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Abstract

A language L is random-self-reducible if deciding membership in L can be reduced (in polynomial time)
to deciding membership in L for uniformly random instances. It is known that several “number theoretic”
languages (such as computing the permanent of a matrix) admit random self-reductions. Feigenbaum
and Fortnow showed that NP-complete languages are not non-adaptively random-self-reducible unless
the polynomial-time hierarchy collapses, giving suggestive evidence that NP may not admit random self-
reductions. Hirahara and Santhanam introduced a weakening of random self-reductions that they called
pseudorandom self-reductions, in which a language L is reduced to a distribution that is computationally
indistinguishable from the uniform distribution. They then showed that the Minimum Circuit Size
Problem (MCSP) admits a non-adaptive pseudorandom self-reduction, and suggested that this gave
further evidence that MCSP is “distinguished” from standard NP-Complete problems.

We show that, in fact, the NP-Complete Clique problem admits a non-adaptive pseudorandom self-
reduction, assuming the planted clique conjecture. More generally we show the following. Call a property
of graphs π hereditary if G ∈ π implies H ∈ π for every induced subgraph of G. We show that for any
infinite hereditary property π, the problem of finding a maximum induced subgraph H ∈ π of a given
graph G admits a non-adaptive pseudorandom self-reduction.

1 Introduction

A language L is randomly-self-reducible if L admits a “worst-case” to “average-case” reduction on the uniform
distribution — that is, if we can reduce solving the problem on any worst-case instance to solving the problem
on uniformly-random instances in polynomial time. For example, it was famously shown by Lipton [Lip89]
that the problem of computing the permanent of a matrix admits a random-self-reduction. Many other
central examples of random-self-reducibility come from cryptography — such as the discrete logarithm and
the quadratic non-residuosity problems [AFK89] — where it is typically exploited to strengthen several
cryptographic assumptions from average-case hardness to worst-case hardness without loss of generality.

A central open question in complexity theory is whether or not any NP-Complete set admits a random self-
reduction [BL99, FFLS92, HNOS96]. This is closely related to the problem of whether or not the hardness of
distributional languages in NP can be based on typical NP-Completeness assumptions (and, in particular, if
“natural” NP-Complete problems are still hard over natural input distributions) [AGGM06]. Feigenbaum and
Fortnow [FF90] famously showed that if an NP-Complete language is non-adaptively random-self-reducible
(meaning that the queries to the random distribution must not be allowed to adaptively depend on earlier
queries), then the polynomial hierarchy collapses to the third level. Feigenbaum and Fortnow’s result was
improved by Bogdanov and Trevisan [BT06] to show that if an NP-Complete set is non-adaptively self
reducible to any polynomial-time sampleable distribution, then the polynomial hierarchy similarly collapses
to the third level. Bogdanov and Trevisan’s result shows that if we can base the distributional hardness of an
NP-language on standard worst-case NP-Completeness, then the reduction witnessing this theorem must be
adaptive. Along these lines, it is important to mention recent work by Hirahara, which showed that showing
that average-case hardness of NP can at least be based on exponential hardness of NP [Hir21].
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In a recent paper, Hirahara and Santhanam [HS17] introduced a generalization of random self-reducibility
that they called pseudorandom self-reducibility ; now, the algorithm that performs the reduction is allowed
to reduce to a distribution that is computationally indistinguishable from the uniform distribution. Under
standard cryptographic assumptions they showed that the Minimum Circuit Size Problem (MCSP) admits
a pseudorandom self-reduction (and, furthermore, their reduction is easily seen to be non-adaptive). There
is much other evidence indicating that any reduction that would prove MCSP is NP-Complete must be
surprisingly different from “standard” reductions [AH19, MW17, HW16, AD17], and so, comparing this
with the prior results about random self-reducibility for NP, Hirahara and Santhanam suggested that their
pseudorandom self-reduction for MCSP further distinguished it from other NP-Complete problems.

1.1 Our Results

In this work we show that, somewhat surprisingly, the classic NP-Complete Clique problem does admit a
non-adaptive pseudorandom self-reduction under a non-uniform variant of planted clique conjecture. Let
G(n, p) denote the usual Erdős-Rényi random graph, and let G(n, p, k) denote the distribution obtained by
first sampling G ∼ G(n, p) and then choosing a random set of k vertices and planting a clique on those
vertices.

Conjecture 1.1 (Non-Uniform Planted Clique Conjecture). There is some 0 < ε0 < 1/2 such that, letting
k = nε0 , for every sequence of polynomial-size circuits {Cn}∣∣∣∣ Pr

G∼G(n,1/2)
[Cn(G) = 1]− Pr

H∼G(n,1/2,k)
[Cn(H) = 1]

∣∣∣∣ ≤ 1

n
.

Our main result is the following (as the formal definition of a pseudorandom self-reduction is somewhat
technical we refer the reader to Section 2):

Theorem 1.1. The Clique problem admits a non-adaptive pseudorandom self-reduction, assuming the
Non-Uniform Planted Clique Conjecture.

In fact, using our techniques, we can prove something a bit stronger. A graph property π is a set of
graphs closed under isomorphism. A graph property π is hereditary if G ∈ π implies H ∈ π for each induced
subgraph H of G, and it is non-trivial if both π and its complement are infinite. Consider the following
decision problem:

Definition 1.1. Let π be an infinite, hereditary graph property. The π-induced subgraph problem, denoted
π-SUB, is defined as follows. As input, we receive an undirected graph G, as well as a positive integer k.
The goal is to decide if G contains an induced subgraph H such that H ∈ π and H has at least k vertices.

First, it is easy to see that the π-SUB is more general than the Clique problem, since the Clique problem
is simply the case where π is the set of all complete graphs. The π-induced subgraph problem has been
considered in several previous works [LY80, FK05, BT95, LY93], where it was shown that it is NP-Complete
and hard to approximate within a factor n1−ε for every infinite hereditary π. We show the following:

Theorem 1.2. For every non-trivial, hereditary π, the π-SUB problem admits a pseudorandom self-
reduction, assuming the Non-uniform Planted Clique Conjecture.

To the best of our knowledge, this is the first worst-case to average-case reduction for any NP-Complete
problem to a distribution that is “near” uniform, in any reasonable sense. However, as we will see next in
our technical overview, our reduction relies crucially on some very special properties of the Clique problem
(properties that are shared by the π-SUB problem), and because of this it appears to be difficult to extend
it to other NP-Complete problems.

1.2 Technical Overview

We now sketch our reduction, specialized to the Clique problem. Our reduction relies crucially on the
following special properties of the Clique problem that seem to distinguish it among NP-Complete problems:
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• Very Hard to Approximate. Approximating the size of the largest clique in a graph is NP-Hard even
within a multiplicative n1−ε factor for all ε > 0.

• Small Value on Random Instances. When G ∼ G(n, 1/2), then the size of the largest clique in G is
2 log n (up to lower-order terms) with high probability (see e.g. [Mat76]).

It seems that nearly all standard NP-Complete problems break one of these two requirements. For
instance, the Colouring problem is hard to approximate, but, random graphs require a large number of
colours to properly colour. On the other hand, random instances of the MAX-k-SAT problem have been
very well-studied and it is easy to find random instances (below the “SAT threshold”) which are easy to
satisfy; but, it is well known that the MAX-k-SAT problem is easy to approximate by simply choosing a
random assignment.

On to discussing our reduction for Clique. By standard hardness-of-approximation results, we can assume
that the Gap-Clique promise problem — where we must distinguish between graphs containing cliques of
size n1−εk or graphs in which every clique has size at most k — is hard. Our reduction then proceeds as
follows: we choose a random subset U ⊆ V of vertices of G (say, of size nε0 for some appropriate constant
ε0) and randomize all edges with at most one endpoint inside of U . If G originally contained a large clique
(of size� n1−εk), then a large portion of that clique will intersect U with high probability, and by using the
fact that random graphs have very small cliques, it follows that solving the clique problem on the resulting
graph will yield a good approximation to the size of the clique on the original graph G. Note here we have
crucially used both properties (1) and (2) listed above.

The novel part of the reduction is proving that it is pseudorandom modulo the Planted Clique Conjecture.
To do this we use the following “Xor-trick” (a form of this trick also played a role in the pseudorandom
self-reduction for MCSP by Hirahara and Santhanam [HS17]). Suppose that the reduction was not pseu-
dorandom, so that we obtain a sequence of graphs {Gn} and a family of boolean circuits Cn such that Cn
can distinguish between the above “planted” distribution (obtained by taking Gn and randomizing all edges
outside a random subset of vertices) and uniformly random graphs G ∼ G(n, 1/2). Using this family of
circuits Cn we will construct a new family of circuits C ′n that can detect the existence of planted cliques in
random graphs, violating the Planted Clique Conjecture. The new family C ′n is defined as follows: given a
graph H as input, C ′n takes the Xor of the edge-set of the complement graph H with the edge-set of Gn.
If H was a uniformly random graph, then the result will be a uniformly random graph. If, however, H had
a planted clique, then H will have a planted independent set. Thus, taking the Xor of H with Gn will
result in a random graph with uniformly random edges except for a random subset of Gn. We can therefore
apply the family of circuits Cn that differentiates between the “planted” distribution and uniformly random
graphs and differentiate between planted cliques and random graphs.

Now that we have discussed our reduction, note that a worst-case to average-case reduction for any
problem implies that an efficient algorithm solving the average-case problem also implies an efficient algorithm
that solves the worst-case problem. Of course, approximating the value of the largest clique on a G(n, 1/2)
graph is actually easy : as we have discussed above, the size of the largest clique is (2− o(1)) log n with high
probability, and a simple greedy algorithm will find a clique of size roughly log n with high probability [Kar76].
However, in our case, if the Planted Clique conjecture is true then this good approximation algorithm does not
imply a good approximation algorithm for the Max-Clique problem as, intuitively, the pseudorandomness
“fools” the polynomial-time algorithm into thinking that there is a clique of size ≈ 2 log n, when in fact
the graph actually contains a much larger clique. On the other hand, if the Planted Clique conjecture is
false, then a polynomial-time algorithm could perhaps distinguish the output graphs of the reduction from
G(n, 1/2), but, in order to solve Clique it must find a very large clique inside the randomly planted portion,
which still could be a very hard problem.

1.3 Related Work

The planted clique problem is a well-studied problem in both complexity theory and algorithms that was
introduced independently by Jerrum [Jer92] and Kučera [Kuc95]; although, the hardness of finding cliques
in random graphs was initially observed by Karp, who observed that there is no known polynomial-time
algorithm finding cliques of size ≈ 2 log n in random graphs [Kar76], even though they exist with probability
1−o(1). It is well-known that the planted clique problem can be solved by a quasipolynomial-time algorithm
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that simply enumerates all potential cliques of size O(log n). As for polynomial-time algorithms, a classic
result due to Alon, Krivelevich and Sudakov [AKS98] finds planted cliques of size Ω(n1/2) using semidefinite
programming. The planted clique problem has also been used in prior works as a hardness assumption in
complexity theory and cryptography (see, e.g. [JP00, HK11]), and it is known to be hard to solve in both
the Lovász-Shrijver and Sum-of-Squares convex programming hierarchies [FK03, BHK+19].

There has been much work regarding the study of average-case self-reducibility of NP problems. Thanks
to the negative results by Feigenbaum and Fortnow [FF90] and Bogdanov and Trevisan [BT06], the power of
non-adaptive random reductions inside of NP is now fairly well understood: it is known that any such problem
must lie in NP/poly∩ coNP/poly [BT06]. There have also been some positive results. Feigenbaum, Fortnow,
Lund and Spielman showed that under plausible assumptions, there is a function in NP\P which is adaptively
random-self-reducible but not nonadaptively random-self-reducible [FFLS92]. Hemaspaandra, Naik, Ogihara
and Selman showed that if NP 6⊆ BPE then there is a set in NP \ BPP which is adaptively random-self-
reducible, but neither nonadaptively random-self reducible nor self-reducible [HNOS96]. Hirahara recently
gave a worst-case to average-case reduction from the Minimum Time-Bounded Kolmogorov Complexity
problem (MinKT) (which is widely believed to lie outside of NP) to a distributional problem inside of NP
[Hir18]. Another recent result of Hirahara shows that average-case hardness of problems in NP can be based
on sufficiently strong exponential hardness of the closely related class UP [Hir21]. We refer to Bogdanov and
Trevisan [BT06] for an excellent (if somewhat dated) survey of the average-case complexity of NP, and to
Hirahara [Hir21] for a modern discussion of frontier open questions.

Worst case to average case reductions for problems in P were studied in [GR20]. They showed a subclass
of problems in P which admit a random self reductions, such as counting the number of fixed-size cliques in
a graph.

2 Preliminaries

If D is a probability distribution, we denote by x ∼ D an element sampled according to D. A promise problem
is a pair Π = (ΠYES,ΠNO), where ΠYES,ΠNO ⊆ {0, 1}∗ and ΠYES ∩ ΠNO = ∅. A language L ⊆ {0, 1}∗ is
consistent with the promise problem Π = (ΠYES,ΠNO) if ΠYES ⊆ L and ΠNO ⊆ L̄.

In this paper, graphs are simple and undirected. Denote by G(n) the set of all graphs over n vertices. We
assume that a graph G with n vertices is encoded using a binary string of length

(
n
2

)
. We denote by ω(G)

the largest clique in G.
We borrow some definitions from [HS17].

Definition 2.1. (Indistinguishability). Let C be a (uniform or non-uniform) complexity class, and {Dn}n∈N,
{D′n}n∈N two sequences of distributions such that for all n, Dn and D′n are supported on {0, 1}n. We say
that {Dn} and {D′n} are indistinguishable by C, if for all A ∈ C and for all sufficiently large n,

| Pr
x∼Dn

[A(x) = 1]− Pr
x∼D′

n

[A(x) = 1]| ≤ 1

n
.

Definition 2.2. (Pseudorandom Self-Reducibility, [HS17]). Let C be a complexity class. LetQ = (ΠYES,ΠNO)
be a promise problem, where ΠYES, ΠNO ⊆ {0, 1}∗, and let L ⊆ {0, 1}∗ be a language. Q is said to be pseu-
dorandomly reducible to L with respect to C if there are constants q, ` and polynomial time computable
functions g : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1}∗ satisfying the following conditions:

1. For every sequence {(xn, in)}n∈N where xn ∈ {0, 1}n and 1 ≤ in ≤ nq for all n ∈ N, the distributions
{g(in, xn, Un`)}n∈N and {Un}n∈N are indistinguishable by C.

2. For large enough n and for every x ∈ (ΠYES ∪ΠNO) ∩ {0, 1}n:

Q(x) = h(x, r, L(g(1, x, r)), L(g(2, x, r)), . . . , L(g(nq, x, r))),

with probability at least 1− 2−n when r ∼ Un` .

The reduction is non-adaptive if the later queries to random instances cannot depend on earlier queries to
random instances.
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Probabilistic bounds. The Chernoff-type bound we use in this paper is stated below.

Theorem 2.1. (Chernoff’s inequality, [Che52]). Let X = X1 + . . .+Xn where Xi are independent random
variables taking values in {0, 1}. Then

Pr[|X − E[X]| ≥ 1

2
E[X]] ≤ 2e−E[X]/16.

In addition, we will need the following result by Hoeffding (Theorem 4 in [Hoe94]).

Lemma 2.1. Let S = (s1, . . . , sN ) be a finite population of N real points, X1, . . . , Xn denote a uniformly
random sample without replacement from S and Y1, . . . Yn denote a uniformly random sample with replace-
ment from S. If f : R→ R is continuous and convex, then

E[f
( n∑
i=1

Xi

)
] ≤ E[f

( n∑
i=1

Yi

)
].

Lemma 2.1 implies that we can use Chernoff’s inequality for the random variables {Xi}, even though
they are dependent1.

3 Non-uniform Planted Clique

In this section we state our hardness assumption, which essentially says that polynomial size circuits cannot
distinguish between a random graph, and a random graph with a planted clique of size nε0 , for some
ε0 ∈ (0, 12 ).

For a graph G and a parameter 0 < ε < 1, we define the distribution P (G, ε) by picking a random subset
of vertices of G of size nε, keep the induced subgraph generated by this set, and randomize all edges not
contained inside of G. Formally,

Definition 3.1. (Planted Subgraph Distribution). Let G = (V,E) be a graph with n vertices, and let
ε ∈ (0, 1). The distribution P (G, ε) is defined to be the output distribution of the following algorithm. Start
with the graph G = (V,E). Then, pick uniformly at random a subset S ⊂ V of vertices of size dnεe. Output
a graph G′ = (V ′, E′) where V ′ = V and

Pr[{u, v} ∈ E′] =


1
2 if u /∈ S or v /∈ S,
1 if {u, v} ∈ E and u, v ∈ S,
0 if {u, v} /∈ E and u, v ∈ S.

Let {Kn}n∈N be the sequence of complete graphs over n vertices, and let G(n, 12 ) be the uniform dis-
tribution over graphs with n vertices. Note that the distribution P (Kn, ε) is exactly the same distribution
as G(n, 1/2, nε) (that is, choosing a random graph and planting a random clique the same as starting with
a complete graph and randomizing all edges outside of random small set). The Planted Clique Conjecture
states that there is a constant ε0 ∈ (0, 12 ) such that there is no polynomial time algorithm that can distinguish
between G(n, 12 ) and P (Kn, ε0) with high probability2. In this paper we use a slightly stronger version of
the Planted Clique Conjecture that requires hardness for polynomial-size circuits.

Conjecture 3.1. There exists some ε0 ∈ (0, 12 ) such that there is no sequence of polynomial size circuits
{Cn}n∈N satisfying

| Pr
G∼G(n, 12 )

[Cn(G) = 1]− Pr
G′∼P (Kn,ε0)

[Cn(G′) = 1]| ≤ 1

n
.

1Taking the function f(x) = etx, we get that E[ΠetXi ] ≤ E[ΠetYi ], where the random variables {Yi} are independent. Thus
the Chernoff bound can be derived for the random variables {Xi} as well.

2Some papers states this conjecture for all ε ∈ (0, 1
2

), but for our purposes it is enough to assume the weaker version of the
conjecture.
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We observe that the non-uniform planted clique conjecture is equivalent to the following conjecture where
we replace the sequence of graphs {Kn} with any fixed sequence of graphs {Gn}.

Conjecture 3.2. There exists some ε0 ∈ (0, 12 ) such that for any sequence of graphs over n vertices {Gn}n∈N,
there is no sequence of polynomial size circuits {Cn}n∈N satisfying

| Pr
G∼G(n, 12 )

[Cn(G) = 1]− Pr
G′∼P (Gn,ε0)

[Cn(G′) = 1]| ≤ 1

n
.

Claim 3.1. Conjectures 3.1 and 3.2 are equivalent.

Proof. Clearly, Conjecture 3.2 implies Conjecture 3.1. We show the converse direction.
Assume by way of contradiction that Conjecture 3.2 is false, and we show that Conjecture 3.1 is false. In

particular, assume that there is a sequence {Gn}n∈N of graphs and a sequence {Cn}n∈N of polynomial size
circuits, such that

| Pr
G∼G(n, 12 )

[Cn(G) = 1]− Pr
G′∼P (Gn,ε0)

[Cn(G′) = 1]| > 1

n
.

Define the boolean circuit C ′n(G) = Cn(G⊕Gn ⊕Kn), where ⊕ is the symmetric difference of edge sets
of graphs. If G ∼ P (Kn, ε0) then G⊕Kn ⊕Gn is distributed according to P (Gn, ε0), and if G ∼ G(n, 1/2)
then G ⊕ Kn ⊕ Gn is also distributed according to G(n, 1/2). This implies that the sequence of circuits
{C ′n}n∈N can distinguish between a random graph and a random graph with a planted clique of size nε0 ,
contradicting Conjecture 3.1.

4 Self-Reductions for Clique

Before proving the general theorem, we demonstrate our method on the language CLIQUE: we show that
CLIQUE is pseudorandomly self-reducible. Thanks to the hardness of approximation results for CLIQUE
[Zuc06, Has96], it is enough to consider the promise problem GAP-CLIQUEβ , defined below.

Definition 4.1. For β ∈ (0, 1), define the promise problem GAP-CLIQUEβ = (ΠYES,ΠNO) by

ΠYES = {G : G is a graph with n vertices and ω(G) ≥ n1−β},

and

ΠNO = {G : G is a graph with n vertices and ω(G) < nβ}.

Theorem 4.1 ([Zuc06]). For any β > 0 the GAP-CLIQUEβ problem is NP-Hard under polynomial-time
many-one reductions.

We proceed to stating the main theorem of this section, which shows that GAP-CLIQUEβ is pseudoran-
domly self-reducible. By combining this with the above NP-Hardness result and the fact that GAP-CLIQUEβ
is itself a subproblem of Clique we immediately obtain pseudorandom self-reducibility of Clique.

Theorem 4.2. If the Planted Clique Conjecture holds, then for every β ∈ (0, ε0), where ε0 is the constant
from Conjecture 3.2, GAP-CLIQUEβ is pseudorandomly self-reducible with respect to SIZE(poly).

Before we prove the theorem, we will need the following lemma showing that if we take a graph with a
large clique and choose a random subset of vertices U and randomize every edge with at most one endpoint
in U , then the size of the largest clique will not be badly perturbed with high probability.

Lemma 4.1. Let G = (V,E) be a graph over n vertices and β ∈ (0, ε0). Set δ := ε0 − β. Let P (G, ε0) be
the planted distribution for G defined in Definition 3.1. Then, for large enough n:

1. If ω(G) ≥ n1−β , then

Pr
G′∼P (G,ε0)

[ω(G′) ≥ 1

2
nδ] ≥ 1− 2e−

nδ

16 = 1− o(1).
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2. If ω(G) < nβ , then

Pr
G′∼P (G,ε0)

[ω(G′) <
1

2
nδ] ≥ 1− 2−

1
36n

2δ

= 1− o(1).

Proof. We start by proving the first statement. Let G′ be the graph obtained from G by P (G, ε0), let S,
|S| = nε0 be the set of vertices in G′ preserved by P (G, ε0), and let T , |T | ≥ n1−β be the set of the maximal
clique vertices in G. We have,

Pr[ω(G′) ≥ 1

2
nδ] ≥ Pr[|T ∩ S| ≥ 1

2
nδ].

For a vertex v ∈ T , define an indicator random variable Xv, such that Xv = 1 if and only if v ∈ S. Note
that Pr[Xv = 1] = nε0−1. We have,

E[|T ∩ S|] =
∑
v∈T

EXv ≥
n1−β

n1−ε0
= nδ.

By Lemma 2.1 we can use the Chernoff bound for the random variables Xv, even though they are dependent.
Thus, for n large enough,

Pr[||T ∩ S| < 1

2
nδ] ≤ Pr[||T ∩ S| − E|T ∩ S|| ≥ 1

2
E|T ∩ S|]

≤ 2e−E|T∩S|/16 ≤ 2e−
nδ

16 .

We move to the second part of the Lemma. Intuitively, with high probability, the largest clique in G′

is of size at most ω(G) + 2 log n: on the set S of preserved vertices the largest clique is of size at most
ω(G), and with high probability the largest clique outside S is roughly of size 2 log n. Thus, the probability
that ω(G′) ≥ 1

2n
δ is tiny. We formalize this intuition. Denote by G′ \ S the induced subgraph obtained by

removing the vertices in S from G′. For large enough n,

Pr[ω(G′) ≥ 1

2
nδ] ≤ Pr[ω(G′ \ S) ≥ 1

2
nδ − nβ ] ≤ Pr[ω(G′ \ S) >

1

3
nδ]

≤
(
n

1
3n

δ

)
1

2(
1
3
nδ

2 )
.

Using
(
n
m

)
≤ nm we get: (

n
1
3n

δ

)
1

2(
1
3
nδ

2 )
≤ n 1

3n
δ

2−(
1
3
nδ

2 ) ≤ 2−
1
36n

2δ

.

Proof of Theorem 4.2. We show that there is a pseudorandom reduction from GAP-CLIQUEβ to
CLIQUE. We need to define the functions h and g, as required by Definition 2.2.

The function g. On input (i, G, r), where 1 ≤ i ≤ n4, G is an encoding of a graph with n vertices, and r
is a random binary string composed of n4 blocks of size

(
n
2

)
each, g uses the i’th block of the random bits in

r in order to sample a graph G′ ∼ P (G, ε0), for ε0 as in Lemma 4.1. Then, g outputs G′.

The function h. The function h simply computes the majority of the queries gi and answers accordingly.

We show that the functions h and g satisfy the requirements of Definition 2.2. We need to prove that the
queries are pseudorandom, and that the reduction works with high probability. The fact that the queries
are pseudorandom follows immediately from Conjecture 3.2. Considering any G output by the function g
the graph G′ is distributed according to P (G, ε0). By Conjecture 3.2 (which is equivalent to the Planted
Clique Conjecture) the graph G′ is indistinguishable from a uniformly random graph, and thus the queries
are pseudorandom.

The reduction succeeds with high probability by Lemma 4.1 and a standard Chernoff bound argument.
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5 Self-Reductions for Hereditary Properties

Instead of searching for the largest clique in a graph, we can search for the largest induced subgraph satisfying
some property (e.g. largest planner subgraph, largest connected subgraph, etc.). Formally, a graph property
π is a set of graphs, closed under isomorphism. A property π is non-trivial if both π and its complement
are infinite. For a property π and a graph G, denote by απ(G) the size of the largest set of nodes inducing
a graph in π. The promise problem for π is defined in the natural way,

Definition 5.1. For β ∈ (0, ε0), where ε0 is the constant from Conjecture 3.23, define the promise problem
GAP-πβ = (ΠYES,ΠNO) by

ΠYES = {G : G is a graph with n vertices and απ(G) ≥ n1−β},

and

ΠNO = {G : G is a graph with n vertices and απ(G) < nβ}.

For which graph properties can the pseudorandom self reduction from the previous section work? A
more careful look at the previous result shows that in order for the reduction to work, it is sufficient for the
property π to satisfy:

1. Stability. A graph property π is stable if whenever a graph G has a “large” subgraph in the property
π, then P (G, ε0) also has a “large” subgraph in the property, where P (G, ε0) is the distribution defined
in Definition 3.1. Formally,

απ(G) ≥ n1−β =⇒ Pr
G′∼P (G,ε0)

[απ(G′) ≥ 1

2
nδ] ≥ 2

3
,

where ε0 is the constant from Conjecture 3.2, β ∈ (0, ε0) and δ = ε0 − β. Intuitively, it means that a
“YES” instance is mapped to a “YES” instance.

2. Non-density4. For a graph property π, denote by grπ(n) := |π ∩ G(n)| the number of graphs over n
vertices in the property. A graph property π is non-dense if there exists a constant ε > 0 such that for
large enough n

grπ(n) ≤ 2(1−ε)(
n
2).

Intuitively, we need this requirement in order to make sure that in the process of randomizing “most”
of the input graph, with high probability we did not create a large subgraph in the property. It means
that a “NO” instance is mapped to a “NO” instance.

3. Hard to Approximate. The conditions above give a pseudorandom self reduction for the promise
problem GAP-π. In case we want to obtain a pseudorandom self reduction for the language π-SUB
mentioned in the introduction, we need to use hardness of approximation results.

We now characterize a family of graph properties satisfying the three above requirements.

Definition 5.2. A graph property π is hereditary if whenever a graph G is in π, then every induced subgraph
of G is also in π.

Theorem 5.1. Let π be a non-trivial hereditary graph property. Then π is stable, non-dense and hard to
approximate.

First, we sketch the proof that π is stable, as it is essentially the same as in the case of Clique.

Proof. Let π be a non-trivial hereditary graph property. Let G be a graph so that απ(G) ≥ n1−β , and let
H be the largest subgraph of G in the property π. As shown in the proof of Lemma 4.1, with probability at

least 1−2e−
nδ

16 , G′ ∼ P (G, ε0) contains a subgraph of H with 1
2n

δ vertices. Since π is a hereditary property,
this subgraph is also in π, and so απ(G′) ≥ 1

2n
δ with probability at least 1− o(1).

3We choose to address only the case where β ∈ (0, ε0), since our reduction only works in this range.
4We call this “non-density” rather than “sparsity” since the level of density we can afford is really quite high!
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The hardness of approximation for non-trivial hereditary properties was proven by Lurid and Yannakakis
[LY93], and was later improved by Feige and Kogan [FK05]. The result in [FK05] can be derandomized in
the same manner as in [Zuc06] in order to obtain the following theorem.

Theorem 5.2. For every nontrivial hereditary property π and for every β > 0, the π-SUB problem cannot
be approximated within a factor of n1−β , unless P = NP.

Additionally, Bollobás and Thomason showed in [BT95, Theorem 8] that for a hereditary property π, if

grπ(n) = 2cn(n2) then cn is monotonically decreasing, therefore the following result follows:

Theorem 5.3. Let π be a non-trivial hereditary property, then there exists some ε1 > 0 such that for n
large enough

grπ(n) < 2(1−ε1)(
n
2)

Thus, every non-trivial hereditary property is non-dense.

To see why this requirement guarantees that a “NO” instance is mapped to a “NO” instance with high
probability, observe the following claim.

Claim 5.1. Let π be a non-trivial graph property. Then for every δ > 0,

Pr
G∼G(n, 12 )

[απ(G) ≥ nδ] = o(1).

Proof. Let ε1 > 0 satisfying grπ(n) ≤ 2(1−ε1)(
n
2), then:

Pr
G∼G(n, 12 )

[απ(G) ≥ nδ] ≤
(
n

nδ

)
grπ(nδ)

2(n
δ

2 )
≤ nn

δ

2−ε1(
nδ

2 ) = o(1).

Therefore Lemma 4.1 still holds for any non-trivial hereditary property, and so for every non-trivial
hereditary property the language π-SUB admits a pseudorandom self-reduction.
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