
Ideals, Determinants, and Straightening: Proving and Using
Lower Bounds for Polynomial Ideals

Robert Andrews∗ Michael A. Forbes†

December 1, 2021

Abstract

We show that any nonzero polynomial in the ideal generated by the r× r minors of an n× n
matrix X can be used to efficiently approximate the determinant. Specifically, for any nonzero
polynomial f in this ideal, we construct a small depth-three f -oracle circuit that approximates the
Θ(r1/3)×Θ(r1/3) determinant in the sense of border complexity. For many classes of algebraic
circuits, this implies that every nonzero polynomial in the ideal generated by r × r minors is at
least as hard to approximately compute as the Θ(r1/3)×Θ(r1/3) determinant. We also prove an
analogous result for the Pfaffian of a 2n× 2n skew-symmetric matrix and the ideal generated by
Pfaffians of 2r × 2r principal submatrices.

This answers a recent question of Grochow [Gro20, Conjecture 6.3] about complexity in
polynomial ideals in the setting of border complexity. Leveraging connections between the
complexity of polynomial ideals and other questions in algebraic complexity, our results provide
a generic recipe that allows lower bounds for the determinant to be applied to other problems in
algebraic complexity. We give several such applications, two of which are highlighted below.

• We prove new lower bounds for the Ideal Proof System of Grochow and Pitassi. Specifically,
we give super-polynomial lower bounds for refutations computed by low-depth circuits.
This extends the recent breakthrough low-depth circuit lower bounds of Limaye, Srinivasan,
and Tavenas [LST21] to the setting of proof complexity. Moreover, we show that for many
natural circuit classes, the approximative proof complexity of our hard instance is governed
by the approximative circuit complexity of the determinant.

• We construct new hitting set generators for the closure of low-depth circuits. For any
ε > 0, we construct generators with seed length O(nε) that hit n-variate low-depth circuits.
Our generators attain a near-optimal tradeoff between their seed length and degree, and
are computable by low-depth circuits of near-linear size (with respect to the size of their
output). This matches the seed length of the generators recently obtained by Limaye,
Srinivasan, and Tavenas [LST21], but improves on the degree and circuit complexity of the
generator.

∗Department of Computer Science, University of Illinois Urbana-Champaign. Email: rgandre2@illinois.edu.
Supported by NSF grants CCF-1755921 and CCF-1814788.
†Department of Computer Science, University of Illinois Urbana-Champaign. Email: miforbes@illinois.edu.

Supported by NSF grants CCF-1755921, CCF-1814788, and CAREER award 2047310.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 172 (2021)

Contents

1 Introduction 1
1.1 The Complexity of Ideals . 1
1.2 Polynomial Identity Testing . 3
1.3 The Ideal Proof System . 4
1.4 Our Results . 6

2 Preliminaries 10
2.1 Border Complexity . 10
2.2 Polynomial Identity Testing . 12
2.3 Matrix Rank . 13
2.4 Hasse Derivatives . 14
2.5 Bideterminants and the Straightening Law . 16
2.6 Pfaffians . 18
2.7 Monomial Orders . 19
2.8 The Ideal Proof System . 22

3 Hardness of Determinantal Ideals 23
3.1 Computing a Single Bideterminant . 23
3.2 Projecting to the Determinant . 28

4 Hardness of Pfaffian Ideals 32
4.1 Computing a Standard Monomial . 33
4.2 Projecting to the Pfaffian . 36

5 Partial Derivatives in Determinantal Ideals 39

6 Hardness Versus Randomness I: Low-Depth Circuits 43
6.1 Making [LST21] Robust . 44
6.2 Constructing a Hitting Set Generator . 45

7 Hardness Versus Randomness II: Formulas 48

8 Lower Bounds for the Ideal Proof System 50

1 Introduction

A central goal of algebraic complexity theory is to understand the resources needed to compute
multivariate polynomials in algebraic models of computation. Typically, one attempts to determine
the complexity of a single family of polynomials {fn(x) : n ∈ N}, such as the n × n determinant
or permanent. A generalization of this task is to examine the complexity of a family of ideals
{In ⊆ F[x] : n ∈ N} of polynomials. Recall that in a commutative ring R, an ideal I ⊆ R is a subset
of R such that (1) if a, b ∈ I, then a + b ∈ I, and (2) if a ∈ I and r ∈ R, then ar ∈ I. Ideals
naturally arise in commutative algebra and algebraic geometry; for example, the set of polynomials
that vanish on a subset V ⊆ Fn is an ideal. Closer to computer science and algebraic complexity,
ideals appear in the study of polynomial identity testing, polynomial factorization, and algebraic
proof complexity, though these appearances are not always made explicit. Due to the prominence of
ideals in algebra and algebraic complexity, it is both natural and worthwhile to study them from a
complexity-theoretic perspective.

Every nonzero ideal contains polynomials of arbitrarily large circuit complexity. This is a
straightforward consequence of the fact that ideals are closed under multiplication by arbitrary
polynomials. A more interesting task, then, is to determine the minimum possible complexity of a
nonzero polynomial in an ideal.

Unfortunately, little is known about the complexity of ideals aside from what is implicit in their
connection to other problems of algebraic complexity. A recent column by Grochow [Gro20] surveyed
these connections and posed some open questions, both general and concrete, about the complexity
of ideals. In particular, he raised the following question regarding an explicit family of ideals.

Conjecture ([Gro20, Conjecture 6.3]). Let X be a n× n matrix of variables and let In be the ideal
generated by the n/2× n/2 minors of X. For every nonzero polynomial f(X) ∈ In, there is a small
algebraic circuit with f -oracle gates that computes the m×m determinant for some m = nΘ(1).

Due to the close relationship between the non-vanishing of minors and matrix rank, it is natural
to conjecture that such a circuit exists. If the oracle circuit is not restricted in any manner, then
the desired circuit exists simply because the determinant can be computed efficiently by algebraic
circuits. However, if the oracle circuit is required to be, for example, a formula, then this question
becomes nontrivial, as the determinant is not known to be computable by small formulas.

The main contribution of our work is to resolve this conjecture in the setting of approximate
algebraic computation.

Theorem. Grochow’s conjecture is true (with respect to border complexity).

Specifically, we show that for any nonzero polynomial f ∈ In, the Θ(n1/3)×Θ(n1/3) determinant
can be approximately computed by a small depth-three f -oracle circuit with a single oracle gate. A
direct consequence of this is that for many circuit classes C, if the determinant cannot be approximated
by polynomial-size C-circuits, then neither can any polynomial in the ideal In. Naturally, this
has applications to polynomial identity testing and algebraic proof complexity by employing the
supporting role played by the complexity of ideals in those areas.

Before describing our results in more detail, we briefly survey what is known about the complexity
of ideals and its connections to polynomial identity testing and algebraic proof complexity.

1.1 The Complexity of Ideals

Most of what is known about the complexity of ideals is limited to ideals generated by a single
polynomial. The ideal 〈f〉 generated by a polynomial f(x) consists of all multiples of f , so questions

1

about the complexity of this ideal become questions about the complexity of f and its multiples.
Determining the minimum complexity of a polynomial in 〈f〉 amounts to determining whether there
is a multiple of f that is significantly easier to compute than f itself. This leads to the question of
factoring algebraic circuits: given a small circuit computing a polynomial g(x), can the factors of
g(x) be computed by small circuits?

This question was addressed in a celebrated result of Kaltofen [Kal87] (with alternate proofs by
Bürgisser [Bür00, Theorem 2.21] and Chou, Kumar, and Solomon [CKS19a]), who showed that factors
(of low multiplicity) of small circuits can be computed by small circuits. Taking the contrapositive,
if f(x) cannot be computed by small circuits, then neither can any polynomial g ∈ 〈f〉 which has f
as a factor of low multiplicity. Polynomial factorization has since been studied in restricted algebraic
circuit classes, including low-depth circuits [DSY09; CKS19b], formulas [Oli16; DSS18], algebraic
branching programs [DSS18; ST20], and sparse polynomials [BSV20]. This is motivated in part by
the use of Kaltofen’s theorem to establish hardness-to-pseudorandomness results for polynomial
identity testing, as done in the work of Kabanets and Impagliazzo [KI04].

Kaltofen’s result gives us a strong understanding of the complexity of the low-degree polynomials
in a principal ideal. Because algebraic complexity theory is primarily interested in the computation
of low-degree polynomials, this suffices for most applications. However, the situation would be
cleaner if lower bounds on the complexity of a polynomial f implied comparable lower bounds on
the complexity of all polynomials in the ideal 〈f〉, not just for those polynomials g ∈ 〈f〉 for which
f is a factor of low multiplicity. Kaltofen [Kal87] asked in the language of factorization whether
this is the case; this question remains open and is now known as the Factor Conjecture. In the
setting of approximative algebraic computation, the analogue of the Factor Conjecture was proved
by Bürgisser [Bür04]. It is interesting to note that, coincidentally, we also make essential use of
approximative computation in our work.

For non-principal ideals, much less is known. What knowledge we do have stems from connections
to polynomial identity testing and the Ideal Proof System. We defer our explanation of these
connections to Subsection 1.2 and Subsection 1.3, respectively.

Approximate algebraic computation will play a key role in our work, so we briefly discuss it here.
For simplicity, we will focus on circuits and polynomials defined over the complex numbers; for more
details, including a field-independent definition of approximate computation, see Subsection 2.1.
We say that a polynomial f(x) can be approximately computed by small algebraic circuits if there
is a collection of polynomials {fε : ε > 0} such that (1) for all ε > 0, the polynomial fε can be
computed by a small circuit, and (2) we have limε→0 fε = f , where convergence is coefficient-wise.
Over the complex numbers, this can be interpreted as saying that f lies in the closure (with respect
to the Euclidean topology) of the set of polynomials computable by small circuits. If f can be
approximated well by polynomials from a circuit class C, then we say that f is in C, the closure of C.
The circuit complexity of the approximating polynomials fε is referred to as the border complexity
of f . Naturally, one can also consider border complexity with respect to other classes of algebraic
circuits, such as formulas or branching programs.

Border complexity appeared as early as the late 1970s, when Bini, Capovani, Romani, and Lotti
[BCRL79] and Bini [Bin80] improved upon the state-of-the-art algorithms for matrix multiplication
by considering an approximative version of the problem. The notion of border complexity also
plays a prominent role in the geometric complexity theory program of Mulmuley and Sohoni [MS01].
Roughly speaking, the goal of that program is to prove super-polynomial lower bounds on the border
complexity of the permanent using techniques from algebraic geometry and representation theory.

In general, the relationship between exact and border complexity is not well-understood. Forbes
[For16] (see also Bläser, Dörfler, and Ikenmeyer [BDI21]) observed that exact and border complexity
are equivalent for read-one oblivious algebraic branching programs. Dutta, Dwivedi, and Saxena

2

[DDS21a] recently showed that polynomials in the border of depth-three circuits of bounded top
fan-in can be computed exactly by small algebraic branching programs. However, for classes like VP
and VNP (the algebraic analogues of P and NP), it is not clear how they relate to their closure.

Returning to the complexity of ideals, if we are content to operate in the setting of border
complexity, then the work of Bürgisser [Bür04] shows that up to polynomial factors, the complexity
of a principal ideal 〈f〉 is governed by the border complexity of its generator f . Unfortunately, this
seems to be where our understanding of the complexity of ideals stops. Even ideals generated by two
polynomials are not well-understood structurally from the viewpoint of complexity theory. There
are examples of explicit ideals, coming from polynomial identity testing, that are not principal and
for which we can prove lower bounds; see Subsection 1.2 below for more.

1.2 Polynomial Identity Testing

Polynomial identity testing (which we abbreviate as PIT) is the algorithmic problem of testing
whether an algebraic circuit computes the zero polynomial. Typically, one assumes that the circuit
computes a polynomial of degree at most nO(1), where n is the number of input variables. A simple
coRP algorithm for this problem follows from the Schwartz–Zippel lemma [Zip79; Sch80]. When the
input is allowed to be an algebraic circuit without further structural restrictions, no deterministic
algorithm is known that improves on the naïve derandomization of this randomized algorithm. In
fact, even obtaining a nondeterministic algorithm running in subexponential time is known to imply
circuit lower bounds that lie beyond the reach of current techniques [KI04].

More is known for many restricted classes of circuits, including sparse polynomials [KS01], depth-
three [DS07; KS07; KS09; KS11; SS11; SS12; SS13] and depth-four [Shp19; PS20; PS21; DDS21b]
circuits of bounded top fan-in, read-once formulas [SV15; MV18], read-once oblivious algebraic
branching programs [FS13; FSS14; AGKS15; GKS17; GKST17; AFSSV18; GG20; BS21], low-depth
multilinear circuits [KMSV13; AvMV15; OSV16; SV18], and low-depth circuits [LST21]. In general,
algorithms for PIT are designed by giving an efficient construction of a hitting set generator. That
is, we construct a low-degree polynomial map G : F` → Fn with `� n such that if f(x) is a nonzero
polynomial computable by a small circuit, then f(G(y)) 6= 0. This reduces the number of variables in
the circuit without increasing the degree too much. We then obtain a faster deterministic algorithm
by using the brute-force derandomization of the Schwartz–Zippel lemma to test f(G(y)).

In fact, constructing such a generator G corresponds to proving lower bounds against a polynomial
ideal. Fix a circuit class C (for example, the class of n2-size circuits) and let G be a hitting set
generator for C. Let G(y) = (G1(y), . . . ,Gn(y)) and consider the ideal of polynomials f(x) that vanish
on G(y), i.e., polynomials such that f(G(y)) = 0. This ideal can be written as the intersection

IG := 〈xi − Gi(y) : i ∈ [n]〉 ∩ F[x],

and in general is not generated by a single polynomial. Suppose f is a nonzero polynomial in the
ideal IG . Because we assumed G to be a hitting set generator for the circuit class C, this means that
f cannot be computed by circuits from C. That is, proving that G is a generator for C is equivalent
to proving that no element of IG can be computed by a circuit from C. To the best of our knowledge,
this connection accounts for all known examples of lower bounds for non-principal ideals. We remark
that this approach can prove lower bounds against “natural” non-principal ideals. For example,
[FSTW16, Corollary 6.7] easily generalizes to prove lower bounds against determinantal ideals for
weak circuit classes. However, this approach does not necessarily allow one to choose an ideal and
subsequently prove a lower bound against that particular ideal.

One can also construct hitting set generators using lower bounds for ideals. Kabanets and
Impagliazzo [KI04] used Kaltofen’s factorization result to show that circuit lower bounds for explicit

3

families of polynomials can be used to derandomize PIT. In the analysis of the Kabanets–Impagliazzo
generator, what is really needed is a lower bound for all low-degree multiples of a polynomial f ,
which is exactly what Kaltofen’s theorem provides if f is assumed to be hard to compute. Further
work on the algebraic hardness-randomness paradigm in the setting of low-depth circuits [DSY09;
CKS19b] followed the approach of Kabanets and Impagliazzo [KI04], proving analogues of Kaltofen’s
factoring result for bounded-depth circuits.

One can also consider PIT for polynomials of small border complexity. Even in the randomized
setting, the complexity of this problem is unclear, as it is not obvious how to evaluate a polynomial
f(x) given only a circuit that approximates f(x), nor is it clear that such an approximating circuit
even has a succinct description. However, one can still try to construct hitting set generators for
polynomials of small border complexity. Forbes and Shpilka [FS18] and Guo, Saxena, and Sinhababu
[GSS19] gave PSPACE constructions of hitting set generators for polynomials with small border
circuit complexity. One of the primary conceptual contributions of Forbes and Shpilka [FS18] was
the definition of a robust hitting set generator. Roughly, a generator G for a class C is robust if for
every nonzero polynomial f ∈ C, the composition f(G(y)) is “far” from the zero polynomial (after
f has been suitably normalized). It is not hard to show that, over a field of characteristic zero, a
generator G for C is robust if and only if G hits the closure C of C. Over an arbitrary field, one can
likewise consider the problem of constructing hitting set generators for the closures of circuit classes,
although the notion of f(G(y)) being far from the zero polynomial is not as clear. In this setting we
drop the adjective “robust” and focus simply on hitting sets for the closure of a circuit class. The
preceding discussion on the relationship between PIT and the complexity of ideals extends to border
complexity.

Designing hitting sets for the closures of circuit classes has been explored as a possible avenue
towards resolving grand challenges in polynomial identity testing. Recent work by Medini and
Shpilka [MS21] and Saha and Thankey [ST21a] studied PIT for orbits of various classes C. The
orbit orb(C) of a class C corresponds to polynomials of the form f(Ax + b), where f(x) ∈ C and
A is an invertible n × n matrix. Studying PIT for orbits is motivated by the fact that for many
simple classes C, there is a far richer class D such that orb(C) = D. That is, in order to derandomize
PIT for a powerful class D, it suffices to construct hitting set generators for the closure of the much
simpler class orb(C). Unfortunately, this is not always feasible; for example, Medini and Shpilka
[MS21] showed that at least one instantiation of their hitting sets does not extend to the closure of
the circuit class it hits.

1.3 The Ideal Proof System

A central question of proof complexity is the following: given an unsatisfiable CNF formula ϕ, what
is the length of the shortest proof of the unsatisfiability of ϕ? This question can be instantiated
with a myriad of different proof systems rooted in logic, algebra, and geometry. Our focus in this
work will be on a proof system based in algebra, namely the Ideal Proof System of Grochow and
Pitassi [GP18]. For a more comprehensive treatment of other proof systems (and proof complexity
in general), see the recent book of Krajíček [Kra19].

Let ϕ be an unsatisfiable 3CNF formula. One way to prove that ϕ is unsatisfiable is to translate
ϕ into a system of polynomial equations, swapping the roles of 0 and 1, as follows. The literals x and
¬x are translated into the polynomials 1− x and x, respectively. A clause `1 ∨ `2 ∨ `3 becomes the
polynomial p`1p`2p`3 , where p`i is the polynomial corresponding to the literal `i. Let f1, . . . , fm be
the polynomials obtained from the clauses of ϕ. It is not hard to see that ϕ is satisfiable if and only
if there is a {0, 1}-valued solution to the system of equations f1 = · · · = fm = 0; equivalently, ϕ is
satisfiable if and only if there is a solution to the system f1 = · · · = fm = x2

1−x1 = · · · = x2
n−xn = 0.

4

Thus, to show that ϕ is unsatisfiable, it suffices to prove that a system of polynomial equations
is unsatisfiable. This can be done by finding polynomials g1(x), . . . , gm(x) and h1(x), . . . , hn(x) such
that

∑m
i=1 gi(x)fi(x) +

∑n
i=1 hi(x)(x2

i − xi) = 1, or more succinctly, by showing that 1 is in the ideal
generated by {f1, . . . , fm, x

2
1−x1, . . . , x

2
n−xn}. As a consequence of Hilbert’s Nullstellensatz, such a

refutation always exists, provided the system is unsatisfiable. These refutations and various notions
of their complexity give rise to the Nullstellensatz [BIKPP96] and Polynomial Calculus [CEI96]
proof systems, both of which are well-studied and for which lower bounds are known [BIKPP96;
BIK+96; Raz98; IPS99].

The recent Ideal Proof System (abbreviated as IPS) of Grochow and Pitassi [GP18] measures the
complexity of a refutation by the algebraic circuit complexity of the certificate

∑
i gifi+

∑
i hi(x

2
i −xi)

when the fi and x2
i − xi are provided as part of the input to the circuit. Because a refutation in the

IPS is written as an algebraic circuit, there are connections between algebraic circuit lower bounds
and lower bounds for the IPS. Grochow and Pitassi [GP18] proved that super-polynomial lower
bounds on the size of IPS refutations of a family of CNF formulas imply VP 6= VNP. As a proof
system, the IPS is very powerful: Grochow and Pitassi [GP18] showed that the IPS polynomially
simulates Extended Frege, itself a strong logic-based proof system. This simulation also behaves
nicely if we consider IPS refutations coming from a restricted circuit class C. For example, over a field
of characteristic p > 0, the constant-depth version of the IPS polynomially simulates AC0[p]-Frege, a
proof system notorious for its current lack of super-polynomial lower bounds.

Lower bounds, both conditional and unconditional, are known for the IPS. Conditionally, Alekseev,
Grigoriev, Hirsch, and Tzameret [AGHT20] showed that the Shub–Smale hypothesis implies super-
polynomial lower bounds on the size of IPS refutations of a particular instance of subset sum. Later
work by Santhanam and Tzameret [ST21b] showed that over finite fields, if there is an explicit family
of polynomials that cannot be computed by polynomial-size algebraic circuits, then a particular
family of CNF formulas cannot be refuted by polynomial-size IPS refutations. Combined with earlier
work by Grochow and Pitassi [GP18], this establishes that over finite fields, proving super-polynomial
lower bounds for the IPS is equivalent to proving super-polynomial lower bounds for algebraic
circuits. Forbes, Shpilka, Tzameret, and Wigderson [FSTW16] used techniques from algebraic circuit
complexity to prove unconditional lower bounds for restricted subsystems of the IPS, including
those computed by depth-three powering formulas, read-once algebraic branching programs, and
multilinear formulas.

The Ideal Proof System is defined in terms of algebraic circuits, so it is natural to expect progress
on IPS lower bounds to mirror progress on lower bounds for algebraic circuits. Empirically, this has
been the case, although additional effort is required to translate circuit lower bounds into IPS lower
bounds. To prove circuit lower bounds, one only needs to show that a single polynomial cannot be
computed by small circuits. In contrast, to prove lower bounds on the circuit size of IPS refutations
of a system of polynomials, it is necessary to show that small circuits cannot compute any valid
refutation.

Luckily, the set of IPS refutations of a fixed system of equations exhibits some algebraic structure:
all refutations of a fixed system of polynomials lie in a coset of a particular ideal, as observed by
Grochow and Pitassi [GP18, Section 6]. Thus, one can try to prove lower bounds for the IPS by
proving circuit lower bounds for nonzero cosets of ideals. To the best of our knowledge, the only
known lower bounds for nonzero cosets of ideals are those that follow from previously-mentioned
lower bounds on the IPS. Notably, these proofs do not directly establish lower bounds for cosets of
ideal, but rather reduce the task of proving IPS lower bounds to the more-tractable task of proving
algebraic circuit lower bounds. One could hope that by better understanding the complexity of
(cosets of) ideals, this progress could be used to prove lower bounds for IPS and restricted variants
thereof. We refer the interested reader to Grochow and Pitassi [GP18] and Grochow [Gro20] for

5

further details.
For more on the Ideal Proof System, see the recent survey of Pitassi and Tzameret [PT16].

1.4 Our Results

We now describe our results in more detail. Throughout this subsection, we let X denote an n×m
matrix of variables and Idet

n,m,r ⊆ F[X] the ideal generated by the r × r minors of X. For simplicity,
we state our results over fields of characteristic zero (such as the rational or complex numbers).

1.4.1 Complexity of Determinantal Ideals

Our main theorem constructs, for any nonzero polynomial f(X) ∈ Idet
n,m,r, a small f -oracle circuit

that approximately computes the s × s determinant for s = Θ(r1/3). This answers a question of
Grochow [Gro20, Conjecture 6.3] in the setting of border complexity.

Theorem 1.1 (Informal version of Theorem 3.8 and Corollary 3.9). Let F be a field of characteristic
zero. Let X be an n ×m matrix of variables and let Idet

n,m,r ⊆ F[X] be the ideal generated by the
r × r minors of X. Let f(X) ∈ Idet

n,m,r be a nonzero polynomial. Then there is a depth-three f -oracle
circuit of size O(n2m2) that approximately computes the s× s determinant for s = Θ(r1/3).

More generally, the conclusion of Theorem 1.1 holds if the determinant is replaced by any
polynomial g that can be approximately computed by an algebraic branching program with r vertices.
The conclusion of Theorem 1.1 also holds if we have oracle gates that approximately compute f
instead of oracles that compute f exactly.

An immediate consequence of Theorem 1.1 is that for formulas and low-depth circuits, the border
complexity of any nonzero polynomial in Idet

n,m,r is at least as large as the border complexity of the
Θ(r1/3)×Θ(r1/3) determinant, up to polynomial factors. To the best of our knowledge, the only
complexity lower bounds for the ideal Idet

n,m,r known prior to this work are due to Wiersig [Wie20]
and Forbes, Shpilka, Tzameret, and Wigderson [FSTW16, Corollary 6.7], who showed that every
nonzero polynomial in Idet

n,m,r is exp(Ω(r))-hard for several weak circuit classes.
To prove Theorem 1.1, we have to reason about arbitrary polynomials in Idet

n,m,r. That is, if
{g1, . . . , gN} are the r × r minors of X, we have to consider all nonzero polynomials of the form∑N

i=1 figi, where the fi are arbitrary polynomials. This is difficult in part because if we apply a linear
change of variables X 7→ L(X), it is not clear how to control the behavior of the fi. To circumvent
this, we use an alternate basis for F[X] instead of the monomial basis. This alternate basis consists of
products of minors (of possibly different sizes) of X that satisfy a particular combinatorial condition;
these products are known as standard bideterminants. Working in this basis, we gain a better
understanding of how the multiplicands fi behave under a change of variables.

The proof of Theorem 1.1 then proceeds in two steps. First, we find a change of variables that
takes a polynomial f ∈ Idet

n,m,r to an approximation (in the border complexity sense) of a standard
bideterminant h(X) in the support of f . The analysis of this step crucially relies on the use of the
standard bideterminant basis and its properties, which we describe in Subsection 2.5. Because f lies
in the ideal Idet

n,m,r, one can show that h(X) is divisible by a t× t minor of X for some t > r. The
second step is to find a projection of h(X) to the Θ(r1/3)×Θ(r1/3) determinant. Since h may be a
product of minors of varying sizes, we need to find a projection that (1) behaves nicely on small
minors of X and (2) allows us to deal with the possibility that h may be a large power of a minor.
We accomplish this by modifying an argument of Valiant [Val79].

6

1.4.2 Complexity of Pfaffian Ideals

Let Y be a 2n× 2n skew-symmetric matrix. It is well-known that the determinant of Y is the square
of another polynomial, the Pfaffian Pf(Y) of Y . Let Ipfaff

2n,2n ⊆ F[Y] be the ideal generated by the
Pfaffians of the 2r × 2r principal submatrices of Y . Our next result is an analogue of Theorem 1.1
for the ideal Ipfaff

2n,2r.

Theorem 1.2 (Informal version of Theorem 4.4 and Corollary 4.5). Let F be a field of characteristic
zero. Let Y be a 2n × 2n skew-symmetric matrix of variables and let Ipfaff

2n,2r ⊆ F[Y] be the ideal
generated by the Pfaffians of the 2r × 2r principal submatrices of Y . Let f(Y) ∈ Ipfaff

2n,2r be a nonzero
polynomial. Then there is a depth-three f -oracle circuit of size O(n4) that approximately computes
the s× s Pfaffian for s = Θ(r1/3).

The proof of Theorem 1.2 is similar to that of Theorem 1.1. The primary difference is that we
now express polynomials in Ipfaff

2n,2r in an alternate basis consisting of products of Pfaffians of principal
submatrices of Y . Along the way, we modify some of the technical details of the construction to
accommodate for Pfaffians instead of determinants.

We remark that because the Pfaffian is the square root of the skew-symmetric determinant (in
the sense that Pf(Y)2 = det(Y)), it is natural to attempt proving Theorem 1.2 using Theorem 1.1.
For any polynomial f(x), one can use the Taylor series expansion of

√
1 + x2 to construct a small

f(x)2-oracle circuit that computes f(x). Combining this with Theorem 1.1, one obtains an analogue
of Theorem 1.1 for the ideal generated by the squares of sub-Pfaffians of Y , which is weaker than
Theorem 1.2 above.

1.4.3 The Space of Partial Derivatives in Determinantal Ideals

The remainder of our work consists of three applications of Theorem 1.1 and its proof, the first
of which is to algebraic circuit complexity. For a polynomial f ∈ F[X], let ∂<∞(f) denote the
span of the partial (Hasse) derivatives of f . The dimension of ∂<∞(f) and related spaces has
been used successfully as a complexity measure in proving lower bounds for restricted classes of
algebraic circuits (see the survey of Saptharishi [Sap19] for more on this). While Theorem 1.1 shows
that computing a polynomial in Idet

n,m,r is not much harder than computing the Θ(r1/3)×Θ(r1/3)

determinant, it is natural to ask if there are polynomials in Idet
n,m,r that are “simpler” than the r × r

determinant with respect to complexity measures like dim(∂<∞(•)). Our next result shows that
among nonzero polynomials in the ideal Idet

n,m,r, the r × r determinant in fact minimizes the value of
dim(∂<∞(•)).

Theorem 1.3 (Informal version of Theorem 5.4). For every nonzero f(X) ∈ Idet
n,m,r, we have

dim(∂<∞(f)) > dim(∂<∞(detr)) =
(

2r
r

)
.

Using tools developed in the proof of Theorem 1.1, we can easily reduce the task of proving
Theorem 1.3 to the case where f(X) is a product of minors of X. As f is in the ideal Idet

n,m,r, at
least one factor of f must be an s × s minor of X for some s > r. We can then directly bound
dim(∂<∞(f)) from below by a slight generalization of the argument used to bound dim(∂<∞(dets)).

We note that one can easily prove a lower bound of dim(∂<∞(f)) > 2r using observations due to
Forbes, Shpilka, Tzameret, and Wigderson [FSTW16] (see Section 5 for details). Our result improves
on this, obtaining an optimal bound of

(
2r
r

)
= Θ(4r/

√
r).

7

1.4.4 Polynomial Identity Testing for Low-Depth Circuits and Formulas

Next, we use Theorem 1.1 to derandomize special cases of polynomial identity testing. It is a
straightforward consequence of Theorem 1.1 that for circuit classes like low-depth circuits and
formulas, computing any nonzero element of Idet

n,m,r is effectively as hard as computing the Θ(r1/3)×
Θ(r1/3) determinant. Over an algebraically closed field, the ideal Idet

n,m,r can be equivalently described
as the ideal of polynomials that vanish on matrices of rank less than r. Using this alternate description,
we construct hitting set generators that unconditionally hit the closure of small low-depth circuits
and conditionally hit the closure of small formulas.

Theorem 1.4 (Informal version of Theorem 6.8 and Theorem 7.3). Let F be a field of characteristic
zero. For every k ∈ N, there is a hitting set generator Gk with seed length n1/2k+o(1) and degree
2k that hits the closure of polynomial-size low-depth algebraic circuits. The generator Gk can be
computed by either (1) a circuit of product-depth k and size n1+o(1), or (2) a formula of size n1+o(1).
Assuming the border formula complexity of the determinant is super-polynomial, the generator Gk is
also a hitting set generator for the closure of polynomial-size algebraic formulas.

Our hitting set generators are very simple to describe. For k = 1, our generator takes as input
two matrices of variables Y and Z, where Y is a

√
n× no(1) matrix and Z is an no(1) ×

√
n matrix,

and outputs the product Y Z. For k > 2, we construct the generator Gk by arranging the input
variables of Gk−1 into a square matrix and replacing them with the product of an n1/2k+o(1) × no(1)

matrix and an no(1) × n1/2k+o(1) matrix.
To prove that our generators correctly hit polynomial-size low-depth circuits, we must show that

every small low-depth circuit does not vanish on the output of our generator. Using the description of
Idet
n,m,r as the ideal of polynomials vanishing on matrices of rank at most r, establishing the correctness
of our generators equates to proving that no small low-depth circuit can compute a polynomial in
the ideal Idet√

n,
√
n,no(1) . Such a lower bound follows in a straightforward manner by combining our

Theorem 1.1 with the recent breakthrough lower bounds of Limaye, Srinivasan, and Tavenas [LST21].
In the regime of nΘ(1) seed length, our generators attain a near-optimal tradeoff between seed

length and degree. It is not hard to show that a generator of seed length n1/2k+o(1) must be of degree
at least 2k, and conversely that any generator of degree 2k must have seed length at least Ω(n1/2k)
(see Lemma 2.6). We also note that the circuit complexity of our generators is near-optimal, as any
function with n outputs necessarily requires size Ω(n) to compute.

Prior to this, the best-known hitting set generator for low-depth circuits was given by Limaye,
Srinivasan, and Tavenas [LST21], using the hardness-randomness results of Chou, Kumar, and
Solomon [CKS19b]. They obtained, for all fixed ε > 0, a generator with seed length O(nε) and degree
O(log n/ log log n). Our construction attains the same seed length, but improves on the degree (as
remarked above) and the circuit complexity of the generator. When instantiated to hit circuits of
size s, the generator of Limaye, Srinivasan, and Tavenas [LST21] necessarily has circuit complexity
Ω(s). In contrast, our generator can be computed by a constant-depth circuit or formula of size
n1+o(1), even when hitting low-depth circuits of size O(n10100

).
For formulas, the best-known (conditional) constructions of hitting set generators prior to our

work are due to Dvir, Shpilka, and Yehudayoff [DSY09] and Chou, Kumar, and Solomon [CKS19b].
Both works yield generators with parameters similar to the low-depth generator of Limaye, Srinivasan,
and Tavenas [LST21] mentioned above (although the generator of [DSY09] can only hit formulas of
small individual degree). While our construction has better parameters, we use a stronger hardness
assumption than what is needed by prior work. The constructions of Dvir, Shpilka, and Yehudayoff
[DSY09] and Chou, Kumar, and Solomon [CKS19b] can be instantiated with any explicit family of
polynomials that requires formulas of super-polynomial size. In contrast, our construction depends

8

crucially on super-polynomial lower bounds on the border formula complexity of the determinant.
This is a stronger assumption, as the determinant is computable by polynomial-size branching
programs and circuits, a fact which likely does not hold for all explicit families of polynomials.

1.4.5 Lower Bounds for the Ideal Proof System

Finally, we use Theorem 1.1 to prove lower bounds for the Ideal Proof System. Let X and Y be n×n
matrices of variables and let In be the n× n identity matrix. Consider the system of polynomial
equations given by {detn(X) = 0, XY − In = 0}. This system is unsatisfiable, as detn(X) = 0 if
and only if X is non-invertible, while XY − In = 0 implies that X is invertible with inverse Y . We
show that the constant-depth version of the Ideal Proof System cannot efficiently refute this system.
Assuming lower bounds on the border formula complexity of the determinant, we also show that
formula-IPS cannot efficiently refute this system. We remark that our lower bounds also hold when
the boolean axioms x2

i,j − xi,j = 0 are included in the system of equations, but we suppress these
here for brevity.

Theorem 1.5 (Informal version of Corollary 8.2 and Theorem 8.4). Let F be a field of characteristic
zero. Let X and Y be n× n matrices of variables and let In be the n× n identity matrix. Then any
IPS refutation of the system {det(X) = 0, XY − In = 0} cannot be approximately computed by a
constant-depth circuit of polynomial size. Assuming the border formula complexity of the determinant
is super-polynomial, then any IPS refutation of this system cannot be approximately computed by a
formula of polynomial size.

We do this by following the approach of Forbes, Shpilka, Tzameret, and Wigderson [FSTW16],
who showed that lower bounds for the IPS can be derived from circuit lower bounds for multiples
of a polynomial. Our choice of the system {detn(X) = 0, XY − In = 0} is motivated by the fact
that, using the techniques of [FSTW16], the desired IPS lower bounds follow from circuit lower
bounds for multiples of the determinant. We can obtain the necessary lower bounds by combining
our Theorem 1.1 with lower bounds against the determinant. In the case of low-depth circuits,
our IPS lower bounds are unconditional thanks to the recent breakthrough circuit lower bounds of
Limaye, Srinivasan, and Tavenas [LST21]. For formula-IPS, our lower bounds remain conditional.

We also show that computing an IPS refutation of our hard instance {detn(X) = 0, XY −In = 0}
reduces to computing the determinant. Namely, we give a small depth-three circuit with detn-
oracle gates that computes an IPS refutation of our hard instance. Passing to border complexity
(using Lemma 2.3), this shows that the approximative complexity of the smallest IPS refutation
of {detn(X) = 0, XY − In = 0} is sandwiched between the approximative complexity of the
Θ(n1/3)×Θ(n1/3) and n× n determinants.

The strongest unconditional lower bounds for the IPS prior to our work are due to Forbes,
Shpilka, Tzameret, and Wigderson [FSTW16], who proved lower bounds for subsystems of the
IPS computed by restricted classes of circuits, including read-once oblivious algebraic branching
programs and multilinear formulas. Impagliazzo, Mouli, and Pitassi [IMP20] showed that the
constant-depth version of Polynomial Calculus (PC) over finite fields is surprisingly strong. The
size of a constant-depth IPS refutation is essentially the number of lines in a constant-depth PC
refutation, so lower bounds for constant-depth IPS over finite fields imply comparable lower bounds
for constant-depth PC. However, our lower bounds do not extend to finite fields, nor do our lower
bounds hold for refutations of an unsatisfiable CNF, so we are unable to conclude lower bounds for
constant-depth PC and related proof systems.

We also mention a recent work of Alekseev [Ale21], who proved lower bounds on the bit-size of
refutations in a version of PC augmented with an extension rule. This is somewhat incomparable

9

to our result: Alekseev’s proof system allows for proofs of arbitrary depth, but must pay to use
constants of large bit complexity; on the other hand, we work with a low-depth proof system that
can use arbitrary rational numbers (or even arbitrary complex numbers) for free. Our lower bound
is on circuit size, which is analogous to the number of lines in PC, whereas Alekseev’s lower bound
is on the number of bits needed to write down a refutation, which does not necessarily imply a lower
bound on the number of proof lines.

2 Preliminaries

For a natural number n ∈ N, we write [n] := {1, 2, . . . , n}. We use x = (x1, . . . , xn) to denote a
vector of variables and X = (xi,j)i∈[n],j∈[m] to denote a matrix of variables. For a matrix A ∈ Fn×m
and sets R ⊆ [n], C ⊆ [m], we denote by AR,C the submatrix of A whose rows and columns are taken
from the sets R and C, respectively. A submatrix AR,C is principal if R = C. Given a polynomial
f(x) ∈ F[x], it will often be useful to view the variables x as the entries of a matrix, typically of size
d
√
ne × d

√
ne. The precise way in which the variables x are arranged into a matrix will not matter,

so we will perform this rearrangement implicitly without specifying the details. If X is an n×m
matrix of variables, then for r 6 min(n,m) we denote by Idet

n,m,r ⊆ F[X] the ideal of F[X] generated
by the r × r minors of X.

We endow F[X] with a (Nn ⊕ Nm)-grading in the following way. Let ei ∈ Nn denote the element
of Nn with 1 in the ith position and zeroes elsewhere. By abuse of notation, we also use ei to denote
the corresponding element of Nm. We assign degree ei ⊕ ej to the variable xi,j and extend this to
F[X] in the natural way. The degree of an element f ∈ F[X] with respect to this grading is called
the multidegree of f , written multideg(f). We say an element of F[X] is multihomogeneous if it is
homogeneous with respect to this grading.

Recall that given a field F and an indeterminate x, we write

• F[x] for the ring of polynomials in x with coefficients from F,

• F(x) for the field of rational functions in x with F-coefficients,

• FJxK for the ring of formal power series in x over F, and

• F((x)) for the field of formal Laurent series in x over F (equivalently, the field of fractions of
FJxK).

We assume familiarity with the basic notion of an algebraic circuit and restricted classes thereof,
including formulas, branching programs, and bounded-depth circuits. The interested reader may
consult the surveys of Shpilka and Yehudayoff [SY10] and Saptharishi [Sap19] or the text of Bürgisser,
Clausen, and Shokrollahi [BCS97] for more on algebraic circuits.

2.1 Border Complexity

We now define border complexity, a modification of the standard notion of algebraic complexity.

Definition 2.1. Let F be any field and let ε be an indeterminate. Let f(x) ∈ F[x]. We say that
an algebraic circuit C border computes f if C is defined over F((ε)) and computes a polynomial in
FJεK[x] such that

C(x) = f(x) + εg(x)

for some g(x) ∈ FJεK[x]. We abbreviate this as C(x) = f(x) +O(ε). The border complexity of f is
the size of the smallest circuit C that border computes f . ♦

10

If C ⊆ F[x] is a set of polynomials computed by some class of circuits, we denote by C ⊆ F[x] the
set of polynomials computed by the border of this same set of circuits. For example, VP denotes the
class of n-variate polynomials that have nO(1) degree and can be computed by circuits of nO(1) size,
while VP denotes n-variate polynomials of degree nO(1) that can be border computed by circuits of
nO(1) size.

Over fields of characteristic zero, one can interpret border complexity as a notion of approximate
computation. In this case, if C(x) = f(x) + O(ε), then limε→0C(x) = f(x), so C computes a
polynomial that coefficient-wise approximates f arbitrarily well as ε goes to zero. Since the circuit
C is defined over F((ε)), it may be the case that C is not well-defined when ε = 0, as intermediate
computations may involve division by ε. This prohibits setting ε = 0 in order to obtain a circuit
that computes f exactly.

When the underlying field F has positive characteristic (for example, when F is finite), this
notion of approximation breaks down. However, we can consider “approximate” computation in the
symbolic sense defined above, which is still meaningful.

Alternatively, one can define border complexity using only the polynomial ring F[ε], avoiding the
use of FJεK and F((ε)). In this modified definition, we say that a circuit C border computes f(x) if
C is defined over F[ε] and there is a polynomial g(x) ∈ F[ε][x] and a natural number q ∈ N such that

C(x) = εqf(x) + εq+1g(x).

We abbreviate this as C(x) = εqf(x) +O(εq+1). It turns out that these notions are equivalent, as
one can translate between them by appropriately modifying the constants appearing in the circuit;
see Bürgisser [Bür04, Lemma 5.6(1)] for a proof. (Note that the statement of [Bür04, Lemma 5.6(1)]
only claims equivalence up to a factor of 2 in complexity. This arises due to the fact that the
model of straight-line programs used in [Bür04] charges for scalar multiplications, whereas we allow
multiplication by scalars for free.)

Given a set of polynomials F := {f1, . . . , fk} ⊆ F[x], one can also define the border complexity
of F to be the size of the smallest multi-output circuit C(x) over F((ε)) such that C outputs
{f1 + O(ε), . . . , fk + O(ε)}. Naturally, one can also consider (single- or multi-output) border
complexity with respect to subclasses of algebraic circuits, such as formulas, branching programs, or
constant-depth circuits.

It will be useful to make the dependence of a polynomial on the approximation parameter ε
explicit. In this case, we may write f(x, ε) for a polynomial in FJεK[x] or F[ε][x], even though ε is
regarded as an element of the underlying ring and is not a variable. This affords convenient notation
for applying the map ε 7→ εN for some N ∈ N or the map δ 7→ εN for a second indeterminate δ. We
can use this to compose approximations as in the lemma below.

Lemma 2.2 ([Bür04, Lemma 2.3(1)]). Let f(x) ∈ F[x]. Suppose

1. Φ is a circuit over F((ε))[x] such that Φ(x, ε) = f(x) +O(ε) ∈ FJεK[x], and

2. Ψ is a circuit over F((δ))((ε))[x] such that Ψ(x, ε, δ) = Φ(x, ε) +O(δ) ∈ FJδK((ε))[x].

Then there is some sufficiently large N ∈ N such that Ψ(x, ε, εN) = f(x) +O(ε) ∈ FJεK[x].

It is tempting to prove the preceding lemma by setting δ = ε and concluding that Ψ(x, ε, ε) =
f(x) + O(ε). This is incorrect, as the O(δ) error term in Ψ(x, ε, δ) may involve division by ε, so
setting δ = ε may introduce erroneous terms to the output of Ψ(x, ε, δ). By setting δ = εN for
sufficiently large N ∈ N, this problem is avoided.

Let f(x), g(x) ∈ F[x] be polynomials such that f(x) +O(ε) can be computed by a circuit with
g-oracle gates. Suppose we want to replace the g-oracle gates with oracles that approximately

11

compute g(x), i.e., oracle gates that compute some h(x, δ) = g(x) +O(δ). As a consequence of the
preceding lemma, we can obtain a circuit that computes f(x) +O(ε) by using h(x, εN)-oracles for
some sufficiently large N .

Lemma 2.3. Let f(x), g(x) ∈ F[x] be polynomials. Suppose f(x)+O(ε) can be computed by a circuit
of size s with g-oracle gates. Let h(x, δ) ∈ FJδK[x] be a polynomial such that h(x, δ) = g(x) +O(δ).
Then there is some N ∈ N such that f(x) + O(ε) can be computed by a circuit of size s with
h(x, εN)-oracle gates.

Proof. Let Φ(x, ε) be a g-oracle circuit that computes f(x) +O(ε) over F((ε))[x]. Let Ψ(x, ε, δ) be
the circuit over F((δ))((ε))[x] obtained by replacing each g-oracle gate with an h(x, δ) oracle. Since
h(x, δ) = g(x) +O(δ), we have

Ψ(x, ε, δ) = Φ(x, ε) +O(δ) ∈ FJδK((ε))[x].

Applying Lemma 2.2 yields an N ∈ N such that Ψ(x, ε, εN) = f(x) +O(ε) as desired.

2.2 Polynomial Identity Testing

When designing deterministic algorithms for polynomial identity testing (PIT), our focus will be
on the black-box regime, where we are given access to a circuit Φ through an evaluation oracle.
Derandomizing PIT in this setting is equivalent to giving an explicit construction of a hitting set,
defined below, for the set of polynomials computed by small circuits.

Definition 2.4. Let C ⊆ F[x] be a set of polynomials. A set H ⊆ Fn is a hitting set for C if for
every nonzero f ∈ C, there is some α ∈ H such that f(α) 6= 0. ♦

Alternatively, one can try to find an explicit, low-degree map G : F` → Fn with `� n such that
f(G(y)) 6= 0 if f is a nonzero polynomial computed by a small circuit.

Definition 2.5. Let C ⊆ F[x] be a set of polynomials. A polynomial map G : F` → Fn is a hitting
set generator for C if for every nonzero f ∈ C, we have f(G(y)) 6= 0. We call ` the seed length of the
generator. The degree of the generator, denoted by deg(G), is given by maxi∈[n] deg(Gi). ♦

Small hitting sets (and hitting set generators with small seed length and low degree) are known
to exist non-constructively. In derandomizing PIT, one seeks efficient uniform constructions of these
objects. One can show that the notions of hitting sets and generators are essentially equivalent using
polynomial interpolation (see, e.g., Shpilka and Volkovich [SV15, Section 4]). In this work, we will
prefer the language of generators, as they are more amenable to composition than are hitting sets.

It is natural to extend the definition of a hitting set to the setting of border complexity. Over
fields of characteristic zero, Forbes and Shpilka [FS18] defined a notion of a robust hitting set for a
class C. Using continuity, one can easily show that if H is a robust hitting set for a class C, then H
is also a hitting set for the closure C. In this work, we will be concerned with hitting sets for the
closures of circuit classes, but we will not pay particular attention to the robustness parameter, as
some of our constructions take place in characteristic p > 0.

We note that a generator cannot simultaneously have very small seed length and very low degree.
In particular, a generator of degree Θ(1) must have seed length nΘ(1).

Lemma 2.6. Let C ⊆ F[x] be a set of polynomials such that C contains all linear polynomials.
Suppose G : F` → Fn is a hitting set generator for C of degree d. Then we must have

(
`+d
d

)
> n. In

particular, if d is a fixed constant independent of n, then ` > Ω(n1/d).

12

Proof. For i ∈ [n], let Gi(y) be the ith coordinate of G. Observe that each Gi(y) is a polynomial in `
variables of degree at most d. The space of `-variate polynomials of degree at most d is a vector space
of dimension

(
`+d
d

)
. Suppose for the sake contradiction that

(
`+d
d

)
< n. Then there is a non-trivial

linear relation among the n coordinates of G. That is, there is a linear polynomial L(x1, . . . , xn) 6= 0
such that

L(G1(y), . . . ,Gn(y)) = 0.

Since L(x) is linear, we have L ∈ C. This contradicts the assumption that G is a hitting set generator
for C.

2.3 Matrix Rank

We will frequently make use of the fact that the rank of a matrix can be characterized by the
(non-)vanishing of its minors. This is a straightforward consequence of the fact that the row rank
and column rank of a matrix coincide.

Lemma 2.7. Let A ∈ Fn×m. Then rank(A) > r if and only if some r × r minor of A does not
vanish. Equivalently, rank(A) < r if and only if every r × r minor of A vanishes.

We now define the hitting set generator which will be the focus of our work on PIT.

Construction 2.8. Let n,m, r ∈ N with r 6 min(n,m). Define the map Gn,m,r : Fn×r × Fr×m →
Fn×m via

Gn,m,r(Y,Z)i,j = (Y Z)i,j .

The following are immediate consequences of the definition of Gn,m,r(Y,Z).

Lemma 2.9. Let Gn,m,r : Fn×r × Fr×m → Fn×m be defined as in Construction 2.8.

1. The image of Gn,m,r contains all n×m matrices of rank at most r.

2. Each coordinate of Gn,m,r(Y,Z) is a 2r-sparse degree-2 polynomial in the variables Y ∪ Z.

3. The map Gn,m,r(Y,Z) can be computed by a multi-output algebraic circuit of size 2nmr and
product-depth 1. Additionally, each coordinate of the output can be computed by a homogeneous
formula of size 2r.

In order to prove that Gn,m,r is a hitting set generator for a class of circuits C, it will be useful
to understand which polynomials vanish when composed with Gn,m,r. If f(X) ∈ F[X] is a nonzero
polynomial such that f(Gn,m,r(Y, Z)) = 0, then f necessarily vanishes on all n×m matrices of rank
at most r. The ideal of polynomials which vanish on matrices of rank at most r is well-understood
from the viewpoint of mathematics.

Let Idet
n,m,r be the ideal generated by the r × r minors of a generic n×m matrix and let Jn,m,r

be the ideal of polynomials which vanish on all n × m matrices of rank at most r. It is clear
that Idet

n,m,r+1 ⊆ Jn,m,r. When the field F is algebraically closed, we in fact have the equality
Idet
n,m,r+1 = Jn,m,r. This follows from Hilbert’s Nullstellensatz and the fact that Idet

n,m,r is radical (see,
for example, [BV88, Theorem 2.10 and Remark 2.12]). This implies that if f(X) is nonzero and
f(Gn,m,r(Y, Z)) = 0, then f ∈ Jn,m,r = Idet

n,m,r+1.
In the case where F is not algebraically closed, we can still conclude that f ∈ Idet

n,m,r+1 if
f(Gn,m,r(Y,Z)) = 0. This follows from the fact that if f(Gn,m,r(Y,Z)) = 0, then f vanishes on
matrices of rank at most r with entries in any extension K ⊇ F. In particular, f vanishes on matrices
of rank at most r with entries in F, the algebraic closure of F.

We record the preceding observations as a lemma.

13

Lemma 2.10. Let F be any field and let n,m, r ∈ N with r 6 min(n,m). Let Idet
n,m,r denote the

ideal of F[X] generated by the r × r minors of a generic n×m matrix and let f(X) ∈ F[X]. Then
f(Gn,m,r−1(Y,Z)) = 0 if and only if f(X) ∈ Idet

n,m,r.

2.4 Hasse Derivatives

In this work, we use Hasse derivatives in place of the standard partial derivative. Originally defined
by Hasse [Has36], Hasse derivatives are a notion of derivative that is more well-behaved over fields of
small positive characteristic. For a more thorough treatment of Hasse derivatives and their properties,
see, for example, the thesis of Forbes [For14, Appendix C].

Definition 2.11. Let F be a field and let f(x) ∈ F[x]. For a ∈ Nn, we define the ath Hasse derivative
of f(x) to be

∂

∂xa
(f) := Coeffya(f(x+ y)),

where f(x+ y) is viewed as a polynomial in F[x][y]. ♦

Equivalently, one can define Hasse derivatives in terms of their action on monomials.

Lemma 2.12. Let a, b ∈ Nn. Then

∂

∂xa
(xb) =

n∏
i=1

(
bi
ai

)
xbi−aii ,

where we use the convention that
(
b
a

)
= 0 if b < a.

A straightforward consequence of the preceding lemma is that Hasse derivatives interact nicely
with degree.

Lemma 2.13. Let f(x) ∈ F[x] and let a ∈ Nn. Then

deg

(
∂

∂xa
(f)

)
6 deg(f)− ‖a‖1,

with equality if ∂
∂xa

(f) 6= 0.

Hasse derivatives also respect the multigrading on F[X].

Lemma 2.14. Let f ∈ F[X] be a multihomogeneous polynomial and let A ∈ Nn×m. Write XA :=∏n
i=1

∏m
j=1 x

ai,j
i,j for the monomial with powers given by the matrix A. If ∂f

∂XA 6= 0, then

multideg

(
∂f

∂XA

)
= multideg(f)−multideg(XA).

Just like standard partial derivatives, Hasse derivatives commute with one another.

Lemma 2.15 (see, e.g., [For14, Lemma C.1.4(5)]). Let f ∈ F[x] and let a, b ∈ Nn. Then

∂

∂xa

(
∂

∂xb
(f)

)
=

∂

∂xb

(
∂

∂xa
(f)

)
.

Hasse derivatives obey a modified form of the product rule.

14

Lemma 2.16 (see, e.g., [For14, Lemma C.1.7]). Let f1, . . . , fm ∈ F[x]. For any i ∈ [n] and a ∈ N,
we have

∂

∂xai
(f1 · · · fm) =

∑
a1+···+am=a

∂

∂xa1
i

(f1) · · · ∂

∂xami
(fm).

We now define the space of (dth order) partial derivatives of a polynomial. The dimension of this
space (and related spaces, like the space of shifted partial derivatives [Kay12]) is a useful complexity
measure within algebraic circuit complexity.

Definition 2.17. Let f(x) ∈ F[x]. The space of partial derivatives of f , denoted ∂<∞(f), is defined
as

∂<∞(f) := spanF

{
∂f

∂xa
: a ∈ Nn

}
.

The space of dth-order partial derivatives of f , written ∂d(f), is given by

∂d(f) := spanF

{
∂f

∂xa
: a ∈ Nn, ‖a‖1 = d

}
.

We also write

∂6d(f) := spanF

d⋃
i=0

∂i(f)

for the space of partial derivatives of order at most d. ♦

We will need the following lemma relating the dimension of the space of partial derivatives of a
polynomial f(x) and a linear projection f(Ax).

Lemma 2.18. Let f(x) ∈ F[x] and let A ∈ Fn×n. Then for every d ∈ N, we have dim(∂6d(f(Ax))) 6
dim(∂6d(f(x))). In particular, if A is invertible, then dim(∂6d(f(Ax))) = dim(∂6d(f(x))).

Proof. Using the chain rule for Hasse derivatives, one can show (see, e.g., [For14, Corollary C.2.7])
that for all e ∈ Nn with ‖e‖1 6 d, we have

∂

∂xe
(f(Ax)) ∈ spanF{g(Ax) : g(x) ∈ ∂6d(f(x))}.

Let V := spanF{g(Ax) : g(x) ∈ ∂6d(f(x))}. This implies

∂6d(f(Ax)) ⊆ V,

so
dim ∂6d(f(Ax)) 6 dimV.

We now show that dimV bounded by dim ∂6d(f(x)). Let g1(x), . . . , gk(x) ∈ ∂6d(f(x)) and suppose
that g1(Ax), . . . , gk(Ax) are linearly independent. This implies that g1(x), . . . , gk(x) are linearly inde-
pendent, as any linear relation satisfied by g1(x), . . . , gk(x) will also be satisfied by g1(Ax), . . . , gk(Ax).
If we select the gi such that {g1(Ax), . . . , gk(Ax)} forms a basis of V , then we have

dimV = k 6 dim ∂6d(f(x)).

Combining this with the previous inequality completes the proof.
In the case where A is invertible, we use the fact that x = A−1Ax to obtain

dim ∂6d(f(x)) 6 dim ∂6d(f(Ax)) 6 dim ∂6d(f(x)),

so equality holds.

We note that by taking d > deg(f) in Lemma 2.18, one can replace ∂6d(•) with ∂<∞(•).

15

2.5 Bideterminants and the Straightening Law

The proof of Theorem 3.8 relies on understanding how a polynomial f ∈ Idet
n,m,r behaves under the

map X 7→ AXB for invertible matrices A and B. For example, it is easy to see that f(AXB) also
lies in Idet

n,m,r. However, it is not clear if there is other structure we may take advantage of. By
working in a different basis of F[X], we can better understand how f(AXB) relates to f(X). Before
describing this basis, we recall the notions of a Young diagram and Young tableau.

Definition 2.19. A partition σ = (σ1, σ2, . . . , σk) is a non-increasing sequence of natural numbers.
If
∑k

i=1 σi = n, we write σ ` n. The transpose of σ, denoted σ̂, is the partition given by σ̂i =
|{j : σj > i}|. Associated with a partition σ is its Young diagram Dσ ⊆ N × N, given by Dσ =
{(i, j) : j 6 σi}. ♦

Note that σ̂1 counts the number of rows in the Young diagram of σ. We graphically depict
the Young diagram of a partition as a collection of boxes. For example, the Young diagram of the
partition (4, 2, 2, 1) is

.

This partition has transpose (4, 3, 1, 1), with Young diagram given by

.

The lexicographic ordering on integer sequences induces an ordering on partitions, which we denote
by <lex.

We now define Young tableaux, which can be obtained by writing a number in each cell of the
Young diagram of some partition σ.

Definition 2.20. Given a partition σ, a Young tableau T of shape σ is a map T : Dσ → N assigning
a natural number to each cell of the Young diagram of σ. We denote the ith row of T by T (i, •),
which we will view as either a set or a one-row Young tableau depending on context. A Young tableau
is standard if its entries are strictly increasing along each column and along each row. A Young
tableau is semistandard if its entries are strictly increasing along each column and are nondecreasing
along each row. If T : Dσ → N is a Young tableau, its conjugate tableau T̂ : Dσ̂ → N is given by
T̂ (i, j) = T (j, i). ♦

Continuing the example above, one Young tableau (of many) of shape (4, 2, 2, 1) is given by

1 2 4 3
1 2
4 1
3

.

Next, we introduce bitableaux and bideterminants. A bitableau is simply a pair of Young tableau
of the same shape, while a bideterminant is a natural polynomial associated to this pair of tableaux.

16

Definition 2.21. Let X = (x1,1, . . . , xn,n) be an n× n matrix of variables. A bitableau (S, T) is a
pair of Young tableaux of the same shape σ. If the entries of S and T are from [n], we associate to
(S, T) the bideterminant (S|T)(X), defined as

(S|T)(X) :=

σ̂1∏
i=1

det

xS(i,1),T (i,1) xS(i,1),T (i,2) · · · xS(i,1),T (i,σi)

xS(i,2),T (i,1) xS(i,2),T (i,2) · · · xS(i,2),T (i,σi)
...

...
. . .

...
xS(i,σi),T (i,1) xS(i,σi),T (i,2) · · · xS(i,σi),T (i,σi)

.
The ith term in this product is the determinant of the submatrix whose rows and columns are listed
in the ith row of the tableaux S and T , respectively. The width of the bideterminant (S|T) is given
by σ1. We say that the bitableau (S, T) and bideterminant (S|T) are standard if, as tableaux, both
S and T are increasing along each row and nondecreasing along each column (equivalently, that S
and T are both the transpose of a semistandard Young tableau). ♦

For example, associated to the bitableau 1 2 3
1 3
4

,
1 3 4
2 4
3

is the bideterminant

det

x1,1 x1,3 x1,4

x2,1 x2,3 x2,4

x3,1 x3,3 x3,4

 det

(
x1,2 x1,4

x3,2 x3,4

)
det
(
x4,3

)
.

Note that a bideterminant (S|T) is multihomogeneous of degree (s1e1+· · ·+snen)⊕(t1e1+· · ·+tnen),
where si and ti count the number of occurrences of i in S and T , respectively.

It is easy to see that the bideterminants span F[X], since a monomial
∏d
i=1 xri,ci is the bideter-

minant corresponding to the bitableau r1

r2

· · ·
rd

,

c1

c2

· · ·
cd

.
Perhaps surprisingly, there is a natural subset of the bideterminants which form a basis of F[X].

Theorem 2.22 ([DRS74]). The standard bideterminants form a basis of F[X].

To show F[X] is spanned by standard bideterminants, it suffices to express non-standard bideter-
minants as linear combinations of standard bideterminants. The fact that this can be done, along
with some additional structural information, is known as the straightening law. For more on the
straightening law, including its history and its applications to invariant theory, see the introduction
of Désarménien, Kung, and Rota [DKR78].

Theorem 2.23 ([DRS74], see also [DKR78; dCEP80]). Let (S|T)(X) be a bideterminant of shape
σ. Then (S|T)(X) can be expressed as a linear combination

(S|T)(X) =
∑

(A,B)

cA,B(A|B)(X),

where the cA,B are integers and the sum ranges over all standard bitableaux (A,B) of shape τ such
that τ >lex σ.

17

One immediate corollary of this is a characterization of polynomials in the ideal Idet
n,m,r by their

support in the standard bideterminant basis.

Corollary 2.24. A polynomial f ∈ F[X] is an element of the ideal Idet
n,m,r if and only if f is supported

on bideterminants of width at least r.

2.6 Pfaffians

This subsection departs slightly from the setting of the previous subsections. Let X be a 2n× 2n
skew-symmetric matrix of variables. That is, the (i, j) entry of X is the variable xi,j and the variables
xi,j and xj,i satisfy the relation xi,j = −xj,i. It is well-known that the determinant of X is the
square of a polynomial; this square root of the determinant is the Pfaffian of X. Formally, one can
define the Pfaffian Pf(X) as

Pf(X) =
1

2nn!

∑
σ∈S2n

sgn(σ)

n∏
i=1

xσ(2i−1),σ(2i),

where S2n is the group of all permutations on [2n] = {1, . . . , 2n}. Each monomial in the above sum
appears 2nn! times, so every monomial in the support of the Pfaffian has a coefficient of 1 or −1. In
particular, the Pfaffian is well-defined even over fields of small characteristic.

As remarked above, we have Pf(X)2 = det(X) when X is a skew-symmetric matrix. If X is
an m × m skew-symmetric matrix for odd m, then det(X) = 0, so we restrict our attention to
matrices of even order. The equation Pf(X)2 = det(X) relates the Pfaffian and determinant of a
skew-symmetric matrix. For general matrices, we can relate Pfaffians and determinants via the
following lemma.

Lemma 2.25. Let A be a 2n× 2n skew-symmetric matrix and let B be an arbitrary 2n× 2n matrix.
Then BAB> is skew-symmetric and Pf(BAB>) = det(B) Pf(A).

We will also make use of the symmetries of the Pfaffian as described in the next lemma.

Lemma 2.26. Let A be an n× n matrix. Then

Pf

(
0 A
−A> 0

)
= (−1)(

n
2) det(A).

As with determinants, one can consider the ideal generated by sub-Pfaffians of the same size of a
skew-symmetric matrix. To ensure that the Pfaffian of a submatrix of X is well-defined, we restrict
our attention to principal submatrices. Recall that a submatrix XR,C of X is principal if R = C. If
X is skew-symmetric, then so is any principal submatrix of X. Throughout this work, we will use
Ipfaff

2n,2r to denote the ideal of F[X] generated by the Pfaffians of the 2r × 2r principal submatrices of
X.

Much like the case with determinants, one can understand the ideal Ipfaff
2n,2r using an analo-

gous straightening law for Pfaffians. To do this, we begin by defining the analogues of standard
bideterminants for Pfaffian ideals.

Definition 2.27. Let T be a conjugate semistandard Young tableau of shape σ such that every
row of T has even length. We associate to T the standard monomial [T](X), which is a polynomial
defined as the product of Pfaffians

[T](X) :=

σ̂1∏
i=1

Pf

xT (i,1),T (i,1) xT (i,1),T (i,2) · · · xT (i,1),T (i,σi)

xT (i,2),T (i,1) xT (i,2),T (i,2) · · · xT (i,2),T (i,σi)
...

...
. . .

...
xT (i,σi),T (i,1) xT (i,σi),T (i,2) · · · xT (i,σi),T (i,σi)

.

18

That is, the ith polynomial in the above product is the Pfaffian of the submatrix of X whose rows
and columns are listed in the ith row of the tableau T . The width of [T](X) is σ1, the size of the
largest Pfaffian in the above product. ♦

If we were to extend the above definition to all Young tableaux, it is clear that the resulting set
of polynomials spans F[X], since

[
i j

]
(X) = Pf

(
0 xi,j
−xi,j 0

)
= xi,j .

However, we do not lose much by ignoring these non-standard monomials. In a manner analogous to
the determinantal case, de Concini and Procesi [dCP76] proved that the standard monomials form a
basis of F[X].

Theorem 2.28 ([dCP76, Theorem 6.5]). For any commutative ring R with unity, the standard
monomials form a basis of R[X].

To prove this, de Concini and Procesi [dCP76] showed that the standard monomials span R[X]
and that any non-standard monomial can be written as a linear combination of standard monomials.
The expression of a non-standard monomial as a linear combination of standard monomials is, as in
the determinantal case, known as the straightening law. Using the straightening law of de Concini
and Procesi [dCP76, Lemmas 6.1 and 6.2], one can show (following Doubilet, Rota, and Stein
[DRS74, Section 8]) that a non-standard monomial of width 2r is supported only on standard
monomials of width at least 2r. A straightforward corollary of this is that every polynomial in the
ideal generated by the Pfaffians of the principal 2r × 2r submatrices of a matrix X is supported on
standard monomials of width at least 2r.

Corollary 2.29. Let X be a generic 2n×2n skew-symmetric matrix. Let Ipfaff
2n,2r be the ideal generated

by the Pfaffians of the 2r × 2r principal submatrices of X. Then any f ∈ Ipfaff
2n,2r is supported on

standard monomials of width at least 2r.

2.7 Monomial Orders

Our use of border complexity stems from the need to construct circuits that compute only a particular
subset of the monomials appearing in the support of a polynomial f . To do this, we make use of
monomial orders and leading monomials, which we now define.

Definition 2.30. A monomial order ≺ is a total order on the monomials of F[x] which satisfies

1. 1 ≺ xa for all nonzero a ∈ Nn, and

2. if xa ≺ xb, then xa+c ≺ xb+c for all a, b, c ∈ Nn. ♦

Definition 2.31. Let ≺ be a monomial order and let f(x) ∈ F[x] be a nonzero polynomial. The
leading monomial of f with respect to ≺, written LM≺(f), is the ≺-maximal monomial appearing in
the support of f . The leading coefficient of f with respect to ≺, denoted LC≺(f), is the coefficient of
LM≺(f) when f is written as a sum of monomials. ♦

We may write LM(f) and LC(f) for the leading monomial and coefficient of f , respectively, if
the order ≺ is clear from context. A useful property of leading monomials is that taking the leading
monomial commutes with products of polynomials.

19

Lemma 2.32. Let ≺ be a monomial order and let f, g ∈ F[x] be nonzero polynomials. Then
LM≺(fg) = LM≺(f) · LM≺(g).

We will primarily be interested in lexicographic orders, which are a special case of weight orders.
To specify a weight order, we are given some weight vector u ∈ Rn, and we order two monomials
xa and xb by comparing the inner products 〈u, a〉 and

〈
u, b
〉
. To obtain a total order on the set

of monomials, ties must be broken. This is done by choosing another weight vector w ∈ Rn and
breaking ties by comparing 〈w, a〉 and

〈
w, b

〉
. If ties are still possible, we continue choosing new

weight vectors until all ties are broken. It turns out that every monomial order can be obtained
from such a collection of weight vectors.

Theorem 2.33 ([Rob86, Theorem 2.5], see [Rob85] for a proof). Let ≺ be a monomial ordering on
F[x]. Denote by 〈•, •〉 the standard inner product on Rn. There is an integer s ∈ [n] and vectors
u(1), . . . , u(s) ∈ Rn such that xa ≺ xb if and only if there is some j ∈ [s] such that

1.
〈
a, u(i)

〉
=
〈
b, u(i)

〉
for all i < j, and

2.
〈
a, u(j)

〉
<
〈
b, u(j)

〉
.

Our focus will be on monomial orders specified by integral weight vectors, which includes all
lexicographic orders.

Fact 2.34. Any lexicographic monomial ordering can be specified by a collection of integral weight
vectors. ♦

Let f(x) ∈ R[x] be a polynomial over a commutative ring R and let ≺ be a monomial order
that corresponds to a collection of integral weights. It will be useful later on to find an assignment
xi 7→ εdi of the variables to powers of ε such that f(x) evaluates to εm LC≺(f) +O(εm+1) for some
integer m. As a first step, we record as a lemma an argument of Bürgisser [Bür04, Example 2.2] on
degenerating a polynomial to a face of its Newton polytope.

Lemma 2.35 ([Bür04, Example 2.2]). Let R be a commutative ring and let f ∈ R[x] be given by

f(x) =
∑

a∈supp(f)

αax
a.

Let u ∈ Zn, let λ = maxa∈supp(f)〈a, u〉, and let H = {a ∈ supp(f) : 〈a, u〉 = λ}. Then

ελf(ε−u1x1, . . . , ε
−unxn) =

∑
a∈supp(f)∩H

αax
a +O(ε).

One can iteratively apply this lemma, further restricting the monomials of f to have exponents
that lie in the intersection of multiple hyperplanes.

Lemma 2.36. Let R be a commutative ring and let f ∈ R[x] be given by

f(x) =
∑

a∈supp(f)

αax
a.

Let u(1), . . . , u(k) ∈ Rn be vectors. For each i ∈ [k], let

λi := max
a∈supp(f)∩H1∩···∩Hi−1

〈
a, u(i)

〉
Hi :=

{
a ∈ supp(f) ∩H1 ∩ · · · ∩Hi−1 :

〈
a, u(i)

〉
= λ

}
.

20

Then there are integers d1, . . . , dn and m such that

εmf(εd1x1, . . . , ε
dnxn) =

∑
a∈supp(f)∩H1∩···∩Hk

αax
a +O(ε).

Proof. We proceed by induction on k, noting that the case of k = 1 exactly corresponds to Lemma 2.35.
When k > 2, by induction we have integers d′1, . . . , d′n and m′ such that

εm
′
f(εd

′
1x1, . . . , ε

d′nxn) =
∑

a∈supp(f)∩H1∩···∩Hk−1

αax
a + ε · g(x, ε),

where g(x, ε) ∈ F[ε][x]. By Lemma 2.35, we have

δλkεm
′
f(εd

′
1δ−u

(k)
1 x1, . . . , ε

d′nδ−u
(k)
n xn)

=
∑

a∈supp(f)∩H1∩···∩Hk

αax
a + δλkε · g(δ−u

(k)
1 x1, . . . , δ

−u(k)
n xn, ε) +O(δ).

The expression δλkε · g(δ−u
(k)
1 x1, . . . , δ

−u(k)
n xn, ε) lies in the ring εF[δ, δ−1, ε][x] and may have terms

whose coefficient involves a negative power of δ. Let M be the largest power of δ appearing in the
denominator of the coefficient of a monomial in δλkε · g(δ−u

(k)
1 x1, . . . , δ

−u(k)
n xn, ε). Then under the

substitution

ε 7→ εM+1

δ 7→ ε,

every monomial of ελk+M+1g(ε−u
(k)
1 x1, . . . , ε

−u(k)
n xn, ε) has a coefficient in εF[ε]. In particular, we

have

ελk+(M+1)m′f(εd
′
1(M+1)−u(k)

1 x1, . . . , ε
d′n(M+1)−u(k)

n xn) =
∑

a∈supp(f)∩H1∩···∩Hk

αax
a +O(ε).

This completes the proof of the inductive step.

By applying Lemma 2.36 to a polynomial and subsequently setting xi 7→ 1 for all i ∈ [n], we
can approximate the leading coefficient of f in the sense of border complexity. If the ring R is a
field, then this is not necessarily useful. However, we will apply this result when the ring R is a
polynomial ring in another set of variables, which makes this lemma useful.

Lemma 2.37. Let R be a commutative ring. Let f(x) ∈ R[x] and let ≺ be a monomial order on x.
Suppose that the ordering ≺ can be specified by a collection of integral weight vectors u(1), . . . , u(s) ∈ Nn.
Then there is some m ∈ Z and a collection of nonzero integers {d1, . . . , dn} such that the mapping

xi 7→ εdi

sends f(x) to
εm · LC(f) +O(εm+1).

21

Proof. As in the statement of Lemma 2.36, for i ∈ [k] let

λi := max
a∈supp(f)∩H1∩···∩Hi−1

〈
a, u(i)

〉
Hi :=

{
a ∈ supp(f) ∩H1 ∩ · · · ∩Hi−1 :

〈
a, u(i)

〉
= λ

}
.

Let xe = LM(f). Since u(1), . . . , u(k) are weight vectors specifying a monomial order, it follows from
the definition of such an order that Hk = {e}. Applying Lemma 2.36 yields integers d1, . . . , dn and
m such that

f(εd1x1, . . . , ε
dnxn) = εm LC(f) LM(f) +O(εm+1).

Setting xi 7→ 1 for all i ∈ [n] yields

f(εd1 , . . . , εdn) = εm LC(f) +O(εm+1)

as claimed.

2.8 The Ideal Proof System

The ideal proof system of Grochow and Pitassi [GP18] is an algebraic proof system used to refute
unsatisfiable systems of polynomial equations. The complexity of a proof in this system is measured
by the size of the smallest algebraic circuit representing that proof.

Definition 2.38 ([GP18]). Let F be a field and let f1(x), . . . , fm(x) ∈ F[x]. An ideal proof system
(IPS) certificate that the system f1(x) = · · · = fm(x) = 0 is unsatisfiable over the algebraic closure
F is a polynomial C(x, y) ∈ F[x, y] such that

1. C(x, 0) = 0, and

2. C(x, f1(x), . . . , fm(x)) = 1. ♦

The first condition equates to requiring that C(x, y) is in the ideal generated by y1, . . . , ym. This,
along with the second condition, implies that C(x, y) is a certificate for the fact 1 ∈ 〈f1(x), . . . , fm(x)〉,
hence that f1 = · · · = fm = 0 is unsatisfiable.

For a class of algebraic circuits C, one can also consider the C-IPS proof system wherein we
require the IPS certificate be computed by a circuit from C. We will primarily be concerned with
IPS certificates computable by formulas or low-depth circuits.

As mentioned in the introduction, proving lower bounds on the complexity of IPS refutations is
a priori more difficult than proving lower bounds for algebraic circuits. This is due to the fact that
there may be infinitely many IPS certificates for a single system of equations, so we are faced with
proving lower bounds for an infinite family of polynomials. However, these certificates all lie in a
coset of an ideal, so one could hope to understand this ideal well enough to prove lower bounds for
the relevant coset. See Grochow and Pitassi [GP18, Section 6] for more on the difference between
lower bounds for algebraic circuits and IPS.

The following lemma establishes a connection between lower bounds for multiples and lower
bounds for IPS. Forbes, Shpilka, Tzameret, and Wigderson [FSTW16] originally stated and proved
this lemma with {x2

i − xi : i ∈ [n]} as an additional set of axioms, but these are not necessary. We
will make use of this lemma when proving lower bounds for IPS.

Lemma 2.39 ([FSTW16, Lemma 7.1]). Let f(x), g1(x), . . . , gk(x) ∈ F[x] be an unsatisfiable system of
equations where g1(x), . . . , gk(x) is satisfiable. Let C ∈ F[x, y, z] be an IPS refutation of f, g1, . . . , gk.
Then 1− C(x, 0, g1(x), . . . , gk(x)) is a nonzero multiple of f(x).

22

3 Hardness of Determinantal Ideals

Recall that X denotes an n×m matrix of variables and Idet
n,m,r ⊆ F[X] is the ideal generated by the

r × r minors of X. In this section, we study the minimum possible border complexity of a nonzero
polynomial in Idet

n,m,r. Our main result is that, up to polynomial factors, there is no polynomial
f ∈ Idet

n,m,r that is easier to compute than the r × r determinant. We do this by constructing, for
every nonzero f ∈ Idet

n,m,r, a depth-three f -oracle circuit that border computes the Θ(r1/3)×Θ(r1/3)
determinant.

The argument proceeds in two steps. First, we show that for every f(X) ∈ Idet
n,m,r, there is a linear

change of variables that takes f(X) to (S|T)(X)+O(ε) for some bideterminant (S|T) of width at least
r. The analysis of this step crucially relies on the straightening law (Theorem 2.23). Second, for any
g(y) computed by an ABP of size at most r and any bideterminant (S|T)(X) of width r, we construct
a depth-three (S|T)-oracle circuit computing g(y) + O(ε). As the determinant can be efficiently
computed by ABPs, composing these steps yields an f -oracle circuit for detΘ(r1/3)(X) +O(ε).

3.1 Computing a Single Bideterminant

For i, j ∈ [n] with i 6= j, we define the substitution operator Subi→j acting on a transpose semistandard
Young tableau T as follows: for every row in T containing i but not j, substitute i with j and re-order
the row to be in increasing order. Let hji (T) denote the number of rows of T changed by applying
Subi→j to T . In general, the map T 7→ (Subi→j(T), hji (T)) may not be injective. However, the
following lemma shows that mapping is injective when restricted to tableaux satisfying a particular
property.

Lemma 3.1 ([dCEP80, Proposition 1.6]). Let i, j ∈ [n]. Suppose T is a conjugate semistandard
tableau with entries in [n] with the property that if a row of T contains an integer k 6 i, then that
row contains all integers in {i, i+ 1, . . . , j − 1}. Then Subi→j(T) is also a conjugate semistandard
tableau and T is determined by Subi→j(T) and hji (T).

While the condition in the above lemma seems strange at first, it arises in a natural way when one
repeatedly applies the Subi→j operators as described by the next claim. For the sake of completeness,
we provide a proof.

Claim 3.2 (implicit in proof of [dCEP80, Corollary 1.7]). Let T be a conjugate semistandard tableau
with entries in [n]. Let

(1, 2) ≺ (1, 3) ≺ · · · ≺ (1, n) ≺ (2, 3) ≺ · · · ≺ (n− 2, n− 1) ≺ (n− 2, n) ≺ (n− 1, n)

be a partial order on [n]2. Let i, j ∈ [n] be such that i < j and let (i′, j′) be the immediate predecessor
of (i, j) in the ≺ order. Then the tableau

T ′ := Subi′→j′ ◦ · · · ◦ Sub1→3 ◦ Sub1→2(T)

satisfies the hypothesis of Lemma 3.1 for (i, j). In other words, if a row of T ′ contains an integer
k 6 i, then that row contains all integers in {i, i+ 1, . . . , j − 1}.

Proof. The case of (i, j) = (1, 2) is vacuously true. Suppose (i, j) � (1, 2) and that some row r of T ′

contains an integer k 6 i.

• If k = i, then it must be the case that the operator Subi→j−1 ◦ · · · ◦ Subi→i+1 did not replace
the i in row r. This implies that the tableau Subi−1→n ◦ · · · ◦Sub1→2(T) contains every element

23

of {i, i+ 1, . . . , j − 1} in row r. Because of this, the operator Subi→j−1 ◦ · · · ◦ Subi→i+1 does
not modify any of the entries in row r coming from the set {i, i+ 1, . . . , j − 1}, so row r of T ′

contains every element of {i, . . . , j − 1}.

• If k < i, then the application of the composite operator Subk→n ◦ Subk→n−1 ◦ · · · ◦ Subk→k+1

in the definition of T ′ did not replace the k appearing in row r of T . This means that every
element of {k, . . . , n} appears in row r of the tableau Subk−1→n ◦ · · · ◦ Sub1→2(T). Applying
the operator Subi′→j′ ◦ · · · ◦ Subk→k+1 will not change this, so row r of T ′ contains every
element of {k, . . . , n}. In particular, every element of {i, . . . , j − 1} appears in this row.

For a partition σ and natural number n ∈ N, we letKσ andKσ denote the conjugate semistandard
tableaux whose ith row has entries (1, . . . , σi) and (n − i + 1, n − i + 2, . . . , n), respectively. For
example, if σ = (4, 3, 1) and n = 5, we have

K(4,3,1) =
1 2 3 4
1 2 3
1

K(4,3,1) =
2 3 4 5
3 4 5
5

.

The operators Subi→j provide a convenient way to transform an arbitrary conjugate semistandard
tableau into Kσ.

Lemma 3.3 ([dCEP80, Corollary 1.7]). Let T be a conjugate semistandard tableau of shape σ. Then

(Subn−1→n ◦ Subn−2→n ◦ · · · ◦ Sub2→3 ◦ Sub1→n ◦ · · · ◦ Sub1→3 ◦ Sub1→2)(T) = Kσ.

Moreover, if we denote by hji the number of times i is replaced by j in the application of Subi→j
above, then T is determined by σ and the hji .

We are now ready to progress towards the main result of this section. Namely, for any nonzero
f ∈ Idet

n,m,r, we will find a linear change of variables that sends f to (Kσ|Kσ) + O(ε) where σ is
the shape of some standard bideterminant in the support of f when f is written in the standard
bideterminant basis. For comparison, it is easy to do something similar in the monomial basis: given
a polynomial f(x) of degree d, there is some m ∈ N such that

εmf(ε−(d+1)x1, ε
−(d+1)2

x2, . . . , ε
−(d+1)nxn) = LClex(f) LMlex(f) +O(ε)

where we take the lexicographic monomial order induced by x1 � x2 � · · · � xn. To some extent,
we are constructing an analogous change of variables in the bideterminant basis.

The main difficulty lies in finding a useful change of variables. In the monomial basis, individual
terms can be distinguished by their degree, so it suffices to use a change of variables that only involves
multiplying each xi by some power of ε. However, in the bideterminant basis, multidegree is too
coarse a notion to distinguish between bideterminants, so it seems that finding a clever substitution
xi,j 7→ εdi,jxi,j will not be enough.

We start by working in a larger polynomial ring F[X,Λ,Ξ]. We will give two changes of variables:
one that enforces structure on the tableaux encoding the rows of the bideterminants in the support of
a polynomial f , and another that handles the tableaux encoding the columns of the bideterminants.
The proof of this lemma is inspired by and borrows ideas from the proof of [dCEP80, Theorem 3.3].

Lemma 3.4. Let Λ = (λi,j) be an n×n matrix of variables and let ≺Λ be the lexicographic monomial
order on F[Λ] induced by the order λi,j � λk,` if i < k or i = k and j < `. Likewise, let Ξ = (ξi,j) be
an m×m matrix of variables and let ≺Ξ be the corresponding lexicographic monomial order on F[Ξ].

24

Then there are matrices M ∈ F[Λ]n×n and N ∈ F[Ξ]m×m with det(M) = ±1 and det(N) = ±1 such
that the following holds.

Let f(X) ∈ Idet
n,m,r be a nonzero polynomial and let f(X) =

∑
k∈[s] αk(Sk|Tk)(X) be the expansion

of f in the standard bideterminant basis. For k ∈ [s], let σk be the shape of the bideterminant (Sk|Tk).
Then there are nonempty sets A,B ⊆ [s] such that

LC≺Λ(f(MX)) =
∑
k∈A

αk(Kσk |Tk)(X)

LC≺Ξ(f(XN)) =
∑
k∈B

αk(Sk|Kσk)(X),

where we take leading coefficients in the rings F[X][Λ] and F[X][Ξ], respectively.

Proof. We first construct the matrix M and prove the corresponding claim. For i, j ∈ [n] with i 6= j,
let Ei,j(z) be the n× n matrix with ones on the diagonal and z in the (i, j) entry. Let Jn be the
n× n matrix whose (i, j) entry is 1 if i+ j = n+ 1 and zero otherwise. We define the matrix M as

M := E1,2(λ1,2)E1,3(λ1,3) · · ·E1,n(λ1,n)E2,3(λ2,3) · · ·En−1,n(λn−1,n)Jn.

Since det(Jn) = ±1 and det(Ei,j(z)) = 1 for i 6= j, it follows that det(M) = ±1.
We now analyze the polynomial f(MX). Recall that for a tableau S, we denote by hji (S) the

number of entries changed from i to j when we apply the operator Subi→j to S. Observe that for a
bideterminant (S|T), it follows from properties of the determinant that

(S|T)(Ei,j(z)X) = zh
j
i (S)(Subi→j(S)|T)(X) +O(zh

j
i (S)−1),

where O(zh
j
i (S)−1) denotes a polynomial in F[X][z] of degree at most hji (S)− 1. For i, j ∈ [n] with

i 6= j, define

fi,j(X,Λ) := f(E1,2(λ1,2)E1,3(λ1,3) · · ·E1,n(λ1,n)E2,3(λ2,3) · · ·Ei,j(λi,j)X).

Note that f(MX) = fn−1,n(JnX,Λ).
We claim that for every i, j ∈ [n] with i < j, there is a non-empty set Ai,j ⊆ [s] such that

LC≺Λ(fi,j(X,Λ)) =
∑
k∈Ai,j

αk(Subi→j ◦ · · · ◦ Sub2→3 ◦ Sub1→n ◦ · · · ◦ Sub1→3 ◦ Sub1→2(Sk)|Tk)(X).

By Lemma 3.3, this implies

LC≺Λ(fn−1,n(X,Λ)) =
∑

k∈An−1,n

αk(Kσk |Tk)(X).

Using the fact that (Kσk |T)(JnX) = (Kσk |Tk)(X), this yields

LC≺Λ(f(MX)) = LC≺Λ(fn−1,n(JnX,Λ)) =
∑

k∈An−1,n

αk(Kσk |Tk)(X)

as claimed.
We now prove the claim by induction on (i, j) in the order (1, 2) ≺ (1, 3) ≺ · · · ≺ (1, n) ≺ (2, 3) ≺

· · · ≺ (n− 1, n). Let (i′, j′) be the predecessor of (i, j) in the ≺ order. In the case that (i, j) = (1, 2),
we abuse notation and set fi′,j′ := f and Ai′,j′ := [s]. Let

Hj
i := max

k∈Ai′,j′
hji (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk))

25

and
Ai,j = {k ∈ Ai′,j′ : hji (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)) = Hj

i }.

Note that Ai,j is necessarily non-empty, as Hj
i is a maximum over a finite nonempty set. By

induction, there is some e ∈ Nn×n such that

fi′,j′(X,Λ) = Λe
∑

k∈Ai′,j′

αk(Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)|Tk)(X) + g(X,Λ),

where g(X,Λ) ∈ F[X][Λ] is a polynomial in which every monomial is smaller than Λe in the ≺Λ

order. Since fi′,j′ only depends on λ1,2, . . . , λi′,j′ , it follows that Λe is a monomial in only these
variables. We then apply the definition of fi,j to obtain

fi,j(X,Λ) = fi′,j′(Ei,j(λi,j)X,Λ)

= Λe
∑

k∈Ai′,j′

αk(Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)|Tk)(Ei,j(λi,j)X) + g(Ei,j(λi,j)X,Λ)

= Λeλ
Hj
i

i,j

∑
k∈Ai,j

αk(Subi→j ◦ · · · ◦ Sub1→2(Sk)|Tk)(X) + Λep(X,λi,j) + g(Ei,j(λi,j)X,Λ),

where p(X,λi,j) ∈ F[X][Λ] is a polynomial of degree at most Hj
i − 1 in λi,j . This implies that

every monomial of Λep(X,Λ) is smaller than Λeλ
Hj
i

i,j in the ≺Λ order. Observe that the substitution
X 7→ Ei,j(λi,j)X only changes the λi,j-degree of any Λ-monomial in g(X,Λ). In particular, because
every monomial of g(X,Λ) is smaller than Λe in the ≺Λ order, the same holds true for every
Λ-monomial of g(Ei,j(λi,j)X,Λ). This implies that

LC≺Λ(fi,j) =
∑
k∈Ai,j

αk(Subi→j ◦ · · · ◦ Sub1→2(Sk)|Tk)(X)

as claimed. This establishes the claimed properties of M .
To construct the matrix N , we overload notation and let Ei,j(z) be the m ×m matrix with

ones on the diagonal and z in the (i, j) entry. Just as the matrix M consisted of a sequence of row
operations, the matrix N will be composed of a sequence of column operations. We define N as

N := JmEm−1,m(ξm−1,m) · · ·E2,3(ξ2,3)E1,m(ξ1,m) · · ·E1,3(ξ1,3)E1,2(ξ1,2).

Since det(Jm) = ±1 and det(Ei,j(z)) = 1 for i < j, we get that det(N) = ±1.
As in the previous case, it follows from properties of the determinant that for a bideterminant

(S|T), we have
(S|T)(XEi,j(z)) = zh

j
i (T)(S|Subi→j(T))(X) +O(zh

j
i (T)−1).

Using this, the analysis of the leading coefficient of f(XN) ∈ F[X][Ξ] proceeds in a manner analogous
to the case of f(MX), so we omit the details.

We now come to the main result of this subsection: a change of variables that sends a polynomial
f(X) to (Kσ|Kσ)(X) +O(ε) where σ is the shape of some standard bideterminant in the support of
f .

Proposition 3.5. Let f(X) ∈ Idet
n,m,r be nonzero. There is a collection of nm linearly independent

linear functions `i,j(X, ε) ∈ F(ε)[X] indexed by (i, j) ∈ [n]× [m], an integer q ∈ Z, a nonzero α ∈ F,
and a partition σ with σ1 > r such that

f(`1,1(X, ε), . . . , `n,m(X, ε)) = εqα(Kσ|Kσ)(X) +O(εq+1).

26

Proof. Let f =
∑

k∈[s] αk(Sk|Tk) be the expansion of f in the standard bideterminant basis. Let
M and N be the matrices constructed in Lemma 3.4. Let ≺ denote the lexicographic order on
F[X][Λ,Ξ] induced by λ1,2 � λ1,3 � · · · � λn−1,n � ξ1,2 � · · · � ξm−1,m. Lemma 3.4 implies that
there is a non-empty set A ⊆ [s] such that

g(X) := LC≺(f(MX)) =
∑
k∈A

αk(Kσk |Tk)(X),

and likewise that there is a non-empty set B ⊆ A such that

LC≺(g(XN)) =
∑
k∈B

αk(Kσk |Kσk)(X).

This implies that
LC≺(f(MXN)) =

∑
k∈B

αk(Kσk |Kσk)(X),

where σk denotes the shape of the bideterminant (Sk|Tk). By Corollary 2.24, each bideterminant in
the above sum has width at least r, so (σk)1 > r for all k ∈ A.

Let y and z be new indeterminates and let D := deg(f(X)). Consider the change of variables

xi,j 7→ y(D+1)iz(D+1)jxi,j .

Let h(X,Λ,Ξ, y, z) be the image of f(MXN) under this map. By construction, an X-monomial of
multidegree (

∑
i aiei)⊕ (

∑
i biei) is multiplied by a factor of y

∑
i ai(D+1)iz

∑
j bj(D+1)j . In particular,

since maxi ai 6 D and maxi bi 6 D, X-monomials of distinct multidegree have distinct (y, z)-degree
under this mapping. Observe that multideg((Kσ|Kσ)(X)) 6= multideg((Kτ |Kτ)(X)) for distinct
partitions σ 6= τ . Since each bideterminant (Kσ|Kσ)(X) is mapped to a unique (y, z)-degree under
this substitution, we get that the polynomial

p(X) = LC(y,z)(LC(Λ,Ξ)(h(X,Λ,Ξ, y, z)))

is a nonzero multiple of the bideterminant (Kσk |Kσk)(X) for some k ∈ B. If we augment the
monomial order ≺ by setting Λ � Ξ � y � z and taking the corresponding lexicographic order, we
then have

LC≺(h(X,Λ,Ξ, y, z)) = αk(Kσk |Kσk)(X)

for some k ∈ B.
Applying Lemma 2.37 to h(X,Λ,Ξ, y, z) viewed as an element of F[X][Λ,Ξ, y, z], we get a map

ϕ : (Λ ∪ Ξ ∪ {y, z})→ {εd : d ∈ Z} such that

ϕ(h(X,Λ,Ξ, y, z)) = εqαk(Kσk |Kσk)(X) +O(εq+1)

for some integer q.
Note that h(X,Λ,Ξ, y, z) was obtained from f(X) by an invertible linear transformation of the

X variables. That is, there are nm linearly independent linear polynomials `′1,1(X), . . . , `′n,m(X) ∈
F[Λ,Ξ, y, z][X] such that

h(X,Λ,Ξ, y, z) = f(`′1,1(X), . . . , `′n,m(X)).

27

Set `i,j(X, ε) := ϕ(`′i,j(X)) ∈ F(ε)[X] for each (i, j) ∈ [n] × [m]. Since the transformation xi,j 7→
`′i,j(X) is invertible as long as y 6= 0 and z 6= 0, the transformation xi,j 7→ `i,j(X, ε) remains invertible
under ϕ. Finally, it follows from the definition of ϕ that

f(`1,1(X, ε), . . . , `n,m(X, ε)) = f(ϕ(`′1,1(X)), . . . , ϕ(`′n,m(X)))

= ϕ(f(`′1,1(X), . . . , `′n,m(X)))

= ϕ(h(X,Λ,Ξ, y, z))

= εqαk(Kσk |Kσk)(X) +O(εq+1).

3.2 Projecting to the Determinant

So far, we have constructed a linear change of variables taking a polynomial f ∈ Idet
n,m,r to (Kσ|Kσ) +

O(ε) for a bideterminant (Kσ|Kσ) of width at least r. Next, we show that a (Kσ|Kσ)-oracle can
be used to compute g(y) +O(ε), where g is any polynomial computable by an algebraic branching
program on r vertices. Ideally, one would like to appeal to the VBP-completeness of the determinant,
which gives a projection from detr(X) to g(y), to prove such a result. The difficulty lies in the fact
that a bideterminant may be a product of multiple determinants of varying sizes. Because of this,
we need a projection that behaves well on proper minors of X and also allows us to deal with the
possibility that we may be projecting from a power of the determinant as opposed to the determinant
itself. We almost construct such a projection, but we will need some post-processing in the form of
an extra addition gate in order to handle powers of the determinant.

Let g(y) be computable by a small algebraic branching program. We begin by describing a
projection ϕ : X → y ∪ F of a generic matrix X such that det(ϕ(X)) = 1 + g(y) and the leading
principal minors of ϕ(X) have determinant 1. This is a small modification of an argument due to
Valiant [Val79, Theorem 1]; we include a proof for the sake of completeness.

Lemma 3.6. Let g(y) ∈ F[y] and suppose g can be computed by a layered algebraic branching
program on m vertices. Then there is an m × m matrix A ∈ F[y]m×m whose entries are linear
polynomials in y such that

1. det(A) = 1 + g(y), and

2. for every k ∈ [m− 1], we have det(A[k],[k]) = 1.

Proof. We first recall the correspondence between cycle covers in graphs and the determinant. Let
G be a weighted directed graph on m vertices and denote the weight of the edge (i, j) by w(i, j).
Let A(G) = (ai,j) be the m×m matrix given by

ai,j =

{
w(i, j) (i, j) ∈ E(G)

0 (i, j) /∈ E(G).

Recall that a cycle cover C of G is a collection of vertex-disjoint cycles in G which span the vertices
of G. Let CC(G) denote the collection of all cycle covers of G. Given a cycle cover C of G, let π(C)
denote the product of the edge weights in C. If every cycle cover of G consists of odd-length cycles,
then the definitions of A(G) and the determinant imply that

det(A(G)) =
∑

C∈CC(G)

π(C).

28

We now proceed with the proof of Lemma 3.6. Suppose g(y) can be computed by a layered
algebraic branching program on m nodes. Let s and t be the start and end nodes of this branching
program, respectively. Since the program is layered, every s-t path has the same length. If the
length of each s-t path is even, we add an edge of weight 1 from t to s and a self-loop of weight 1 to
every vertex (including s and t); if the length of each s-t path is odd, we identify the vertices s and
t with one another (resulting in a graph on m− 1 nodes), add an isolated vertex r, and then add a
self-loop to every vertex. Denote the resulting graph by G. In both cases, G has one cycle cover for
every s-t path in the branching program, as well as a single cycle cover corresponding to the set of
self-loops in the graph. Moreover, every cycle cover in G consists solely of odd-length cycles.

For a cycle cover C corresponding to an s-t path P in the branching program, it follows from the
definition of G that π(C) = π(P), where π(P) is the product of the weights on the edges of P . If C
is the all-self-loops cycle cover, then π(C) = 1. Since every cycle cover in G consists of odd-length
cycles, we have

det(A(G)) =
∑

C∈CC(G)

π(C) = 1 +
∑
P

π(P) = 1 + g(y),

where the second summation is over all s-t paths P in the branching program. This proves the first
part of the lemma.

To prove the second part, let v1, . . . , vm be a topological ordering of the vertices in the algebraic
branching program. Note that v1 = s and vm = t. If every s-t path in the branching program has
even length, we order the rows and columns of A(G) such that

A(G)i,j = w(vi, vj).

If instead every s-t path in the branching program has odd length, we set

A(G)i,j =

w(r, vj) i = 1

w(vi, r) j = 1

w(vi, vj) otherwise,

where r is the isolated vertex with a self-loop. In either case, note that if i > j and A(G)i,j 6= 0, then
we must have i = m. This implies that for every k ∈ [m−1], the matrix A(G)[k],[k] is upper-triangular
with ones along the diagonal. Thus det(A(G)[k],[k]) = 1 as desired.

Although we want to construct an (Kσ|Kσ)-oracle circuit that computes any polynomial g(y)
that is computable by a small layered algebraic branching program, it will be convenient for us to
assume that g is homogeneous. This is not restrictive, as one can always introduce a new variable z
and consider the homogeneous polynomial ĝ(y, z) := zdeg(g)g(y1/z, . . . , yn/z), which specializes to
g(y) under the map z 7→ 1. One needs to show that ĝ(y, z) is as easy to compute as g(y). Below, we
provide a proof that this can be done for layered ABPs, although we technically show that this is
the case for zdg(y1/z, . . . , yn/z) for some d > deg(g).

Lemma 3.7. Let g(y) ∈ F[y] be a polynomial and suppose that g can be computed by a layered
algebraic branching program on m vertices. Let z be a new variable. Then there is a homogeneous
polynomial ĝ(y, z) ∈ F[y, z] such that ĝ can be computed by a layered algebraic branching program on
m vertices and that ĝ(y, 1) = g(y).

Proof. Let G = (V = V0 t V1 t · · · t Vk, E) be an m-vertex ABP that computes g(y), where the Vi
are the layers of the ABP. Without loss of generality, we assume that no vertex of G computes the
zero polynomial; if this is the case, we simply remove such a vertex. We relabel the edges of G as

29

follows: if an edge e ∈ E is labeled by the polynomial `e(y) = α0 +
∑n

i=1 αiyi, we relabel the edge e
with ˆ̀

e(y, z) = α0z +
∑n

i=1 αiyi. Let Ĝ denote the relabeled ABP.
It is clear that Ĝ is an m-vertex layered ABP. For each vertex v ∈ V , let gv(y) be the polynomial

computed by v in G, and let ĝv(y, z) be the polynomial computed at v in Ĝ. We claim that for
each i ∈ {0, 1, . . . , k} and v ∈ Vi, the polynomial ĝv(y, z) is homogeneous of degree i and that
ĝv(y, 1) = gv(y). We prove this by induction on the depth of the vertex v in G, i.e., the layer of V
containing v.

If v ∈ V0, then ĝv(y, z) = gv(y) = 1 and we are done. Otherwise, we have v ∈ Vi for some i > 1.
By definition, we have

ĝv(y, z) =
∑

u∈Vi−1

ˆ̀
u→v(y, z) · ĝu(y, z).

By induction, for every u ∈ Vi−1, the polynomial ĝu(y, z) is a homogeneous degree-(i− 1) polynomial
that satisfies ĝu(y, 1) = gu(y). Furthermore, each nonzero ˆ̀

u→v(y, z) is a homogeneous degree-1
polynomial, so it follows that ĝv(y, z) is a homogeneous degree-i polynomial. Setting z 7→ 1, we have

ĝv(y, 1) =
∑

u∈Vi−1

ˆ̀
u→v(y, 1) · ĝu(y, 1)

=
∑

u∈Vi−1

`u→v(y) · gu(y)

= gv(y).

Thus, the polynomial ĝv(y, z) is as claimed.
To finish the proof of the lemma, observe that if v is the output vertex of G, then ĝv(y, z) is the

desired polynomial.

Given a nonzero f(X) ∈ Idet
n,m,r, we will use the preceding lemmas together with Proposition 3.5 to

construct a depth-three f -oracle circuit computing detΘ(r1/3)(X) +O(ε). In fact, for any polynomial
g(y) computable by a layered algebraic branching program on r vertices, we can construct an f -oracle
circuit computing g.

Theorem 3.8. Let f(X) ∈ Idet
n,m,r be a nonzero polynomial and let h(X, ε) ∈ FJεK[X] be any

polynomial such that h(X, ε) = f(X) +O(ε). Let g(y) ∈ F[y] be a polynomial in the border of layered
algebraic branching programs with at most r vertices. Then there is a depth-three h-oracle circuit Φ
defined over F(ε) such that the following hold.

1. Φ has nm addition gates at the bottom layer, a single h-oracle gate in the middle layer, and a
single addition gate at the top layer.

2. If char(F) = 0, then Φ computes g(y) +O(ε).

3. If char(F) = p > 0, then Φ computes g(y)p
k

+O(ε) for some k ∈ N.

Proof. By Lemma 2.3, it suffices to prove the theorem in the case where the oracle gates compute f
exactly. By assumption, there is a polynomial g̃(y, ε) ∈ F[ε][y] such that g̃(y, ε) = g(y) +O(ε) and
g̃(y, ε) can be computed by a layered algebraic branching program on at most r vertices. Lemma 3.7
implies that there is a homogeneous polynomial ĝ(y, ε, z) ∈ F[ε][y, z] computable by a layered
algebraic branching program on at most r vertices such that ĝ(y, ε, 1) = g̃(y, ε).

Applying Proposition 3.5 to f(X), we obtain linear functions `1,1(X, ε), . . . , `n,m(X, ε), a nonzero
α ∈ F, and some q ∈ Z such that

f(`1,1(X, ε), . . . , `n,m(X, ε)) = εqα(Kσ|Kσ)(X) +O(εq+1)

30

for some partition σ of width at least r. Since ĝ(y, ε, z) can be computed by a layered algebraic
branching program on at most r vertices, we can obtain a layered ABP on exactly r vertices
computing ĝ(y, ε, z) by adding isolated vertices. Let A(y, z) ∈ F[ε][y, z]r×r be the matrix obtained
by applying Lemma 3.6 to ĝ(y, ε, z). Extend A(y, z) to an n×m matrix by adding ones along the
main diagonal and zeroes elsewhere. Then we have

f(`1,1(A(y, z), ε), . . . , `n,m(A(y, z), ε)) = εqα(Kσ|Kσ)(A(y, z)) +O(εq+1)

= εqα

σ̂1∏
i=1

detσi(A(y, z)[σi],[σi]) +O(εq+1)

= εqα
∏
i:σi>r

detσi(A(y, z)[σi],[σi]) ·
∏
i:σi<r

detσi(A(y, z)[σi],[σi]) +O(εq+1)

= εqα
∏
i:σi>r

(1 + ĝ(y, ε, z)) +O(εq+1).

Let h(y, ε, z) := f(`1,1(A(y, z), ε), . . . , `n,m(A(y, z), ε)) and let t = |{i : σi > r}|. The above estab-
lishes h(y, ε, z) = εqα(1 + ĝ(y, ε, z))t +O(εq+1).

Suppose char(F) = 0. Under the substitution yi 7→ δ · yi and z 7→ δ, we have

h(δ · y, ε, δ) = εqα(1 + ĝ(δ · y, ε, δ))t +O(εq+1)

= εqα(1 + δdeg(ĝ)ĝ(y, ε, 1))t +O(εq+1)

= εqα(1 + δdeg(ĝ)g(y) +O(ε))t +O(εq+1)

= εqα
t∑
i=0

(
t

i

)
δi·deg(ĝ)g(y)i +O(εq+1)

= εqα+ εqδdeg(ĝ)αtg(y) +O(εqδ2 deg(ĝ)) +O(εq+1).

Performing the substitution

ε 7→ εN

δ 7→ ε

for N sufficiently large yields

h(ε · y, εN , ε) = εqNα+ εqN+deg(ĝ)αtg(y) +O(εqN+deg(ĝ)+1).

The desired f -oracle circuit for g is then given by

Φ(y) :=
h(ε · y, εN , ε)− εqNα

εqN+deg(ĝ)αt
= g(y) +O(ε).

If instead char(F) = p > 0, the above proof only needs to be modified in the case that p divides
t. Let k ∈ N be the largest natural number such that pk divides t and write t = pkb. In this case, we
instead get

h(δ · y, ε, δ) = εqα+ εqδdeg(ĝ)pkαbg(y)p
k

+O(εqδ2 deg(ĝ)pk) +O(εq+1).

Again, for N sufficiently large, we obtain an f -oracle circuit for g via

Φ(y) :=
h(ε · y, εN , ε)− εqNα

εqN+deg(ĝ)pkαb
= g(y)p

k
+O(ε).

31

We now instantiate Theorem 3.8 with the determinant and iterated matrix multiplication
polynomials. These corollaries are essentially obvious, but seem interesting in their own right and
will be of use in later sections.

Corollary 3.9. Let f(X) ∈ Idet
n,m,r be a nonzero polynomial and let h(X, ε) ∈ FJεK[X] be any

polynomial such that h(X, ε) = f(X) +O(ε). Let t 6 O(r1/3). Then there is a depth-three h-oracle
circuit Φ defined over F(ε) with the following properties.

1. The bottom layer of Φ consists of nm addition gates, the middle layer has a single h-oracle
gate, and the top layer has a single addition gate.

2. If char(F) = 0, then Φ computes dett(Y) +O(ε).

3. If char(F) = p > 0, then Φ computes dett(Y)p
k

+O(ε) for some k ∈ N.

Proof. Mahajan and Vinay [MV97, Theorem 2] constructed a layered ABP on O(t3) 6 r vertices
that computes dett(Y). The corollary then follows from Theorem 3.8.

Corollary 3.10. Let f(X) ∈ Idet
n,m,r be a nonzero polynomial and let h(X, ε) ∈ FJεK[X] be any

polynomial such that h(X, ε) = f(X) +O(ε). Let w, d ∈ N satisfy w(d− 1) + 2 6 r. Then there is a
depth-three h-oracle circuit Φ defined over F(ε) with the following properties.

1. The bottom layer of Φ consists of nm addition gates, the middle layer has a single h-oracle
gate, and the top layer has a single addition gate.

2. If char(F) = 0, then Φ computes IMMw,d(y) +O(ε).

3. If char(F) = p > 0, then Φ computes IMMw,d(y)p
k

+O(ε) for some k ∈ N.

Proof. It is clear that IMMw,d(y) is computable by a layered algebraic branching program on
w(d− 1) + 2 6 r vertices. Theorem 3.8 completes the proof.

We conclude this section with a remark on the fact that in characteristic p > 0, we only obtain
an oracle circuit for a pth power of the target polynomial g(y).

Remark 3.11. Let F be a field of characteristic p > 0. If we interpret Theorem 3.8 as a result
on “factoring” a polynomial Idet

n,m,r, then the appearance of pth powers in the “factors” is not too
surprising. Most results on polynomial factorization [Kal87; DSY09; KSS15; CKS19b] only guarantee
a circuit that computes a pth power of a factor if the multiplicity of this factor is a multiple of pk for
some k > 0. In fact, if f(x)p can be computed by a size s circuit, it is open whether f(x) can be
computed by a circuit of size poly(n, deg(f), s), although some results are known when n is small
compared to s [And20]. ♦

4 Hardness of Pfaffian Ideals

This section proves an analogue of Theorem 3.8 for ideals generated by sub-Pfaffians of a skew-
symmetric matrix. The outline of the proof is similar to that of Theorem 3.8, but some technical
details must be modified to accommodate the change to Pfaffians.

32

4.1 Computing a Standard Monomial

In this subsection, we construct, for any nonzero f ∈ Ipfaff
2n,2r, a change of variables that takes f to

[Kσ](X) + O(ε) for some partition σ with σ1 > 2r. The outline of the proof is the same as the
proof of Lemma 3.4, replacing the straightening law for bideterminants with the corresponding
straightening law for Pfaffians.

The following lemma finds a change of variables that takes f to a sum of standard monomials of
the form [Kσ](X). This is the Pfaffian analogue of Lemma 3.4 and borrows ideas from the proof of
Abeasis and Del Fra [AD80, Lemmas 2.1 and 2.2] in a manner analogous to the use of [dCEP80,
Theorem 3.3] in proving Lemma 3.4.

Lemma 4.1. Let Λ = (λi,j) be a 2n × 2n matrix of variables and let ≺Λ be the lexicographic
monomial order on F[Λ] induced by the order λi,j � λk,` if i < k or i = k and j < `. Then there is a
matrix M ∈ F[Λ]2n×2n with det(M) = ±1 such that the following holds.

Let f(X) ∈ Ipfaff
2n,2r be a nonzero polynomial and let f(X) =

∑
k∈[s] αk[Sk](X) be the expansion of

f as a sum of standard monomials. For k ∈ [s], let σk be the shape of the tableau Sk. Then there is
a nonempty set A ⊆ [s] such that

LC≺Λ(f(MXM>)) =
∑
k∈A

αk[Kσk](X)

where we take the leading coefficient in the ring F[X][Λ].

Proof. We begin with the construction of the matrix M . For i, j ∈ [2n] with i < j, let Ei,j(z) denote
the matrix which has ones on the diagonal and z in the (i, j) entry. We then let Mi,j(Λ) ∈ F[Λ]2n×2n

be the matrix

Mi,j(Λ) := E1,2(λ1,2)E1,3(λ1,3) · · ·E1,n(λ1,n)E2,3(λ2,3) · · ·Ei,j(λi,j).

Letting J2n denote the 2n× 2n matrix with ones on the anti-diagonal and zeroes elsewhere, we then
define M = Mn−1,n(Λ)Jn. It is clear from the definition of M that det(M) = ±1.

We now show that the polynomial f(MXM>) behaves as claimed. Recall that if S is a Young
tableau, we let hji (S) denote the number of entries changed from i to j when the operator Subi→j is
applied to S. Observe that if S is a one-row tableau, then the multilinearity of the Pfaffian and
Lemma 2.25 imply

[S](Ei,j(z)XEi,j(z)
>) =

{
[S](X) + z[Subi→j(S)](X) if i appears in S but j does not
[S](X) otherwise.

Note that if both i and j appear in S or if neither appear in S, then S = Subi→j(S). Thus, viewing
the above as a polynomial in F[X][z], we see that the leading term is zh

j
i (S)[Subi→j(S)](X). This

extends to a multi-row tableau S via

[S](Ei,j(z)XEi,j(z)
>) = zh

j
i (S)[Subi→j(S)](X) +O(zh

j
i (S)−1),

where O(zh
j
i (S)−1) denotes a polynomial in F[X][z] of degree at most hji (S)− 1.

For i, j ∈ [2n] with i < j, let

fi,j(X,Λ) := f(Mi,j(Λ)XMi,j(Λ)>).

33

Note that f(MXM>) = fn−1,n(JnXJ
>
n). We claim that for every i, j ∈ [2n] with i < j, there is a

nonempty set Ai,j ⊆ [s] such that

LC≺Λ(fi,j(X,Λ)) =
∑
k∈Ai,j

αk[Subi→j ◦ · · ·Sub2→3 ◦ Sub1→n ◦ · · · ◦ Sub1→2(Sk)](X).

Assuming this, Lemma 3.3 implies

LC≺Λ(fn−1,n(X,Λ)) =
∑

k∈An−1,n

αk[Kσk](X).

From this, we use the fact that [Kσ](JnXJ
>
n) = [Kσ](X) to obtain

LC≺Λ(f(MXM>)) = LC≺Λ(fn−1,n(JnXJ
>
n))

=
∑

k∈An−1,n

αk[Kσk](JnXJ
>
n)

=
∑

k∈An−1,n

αk[Kσk](X)

as desired.
It remains to prove the claim about LC≺Λ(fi,j(X,Λ)). We proceed by induction on (i, j) in the

order (1, 2) ≺ (1, 3) ≺ · · · ≺ (1, n) ≺ (2, 3) ≺ · · · ≺ (n− 1, n). Let (i′, j′) be the predecessor of (i, j)
in the ≺ order. If (i, j) = (1, 2), we set fi′,j′(X,Λ) = f(X) and Ai′,j′ = [s]. Let

Hj
i := max

k∈Ai′,j′
hji (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk))

and
Ai,j = {k ∈ Ai′,j′ : hji (Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)) = Hj

i }.

The set Ai,j is necessarily nonempty, as Hj
i is obtained by maximizing over a finite nonempty set.

By induction, there is some e ∈ N2n×2n such that

fi′,j′(X,Λ) = Λe
∑

k∈Ai′,j′

αk[Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)](X) + g(X,Λ),

where g(X,Λ) ∈ F[X][Λ] is a polynomial supported on monomials that are smaller than Λe in the
≺Λ order. Because fi′,j′ only depends on λ1,2, . . . , λi′,j′ , we know that Λe is a monomial consisting
of only these variables. Applying the definition of fi,j , we then have

fi,j(X,Λ) = fi′,j′(Ei,j(λi,j)XEi,j(λi,j)
>,Λ)

= Λe
∑

k∈Ai′,j′

αk[Subi′→j′ ◦ · · · ◦ Sub1→2(Sk)](Ei,j(λi,j)XEi,j(λi,j)
>) + g(Ei,j(λi,j)XEi,j(λi,j)

>,Λ)

= Λeλ
Hj
i

i,j

∑
α∈Ai,j

αk[Subi→j ◦ · · · ◦ Sub1→2(Sk)](X) + Λep(X,λi,j) + g(Ei,j(λi,j)XEi,j(λi,j)
>,Λ),

where p(X,λi,j) ∈ F[X][Λ] is a polynomial of degree at most Hj
i − 1 in λi,j . Because of this,

every monomial of Λep(X,λi,j) is smaller than Λeλ
Hj
i

i,j in the ≺Λ order. The same holds true for

34

g(Ei,j(λi,j)XEi,j(λi,j)
>,Λ), as the substitution X 7→ Ei,j(λi,j)XEi,j(λi,j)

> only changes the λi,j-
degree of a monomial in g(X,Λ) and every monomial of g(X,Λ) is already smaller than Λe in the
≺Λ order. This implies that

LC≺Λ(fi,j(X,Λ)) =
∑
k∈Ai,j

αk[Subi→j ◦ · · · ◦ Sub1→2](X)

as claimed.

We now use the result of Lemma 4.1 to construct a change of variables that takes a nonzero
f ∈ Ipfaff

2n,2r to [Kσ](X) + O(ε) for a partition σ of width at least 2r. This is the analogue of
Proposition 3.5 for Pfaffians. The proof is similar to that of Proposition 3.5: after applying
Lemma 4.1, we scale the rows and columns of X by powers of a new variable y to isolate a single
standard monomial [Kσ](X).

Proposition 4.2. Let f(X) ∈ Ipfaff
2n,2r be nonzero. There is a collection of 4n2 linearly independent

linear functions `i,j(X, ε) ∈ F(ε)[X] indexed by (i, j) ∈ [2n] × [2n], an integer q ∈ Z, a nonzero
α ∈ F, and a partition σ with σ1 > 2r such that

f(`1,1(X, ε), . . . , `2n,2n(X, ε)) = εqα[Kσ](X) +O(εq+1).

Proof. Let M ∈ F[Λ]2n×2n be the matrix constructed in Lemma 4.1. Let f(X) =
∑

k∈[s] αk[Sk](X)
be the expansion of f as a sum of standard monomials. Then Lemma 4.1 implies

LC≺Λ(f(MXM>)) =
∑
k∈A

αk[Kσk](X),

where A ⊆ [s] is nonempty and σk is the shape of the tableau Sk. From Corollary 2.29, we know
that (σk)1 > 2r for all k ∈ A.

Let d := deg(f(X)). Let y be a new indeterminate and let D ∈ F[y]2n×2n be the diagonal
matrix given by Di,i = (d+ 1)i. Observe that (DXD>)[k],[k] = D[k],[k]X[k],[k]D

>
[k],[k]. Using this and

Lemma 2.25, we have

Pfk(DXD
>) = Pf(D[k],[k]X[k],[k]D

>
[k],[k])

= det(D[k],[k]) Pfk(X)

= y
∑k
i=1(d+1)i Pfk(X).

It then follows that for a partition σ, we have

[Kσ](DXD>) =

σ̂1∏
i=1

Pfσi(DXD
>)

=

σ̂1∏
i=1

y
∑σi
j=1(d+1)j Pfσi(X)

= y
∑σ̂1
i=1

∑σi
j=1(d+1)j [Kσ](X)

= y
∑σ1
i=1 σ̂i(d+1)i [Kσ](X).

Suppose σ and τ are distinct partitions with max(σ̂1, τ̂1) 6 d. Then we can interpret degy([Kσ](DXD>))

and degy([Kτ](DXD>)) as numbers in base d+ 1. Because these numbers differ in at least one place

35

value, we have degy([Kσ](DXD>)) 6= degy([Kτ](DXD
>)). In particular, if σ and τ are distinct

shapes of tableaux appearing in the support of f(X), then by our choice of d we have max(σ̂1, τ̂1) 6 d,
so degy([Kσ](DXD>)) 6= degy([Kτ](DXD>)).

Consider the polynomial f(MDXD>M>). The preceding discussion implies

LCy(LC≺Λ(f(MDXD>M>))) = LCy

(∑
k∈A

αk[Kσk](DXD>)

)

= LCy

(∑
k∈A

y
∑(σ̂k)1
i=1 (σ̂k)i (d+1)i [Kσk](X)

)
= αk[Kσk](X)

for some fixed k ∈ A.
By taking leading coefficients in the ring F[X][Λ, y] with respect to the lexicographic order that

sets Λ � y, we then have
LC(f(MDXD>M>)) = αk[Kσk](X).

Invoking Lemma 2.37 yields a map ϕ : Λ ∪ {y} → {εi : i ∈ Z, i 6= 0} that, when extended to a
homomorphism ϕ : F[X,Λ, y]→ F(ε)[X], gives us

ϕ(f(MDXD>M>)) = εqαk[Kσk](X) +O(εq+1)

for some q ∈ Z. Finally, the transformation X 7→ ϕ(MD)Xϕ(D>M>) is linear and invertible, since
det(ϕ(M)) = ±1 and det(ϕ(D)) = εm for some nonzero m ∈ Z.

4.2 Projecting to the Pfaffian

The previous subsection yields a change of variables that takes any nonzero f ∈ Ipfaff
2n,2r to [Kσ](X) +

O(ε) for some partition σ of width at least 2r. As in the case of the determinant, we now want to
find a projection of X that takes [Kσ](X) to Pfm(X) for m as large as possible. Naïvely, we would
like to combine Lemma 3.6 with Lemma 2.26 to achieve this. This nearly works, but suffers from
the drawback that for a matrix A, the Pfaffians of the leading principal submatrices of(

0 A
−A> 0

)
do not correspond to minors of the leading principal submatrices of A. However, we can amend this
by suitably permuting the rows and columns of the above matrix to obtain a new matrix whose
leading principal sub-Pfaffians do correspond to minors of leading principal submatrices of A.

Lemma 4.3. Let A be an n× n matrix. Then there is a 2n× 2n skew-symmetric matrix M such
that for every k ∈ [n], we have Pf(M[2k],[2k]) = ±det(A[k],[k]).

Proof. Let σ ∈ S2n be the permutation sending (1, 2, . . . , 2n) to (1, n+ 1, 2, n+ 2, . . . , n, 2n). Let

B =

(
0 A
−A> 0

)
and let C be the permutation matrix corresponding to σ, i.e., ci,j = 1 if and only if j = σ(i). Then
M := CBC> is the matrix whose ith row (respectively jth column) is row σ(i) (respectively column
σ(j)) of B. We claim that for all k ∈ [n], we have Pf(M[2k],[2k]) = ±det(A[k],[k]).

36

To see this, let k ∈ [n] be arbitrary. Let τ ∈ S2k be the permutation sending (1, k + 1, 2, k +
2, . . . , k, 2k) to (1, 2, 3, . . . , 2k) and let D be the corresponding permutation matrix. We will show
that Pf(DM[2k],[2k]D

>) = ±det(A[k],[k]). By Lemma 2.25, this implies Pf(M[2k],[2k]) = ±det(A[k],[k]),
so M behaves as desired.

It remains to show that Pf(DM[2k],[2k]D
>) = ±det(A[k],[k]). Note that for i ∈ [2k], we have

σ(τ(i)) =

{
i if i 6 k
i− k + n if i > k.

For i, j ∈ [2k], we have, by definition,

(DM[2k],[2k]D
>)i,j = (M[2k],[2k])τ(i),τ(j)

= Mτ(i),τ(j)

= (CBC>)τ(i),τ(j)

= Bσ(τ(i)),σ(τ(j))

=

0 if i 6 k and j 6 k
Ai,j if i 6 k and j > k

−Aj,i if i > k and j 6 k
0 if i > k and j > k.

Thus, the matrix DM[2k],[2k]D
> is the 2k × 2k matrix given by

DM[2k],[2k]D
> =

(
0 A[k],[k]

−A>[k],[k] 0

)
.

It follows from Lemma 2.26 that

Pf(DM[2k],[2k]D
>) = (−1)(

k
2) det(A[k],[k])

as needed.

We are now ready to conclude our main result for Pfaffian ideals, an analogue of Theorem 3.8 for
Pfaffians. The proof is similar to the proof of Theorem 3.8, but augments the use of Lemma 3.6
with Lemma 4.3.

Theorem 4.4. Let X be a 2n×2n generic skew-symmetric matrix. Let f(X) be a nonzero polynomial
in the ideal generated by the Pfaffians of the principal 2r×2r submatrices of X. Let h(X, ε) ∈ FJεK[X]
be any polynomial such that h(X, ε) = f(X) +O(ε). Let g(y) ∈ F[y] be a polynomial in the border of
layered algebraic branching programs with at most r vertices. Then there is a depth-three h-oracle
circuit Φ defined over F(ε) such that the following hold.

1. Φ has nm addition gates at the bottom layer, a single h-oracle gate in the middle layer, and a
single addition gate at the top layer.

2. If char(F) = 0, then Φ computes g(y) +O(ε).

3. If char(F) = p > 0, then Φ computes g(y)p
k

+O(ε) for some k ∈ N.

37

Proof. Using Lemma 2.3, we only need to consider the case where the oracle gates compute f exactly.
By assumption, there is a polynomial g̃(y, ε) ∈ F[ε][y] such that g̃(y, ε) = g(y) +O(ε) and g̃(y, ε) can
be computed by a layered algebraic branching program on at most r vertices. Further, Lemma 3.7
yields a homogeneous polynomial ĝ(y, ε, z) ∈ F[ε][y, z] computable by a layered algebraic branching
program on at most r vertices such that ĝ(y, ε, 1) = g̃(y, ε). In what follows, we work with ĝ(y, ε, z).

Applying Proposition 4.2 to f(X) gives us linear functions `i,j(X, ε) ∈ F(ε)[X], an integer q ∈ Z,
and a nonzero α ∈ F such that

f(`1,1(X, ε), . . . , `2n,2n(X, ε)) = εqα[Kσ](X) +O(εq+1)

for some partition σ with σ1 > 2r.
Because ĝ(y, ε, z) can be computed by a layered ABP on at most r vertices, we can obtain a

layered ABP with exactly r vertices that computes ĝ(y, ε, z) by adding dummy vertices if necessary.
Let A(y, z) ∈ F[ε][y, z]r×r be the matrix obtained by applying Lemma 3.6 to ĝ(y, ε, z). Extend
A(y, z) to an n× n matrix by adding ones along the diagonal and zeroes elsewhere.

Let M(y, z) be the 2n× 2n matrix obtained by applying Lemma 4.3 to A(y, z). Let ϕ : X →
F[ε][y, z] be the substitution given by ϕ(X) = M(y, z). Under this substitution, we have

f(`1,1(ϕ(X), ε), . . . , `2n,2n(ϕ(X), ε))

= εqα[Kσ](ϕ(X)) +O(εq+1)

= εqα

σ̂1∏
i=1

Pfσi(ϕ(X)[σi],[σi]) +O(εq+1)

= ±εqα
σ̂1∏
i=1

detσi/2(A(y, z)[σi/2],[σi/2]) +O(εq+1)

= ±εqα
∏

i:σi>2r

detσi/2(A(y, z)[σi/2],[σi/2]) ·
∏

i:σi<2r

detσi/2(A(y, z)[σi/2],[σi/2]) +O(εq+1)

= ±εqα
∏

i:σi>2r

(1 + ĝ(y, ε, z)) +O(εq+1).

Let h(y, ε, z) := f(`1,1(ϕ(X), ε), . . . , `2n,2n(ϕ(X), ε)) and let t := |{i : σi > 2r}|. In this notation,
the above establishes that h(y, ε, z) = ±εqα(1 + ĝ(y, ε, z))t +O(εq+1).

Suppose char(F) = 0. Let δ be a new indeterminate. By performing the substitutions yi 7→ δyi
and z 7→ δ, we obtain

h(δy1, . . . , δym, ε, δ) = ±εqα(1 + ĝ(δ · y, ε, δ))t +O(εq+1)

= ±εqα
(

1 + δdeg(ĝ)ĝ(y, ε, 1)
)t

+O(εq+1)

= ±εqα
(

1 + δdeg(ĝ)g(y) +O(ε)
)t

+O(εq+1)

= ±εqα
t∑
i=0

(
t

i

)
δt·deg(ĝ)g(y)t +O(εq+1)

= ±εqα± εqδdeg(ĝ)αtg(y) +O(εqδ2 deg(ĝ)) +O(εq+1).

Setting

ε 7→ εN

δ 7→ ε

38

for N sufficiently large yields

h(εy1, . . . , εym, ε
N , ε) = ±εqNα± εqN+deg(ĝ)αtg(y) +O(εqN+deg(ĝ)+1).

The claimed f -oracle circuit is then given by

Φ(y) :=
h(εy1, . . . , εym, ε

N , ε)∓ εqNα
±εqN+deg(ĝ)αt

= g(y) +O(ε).

In the case that char(F) = p > 0, we need to modify the above argument in the case that p
divides t. Let k ∈ N be such that pk is the largest power of p that divides t. Write t = pkb. We then
have

h(δy1, . . . , δym, ε, δ) = ±εqα± εqδpk deg(ĝ)αbg(y)p
k

+O(εqδ2pk deg(ĝ)) +O(εq+1).

Again, for sufficiently large N , we can construct an f -oracle circuit that approximately computes g
via

Φ(y) :=
h(εy1, . . . , εym, ε

N , ε)∓ εqNα
±εqN+pk deg(ĝ)αb

= g(y)p
k

+O(ε).

Since the Pfaffian can be computed efficiently by algebraic branching programs, we immediately
obtain the following corollary of Theorem 4.4.

Corollary 4.5. Let f(X) ∈ Ipfaff
2n,2r be a nonzero polynomial, let h(X, ε) ∈ FJεK[X] be any polynomial

such that h(X, ε) = f(X) +O(ε), and let t 6 O(r1/3). Then there is a depth-three h-oracle circuit Φ
defined over F(ε) with the following properties.

1. The bottom layer of Φ consists of 4n2 addition gates, the middle layer has a single h-oracle
gate, and the top layer has a single addition gate.

2. If char(F) = 0, then Φ computes Pft(X) +O(ε).

3. If char(F) = p > 0, then Φ computes Pft(X)p
k

+O(ε) for some k ∈ N.

Proof. Mahajan, Subramanya, and Vinay [MSV04, Theorem 12] constructed a layered algebraic
branching program of size O(n3) that computes the 2n×2n Pfaffian. Combining this with Theorem 4.4
completes the proof.

5 Partial Derivatives in Determinantal Ideals

We now proceed to our applications of Theorem 3.8. Our first such application is the determination
of the minimum possible value of dim(∂<∞(f)) for a nonzero f ∈ Idet

n,m,r. The dimension of the space
of partial derivatives (and variants thereof) has been successfully used as a complexity measure in
proving algebraic circuit lower bounds. Though Theorem 3.8 gives us a tool to prove circuit lower
bounds for any nonzero polynomial f(X) ∈ Idet

n,m,r, there may be instances where the f -oracle circuit
is too costly to implement. For example, if f is computed by a homogeneous or read-once circuit,
these properties are not inherited by the oracle circuit. In such cases, it may be useful to have direct
estimates for dim(∂<∞(f)).

For notational convenience, let

dim(∂<∞(Idet
n,m,r)) := min

f∈Idet
n,m,r\{0}

dim(∂<∞(f)).

39

Since detr(X) ∈ Idet
n,m,r and dim(∂<∞(detr)) =

(
2r
r

)
, we clearly have dim(∂<∞(Idet

n,m,r)) 6
(

2r
r

)
.

Combining Corollary 3.9 with Lemma 2.18 establishes the existence of a universal constant c > 0

such that dim(∂<∞(Idet
n,m,r)) > dim(∂<∞(detcr1/3)) =

(
2cr1/3

cr1/3

)
.

Alternatively, one can use the observation of Forbes, Shpilka, Tzameret, and Wigderson [FSTW16,
Lemma 6.4] that the set of rank-r matrices contains all r-sparse vectors in Fn×m. This implies that
rank-r matrices are a hitting set for all polynomials that have a monomial supported on at most r
variables. For any f ∈ Idet

n,m,r+1, it follows by definition that f(X) vanishes on matrices of rank r.
This implies that the leading monomial of f(X) is supported on at least r + 1 variables. From here,
it is straightforward to conclude that there are at least 2r+1 distinct leading monomials among the
partial derivatives of f(X), which implies the stronger lower bound dim(∂<∞(Idet

n,m,r+1)) > 2r+1.
In this section, we will show that the naïve upper bound on dim(∂<∞(Idet

n,m,r)) is tight. That is,

dim(∂<∞(Idet
n,m,r)) = dim(∂<∞(detr)) =

(
2r

r

)
.

If one interprets dim(∂<∞(f)) as a measure of the complexity of f , then this says the r×r determinant
detr(X) is of minimal complexity in Idet

n,m,r.
We will show that dim(∂<∞((S|T))) >

(
2r
r

)
for any bideterminant (S|T) ∈ Idet

n,m,r and then
extend this to all nonzero polynomials in Idet

n,m,r using Proposition 3.5. We start by considering
partial derivatives with respect to a single variable. Recall that the operator ∂d

∂xdi,j
refers to the

order-d Hasse derivative with respect to xi,j . In the lemma below, we abuse notation and allow a
bitableau to have rows whose lengths are not necessarily nonincreasing.

Lemma 5.1. Let X be an n×m matrix of variables and let (S|T)(X) be a nonzero bideterminant
of shape σ. Let (i, j) ∈ [n]× [m] and let d := idegxi,j (S|T)(X). Then

∂d

∂xdi,j
(S|T)(X) = ±(S′|T ′)(X),

where (S′, T ′) is the bitableau whose kth row (S′(k, •), T ′(k, •)) is given by

(S′(k, •), T ′(k, •)) =

{
(S(k, •) \ {i}, T (k, •) \ {j}) if (i, j) ∈ S(k, •)× T (k, •)
(S(k, •), T (k, •)) if (i, j) /∈ S(k, •)× T (k, •).

Proof. By definition, we have

(S|T) =

σ̂1∏
k=1

(S(k, •)|T (k, •)).

Let A ⊆ [σ̂1] be the set of indices given by

A := {k : i ∈ S(k, •) and j ∈ T (k, •)}.

For k ∈ [σ̂1], we have

idegxi,j (S(k, •)|T (k, •)) =

{
1 k ∈ A,
0 otherwise.

If idegxi,j (S(k, •)|T (k, •)) = 1, then expanding the determinant (S(k, •)|T (k, •)) by minors gives us

∂

∂xi,j
(S(k, •)|T (k, •)) = ±(S′(k, •)|T ′(k, •)),

40

where S′(k, •) and T ′(k, •) are the one-row tableaux obtained by removing i from S(k, •) and j from
T (k, •), respectively. Note that for ` > idegxi,j (S(k, •)|T (k, •)), we have

∂`

∂x`i,j
(S(k, •)|T (k, •)) = 0.

Using the product rule (Lemma 2.16), we then have(
∂d

∂xdi,j

)
(S|T) =

(
∂d

∂xdi,j

)(
σ̂1∏
k=1

(S(k, •)|T (k, •))

)

=
∑

d1+···+dσ̂1
=d

σ̂1∏
k=1

∂dk

∂xdki,j
(S(k, •)|T (k, •))

=

σ̂1∏
k=1

(±(S′(k, •)|T ′(k, •)))

= ±(S′|T ′) 6= 0.

We now extend the preceding lemma to partial derivatives with respect to multiple variables.

Lemma 5.2. Let (S|T) be a nonzero bideterminant of shape σ. Let R ⊆ S(1, •) and C ⊆ T (1, •)
be subsets of the entries in the first row of S and T , respectively, such that |R| = |C|. Write
R = {r1, . . . , r`} and C = {c1, . . . , c`}. Then there are positive integers {d1, . . . , d`} such that(∏̀

i=1

∂di

∂xdiri,ci

)
((S|T)) 6= 0.

In the case char(F) = 0, we may take d1 = · · · = d` = 1.

Proof. We prove this via induction on `. The case ` = 1 follows from Lemma 5.1. When ` > 2, let
d1 := idegxr1,c1 (S|T). Lemma 5.1 implies

∂d1

∂xd1
r1,c1

(S|T) = ±(S′|T ′),

where (S′, T ′) is the bitableau obtained from (S, T) as in the statement of Lemma 5.1. Let
R′ := R \ {r1} and C ′ := C \ {c1}. Since S(1, •) ⊆ S′(1, •) ∪ {r1} and R ⊆ S(1, •), it follows that
R′ ⊆ S′(1, •). Similarly, we have C ′ ⊆ T ′(1, •). By induction, there are positive integers d2, . . . , d`
such that (∏̀

i=2

∂di

∂xdiri,ci

)
((S′|T ′)) 6= 0.

This implies (∏̀
i=2

∂di

∂xdiri,ci

)(
∂d1

∂xd1
r1,c1

((S|T))

)
6= 0,

so the fact that partial derivatives commute (Lemma 2.15) yields(∏̀
i=1

∂di

∂xdiri,ci

)
((S|T)) 6= 0.

41

If char(F) = 0, we also obtain (∏̀
i=1

∂

∂xri,ci

)
((S|T)) 6= 0.

We now use Lemma 5.2 to lower bound the dimension of the space of partial derivatives of any
bideterminant.

Proposition 5.3. Let (S|T) be a nonzero bideterminant of width r. Then dim(∂<∞((S|T))) >
(

2r
r

)
.

If char(F) = 0, then we also have dim(∂6d((S|T))) >
∑d

i=0

(
r
i

)2.
Proof. Recall that because (S|T) is of width r, we have |S(1, •)| = |T (1, •)| = r. For sets R ⊆ S(1, •)
and C ⊆ T (1, •) with |R| = |C|, let R = {r1, . . . , r`} and C = {c1, . . . , c`} and define

∂

∂xR,C
:=
∏̀
i=1

∂di

∂xdiri,ci
,

where d1, . . . , d` are obtained by applying Lemma 5.2 to (S|T), R, and C. We will show that

D :=

{
∂

∂xR,C
((S|T)) : R ⊆ S(1, •), C ⊆ T (1, •), |R| = |C|

}
is a set of linearly independent partial derivatives of (S|T). From this, it follows immediately that

dim(∂<∞((S|T))) > |D| =
r∑
i=0

(
r

i

)2

=

(
2r

r

)
and, in the case char(F) = 0,

dim(∂6d((S|T))) >
d∑
i=0

(
r

i

)2

.

It remains to show that the elements of D are linearly independent. From Lemma 5.2, we know
that ∂

∂xR,C
((S|T)) 6= 0. It follows from Lemma 2.14 that

multideg

(
∂

∂xR,C
((S|T))

)
= multideg((S|T))−

(∑̀
i=1

dieri

)
⊕

(∑̀
i=1

dieci

)
.

Let R′ ⊆ S(1, •) and C ′ ⊆ T (1, •) be such that (R,C) 6= (R′, C ′). From the above, we have

multideg

(
∂

∂xR,C
((S|T))

)
−multideg

(
∂

∂xR′,C′
((S|T))

)
=

(∑̀
i=1

d′ier′i −
∑̀
i=1

dieri

)
⊕

(∑̀
i=1

d′iec′i −
∑̀
i=1

dieci

)
.

Suppose without loss of generality that R 6= R′ and that r1 ∈ R \ R′. Then the r1 coordinate of∑`
i=1 dieri −

∑`
i=1 d

′
ier′i is nonzero, so

multideg

(
∂

∂xR,C
((S|T))

)
6= multideg

(
∂

∂xR′,C′
((S|T))

)
.

The argument when C 6= C ′ is analogous. Thus, the elements of D are nonzero, multihomogeneous,
and of distinct multidegree. Polynomials of differing multidegree are linearly independent, so this
immediately implies that the elements of D are linearly independent as desired.

42

We now use Proposition 3.5 to extend Proposition 5.3 to all nonzero polynomials in Ir.

Theorem 5.4. For every nonzero f ∈ Idet
n,m,r, we have dim(∂<∞(f)) >

(
2r
r

)
= dim(∂<∞(detr)). In

the case char(F) = 0, we also have dim(∂6d(f)) >
∑d

i=0

(
r
i

)2.
Proof. Apply Proposition 3.5 to f to obtain linear functions `1,1(X, ε), . . . , `n,m(X, ε) ∈ F(ε)[X]
such that

g(X, ε) :=
1

εq
f(`1,1(X, ε), . . . , `n,m(X, ε)) = α(Kσ|Kσ)(X) +O(ε)

for some q ∈ Z, a nonzero α ∈ F, and a partition σ with σ1 > r.
Note that g(X, 0) = α(Kσ|Kσ)(X). By Proposition 5.3, we have dim(∂<∞(g(X, 0))) >

(
2σ1

σ1

)
>(

2r
r

)
. This implies that dim(∂<∞(g(X, ε)) >

(
2r
r

)
. Since the change of variables xi,j 7→ `i,j(X, ε) is

an invertible linear transformation over F(ε), Lemma 2.18 implies

dim(∂<∞(f)) = dim(∂<∞(g(X, ε)) >

(
2r

r

)
.

When char(F) = 0, Proposition 5.3 also yields dim(∂6d(g(X, 0))) >
∑d

i=0

(
2σ1

i

)2
>
∑d

i=0

(
r
i

)2. As
above, this extends to a lower bound on dim(∂6d(g(X, ε))), so using Lemma 2.18 we get

dim(∂6d(f)) = dim(∂6d(g(X, ε)) >
d∑
i=0

(
r

i

)2

.

Remark 5.5. The hypothesis char(F) = 0 in the second part of Theorem 5.4 cannot be avoided in
general. If char(F) = p > 0 and f ∈ Idet

n,m,r \ {0}, then ∂
∂xi

(fp) = 0 for all i, so dim(∂61(fp)) = 1 <

1 + r2. ♦

6 Hardness Versus Randomness I: Low-Depth Circuits

A recent breakthrough of Limaye, Srinivasan, and Tavenas [LST21] obtained super-polynomial
lower bounds for low-depth algebraic circuits. Combining their result with the hardness-randomness
result of Chou, Kumar, and Solomon [CKS19b] yields a deterministic algorithm for identity testing
of low-depth algebraic circuits. Specifically, for every fixed ε > 0, they construct an explicit
hitting set generator with seed length O(nε) and degree O(log n/ log log n) that hits polynomial-size
o(log log log n)-depth circuits.

In this section, we give an improved construction of a hitting set generator for low-depth circuits.
For every k ∈ N, we construct a generator with seed length n1/2k+o(1) and degree 2k that hits
polynomial-size o(log log log n)-depth circuits. It follows from Lemma 2.6 that the tradeoff between
the seed length and degree of our generator is optimal up to the no(1) factor in the seed length. Our
generator is also computable by a circuit of product-depth k and size n1+o(1). As remarked in the
introduction, existing techniques in algebraic hardness-randomness produce generators that cannot
be computed by circuits smaller than those they hit. Additionally, our generator hits the closure
of small low-depth circuits. We note that the generator of Chou, Kumar, and Solomon [CKS19b],
when instantiated with a polynomial hard for the border of low-depth circuits, can also be shown to
hit the closure of low-depth circuits.

Our result can be interpreted as a hardness-randomness framework for low-depth circuits in
an aggressive setting of parameters. In order to instantiate our generator, we need lower bounds
on the size of low-depth circuits that compute the determinant, which itself can be computed by

43

small algebraic branching programs. In contrast, typical hardness-randomness results only require
lower bounds for a family of polynomials whose coefficients can be computed explicitly, but the
polynomials themselves need not be efficiently computable. In return for these strong lower bound
assumptions, we obtain a generator with parameters that improve on known constructions and are
near-optimal in the regime of nΘ(1) seed length.

6.1 Making [LST21] Robust

In this subsection, we establish that the lower bound of Limaye, Srinivasan, and Tavenas [LST21]
extends to the border of low-depth circuits. This essentially follows from the fact that they use
a rank-based measure to prove their lower bound. The extension of lower bounds based on rank
measures to the setting of border complexity is a standard observation in algebraic circuit complexity,
but we make this explicit for the sake of completeness. Throughout this subsection, we assume
familiarity with the notation and definitions of [LST21].

The proof of Limaye, Srinivasan, and Tavenas [LST21] proceeds in two steps. They first establish
a lower bound against low-depth set-multilinear circuits. They then show that a low-depth circuit
computing a low-degree set-multilinear polynomial can be made set-multilinear without increasing
the depth or size too much. Combined, this establishes a lower bound against general low-depth
circuits.

We first observe that the lower bound against set-multilinear circuits is robust. To prove their
lower bound, they construct from a given polynomial f(x) a matrix Mf such that Mf has small
rank if f can be computed by a small set-multilinear circuit of low depth.

Lemma 6.1 ([LST21, Claim 16]). Let k > 10d and let w be any word of length d such that the
entries of w are bαkc and −k where α = 1/

√
2. Then for any ∆ > 1, any set-multilinear formula Φ

of product-depth ∆ and size s satisfies

relrkw(Φ) 6 s · 2−
kd1/(2

∆−1)

20 .

Next, they show that Mf has large rank when f corresponds to the iterated matrix multiplication
polynomial IMMn,d(x). To do this, they show that a set-multilinear projection of IMMn,d(x) has
large rank. This projection behaves nicely in the setting of border complexity, as we describe below.

Lemma 6.2 (cf. [LST21, Lemma 8]). Let w ∈ Ad be any word which is b-unbiased. If there is a
set-multilinear circuit computing IMM2b,d(x) + O(ε) of size s and product-depth ∆, then there is
also a set-multilinear circuit of size s and product-depth ∆ computing Pw +O(ε) for a polynomial
Pw ∈ Fsm[X(w)] such that relrkw(Pw +O(ε)) > 2−b/2.

Proof. [LST21, Lemma 8] establishes that such a polynomial Pw can be obtained as a set-multilinear
projection of IMM2b,d. Since a nonzero projection of any polynomial in εF[ε][x] remains in εF[ε][x],
the same projection takes IMM2b,d +O(ε) to Pw +O(ε). It is clear that such a projection does not
increase the size or product-depth of a circuit. Further, since this projection is set-multilinear, the
set-multilinearity of the circuit is preserved.

It remains to show that relrkw(Pw +O(ε)) > 2−b/2. Limaye, Srinivasan, and Tavenas [LST21]
show that relrkw(Pw) > 2−b/2. Since Pw can be obtained as a projection of Pw + O(ε) by setting
ε = 0, the lower bound on relative rank extends to Pw +O(ε) for any error term O(ε).

Given the preceding lemmas, we now establish lower bounds on the size of low-depth set-
multilinear circuits computing IMMn,d(x) in the setting of border complexity. The proof is analogous
to that of [LST21, Lemma 15].

44

Lemma 6.3 (cf. [LST21, Lemma 15]). Let n, d,∆ ∈ N\{0} such that n > 410d+1. Any set-multilinear
circuit Φ of product-depth ∆ that computes IMMn,d(x) +O(ε) must have size

n
Ω

(
d1/(2

∆−1)

∆

)
.

Given this lower bound, we now implement the second step of [LST21] by lifting this lower bound
to general low-depth circuits. Let f(x) be a set-multilinear polynomial. Limaye, Srinivasan, and
Tavenas [LST21] lift their lower bound from set-multilinear circuits to general circuits by giving a
non-trivial simulation of low-depth circuits by set-multilinear circuits. Our goal is to perform this
same lifting in the border setting: given a low-depth circuit computing f(x) +O(ε), we want to find
a low-depth set-multilinear circuit that also computes f(x) +O(ε).

There is a subtle issue in that the error term O(ε) may not correspond to a set-multilinear
polynomial, so we cannot immediately conclude the existence of a low-depth set-multilinear circuit
computing f(x) + O(ε). However, if we allow the error term to change, such a transformation is
possible. Given a low-depth circuit computing f(x) +O(ε), the set-multilinearization procedure of
Limaye, Srinivasan, and Tavenas [LST21] in fact yields a small, low-depth circuit computing the
set-multilinear part of f(x) +O(ε). This only modifies the error term, which is permissible in our
setting.

Lemma 6.4 (cf. [LST21, Proposition 9]). Let s, N , and d, be growing parameters with s > Nd
and let ∆ ∈ N. Assume that char(F) = 0 or char(F) > d. If Φ is a circuit of size at most s and
product-depth at most ∆ computing P + O(ε) for a set-multilinear polynomial P over the sets of
variables (X1, . . . , Xd) (with |Xi| 6 N), then there is a set-multilinear circuit Φ̃ of size dO(d)poly(s)
and product-depth at most 2∆ computing P +O(ε).

Using Lemma 6.4, we now lift Lemma 6.3 to a lower bound against low-depth circuits without
the set-multilinear restriction. The proof is identical to that of [LST21, Corollary 4].

Corollary 6.5 (cf. [LST21, Corollary 4]). Let d 6 (log n)/100 and suppose either char(F) = 0 or
char(F) > d. Any algebraic circuit of product-depth ∆ which computes IMMn,d(x) +O(ε) must have
size at least ndexp(−O(∆)).

6.2 Constructing a Hitting Set Generator

We now use the lower bound of Corollary 6.5 to design hitting set generators for the closure of
small low-depth circuits. Of course, a generator with improved parameters can be constructed if
one assumes an even stronger lower bound on the size of low-depth circuits needed to compute
IMMn,d(x) +O(ε). For ease of exposition, we directly instantiate our generator with the lower bound
of Corollary 6.5.

The generator of Construction 2.8 will act as a basic building block in our construction. In
order to make use of this generator, we need to extend Corollary 6.5 to a lower bound for any
non-zero polynomial in the ideal Idet

n,m,r. This essentially follows by combining Corollary 6.5 with
Corollary 3.10.

Lemma 6.6. There is a universal constant c6.6 > 0 such that the following holds. Let f(X) ∈ Idet
n,m,r

be a nonzero polynomial. Assume that either char(F) = 0 or char(F) > deg(f). Then any circuit of
product-depth ∆ which computes f(X) +O(ε) must be of size

r(log r)exp(−c6.6∆)
.

45

Proof. Without loss of generality, we assume that there is no n′ < n such that f ∈ Idet
n′,m,r and that

there is no m′ < m such that f ∈ Idet
n,m′,r. If there is such an n′ or m′, we may zero out the nth

row (respectively mth column) of X without affecting the polynomial f . In particular, we may
assume that f depends on at least one variable in each row and column of X, so f depends on at
least max(n,m) variables. This implies that any circuit computing f +O(ε) must have size at least
s > max(n,m).

Let Φ be a circuit of size s and product-depth ∆ that computes f(X)+O(ε). Let d := (log r)/1000
and w := r/ log r. Using Corollary 3.10, we obtain a circuit Ψ(y) of size s+O(n2m2) and product-
depth ∆ that computes

Ψ(y) =

{
IMMw,d(y) +O(ε) if char(F) = 0

IMMw,d(y)p
k

+O(ε) if char(F) = p > 0.

In the case char(F) = p > 0, the fact that Ψ is obtained from Φ by adding a layer of addition gates
above and below Φ implies

deg(f) > deg(IMMpk

w,d) = dpk.

By assumption, we have p > deg(f), so k = 0. That is, we have the equality

Ψ(y) = IMMw,d(y) +O(ε)

both when char(F) = 0 or when char(F) > deg(f). When r is sufficiently large, we have

d = (log r)/1000 6 (log r − log log r)/100 = (logw)/100.

Corollary 6.5 then implies

s+O(n2m2) > wd
exp(−O(∆))

= r(log r)exp(−O(∆))
.

Since n2m2 6 O(s4), we conclude the desired lower bound on s.

Having established border complexity lower bounds against low-depth circuits for all nonzero
polynomials in Idet

n,m,r, we now turn to polynomial identity testing. Using Lemma 6.6, we show that
matrices of low rank are a hitting set for the closure of low-depth circuits.

Lemma 6.7. Let F be a field of characteristic zero or characteristic larger than s∆. Let Gn,m,r(Y, Z)
be the generator defined in Construction 2.8. There is a universal constant c6.7 > 0 such that for
r = 2(log s)1−exp(−c6.7∆) , the map G√n,√n,r−1(Y, Z) is a hitting set generator for the closure of n-variate
circuits of size s and product-depth ∆.

Proof. Let c6.6 be the constant from Lemma 6.6 and choose k > 0 large enough so that exp(−c6.6) <

(1/2)
1

k−1 . Suppose for the sake of contradiction that the statement of the lemma fails for c6.7 = kc6.6.
Then there is a circuit Φ of size s and product-depth ∆ which computes f(X) + O(ε) for some
nonzero f(X) such that f(G√n,√n,r−1(Y,Z)) = 0. By Lemma 2.10, we have f(X) ∈ Idet√

n,
√
n,r

. Since
f is computed by a circuit of size s and product-depth ∆, we have deg(f) 6 s∆, so either char(F) = 0
or char(F) > deg(f). The lower bound of Lemma 6.6 implies

s > 2(log r)1+exp(−c6.6∆)
= 2(log s)(1−exp(−c6.7∆))(1+exp(−c6.6∆)

.

We claim that
(1− exp(−c6.7∆))(1 + exp(−c6.6∆)) > 1.

46

This would imply s > s, a contradiction, which would in turn prove that G√n,√n,r−1(Y,Z) is a
hitting set generator for the closure.

To prove this inequality, we first note that it suffices to prove the equivalent

exp(−c6.6∆) > exp(−c6.7∆) + exp(−(c6.6 + c6.7)∆).

By our choice of c6.7 and the fact that ∆ > 1, we have

exp(−c6.7∆) + exp(−(c6.6 + c6.7)∆) < 2 exp(−c6.7∆)

= 2 exp(−kc6.6∆)

6 2 exp(−c6.6∆) exp(−(k − 1)c6.6)

< exp(−c6.6∆),

where the last step follows from our choice of k so that exp(−c6.6) 6 2
1

k−1 . This establishes the
claimed inequality and completes the proof of the lemma.

Lemma 6.7 constructs a hitting set generator for polynomial-size low-depth circuits with seed
length n1/2+o(1) and degree 2. By Lemma 2.6, this seed length is near-optimal for a degree-two
generator. To obtain hitting set generators with better seed length, we recursively apply the generator
of Lemma 6.7.

Theorem 6.8. Let F be a field of characteristic zero. For every fixed k ∈ N, there is an explicit
hitting set generator Gk for the closure of n-variate, size-s, product-depth ∆ 6 o(log log log n) circuits
such that Gk has the following properties.

1. Gk has seed length n1/2kso(1).

2. deg(Gk) = 2k.

3. Gk can be computed by a circuit of product-depth k and size nso(1). Moreover, each product
gate in this circuit has fan-in 2.

Proof. We proceed via induction on k. Observe that Lemma 6.7 establishes the theorem in the case
k = 1. When k > 2, let Gk−1(w) be the generator given by induction and let Φ be a nonzero circuit
of size s and product-depth ∆ over F(ε). By induction, we have that Gk−1(w) hits Φ even when
ε = 0, so Φ(Gk−1(w)) 6= 0 and Φ(Gk−1(w)) /∈ εF[ε][w]. Further, the composition Φ(Gk−1(w)) can be
computed by a circuit of product-depth ∆ + k − 1 and size s+ nso(1) 6 s1+o(1).

Let nk−1 and dk−1 be the seed length and degree, respectively, of Gk−1(w). Arrange the variables
w into a √nk−1 ×

√
nk−1 matrix and let

Gk(Y, Z) := Gk−1(G√nk−1,
√
nk−1,rk(Y, Z)),

where
rk = 2log(s1+o(1))1−exp(−c6.7(∆+k−1))

.

Lemma 6.7 implies that G√nk−1,
√
nk−1,rk(Y,Z) hits Φ(Gk−1(w)) even when ε = 0. Equivalently, the

composition Gk(Y,Z) hits Φ even when ε = 0. We now analyze the parameters of Gk(Y,Z).

Seed length By definition, the seed length nk of Gk(Y, Z) is bounded by

nk 6 2
√
nk−1rk.

47

It follows from induction that nk−1 6 n1/2k−1
so(1), so we bound the above as

nk 6 2n1/2kso(1)rk.

We now bound rk. As k is fixed and ∆ 6 o(log log log n) 6 o(log log log s), we have k + ∆ 6
o(log log log s). This implies

exp(−c6.7(∆ + k − 1)) >
1

exp(o(log log log s))
> ω

(
1

log log s

)
.

From this, we obtain

(log(s1+o(1)))1−exp(−c6.7(∆+k−1)) 6 (log(s1+o(1)))
1−ω(1

log log s
) 6

log s1+o(1)

ω(1)
6 o(log s).

By definition, we have

rk = 2log(s1+o(1))1−exp(−c6.7(∆+k−1))
6 2o(log s) 6 so(1).

Thus nk 6 n1/2kso(1).

Degree Clearly, we have deg(Gk) = 2 deg(Gk−1). By induction, deg(Gk−1) = 2k−1, so deg(Gk) = 2k.

Circuit size We can compute G√nk−1,
√
nk−1,rk(Y, Z) with a circuit of product-depth 1 and size

O(nk−1rk). Using induction to bound nk−1 and the analysis of the seed length to bound
rk, we have O(nk−1rk) 6 nso(1). By induction, we can compute Gk−1(w) with a circuit of
product-depth k − 1 and size nso(1). Composing these circuits yields a circuit computing
Gk(Y,Z) of product-depth k and size nso(1).

Remark 6.9. While Lemma 6.7 holds over fields of sufficiently large positive characteristic, this
is not true of Theorem 6.8. This occurs because in our construction of the generator Gk, we apply
Lemma 6.7 to a polynomial of degree s∆2k. Doing so requires char(F) > s∆2k for all k, which is
not possible for fields of non-zero characteristic. Of course, for any fixed k, the generator Gk can be
constructed over fields of sufficiently large characteristic. ♦

7 Hardness Versus Randomness II: Formulas

One can mimic the results of Section 6 in the setting of algebraic formulas. While we still lack
strong lower bounds for formulas, it seems reasonable to conjecture that neither iterated matrix
multiplication nor the determinant can be computed by polynomial-size algebraic formulas. If we
strengthen this assumption to a lower bound against border formula complexity, then we can obtain
hitting set generators for the closure of small formulas just as in Lemma 6.7 and Theorem 6.8. In
this section, we describe this construction.

We start by constructing a generator whose correctness is conditional on the hardness of
bideterminants for border formulas. By Theorem 3.8, such lower bounds are implied by lower bounds
on the border formula size of any family of polynomials computable by small ABPs, including iterated
matrix multiplication and the determinant. Phrasing our results in terms of the border formula
complexity of bideterminants allows us to derive hardness-to-randomness results for homogeneous
formulas as well as general formulas.

First, we show that lower bounds for bideterminants imply the generator Gn,m,r of Construction 2.8,
with appropriate parameters, hits the closure of small formulas. Recall that for a partition σ, the ith

row of the tableau Kσ consists of (1, 2, . . . , σi).

48

Lemma 7.1. Let F be an arbitrary field. Let t : N→ N be a function such that for every partition
σ, the border formula complexity of (Kσ|Kσ)(X) is bounded from below by t(σ1). Let Gn,m,r(Y,Z) be
the generator defined in Construction 2.8. Then G√n,√n,t−1(2sn)−1(Y,Z) is a hitting set generator
for the closure of n-variate formulas of size s.

If t : N→ N instead lower bounds the size of homogeneous formulas computing (Kσ|Kσ)(X)+O(ε),
then G√n,√n,t−1(2sn)−1 hits the closure of n-variate size-s homogeneous formulas.

Proof. We first consider non-homogeneous formulas. Let r := t−1(2sn). Suppose for the sake of
contradiction that G√n,√n,r−1(Y,Z) is a not a hitting set generator for the closure of size-s formulas.
Then there is some nonzero polynomial f(X) such that f(G√n,√n,r−1(Y, Z)) = 0 and f(X)+O(ε) can
be computed by a formula of size s. Since f(G√n,√n,r−1) = 0, Lemma 2.10 implies that f ∈ Idet√

n,
√
n,r

.
By Proposition 3.5, there are linear forms `1,1(X, ε), . . . , `√n,

√
n(X, ε), some nonzero α ∈ F, an

integer q, and a partition σ with σ1 > r such that
1

αεq
f(`1,1(X, ε), . . . , `√n,

√
n(X, ε)) = (Kσ|Kσ)(X) +O(ε).

This yields a formula of size sn that computes (Kσ|Kσ)(X) +O(ε). This contradicts the assumption
that any such formula must be of size at least t(σ1) > t(r) > 2sn. Thus G√n,√n,r−1(Y,Z) is a hitting
set generator for the closure of n-variate size-s formulas.

The homogeneous case is analogous. The only difference is that if f(X) is computed by a size-s
homogeneous formula, we need to establish that 1

αf(`1,1(X, ε), . . . , `√n,
√
n(X, ε)) is computable by a

homogeneous formula of size sn. This follows immediately from the fact that the `i,j(X, ε) ∈ F(ε)[X]
are homogeneous linear polynomials in X.

Assuming super-polynomial lower bounds on the border formula complexity of bideterminants,
we can recursively apply the generator of Lemma 7.1 to obtain generators with smaller seed length.
This is analogous to the derivation of Theorem 6.8 from Lemma 6.7. The only difference is in the
analysis, as we now have to compute the generator using formulas, not low-depth circuits.

Proposition 7.2. Let F be an arbitrary field. Let t : N → N be a function such that for every
partition σ, the border formula complexity of (Kσ|Kσ)(X) is bounded from below by t(σ1). Assume
t(r) > rω(1). Then for every fixed k ∈ N, there is an explicit hitting set generator Gk for the closure
of n-variate size-s (homogeneous) formulas with the following properties.

1. Gk has seed length n1/2kso(1).

2. deg(Gk) = 2k.

3. Gk can be computed by a homogeneous formula of size nso(1).

Proof. We use induction on k, noting that the case k = 1 follows immediately from Lemma 7.1. When
k > 2, let Gk−1(w) be the generator given by induction and let Φ be a nonzero (homogeneous) formula
of size s. By induction, Gk−1 hits Φ even when ε = 0, so Φ(Gk−1(w)) 6= 0 and Φ(Gk−1(w)) /∈ εF[ε][w].
Furthermore, the composition Φ(Gk−1(w)) can be computed by a (homogeneous) formula of size
ns1+o(1).

Let nk−1 and dk−1 be the seed length and degree, respectively, of Gk−1. Arrange the variables of
w into a √nk−1 ×

√
nk−1 matrix and let

Gk(Y, Z) := Gk−1(G√nk−1,
√
nk−1,rk(Y, Z)),

where rk := t−1(ns1+o(1)) and Gn,m,r(Y,Z) is the generator of Construction 2.8. By Lemma 7.1, the
generator G√nk−1,

√
nk−1,rk(Y, Z) hits the composition Φ(Gk−1(w)) even when ε = 0. Equivalently,

Gk(Y, Z) hits Φ, even when ε = 0. We now analyze the parameters of Gk.

49

Seed length By construction, Gk has seed length 2
√
nk−1rk. It follows from induction that nk−1 6

n1/2k−1
so(1). By assumption, we have

rk = t−1(ns1+o(1)) 6 (ns)o(1) 6 so(1).

This lets us bound the seed length of Gk by

2
√
nk−1rk 6 n

1/2kso(1)

as claimed.

Degree Clearly deg(Gk) = 2 deg(Gk−1). By induction, we have deg(Gk−1) = 2k−1, so deg(Gk) = 2k.

Formula size Each coordinate of G√nk−1,
√
nk−1,rk(Y, Z) can be computed by a homogeneous formula

of size 2rk 6 so(1). By induction, the generator Gk−1 can be computed by a homogeneous
formula of size nso(1). Composing these formulas gives a homogeneous formula of size nso(1)

that computes Gk.

We now relax the hardness assumption of Proposition 7.2 using Theorem 3.8. This allows us to
construct hitting set generators for the closure of small formulas using lower bounds on the border
formula complexity of any family of polynomials that can be computed efficiently by algebraic
branching programs, including the determinant and iterated matrix multiplication.

Theorem 7.3. Let F be a field of characteristic zero. Let {fn(x) : n ∈ N} be a family of nΘ(1)-variate
polynomials such that (1) fn(x) is computable by algebraic branching programs of size nΘ(1), and
(2) the border formula complexity of fn(x) is bounded from below by nω(1). Then the conclusion
of Proposition 7.2 holds for formulas; that is, for every fixed k ∈ N, there is an explicit hitting set
generator Gk for the closure of n-variate size-s formulas with the following properties.

1. Gk has seed length n1/2kso(1).

2. deg(Gk) = 2k.

3. Gk can be computed by a homogeneous formula of size nso(1).

Proof. Because the determinant is VBP-complete, the assumed lower bound on the border formula
complexity of fn implies that the border formula complexity of detn(X) is bounded from below
by nω(1). Thus, it suffices to extend this to a lower bound on the border formula complexity of
bideterminants as in the hypothesis of Proposition 7.2.

Let X be an n × m generic matrix and let σ be a partition. Let Φ be a formula of size s
which computes (Kσ|Kσ)(X) +O(ε). By using Corollary 3.9 and converting the resulting circuit
into a formula, we obtain a formula of size O(sn2m2) 6 O(s3) which computes detr(X) + O(ε)

for r = Θ(σ
1/3
1). Such a formula must be of size rω(1). This implies s > rω(1), which in turn

yields s > σω(1)
1 . Hence the hypothesis of Proposition 7.2 holds, so we obtain the claimed family of

generators.

8 Lower Bounds for the Ideal Proof System

Our final application of Theorem 3.8 is to proof complexity. We construct an unsatisfiable system of
equations F such that no IPS refutation of F can be computed by a low-depth circuit of polynomial

50

size. We also show that if the border formula complexity of the determinant is super-polynomial,
then polynomial-size formulas cannot refute F .

In general, one cannot immediately transfer circuit lower bounds to proof complexity lower
bounds. The difficulty in proving lower bounds on the size of IPS refutations lies in the fact that for
a given system of equations F , there are many possible refutations of F and we must prove a lower
bound for each of them. The set of IPS refutations of F in fact has useful algebraic structure (see
[GP18, Section 6]), but to the best of our knowledge this has not been used successfully in proving
IPS lower bounds.

Forbes, Shpilka, Tzameret, and Wigderson [FSTW16] developed machinery to derive IPS lower
bounds from stronger notions of circuit lower bounds. Specifically, they showed that circuit lower
bounds can be lifted to IPS lower bounds if one can prove circuit lower bounds on either (a) circuits
that compute a polynomial f(x) as a function over the boolean hypercube or (b) circuits that
compute any multiple of f(x). Using this approach, they proved C-IPS lower bounds for various
restricted circuit classes C.

Recent work by Santhanam and Tzameret [ST21b] constructed a family of CNF formulas
that require IPS refutations of super-polynomial size if and only if VP 6= VNP. To the best of
our knowledge, this is the first instance where an algebraic circuit lower bound (without further
assumptions) is known to imply a lower bound for IPS. Their result requires the underlying field to
be finite; in contrast, we work with fields of characteristic zero, which are necessarily infinite.

Recall that Theorem 3.8 extends circuit lower bounds for det(X) to circuit lower bounds for
the ideal Idet

n,m,r. Since Idet
n,m,r is closed under multiplication by arbitrary polynomials, it is natural

to follow the strategy of [FSTW16] and attempt to lift the lower bound for Idet
n,m,r to an IPS lower

bound. To do this, we need a system of polynomials f, g1, . . . , gk that satisfies the hypothesis of
Lemma 2.39 with the additional property that f ∈ Idet

n,m,r, where r is not too small compared to n
and m. Fortunately, such a system is easy to construct. Recall that for two matrices A,B ∈ Fn×m,
their Hadamard product A�B is given by (A�B)i,j := ai,jbi,j . Let X and Y be two n×n matrices
of variables and In be the n× n identity matrix. Consider the system

detn(X) = 0

XY − In = 0

X �X −X = 0

Y � Y − Y = 0.

This system is unsatisfiable, since detn(X) = 0 implies that X is not invertible, while XY − In = 0
implies that X is invertible. However, removing the equation detn(X) = 0 results in a satisfiable
system as witnessed by X = Y = In. Thus, this system satisfies the hypotheses of Lemma 2.39 and
is a natural candidate for IPS lower bounds.

Note the equations X �X −X = 0 and Y � Y − Y = 0 can be removed without affecting the
hardness of this system. These equations enforce boolean constraints on the variables xi,j and yi,j ,
which is the typical setting of proof complexity.

We now show that lower bounds for det(X) can be lifted to IPS lower bounds in the setting of
low-depth circuits.

Theorem 8.1. Let X and Y be n× n matrices of variables. Assume that

1. if char(F) = 0, any product-depth ∆ circuit which computes detn(X) +O(ε) must be of size at
least t(n,∆) for some function t : N× N→ N; and

2. if char(F) = p > 0, any product-depth ∆ circuit which computes detn(X)p
k

+ O(ε) for any
k ∈ N must be of size at least t(n,∆) for some function t : N× N→ N.

51

Let C be an IPS refutation of

detn(X) = 0

XY − In = 0

X �X −X = 0

Y � Y − Y = 0.

Then any product-depth ∆ circuit that computes C(X,Y, z,W,U, V)+O(ε) must be of size t(Ω(n1/3),∆+
1)−O(n4).

Proof. Suppose C can be computed by a circuit of size s and product-depth ∆. The system above is
clearly unsatisfiable, as detn(X) = 0 implies that X is not invertible, whereas XY − In = 0 implies
that X is invertible. Observe that if we omit the equation detn(X) = 0, then this system becomes
satisfiable (take X = Y = In). Lemma 2.39 implies that

1− C(X,Y, 0, XY − In, X �X −X,Y � Y − Y) = f(X,Y) detn(X)

for some nonzero f(X,Y) ∈ F[X,Y]. The coordinates of XY − In, X �X −X, and Y � Y − Y can
be computed by a multi-output circuit of size O(n3) and product-depth 1. This yields a circuit of
size s + O(n3) and product-depth ∆ + 1 that computes f(X,Y) detn(X) + O(ε). It is clear that
f(X,Y) detn(X) ∈ Idet

2n,n,n, where we view X ∪Y as a 2n×n matrix of variables. Using Corollary 3.9,
we obtain a product-depth ∆ + 1 circuit Φ of size s+O(n4) such that

1. if char(F) = 0, then Φ computes detΘ(n1/3)(X) +O(ε); and

2. if char(F) = p > 0, then Φ computes detΘ(n1/3)(X)p
k

+O(ε) for some k ∈ N.

In both cases, we must have s+O(n4) > t(Ω(n1/3),∆ + 1), which completes the proof.

Since Corollary 6.5 establishes unconditional lower bounds on the size of low-depth circuits that
border compute detn(X) over fields of characteristic zero, we obtain corresponding lower bounds for
low-depth IPS.

Corollary 8.2. Let F be a field of characteristic zero. Let X and Y be n× n matrices of variables.
Let C be an IPS refutation of

detn(X) = 0

XY − In = 0

X �X −X = 0

Y � Y − Y = 0.

Then any product-depth ∆ circuit that computes C(X,Y, z,W,U, V)+O(ε) must be of size n(logn)exp(−O(∆)) .

Proof. This follows immediately from Theorem 8.1 and Corollary 6.5.

Remark 8.3. Over fields of characteristic p > 0, bounded-depth IPS can efficiently simulate AC0[p]-
Frege [GP18, Theorem 3.5]. Proving super-polynomial lower bounds on the length of AC0[p]-Frege
proofs is a longstanding open problem in proof complexity. Corollary 8.2 can be seen as a step
towards resolving this problem. In order to obtain AC0[p]-Frege lower bounds, two obstacles must
be overcome. First, one must extend the lower bound of Limaye, Srinivasan, and Tavenas [LST21]

52

to hold over fields of small characteristic and to hold for pth powers of the determinant. Second, it is
necessary to prove an IPS lower bound for a system of equations that arises from the encoding of a
CNF formula. Our system is not the encoding of a CNF; the IPS lower bounds of Forbes, Shpilka,
Tzameret, and Wigderson [FSTW16] also suffer from this drawback. ♦

We can also carry out the reasoning of Theorem 8.1 with formulas instead of low-depth circuits.
The resulting formula-IPS lower bound is conditional, as we currently lack good lower bounds on
the formula size of any explicit polynomial, let alone the determinant.

Theorem 8.4. Let X and Y be n× n matrices of variables. Assume that

1. if char(F) = 0, any formula which computes detn(X) +O(ε) must be of size at least t(n) for
some function t : N→ N; and

2. if char(F) = p > 0, any formula which computes detn(X)p
k

+O(ε) for any k ∈ N must be of
size at least t(n) for some function t : N→ N.

Let C be an IPS refutation of

detn(X) = 0

XY − In = 0

X �X −X = 0

Y � Y − Y = 0.

Then any formula that computes C(X,Y, z,W,U, V) +O(ε) must be of size Ω
(
t(Ω(n1/3))

n3

)
.

Proof. Suppose C can be computed by a formula of size s. As in the proof of Theorem 8.1, we
deduce from Lemma 2.39 that

1− C(X,Y, 0, XY − In, X �X −X,Y � Y − Y) = f(X,Y) detn(X)

for some nonzero f(X,Y) ∈ F[X,Y]. The coordinates of XY − In, X �X −X, and Y � Y − Y can
each be computed by a formula of size O(n). This yields a formula of size O(sn) that computes
f(X,Y) detn(X) +O(ε). From Corollary 3.9, we obtain a formula Φ of size O(sn3) such that

1. if char(F) = 0, then Φ computes detΘ(n1/3)(X) +O(ε); and

2. if char(F) = p > 0, then Φ computes detΘ(n1/3)(X)p
k

+O(ε) for some k ∈ N.

By assumption, we must have O(sn3) > t(Ω(n1/3)), which implies the desired lower bound on s.

The previous results show that, in the setting of border complexity, the task of computing the
Θ(n1/3) × Θ(n1/3) determinant can be reduced to computing any IPS refutation of the system
{detn(X) = 0, XY − In = 0}. We complement this by constructing a depth-three detn-oracle circuit
that computes a refutation of this system. Together with our previous results, this shows that
for sufficiently well-behaved circuit classes, the approximate complexity of refuting {detn(X) =
0, XY − In = 0} is bounded from below and above by the approximate complexity of computing the
Θ(n1/3)×Θ(n1/3) and n× n determinants, respectively.

Proposition 8.5. Let F be any field and let X and Y be n × n matrices of variables. Then the
following hold.

53

1. There is an O(n2)-size depth-three circuit with detn-oracle gates that computes an IPS refutation
of the system {detn(X) = 0, XY − In = 0}.

2. There is an O(n2)-size depth-three circuit with (detn +O(ε))-oracle gates that approximately
computes an IPS refutation of the system {detn(X) = 0, XY − In = 0}.

Proof. Item (2) follows immediately from (1) using Lemma 2.3, so it suffices to prove (1). Let Z be
an n× n matrix of variables and let w be an additional variable. We claim that

C(X,Y,w, Z) := 1− detn(Z + In) + w · detn(Y)

is an IPS refutation of the system {detn(X) = 0, XY − In = 0}. It is clear from the expression
above that C(X,Y,w, Z) can be computed by a depth-three circuit with detn-oracle gates. To see
that C(X,Y,w, Z) is a valid IPS refutation, we have

C(X,Y, 0, 0) = 1− detn(In) + 0 = 0

and

C(X,Y,detn(X), XY − In) = 1− detn(XY − In + In) + detn(X) detn(Y)

= 1− detn(XY) + detn(XY)

= 1.

Thus C(X,Y,w, Z) is an IPS refutation of the system {detn(X) = 0, XY − In = 0}.

We end with a brief discussion on the hard instance used in this section.

Remark 8.6. Grochow and Pitassi [GP18, Example A.6] showed that a short IPS refutation of
{detn(X) = 0, XY − In = 0} can be used to construct a short IPS proof of the inversion principle
XY = In =⇒ Y X = In. The inversion principle is one of the “hard matrix identities” of Soltys
and Cook [SC04], which are four tautologies proposed as candidates for separating the Frege and
Extended Frege proof systems. Unfortunately, our methods are not able to prove lower bounds,
conditional or otherwise, on the size of IPS proofs of the hard matrix identities. ♦

References

[AD80] Silvana Abeasis and Alberto Del Fra. “Young diagrams and ideals of Pfaffians”. In: Adv.
in Math. 35.2 (1980), pp. 158–178 (cit. on p. 33).

[AFSSV18] Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and
Ben Lee Volk. “Identity Testing and Lower Bounds for Read-k Oblivious Algebraic
Branching Programs”. In: ACM Trans. Comput. Theory 10.1 (2018) (cit. on p. 3).

[AGHT20] Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. “Semi-
Algebraic Proofs, IPS Lower Bounds, and the τ -Conjecture: Can a Natural Number
Be Negative?” In: Proceedings of the 52nd Annual ACM Symposium on Theory of
Computing (STOC 2020). Chicago, IL, USA: Association for Computing Machinery,
2020, pp. 54–67 (cit. on p. 5).

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. “Hitting-Sets
for ROABP and Sum of Set-Multilinear Circuits”. In: SIAM J. Comput. 44.3 (2015),
pp. 669–697 (cit. on p. 3).

54

http://dx.doi.org/10.1016/0001-8708(80)90046-8
http://dx.doi.org/10.1145/3170709
http://dx.doi.org/10.1145/3170709
http://dx.doi.org/10.1145/3357713.3384245
http://dx.doi.org/10.1145/3357713.3384245
http://dx.doi.org/10.1145/3357713.3384245
http://dx.doi.org/10.1137/140975103
http://dx.doi.org/10.1137/140975103

[Ale21] Yaroslav Alekseev. “A Lower Bound for Polynomial Calculus with Extension Rule”. In:
36th Computational Complexity Conference (CCC 2021). Ed. by Valentine Kabanets.
Vol. 200. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 21:1–21:18 (cit. on p. 9).

[And20] Robert Andrews. “Algebraic Hardness Versus Randomness in Low Characteristic”.
In: 35th Computational Complexity Conference (CCC 2020). Ed. by Shubhangi Saraf.
Vol. 169. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 37:1–37:32 (cit. on p. 32).

[AvMV15] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. “Deterministic polyno-
mial identity tests for multilinear bounded-read formulae”. In: Computational Com-
plexity 24 (2015), pp. 695–776 (cit. on p. 3).

[BCRL79] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. “O(n2.7799) complex-
ity for n× n approximate matrix multiplication”. In: Information Processing Letters
8.5 (1979), pp. 234–235 (cit. on p. 2).

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. “Algebraic complexity
theory”. Vol. 315. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. With the collaboration of Thomas Lickteig.
Springer-Verlag, Berlin, 1997, pp. xxiv+618 (cit. on p. 10).

[BDI21] Markus Bläser, Julian Dörfler, and Christian Ikenmeyer. “On the Complexity of Evalu-
ating Highest Weight Vectors”. In: 36th Computational Complexity Conference (CCC
2021). Ed. by Valentine Kabanets. Vol. 200. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, 29:1–29:36 (cit. on p. 2).

[BIK+96] Sam Buss, Russell Impagliazzo, Jan Krajíček, Pavel Pudlák, Alexander A. Razborov,
and Jiři Sgall. “Proof complexity in algebraic systems and bounded depth Frege systems
with modular counting”. In: Computational Complexity 6 (1996), pp. 256–298 (cit. on
p. 5).

[BIKPP96] Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák.
“Lower bounds on Hilbert’s Nullstellensatz and propositional proofs”. In: Proceedings of
the London Mathematical Society 73.3 (1996). Preliminary version in the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 1–26 (cit. on
p. 5).

[Bin80] Dario Bini. “Relations between exact and approximate bilinear algorithms. Applications”.
In: Calcolo 17 (1980), pp. 87–97 (cit. on p. 2).

[BS21] Pranav Bisht and Nitin Saxena. “Blackbox identity testing for sum of speacial ROABPs
and its border class”. In: Computational Complexity 30.8 (2021), pp. 1–48 (cit. on p. 3).

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. “Deterministic Factorization
of Sparse Polynomials with Bounded Individual Degree”. In: J. ACM 67.2 (2020).
Preliminary version in the 59th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2018), 8:1–8:28 (cit. on p. 2).

[Bür00] Peter Bürgisser. “Completeness and Reduction in Algebraic Complexity Theory”.
Springer-Verlag Berlin Heidelberg, 2000 (cit. on p. 2).

[Bür04] Peter Bürgisser. “The complexity of factors of multivariate polynomials”. In: Foundations
of Computational Mathematics 4.4 (2004), pp. 369–396 (cit. on pp. 2, 3, 11, 20).

55

http://dx.doi.org/10.4230/LIPIcs.CCC.2021.21
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.37
http://dx.doi.org/10.1007/s00037-015-0097-4
http://dx.doi.org/10.1007/s00037-015-0097-4
http://dx.doi.org/https://doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/https://doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.29
http://dx.doi.org/10.1007/BF01294258
http://dx.doi.org/10.1007/BF01294258
http://dx.doi.org/10.1112/plms/s3-73.1.1
http://dx.doi.org/10.1007/BF02575865
http://dx.doi.org/10.1007/s00037-021-00209-y
http://dx.doi.org/10.1007/s00037-021-00209-y
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/s10208-002-0059-5

[BV88] Winfried Bruns and Udo Vetter. “Determinantal rings”. Vol. 1327. Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1988, pp. viii+236 (cit. on p. 13).

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. “Using the Groebner Basis
Algorithm to Find Proofs of Unsatisfiability”. In: Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC 1996). Philadelphia, Pennsylvania, USA:
Association for Computing Machinery, 1996, pp. 174–183 (cit. on p. 5).

[CKS19a] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Closure of VP under taking
factors: a short and simple proof”. arXiv:1903.02366. 2019 (cit. on p. 2).

[CKS19b] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Closure Results for Polynomial
Factorization”. In: Theory of Computing 15.13 (2019). Preliminary version in the 33rd
Annual Computational Complexity Conference (CCC 2018), pp. 1–34 (cit. on pp. 2, 4,
8, 32, 43).

[dCEP80] Corrado de Concini, David Eisenbud, and Claudio Procesi. “Young diagrams and
determinantal varieties”. In: Invent. Math. 56.2 (1980), pp. 129–165 (cit. on pp. 17, 23,
24, 33).

[dCP76] Corrado de Concini and Claudio Procesi. “A characteristic free approach to invariant
theory”. In: Advances in Math. 21.3 (1976), pp. 330–354 (cit. on p. 19).

[DDS21a] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. “Demystifying the border of depth-3
algebraic circuits”. In: Proceedings of the 62nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2021). 2021 (cit. on p. 2).

[DDS21b] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. “Deterministic Identity Testing
Paradigms for Bounded Top-Fanin Depth-4 Circuits”. In: 36th Computational Complex-
ity Conference (CCC 2021). Ed. by Valentine Kabanets. Vol. 200. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, 11:1–11:27 (cit. on p. 3).

[DKR78] Jacques Désarménien, Joseph P. S. Kung, and Gian-Carlo Rota. “Invariant theory,
Young bitableaux, and combinatorics”. In: Advances in Math. 27.1 (1978), pp. 63–92
(cit. on p. 17).

[DRS74] Peter Doubilet, Gian-Carlo Rota, and Joel Stein. “On the foundations of combinato-
rial theory. IX. Combinatorial methods in invariant theory”. In: Studies in Applied
Mathematics 53 (1974), pp. 185–216 (cit. on pp. 17, 19).

[DS07] Zeev Dvir and Amir Shpilka. “Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits”. In: SIAM J. Comput. 36.5 (2007), pp. 1404–1434.
Preliminary version in the 37th Annual ACM Symposium on Theory of Computing
(STOC 2005) (cit. on p. 3).

[DSS18] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. “Discovering the roots: uniform
closure results for algebraic classes under factoring”. In: Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC 2018). 2018, pp. 1152–1165 (cit. on
p. 2).

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. “Hardness-Randomness Tradeoffs for
Bounded Depth Arithmetic Circuits”. In: SIAM J. Comput. 39.4 (2009), pp. 1279–1293
(cit. on pp. 2, 4, 8, 32).

56

http://dx.doi.org/10.1007/BFb0080378
http://dx.doi.org/10.1145/237814.237860
http://dx.doi.org/10.1145/237814.237860
http://arxiv.org/abs/1903.02366
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.1007/BF01392548
http://dx.doi.org/10.1007/BF01392548
http://dx.doi.org/10.1016/S0001-8708(76)80003-5
http://dx.doi.org/10.1016/S0001-8708(76)80003-5
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.11
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.11
http://dx.doi.org/10.1016/0001-8708(78)90077-4
http://dx.doi.org/10.1016/0001-8708(78)90077-4
http://dx.doi.org/10.1002/sapm1974533185
http://dx.doi.org/10.1002/sapm1974533185
http://dx.doi.org/10.1137/05063605X
http://dx.doi.org/10.1137/05063605X
http://dx.doi.org/10.1145/3188745.3188760
http://dx.doi.org/10.1145/3188745.3188760
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850

[For14] Michael A. Forbes. “Polynomial identity testing of read-once oblivious algebraic branch-
ing programs”. PhD thesis. Massachusetts Institute of Technology, Cambridge, MA,
USA, 2014 (cit. on pp. 14, 15).

[For16] Michael A. Forbes. “Some concrete questions on the border complexity of polynomials”.
Talk presented at the Workshop on Algebraic Complexity Theory (WACT), Tel Aviv.
2016 (cit. on p. 2).

[FS13] Michael A. Forbes and Amir Shpilka. “Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs”. In: Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2013). 2013, pp. 243–252 (cit. on p. 3).

[FS18] Michael A. Forbes and Amir Shpilka. “A PSPACE Construction of a Hitting Set for
the Closure of Small Algebraic Circuits”. In: Proceedings of the 50th Annual ACM
Symposium on Theory of Computing (STOC 2018). Los Angeles, CA, USA: Association
for Computing Machinery, 2018, pp. 1180–1192 (cit. on pp. 4, 12).

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. “Hitting sets for multilin-
ear read-once algebraic branching programs, in any order”. In: Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC 2014). 2014, pp. 867–875
(cit. on p. 3).

[FSTW16] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. “Proof Complexity
Lower Bounds from Algebraic Circuit Complexity”. In: Proceedings of the 31st Annual
Computational Complexity Conference (CCC 2016). 2016, 32:1–32:17 (cit. on pp. 3,
5–7, 9, 22, 40, 51, 53).

[GG20] Zeyu Guo and Rohit Gurjar. “Improved Explicit Hitting-Sets for ROABPs”. In: Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020). Ed. by Jarosław Byrka and Raghu Meka. Vol. 176. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 4:1–4:16 (cit. on p. 3).

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. “Identity Testing for Constant-Width,
and Any-Order, Read-Once Oblivious Arithmetic Branching Programs”. In: Theory of
Computing 13.1 (2017), pp. 1–21 (cit. on p. 3).

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. “Deterministic
Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs”. In:
Computational Complexity 26.4 (2017), pp. 835–880 (cit. on p. 3).

[GP18] Joshua A. Grochow and Toniann Pitassi. “Circuit Complexity, Proof Complexity, and
Polynomial Identity Testing: The Ideal Proof System”. In: J. ACM 65.6 (Nov. 2018),
37:1–37:59 (cit. on pp. 4, 5, 22, 51, 52, 54).

[Gro20] Joshua A. Grochow. “Complexity in ideals of polynomials: questions on algebraic
complexity of circuits and proofs”. In: Bull. EATCS 130 (2020) (cit. on pp. 1, 5, 6).

[GSS19] Zeyu Guo, Nitin Saxena, and Amit Sinhababu. “Algebraic Dependencies and PSPACE
Algorithms in Approximative Complexity over Any Field”. In: Theory of Computing
15.16 (2019), pp. 1–30 (cit. on p. 4).

[Has36] Helmut Hasse. “Theorie der höheren Differentiale in einem algebraischen Funktionenkör-
per mit vollkommenem Konstantenkörper bei beliebiger Charakteristik”. In: J. Reine
Angew. Math. 175 (1936), pp. 50–54 (cit. on p. 14).

57

http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1145/3188745.3188792
http://dx.doi.org/10.1145/3188745.3188792
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.32
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.32
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4
http://dx.doi.org/10.4086/toc.2017.v013a002
http://dx.doi.org/10.4086/toc.2017.v013a002
http://dx.doi.org/10.1007/s00037-016-0141-z
http://dx.doi.org/10.1007/s00037-016-0141-z
http://dx.doi.org/10.1145/3230742
http://dx.doi.org/10.1145/3230742
http://dx.doi.org/10.4086/toc.2019.v015a016
http://dx.doi.org/10.4086/toc.2019.v015a016
http://dx.doi.org/10.1515/crll.1936.175.50
http://dx.doi.org/10.1515/crll.1936.175.50

[IMP20] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. “The Surprising Power of
Constant Depth Algebraic Proofs”. In: Proceedings of the Thirty fifth Annual IEEE
Symposium on Logic in Computer Science (LICS 2020). Saarbrucken, Germany: IEEE
Computer Society Press, July 2020, pp. 591–603 (cit. on p. 9).

[IPS99] Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. “Lower bounds for the polynomial
calculus and the Gröbner basis algorithm”. In: Computational Complexity 8 (1999),
pp. 127–144 (cit. on p. 5).

[Kal87] Erich Kaltofen. “Single-Factor Hensel Lifting and its Application to the Straight-
Line Complexity of Certain Polynomials”. In: Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA. 1987, pp. 443–
452 (cit. on pp. 2, 32).

[Kay12] Neeraj Kayal. “An exponential lower bound for the sum of powers of bounded degree
polynomials”. Electronic Colloquium on Computational Complexity (ECCC), Technical
Report TR12-081. 2012 (cit. on p. 15).

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polynomial Identity Tests
Means Proving Circuit Lower Bounds”. In: Computational Complexity 13.1-2 (2004),
pp. 1–46 (cit. on pp. 2–4).

[KMSV13] Zohar S. Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. “Determin-
istic Identity Testing of Depth-4 Multilinear Circuits with Bounded Top Fan-in”. In:
SIAM Journal on Computing 42.6 (2013), pp. 2114–2131 (cit. on p. 3).

[Kra19] Jan Krajíček. “Proof Complexity”. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2019 (cit. on p. 4).

[KS01] Adam R. Klivans and Daniel Spielman. “Randomness Efficient Identity Testing of
Multivariate Polynomials”. In: Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC 2001). Hersonissos, Greece: Association for Computing
Machinery, 2001, pp. 216–223 (cit. on p. 3).

[KS07] Neeraj Kayal and Nitin Saxena. “Polynomial identity testing for depth 3 circuits”. In:
Comput. Complexity 16.2 (2007), pp. 115–138. Preliminary version in the 21st Annual
IEEE Conference on Computational Complexity (CCC 2006) (cit. on p. 3).

[KS09] Neeraj Kayal and Shubhangi Saraf. “Blackbox polynomial identity testing for depth
3 circuits”. In: Proceedings of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2009). IEEE Computer Soc., Los Alamitos, CA, 2009,
pp. 198–207 (cit. on p. 3).

[KS11] Zohar S. Karnin and Amir Shpilka. “Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in”. In: Combinatorica 31.3 (2011),
pp. 333–364. Preliminary version in the 23rd Annual IEEE Conference on Computational
Complexity (CCC 2008) (cit. on p. 3).

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. “Equivalence of Polynomial
Identity Testing and Polynomial Factorization”. In: Computational Complexity 24.2
(2015), pp. 295–331 (cit. on p. 32).

58

http://dx.doi.org/10.1145/3373718.3394754
http://dx.doi.org/10.1145/3373718.3394754
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.1007/s000370050024
http://dx.doi.org/10.1145/28395.28443
http://dx.doi.org/10.1145/28395.28443
http://eccc.hpi-web.de/report/2012/081/
http://eccc.hpi-web.de/report/2012/081/
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1137/110824516
http://dx.doi.org/10.1137/110824516
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1007/s00037-007-0226-9
http://dx.doi.org/10.1109/FOCS.2009.67
http://dx.doi.org/10.1109/FOCS.2009.67
http://dx.doi.org/10.1007/s00493-011-2537-3
http://dx.doi.org/10.1007/s00493-011-2537-3
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. “Superpolynomial Lower
Bounds Against Low-Depth Algebraic Circuits”. In: Proceedings of the 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2021). Preliminary
version in the Electronic Colloquium on Computational Complexity (ECCC), Technical
Report TR21-081. 2021 (cit. on pp. 1, 3, 8, 9, 43–45, 52).

[MS01] Ketan Mulmuley and Milind A. Sohoni. “Geometric Complexity Theory I: An Approach
to the P vs. NP and Related Problems”. In: SIAM J. Comput. 31.2 (2001), pp. 496–526
(cit. on p. 2).

[MS21] Dori Medini and Amir Shpilka. “Hitting Sets and Reconstruction for Dense Orbits in
VPe and ΣΠΣ Circuits”. In: 36th Computational Complexity Conference (CCC 2021).
Ed. by Valentine Kabanets. Vol. 200. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021,
19:1–19:27 (cit. on p. 4).

[MSV04] Meena Mahajan, P. R. Subramanya, and V. Vinay. “The combinatorial approach yields
an NC algorithm for computing Pfaffians”. In: Discrete Appl. Math. 143.1-3 (2004),
pp. 1–16 (cit. on p. 39).

[MV18] Daniel Minahan and Ilya Volkovich. “Complete Derandomization of Identity Testing
and Reconstruction of Read-Once Formulas”. In: ACM Trans. Comput. Theory 10.3
(2018) (cit. on p. 3).

[MV97] Meena Mahajan and V. Vinay. “Determinant: Combinatorics, Algorithms, and Com-
plexity”. In: Chicago Journal of Theoretical Computer Science 1997.5 (1997) (cit. on
p. 32).

[Oli16] Rafael Oliveira. “Factors of low individual degree polynomials”. In: Computational Com-
plexity 25.2 (2016), pp. 507–561. Preliminary version in the 30th Annual Computational
Complexity Conference (CCC 2015) (cit. on p. 2).

[OSV16] Rafael Oliveira, Amir Shpilka, and Ben Lee Volk. “Subexponential Size Hitting Sets
for Bounded Depth Multilinear Formulas”. In: Computational Complexity 25 (2016),
pp. 455–505 (cit. on p. 3).

[PS20] Shir Peleg and Amir Shpilka. “A Generalized Sylvester-Gallai Type Theorem for
Quadratic Polynomials”. In: 35th Computational Complexity Conference (CCC 2020).
Ed. by Shubhangi Saraf. Vol. 169. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
8:1–8:33 (cit. on p. 3).

[PS21] Shir Peleg and Amir Shpilka. “Polynomial Time Deterministic Identity Testing Al-
gorithm for Σ[3]ΠΣΠ[2] Circuits via Edelstein–Kelly Type Theorem for Quadratic
Polynomials”. In: Proceedings of the 53rd Annual ACM Symposium on Theory of Com-
puting (STOC 2021). New York, NY, USA: Association for Computing Machinery,
2021, pp. 259–271 (cit. on p. 3).

[PT16] Toniann Pitassi and Iddo Tzameret. “Algebraic Proof Complexity: Progress, Frontiers
and Challenges”. In: ACM SIGLOG News 3.3 (Aug. 2016), pp. 21–43 (cit. on p. 6).

[Raz98] Alexander A. Razborov. “Lower bounds for the polynomial calculus”. In: Computational
Complexity 7 (1998), pp. 291–324 (cit. on p. 5).

59

http://eccc.hpi-web.de/report/2021/081/
http://eccc.hpi-web.de/report/2021/081/
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.19
http://dx.doi.org/10.4230/LIPIcs.CCC.2021.19
http://dx.doi.org/10.1016/j.dam.2003.12.001
http://dx.doi.org/10.1016/j.dam.2003.12.001
http://dx.doi.org/10.1145/3196836
http://dx.doi.org/10.1145/3196836
http://dx.doi.org/10.1007/s00037-016-0130-2
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.8
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.8
http://dx.doi.org/10.1145/2984450.2984455
http://dx.doi.org/10.1145/2984450.2984455
http://dx.doi.org/10.1007/s000370050013

[Rob85] Lorenzo Robbiano. “Term orderings on the polynomial ring”. In: EUROCAL ’85. Ed. by
Bob F. Caviness. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 513–517
(cit. on p. 20).

[Rob86] Lorenzo Robbiano. “On the theory of graded structures”. In: Journal of Symbolic
Computation 2.2 (1986), pp. 139–170 (cit. on p. 20).

[Sap19] Ramprasad Saptharishi. “A survey of lower bounds in arithmetic circuit complexity”.
https://github.com/dasarpmar/lowerbounds-survey. 2019 (cit. on pp. 7, 10).

[SC04] Michael Soltys and Stephen Cook. “The proof complexity of linear algebra”. In: Annals
of Pure and Applied Logic 130.1 (2004), pp. 277–323 (cit. on p. 54).

[Sch80] Jacob T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial
Identities”. In: J. ACM 27.4 (1980), pp. 701–717 (cit. on p. 3).

[Shp19] Amir Shpilka. “Sylvester-Gallai Type Theorems for Quadratic Polynomials”. In: Pro-
ceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC 2019).
Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 1203–1214 (cit. on
p. 3).

[SS11] Nitin Saxena and C. Seshadhri. “An almost optimal rank bound for depth-3 identities”.
In: SIAM J. Comput. 40.1 (2011), pp. 200–224. Preliminary version in the 24th Annual
IEEE Conference on Computational Complexity (CCC 2009) (cit. on p. 3).

[SS12] Nitin Saxena and C. Seshadhri. “Blackbox identity testing for bounded top-fanin depth-
3 circuits: the field doesn’t matter”. In: SIAM J. Comput. 41.5 (2012), pp. 1285–1298.
Preliminary version in the 43rd Annual ACM Symposium on Theory of Computing
(STOC 2011) (cit. on p. 3).

[SS13] Nitin Saxena and C. Seshadhri. “From Sylvester-Gallai configurations to rank bounds:
improved blackbox identity test for depth-3 circuits”. In: J. ACM 60.5 (2013), 33:1–
33:33. Preliminary version in the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2010) (cit. on p. 3).

[ST20] Amit Sinhababu and Thomas Thierauf. “Factorization of Polynomials Given By Arith-
metic Branching Programs”. In: Proceedings of the 35th Annual Computational Com-
plexity Conference (CCC 2020). Ed. by Shubhangi Saraf. Vol. 169. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, 33:1–33:19 (cit. on p. 2).

[ST21a] Chandan Saha and Bhargav Thankey. “Hitting Sets for Orbits of Circuit Classes
and Polynomial Families”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Ed. by Mary
Wootters and Laura Sanità. Vol. 207. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021,
50:1–50:26 (cit. on p. 4).

[ST21b] Rahul Santhanam and Iddo Tzameret. “Iterated Lower Bound Formulas: A Diagonalization-
Based Approach to Proof Complexity”. In: Proceedings of the 53rd Annual ACM Sym-
posium on Theory of Computing (STOC 2021). New York, NY, USA: Association for
Computing Machinery, 2021, pp. 234–247 (cit. on pp. 5, 51).

[SV15] Amir Shpilka and Ilya Volkovich. “Read-once polynomial identity testing”. In: Compu-
tational Complexity 27 (2015), pp. 477–532 (cit. on pp. 3, 12).

60

http://dx.doi.org/https://doi.org/10.1016/S0747-7171(86)80019-0
https://github.com/dasarpmar/lowerbounds-survey
http://dx.doi.org/https://doi.org/10.1016/j.apal.2003.10.018
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/3313276.3316341
http://dx.doi.org/10.1137/090770679
http://dx.doi.org/10.1137/10848232
http://dx.doi.org/10.1137/10848232
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.50
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.50
http://dx.doi.org/10.1145/3406325.3451010
http://dx.doi.org/10.1145/3406325.3451010
http://dx.doi.org/10.1007/s00037-015-0105-8

[SV18] Shubhangi Saraf and Ilya Volkovich. “Black-Box Identity Testing of Depth-4 Multilinear
Circuits”. In: Combinatorica 38 (2018), pp. 1205–1238 (cit. on p. 3).

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent results
and open questions”. In: Foundations and Trends in Theoretical Computer Science
5.3-4 (2010), pp. 207–388 (cit. on p. 10).

[Val79] Leslie G. Valiant. “Completeness Classes in Algebra”. In: Proceedings of the 11th
Annual ACM Symposium on Theory of Computing (STOC 1979). Atlanta, Georgia,
USA: Association for Computing Machinery, 1979, pp. 249–261 (cit. on pp. 6, 28).

[Wie20] Finn Wiersig. “Sparse Polynomials in Polynomial Ideals”. Bachelor’s thesis. Otto von
Guericke University of Magdeburg, 2020 (cit. on p. 6).

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM 1979.
1979, pp. 216–226 (cit. on p. 3).

61
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/s00493-016-3460-4
http://dx.doi.org/10.1007/s00493-016-3460-4
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1007/3-540-09519-5_73

