes the underlying function is sparse, we conjecture that
all of our results should hold under a weaker notion of pseudorandomness that drops this assumption.

Definition 4.1 (Pseudorandomness (Dense Regime)). Let X be a simplicial complex and f ∈ Ck a boolean
function. We say f is (ε, i)-pseudorandom if its local and global average are close on every i-link:

∀τ ∈ X(i) :
∣∣E
Xτ

[f ]− E[f ]
∣∣ ≤ ε.

While the stronger notion we use in this work is certainly sufficient for some applications (e.g. character-
izing expansion, noise-sensitivity) and is line with previous work [KMMS18, KMS18, KLLM19], it does
seem to fall short in other areas. A good example of this is our variant of Bourgain’s Theorem. While our
version only promises the existence of a dense link, the original result on product spaces actually promises
a link with higher than average density (albeit by a factor of 2−O(K2) instead of 2−O(K)), which could be
recovered by proving hypercontractivity for the above definition. More generally, proving hypercontractivity
for this dense variant opens the door to a broader spectrum of applications than the sparse regime alone can
handle.

The second problem we’d like to discuss is more focused on the theory of high dimensional expanders
itself. As mentioned in the introduction, local-spectral expansion can be extended well beyond simplicial
complexes to many natural poset structures including the Grassmann poset [DDFH18, KT21a], where
hypercontractivity was crucial to resolving the 2-2 Games Conjecture [KMS18]. The spectral and `2-structure
of these expanding posets (eposets) is well understood [DDFH18, AJT19, BHKL20], and essentially has
no dependence on the underlying poset structure.11 In stark contrast, our results break down over general
eposets at several key points. In fact, it seems likely that the Bottom-Up Decomposition is not even a Fourier
basis (fails to satisfy Theorem 3.2) over general eposets, since the proof relies heavily on simplicial structure
(see Lemma 7.5). On the other hand, variants of hypercontractivity are known for some special eposets

11Different poset parameters result in different eigenvalues, but the structure is otherwise the same.
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such as the Grassmann poset. The key difference in these cases is that the definition of pseudorandomness
necessarily changes. This raises a natural question: do all eposets satisfy hypercontractivity for some notion
of pseudorandomness, or are structures like the Grassman poset and simplicial complexes “special”? We
conjecture that the latter is the case, and that these objects represent a new, stronger class of spectral high
dimensional expanders.

Our third proposed problem is not raised quite as directly by this work, but is hard to ignore in light
of recent breakthroughs in approximate sampling via HDX [ALOV19, AL20, ALO20, CLV20, CLV21,
CGŠV21, FGYZ21, JPV21, Liu21, BCC+21]. Hypercontractivity is classically connected to the Log-Sobolev
inequality, which gives strong control over the mixing time of its associated random walk. Applied to the
hypercube, for instance, this connection improves the standard spectral mixing bound from O(n2) to the
optimal Θ(n log(n)) [DSC96]. Recent analysis of entropic notions of high dimensional expansion and a
modified Log-Sobolev inequality have led to a slew of analogous improvements on important sampling
problems [CLV21, BCC+21, AJK+21]. These results, however, usually only apply to dense objects and need
stronger assumptions. Given these connections, it is natural to ask whether our theory of hypercontractivity
can improve mixing times for general local-spectral expanders in some analogous fashion.

4.2 Related Work

Hypercontractivity on Extended Domains: Nearly 20 years after its introduction, Kahn, Kalai, and Linial
[KKL88] revolutionized the study of boolean functions with hypercontractivity. Not long after, a significant
interest grew in the development and application of hypercontractivity beyond the hypercube, with a particular
focus on product distributions and especially the p-biased hypercube [BKK+92, Tal94, FK96, Fri98]. These
works offered a general theory of hypercontractivity for such domains, but their strength depended on the
underlying distributions in the product space. While this was sufficient for many important applications
including a number of sharp threshold theorems [FK96, FB99], the results become meaningless for unbalanced
products such as the p-biased cube for p ≤ on(1). This issue was resolved only recently by Keevash, Lifshitz,
Long, and Minzer [KLLM19], who showed a hypercontractivity theorem for pseudorandom functions on
product spaces that is independent of the underlying distributions. This result offered the missing piece for a
number of classical applications, including a tight variant of the KKL Theorem (for monotone functions)
[KLLM19], Majority is Stablest [LM19], and had a number of other applications in extremal combinatorics
[KLLM21].

Another line of work has examined hypercontractivity on what are often called “exotic” domains: specific
objects beyond products such as the slice [KMMS18], multislice [FOW18], Grassmannian [KMS18] (or
similarly the degree-two short code [BKS18]), and symmetric group [FKLM20]. Like KLLM’s improved
result for product distributions, most of these examples are only hypercontractive for pseudorandom functions
(with the multislice being the only exception).12 The main application of this line of work has been to
agreement testing and hardness of approximation. In particular, hypercontractivity for the Grassmannian was
used to prove the soundness of an agreement tester in the “1% regime” needed for the proof of the 2-2 Games
Conjecture [KMS17, DKK+18b, DKK+18a, BKS18, KMMS18, KMS18]. It is worth noting that agreement
testing theorems are also known for local-spectral expanders [DK17, DD19, KM20] (indeed the objects were
originally introduced in this context). These results, however, lie in the “99% regime,” so it is interesting to
ask whether our theory of hypercontractivity can be used to build a bounded degree agreement tester in the
more difficult 1% regime.

Finally, we should note that our overarching proof structure for hypercontractivity builds on KMMS’
work on the slice (i.e. the complete complex). Their techniques, however, rely heavily on the fact that the
slice is close in `1-distance to a product. This is far from true on local-spectral expanders, especially those of

12We note that higher degrees of the short code are also hypercontractive, but only on low Fourier levels for general functions
[BGH+12].
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bounded degree which may essentially be as far as possible from products. As previously discussed, this lack
of structure is a challenging barrier broken for the first time in this work.

Fourier Analysis on HDX: Fourier analysis on HDX was originally studied by Diksein, Dinur, Filmus,
and Harsha [DDFH18], who introduced the HD-Level-Set Decomposition, analyzed its spectral properties,
and used it to prove an FKN Theorem for HDX. A similar decomposition was also proposed around the
same time by Kaufman and Oppenheim [KO20], though their work was more focused on understanding
the spectral structure of higher order random walks than on developing a theory of Fourier analysis. In the
years since, the HD-Level-Set Decomposition has seen some further development [AJT19, KS20, BHKL20],
and the nascent theory has helped build efficient approximation algorithms for certain k-CSPs [AJT19]
and unique games [BHKL20], but the restriction to second moment methods seems to have limited its use
otherwise. Towards breaking this same barrier, Gur, Lifshitz, and Liu [GLL21] have also (independently)
developed a similar theory of hypercontractivity on local-spectral expanders. While their work certainly
shares some connections to ours, its main proof techniques differ substantially and we believe the two works
are of independent interest.

4.3 Roadmap

Having concluded introductory discussion of our work, we lay out a brief roadmap for the rest of the paper. In
Section 5 we give preliminaries and formally define local-spectral expansion and higher order random walks.
In Section 6 we discuss our new local-to-global method for higher moments that allows us to move beyond
product distributions. In Section 7 we discuss our new explicit Fourier Decomposition, its basic properties,
and behavior under restriction. In Section 8 we prove hypercontractivity for pseudorandom functions
(Theorem 3.6). In Section 9 we apply this result to characterize edge expansion in HD-walks (Theorem 3.11).
Finally in Section 10 we introduce analogs of classic Fourier analytic notions such as influence and the noise
operator and use them to prove both a KKL Theorem (Theorem 3.12) and noise-sensitivity of pseudorandom
functions.

5 Preliminaries

Before moving into proofs and further discussion of our main results, we take a moment to cover the theory
of local-spectral expanders and higher order random walks in more detail.

5.1 Simplicial Complexes

Our main objects of interest in this work are a family of expanding hypergraphs known as local-spectral
expanders. In this context, it will be useful to think of d-uniform hypergraphs as objects called pure
simplicial complexes.

Definition 5.1 (Weighted, Pure Simplicial Complex). A d-dimensional, pure simplicial complex X =
X(0) ∪ . . . ∪X(d) on n vertices is the downward closure of a hypergraph X(d) =

([n]
d

)
where

X(i) =

{
s ∈

(
[n]

i

) ∣∣∣∣ ∃t ∈ X(d), s ⊆ t
}
.

We call the elements of X(i) i-faces. A weighted pure simplicial complex (X,Π) is a simplicial complex X
endowed with a distribution Π over X(d). This induces a distribution over each X(i) by downward closure:

πi(x) =
1

i+ 1

∑
y∈X(i+1):y⊃x

πi+1(y), (5)
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where πd = Π.

Weighted pure simplicial complexes are equivalent to weighted hypergraphs, and we will adopt the former
viewpoint throughout the rest of this work. We note that our definition of dimension is off by one from some
of the literature which adopts the convention that an i-face has i+ 1 vertices. While this is natural from a
topological viewpoint, it makes less sense in our combinatorial context.

Weighted simplicial complexes also come equipped with a natural set of inner products. Recall that
Ci = Ci(X) denotes the space of functions f : X(i) → R. The distribution Π = (πd, . . . , π0) induces a
natural inner product on each level:

∀f, g ∈ Ci : 〈f, g〉X(i) = E
τ∼πi

[f(τ)g(τ)].

When clear from context, we drop X(i) from the notation. Just like on the hypercube, these associated
products are a core component of function analysis and the development of Fourier analysis on HDX.

5.2 Local Spectral Expansion

In this work we focus on a recent spectral notion of high dimensional expansion called two-sided local-
spectral expansion introduced by Dinur and Kaufman [DK17]. The definition hinges crucially on a form of
local structure in simplicial complexes called links.

Definition 5.2 (Link). Let (X,Π) be a d-dimensional weighted, pure simplicial complex. The link of an
i-face s ∈ X(i) is a (d − i)-dimensional pure simplicial complex given by the restriction of X to faces
containing s, that is:

Xs = {t \ s ∈ X | t ⊇ s}.

We call Xs an i-link. Throughout the rest of the paper, Xs will always refer to its weighted version (Xs,Πs)
where Πs is induced by the original distribution Π by normalizing over top level faces of Xs.

When analyzing a particular level k of the complex, we will often abuse notation and write Xs to mean
the set of k-faces in X which contain s when clear from context.

Much of the high dimensional expansion literature centers around what is called the local-to-global
paradigm, where properties on links are lifted to global properties on a complex. Local-spectral expansion
can be seen as a definitional formalization of this notion: a complex is said to be expanding if all its local
parts are expanding.

Definition 5.3 (Local-spectral expansion [DK17]). A weighted, pure simplicial complex (X,Π) is a two-
sided γ-local-spectral expander if for every i ≤ d− 2 and every face s ∈ X(i), the underlying graph13 of
Xs is a two-sided γ-spectral expander.14

5.3 Higher Order Random Walks

Just like expander graphs are inextricably tied to their underlying random walks, local-spectral expanders
are similarly connected to an analogous set of random processes known as higher order random walks
(HD-walks). In Section 2, we discussed one example of these objects called the canonical walks that move
between k-faces via a shared (k + i)-face, and saw that these could be defined by the averaging operators.
We’ll now extend these definitions to the more general setting of weighted simplicial complexes and, as well
as define HD-walks in full generality. We’ll start with the weighted averaging operators.

13The underlying graph of a complex X is G = (V = X(1), E = X(2)).
14A weighted graph is a two-sided γ-spectral expander if max{|λ2|, |λn|} ≤ γ.
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Definition 5.4 (Averaging Operators). Let (X,Π) be a d-dimensional weighted, pure simplicial complex.
For every 0 ≤ k < d, the Up Operator Uk lifts functions from Ck to Ck+1 by averaging:

∀τ ∈ X(k + 1) : Ukf(τ) =
1

k + 1

∑
σ∈X(k):σ⊂τ

f(σ).

Similarly, the Down Operator lowers functions from Ck+1 to Ck by averaging:

∀τ ∈ X(k) : Dk+1f(τ) =
1

πk+1(Xτ )

∑
σ∈Xτ

πk+1(σ)f(σ),

where πk+1(Xτ ) =
∑
σ∈Xτ

πk+1(σ), and the sum is over k + 1 faces of X containing τ .

It is worth noting that the averaging operators are adjoint with respect to the associated inner products
mentioned in the previous section, that is for any f ∈ X(i) and g ∈ X(i− 1):

〈f, Uig〉X(i) = 〈Dif, g〉X(i−1) = E
(σ,τ)∼(πi,πi−1)

[f(σ)g(τ)].

This means that basic combinations of the operators such as the canonical walks discussed in Section 2 are
self-adjoint and therefore have a spectral decomposition.

Let’s now formalize the notion of higher order random walks. We’ll start with a basic version called pure
walks that are simply a composition of the averaging operators.

Definition 5.5 (Pure Walk [AJT19]). Given a weighted, pure simplicial complex (X,Π), a k-dimensional
pure walk Y : Ck → Ck on (X,Π) of height h(Y ) is a composition:

Y = Z2h(Y ) ◦ · · · ◦ Z1,

where each Zi is a copy of D or U .

For the moment we won’t force these walks to be self adjoint, but as we noted basic examples such as
N i
k = Dk+i

k Uk+i
k do satisfy this constraint.

We define general higher order random walks to be any linear combinations of pure walks which is
stochastic and self-adjoint.

Definition 5.6 (HD-walk [AJT19]). Let (X,Π) be a pure, weighted simplicial complex, and Y a family of
pure walks Y : Ck → Ck on (X,Π). We call a linear combination

M =
∑
Y ∈Y

αY Y

a k-dimensional HD-walk on (X,Π) as long as it is stochastic and self-adjoint. We call w(M) :=
∑
|αY |

the weight of M , and h(M) = max{h(Y )} its height.

5.4 Rectangular Swap Walks

Definition 5.6 only captures walks which stay on some fixed level of the complex. While these are certainly
our main object of study, it turns out that in analysis it is often useful to consider rectangular walks which
move between levels of the complex. We will be particularly interested in a rectangular walk introduced
independently by Alev, Jeronimo, and Tusiani [AJT19], and Dikstein and Dinur [DD19] called the swap
walk. Informally, the swap walk from X(i) to X(j) moves from an i-face τ to a j-face σ through a shared
(i+ j)-face, but swaps out all original elements in τ . In other words, the intersection between τ and σ must
be empty, and the shared (i + j)-face is exactly τ ∪ σ. To formalize this, it is useful to first introduce the
more basic rectangular walk moving between X(i) and X(j) with no such restrictions.
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Definition 5.7 (Rectangular Canonical Walks). Let (X,Π) be a d-dimensional, pure, weighted simplicial
complex. For any i+ j ≤ d, the rectangular canonical walk Ni,j is the natural operator moving between
X(i) and X(j) through X(i+ j):

Ni,j = Di+j
i U i+jj .

Swap walks are then defined by forcing the down steps in a canonical walk to remove only vertices in the
initial face.

Definition 5.8 (Rectangular Swap Walks). Let (X,Π) be a d-dimensional, pure, weighted simplicial complex.
For any i + j ≤ d, the rectangular swap walk Si,j is the (normalized) restriction of Ni,j to pairs (τ, σ) ∈
X(i)×X(j) such that |τ ∩ σ| = 0.

Swap walks appear naturally in a number of areas, including agreement testing [DD19], coding theory
[JST21], and approximation algorithms [AJT19, BHKL20] and were well studied even before their formal
introduction on HDX. On the complete complex, for instance, rectangular swap walks are exactly the bipartite
Kneser graphs. Swap walks are particularly useful in these contexts because unlike their canonical counterpart
canonical walks, they are actually great expanders.

Theorem 5.9 (Theorem 7.1 [DD19]). Let (X,Π) be a d-dimensional two-sided γ-local-spectral expander.
Then for any i+ j ≤ d, the spectral expansion of Si,j is at most:

λ(Si,j) ≤ ijγ,

where λ(Si,j) is the second largest singular value of Si,j .

We note that this result was concurrently proved by AJT [AJT19], albeit with a quantitatively worse
bound.

6 Localization Beyond the Second Moment

Localization is one of the (if not the) most important technique in the analysis of high dimensional expanders.
Classic results, often grouped together under the name Garland’s method, show how global functions on
simplicial complexes can be broken down into an average over local parts. There are two forms of Garland’s
method that will be relevant to our work. The first handles restrictions of a function f in Ck to any τ ∈ X(i),
s.t. f |τ ∈ Ck−i(Xτ ) satisfies:

∀σ ∈ Xτ (k − i) : f |τ (σ) = f(τ ∪ σ).

Lemma 6.1 (Garland’s method (restrictions) [KO20]). Let (X,Π) be a weighted, pure simplicial complex,
and f ∈ Ck. Then for any i ≤ k, ‖f‖2 is equal to its average second moment restricted to i-links:

〈f, f〉 = E
τ∈X(i)

[〈f |τ , f |τ 〉].

The second form of interest handles localizations of f to τ ∈ X(i), where fτ ∈ Ck(Xτ ) lifts f from
X(k) to Xτ (k):

∀σ ∈ Xτ (k) : fτ (σ) = f(σ).

Lemma 6.2 (Garland’s method (localizations) [Opp18]). Let (X,Π) be a d-dimensional, weighted, pure
simplicial complex, and f ∈ Ck. Then for any k + i ≤ d, ‖f‖22 is equal to its average second moment
localized to i-links:

〈f, f〉 = E
τ∈X(i)

[〈fτ , fτ 〉].
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Garland’s method will play an important role in the analysis of Theorem 3.6, but the results are generally
only useful once a problem has been reduced to analyzing second moments. Since we are mainly interested
in hypercontractivity and analyzing higher moments, Garland’s method alone won’t be sufficient.

To this end, we introduce a new technique for analyzing higher moments on two-sided local-spectral
expanders. At its core, the strategy relies on a deceptively simple observation: the difference between the
global expectation of f and its localized expectation over links is exactly given by an application of the swap
walk minus its stationary operator.

Lemma 6.3. Let (X,Π) be a d-dimensional pure, weighted simplicial complex and f ∈ Ci. Then for any
v ∈ X(j) such that i+ j ≤ d, we have:

E
Xv

[fv]− E[f ] = (Sj,i − U j0D
i
0)f(v).

Proof. This is essentially immediate from expanding the left-hand side. We have:

E
Xv

[fv]− E[f ] =
∑

w∈X(i)

πv,i(w)f(w)−
∑

w∈X(i)

πi(w)f(w)

=
∑

w∈X(i)

(πv,i(w)− πi(w)) f(w)

= (Sj,i − U j0D
i
0)f(v),

where πv,i(w) = 0 for any w /∈ Xv(i).

Lemma 6.3 is particularly powerful on two-sided local-spectral expanders, since the spectral norm of
||Sj,i − U j0Di

0|| is small on every link by Theorem 5.9.

Corollary 6.4. Let (X,Π) be a d-dimensional two-sided γ-local-spectral expander, f ∈ Ci, and τ ∈ X(`)
for any ` < i. Then for any v ∈ Xτ (j) such that i+ j − ` ≤ d, the global and localized expectations of f
differ by:

E
Xτ∪v

[f |τ ]− E
Xτ

[f |τ ] = Γf |τ (v)

where Γ : Ci−`(Xτ )→ Cj(Xτ ) is an operator with spectral norm at most ||Γ|| ≤ (i− `)jγ.

Proof. Applying Lemma 6.3 to the restricted function f |τ on Xτ (which is also a two-sided γ-local-spectral
expander), we have that the left-hand side is exactly given by (Sj,i−` − U j0D

i−`
0 )τf |τ (v). Since U j0D

i−`
0 is

the stationary operator of Sj,i−`, the spectral norm
∥∥∥Sj,i−` − U j0Di−`

0

∥∥∥ is exactly the second largest singular
value of Sj,i−`. As discussed in Theorem 5.9, Dikstein and Dinur [DD19, Theorem 7.1] proved that this
quantity is at most (i− `)jγ on any two-sided γ-local-spectral expander.

7 The Bottom-Up Decomposition

In this section, we introduce the Bottom-Up Decomposition, an explicit combinatorial decomposition on
simplicial complexes which approximates Dikstein, Dinur, Filmus, and Harsha’s HD-Level-Set Decompo-
sition [DDFH18]. This is particularly useful since the latter decomposition essentially corresponds to the
eigenspaces of HD-walks [DDFH18, AJT19, BHKL20].

Definition 7.1 (Level Functions (Recursive Form)). Let (X,Π) be a d-dimensional pure simplicial complex
and f ∈ Ck any function. The ith level function of the Bottom-Up Decomposition is given by

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U ijg↑j

18



The Bottom-Up Decomposition is given by lifting the level functions via the up operator.

Theorem 7.2 (Bottom-Up Decomposition (Explicit Form)). Let (X,Π) be a d-dimensional pure simplicial
complex and f ∈ Ck any function. Let f↑i =

(
k
i

)
Uki g↑i be the lift of the ith level function to Ck. Then the

following statements hold:

1. The lifted level functions give a decomposition of f :

f =

k∑
i=0

f↑i

2. The lifted level functions have the following explicit form:

f↑i =

(
k

i

) i∑
j=0

(−1)i−j
(
i

j

)
U ikD

k
j f,

or equivalently for all τ ∈ X(i):

g↑i(τ) =
∑
σ⊆τ

(−1)|τ\σ| E
Xσ

[f ], f↑i(τ) =
∑

σ∈X(i):σ⊂τ

g↑i(σ)

Proof. (1) can be proved directly by the explicit form given in (2):

k∑
i=0

f↑i =

k∑
i=0

(
k

i

)
Uki

i∑
j=0

(−1)i−j
(
i

j

)
U ijD

k
j f

=
k∑
j=0

 k∑
i=j

(−1)i−j
(
k

i

)(
i

j

)Ukj D
k
j f

= UkkD
k
kf

= f.

where we’ve used the fact that:
k∑
i=j

(−1)i−j
(
k

i

)(
i

j

)
= δjk.

It is left to prove (2). We proceed by induction. Note that the equality clearly holds for i = 0, where both
sides are simply the global expectation E[f ]. Now assume by induction that the equivalence holds up to i− 1.
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We then have:

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U ijg↑j

= Dk
i f −

i−1∑
j=0

(
i

j

)
U ij

j∑
`=0

(−1)j−`
(
j

`

)
U j`D

k
` f

= Dk
i f −

i−1∑
`=0

 i−1∑
j=`

(−1)j−`
(
i

j

)(
j

`

)U i`D
k
` f

= Dk
i f −

i−1∑
`=0

(−1)i−1−`
(
i

`

)
U i`D

k
` f

=

i∑
`=0

(−1)i−`
(
i

`

)
U i`D

k
` f.

The explicit form of f↑i then follows simply by applying
(
k
i

)
Uki to g↑i, and the equivalent form is immediate

from the definition of the down and up operators.

7.1 Bottom-Up vs. HD-Level-Set

Dikstein, Dinur, Filmus, and Harsha’s HD-Level-Set Decomposition [DDFH18] is an elegant linear-algebraic
decomposition for functions on local-spectral expanders. Like the Bottom-Up Decomposition, it breaks
f ∈ Ck down into k + 1 Fourier levels, but differs in that it does so in a top-down fashion.

Theorem 7.3 (HD-Level-Set Decomposition, Theorem 8.2 [DDFH18]). Let (X,Π) be a d-dimensional
two-sided γ-local-spectral expander, γ < 1

d , 0 ≤ k ≤ d, and let:

H0 = C0, H
i = Ker(Di), V

i
k = Uki H

i.

Then:
Ck = V 0

k ⊕ . . .⊕ V k
k .

In other words, every f ∈ Ck has a unique decomposition f =
∑
f↓i such that f↓i = Uki g↓i for g↓i ∈

Ker(Di).

While the HD-Level-Set Decomposition is certainly useful in its own right, it has no known explicit form.
This can make the analysis of standard Fourier-analytic techniques like restriction difficult, and hampers
the analysis of higher moments. We will show that the Bottom-Up Decomposition provides an explicit
approximation of the HD-Level-Set Decomposition that circumvents these issues while maintaining the
latter’s useful properties.

Before jumping into the details, however, it is worth reviewing an elegant technical tool of [DDFH18]
that will be crucial for our analysis. They prove that local-spectral expansion is equivalent to a global notion
of spectral expansion on complexes that relates the upper and lower walks.

Theorem 7.4 (DDFH Claim 8.8). Let (X,Π) be a d-dimensional two-sided γ-local-spectral expander. Then
for any 1 ≤ i ≤ j ≤ d:

DiU
i
j =

j

i
U i−1
j−1Dj +

i− j
i
U i−1
j + Ei,j , (6)

where ‖Ei,j‖ ≤ (i− j)γ.
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It is worth noting that this result (and the HD-Level-Set Decomposition) hold more generally for any
“expanding poset”—the difference lies in the exact coefficients in the above relation.

The crucial observation for proving that the Bottom-Up Decomposition is a Fourier basis (that explicitly
approximates the HD-Level-Set Decomposition) is that while g↑i may not lie directly in Ker(Di) like g↓i, it is
fairly close to doing so. Proving this actually relies crucially on the exact coefficients in Equation (6) which
correspond to working over a simplicial complex. As a result, it is not clear the Bottom-Up Decomposition is
a Fourier basis at all for general expanding posets.

Lemma 7.5. Let (X,Π) be a two-sided γ-local-spectral expander, f ∈ Ck, and g↑i be given as in the
Bottom-Up Decomposition. Then:

‖Dig↑i‖2 ≤ 2O(i)γ
∥∥∥Dk

i f
∥∥∥

2
.

Proof. The result follows from directly expanding Dig↑i:

Dig↑i =

i∑
j=0

(−1)i−j
(
i

j

)
DiU

i
jD

k
j f

=

i∑
j=0

(−1)i−j
(
i

j

)(
j

i
U i−1
j−1Dj +

i− j
i
U i−1
j + Ei,j

)
Dk
j f.

The key is then to notice that the main terms cancel. That is, setting ci,j = (−1)i−j
(
i
j

)
we have:

i∑
j=0

ci,j

(
j

i
U i−1
j−1Dj +

i− j
i
U i−1
j

)
Dk
j f =

i−1∑
j=0

(
j + 1

i
ci,j+1 +

i− j
i
ci,j

)
U i−1
j Dk

j f = 0.

Finally by the triangle inequality we have:

‖Dig↑i‖2 ≤
i∑

j=0

(
i

j

)
‖Ei,jDk

j f‖2 ≤
i∑

j=0

(
i

j

)
(i− j)γ‖Dk

j f‖2

≤ O(i2iγ)‖Dk
i f‖2

where we have used the fact that D contracts `2-norm in the final step.

We will also need approximate orthogonality of both decompositions.

Lemma 7.6. Let (X,Π) be a two-sided γ-local-spectral expander. Then the following three approximate
orthogonality relations hold for all i 6= j:

|〈f↓i, f↓j〉| ≤ 2O(k)γ ‖f‖22 (7)

|〈f↓i, f↑j〉| ≤ 2O(k)γ ‖f‖22 (8)

|〈f↑i, f↑j〉| ≤ min{kO(i+j), 2O(k)}γ ‖f‖22 (9)

Proof. All relations follow from Equation (6) and Lemma 7.5. The first relation is proved in [DDFH18]. The
latter relations follow similarly, but we give the third for completeness. In particular, assuming i > j we
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have:

|〈f↑i, f↑j〉| =
∣∣∣∣(ki

)(
k

j

)
〈Uki g↑i, Ukj g↑j〉

∣∣∣∣
=

(
k

i

)(
k

j

) ∣∣∣〈Dk
i−1U

k
i g↑i, U

i−1
j g↑j〉

∣∣∣
≤
(
k

i

)(
k

j

)∥∥∥Dk
i−1U

k
i g↑i

∥∥∥
2

∥∥∥U i−1
j g↑j

∥∥∥
2

≤
(
k

i

)(
k

j

)∥∥∥Dk
i−1U

k
i g↑i

∥∥∥
2
‖g↑j‖2

where we have applied Cauchy-Schwarz and used the fact that averaging operators contract `2-norm. We
now separately bound both norms. The second is the simpler of the two, and we claim it is at most 2O(i) ‖f‖.
In fact a more general claim holds.

Claim 7.7. For any `p-norm, we have:

‖g↑i‖p ≤ 2i
∥∥∥Dk

i f
∥∥∥
p

Proof. This follows from direct expansion of the `p-norm:

‖g↑i‖p ≤
i∑

j=0

(
i

j

)
‖U ijDk

j f‖p

≤
i∑

j=0

(
i

j

)
‖Dk

i f‖p

= 2i‖Dk
i f‖p

where we have applied the triangle inequality and the fact that U and D contract p-norms.

Plugging this back into the above, we have:

〈f↑i, f↑j〉 ≤ 2i
(
k

i

)(
k

j

)
‖f‖2

∥∥∥Dk
i−1U

k
i g↑i

∥∥∥
2
.

To complete the proof, it is therefore enough to argue that
∥∥Dk

i−1U
k
i g↑i

∥∥
2

is at most ckγ ‖f‖ for some small
enough ck. This follows from k − i repeated applications of Equation (6) (one for each instance of the up
operator). Informally, each application of Equation (6) incurs two error terms, one stemming from the matrix
Ei,j , and the other from j

iU
i−1
j−1Di applied to g↑i, which we know is small by Lemma 7.5. The final remaining

term is then proportional to the original term, but with one DU pair removed. For instance, for the first
application we have:∥∥∥Dk

i−1U
k
i g↑i

∥∥∥ =
∥∥∥Dk−1

i−1 (DkU
k
i )g↑i, U

i−1
j g↑j

∥∥∥
=

∥∥∥∥Dk−1
i−1

(
i

k
Uk−1
i−1 Di +

k − i
k

Uk−1
i + Ek,i

)
g↑i

∥∥∥∥
=
k − i
k

∥∥∥Dk−1
i−1 U

k−1
i g↑i

∥∥∥+
i

k

∥∥∥Dk−1
i−1 U

k−1
i−1 Dig↑i

∥∥∥+
∥∥∥Dk−1

i−1 Ek,ig↑i

∥∥∥
≤ k − i

k

∥∥∥Dk−1
i−1 U

k−1
i g↑i

∥∥∥+ 2O(i)γ ‖f‖+ kγ ‖g↑i‖

≤ k − i
k

∥∥∥Dk−1
i−1 U

k−1
i g↑i

∥∥∥+ k2O(i)γ ‖f‖
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where we have used the facts that by Equation (6) and Lemma 7.5, ‖Ek,i‖ ≤ kγ, and ‖Dig↑i‖ ≤ 2O(i)γ ‖f‖.
A basic inductive argument then implies that

∥∥Dk
i−1U

k
i g↑i

∥∥ ≤ 2O(i)k2γ ‖f‖, which completes the proof. For
a more formal induction following exactly the same strategy, see [DDFH18, BHKL20].

With these lemmas in hand, proving that the Bottom-Up Decomposition `2-approximates the HD-Level-
Set Decomposition is elementary.

Theorem 7.8. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck. Then the Bottom-Up and
HD-Level-Set Decomposition are close in `2-norm:

‖f↑i − f↓i‖22 ≤ 2O(k)γ ‖f‖22 .

Similarly: ∣∣∣‖f↑i‖2 − ‖f↓i‖2∣∣∣ ≤ 2O(k)γ ‖f‖22

Proof. By Lemma 7.6, we have:

〈f↓i − f↑i, f↓i〉 = 〈f − f↑i, f↓i〉 ± 2O(k)γ‖f‖22
= ±2O(k)γ‖f‖22

Similarly:

〈f↓i − f↑i, f↑i〉 = ±2O(k)γ‖f‖22

Therefore:

〈f↓i − f↑i, f↓i − f↑i〉 ≤ 2O(k)γ‖f‖22

as desired. To prove the second inequality, note that:

|〈f↑i, f↑i〉 − 〈f↓i, f↓i〉| = |〈f↑i − f↓i, f↑i − f↓i〉+ 2〈f↓i, f↑i − f↓i〉|
≤ 2O(k)γ ‖f‖2

by our previous observations.

Note that since the HD-Level-Set Decomposition satisfies the Fourier-anatlyic properties in Theorem 3.2
[DDFH18, AJT19, BHKL20], Theorem 7.8 implies that the Bottom-Up Decomposition does as well.

7.2 Properties of the Bottom-Up Decomposition

Our proof of hypercontractivity (Theorem 3.6) relies on a number of important structural properties of and
relations between gi and fi. The first (and most basic) of these is the analog of a classic result for the
HD-Level-Set Decomposition relating to `2-norms of gi and fi.

Lemma 7.9. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck. Then:

〈g↑i, g↑i〉 =
1(
k
i

)〈f↑i, f↑i〉 ± ck,iγ ∥∥∥Dk
i f
∥∥∥2

2

where ck,i ≤ kO(i).
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Proof. The proof is essentially the same as for the HD-Level-Set Decomposition and as our analysis above,
though we repeat the idea for completeness. The key is again to apply Equation (6). In particular, recall that:

〈f↑i, f↑i〉 =

(
k

i

)2

〈Uki g↑i, Uki g↑i〉

=

(
k

i

)2

〈g↑i, Dk
i U

k
i g↑i〉

by adjointness of D and U [DDFH18]. The proof is then essentially the same as Lemma 7.6. Repeated
application of Equation (6) gives an error term of O(k2)γ

∥∥Dk
i f
∥∥

2
. The only difference is that the main term

no longer has an extra occurrence of D at the end. Thus instead of becoming another error term, the main
term becomes: (

k

i

)2
k−i−1∏

j=0

k − j − i
k − j

 〈g↑i, g↑i〉 =

(
k

i

)
〈g↑i, g↑i〉

which gives the result.

We now cover a few important bounds on gi for pseudorandom functions.

Definition 7.10 (Pseudorandom). Let (X,Π) be a simplicial complex. We say that f ∈ Ck is (ε, i)-
pseudorandom if it is sparse across all i-links in two senses:

1. For all τ ∈ X(i): ∣∣∣∣EXτ [f ]

∣∣∣∣ ≤ ε ‖f‖∞
2. For all τ ∈ X(i):

〈f |τ , f |τ 〉 ≤ ε ‖f‖2∞

We note that if f is non-negative, the former condition implies the latter:

〈f |τ , f |τ 〉 ≤ ‖f |τ‖1 ‖f‖∞
= E[f |τ ] ‖f‖∞
≤ ε ‖f‖2∞ .

It is also worth noting that any (ε, i)-pseudorandom function is automatically (ε, j)-pseudorandom for j ≤ i.
We now cover the first property of the Bottom-Up Decomposition that does not follow from standard

HDX analysis, the behavior of level functions under restriction. Analysis of restrictions is a classic Fourier
analytic tool, and the fact that our decomposition behaves nicely under restriction is a major advantage over
previous decompositions which have no clear local structure in this sense. For this particular work, we’ll
mostly be interested in the following bound on the `2-norm of restrictions.

Proposition 7.11. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck an (ε, i)-pseudorandom
function. Then for any j ≤ i ≤ k and τ ∈ X(j):

〈g↑i|τ , g↑i|τ 〉 ≤

(
ε(
k−j
i−j
) + ck,iγ

)
‖f‖2∞ ,

where ck,i ≤ kO(i).
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Proving this, however, requires a more general understanding of the Bottom-Up Decomposition under
restriction. They key observation is that the restriction of our level functions is closely related to the level
functions of the restriction. More formally, for any τ ∈ X(j) let g(τ)

↑` denote the Bottom-Up Decomposition

of f |τ . Then following relation between gi|τ and the g(τ)
↑` holds.

Lemma 7.12. Let (X,Π) be a pure, weighted simplicial complex, and f ∈ Ck. Then for any j ≤ i ≤ k and
τ ∈ X(j):

g↑i|τ =
∑
σ⊆τ

(−1)|σ|g
(τ\σ)
↑i−j .

Proof. This follows almost immediately from directly expanding the definition of g↑i|τ . In particular, recall
that for all I ∈ X(i− j), we have by Theorem 7.2:

g↑i|τ (I) =
∑

T⊆I∪τ
(−1)|(τ∪I)\T | E

XT
[f ].

The trick is to notice that we can divide up this sum over T ⊆ I ∪ τ by T ’s intersection with τ . It will be
convenient to phrase this in the following way. Let T denote the set of all sub-faces T ⊆ I ∪ τ , and for each
σ ⊂ τ , let Tσ be the set of sub-faces T ⊂ I ∪ τ such that T ∩ τ = τ \ σ. Notice that for any σ 6= σ′, Tσ and
Tσ′ are disjoint, and that the union of these families is exactly T . Together, this means that we can break up
the above sum by first summing over σ, and then every T ∈ Tσ:

g↑i|τ (I) =
∑
σ⊆τ

∑
T∈Tσ

(−1)|(I∪τ)\T | E
XT

[f ]


By definition, every T ∈ Tσ can be written as T ′ ∪ (τ \ σ). Plugging this into the above gives the result:

∑
σ⊆τ

∑
T∈Tσ

(−1)|(I∪τ)\T | E
XT

[f ]

 =
∑
σ⊆τ

 ∑
T ′∪(τ\σ)∈Tσ

(−1)|(I∪τ)\(T ′∪(τ\σ))| E
XT ′∪(τ\σ)

[f ]


=
∑
σ⊆τ

(−1)|σ|

 ∑
T ′∪(τ\σ)∈Tσ

(−1)|I\T
′| E
XT ′∪(τ\σ)

[f ]


=
∑
σ⊆τ

(−1)|σ|g
(τ\σ)
↑i−j (I),

where the final step comes from the fact that the inner summation over Tσ is equivalent to summing over all
T ′ in the link of τ \ σ.

We note that the same result was known to hold for the Bottom-Up Decomposition over the complete
complex [KMMS18], who proved the result by induction using the recursive form of the decomposition. The
same strategy will work for general simplicial complexes, but we find using the explicit form as above to be a
bit simpler.

With this in hand, proving Proposition 7.11 is fairly elementary and follows similarly to its analogous
statement for the complete complex (see [KMMS18, Corollary 3.4]).
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Proof of Proposition 7.11. An application of Lemma 7.12 and Cauchy-Schwarz implies that:

g↑i|τ (T )2 =

∑
σ⊆τ

(−1)|σ|g
(τ\σ)
↑i−j (T )

2

≤ 2O(i)
∑
σ⊆τ

g
(τ\σ)
↑i−j (T )2

Then applying Lemma 7.9 gives:

〈g↑i|τ , g↑i|τ 〉 ≤ 2O(i)
∑
σ⊆τ
〈g(τ\σ)
↑i−j , g

(τ\σ)
↑i−j 〉

≤ 2O(i)
∑
σ⊆τ

〈f |(τ\σ), f |(τ\σ)〉(
k−j+|σ|
i−j

) + c1γ ‖f‖2∞

≤ 2O(i)
∑
σ⊆τ

ε ‖f‖2∞(
k−j+|σ|
i−j

) + c1γ ‖f‖2∞

≤ 2O(i) ε ‖f‖
2
∞(

k−j
i−j
) + c2γ ‖f‖2∞

where c1, c2 ≤ kO(i).

Finally, it will also be useful to bound the infinity norm of g↑i as well. Our final property shows that
‖g↑i‖∞ is particularly small when f is pseudorandom.

Lemma 7.13. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck be any (ε, i)-pseudorandom
function satisfying E[f ] ≤ ε ‖f‖∞. Then the infinity norm of g↑i is small:

‖g↑i‖∞ ≤ 2iε ‖f‖∞

Proof. This is immediate from combining the explicit form of g↑i with (ε, i)-pseudorandomness.

|g↑i(w)| =

∣∣∣∣∣∣
i∑

j=0

(−1)i−j
(
i

j

)
U ijD

k
j f(w)

∣∣∣∣∣∣
≤

i∑
j=0

(
i

j

)
ε ‖f‖∞

= 2iε ‖f‖∞

where we have used the observation that since f is (ε, i)-pseudorandom, for all w ∈ X(i):

|U ijDk
j f(w)| ≤ ε ‖f‖∞

26



8 Hypercontractivity on HDX

In this section, we prove a hypercontractivity theorem for the Bottom-Up Decomposition on two-sided
local-spectral expanders. Since we will work only with the Bottom-Up Decomposition in this section, we
drop the ↑ for simplicity and simply write f =

∑
fi for fi =

(
k
i

)
Uki gi and gi = g↑i as defined in the

Bottom-Up Decomposition.

Theorem 8.1. Let (X,Π) be a two-sided γ-local-spectral expander with γ ≤ k−Ω(i), and f ∈ Ck an
(ε, i)-pseudorandom function. If f = f0 + . . .+ fk is the Bottom-Up Decomposition of f , then:

E[f4
i ] ≤ 2O(i)εE[f2

i ] ‖f‖2∞ + ck,iεγ
1/2
∥∥∥Dk

i f
∥∥∥2

2
‖f‖2∞

where ck,i ≤ kO(i).15

The proof of Theorem 8.1 can get a bit technical at points, so for simplicity of notation, we note it is
sufficient to prove the result assuming ‖f‖∞ = 1. Given a general function f , applying this to f

‖f‖∞
gives

the general form in Theorem 8.1. Keeping this in mind, we’ll start by laying out our general strategy for
analyzing the fourth moment. Let [τ ]i = {a ⊆ τ : a ∈ X(i)}, and note that fi(τ) =

∑
a∈[τ ]i

gi(a). Using
this notation, we can expand out the 4th moment of fi:

E[f4
i ] = E

τ∈X(k)

∑
a,b,c,d∈[τ ]i

gi(a)gi(b)gi(c)gi(d) =
∑

a,b,c,d∈X(i)

πk(Xa∪b∪c∪d)gi(a)gi(b)gi(c)gi(d),

where the indices a, b, c, d are ordered. We can further simplify this by grouping the terms by size of
a ∪ b ∪ c ∪ d:

E[f4
i ] =

4i∑
`=i

(
k

`

) ∑
e∈X(`)

π`(e)
∑

a,b,c,d∈X(i):a∪b∪c∪d=e

gi(a)gi(b)gi(c)gi(d).

Analyzing the RHS directly is difficult, so taking after [KMMS18], we will partition the term even further by
summing over fixed intersection patterns of a, b, c, and d (an intersection pattern fixes the intersection size
of every subset of {a, b, c, d}). Denote the set of such patterns where |a ∪ b ∪ c ∪ d| = ` by Σ`, and for any
e ∈ X(`), and σ ∈ Σ`, let σ(e) denote all tuples (a, b, c, d) such that a ∪ b ∪ c ∪ d = e, (a, b, c, d) ∈ σ. We
may now write:

E[f4
i ] =

4i∑
`=i

(
k

`

) ∑
σ∈Σ`

∑
e∈X(`)

π`(e)
∑

a,b,c,d∈σ(e)

gi(a)gi(b)gi(c)gi(d).

We make one final simplification of the above before moving to analysis. Let x1, . . . , x` be random variables
which take on vertex values in the complex. For each intersection pattern σ ∈ Σ`, let Iσ1 , . . . , I

σ
4 be size-i

subsets of {x1, . . . , x`} whose union is {x1, . . . , x`} and which satisfy the intersection pattern σ. Then we
can simplify the above as the following expectation over the xi:

E[f4
i ] =

4i∑
`=i

(
k

`

) ∑
σ∈Σ`

β(σ) E
x1∈X(1)

[
E

x2∈Xx1 (1)
. . .

[
E

x`∈Xx1,...,x`−1
(1)

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )]

]]
.

15Note that this can be improved to ck,i ≤ max
{
2O(i),

(
k
i

)O(1)
}

, but since we generally consider the regime of i� k we use

kO(i) throughout for simplicity.
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where β(σ) ≤ 2O(i) is a parameter dependent on the intersection pattern that accounts for the new normaliza-
tion of terms in the nested expectation.16 For simplicity of notation, we will instead write the right-hand side
as:

E[f4
i ] =

4i∑
`=i

(
k

`

) ∑
σ∈Σ`

β(σ) E
x1,...,x`

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )]

where it is understood that E
x1,...,x`

is a shorthand for the nested expectation E
x1∈X(1)

E
x2∈Xx1 (1)

. . . E
x`∈Xx1,...,x`−1

(1)
.

We will use this convention throughout the rest of the proof, as the nested notation is cumbersome to write
otherwise.

Our goal is now to upper bound this sum to get a hypercontractive inequality. We do this by bounding
each sign pattern independently.

Claim 8.2. For every sign pattern σ, the corresponding expectation is bounded by:

E
x1,...,x`

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] ≤

(
i

k

)`
2O(i)εE[f2

i ] + ck,iεγ
1/2
∥∥∥Dk

i f
∥∥∥2

2

where ck,i ≤ kO(i).

Before jumping into the proof of Claim 8.2, let’s show how it can be used to prove Theorem 8.1.

Proof of Theorem 8.1. Recall it is sufficient to prove the result assuming ‖f‖∞ = 1. As discussed earlier in
the section, expanding the 4th moment gives the following relation:

E[f4
i ] =

4i∑
`=i

(
k

`

)∑
σ

β(σ) E
x1,...,x`

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] .

Applying Claim 8.2 to the righthand side gives:

E[f4
i ] ≤

4i∑
`=i

(
k

`

) ∑
σ∈Σ`

β(σ)

((
i

k

)`
2O(i)εE[f2

i ] + ck,iεγ
1/2
∥∥∥Dk

i f
∥∥∥2

2

)

≤
4i∑
`=i

(
ek

`

)`( i
k

)`∑
σ∈Σ`

β(σ)

(2O(i)εE[f2
i ] + c1εγ

1/2
∥∥∥Dk

i f
∥∥∥2

2

)
≤ 2O(i)εE[f2

i ] + c2εγ
1/2
∥∥∥Dk

i f
∥∥∥2

2

where c1, c2 ≤ kO(i) and the last step follows from noting that there are at most poly(i) intersection
patterns.

16The bound 2O(i) follows from a simple counting argument. Fix an intersection pattern σ = {a1, . . . , a15}. Expand-

ing out the expectation E
x1∈X(1)

[
E

x2∈Xx1 (1)
. . .

[
E

x`∈Xx1,...,x`−1
(1)

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )]

]]
. The coefficient of any term

gi(a)gi(b)gi(c)gi(d) is given by π`(e)
`!

times the number of permutations of x1, . . . x` that fix gi(a)gi(b)gi(c)gi(d). This latter
value is the same for any term, and can be lower bounded by

∏15
i=1 ai!, so the final coefficient is at least π`(e)

∏
ai!
`!

. To cancel this
value, β(σ) is therefore at most `!∏

ai!
≤ 2O(i) as desired.
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8.1 Proving Claim 8.2

The main technical work comes in proving Claim 8.2, which relies heavily on Garland’s method and our new
localization strategy for decorrelating variables (Corollary 6.4).

We split the proof into two parts. First, we will show that any pattern which has a unique element (i.e.
some xi which appears only in one of the four sets) may be disregarded.

Proposition 8.3. If σ is a pattern in which any variable is unique (appears in only one Ij), then:

E
x1,...,x`

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] ≤ 2O(i)γε2

∥∥∥Dk
i f
∥∥∥2

2
.

Proof. To simplify notations in the proof, let I = {x1, . . . , x`} and Ij = Iσj . Assume without loss of
generality that I4 has a unique variable x`, and set J = I \ {x`} and J4 = I4 \ {x`}. We can re-write our
expectation as:

(∗) = E
J

[
gi(I1)gi(I2)gi(I3) E

x`∈XJ (1)
[gi|J4(x`)]

]
.

By Corollary 6.4, the inner expectation can be replaced with Digi(J4) up to γ error in the following sense.
Consider any fixing of the variables J (namely, fixing x1, . . . , x`−1), we have:

E
x`∈XJ (1)

[gi|J4(x`)] = E
x`∈XJ4

(1)
[gi|J4(x`)] + Γgi|J4(J \ J4)

= Digi(J4) + Γgi|J4(I \ I4)

where ‖Γ‖ ≤ O(iγ) by Corollary 6.4. Plugging this back into our original expectation gives:

(∗) = EJ [gi(I1)gi(I2)gi(I3)Digi(J4)] + EJ [gi(I1)gi(I2)gi(I3)Γgi|J4(I \ I4)]

The idea is now to split each term into two parts: the first three terms gi(I1)gi(I2)gi(I3) and the last term.
Let’s first split these portions by Cauchy-Schwarz to get:

(∗) ≤ EJ
[
gi(I1)2gi(I2)2gi(I3)2

]1/2
·

E
J

[
Digi(J4)2

]1/2
+ E
J4

[
E

I\I4∈XJ4

[
Γgi|J4(I \ I4)2

]]1/2


where we have re-arranged variable for convenience in the last term. We now bound each term separately.
The first term can be bounded by the observation that ‖gi‖∞ ≤ 2O(i)ε ‖f‖∞ (Lemma 7.13), and hence:

EJ
[
gi(I1)2gi(I2)2gi(I3)2

]1/2 ≤ 2O(i)ε2 ‖gi‖2
where we simply bounded two of the three g2

i terms by their infinity norm and applied Garland’s lemma for
localizations (Lemma 6.2) to remove the extra variables.

We next analyze the second term. The first summand is exactly ‖Digi‖, which by Lemma 7.5 is at
most O(γ

∥∥Dk
i f
∥∥). The second summand is a bit trickier, but can be analyzed through a combination of

standard spectral bounds and Garland’s lemma for restrictions (Lemma 6.1). In particular, re-writing the
inner expectation as an inner-product we get:

E
J4

[
E

I\I4∈XJ4

[
Γgi|J4(I \ I4)2

]]1/2

= E
J4

[〈Γgi|J4 ,Γgi|J4〉]
1/2

≤ cγE
J4

[〈gi|J4 , gi|J4〉]
1/2

= cγ ‖gi‖2 ,

29



where c ≤ O(i) and we have applied the fact that ‖Γ‖ ≤ O(iγ) and Garland’s lemma for restrictions
(Lemma 6.1). Recalling from Claim 7.7 that ‖gi‖2 ≤ 2i

∥∥Dk
i f
∥∥

2
completes the result.

We may now restrict our analysis to patterns in which every variable appears at least twice. Note that
this implies ` ≤ 2i, which is important because we expect our expectation to scale at best with k−2i, so
any terms with ` > 2i would cause difficulty. As in [KMMS18], we break this analysis into two steps. Let
I1, . . . , I4 satisfy intersection pattern σ as above (we drop the σ superscript for convenience), and let Hi for
i ∈ {2, 3, 4} denote the set of variables that appear i times.

We’ll start by handling H2 through a combination of Cauchy-Schwarz, Garland’s method, and our
localization technique for higher moments. Unlike the case of the complete complex studied in [KMMS18],
these latter components are necessary due to the fact that local-spectral expanders are generally far from
product spaces (a crucial property of the complete complex exploited in [KMMS18]). The proof is fairly
technical, so we’ll start by laying out some convenient notation. For any 0 ≤ m ≤ `, let Tm = {x1, . . . , xm}.
Let j = |H3 ∪H4| where 0 ≤ j ≤ `. Noting that re-ordering the variables x1, . . . , x` has no effect on the
distribution, we may assume without loss of generality that H3 ∪H4 = {x1, . . . , xj} (where if j = 0 then
H3 ∪H4 is empty). Finally, we introduce two useful notations: for m ≤ ` let Imr = Ir ∩ {x1, . . . , xm} and
smr = i− |Imr |.
Proposition 8.4.

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
x1,...,xj


√√√√ 4∏

r=1

E
τr∼XTj (sjr)

[g2
i |Ijr (τr)]

+ 2O(i)γ1/2ε2 ‖gi‖22

Proof. The proof follows from an inductive argument where we pull one variable in x ∈ H2 inside the
sum in each step by de-correlating the two copies of gi which do not take x as an input, and then applying
Cauchy-Schwarz. In particular, we will show by induction that for all ` ≥ m ≥ j:

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
x1,...,xm


√√√√ 4∏

r=1

E
τr∼XTm (smr )

[g2
i |Imr (τr)]

+ 2O(i)γ1/2ε2 ‖gi‖22

The base case (m = `) is trivial. Since we also done if m = j, we may assume that xm ∈ H2 and therefore
lies in exactly two of I1, I2, I3, I4 by definition. Assume without loss of generality that xm ∈ I3, I4. We’d
like to pull xm inside the expectation. The issue is that despite the fact that xm does not participate in I1 or
I2, these terms actually depend on xm regardless since τ1 and τ2 are drawn from a link that includes xm. To
fix this, we can use Corollary 6.4 to de-correlate these terms from xm:√√√√ 2∏

r=1

E
τr∼XTm (smr )

[g2
i |Imr (τr)] =

√√√√ 2∏
r=1

(
E

τr∼XTm−1 (sm−1
r )

[
g2
i |Im−1

r
(τr)

]
+ Γg2

i |Im−1
r

(xm)

)

≤
√

E
τ1∼XTm−1 (sm−1

1 )

[
g2
i |Im−1

1
(τ1)

]√
E

τ2∼XTm−1 (sm−1
2 )

[
g2
i |Im−1

2
(τ1)

]
+
√

Γg2
i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (sm−1
1 )

[
g2
i |Im−1

1
(τ1)

]
+
√

Γg2
i |Im−1

1
(xm)

√
E

τ2∼XTm−1 (sm−1
2 )

[
g2
i |Im−1

2
(τ2)

]
+
√

Γg2
i |Im−1

1
(xm)

√
Γg2

i |Im−1
2

(xm)
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where ‖Γ‖ ≤ O(iγ) and we have used the fact that by assumption Imr = Im−1
r for r = 1, 2. For the moment,

denote the last 3 terms by err(g). Then by the inductive hypothesis we have:

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)]

≤ E
x1,...,xm


√√√√ 4∏

r=1

E
τr∼XTm (sr)

[g2
i |Imr (τr)]

+ 2O(i)γ1/2ε2 ‖gi‖22

≤ E
x1,...,xm−1


√√√√ 2∏

r=1

E
τr∼XTm−1 (sr)

[g2
i |Im−1

r
(τr)] E

xm

[√
E

τ3∼XTm (s3)
[g2
i |Im3 (τ3)]

√
E

τ4∼XTm (s4)
[g2
i |Im4 (τ4)]

]
+ E
x1,...,xm

[
err(g)

√
E

τ3∼XTm (sm3 )
[g2
i |Im3 (τ3)]

√
E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]

]
+ 2O(i)γ1/2ε2 ‖gi‖22

By Cauchy-Schwarz, the first term can be bounded by:

E
x1,...,xm−1


√√√√ 4∏

r=1

E
τr∼XTm−1 (sm−1

r )
[g2
i |Im−1

r
(τr)]

 ,
so it is enough to show that the latter error term is small. We’ll analyze each term in err(g) independently
using Cauchy-Schwarz, Garland’s method, and our bound on ‖g‖∞. Starting with the first term, an application
of Cauchy-Schwarz gives:

E
x1,...,xm

√Γg2
i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (sm−1
1 )

[
g2
i |Im−1

1
(τ1)

]√
E

τ3∼XTm (sm3 )
[g2
i |Im3 (τ3)]

√
E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]


≤ E
x1,...,xm

[
Γg2

i |Im−1
2

(xm) E
τ1∼XTm−1 (sm−1

1 )

[
g2
i |Im−1

1
(τ1)

]]1/2

E
x1,...,xm

[
E

τ3∼XTm (sm3 )
[g2
i |Im3 (τ3)] E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]

]1/2

.

The righthand expectation is easy to analyze using the fact that ‖gi‖∞ ≤ 2O(i)ε:

E
x1,...,xm

[
E

τ3∼XTm (sm3 )
[g2
i |Im3 (τ3)] E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]

]1/2

≤ 2O(i)ε E
x1,...,xm

[
E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]

]1/2

= 2O(i)ε E
τ∼X(|Im4 |)

[〈gi|τ , gi|τ 〉]1/2

= 2O(i)ε ‖gi‖2

where the last two equalities follow from Garland’s method. Turning our attention to the lefthand expectation,
we can apply Cauchy-Schwarz to get:

E
x1,...,xm

[
Γg2

i |Im−1
2

(xm) E
τ1∼XTm−1 (sm−1

1 )

[
g2
i |Im−1

1
(τ1)

]]1/2

≤ E
x1,...,xm−1

[
〈Γg2

i |Im−1
2

,Γg2
i |Im−1

2
〉
]1/4

E
x1,...,xm−1

[
E

τ1∼XTm−1 (sm−1
1 )

[
g2
i |Im−1

1
(τ1)

]2
]1/4

≤ 2O(i)γ1/2 E
x1,...,xm−1

[
〈g2
i |Im−1

2
, g2
i |Im−1

2
〉
]1/4

E
x1,...,xm−1

[
〈g2
i |Im−1

1
, g2
i |Im−1

1
〉
]1/4
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where in the last step we have applied the fact that ‖Γ‖ ≤ O(iγ). Analysis of the remaining expectations
follows exactly as before. In particular, re-arranging variables by symmetry and applying Garland’s method,
we can continue the above inequality as follows:

= γ1/22O(i) E
τ∼X(|Im−1

2 |)

[
〈g2
i |τ , g2

i |τ 〉
]1/4 E

τ∼X(|Im−1
1 |)

[
〈g2
i |τ , g2

i |τ 〉
]1/4

= γ1/22O(i)〈g2
i , g

2
i 〉1/2

≤ γ1/22O(i)ε ‖gi‖2

where in the final step we have again applied our bound on ‖gi‖∞. Putting the analysis of these two terms
together, we get the desired bound on the first summand of err(g):

E
x1,...,xm

√Γg2
i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (sm−1
1 )

[
g2
i |Im−1

1
(τ1)

]√
E

τ3∼XTm (sm3 )
[g2
i |Im3 (τ3)]

√
E

τ4∼XTm (sm4 )
[g2
i |Im4 (τ4)]


≤γ1/22O(i)ε2 ‖gi‖22

Thankfully, the analysis of second summand in err(g) is exactly the same, and the third term differs only in
that the lefthand expectation in the previous analysis becomes:

E
x1,...,xm

[
Γg2

i |Im−1
1

(xm)Γg2
i |Im−1

2
(xm)

]1/2
≤ γ2O(i)ε ‖gi‖2

by the same arguments. Combining these together, we get that our error term is bounded by γ1/22O(i)ε2 ‖gi‖22,
which completes the proof.

It is left to analyze H3 and H4. Recalling that we’ve assumed {x1, . . . , xj} = H3 ∪H4, Proposition 8.4
can be restated as:

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
H3∪H4


√√√√ 4∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

+ 2O(i)γ1/2ε2 ‖gi‖22 .

The key is now to apply Proposition 7.11, which says that the maximum of the inner restricted expectations
are small, where the factor is better the fewer variables we restrict. In order to minimize the number of
restrictions, we use Cauchy-Schwarz to separate out I1 and I2 from I3 and I4:

E
H3∪H4


√√√√ 4∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

 ≤ E
H3∪H4

[
2∏
r=1

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

]1/2

· E
H3∪H4

[
4∏
r=3

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

]1/2

.

Analysis of these two terms is the same, so we focus on the former. The idea is to bound one of the
two inner expectations (say I1) by its maximum, and note that the other term then simply returns ‖gi‖.
Unfortunately, there is a slight issue with this strategy naively: H3 may contain variables that are not in I1, so
we cannot directly apply Proposition 7.11. Thankfully, localization again comes to our rescue: we can apply
Proposition 7.11 as long as we first de-correlate I1 from the extraneous variables in H3 as in Proposition 8.4.
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More formally, letting B12 = (H3 ∩ I1 ∩ I2) ∪H4 for simplicity of notation, by exactly the same inductive
argument used in Proposition 8.4 we have:

E
H3∪H4

[
2∏
r=1

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

]1/2

≤ E
B12∼X

[
E

τ1∼XB12

[g2
i |IB12

1
(τ1)] E

τ2∼XB12

[g2
i |IB12

2
(τ2)]

]1/2

+ 2O(i)ε2γ1/2 ‖gi‖2

where for the moment we have omitted the sizes of B12, τ1, and τ2 for simplicity (these will be computed
soon). Pulling out the maximal I1 term and applying Proposition 7.11 with j = |B12|, we then get:

E
H3∪H4

[
2∏
r=1

E
τr∼XH3∪H4

(sjr)
[g2
i |Ijr (τr)]

]1/2

≤ max
B12

(
E

τ1∼XB12

[g2
i |IB12

1
(τ1)]

)1/2

‖gi‖2 + 2O(i)ε2γ1/2 ‖gi‖2

≤ 2O(i)ε1/2(k−|B12|
i−|B12|

)1/2 ‖gi‖2 + 2O(i)ε2γ1/2 ‖gi‖2

The same argument holds for the latter product over I3 and I4. Letting B12 = (H3 ∩ I3 ∩ I4) ∪H4, and
putting everything together, we finally get the bound:

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ 2O(i)ε(k−|B12|
i−|B12|

)1/2(k−|B34|
i−|B34|

)1/2 ‖gi‖22 + 2O(i)ε2γ1/2 ‖gi‖22

≤ 2O(i)ε(k−|B12|
i−|B12|

)1/2(k−|B34|
i−|B34|

)1/2 1(
k
i

) ‖fi‖22 + 2O(i)ε2γ1/2
∥∥∥Dk

i f
∥∥∥2

2

≤ 2O(i)ε

(
k

i

) |B12|+|B34|
2

−2i

‖fi‖22 + 2O(i)ε2γ1/2
∥∥∥Dk

i f
∥∥∥2

2

where we have applied the basic binomial bound
(
n
p

)
≥
(
n
p

)p
. To complete the result, it suffices show

that |B12|+|B34|
2 = 2i− `. This follows similarly to the analogous argument in [KMMS18], but we’ll give a

simplification of their proof for completeness. Recall that B12 consists of variables in H3 and H4 that appear
in both I1 and I2, and B34 similarly consists of variables in H3 and H4 that appear in both I3 and I4. Since
every variable in H3 occurs in exactly one of (I1 ∩ I2) and (I3 ∩ I4) by definition, we get that

|B12|+ |B34|
2

= |H4|+
|H3|

2
.

To compute the righthand side, note that by definition we have the following two relations:

1. Since each term has 4i total variables (with repetition):

4|H4|+ 3|H3|+ 2|H2| = 4i

2. Since there are ` unique variables:

|H4|+ |H3|+ |H2| = `

Combining these equations gives the desired equality:

|H4|+
|H3|

2
=

(4|H4|+ 3|H3|+ 2|H2|)− 2(|H4|+ |H3|+ |H2|)
2

= 2i− `.
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Putting everything together, we finally get

E
x1,...,x`

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ 2O(i)ε

(
i

k

)`
‖fi‖2 + ck,iεγ

1/2
∥∥∥Dk

i f
∥∥∥2
,

as desired.

9 Characterizing Expansion in HD-walks

One traditional application of hypercontractivity on the discrete hypercube lies in showing that the noisy
hypercube graph (given by randomizing each bit of a binary string x with some probability 1 − ρ) is a
small-set expander. This result is also often thought of as stating “sparse functions on the hypercube are
noise-sensitive,” an interpretation we’ll discuss in the next section. Unlike the noisy hypercube, it is well
known that HD-walks are far from being small set expanders [BHKL20]. Before we quantify this further,
let’s recall the definition of (edge) expansion in the general weighted setting.

Definition 9.1 (Weighted Edge Expansion). Let (X,Π) be a weighted simplicial complex,M a k-dimensional
HD-Walk over (X,Π), and S ⊂ X(k) a subset. The weighted edge expansion of S is the average probability
of leaving S after one step of M :

Φ(S) = E
v∼πk|S

[M(v,X(k) \ S)] ,

where πk|S is the (normalized) restriction of πk to S,

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y),

and M(v, y) is the transition probability from v to y.

A small-set expander is simply a graph where all small sets expand. To understand why HD-walks fail
this condition, let’s consider the Johnson graph. The Johnson graph J(n, k, `) is the graph on

([n]
k

)
whose

edges are given by sets with intersection size `. Well-studied object in their own right, the Johnson graphs are
a fundamental example higher order random walks on the complete complex [AJT19]. In our context, we
usually think of n as being much larger than k, and ` as being (at least) ck for some constant 0 < c < 1. In
this case, one can show by direct computation that the expansion of any i-link Xτ is bounded away from 1:

Φ(Xτ ) ≈ 1− c−i,

despite the fact that its density is vanishingly small: E[1Xτ ] ≈ (k/n)i.
Recently, BHKL proved a general variant of this result for all HD-walks (see [BHKL20, Theorem 9.2]).

They show that spectrum of any k-dimensional walk M on a sufficiently strong local-spectral expander
is divided up into k + 1 strips of width Ok,M (γ)17 centered around some set of approximate eigenvalues
{λi(M)}ki=0, and that the expansion of any link at level i is almost exactly 1− λi(M). They also prove a
weak converse to this result: any non-expanding set must be concentrated in a link. It is convenient to state
the contrapositive. For any δ > 0, let Rδ(M) = r denote the number of approximate eigenvalues of M that
are greater than δ (a quantity BHKL call the ST-Rank of M ). BHKL [BHKL20, Theorem 9.5] prove that
the expansion of any set S ⊂ X(k) is at least:

Φ(S) & 1− δ − c1

(
k

r

)
ε− c2γ (10)

17BHKL actually only prove the width is Ok,M (
√
γ), the improvement to Ok,M (γ) was given soon after by Zhang [Zha20].
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where S is (ε, r)-pseudorandom.18 This is great when ε�
(
k
r

)
, but for many applications of interest (e.g. in

hardness of approximation), we think of ε as fixed and of k as going to infinity. In this regime, the above
characterization is useless, as the bound reduces to the trivial fact Φ(S) ≥ 0. Using hypercontractivity, we
can completely resolve this issue by offering a variant of Equation (10) with no dependence on k. Before we
give the statement, however, we note that both BHKL and our result require the approximate eigenvalues
of the HD-walk {λi(M)}ki=0 to decrease monotonically. BHKL proved that this property holds for a broad
class of walks they call complete walks, which includes all HD-walks of interest studied in the literature.

Definition 9.2 (Complete HD-Walk ([BHKL20] Definition 7.10)). Let (X,Π) be a weighted, pure simplicial
complex and M =

∑
Y ∈Y

αY Y an HD-walk on (X,Π). M is called complete if for all n ∈ N there exist

n0 > n and d such that
∑
Y ∈Y

αY Y is also an HD-walk when taken to be over the d-dimensional complete

complex on n0 vertices.

All walks we have seen so far (canonical walks, swap walks, pure walks, affine combinations thereof,
etc.) are complete, so restricting to this class does not lose much generality. With this in mind, we can finally
state our dimension independent bound on the expansion of pseudorandom sets.

Theorem 9.3 (Pseudorandom Sets Expand). Let (X,Π) be a two-sided γ-local-spectral expander, M a
complete k-dimensional HD-walk, and S ⊆ X(k) of density α. Then for any δ > 0 and r = Rδ(M)− 1, the
expansion of S is at least:

Φ(S) ≥ 1− δ − (1− δ)2O(r)ε1/3 − cγ

where c ≤ 2O(k)w(M)h(M)2 and S is (ε, r)-pseudorandom.

The proof of Theorem 9.3 goes through a level-i inequality for pseudorandom functions of independent
interest.

Theorem 9.4 (Level-i Inequality). Let (X,Π) be a γ-local-spectral expander with γ < 2−Ω(k) and f ∈ Ck
a boolean, (ε, i)-pseudorandom function. Then:

〈f, f↑i〉 ≤ 2O(i)ε1/3E[f ].

Let’s first prove Theorem 9.3 given Theorem 9.4.

Proof of Theorem 9.3. The argument is standard and follows from the identity Φ(S) = 1 − 1
α〈f,Mf〉

(where α = E[f ]), and expanding f =
k∑
i=0

f↓i (the HD-Level-Set Decomposition). Namely, since f↓i is an

approximate eigenvector, we can write:

Φ(S) = 1− 1

α

k∑
i=0

〈f,Mf↓i〉

≥ 1− 1

α

k∑
i=0

λi(M)〈f, f↓i〉 − c1γ

18Note that we have simplified BHKL’s result here somewhat for simplicity of presentation, but it is an accurate representation of
their result in most cases of interest.
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where c1 ≤ w(M)h(M)22O(k). We can now apply Theorem 7.8 to switch between decompositions to get:

Φ(S) ≥ 1− 1

α

k∑
i=0

λi(M)〈f, f↑i〉 − c2γ

where c2 = c1 + 2O(k). Since M is a complete walk, its eigenvalues decay monotonically [BHKL20], we
can therefore simplify the above to:

Φ(S) ≥ 1− 1

α

r∑
i=0

λi(M)〈f, f↑i〉 −
λr+1(M)

α

k∑
i=r+1

〈f, f↑i〉 − c2γ

= 1− 1

α

r∑
i=0

λi(M)〈f, f↑i〉 −
λr+1(M)

α

(
α−

r∑
i=0

〈f, f↑i〉

)
− c2γ.

Recall that by definition λr+1(M) ≤ δ, and hence

Φ(S) ≥ 1− δ − 1− δ
α

r∑
i=0

〈f, f↑i〉 − c2γ

≥ 1− δ − (1− δ)2O(r)ε1/3 − c2γ

where in the last step we have applied Theorem 9.4.

It is left to prove Theorem 9.4, which also follows from fairly standard arguments given Theorem 8.1.

Proof of Theorem 9.4. To simplify notations, we write fi instead of f↑i. Notice that by Hölder’s inequality
for p = 4/3, q = 1/4 we have:

〈f, fi〉 ≤ ‖f‖4/3‖fi‖1/4 = α3/4E[f4
i ]1/4

Combining this with Theorem 8.1 gives the following relation:

〈f, fi〉4

α3
≤ E[f4

i ] ≤ 2O(i)εE[f2
i ] + c1γ

1/2α ≤ 2O(i)ε〈f, fi〉+ c2γ
1/2α (11)

where c1, c2 ≤ 2O(k) by approximate orthogonality (Lemma 7.6). We can simplify the above via two
observations. First, note that we can assume without loss of generality that γ1/4 ≤ c−1

1 ε. This follows from
observing that:

〈f, fi〉 =

(
k

i

) i∑
j=0

(−1)i−j
(
i

j

)
〈Dk

j f,D
k
j f〉.

Appealing to arguments from [BHKL20, Lemma 8.8], we have that 〈Dk
j f,D

k
j f〉 ≤ εα, which gives the naive

bound:

〈f, fi〉 ≤
(
k

i

)
2O(i)εα.

If ε ≤
(
k
i

)−3/2
then

(
k
i

)
ε ≤ ε1/3 and our desired bound follows. Otherwise, we may assume from now

on that ε ≥
(
k
i

)−3/2 ≥ 2−(3/2)k. Since γ ≤ 2−Ω(k), we are therefore free to assume γ1/4 ≤ c−1
1 ε as well.
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Second, we can also assume 〈f, fi〉 ≥ γ1/4α, since otherwise we are done by our previous assumptions on γ
and ε. Combining these with Equation (11) then gives:

〈f, fi〉4

α3
≤ 2O(i)ε〈f, fi〉+ c1γ

1/2α

≤ 2O(i)ε〈f, fi〉+ εγ1/4α

≤ 2O(i)ε〈f, fi〉

as desired.

10 Fourier Analysis on HDX

In this section we further develop the theory of Fourier analysis on simplicial complexes, and show how
hypercontractivity for pseudorandom functions (Theorem 8.1) recovers tight analogs of the KKL Theorem
and noise-sensitivity of sparse functions. This requires introducing a number of new analog definitions of
classic Fourier analytic quantities on simplicial complexes. To get an idea for what these should look like, it
will be useful to start by considering a natural embedding of the hypercube itself into a simplicial complex.

Definition 10.1 (Hypercube Complex). The hypercube complex X = X{0,1}n is the complete n-partite
complex on X(1) = [n]× {0, 1}, where the first coordinate denotes the color of the vertex. That is, the top
level faces are X(n) = {{(1, x1), . . . , (n, xn)} : x ∈ {0, 1}n}.

We make a few notes on this definition. First, it is clear from definition that X(n) can equivalently be
thought of as the hypercube {0, 1}n, where each color in [n] corresponds to a coordinate in {0, 1}n. Further,
classic graphs on {0, 1}n such as the hypercube or noisy hypercube can be expressed as simple higher order
random walks. The hypercube graph, for instance, is simply the non-lazy lower walk UD+ = 2Un−1Dn − I .
This embedding will serve as our guiding principle for developing analog Fourier-analytic definitions on
simplicial complexes—whenever possible, our definitions will reduce to the standard notion when applied to
the hypercube complex. We note that the same embedding can be used for any product distribution and all
of our definitions will generalize appropriately. We focus on the simple case of the hypercube for ease of
exposition.

10.1 Total Influence and the KKL Theorem

We’ll start with a fundamental concept in classical Fourier analysis, influence. Let’s first recall the definition
of (total) influence on the discrete hypercube. Influence can be formalized in a number of equivalent ways. It
is often thought of, for instance, as a measure of average sensitivity. In our context, it will be most convenient
to view influence as a statement about the expansion of a function with respect to the hypercube graph. More
formally, let Qn denote the normalized adjacency matrix of the hypercube graph, and Qlazy

n = I+Qn
2 its lazy

variant. We will write total influence in terms of the (un-normalized) Laplacian operator L = n(I −Qlazy
n ).

Definition 10.2 (Total Influence (hypercube)). Let f : {0, 1}n → {0, 1} be a Boolean function. The total
influence of f , denoted I[f ], is:

I[f ] = 〈f, Lf〉.

Expressed in this sense, there is a natural generalization to simplicial complexes. It is not hard to see that
on the hypercube complex, Qlazy

n is exactly the lower walk UD. As a result, we’ll define influence using the
Laplacian of the lower walk.
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Definition 10.3 (Total Influence). Let (X,Π) be a pure, weighed simplicial complex and f ∈ Ck. The
influence of f , denoted I[f ] is:

I(X,Π)[f ] = 〈f, LUDf〉

where LUD = k(I − Uk−1Dk). When clear from context, we will simply write I[f ].

When (X,Π) is sufficiently expanding, Definition 10.3 acts much like standard influence on the cube.
For instance, recalling standard bounds on the spectral expansion of LUD [KO20], it is not hard to see the
total influence of any function on a γ-local-spectral expander lies between (1 +Ok(γ))Var(f) ≤ I(X,Π)[f ] ≤
kVar(f), which returns the standard bounds as γ goes to 0. Similarly, it is obvious that the total influence of
any function on the hypercube complex is equivalent to its total influence on the hypercube, as the lower walk
Un−1Dn is exactly Qlazy

n .

Observation 10.4. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its equivalent on the
hypercube complex, that is:

f(x1, . . . , xn) = fX((1, x1), . . . , (n, xn))

Then:
IX{0,1}n [f ] = I[f ].

One of the most well-studied problems in the analysis of boolean functions is understanding the structure
of functions with low influence. The seminal result in this area is called the “KKL Theorem” [KKL88].
Informally, the KKL Theorem states that if a function has low total influence, there must exist an influential
coordinate (in the sense that on average over {0, 1}n, the coordinate has a large affect on the value of
f ). Morally, this can also be thought of as strong notion of the following statement: “functions with low
influence are not pseudorandom.” While the KKL Theorem itself does not extend beyond the hypercube,
this latter interpretation does. In particular, Bourgain [FB99] proved a similar statement over any product
space: functions with low influence must have some influential set of coordinates, and are therefore not
pseudorandom. We prove a variant of Bourgain’s result for local-spectral expanders.

Theorem 10.5 (Bourgain’s Theorem for HDX). Let (X,Π) be a two-sided γ-local-spectral expander with
γ ≤ 2−Ω(k) and f ∈ Ck a boolean function. Then for any 0 ≤ K ≤ k, if I[f ] ≤ KVar(f), there exists an
(i ≤ K)-link τ with large density:

E
Xτ

[f ] ≥ 2−O(K).

Proof. This follows without too much difficulty from the expansion of pseudorandom sets (Theorem 9.3). In
particular, notice that our assumption on the influence implies the following bound on the expansion of f
with respect to the lower walk Uk−1Dk:

Φ(f) =
〈f, LUDf〉
kE[f ]

=
I[f ](1− E[f ])

kVar(f)
≤ K

k
.

Recall that Theorem 9.3 states that for any δ > 0 and r = Rδ(UD) − 1, the expansion of an (ε, r)-
pseudorandom boolean function g with respect to the lower walk is at least:

Φ(g) ≥ 1− δ − (1− δ)2O(r)ε1/3 − cγ.

Using this fact, we’ll show that f cannot be (ε,K)-pseudorandom for ε ≤ 2−Ω(K), which gives the result.
To this end, assume f is (ε,K)-pseudorandom for some ε = 2−Ω(K) to be determined soon (else we are

done), and let δ be 1− K(1+ε1/6)
k such that 1−δ < (K+1)/k. Since the eigenvalues of UD are concentrated
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around 1, 1− 1/k, 1− 2/k, · · · , 1−K/k for small enough γ [BHKL20], the ST-Rank Rδ(UD) = K + 1,
and r = K. Theorem 9.3 then implies:

Φ(f) ≥ K

k
· (1 + ε1/6)(1− 2O(r)ε1/3),

where we have again used our assumption on the size of γ. Re-arranging the above using the upper bound on
expansion then gives a lower bound on ε of:

ε1/3 ≥ ε1/6

1 + ε1/6
· 1

2O(r)
≥ 1

2O(r)
,

which implies the result.

Before moving on, we’ll prove that this result is tight.

Proposition 10.6. Let c ≥ 1 be any constant. Then for all integers K, k > 1 satisfying k ≥ Ωc(K) and any
n sufficiently larger than k, there exists a Boolean function f ∈ Ck on the k-dimensional complete complex
on n vertices satisfying:

1. The influence of f is small:
I[f ] ≤ KVar(f)

2. For every i ≤ cK, all i-links are sparse:

∀i ≤ cK, τ ∈ X(i) : E
Xτ

[f ] ≤ 2−Ω(K).

Proof. Our construction is based on a careful analysis of the anti-tribes function (a.k.a the AND of ORs
function) similar to [KLLM19, Example 5.8]. Concretely, let T1, . . . Tm (called “tribes”) be m = 2cK
disjoint sets of c1

n
k vertices for some c1 ≥ log(Ω(c)). We define our candidate function f ∈ Ck to be 1 on a

k-face S exactly when S contains some vertex from each Ti:

f(S) =

{
1 if ∀1 ≤ i ≤ m: |S ∩ Ti| > 0

0 else.

For simplicity, it will actually be more convenient to analyze f as a function over [n]k rather thanX(k) =
(
n
[k]

)
.

Since the probability of repeated vertices in the former is on,k(1), this has no effect on our final result when
n is sufficiently larger than k.

Let’s start by proving the density of every cK-link is at most 2−Ω(k).19 Note that this implies the same
for every i-link for i ≤ cK. It is not hard to see that the largest density link comes from fixing an element in
each of cK tribes. For simplicity, fix such a cK-link T with a vertex in each Ti for cK + 1 ≤ i ≤ m (all
such links are symmetric, so it suffices to analyze this case). For a uniformly drawn element S ∈ [n]k, let Ei
denote the event that S contains a vertex in Ti. We’d like to bound:

E
XT

[f ] = Pr
S∼[n]k

[
cK⋂
i=1

Ei

∣∣∣∣∣ S ⊃ T
]

= Pr
S∼[n]k−cK

[
cK⋂
i=1

Ei

]
,

19Formally we note this should really be shown for bcKc-links, but this makes no significant difference in the analysis so we
ignore it for simplicity.
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where we have used the fact that S \ T is independent of T since we are working over [n]k. Since the Ei are
negatively correlated, we can bound this probability by:

Pr
S∼[n]k−cK

[
cK⋂
i=1

Ei

]
≤

cK∏
i=1

Pr
S∼[n]k−cK

[Ei]

≤ (1− (1− c1/k)k)cK

≤
(

1− 1

O(c)

)cK
≤ 2−Ω(K)

where we’ve used the fact that e−x ≥ 1− x ≥ e−x/(1−x) for x < 1 and our assumptions on the size of k.
We now move on to analyzing the influence of f , which will follow from similar computations. To start,

notice that it is instead sufficient to bound the expansion of f with respect to the lower walk by:

Φ(f) ≤ K

k

Var(f)

E[f ]
=
K(1− E[f ])

k
,

as then:

I[f ] = 〈f, LUDf〉 = kΦ(f)E[f ] ≤ KVar(f),

where we recall LUD is the un-normalized Laplacian of UD.
To this end, recall that the expansion of f can also be defined as the average probability of leaving

supp(f) after applying the walk, that is:

Φ(f) = E
S∼supp(f)

[φ(S)],

where φ(S) denotes the probability of leaving S in a single step of the lower walk. To compute this value,
recall that in the down step of the walk, a uniformly random vertex is removed from S. In order to leave
the support of f in the up step, the removed element must have been selected from a tribe Ti such that
|S ∩ Ti| = 1. The idea is then to show that for most samples, only a small fraction of tribes have exactly
one element. With this in mind, let Bi be the event |S ∩ Ti| = 1 over the randomness of S ∼ supp(f).
Formalizing the above argument, we can bound φ(S) by the sum over Bi:

φ(S) ≤
m∑
i=1

Bi(S)

k
,

and therefore the expansion Φ(f) by:

Φ(f) ≤ 1

k
E

S∼supp(f)
[Bi(S)].

By a similar argument to our density calculations, the probability that any fixed tribe Ti has exactly one
element from S ∼ supp(f) is at most:

E[Bi] =
(

1− c1

k

)k−m
≤ e−c1

k−m
k

≤ 1

Ω(c)
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since we have by assumption that k is much larger than m. Plugging this into our expression for expansion
then gives:

Φ(f) ≤ m

k
· 1

Ω(c)
≤ c2

K

k

for some c2 < 1. Noting that E[f ] = 2−Ω(K) then implies the result for the appropriate setting of constants.

10.2 Stability and the Noise Operator

Another fundamental notion in boolean Fourier analysis is the noise operator Tρ. It is convenient to express
the definition in terms of the following process on an element x ∈ {0, 1}n:

1. Remove each bit with probability 1− ρ.

2. Replace each removed bit uniformly20 at random.

We write the distribution over y given by this process as Nρ(x). The noise operator Tρ is simply the averaging
operator over ρ-correlated strings.

Definition 10.7 (Noise Operator (Hypercube)). Let f : {0, 1} → R be any function. The noise operator Tρ
averages f over Nρ:

Tρf(x) = E
y∼Nρ(x)

[f(y)].

Extending the noise operator to simplicial complexes is a bit tricky naively since there is no notion of
coordinates. To do this, consider the following reformulation of the distribution Nρ(x), instead of removing
each coordinate independently with probability 1− ρ, we remove a uniformly random set of i coordinates
with probability

(
n
i

)
ρn−i(1− ρ)i, and replace them uniformly at random. This equivalent process does have

a natural analog on simplicial complexes: simply replace “uniformly random set of i coordinates” with
“uniformly random i-face.” We can formalize this through the averaging operators.

Definition 10.8 (Noise Operator (Simplicial Complex)). Let (X,Π) be a pure, weighted simplicial complex.
The noise operator T kρ (X,Π) at level k of the complex is:

T kρ (X,Π) =

k∑
i=0

(
k

i

)
(1− ρ)iρk−iUkk−iD

k
k−i.

We write Tρ when the level and complex are clear from context.

Let’s take a moment to check that, as with influence, when applied to the hypercube complex this
definition recovers Tρ.

Observation 10.9. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its equivalent on the
hypercube complex, then:

Tnρ (X{0,1}n)fX = Tρf.

Proof. Tnρ (X{0,1}n) is also an averaging operator, so it is enough to confirm it averages over the ρ-noisy
distribution Nρ. We claim this is clear from definition. In particular, notice that Unn−iD

n
n−i on X{0,1}n is

exactly the process of removing i-coordinates uniformly at random, and replacing them with uniformly
random bits. As we mentioned above, this is an equivalent way to define Nρ(x), is applying this process with
probability

(
n
i

)
(1− ρ)iρn−i, which exactly matches the definition of Tρ(X{0,1}n).

20In more general settings like the p-biased cube, this is replaced with respect to the underlying distribution.
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The noise operator has a wide variety of applications across boolean Fourier analysis. One classical
application is to analyze the noise-sensitivity of a boolean function, that is the likelihood that the function
flips on a noisy input. It is convenient to define the opposite concept first, stability.

Definition 10.10 (Stability (Hypercube)). Let f : {0, 1} → R be any function. The stability of f with respect
to ρ, denoted Stabρ(f), is:

Stabρ(f) = 〈f, Tρf〉.

Since we already defined Tρ on simplicial complexes, stability has an obvious analog.

Definition 10.11 (Stability (Simplicial Complex)). Let (X,Π) be a weighted, pure simplicial complex and
f ∈ Ck. The noise stability of f with respect to ρ, denoted Stabρ(f), is:

Stab(X,Π)
ρ (f) = 〈f, T kρ (X,Π)f〉.

We drop (X,Π) from the notation when clear from context.

Similarly, it is clear that our definition of stability for complexes returns the original definition when
applied to the hypercube complex.

Observation 10.12. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its equivalent on the
hypercube complex, then:

Stabρ(f) = Stab
X{0,1}n
ρ (fX)

A function is called noise-sensitive if is has poor stability. One classical result in boolean Fourier analysis
is that sparse functions on the hypercube are noise-sensitive, which is equivalent to saying that the noisy
hypercube graph is a small-set expander. Since the noise operator is just a specific instance of a (complete)
higher order random walk, Theorem 9.3 implies an analogous statement for functions on HDX: pseudorandom
functions are noise-sensitive.

Corollary 10.13 (Pseudorandom functions are noise sensitive). Let (X,Π) be a two-sided γ-local-spectral
expander, f ∈ Ck an (r, δ)-pseudorandom boolean function for r = log(2/ε)/ log(1/ρ) + 2 and δ ≤
2−Ω(r)ε3. Then f is noise sensitive:

Stabρ(f) ≤ (ε+ cγ)E[f ]

for c ≤ 2O(k).

Proof. One can directly compute from [BHKL20, Corollary 7.6] that the approximate eigenvalues of Tρ are
exactly λi = ρi. As a result, for small enough γ, the (ε/2)-ST-Rank of Tρ is at most:

Rε/2(Tρ) ≤ log(ε/2)/ log(1/ρ) + 2.

Since Tρ is a higher order random walk, Theorem 9.3 states that the non-expansion of any (δ, r)-pseudorandom
function f of density α is at most:

1

α
〈f, Tρf〉 ≤ α+ (1− α)ε/2 + 2O(r)δ + cγ

≤ α+ (1− α)ε/2 + ε/4 + cγ

≤ ε+ cγ,

where we’ve used the fact that α ≤ δ ≤ ε/4.
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The noise operator is actually also commonly used to define hypercontractivity. In this form, the standard
hypercontractive inequality generally states:

‖Tρf‖4 ≤ ‖f‖2

for some ρ = Θ(1). It is well known that on the hypercube this statement is in fact equivalent to Bonami’s
lemma. We can show a similar equivalence between our variant of Bonami’s lemma (Theorem 8.1) and a
noise operator based form of hypercontractivity for pseudorandom functions. To state the strongest form of
the result, it will be useful to extend the classic notion of degree to simplicial complexes.

Definition 10.14 (Function Degree). Let (X,Π) be a pure, weighted simplicial complex, and f ∈ Ck any
function. The degree of f , denoted deg(f), is the largest i such that f↑i is non-zero.

We now show how to translate Theorem 8.1 into noise operator form for degree i, (ε, i)-pseudorandom
functions.

Proposition 10.15. Let (X,Π) be a two-sided γ-local-spectral expander satisfying γ ≤ 2−Ω(k) and f ∈ Ck
a degree i,21 (ε, i)-pseudorandom function. Then for some constant ρ = Θ(1), we have:

‖Tρf‖44 ≤ ε ‖f‖
2
2 ‖f‖

2
∞ .

Proof. The overall proof follows a fairly standard reduction from hypercontractivity to Bonami’s lemma (see
e.g. [O’D14, Exercise 9.6]), but requires some extra work due to the fact that the Bottom-Up decomposition
is only approximately an eigenbasis for Tρ (in an `2-sense). Namely, by [BHKL20, Proposition 7.5] and
Lemma 7.5, we can write:

Tρf↑j = ρkf↑j + errj

where ‖errj‖2 ≤ k
O(j)γ ‖f‖2, and ‖errj‖∞ ≤ k

O(j)ε ‖f‖∞. The last of these facts is slightly less standard,
and follows from noting that errj is really a linear combination of at most kO(j) averaging operators applied
to gj (see [BHKL20, Proposition 7.5]), and that ‖gj‖∞ ≤ 2O(j)ε ‖f‖∞. With this in mind, we can expand
out ‖Tρf‖ by the Bottom-Up Decomposition and apply Theorem 8.1 to get:

‖Tρf‖4 ≤
i∑

j=0

‖Tρf↑j‖4

≤
i∑

j=0

ρi ‖f↑j‖4 + ‖errj‖4

≤ 1

2
ε1/4 ‖f‖1/22 ‖f‖1/2∞ +

i∑
j=0

‖errj‖4

≤ 1

2
ε1/4 ‖f‖1/22 ‖f‖1/2∞ +

i∑
j=0

‖errj‖1/22 ‖errj‖1/2∞

≤ ε1/4 ‖f‖1/22 ‖f‖1/2∞

where we have assumed that ρ is a sufficiently small constant. Taking the fourth power of both sides completes
the proof.

21When i� k, we can replace the condition on γ with γ ≤ k−Ω(i)
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