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Abstract

Comparator circuits are a natural circuit model for studying bounded fan-out computation
whose power sits between nondeterministic branching programs and general circuits. Despite
having been studied for nearly three decades, the first superlinear lower bound against com-
parator circuits was proved only recently by Gál and Robere (ITCS 2020), who established a
Ω
(

(n/ log n)1.5
)

lower bound on the size of comparator circuits computing an explicit function
of n bits.

In this paper, we initiate the study of average-case complexity and circuit analysis algo-
rithms for comparator circuits. Departing from previous approaches, we exploit the technique
of shrinkage under random restrictions to obtain a variety of new results for this model. Among
our results, we show

• Average-case Lower Bounds. For every k = k(n) with k > log n, there exists a
polynomial-time computable function fk on n bits such that, for every comparator circuit
C with at most n1.5/O

(

k ·
√
log n

)

gates, we have

Pr
x∈{0,1}n

[C(x) = fk(x)] 6
1

2
+

1

2Ω(k)
.

This average-case lower bound matches the worst-case lower bound of Gál and Robere by
letting k = O(log n).

• #SAT Algorithms. There is an algorithm that counts the number of satisfying as-
signments of a given comparator circuit with at most n1.5/O

(

k ·
√
log n

)

gates, in time

2n−k · poly(n), for any k 6 n/4. The running time is non-trivial (i.e., 2n/nω(1)) when
k = ω(log n).

• Pseudorandom Generators and MCSP Lower Bounds. There is a pseudorandom
generator of seed length s2/3+o(1) that fools comparator circuits with s gates. Also, using
this PRG, we obtain an n1.5−o(1) lower bound for MCSP against comparator circuits.
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1 Introduction

A comparator circuit is a Boolean circuit whose gates are comparator gates, each of which maps
a pair of inputs (x, y) to (x ∧ y, x ∨ y), and whose inputs are labelled by a literal (i.e., a variable
xi or its negation ¬xi). A convenient way of representing a comparator circuit is seen in Figure 1.
We draw a set of horizontal lines, each of which is called a wire and is labelled by an input literal.
The gates are represented as a sequence of vertical arrows, each of which connects some wire to
another. The tip of the arrow is the logical disjunction gate (∨), and the rear of the arrow is the
logical conjunction gate (∧). One of the wires is selected to represent the Boolean value of the
computation. The size of the circuit is the number of gates in the circuit. A more formal definition
is given in Section 2.1.

Comparator circuits can be viewed as a restricted type of circuit in which the gates have fan-out
exactly two. It is easy to see that comparator circuits can efficiently simulate Boolean formulas
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x • x ∧ ¬y •

¬x N ¬x ∨ y • ¬(x⊕ y)

y • ¬x ∧ y H x⊕ y

¬y H x ∨ ¬y H

Figure 1: A comparator circuit with 2 inputs, 4 wires and 4 gates. The third wire computes the
parity of the two bits.

over {∧,∨,¬} with no overhead1. Moreover, it is also known that polynomial-size comparator
circuits can even simulate nondeterministic branching programs [MS92] with a polynomial overhead
only. On the other hand, comparator circuits appear to be much stronger than formulas2, as it
is conjectured that polynomial-size comparator circuits are incomparable to NC [MS92]. Evidence
for this conjecture is that polynomial-size comparator circuits can compute problems whose known
algorithms are inherently sequential, such as stable marriage and lexicographically first maximal
matching [MS92], and there is an oracle separation between NC and polynomial-size comparator
circuits [CFL14]. Moreover, Robere, Pitassi, Rossman and Cook [RPRC16] showed that there
exists a Boolean function in mNC2 not computed by polynomial-sizemonotone comparator circuits3.
For these reasons, comparator circuits are likely to be incomparable to NC, and polynomial-size
span programs, which are contained in NC2, are not expected to be stronger than polynomial-size
comparator circuits.

Despite the importance of comparator circuits, we don’t know much about them. Though it is
easy to see that Parity can be computed by comparator circuits with O(n) wires and gates (See Fig-
ure 1), the best known comparator circuit forMajority uses O(n) wires and O(n logn) gates [AKS83].
We don’t know if there is a linear-size comparator circuit for Majority4, whereas, for the weaker
model of nondeterministic branching programs, superlinear lower bounds are known [Raz90]. Struc-
tural questions about comparator circuits have also received some attention in recent years [GKRS19,
KSS18].

The first superlinear worst-case lower bound for comparator circuits was recently obtained by
Gál and Robere [GR20], by an adaptation of Nečiporuk’s argument [Nec66]. Their proof yields a
lower bound of Ω

(

(n/ log n)1.5
)

to comparator circuits computing a function of n bits. Formonotone
comparator circuits, exponential lower bounds are known [RPRC16].

In this paper, we exploit structural properties of small-size comparator circuits in order to
prove the first average-case lower bounds and design the first circuit analysis algorithms for small
comparator circuits. Developing circuit analysis algorithms is a crucial step for understanding a
given circuit class [Oli13, Wil14a], and are often obtained only after lower bounds have been proven
for the class5. Many well-studied circuit classes have been investigated from this perspective,

1As a comparison, note that there are linear-size comparator circuits for Parity (see Figure 1), whereas any Boolean
formula computing Parity has size Ω(n2) [Hra71].

2Recall that the class of polynomial-size formulas is exactly NC1.
3Comparator circuits are monotone if they don’t have negated literals.
4As opposed to a sorting network, note that a comparator circuit can use multiple copies of the same input literal.
5One exception is ACC circuits, for which satisfiability algorithms are known [Wil14b], and the only exponential

lower bound known for ACC is a consequence of this algorithm. However, the function used in the lower bound is not
in NP.
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such as AC0 circuits [IMP12], De Morgan formulas [Tal15], branching programs [IMZ19], ACC

circuits [Wil14b], and many others (see also [CKK+15, ST17, KKL+20]). Our paper commences
an investigation of this kind for comparator circuits.

1.1 Results

Average-case lower bounds. Our work starts with the first average-case lower bound against
comparator circuits.

Theorem 1 (Average-case Lower Bound). There exist constants c, d > 1 such that the following
holds. For any k > c · logn, there is a polynomial-time computable function fk such that, for every
comparator circuit C with at most

n1.5

d · k ·
√
log n

gates, we have

Pr
x∈{0,1}n

[fk(x) = C(x)] 6
1

2
+

1

2Ω(k)
.

An important feature of the lower bound in Theorem 1 is that it matches the Ω
(

(n/ log n)1.5
)

worst-case lower bound of [GR20], in the sense that we can recover their result (up to a multiplicative
constant) by setting k = O(logn).

Using ideas from the proof of the above average-case lower bound, we also show average-case
lower bounds against various models that tightly match their state-of-the-art worst-case lower
bounds, such as general formulas, (deterministic-, nondeterministic-, parity-)branching programs
and span programs (see Section 4). Note that strong average-case lower bounds against n2−o(1)-size
general formulas and deterministic branching programs were previously known [KR13, CKK+15]
but they did not match the worst-case lower bounds, whereas tight average-case lower bounds for
De Morgan formulas were proved by [KRT17].

#SAT algorithms. The design of algorithms for interesting circuit analysis problems is a growing
line of research in circuit complexity [Wil14a]. These are problems that take circuits as inputs. A
famous example of such a circuit analysis problem is the satisfiability problem (SAT), which asks to
determine whether a given circuit has a satisfying assignment. Note that the satisfiability problem
for polynomial-size general circuits is NP-complete, so it is not believed to have a polynomial-time
(or subexponential-time) algorithm. However, one can still ask whether we can obtain non-trivial
SAT algorithms running faster than exhaustive search, say in time 2n/nω(1) where n is the number
of variables of the input circuit, even for restricted circuit classes. While designing non-trivial SAT
algorithms is an interesting problem by itself, it turns out that this task is also tightly connected
to proving lower bounds. In particular, recent works of Williams [Wil13, Wil14b] have shown that
such a non-trivial satisfiability algorithm for a given class of circuits can often be used to prove
non-trivial circuit lower bounds against that same circuit class.

Here, we show an algorithm with non-trivial running time that counts the number of satisfying
assignments of a given comparator circuit.

Theorem 2 (#SAT Algorithms). There is a constant d > 1 and a deterministic algorithm such
that, for every k 6 n/4, given a comparator circuit on n variables with at most

n1.5

d · k ·
√
log n
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gates, the algorithm outputs the number of satisfying assignments of C in time

2n−k · poly(n).

Note that the running time in Theorem 2 is non-trivial for size up to o(n/ logn)1.5, in which
case k = ω(log n) and the running time becomes 2n/nω(1).

Pseudorandom generators and MCSP lower bounds. Another important circuit analysis
problem is derandomization, which, roughly speaking, asks to decide whether a given circuit accepts
or rejects a large fraction of its inputs. A standard approach to solve this problem is to construct a
pseudorandom generator (PRG). A PRG against a class C of circuits is an efficient and deterministic
procedure G mapping short binary strings (seeds) to longer binary strings, with the property that
G’s output (over uniformly random seeds) “looks random” to every circuit in C. More precisely,
we say that a generator G : {0, 1}r → {0, 1}n ε-fools a class C of circuits if, for every C : {0, 1}n →
{0, 1} from C, we have

∣

∣

∣

∣

Pr
z∈{0,1}r

[C(G(z)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣

∣

∣

∣

6 ε,

In constructing PRGs, we aim to minimize the parameter r, which is called the seed length.
We show a PRG against comparator circuits of size s with seed length s2/3+o(1).

Theorem 3 (Pseudorandom Generators). For every n ∈ N, s = nΩ(1), and ε > 1/ poly(n), there
is a pseudorandom generator G : {0, 1}r → {0, 1}n, with seed length

r = s2/3+o(1),

that ε-fools comparator circuits on n variables with s gates.

Note that the seed length of the PRG in Theorem 3 is non-trivial (i.e., o(n)) for comparator
circuits of size n1.5−o(1).

The PRG above has an application in obtaining lower bounds for the minimum circuit size
problem (MCSP) against comparator circuits. The MCSP problem asks if a given truth table6

represents a function that can be computed by some small-size circuit. Understanding the exact
complexity of MCSP is a fundamental problem in complexity theory. Motivated by a recent line of
research called hardness magnification [OS18, OPS19, CJW19, CHO+20], which states that a weak
circuit lower bound for certain variants of MCSP implies breakthrough results in circuit complexity,
researchers have been interested in showing lower bounds for MCSP against restricted classes of
circuits. For many restricted circuit classes such as constant-depth circuits, formulas and branching
programs, the lower bounds that have been proved forMCSP essentially match the best known lower
bounds that we have for any explicit functions [GII+19, CKLM20, KKL+20]. Here we obtain MCSP

lower bounds against comparator circuits that nearly match the worst-case lower bounds.

Theorem 4 (MCSP Lower Bounds). Let MCSP[nα] denote the problem of deciding whether a given
n-bit truth table represents a function that can be computed by some general circuit of size at most
nα. For any ε > 0 and any 0 < α 6 1−ε, the MCSP[nα] problem does not have comparator circuits
with n1+α/2−ε gates.

6A truth table is a bit-string that stores the output values of a Boolean function for all possible inputs.
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Previously, non-trivial comparator circuit lower bounds were known only for functions satisfying
Nečiporuk’s criterion [Nec66, GR20], such as Element Distinctness and Indirect Storage Access.
Theorem 4 provides yet another natural computational problem which is hard for bounded-size
comparator circuits. We remark that the MCSP problem is expected to require much larger circuits
than the lower bound of Theorem 4 provides; however, the lack of combinatorial, algebraic or
analytic structure in the MCSP function means that proving lower bounds for it is usually hard.

Finally, we also observe that the framework developed in [ST17] can be used to obtain a non-
trivial (distribution-independent) PAC learning algorithm for comparator circuits of size n1.5−o(1),
that uses membership queries (see Section 7).

1.2 Techniques

Random restrictions have been very fruitful in the study of weaker circuit classes, such as AC0

circuits [H̊as86, IMP12], De Morgan formulas [KR13] and branching programs [IMZ19], both for
the proof of lower bounds and the construction of algorithms [CKK+15]. However, as observed
by Gál and Robere [GR20], there are technical challenges when trying to apply this approach to
comparator circuits. In this work, we successfully apply the method of random restrictions to
comparator circuits for the first time.

Average-case lower bounds. At a high level, the proof of our average-case lower bound is based
on the approach developed in [KR13, CKK+15], which can be used to obtain average-case-lower
bounds against circuits that admit a property called “shrinkage with high probability under random
restrictions”. Roughly speaking, this property says that, if we randomly fix the values of some
variables in the circuit except for a 0 < p < 1 fraction of them, then its size shrinks by a factor of
pΓ for some Γ > 0, with very high probability. This method has been used to obtain strong average-
case lower bounds against n2.5−o(1)-size De Morgan formulas [KR13, CKK+15] (later improved to
n3−o(1) by [KRT17]) and n2−o(1)-size general formulas and deterministic branching programs.

An obvious issue of applying this approach to comparator circuits is that we don’t know how
to shrink the size (i.e., number of gates) of a comparator circuit using random restrictions, as
when we fix the value of a (non-trivial7) wire, we may only be able to remove one gate in the
worst scenario (i.e., the gate that is directly connected to that wire). The idea is that instead of
shrinking the number of gates, we will try to shrink the number of wires. The reason why this can
be useful is that one can effectively bound the number of gates of a comparator circuit by its number
of wires; this is a structural result of comparator circuits proved by Gál and Robere [GR20] and
was the key ingredient in proving their worst-case lower bound. More precisely, they showed that
any comparator circuit that has at most ℓ wires needs no more than ℓ2 gates (see Lemma 8). Now
following [KR13, CKK+15], one can show that under some certain type of random restriction that
leaves a p := k/n fraction of the variables unfixed, for any large enough k, the number of wires of
a comparator circuit will shrink (with very high probability) by roughly a factor of p, and hence
its number of gates is bounded by (p · ℓ)2. By letting ℓ = o

(

n1.5/
(

k ·
√
logn

))

, this size is less
than o(n/ log n) and from there one can show that the original circuit cannot compute some hard

function on more than 1/2 + 1/2k
Ω(1)

fraction of the inputs.
While the above gives an average-case lower bound, it does not match the worst-case one,

because we need to set k > logc n for some (unspecified) constant c > 1, which is controlled by the
type of random restrictions and the extractor used in the construction of the hard function in both

7We say that a wire is non-trivial if it is connected to some gate.
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[KR13, CKK+15]. This means we can only achieve a lower bound that is at best n1.5/(log n)c+.5

(even for worst-case hardness). In order to be able to set k = O(logn), one way is to use a more
sophisticated (so called non-explicit bit-fixing) extractor shown in [KRT17], which will allow us to
set k ∈

[

O(log n) ,Ω
(

n1/3
)]

(with hardness 1/2+1/2Ω(k)). Here we refine and simplify this approach
in the case of comparator circuits by using a more structural (block-wise) random restriction that
shrinks the number of wires with probability one. Such a random restriction, when combined with
a simple extractor, allows us to set k ∈ [O(log n) ,Ω(n)].

#SAT algorithms. Based on the above analysis in showing average-case lower bounds, one can
try to design a SAT algorithm for comparator circuits in a way that is similar to that of [CKK+15],
which combines “shrinkage under restrictions” with a memorization technique. Suppose we have
a comparator circuit C with s := o

(

n1.5/(k ·
√
logn)

)

gates and and ℓ 6 s non-trivial wires. By
partitioning the variables into n/k equal-size blocks, we can show that there is some block Si such
that after fixing the variables outside of this block, the number of wires in the restricted circuit is

at most ℓ0 := ℓ/(n/k) 6 o
(

√

n/ logn
)

. Again by the structural property of comparator circuits

(Lemma 8), this restricted circuit, which is on k variables, has an equivalent circuit with o(n/ logn)
gates. Then to count the number of satisfying assignments for the original circuit, we can first
memorize the numbers of satisfying assignments for all circuits with at most with o(n/ log n) gates.
There are 2o(n) of them and hence we can compute in time 2k · 2o(n) a table that stores those
numbers. We then enumerate all possible 2n−k restrictions ρ ∈ {0, 1}[n]\Si and for each ρ we look
up the number of satisfying assignments of the restricted circuit C↾ρ from the pre-computed table.
Summing these numbers over all the ρ’s gives the number of satisfying assignments of C.

However, there is a subtle issue in the above argument: although we know that a restricted
circuit has an equivalent simple circuit with o(n/ logn) gates, we do not know which simple circuit
it is equal to. Note that when we fix the value of a (non-trivial) wire, we may only be able to
remove one gate, so the number of gates left in the restricted circuit is possibly s− (ℓ− ℓ0), which
can be much larger than n/ log n, and it is not clear how we can further simplify such a circuit
efficiently. To overcome this issue, we explore structural properties of comparator circuits to show
how to construct a more sophisticated data structure that not only can tell us the number of
satisfying assignments of a circuit with o(n/ logn) gates but also allows us to efficiently simplify
each restricted circuit to an equivalent circuit with at most this many gates.

Pseudorandom generators and MCSP lower bounds. Our PRG against comparator circuits
builds upon the paradigm of [IMZ19], which was used to construct PRGs against circuits that admit
“shrinkage under pseudorandom restrictions”. As in the proof of our average-case-lower bound, in
order to apply this paradigm, we will shrink the number of wires instead of the number of gates.
Following [IMZ19], we prove a pseudorandom shrinkage lemma for comparator circuits, which can
then be used to obtain a PRG of seed length s2/3+o(1), where s is the size of a comparator circuit.

As observed in [CKLM20], one can modify the construction of the PRG in [IMZ19] to make it
“locally explicit”. This means that, for every seed, the output of the PRG, when viewed as a truth
table of a function, has circuit complexity that is about the same as the seed length. Such a “local”
PRG immediately implies that MCSP cannot be computed by comparator circuits of size n1.5−o(1),
when the size parameter of MCSP is nearly-maximum (i.e., n/O(logn)) 8. Furthermore, we show a
better trade-off between the size parameters of MCSP and the lower bound size of the comparator

8Note that MCSP takes two input parameters: a truth table and a size parameter θ, and asks whether the given
truth table has circuit complexity at most θ.
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circuits, as in Theorem 4. This is similar to what was done by [CJW20] in the case of MCSP lower
bounds against De Morgan formulas.

1.3 Directions and open problems

We now state some further directions and open problems for which our work may be a starting
point, or that are connected to our results.

Algorithms and lower bounds for larger comparator circuits. Our lower bounds and circuit
analysis algorithms only work for comparator circuits of size up to n1.5−o(1). Can we improve this?
Specifically, can we show a lower bound of n1.51 for comparator circuits computing a function of
n bits, and design algorithms for comparator circuits of the same size? In this paper, we used the
random restriction method to analyse comparator circuits by shrinking the number of wires and
using a structural result of [GR20] that relates the number of gates to the number of wires. Can
we analyse the effect of random restrictions on the gates directly, and show a shrinkage lemma for
comparator circuits on the number of gates, with a shrinkage exponent Γ > 1/2? Such a lemma
would imply a lower bound that is better than n1.5, and would allow us to design algorithms for
comparator circuits larger than n1.5.

Hardness magnification near the state-of-the-art. Recent work on hardness magnifica-
tion [OS18, OPS19, CJW19, CHO+20] has shown that marginally improving the state-of-art worst-
case lower bounds in a variety of circuit models would imply major breakthroughs in complexity
theory. Although we don’t prove this here, it is possible to show hardness magnification results for
comparator circuits of size n2+o(1) by a simple adaptation of their arguments. Unfortunately, this
does not match the best lower bounds we have for comparator circuits, which are around n1.5−o(1) as
we have seen. Can we show a hardness magnification phenomenom nearly matching the state-of-art
lower bounds for comparator circuits?

Extensions and restrictions of comparator circuits. Recent work of Komarath, Sarma and
Sunil [KSS18] has provided characterisations of various complexity classes, such as L,P and NP, by
means of extensions or restrictions of comparator circuits. Can our results and techniques applied
to comparator circuits be extended to those variations of comparator circuits? Can this extension
shed any light into the classes characterised by [KSS18]?

2 Preliminaries

2.1 Definitions and notations

For n ∈ N, we denote {1, . . . , n} by [n]. For a string x, we denote by K(x) the Kolmogorov
complexity of x, which is defined as the minimum length of a Turing machine that prints x as
output.

Restrictions. A restriction for an n-variate Boolean function f , denoted by ρ ∈ {0, 1, ∗}n,
specifies a way of fixing the values of some subset of variables for f . That is, if ρ(i) is ∗, we
leave the i-th variable unrestricted and otherwise fix its value to be ρ(i) ∈ {0, 1}. We denote by

f ↾ρ: {0, 1}ρ
−1(∗) → {0, 1} the restricted function after the variables are restricted according to ρ,

where ρ−1(∗) is the set of unrestricted variables.
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Comparator circuits. We define comparator circuits as a set of wires labelled by an input
literal (a variable xi or its negation ¬xi), a sequence of gates, which are ordered pairs of wires, and
a designated output wire. In other words, each gate is a pair of wires (wi, wj), denoting that the
wire wi receives the logical conjunction (∧) of the wires, and wj receives the logical disjunction
(∨). On a given input a, a comparator circuit computes as follows: each wire labelled with a literal
xi is initialised with ai, and we update the value of the wires by following the sequence of gates;
the output wire contains the result of the computation. A wire is called non-trivial if there is a
gate connected to this wire. Note that, if a comparator circuit has ℓ non-trivial wires and s gates,
then ℓ 6 s. This means that lower bounds on the number of wires also imply lower bounds on the
number of gates.

2.2 Structural properties of comparator circuits

For a gate g in a comparator circuit and an input x ∈ {0, 1}n, we denote by ug(x) (resp. vg(x))
the first (resp. second) in-value to the gate g when given x as input to the circuit.

Definition 5 (Useless Gates). We say that a gate g in a comparator circuit is useless if either one
of the following is true:

1. for every input x, (ug(x), vg(x)) ∈ {(0, 1), (0, 0), (1, 1)}.

2. for every input x, (ug(x), vg(x)) ∈ {(1, 0), (0, 0), (1, 1)}.

We say that a useless gate is of TYPE-1 (resp. TYPE-2) if it is the first (resp. second) case. Also,
a gate is called useful if it is not useless.

The following proposition allows us to remove useless gates from a comparator circuit.

Proposition 6 ([GR20, Proof of Proposition 3.2]). Let C be a comparator circuit whose gates are
g1, g2, . . . , gs (where gs is the output gate) and let gi = (α, β) be any useless gate in C.

• Suppose gi is of TYPE-1. Then the circuit C ′ obtained from C by removing the gate gi
computes the same function as that of C.

• Suppose gi is of TYPE-2. Let C ′ be the circuit whose gates are g1, g2, . . . , gi−1, g
′
i+1 . . . , g

′
s,

where for j = i+1, . . . , s, g′j is obtained from gj by replacing α with β (if gj contains α) and
at the same time replacing β with α (if gj contains β). Then C ′ computes the same function
as that of C.

Proof. On the one hand, if g is a TYPE-1 useless gate, then for every input to the circuit, the
out-values of g are the same as its in-values, so removing g does not affect the function computed
by the original circuit. On the other hand, if g is of TYPE-2, then the in-values feeding to g will
get swapped after g is applied. This has the same effect as removing g and “re-wiring” the gates
after g so that a gate connecting one of the wires of g gets switched to connect the other wire of g,
as described in the second item of the proposition.

We need the following powerful structural result for comparator circuits from [GR20].

Theorem 7 ([GR20, Theorem 1.2]). If C be is a comparator circuit with ℓ wires and s gates such
that every gate in C is useful, then s 6 ℓ · (ℓ− 1)/2.

9



Proposition 6 and Theorem 7 together give the following lemma.

Lemma 8. Every comparator circuit with ℓ > 0 wires has an equivalent comparator circuit with ℓ
wires and with at most ℓ · (ℓ− 1)/2 gates.

3 Average-case Lower Bounds

In this section, we prove our average-case lower bound against comparator circuits. We first
describe the hard function.

3.1 The hard function

List-decodable codes. Recall that a (ζ, L)-list-decodable binary code is a function Enc: {0, 1}n →
{0, 1}m that maps n-bit messages to m-bit codewords so that, for each y ∈ {0, 1}m, there are at
most L codewords in the range of Enc that have relative hamming distance at most ζ from y. We
will use the following list-decodable code.

Theorem 9 (See e.g., [CKK+15, Proof of Theorem 6.4]). There is a constant c > 0 such that for
any given k = k(n) > c · log n, there exists a binary code Enc mapping n-bit message to a codeword
of length 2k, such that Enc is (ζ, L)-list-decodable for ζ = 1/2 − O

(

n/2k/2
)

and L 6 O
(

2k/2/n
)

.
Furthermore, there is a polynomial-time algorithm for computing the i-th bit of Enc(x), for any
inputs x ∈ {0, 1}n and i ∈

[

2k
]

.

Definition 10 (Generalized Andreev’s Function). Let k be a positive integer. Define Ak : {0, 1}n+n →
{0, 1} as follow:

Ak(x1, . . . , xn, y1, . . . , yn) := Enc(x1, . . . , xn)α(y1,...,yn),

where Enc is the code from Theorem 9 that maps n bits to 2k bits, and α : {0, 1}n → {0, 1}k is
defined as

α(y1, . . . , yn) :=





n/k
⊕

i=1

yi,

2n/k
⊕

i=n/k+1

yi, . . . ,

n
⊕

i=(k−1)n/k+1

yi



 .

That is, the function α partitions y evenly into k consecutive blocks and outputs the parities of the
variables in each block.

Note that the function Ak defined above is polynomial-time computable since we can compute
α(y) and Enc(x)i for any given i in poly(n) time.

3.2 Proof of the average-case lower bound

We will show a lower bound on the number of wires, which automatically implies a lower bound
on the number of gates.

Theorem 11. There exist constants c, d > 1 such that the following holds. For any k > c · log n,
there is a polynomial-time computable function fk such that, for every comparator circuit C whose
number of wires is

n1.5

d · k ·
√
logn

,

10



we have

Pr
x∈{0,1}n

[fk(x) = C(x)] 6
1

2
+

1

2Ω(k)
.

Proof. Let Ak be the generalized Andreev’s function on 2n variables. Let C be a comparator circuit
on 2n variables with ℓ 6 n1.5/

(

d · k ·
√
log n

)

wires, where d > 1 is a sufficiently large constant. To
avoid some technicalities due to divisibility that can be overcome easily, we assume that n is divisible
by k.

We need to upper bound the following probability.

Pr
x,y∈{0,1}n×{0,1}n

[Ak(x, y) = C(x, y)] 6 Pr
x,y

[Ak(x, y) = C(x, y) | K(x) > n/2] +Pr
x
[K(x) < n/2]

6 Pr
x,y

[Ak(x, y) = C(x, y) | K(x) > n/2] +
1

2n/2
.

Let x be any fixed n-bit string with Kolmogorov complexity at least n/2. Let A′ : {0, 1}n → {0, 1}
be

A′(y) := Ak(x, y),

and let C ′ be a comparator circuit on n variables with at most ℓ wires defined as

C ′(y) := C(x, y).

We will show that

Pr
y∈{0,1}n

[

A′(y) = C ′(y)
]

6
1

2
+

n

2k/4
.

First of all, let us divide the n variables of C ′ into n/k parts, each of which contains k vari-
ables, as follows. We first partition the n variables evenly into k consecutive blocks, denoted as
B1, B2, . . . , Bk. Then we define the i-th part Si, where i ∈ [n/k], to be the union of the i-th
variables in each of B1, B2, . . . , Bk. That is

Si :=
⋃

j∈[k]
{y : y is the i-th variables of Bj} .

Now we count the number of wires that are labelled by the variables in each Si and let

wi := |{u : u is a wire labelled by some x ∈ Si (or its negation)}| .

We have
∑

i∈[n/k]
wi = ℓ,

which implies that there is a particular i ∈ [n/k] such that

wi 6
ℓ

n/k
6

1

d
·
√

n

logn
=: ℓ0.

Next, we will consider restrictions that fix the values of the variables outside Si. Note that if
we fix the value of a variable xi in a comparator circuit, then we can obtain a restricted circuit
so that all the wires that are labelled by either xi or ¬xi are eliminated, after some appropriate
updates on the gates in the circuit. This is not an obvious fact. One way to see this is that once

11



we fix the value of a wire, the gate that directly connects this wire becomes useless in the sense of
Definition 5 so it can be removed after some appropriate “re-wirings” of the gates in the circuit as
described in Proposition 6. Then we can keep doing this until no gate is connected to that wire, in
which case the wire can be removed from the circuit.

Now we have

Pr
y∈{0,1}n

[

A′(y) = C ′(y)
]

= Pr
ρ∈{0,1}[n]\Si ,z∈{0,1}k

[

A′↾ρ (z) = C ′↾ρ (z)
]

.

It suffices to upper bound
Pr

z∈{0,1}k
[

A′↾ρ (z) = C ′↾ρ (z)
]

,

for every ρ ∈ {0, 1}[n]\Si . For the sake of contradiction, suppose for some ρ, we have

1

2
+

n

2k/4
< Pr

z∈{0,1}k
[

A′↾ρ (z) = C ′↾ρ (z)
]

= Pr
z∈{0,1}k

[

Enc(x)α = C ′↾ρ (z)
]

, (1)

where α ∈ {0, 1}k is

αj := Parity
(

ρ|Bj\Si

)

⊕ zj ,

and ρ|Bj\Si
denotes the partial assignment given by ρ but restricted to only variables in the set

Bj\Si. Note that α is uniformly distributed for uniformly random z. Therefore, if we have the

values of Parity
(

ρ|Bj\Si

)

for each j ∈ [k] (k bits in total), and if we know the restricted circuit C ′↾ρ,

then we can compute the codeword Enc(x) correctly on at least 1/2+n/2k/4 positions, by evaluating
C ′↾ρ (z) for every z ∈ {0, 1}k. As a result, we can list-decode Enc(x), and, using additional k/2
bits (to specify the index of x in the list), we can recover x exactly. Finally, note that the number
of wires in C ′↾ρ is at most ℓ0. Therefore, by Lemma 8, such a circuit can be described using a
string of length at most

O
(

ℓ0 · log(n) + ℓ20 · log(ℓ0)
)

6 O
(

ℓ20 · log n
)

= O

(

n

d2 · logn · log n
)

6 n/4,

where the last inequality holds when d is sufficiently large. Therefore, we can recover x using less
than

n/4 + k + k/2 +O(log n) < n/2

bits. Here we assume k 6 n/8 since otherwise the theorem can be shown trivially. This contradicts
the fact that the Kolmogorov complexity of x is at least n/2.

4 Tight Average-case Lower Bounds from a Nečiporuk-Type Prop-

erty

Here, we describe a generalization of the average-case lower bound in Section 3 to circuit classes
whose worst-case lower bounds can be proved via Nečiporuk’s method.

12



Theorem 12. There is a constant c > 1 such that the following holds. Let C be a class of Boolean
circuits that is closed under restrictions. Suppose that, for any k ∈ [c · log n, n/3], there exists
a partition of the n variables into m := n/k equal-sized blocks S1, S2, . . . , Sm and a collection of
k-input-bit functions H such that

1. |H| 6 2n/2, and

2. for every C ∈ Cn of size s(n, k), there exists some block Si such that {C↾ρ}ρ∈{0,1}[n]\Si ⊆ H.

Then for any k ∈ [c · logn, n/6], there exists a polynomial-time computable function fk which
satisfies

Pr
x∈{0,1}n

[C(x) = fk(x)] 6
1

2
+

1

2Ω(k)
,

for every C ∈ Cn of size s(n/2, k).

Remark. In the original Nečiporuk’s argument for getting worst-case lower bounds, it is only
required that, for every C ∈ C, there is some block such that the number of distinct functions, after
fixing the variables outside of the block, is at most 2n/2, and this set of functions can be different
for different C. For Theorem 12, we need something stronger which says that it is the same set of
2n/2 functions for every C. We remark that, though the weaker condition is sufficient for worst-case
lower bounds, all applications of Nečiporuk’s method known to us also prove the stronger condition,
thus yielding average-case lower bounds by Theorem 12.

Theorem 12 requires a slightly different argument than that of Theorem 11. Its proof is presented
in Appendix A.

By combining Theorem 12 with known structural properties for various models (see e.g., [Juk12]),
we get that for the class of circuits C of size s, where

• C is the class of general formulas, and s = n2/O(k), or

• C is the class of deterministic branching programs or switching networks, and s = n2/O(k ·
log n), or

• C is the class of nondeterministic branching programs, parity branching programs, or span
programs, and s = n1.5/O(k),

there exists a function fk such that Prx∈{0,1}n [C(x) = fk(x)] 6 1/2 + 1/2Ω(k) for every C ∈ C,
which matches the state-of-the-art worst-case lower bounds (up to a multiplicative constant) by
letting k = O(logn).

5 #SAT Algorithms

In this section, we present our #SAT algorithm for comparator circuits. As mentioned briefly
in Section 1.2, we will need a preprocessed data structure that enables us to efficiently convert a
circuit with small number of wires but large number of gates to an equivalent circuit (with the
same number of wires) whose number of gates is at most quadratic in the number wires.
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5.1 Memorization and simplification of comparator circuits

Lemma 13. Let n, ℓ > 1 be integers. For any fixed labelling of ℓ wires on n variables, there is a
data structure DS such that

• DS can be constructed in time 2n · ℓO(ℓ2).

• Given access to DS and given any comparator circuit C with ℓ wires (whose labelling is
consistent with the one used for DS) and s gates, we can output in time poly(s, ℓ) the number
of satisfying assignments of C. Moreover, we obtain a comparator circuit with ℓ wires and at
most ℓ · (ℓ− 1)/2 gates that is equivalent to C.

Proof. We know that every comparator circuit with ℓ wires has an equivalent circuit with ℓ·(ℓ−1)/2
gates (Lemma 8). Therefore, we can try to memorize the number of satisfying assignments for each
of these circuits (by brute-force). Then for a given circuit C with ℓ wires and s gates where
s ≫ poly(ℓ), we need to simplify C to be a circuit with ℓ · (ℓ − 1)/2 gates so that we can look up
its number of satisfying assignments, which was already computed. However, it is not clear how
we can efficiently simplify such a comparator circuit.

The idea here is to remove the useless gates one by one (from left to right). To do this, firstly,
we need to be able to tell whether a gate is useless, and secondly whenever we remove a useless
gate, we need to “re-wire” the gates that come after that gate, which can depend on the types of
the useless gate that we are removing, as described in Proposition 6.

More specifically, DS will be a “tree-like” structure of depth at most ℓ · (ℓ− 1)/2 + 2 where the
internal nodes are labelled as gates. Note that a path from the root to any internal node in the
tree gives a sequence of gates, which specifies a comparator circuit up to a choice of the output
wire. We will require the label of every internal node to be a useful gate in the circuit specified by
the path from the root to the node. In other words, each internal node will branch on all possible
useful gates that could occur next in the circuit. Moreover, each leaf is either labelled as a useless
gate, with respect to the circuit specified by the path from the root to the current leaf, or is labelled
as a single wire that is designed to be the output wire.

For every leaf that is a useless gate, we store its type, and for each leaf that is a single wire,
we store the number of satisfying assignments of the circuit that is specified by the path from the
root to the leaf. Moreover, each internal node is a useful gate whose children are indexed by the set
of all possible gates (each is an ordered pair of wires) and the set of wires (called an output leaf ).
Note that checking whether a new gate is useless and computing its type require evaluating the
current circuit on all possible inputs, which takes time 2n ·poly(ℓ), but this is fine with our running
time. Similarly, we can compute the number of satisfying assignments in each output leaf by brute
force. Note that by Theorem 7, the depth of such a tree is at most ℓ · (ℓ− 1)/2+2, otherwise there
would be a comparator circuit with ℓ wires that has more than ℓ · (ℓ− 1)/2 useful gates. Since each

internal node has at most ℓ2 children, the tree has at most ℓ
O
(

ℓ
2
)

nodes in total. Since each node
can be constructed in time 2n · poly(ℓ), the running time is clear.

To look up the number of the satisfying assignments of a given circuit C (with a labelling of the
wires that is consistent with the one used for DS), we start from the root of DS, and move down
the tree as we look at the gates in C one by one (from left to right in the natural way). If we reach
an output leaf, we output the number of satisfying assignments stored in that leaf. However, if we
reach a leaf v that is specified as a useless gate, we remove the corresponding gate in C and update
the gates that come after it according to the type of this useless gate, using Proposition 6. Once
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we update the circuit, we start again from the parent of v and look at the next gate in the updated
circuit. We repeat this until we reach an output leaf.

5.2 The algorithm

We will show an algorithm for comparator circuits with small number of wires, while the number
of gates can be polynomial.

Theorem 14. There is a constant d > 1 and a deterministic algorithm such that for every k 6 n/4,
given a comparator circuit on n variables with at most

n1.5

d · k ·
√
log n

wires and poly(n) gates, the algorithm outputs the number of satisfying assignments of C in time

2n−k · poly(n).

Proof. Let C be a comparator circuit with ℓ 6 n1.5/
(

d · k ·
√
logn

)

wires and poly(n) gates, where
d > 1 is a sufficiently large constant.

We partition the n variables almost-evenly into ⌊n/k⌋ consecutive blocks, denoted as S1, S2, . . . , S⌊n/k⌋.
We then count the number of wires that are labelled by the variables in each Si and let

wi := |{u : u is a wire labelled by some x ∈ Si (or its negation)}| .

We have
∑

i∈[⌊n/k⌋]
wi = ℓ,

which implies that there is a particular i ∈ [k] such that

wi 6
ℓ

⌊n/k⌋ 6
1

d
·
√

n

log n
=: ℓ0.

Moreover, we can find such i efficiently.

Constructing DS. Using Lemma 13, we create a data structure DS with wi wires and |Si| 6 k
variables and a labelling consistent with that of C for the wires labelled by variables from Si. This
can be done in time

2k · ℓO(ℓ20)
0 = 2k+O(ℓ20·log ℓ0) 6 2k+n/2.

Enumeration. For each ρ ∈ {0, 1}[n]\Si , we obtain a restricted circuit C↾ρ (on either k or k + 1
variables), which has ℓ0 wires (whose labelling is consistent with the one used for DS created
above) and has poly(n) gates. Then using DS, we can efficiently look up the number of satisfying
assignments of C↾ρ. Finally we sum over these numbers over all such ρ’s and this gives the number
of satisfying assignments of C.

The total running time of the above algorithm is

2k+n/2 + 2n−k · poly(n) = 2n−k · poly(n),

as desired.
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6 Pseudorandom Generators and MCSP Lower Bounds

In this section, we show a PRG for small comparator circuits, and derive from it lower bounds
for comparator circuits computing MCSP.

6.1 Proof of the PRG

We start with some definitions and notations.

• For a Boolean function f , we denote by ℓ(f) the minimum number of wires in a comparator
circuit computing f .

• We will often describe a restriction ρ ∈ {0, 1, ∗}n as a pair (σ, β) ∈ {0, 1}n × {0, 1}n. The
string σ is the characteristic vector of the set of coordinates that are assigned ∗ by ρ, and β is
an assignment of values to the remaining coordinates. The string σ is also called a selection.

• We say that a distribution D on {0, 1}n is a p-regular random selection if Prσ∼D [σ(i) = 1] = p
for every i ∈ [n].

As mentioned in Section 1.2, we will need a result saying that the number of wires in a com-
parator circuit shrinks with high probability under pseudorandom restrictions.

Lemma 15. Let c be a constant and let f : {0, 1}n → {0, 1}. Let ℓ := ℓ(f) and p = ℓ−2/3, and
suppose that ℓ = nΩ(1). There exists a p-regular pseudorandom selection D over n variables that is
samplable using r = polylog(ℓ) random bits such that

Pr
σ∼D, β∼{0,1}n

[

ℓ(f↾(σ,β)) > 23
√
c log ℓ · pℓ

]

6 2 · ℓ−c.

Moreover, there exists a circuit of size polylog(ℓ) such that, given j ∈ {0, 1}logn and a seed z ∈
{0, 1}r, the circuit computes the j-th coordinate of D(z).

The proof of Lemma 15 follows closely that of [IMZ19, Lemma 5.3], except for that here we also
need to show that the pseudorandom restriction can be computed with small size circuits. Such a
restriction is proved to exist in Lemma 18 of [CKLM20]. For completeness, a proof is presented in
Appendix B.

Theorem 16 (Local PRGs). For every n ∈ N, ℓ = nΩ(1), and ε > 1/ poly(n), there is a pseudo-
random generator G : {0, 1}r → {0, 1}n, with seed length

r = ℓ2/3+o(1)

that ε-fools comparator circuits with ℓ wires over n variables. Moreover, for every seed z ∈ {0, 1}r,
there is a circuit Dz of size ℓ2/3+o(1) such that, given as input j ∈ [n], Dz computes the j-th bit of
G(z).

Proof Sketch. In [IMZ19], it is shown that if a circuit class “shrinks” with high probability under
a pseudorandom restriction, then we can construct pseudorandom generators for this circuit class
with non-trivial seed-length. The authors of [CKLM20] then showed that if the same shrinkage
property holds for random selections that can be efficiently sampled and computed, then we can
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obtain local PRGs. In Lemma 15, we proved exactly what is required by [CKLM20] to obtain local
PRGs for comparator circuits.

More specifically, the theorem can be derived by following the proof of [CKLM20, Lemma 16],
and adjusting the parameters there in a natural way. In particular, we will use p := ℓ−2/3 so that
after the pseudorandom restriction in Lemma 15, the restricted comparator circuit has at most
ℓ0 := 2O(

√
log ℓ) · pℓ = 2O(

√
log ℓ) · ℓ1/3 wires (with high probability). Another observation needed in

the proof is that, by Lemma 8, there can be at most 2ℓ
2/3+o(1)

distinct functions for comparator
circuits with this many wires. We omit the details here.

6.2 Proof of the MCSP lower bound

We prove the following stronger result which implies Theorem 4.

Theorem 17. For any ε > 0 and any 0 < α 6 1 − ε, MCSP[nα] on inputs of length n cannot be
computed by comparator circuits with n1+α/2−ε wires.

Proof. Let f denote the function MCSP[nα] on inputs of length n. For the sake of contradiction,
suppose f can be computed by a comparator circuit C with n1+α/2−ε wires, for some ε > 0.

Let k := nα+ε/2. Consider an (almost-even) partition of the n variables into ⌊n/k⌋ consecutive
blocks, denoted as S1, S2, . . . , S⌊n/k⌋. Again, by an averaging argument, there is some i ∈ [⌊n/k⌋]
such that after fixing the values of the variables outside Si, the number of wires in the restricted
circuit is at most

ℓ := n1+α/2−ε/⌊n/k⌋ = n1.5α−ε/2.

Let ρ be a restriction that fixes the values of the variables outside Si to be 0 and leaves the variables
in Si unrestricted. Let G be the PRG from Theorem 16 that has seed length r := ℓ2/3+o(1) and
(1/3)-fools comparator circuits with at most ℓ wires.

On the one hand, since |Si| > k, then by a counting argument, for a uniformly random x ∈
{0, 1}n, the circuit size of the truth table given by ρ◦x is at least k/(10 log k) > nα, with probability
at least 1/2. In other words,

Pr
x∈{0,1}n

[f↾ρ (x) = 1] 6 1/2.

On the other hand, by the second item of Theorem 16, for any seed z ∈ {0, 1}r, the output of the
PRG G(z), viewed as a truth table, represents a function that can be computed by a circuit of size
ℓ2/3+o(1). Then knowing i ∈ [n] (which can be encoded using log(n) bits), the truth table given by
ρ ◦G(z) has circuit size at most

polylog(n) + ℓ2/3+o(1) 6 nα.

This implies
Pr

z∈{0,1}r
[C↾ρ (G(z)) = 1] = 1,

which contradicts the security of G.

7 Learning Algorithms

Recall that a (distribution-independent) PAC learning algorithm for a class of functions C
has access to labelled examples (x, f(x)) from an unknown function f ∈ C, where x is sampled
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according to some (also unknown) distribution D. The goal of the learner is to output, with high
probability over its internal randomness and over the choice of random examples, a hypothesis h
that is close to f under D. As in [ST17], here we consider the stronger model of “randomized
exact learning from membership and equivalence queries”. It is known that learnability in this
model implies learnability in the distribution-independent PAC model with membership queries
(see [ST17, Section 2] and the references therein).

Theorem 18 ([ST17, Lemma 4.4]). Fix any partition S1, S2, . . . , Sn1−nδ of [n] into equal-size sub-

sets, where each Si is of size nδ and δ > 0. Let C be a class of n-variate functions such that for

each f ∈ C, there is an Si such that
∣

∣

∣
{f↾ρ}ρ∈{0,1}[n]\Si

∣

∣

∣
6 2n

β
, where β < 1 and moreover δ+ β < 1.

Then there is a randomized exact learning algorithms for C that uses membership and equivalence
queries and runs in time 2n−nδ · poly(n).

Corollary 19. For every ε > 0, there is a randomized exact learning algorithms for comparator
circuits with n1.5−ε wires that uses membership and equivalence queries that runs in time 2n−nΩ(ε) ·
poly(n).

Proof. Consider Theorem 18 and any partition S1, S2, . . . , Sn1−nδ of the n variables into equal-size

subsets, each is of size nδ, where δ := ε/3. Then by an averaging argument, for every comparator
circuit C with n1.5−ε wires, there is some Si such that after fixing the variables outside of Si, the
number of wires in the restricted circuit is at most ℓ := n1.5−ε/n1−δ 6 n.5−2ε/3. By Lemma 8, such
a restricted circuit computes some function that is equivalent to a circuit with ℓ(ℓ−1)/2 gates, and

there are at most ℓO(ℓ
2)) 6 2n

1−ε/2
such circuits. Therefore we have
∣

∣

∣
{C↾ρ}ρ∈{0,1}[n]\Si

∣

∣

∣
6 2n

β
,

where β := 1− ε/2 < 1 and δ + β < 1. The algorithm then follows from Theorem 18.

Acknowledgements

B. P. Cavalar acknowledges support of the Chancellor’s International Scholarship of the Univer-
sity of Warwick. Z. Lu acknowledges support from the Royal Society University Research Fellowship
URF\R1\191059. Both authors are indebted to Igor C. Oliveira for numerous helpful discussions
and comments and to ITCS 2022 anonymous reviewers for suggestions.

References
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A Proof of Theorem 12

The hard function. We need to slightly modify the hard function in Definition 10 (particularly the
function α) to adjust an arbitrary partition as in Theorem 12. For an integer k and a partition of n
variables into n/k equal-sized blocks, denoted by S :=

{

S1, S2, . . . , Sn/k

}

, define AS,k : {0, 1}n+n →
{0, 1} as follows:

AS,k(x1, . . . , xn, y1, . . . , yn) := Enc(x1, . . . , xn)α(y1,...,yn),

where Enc is the code from Theorem 9 that maps n bits to 2k bits, and α : {0, 1}n → {0, 1}k is
defined as

α(y1, . . . , yn) :=





⊕

z∈B1

z,
⊕

z∈B2

z, . . . ,
⊕

z∈Bk

z



 ,

where Bj :=
⋃

i∈[n/k] {z : z is the j-th variables of Si}.
Good x. We will need the following lemma which says that for most x ∈ {0, 1}n, the codeword of
x is hard to approximate for any fixed small set of functions.

Lemma 20. Let k be such that c · logn 6 k 6 n/3, where c is the constant from Theorem 9, and
let Enc be the code from Theorem 9 that maps n bits to 2k bits. Let H′ be a set of k-input-bit
Boolean functions such that |H′| 6 22n/3. Then, with probability at least 1− 1/2n/2 over a random
x ∈ {0, 1}n, the following holds for every f ∈ H′:

Pr
z∈{0,1}k

[f(z) = Enc(x)z] 6
1

2
+

n

2k/4
. (2)

Proof. The proof is by a counting argument. For every f ∈ H′, consider the 2k-bit string tt(f) which
is the truth table computed by f . Let us say x is bad for f if Equation (2) does not hold, which
means that tt(f) and Enc(x) agree on more than 1/2+n/2k/4 positions. By the list-decodability of
Enc, the number of such x’s is at most O

(

2k/2/n
)

. By an union bound over all the 22n/3 functions
in H′, the fraction of bad x’s is at most

O
(

2k/2/n
)

· 22n/3
2n

<
1

2n/2
,

as desired.

We are now ready to prove Theorem 12.

Proof of Theorem 12. Let A := AS,k be the hard function on 2n variables defined as above, where
S is the partition in the statement of the theorem, and let

Bj :=
⋃

i∈[n/k]
{z : z is the j-th variables of Si} .

Also, let H′ be the set of k-input-bit Boolean functions defined as follows:

H′ :=
{

f : ∃h ∈ H and w ∈ {0, 1}k, such that f(z) = h(z ⊕ w) for all z ∈ {0, 1}k
}

.
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That is, H′ is the set of all possible “shifted” functions in H. By Lemma 20, with probability at
least 1− 1/2n/2 over a random x ∈ {0, 1}n, for every f ∈ H′ we have

Pr
z∈{0,1}k

[f(z) = Enc(x)z] 6
1

2
+

n

2k/4
. (3)

Let us call x good if it satisfies Equation (3).
To show the theorem, we need to upper bound the following probability, for every circuit

C0 ∈ C2n of size s(n, k):

Pr
x,y∈{0,1}n×{0,1}n

[A(x, y) = C0(x, y)] 6 Pr
x,y

[A(x, y) = C0(x, y) | x is good] +Pr
x
[x is not good]

6 Pr
x,y

[A(x, y) = C0(x, y) | x is good] +
1

2n/2
.

Let x be any fixed n-bit string that is good. Let A′ : {0, 1}n → {0, 1} be

A′(y) := A(x, y),

and let C be the circuit defined as
C(y) := C0(x, y).

Note that since the class C is closed under restriction, C is a circuit from Cn with size at most
s(n, k). We will show that

Pr
y∈{0,1}n

[

A′(y) = C(y)
]

6
1

2
+

n

2k/4
.

Let Si be the block in the assumption of the theorem such that

{C↾ρ}ρ∈{0,1}[n]\Si ⊆ H.

We have
Pr

y∈{0,1}n
[

A′(y) = C(y)
]

= Pr
ρ∈{0,1}[n]\Si ,z∈{0,1}k

[

A′↾ρ (z) = C↾ρ (z)
]

.

It suffices to upper bound
Pr

z∈{0,1}k
[

A′↾ρ (z) = C↾ρ (z)
]

for every ρ ∈ {0, 1}[n]\Si . For the sake of contradiction, suppose for some ρ, we have

1

2
+

n

2k/4
< Pr

z∈{0,1}k
[

A′↾ρ (z) = C↾ρ (z)
]

= Pr
z∈{0,1}k

[Enc(x)α = C↾ρ (z)] , (4)

where α ∈ {0, 1}k is

αj := Parity
(

ρ|Bj\Si

)

⊕ zj ,

and ρ|Bj\Si
denotes the partial assignment given by ρ but restricted to only variables in the set

Bj\Si. That is, α is some “shift” of z, so α is uniformly distributed for uniformly random z.
Therefore, Equation (4) implies

Pr
z∈{0,1}k

[Enc(x)z = C↾ρ (z ⊕ w)] >
1

2
+

n

2k/4
,

for some w ∈ {0, 1}k. This gives a function in H′ that computes Enc(x) on more than 1/2+n/2k/4

positions, which contradicts the assumption that x is good.
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B Pseudorandom Shrinkage for Comparator Circuits: Proof of

Lemma 15

Technical tools. We will need a Chernoff-Hoeffding bounds for distributions with bounded inde-
pendence from [SSS95] (Lemmas 2.3 in [IMZ19]). Recall that a distribution D on [m]n is k-wise
independent if, for any set A ⊆ [n] of size |A| 6 k, the random variables {σ(i) : i ∈ A} are mutually
independent when σ ∼ D.

Lemma 21 ([SSS95]). Let a1, . . . , an ∈ R+ and let m = maxi ai. Suppose that X1, . . . , Xn ∈ {0, 1}
are k-wise independent random variables with Pr[Xi = 1] = p. Let X =

∑

i aiXi and µ = E[X] =
p
∑

i ai. We have Pr[X > 2k(m+ µ)] 6 2−k.

Lemma 22 ([IMZ19, Lemma 2.4]). Let X1, . . . , Xn ∈ {0, 1} be k-wise independent random variables
with Pr[Xi = 1] = p. Let X =

∑

iXi and µ = E[X] = np. We have P[X > k] 6 µk/k!.

Shrinkage of comparator circuits under pseudorandom restrictions. We first show the
following result for comparator circuits which is analogous to [IMZ19, Lemma 5.2] for branching
programs.

Lemma 23. Let f : {0, 1}n → {0, 1} be a Boolean function, and let H ⊆ [n]. For h ∈ {0, 1}H , let
ρh denote the restriction that sets the variables in H to h, and leaves the other variables free. We

have ℓ(f) 6 2|H| ·
(

maxh∈{0,1}H ℓ(f↾ρh) + |H|
)

.

Proof. For h ∈ {0, 1}H , let 1h : x 7→ 1 {x = h}. Clearly, 1h can be computed by a comparator
circuit with |H| wires. Since f =

∨

h∈{0,1}H (1h ∧ f↾ρh), the result follows.

Lemma 24 (Reminder of Lemma 15). Let c be a constant and let f : {0, 1}n → {0, 1}. Let ℓ := ℓ(f)
and p = ℓ−2/3, and suppose that ℓ = nΩ(1). There exists a p-regular pseudorandom selection D over
n variables that is samplable using r = polylog(ℓ) random bits such that

Pr
σ∼D, β∼{0,1}n

[

ℓ(f↾(σ,β)) > 23
√
c log ℓ · pℓ

]

6 2 · ℓ−c.

Moreover, there exists a circuit of size polylog(ℓ) such that, given j ∈ {0, 1}logn and a seed z ∈
{0, 1}r, the circuit computes the j-th coordinate of D(z).

Proof. First, we note that a k-wise independent random selection that can be efficiently sampled and
computed with the required parameters is proved to exist in Lemma 18 of [CKLM20]. Henceforth,
we let ρ be the random restriction described by the pair (σ, β).

Let C be a comparator circuit with ℓ wires computing f . Let k = c · log ℓ. For i ∈ [n], let wi be
the number of wires in C labelled with the variable xi.

Let α =
√

c/ log ℓ. We say that i ∈ [n] is heavy if wi > p1−α · ℓ and light otherwise. Let H ⊆ [n]
be the set of heavy variables. We have |H| 6 (1/p)1−α. Let also H(ρ) := H ∩ ρ−1(∗). Let ρ′ be
a restriction such that ρ′(x) = ρ(x) for x /∈ H(ρ) and which sets the variables in H(ρ) so as to
maximize ℓ(f↾ρ′). By Lemma 23, we have ℓ(f↾ρ) 6 2|H(ρ)|+1 · ℓ(f↾ρ′).

We now let h = ⌈3/2 · c/α⌉, and observe that

Pr
ρ

[

ℓ(f↾ρ) > 2h+3kp1−αs
]

6 Pr
ρ
[|H(ρ)| > h] +Pr

ρ

[

ℓ(f↾ρ′) > 4kp1−αℓ
]

.
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Let Xi be a random variable such that Xi = 1 iff ρ(i) = ∗. From Lemma 22, it follows that the
first term can be bounded by (|H|p)h 6 pαh 6 ℓ−c. For the second term, we can apply Lemma 21
on the light variables with µ 6 pℓ and m < p1−αℓ, so that m + µ 6 2p1−αℓ, thus bounding the
probability by 2−k 6 ℓ−c.
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