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Abstract
Entropy is a fundamental property of both classical and quantum systems, spanning
myriad theoretical and practical applications in physics and computer science. We study
the problem of obtaining estimates to within a multiplicative factor γ > 1 of the Shannon
entropy of probability distributions and the von Neumann entropy of mixed quantum
states. Our main results are:

• an Õ
(
n

1+η

2γ2
)
-query quantum algorithm that outputs a γ-multiplicative approxi-

mation of the Shannon entropy H(p) of a classical probability distribution p =
(p1, . . . , pn);

• an Õ
(
n

1
2 + 1+η

2γ2
)
-query quantum algorithm that outputs a γ-multiplicative approxi-

mation of the von Neumann entropy S(ρ) of a density matrix ρ ∈ Cn×n.
In both cases, the input is assumed to have entropy bounded away from zero by a quantity
determined by the parameter η > 0, since, as we prove, no polynomial query algorithm can
multiplicatively approximate the entropy of distributions with arbitrarily low entropy. In
addition, we provide Ω

(
n1/3γ2) lower bounds on the query complexity of γ-multiplicative

estimation of Shannon and von Neumann entropies. We work with the quantum purified
query access model, which can handle both classical probability distributions and mixed
quantum states, and is the most general input model considered in the literature.
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1. Introduction
Entropy as a scientific concept is central in the study of a vast variety of subjects, ranging
from thermodynamics and information theory to networks and quantum entanglement.
The notion of entropy mathematically measures the amount of disorder and uncertainty
in a system composed of many parts. Indeed, the second law of thermodynamics can
famously be encapsulated in the simple statement that the entropy of a closed system
can never decrease.

In this work we focus on the most fundamental entropic functionals for both clas-
sical and quantum objects. For classical systems, the Shannon entropy H(p) :=
−
∑
i∈[n] pi log pi of a probability distribution p = (p1, . . . , pn) is a cornerstone of in-

formation theory. Notably, the Shannon entropy is proportional to the rates at which
input data can be transmitted over communication channels [Sha48].

For quantum systems, the von Neumann entropy S(ρ) := − Tr (ρ log ρ) [Neu27; Pet01]
of a mixed state specified by its density matrix ρ ∈ Cn×n is pivotal to our understanding
of key properties in quantum mechanics, such as the amount of entanglement contained
in bipartite quantum systems. In terms of information theory, von Neumann entropy
gives an asymptotic lower bound for the rate at which quantum data can be compressed
in a noiseless fashion [Sch95].

The von Neumann entropy is a strict generalisation of the Shannon entropy and
reduces to the latter when viewed in appropriately restricted settings. Other entropic
functionals built on the von Neumann entropy are also widely used in characterising
quantum systems. Moreover, they arise extensively in condensed matter and high energy
physics [Laf16], and are often used as operational measures in quantum information-
processing tasks [KRS09; HOW06]. They have also had immense theoretical implications
in the theory of gravity and black holes [Bek73; Don16], and their study from a quantum
information-theoretic viewpoint continues to be a rich source of new physical insights
[AS18; AK20].

Since obtaining a perfect description of a system is typically impossible, estimating
the entropy of an unknown probability distribution or quantum state using a bounded
number of samples, queries, or measurements is a vital algorithmic task. This question
received much attention in classical information theory, and in a series of works [BDK+02;
WY16; JVH+15; VV11] spanning the last two decades, nearly tight bounds were shown
on the sample complexity of classical algorithms for estimating Shannon entropy.

In this paper, we study quantum algorithms for the problem of obtaining multiplicative
estimates of the Shannon entropy of classical probability distributions and the von
Neumann entropy of mixed quantum states. For generality, we focus on algorithms in
the quantum purified query access model, which can handle both classical probability
distributions and mixed quantum states, and is the most general input model considered in
the literature. Thus, our algorithms can be implemented in all the four major input models
for quantum algorithms accessing probability distributions: quantum samples, quantum
queries to frequency vectors and classically drawn samples, as well as purifications.
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Approximation algorithms that estimate a quantity to within a multiplicative factor,
i.e., estimating x > 0 by outputting x̃ ∈ [x/γ, γx] for some γ > 1, allow for much flexibility.
On the one hand, via a correct choice of parameters they allow us to recover additive
approximations, i.e., estimating x > 0 by outputting x̃ ∈ [x− ε, x+ ε] for a small precision
parameter ε ∈ (0, 1) (see Section 1.1.4). On the other hand, in natural settings of
parameters, they also allow for a greater slack than additive approximation (for instance,
in many applications we may only need to know the unknown quantity to within a
factor of two, i.e., γ = 2). This slack allows us to obtain far more efficient algorithms
than is possible with additive approximation; indeed, we attain sublinear complexity for
entropy estimation as opposed to polynomial complexity (which is the best that can be
achieved for additive estimates). In turn, these properties of multiplicative approximation
algorithms make them often more involved and harder to construct.

In the classical setting, Batu et al. [BDK+02] considered the problem of estimating
Shannon entropy to multiplicative precision, showing that Õ(n(1+η)/γ2) samples suffice to
obtain an estimate within a factor γ, for classical distributions p with H(p) > γ/η. This
is almost matched by a lower bound of Ω(n(1−η)/γ2) later proven in [Val11].

We build on the aforementioned line of work by extending it to the setting of quantum
query algorithms for both classical distributions and mixed quantum states. In particular,
we are motivated by the following question:

Is it possible to construct sublinear quantum algorithms
for estimating von Neumann entropy?

1.1. Main results
This paper answers the foregoing question in the affirmative. We begin by presenting
our construction of quantum query algorithms for estimating the Shannon entropy of
a probability distribution to within a multiplicative factor γ > 1. Then, we proceed
to estimating the von Neumann entropy of mixed quantum states. Finally, we show
lower bounds on the quantum query complexity of the foregoing problems. The query
complexity in our setting is the standard analogue to the classical sample complexity,
and our results are in this sense information theoretic in nature.

1.1.1. Estimating Shannon entropy

We first consider quantum algorithms for classical distributions, accessed via quantum
query oracles. We obtain a quadratic improvement in the information theoretic complexity
over the best possible classical algorithm.
Theorem 1. There is a quantum algorithm that outputs with high probability a γ-
multiplicative approximation of the Shannon entropy H(p) of a classical probability
distribution p on [n] accessed via a purified quantum query oracle Up as in Eq. (2.10)
using Up and its inverse Õ

(
n(1+η)/2γ2

)
times, provided H(p) > 3γ + 4/η.
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We remark that there are four popular quantum input models that have been stud-
ied for quantum algorithms accessing classical input probability distributions [BHH11;
CFM+10; MW16; LW19; Bel19; GL20], namely: (i) quantum query oracle to a frequency
vector, (ii) quantum query oracle to list of classically generated samples, (iii) quantum
samples with preparation oracle, and (iv) purified quantum query access. (See formal
definitions in Section 2.1.) We stress that Theorem 1 holds for all of the models above.

In more detail, Belovs [Bel19] initiated a comparative study of the aforementioned
four models and showed that the purified access model (i.e., Model (iv)) is the most
general in the sense that it can capture both classical distributions and density matrices,
as well as be emulated by all the other models with a constant overhead. Furthermore,
he proved that the quantum samples model (i.e., Model (iii)) is strictly stronger than
the rest of the models, and conjectured that Models (i), (ii), and (iv) are equivalent for
classical probability distributions. Our algorithms are constructed using purified query
oracles, and hence by the above, the upper bounds we prove automatically apply to the
rest of the models.

1.1.2. Estimating von Neumann entropy

Next, we proceed to look at quantum algorithms for mixed quantum states. As far as
we are aware, this work is the first to investigate multiplicative approximations of the
von Neumann entropy of density matrices. We prove the following theorem showing that
such approximation is possible with query complexity that is sublinear in the dimension
of the state.
Theorem 2. There is a quantum algorithm that outputs a γ-multiplicative approximation
of the von Neumann entropy S(ρ) of a density matrix ρ ∈ Cn×n accessed via a purified
quantum query oracle Uρ as in Eq. (2.9) using Uρ and its inverse Õ

(
n1/2+(1+η)/2γ2

)
times,

provided S(ρ) > 3γ + 4/η.
To the best of our knowledge, this is the first example of an algorithm for estimating

von Neumann entropy with sublinear complexity. In contrast, we remark that standard
(tomographic) methods for learning the state, obtaining an additive estimate, or even
testing properties of its spectrum [OW15] typically require a number of samples or queries
that scales linearly (for additive approximation) or even quadratically (for learning and
testing) in the dimension n of the system. We provide a detailed comparison of our
algorithms with related works in Section 1.2.

1.1.3. Lower bounds

We complement the foregoing upper bounds by proving lower bounds on the query
complexity of quantum algorithms for multiplicative entropy estimation. For the general
purified query access model (i.e., Model (iv)), in which we also show our upper bounds,
we show that Ω

(
n1/3γ2

)
uses of the quantum query oracle are necessary to γ-approximate

the entropy of an unknown classical distribution, even when we are promised that the
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input has entropy larger than logn/γ2. In fact, the aforementioned lower bound is proved
via a reduction to a variant of the collision problem [AS04] in the frequency vector model
(i.e., Model (i)), and so it also holds for this stronger model. See details in Section 4.3.

We also prove lower bounds in the quantum samples model (i.e., Model (iii)). This
model is far stronger than the rest of the models, and in particular, it trivially admits
O(1)-quantum-sample algorithms for problems such as uniformity testing, identity testing,
and gap-support size testing, which are known to be hard in the other models. In the
quantum samples model, we are able to prove a weak lower bound of Ω(

√
logn) by

a reduction to the promise problem of testing identity of two known distributions in
Hellinger distance [Bel19]. To our knowledge, this constitutes the first non-trivial lower
bound on the capability of this powerful input model. See details in Section 4.2.

1.1.4. Additive approximation and gap problems

Multiplicative approximation can generally also capture the notion of additive approxi-
mation, and in particular for entropies we can recover ε-additive estimates by suitably
choosing the multiplicative factor γ, while incurring only a small (logarithmic) overhead
in the complexity. Multiplicative estimation has the added advantage of being closely
related to the field of property testing, wherein we wish to test whether an input satisfies
some global property (such as having high entropy) or is far from any possible input
that has that property (say, in total variation distance). To illustrate the generality and
utility of our results, we note the following immediate applications to additive estimation
and testing.
Estimating the entropy to additive precision: Since both Shannon and von Neu-
mann entropies of n-dimensional distributions or quantum systems are bounded by logn,
choosing γ = 1 + ε

logn we see that a good γ-multiplicative approximation also yields
a good ε-additive approximation (see Section 2.1 for more details). Furthermore, the
complexity overhead can be bounded by noting that

1
2γ2 = 1

2

(
1 + ε

logn

)−2

≤ 1
2 + 3ε2

log2 n
. (1.1)

Since the second term decays and is o(1), we recover query complexities of O
(
n

1
2 +o(1)

)
and O

(
n1+o(1)

)
for estimating the Shannon entropy of a probability distribution or the

von Neumann entropy of a density matrix to constant additive precision. This matches
the results of [GL20], upto to polylogarithmic factors (or equivalently, no(1) factors).

Testing whether the entropy is high or low: Suppose we wish to determine if
a distribution on [n] has entropy (1) larger than a threshold H1, or (2) smaller than
a threshold H2 < H1 for some H1, H2 ∈ (0, logn]. If we are able to γ-approximate
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the entropy with γ =
√

H1
H2

, notice that in the first case the algorithm must output a
value larger than

√
H1H2, whereas in the second case it must output a value smaller

than
√
H1H2, hence allowing us to distinguish the two cases. Thus, we can solve this

testing problem with nearly subquadratic quantum query complexity Õ
(
n
H2

2H1

)
. To

compare, classical algorithms can solve this task with O
(
n
H2
H1

+o(1)
)

samples and require

Ω
(
n
H2
H1
−o(1)

)
samples [Val11].

1.2. Related work
For easy reference, we collect in Tables 1 and 2 the best known results on estimating
Shannon and von Neumann entropies in input models of relevance to our work.

Type of estimate Classical sample complexity Quantum query complexity

[JVH+15; WY16] [GL20; LW19] & [BKT18]

ε-Additive Θ
(

n
ε logn + log2 n

ε2

)
Õ
(√

n
ε1.5

)
& Ω̃ (

√
n)

γ-Multiplicative Õ
(
n

1+η
γ2
)

& Ω
(
n1/γ2−o(1)

)
Õ
(
n

1+η
2γ2
)

& Ω
(
n1/3γ2

)
[BDK+02] & [Val11] (this work)

Table 1: Classical and quantum sample and query complexities of estimating the Shannon
entropy of classical distributions over an alphabet of size n, and η > 0 controls
the amount by which the entropy of the input is bounded away from zero (see
Lemma 1 for details).

Type of estimate Input model Complexity

[AIS+19] ε-Additive Copies of ρ O
(
n2

ε2

)
& Ω

(
n2

ε

)

[GL20] ε-Additive Purified quantum
queries Õ

(
n
ε1.5

)

This work γ-Multiplicative Purified quantum
queries Õ

(
n1/2+(1+η)/2γ2

)
& Ω

(
n1/3γ2

)

Table 2: Comparing works on estimating the von Neumann entropy of an n-dimensional
density matrix.
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We can group studies of entropy estimation into four categories: (1) classical and (2)
quantum algorithms for estimating entropies of classical distributions; (3) classical and
(4) quantum algorithms for estimating the entropies of quantum states.

We have already seen the most relevant works of the first kind in Section 1; it is
worth remarking however that the estimation of entropies in a variety of classical input
models and computational settings continues to be an active area of research.

We only note studies of the third category in passing: [HGK+10], for instance, discuss
a quantum Monte Carlo method to measure the 2-Rényi entropy of a many-body system
by evaluating the expectation value of a unitary swap operator.

At the intersection of categories (2) and (4), [AIS+19] study the sample complexity
of estimating von Neumann and Renyi entropies of mixed states of quantum systems,
in an input model where one gets access to m independent copies of an unknown n-
dimensional density matrix ρ. They allow arbitrary quantum measurements and classical
post-processing, and show that in general the number of quantum samples required scales
as Θ(n2), which is asymptotically the same as the number of samples that would be
required to learn the state completely via tomography. The experimental measurement
of the entropy of certain kinds of quantum systems has also recently been studied, for
example in [IMP+15].

Other oracular input models may be potentially stronger than simple samples with
measurement. The purified quantum query access model that we study in this work,
wherein data is accessed in the form of a quantum state, is one such model. This state
may be the output of some other quantum subroutine, in which case that subroutine
itself is the oracle. Such input models can capture the fact that we have access to the
process generating the unknown state, which we may a priori expect to be useful in
reducing the effort required in estimating its properties.

With regard to quantum algorithms for estimating the entropies of quantum states
(which subsumes the case of classical probability distributions), [LW19] provide upper
and lower bounds on the query complexity for the task of additive approximation
of von Neumann and Renyi entropies in the quantum frequency vector input model
(see Eq. (2.7)). [GL20] study another similar oracular model, known as the quantum
purified query access model, which essentially provides a pure state, sampling from which
reproduces the statistics of the original mixed state, or target classical distribution (see
Eqs. (2.9) and (2.10)). [SH21] consider the estimation of Renyi entropies in the same
purified query access model, to both additive and multiplicative precision. Their focus
however is on how this task may be solved on restricted models of quantum computation
(namely, DQC1), and they do not obtain optimal query complexities.

Finally, we remark that we use the approximation of the logarithm by power functions
that is defined and studied in [ZLO+07], who show that the Shannon entropy can be
estimated to any desired precision by interpolation using estimates of Rényi-α entropies
for values of α ∈ (0, 2]. They study a streaming input model and use techniques that are
otherwise very different from ours.
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2. Preliminaries and notation
We assume the reader is familiar with the quantum computing framework and notation,
such as Dirac’s bra-ket notation. We refer to standard texts such as [NC10; Wol19] for a
detailed introduction to quantum computation. Here, we discuss concepts and notation
of specific relevance to this paper.

For n ∈ N we denote by [n] the set {1, . . . , n}. All logarithms that we use throughout
this paper are taken with base 2. For a probability distribution p = (p1, . . . , pn) on [n],
we use the notation wp(A) := ∑

i∈A pi for the weight of a subset of labels A ⊆ [n].
The Shannon entropy H of p is defined by [Sha48]

H(p) := −
∑
i∈[n]

pi log pi. (2.1)

We will let Hp(A) := −∑i∈A pi log pi denote the entropy of the set of labels A ⊆ [n]
under the distribution p.

Quantum registers can also exist in probabilistic mixtures of states; the simpler
superposition states are called pure states, and their probabilistic mixtures are known as
mixed states. The most general description of an n-dimensional quantum state ρ is in
terms of an n× n positive semi-definite matrix with complex entries, normalised to have
unit trace. The von Neumann entropy of a quantum state represented by its density
matrix ρ ∈ Cn×n is defined by [MDS+13]

S(ρ) := − Tr (ρ log ρ) . (2.2)

For two distributions p and p̃ on [n], we define the Hellinger distance between them by

dH(p, p̃) :=
√

1
2
∑
i

(√pi −
√
p̃i)2, (2.3)

and the total variation distance by

dTV(p, p̃) := 1
2
∑
i

|pi − p̃i| . (2.4)

We use the standard complexity theoretic notation of Õ to hide polylogarithmic factors.
Finally, all our algorithms succeed with constant probability which can be boosted by
standard techniques, and we omit the resulting factors from the complexity and discussion
for brevity.
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2.1. Multiplicative and additive estimates
A good estimate x̃ of some unknown quantity x > 0 to a multiplicative factor γ > 1
satisfies

x

γ
≤ x̃ ≤ γx. (2.5)

Similarly, an estimate x̃ of an unknown quantity x to additive precision ε > 0 must
satisfy

x− ε ≤ x̃ ≤ x+ ε. (2.6)

When we know an upper bound 0 < X <∞ on x, we can obtain an ε-additive approxi-
mation from a γ-multiplicative approximation by choosing γ = 1 + ε

X , since

x− ε <
(

1− ε

X

)
x <

(
1 + ε

X

)−1
x < x̃ <

(
1 + ε

X

)
x < x+ ε.

In particular, we know that the entropy of any distribution over [n] is bounded above
by logn, and so by choosing γ = 1 + ε

logn we can always obtain good additive estimates
using multiplicative estimation subroutines.

2.2. Input models
We now formally define the four input models touched upon in Section 1. We refer to
[Bel19] for a more detailed discussion of these models and their relations to each other.
(i) Frequency vectors with quantum query access: A standard unitary quantum

query oracle U to a string v ∈ [n]m for some large m, where ∀ j ∈ [m], i ∈ [n], and

U |i〉 |0〉 = |i〉 |vi〉

pi = 1
n
|{j|vj = i}| . (2.7)

(ii) Quantum oracle that generates a sample from p: A standard unitary quan-
tum query oracle to a string v ∈ [n]m for some large m, where each vi is drawn
independently at random according to the distribution p.

(iii) Quantum samples for classical distributions: A unitary that prepares the
state

Up |0〉 =
d−1∑
i=0

√
pi |i〉 := |p〉 , (2.8)

such that measuring the state |p〉 in the computational basis reproduces the effect
of sampling from p.
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(iv) Purified quantum query access: A unitary Uρ on Cn ⊗ Cn which produces a
purification |ψρ〉 of the actual input state ρ in Cn×n

Uρ |0〉 =
n∑
i=1

√
pi |ψi〉 |φi〉 := |ψρ〉 (2.9)

such that the partial trace over the ancillary register Tr2 (|ψρ〉〈ψρ|) = ρ. The
states {|ψ〉} and {|φ〉} are sets of orthonormal vectors on the system and ancillary
subspaces respectively. Classical probability distributions can be considered as
density matrices that are diagonal in the computational basis, so we consider a
unitary Up with a simplified action

Up |0〉 =
n∑
i=1

√
pi |ψi〉 |i〉 := |ψp〉 . (2.10)

In all four cases, as is standard in the theory of quantum query complexity, we assume
access to both the oracle and its conjugate U †.

The frequency vector model can emulate the purified access model for classical
distributions, i.e., given a frequency vector oracle, we can construct a purified access
oracle with a single query:

U

 1√
m

m∑
j=1
|j〉 |0〉

 = 1√
m

m∑
j=1
|j〉 |vj〉

=
n∑
i=1


∑
j:vj=i

|j〉

√
m

 |i〉
=

n∑
i=1

√
pi |ψi〉 |i〉 , (2.11)

using the definition of the frequency vector and defining the normalised version of the
state in parenthesis on the second line. A similar calculation shows model (ii) can also
emulate model (iv).

The vanilla quantum samples model for access to classical distributions too can
emulate the purified query access model: applying a single layer of logn two-qubit CNOT
gates to |p〉 suffices to copy the computational basis states |i〉 into an ancillary register,
reproducing the action in (2.10) for classical distributions.

It is also worth noting that analogous to model (iii), for the case of mixed quantum
states we may have access to multiple independent copies of the unknown state ρ, which
is the model studied in works including [AIS+19; OW15].
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2.3. Algorithmic tools
The main standard quantum algorithmic techniques that we use are the method of
quantum singular value transformations (QSVT), quantum singular value estimation
(QSVE), and quantum amplitude estimation (QAE). We give a brief and high level
overview of these methods here.
QSVT: The QSVT [GSL+19] is a powerful framework for describing and constructing
quantum algorithms. At its heart lies the linear algebraic formulation of quantum
algorithms, and the theory of quantum walks. Given a unitary U in a+ s dimensions
that in a certain way encodes a possibly rectangular matrix P with singular value
decomposition ∑i σi |vi〉〈wi|, the map QSVT(P,f) uses U as a black box and implements
a unitary quantum circuit that approximately encodes a matrix Pf with singular values
f(σi) transformed according to a polynomial f defined on the values σi. This framework
has been found to be immensely general in scope, in that most known quantum algorithms
can be recast in terms of a QSVT. We will use this technique explicitly for the estimating
the contribution to the entropy from points with high probability mass, in Section 3.2.
We discuss more details regarding the QSVT of relevance to our work in Appendix B.
QSVE: The QSVE [KP20; CGJ19; GSL+19] is a generalisation of the popular and
fundamental quantum phase estimation algorithm, generalising it to the task of coherently
(i.e., in superposition) estimating the singular values of rectangular matrices. We use
QSVE as a subroutine in Sections 3.1 and 3.2 for coherently distinguishing points with
high probability mass from those with low probability mass. The subroutine QSVE(P,m)
uses U as a black box and maps an input state ∑i αi |vi〉 |0〉 to

∑
i αi |vi〉 |σ̃i〉, where the

σ̃i approximate the singular values σi of P to m bits of precision. We give more details
and a discussion on the relation between QPE and QSVE in Appendix C.
QAE: Being a subroutine that grew out of Grover’s search algorithm and the associated
amplitude amplification technique, QAE [BHM+02] estimates the amplitude a quantum
state |ψ〉 = U |0〉 puts on a particular flagged subspace, essentially by running QPE
on a Grover iterate (or diffusion operator) constructed from the unitary U . The map
QAE(flag, ε) takes U as input and outputs an ε-additive estimate p̃ where |ψ〉 =√
p |flag〉+

√
1− p |junk〉. We use this technique to estimate various quantities obtained

after processing by QSVT and QSVE in both Algorithms 1 and 2. For convenience we
recall the standard formal statement of how QAE works in Appendix D.

3. Estimating entropy to multiplicative precision using purified
quantum queries

In this section, we prove Theorems 1 and 2 by constructing our quantum algorithms for
estimating Shannon and von Neumann entropies, and analysing their correctness and
purified-quantum-query complexity. In fact, we prove the following, more general lemma,
which can, with simple modifications, handle multiplicative approximation of any entropic
functional f : D → R defined on vectors in D := Rn≥0, and may be of more general
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interest in distributional property testing, as well as in the context of space-bounded
computation and streaming input models.

To formally state the lemma, we shall need the following notion of projected unitary
encodings (which we will loosely and interchangeably refer to as block encodings), as
defined in [GSL+19].
Definition 1. An (α, a, δ) projected unitary encoding of an operator A acting on s qubits
is a unitary U acting on a+ s qubits, such that

‖A− αΠ†UΠ‖ ≤ ε, (3.1)

where the first register consists of ancillary qubits, Π := |0〉⊗a⊗1s is an isometry mapping
(C2)⊗s 7→ spanC{|0〉⊗a} ⊗ (C2)⊗s, and α, ε ∈ (0,∞).

We will prove the following lemma for projected unitary encodings. Subsequently,
using the techniques of [GL20] to obtain projected unitary encodings from purified access
oracles corresponding to classical distributions and density matrices respectively (see
Appendix A), we will obtain Theorems 1 and 2 as immediate corollaries.
Lemma 1. For any γ > 1 and 0 < ε < 1, given an (α, a, δ) projected unitary encoding
U of a matrix P with singular values √p1, . . . ,

√
pn where p = (p1, . . . , pn) defines a

probability distribution, there is a quantum algorithm which outputs with high probability a
(1 + 2ε)γ-multiplicative estimate H̃ of the entropy of H(p), for distributions with entropy
at least 3γ + 1/2ε. This algorithm makes

m = Õ
(
αn1/2γ2

ε

)

uses of U and U †, O(1) uses of controlled-U , and needs O(ma) additional one- and
two-qubit gates.
Remark 1. The statement of this result is in direct analogy with [BDK+02, Theorem 1].
In particular, in order for the algorithm to be correct we need the entropy of the input to
be bounded away from zero, since no algorithm using any of the input models discussed
in Section 2.2 can output multiplicative estimates of arbitrary distributions, as we will
see in Section 4.1. If we desire a multiplicative factor of γ, we can first choose γ′ = γ

(1+2ε) .
This leads to a small overhead in the complexity scaling as O

(
n8ε/γ2

)
. Given η > 0 we

can rephrase this as saying that by choosing ε < η/8, the algorithm can deal with any
distribution with H(p) = Ω(1/η) using Õ

(
n

1+η
γ2
)

queries — that is, we can weaken the
promise on the input and enlarge the class of distributions that the algorithm is correct
on by paying a small appropriate price in the complexity.

Remark 2. The Õ in Lemma 1 hides factors that scale as (a) O(log2 n); (b) log n/ε; and
(c) O

(√
γ3/log γ

)
. It turns out that with a purified quantum query access oracle, we can

always create an exact encoding U of the distribution or quantum state with δ = 0, and
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so we will avoid discussing the dependence of the complexity on δ to avoid clutter.

In particular, Lemma 1 captures both the case of Shannon entropy of classical
probability distributions and von Neumann entropy density matrices, since the latter is
definitionally the Shannon entropy of the eigenvalue spectrum of the density matrix (see
Section 3.4 for more details). We devote the rest of this section to proving Lemma 1.

The theory behind our estimator is drawn from [BDK+02]. We show how the estimator
used therein can be computed more efficiently on a quantum computer with purified
query access to the input. Recall that the Shannon entropy is defined by Eq. (2.1)

H(p) =
∑
i

pi log 1
pi
.

To estimate H(p), we first divide the domain into two sets, of ‘big’ and ‘small’ elements
with respect to a choice of threshold β ∈ (0, 1):

B := Bβ = {i ∈ [n] : pi ≥ β} ,

and
S := Sβ = [n] \Bβ .

Then H(p) = Hp(B) + Hp(S), since the Shannon entropy is linear as a function of
subsets of its domain. We will aim to make the threshold value β as large as possible,
and in particular, we would like it to scale inverse sublinearly as a function of n.

We start by considering the lightweight elements first.

3.1. Estimating the entropy of the low weight elements
The set Sβ of light elements can contribute heavily to the entropy as evidenced for
instance by the uniform distribution. However, the low probability mass of these elements
can be hard to estimate. If the (unknown) weight of these elements is some wp(S),
Lemma 4 of [BDK+02] gives us a way to handle Sβ.
Lemma 2. wp(S) · log 1/β ≤ Hp(S) ≤ wp(S) · logn+ 1

e .

Proof. The lower bound is attained by a distribution that has as many points as possible
with extremal weight (equal to β or 0), e.g., by a distribution with 1

β · wp(S) elements
having probability mass β and the rest being zero.

The upper bound is given by the distribution that puts the weight wp(S) uniformly
on all of its n points.

This enables us to simply estimate the total weight of the light elements, and use this
to improve our approximation to H(p), as we shall see below in Section 3.3. For the
moment, we note that for the choice of threshold β = n−1/γ2 , Lemma 2 tightly bounds
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the entropy of the lightweight elements as lying between their net weight times logn
γ2 and

the weight times logn (up to a small constant).
Furthermore, we can also see from the upper bound in Lemma 2 that unless the net

weight of the light elements scales at least inverse logarithmically in n, the contribution
of the light set Sβ to the entropy is bounded by a constant. In particular,

wp(S) = o

( 1
logn

)
=⇒ Hp(S) = 1

e
+ o(1). (3.2)

Thus we may choose to estimate wp(S) to additive precision ε1 = O (1/log2 n). Given
an (α, a, δ)-projected unitary encoding of P , intuition suggests that we can perform
Quantum Phase Estimation (QPE) with this encoding to single out the lightweight
elements and then estimate their net amplitude by performing Quantum Amplitude
Estimation (QAE, Appendix D). This indeed turns out to work.

Algorithm 1 LightWeight(β) – Estimate wp(S) to additive precision ε1.
1: m = log 1√

β
. Number of bits of precision for QSVE

2: input ← Up |0〉 |0m〉 =
∑
i∈[n]

√
pi |φi〉 |i〉 |0m〉 . Input state for QSVE

3: . . .
QSVE(P, m)−−−−−−−−−−→

∑
i∈[n]

√
pi |φi〉 |i〉 |qi〉 . qi = 0 ⇐⇒ pi < β

=
∑
i∈S

√
pi |φi〉 |i〉 |0m〉flag +

∑
i∈B

√
pi |φi〉 |i〉 |⊥〉flag . 〈⊥ |0m〉 = 0

4: Pick ε1 = ε/log2 n and let . =⇒ QAE cost = O
(
log2 n

)
w̃p(S) = QAE(flag = |0m〉 , ε1) . |w̃p(S)− wp(S)| ≤ ε1

5: return w̃p(S)

Using quantum singular value estimation to flag the light subspace: We would
like to use QPE as a subroutine to separately flag the subspaces of heavy and light
elements. In essence, we want to perform the map∑

i∈[n]

√
pi |φi〉 |i〉 ⊗ |0m〉 7→

∑
i∈[n]

√
pi |φi〉 |i〉 |qi〉 , (3.3)

where
∣∣√pi − qi∣∣ ≤ 2−(m+1) =: ε, and m is the number of bits of precision. When given

a unitary block encoding for the matrix P , this problem is termed Quantum Singular
Value Estimation (QSVE) and is solved in [KP20; CGJ19; GSL+19]; the complexity of
their algorithm is essentially Õ (1/ε) where ε is the precision to which we would like to
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estimate the singular values. We defer the full discussion of the intuition and details
behind doing this to Appendix C.

The accuracy of the QPE subroutine is normally defined in terms of the number of
bits of precision. Thus, to obtain a clean split between heavy and light elements according
to the chosen threshold

β = n
− 1
γ2 = 2−

logn
γ2 ,

recalling that P has singular values √pi, it will be convenient for us to first round√
β down to the nearest power of 2, and then scale down the approximation factor γ

appropriately. To this end, we set

√
β′ = 2

−
⌈

logn
2γ2

⌉
=: n−

1
2γ′2 ,

which suggests that we should choose a tighter approximation factor, given by

γ′ = γ ·
√

logn/2γ2

dlogn/2γ2e
.

Note that γ′ ≤ γ, and so any good γ′-approximation is also a good γ-approximation.
With this choice, we can run QSVE with the block encoding of P to m = log 1√

β′
bits of

precision, implying an additive precision of ε = 2−(m+1), incurring a complexity of

O
(1
ε

)
= O

( 1√
β′

)
= O

(
n

1
2γ′2

)
= O

(
n

1
2γ2
)
, (3.4)

where we have used that

1
γ2 ·
dlogn/2γ2e

logn
2γ2

≤ 1
γ2 ·

logn
2γ2 + 1

logn
2γ2

≤ 1
γ2

(
1 + 2γ2

logn

)
,

and n1/logn = O(1).
Correctness: With these steps in hand, one can readily see that Algorithm 1 outputs
an additive estimate of the net weight of all the elements whose probability mass lies
below the threshold β, i.e.,

|w̃p(S)− wp(S)| ≤ ε1. (3.5)
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Complexity: With the reasoning of Eq. (3.2) and our choice of ε1 = ε/log2 n, the query
complexity of Algorithm 1 in terms of queries to the block encoding of P is given by

O
(

log2 n

ε

)
· O

( 1√
β

)
, (3.6)

where the first term is the complexity of the amplitude estimation step (Appendix D).
For the choice β = n−1/γ2 , this becomes

O
(
n1/2γ2 log2 n

ε

)
. (3.7)

Intuitively, as previously noted in [GL20], the projected unitary encoding of the input
gives us operational access to the square roots of the point probabilities. Hence, since
pi <

√
pi, quantum algorithms can in a sense ‘see’ lightweight elements more easily than

classical algorithms.
The normalisation α of the block encoding: So far we have not discussed how
the normalisation factor α ≥ 1 and precision δ ∈ (0, 1) of the (α, a, δ) projected unitary
encoding U of P affects the algorithm and its complexity. This is, fortunately, easy
to do. First we note that the states the purified access oracles generate, both in
Eqs. (2.9) and (2.10), actually encodes the exact values of √pi and require no additional
normalisation factor. Thus the only step where α and δ enter the picture are in the QSVE
step. Next, as we remarked previously, the constructions that we use will have δ = 0, so
we ignore this precision, which even otherwise would only contribute logarithmic factors
to the complexity. Finally, since the singular values of P are √pi and U encodes P/α,
the normalisation factor effectively means that in the QSVE step we must work harder
and estimate them to precision

√
β/α — this directly contributes exactly a factor of α

to the overall complexity in Eq. (3.7) of Algorithm 1.
This can also be seen directly from the complexity of QSVE in [CGJ19, Theorem

27], which scales as O(α/ε) for performing QSVE to precision ε using an (α, a, δ) block
encoding.

3.2. Estimating the entropy Hp(B) of the heavy elements
So far we have looked at the set Sβ of lightweight elements. We now turn to estimating
the contribution to the entropy from the heavy elements, i.e., those with probability mass
greater than the threshold value of β.

The first ingredient we use for this is a result from classical approximation theory that
provides a multiplicative approximation of the logarithm by a combination of functions
of the form x±a for small values of a > 0 [ZLO+07].
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3.2.1. Multiplicative approximation of entropy using power functions

For any a ∈ (0, 1), consider the following functions

f±(x) = x±a, f(x) = −f+(x)− f−(x)
2a . (3.8)

On a domain (β, 1] for some β > 0, we have the following series expansions for f±(x)

x±a = e±a log x

= 1± a log x+ (a log x)2

2! ± (a log x)3

3! + . . . , (3.9)

from which we deduce that

f(x) = − log x ·
(

1 + (a log x)2

3! + (a log x)4

5! + . . .

)
. (3.10)

Since log x < 0 on our interval of interest x ∈ (β, 1], it will be convenient to write
− log x = log 1/x > 0. We see that f(x) is a one sided approximation for log x, in the
sense that it is always at least log 1/x, and at most as large as log 1/x · g(a, x), where the
multiplicative factor is

g(a, x) = 1 + (a log x)2

3! + (a log x)4

5! + . . .

≤ 1 + |a log x|+ (a log x)2

2! + |a log x|3

3! + (a log x)4

4! + . . .

= e|a log x|. (3.11)

Note that ∀x ∈ (β, 1], g(a, x) ≤ g(a, β). Thus if we would like f(x) to approximate log x
to within a multiplicative factor γ > 1 in the sense of Eq. (2.5), it suffices to choose
a ∈ (0, 1) such that

g(a, β) ≤ ea log 1/β ≤ γ ,

which translates to requiring that

a ≤ log γ
log 1/β

. (3.12)

Choosing such an a, we have a γ-multiplicative approximation of the logarithm for
x ∈ (β, 1], i.e.,

1
γ
· log 1/x ≤ log 1/x ≤ f(x) ≤ γ · log 1/x. (3.13)

It is worth remarking that this is actually stronger than a γ-multiplicative approximation,
by virtue of being one-sided; the lower bound on the approximation is actually as strong as
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log 1/x, without the scaling by 1/γ. We will use this stronger inequality in our calculations
below and freely replace it with the weaker version where required.

For i ∈ Bβ , if we replace the logarithm of pi with the function f , we get a multiplicative
approximation of Hp(B). Indeed by Eq. (3.13), ∀pi ∈ (β, 1]

log 1
pi
≤ f(pi) ≤ γ · log 1

pi
. (3.14)

Multiplying by pi and summing over i ∈ Bβ, we have

∑
i∈B

pi log 1
pi
≤
∑
i∈B

pif(pi) ≤ γ ·
∑
i∈B

pi log 1
pi
, (3.15)

and so we have
Hp(B) ≤

∑
i∈B

pif(pi) ≤ γ ·Hp(B) . (3.16)

We hence see that in fact for any B ⊆ [n],
∑
i∈B

pif(pi) is a good γ-multiplicative approxi-

mation to Hp(B). Next, we look at how to estimate the sum over pif(pi) by using the
quantum singular value transformations (QSVT) technique [GSL+19] of implementing
functions of block encoded matrices on quantum computers (see also [CGJ19; SBJ19]).

3.2.2. Using QSVT to estimate power sums

Defining the following power sums with exponent a,

F± =
∑
i∈B

p1±a
i =

∑
i∈B

pif±(pi), (3.17)

we see that our estimator for Hp(B) in Eq. (3.16) takes the form

F = −F+ − F−
2a . (3.18)

This suggests a strategy of estimating F± separately and combining them to obtain F .
Ideally, we would have liked to prepare two states, which have squared amplitude equal
to F± on a subspace flagged by |0〉 in the ancilla. One possible form such states might
take is ∑

i

√
pif±(√pi) |ψi〉 |i〉 |0〉+ |junk〉 |1〉 .

Since we cannot directly implement arbitrary power functions x±a, we use the standard
technique of implementing the quantum singular value transformation corresponding to
polynomial approximations f̃±(x) of f±(x) over the domain specified by B; recalling that
we have a block encoding of P whose singular value spectrum encodes √pi, we only need
to work with the domain x ∈ [

√
β, 1].
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We discuss the details behind constructing and implementing the polynomials f̃±(x)
in Appendix B. Intuitively, polynomial approximations using Taylor series give an
exponential convergence in the degree of the approximating polynomial for smooth
functions, i.e., the degree of the approximating polynomial only needs to grow as log 1/ε.
Since the query complexity of QSVT depends on the degree of the polynomial being
implemented, this in conjunction with what we noted above about the domain of
approximation being [

√
β, 1] leads us to expect the net query complexity of estimating

F± to grow as O (1/
√
β). We will show below that this is indeed the case.

Algorithm 2 HeavyEntropy(β) – Estimate Hp(B) to multiplicative factor γ > 1.
1: input ← Up |0〉 |0〉 =

∑
i∈[n]

√
pi |φi〉 |i〉 |0〉 . Input state for QSVT

2: . . .
QSVT(P, f̃±)
−−−−−−−−−−−→

∑
i∈[n]

√
pif̃±(√pi) |φi〉 |i〉 |0〉+ |junk〉 |1〉 . QSVT - Appendix B

3: . . .
QSVE(P, m)−−−−−−−−−−→

∑
i∈B

√
pif̃±(√pi) |φi〉 |i〉 |0〉 |0〉flag + |junk〉 |1〉flag

. flag = 0 ⇐⇒ pi ≥ β

4: Pick ε3 as in Eq. (3.26) and let

F̃± = QAE(flag = |0〉 , ε3) . =⇒ QAE cost = O
(

1
ε3

)
5: return F̃ = −2F̃+−2√γF̃−

2a

Some difficulties: In constructing polynomial approximations on our subdomain [
√
β, 1]

of interest, we need to admit a small interval [
√
β/2,
√
β] where we allow the polynomial

to vary before falling to low values on the rest of the domain [−1, 1]. It is in accordance
with this intuition that we have the guarantees |f±(x)| ≤ 1 on [0, 1], and |f(x)| ≤ ε on
[0,
√
β/2) in Appendix B. If we naïvely try to use the simple state produced by applying

the QSVT for f̃± as in step 2 of Algorithm 2 to estimate F±, we see that the amplitude
of the part of the state flagged by zero is actually given by

n∑
i=1

pif̃
2
±(√pi) =

∑
i∈Bβ

pif̃
2
±(√pi) +

∑
i∈[β/2,β]

pif̃
2
±(√pi)

+
∑

i∈[0,β/2]
pif̃

2
±(√pi). (3.19)

In particular, the second term on the rhs above is undesirable and in addition not easy
to control. While we can upper bound the error caused by this term, we cannot manage
it well without increasing the degree of the polynomial and hence incurring overheads in
the query complexity.
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Our approach: It may in principle be possible to modify the approximating polynomial
sufficiently with only polylogarithmic overheads in the degree, but we do not explore
this route; instead we once again invoke QSVE as a tool to split the heavy and light
weight subspaces. We may repeat the arguments of the previous section, with the slight
modification of flagging the heavy elements with |0〉 in a single qubit ancilla, say by
applying a unitary comparator circuit to check if the estimated singular value qi >

√
β.

Correctness: Thus, generating states of the form given in step 3 of Algorithm 2, we
see that their amplitudes in the flagged subspace now exactly square to

F̃± =
∑
i∈B

pif̃
2
±(√pi), (3.20)

and taking into account the normalisation factors corresponding to f̃±, we define

F̃ = −
2F̃+ − 2√γF̃−

2a , (3.21)

where in particular, by the guarantees on the polynomial approximations Appendix B we
know that ∀x ∈ [

√
β, 1] ∣∣∣∣∣f̃−(x)−

√
β
a

2 x−a
∣∣∣∣∣ ≤ ε2∣∣∣∣f̃+(x)− xa

2

∣∣∣∣ ≤ ε2. (3.22)

Recalling that
a = log γ

log 1/β
,

we see that the normalisation factor for f− is given by

β
a/2 = elog β· log γ

−2 log β = 1
√
γ
.

From these approximation guarantees we immediately see that∣∣∣F± − F̃±∣∣∣ ≤ nε2∣∣∣F − F̃ ∣∣∣ ≤ √γnε2
a

(3.23)

Furthermore, the QAE steps for F̃± are performed to some precision ε3, yielding F̂±
which satisfy ∣∣∣F̂± − F̃±∣∣∣ ≤ ε3, (3.24)
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and so we also have the analogous quantity F̂ such that∣∣∣F̂ − F̃ ∣∣∣ ≤ 2√γε3
a

(3.25)

As indicated by the above expressions for the error, let us then choose the precision of
the polynomial approximation and QAE steps such that the errors above are of constant
order, i.e.,

ε2 = a

2n√γ · ε = log γ
2√γn log 1/β

· ε

ε3 = a

4√γ · ε = log γ
4√γ log 1/β

· ε. (3.26)

This ensures that F̂ is a good ε-additive approximation to F , since∣∣∣F − F̂ ∣∣∣ ≤ ∣∣∣F − F̃ ∣∣∣+ ∣∣∣F̃ − F̂ ∣∣∣ ≤ ε. (3.27)

Since this means F − ε ≤ F̂ ≤ F + ε, recalling that F is a good γ-multiplicative
approximation of Hp(B) as in Eq. (3.16), we arrive at the following multiplicative
guarantee with some additive slack on our estimate F̂ ≡ H̃p(B)

Hp(B)
γ

− ε ≤ F̂ ≤ γHp(B) + ε. (3.28)

Complexity: The total query complexity of Algorithm 2 is the sum of the complexity
of QSVT and QSVE corresponding to the polynomial approximations of f(x) = x±a,
multiplied by the complexity of QAE. The former two are respectively given by the
degrees of f̃± from Appendix B and O(1/

√
β), both of which scale as Õ(1/β), while the

latter is the inverse of ε3. Thus, the net complexity is bounded by[
O
(
n

1/2γ2
)

+O
(
n

1/2γ2 log n logn
ε log γ

)]
· O

( logn
ε log γ

)
= Õ

(
n1/2γ2 log2 n

ε log γ

)
. (3.29)

The normalisation α of the block encoding: First, we essentially repeat the discus-
sion at the end of Section 3.1, giving a factor of α in the complexity of the QSVE step in
Algorithm 2.

In addition, we have to also account for the fact that the power functions are now
implemented on the spectrum of P/α (for more details, see [GSL+19, Theorem 56]). This
has two effects: firstly, the domain over which we construct the polynomial approximations
f̃± should now be [

√
β/α, 1], which increases their degree by a factor of α. Secondly, we
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obtain the power sums F+ and F− are divided and multiplied respectively by an extra
αa factor, which means we need to choose ε2 and ε3 to be smaller by this factor.

Since α = log γ
log 1/β , for polynomially scaling normalisations α = nc and β = n−1/γ2 we

see that αa scales as γcγ2 = O(1) for our purposes.
Hence since the complexities of the QSVT and QSVE steps add, we see once again

that the net overhead in complexity is a factor of α.

3.3. Combining the heavy and light estimates to form H̃

Finally, we analyse the errors in and combine the estimates of Hp(B) and Hp(S) from
Algorithms 1 and 2 to get an estimate of H(p). Thus far, we have estimated the entropy

Algorithm 3 Approximating H(p) to multiplicative precision γ > 1

1: γ′ ← γ ·
√

logn/γ2

dlogn/γ2e . Scale approximation factor down

2: β ← n−1/γ′2 . Choose threshold that splits heavy & light elements

3: H̃p(B)← HeavyEntropy(β) . Hp(B)
γ − ε ≤ H̃p(B) ≤ γHp(B) + ε

4: w̃p(S)← LightWeight(β) . |w̃p(S)− wp(S)| ≤ ε1

5: return H̃p(B) + w̃p(S) logn
γ′

of the heavy elements to multiplicative precision, viz Eq. (3.28), and we have estimated
the total weight of the lightweight elements to additive precision Eq. (3.5). The estimate
that our algorithm outputs for H(p) := Hp([n]) is the quantity H̃ defined by

H̃ = H̃p(B) + w̃p(S) logn
γ

. (3.30)

Upper bounding H̃: Using the upper bounds on F̂ and w̃p(S), we see that

H̃ ≤ γHp(B) + ε+ wp(S) + ε1
γ

· logn. (3.31)

The lower bound on Hp(S) in Lemma 2 along with the choice β = n−1/γ2 implies that

wp(S) logn
γ

≤ γHp(S). (3.32)
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Recalling that ε1 = ε/log2 n, we thus have

H̃ ≤ γHp(B) + γHp(S) + 2ε
≤ γH(p) + 2ε
≤ (1 + 2ε) γH(p), (3.33)

where on the last line we assume that H(p) ≥ 1
γ , i.e., that the entropy of the input

distribution is bounded away from zero, with a small increase in the approximation
factor. This is a reasonable assumption to make, since no algorithm can output a good
γ-multiplicative approximation of all distributions (see Section 4.1 for more details).
Lower bounding H̃: This time using the lower bounds on F̂ and w̃p(S), we see that

H̃ ≥ Hp(B)− ε+ wp(S)− ε1
γ

· logn. (3.34)

The upper bound on Hp(S) in Lemma 2 implies that

wp(S) logn
γ

≥
Hp(S)− 1

e

γ
. (3.35)

Thus we have that

H̃ ≥ Hp(B) + Hp(S)
γ

− 2ε− 1
eγ

≥ H(p)
γ
− 2ε− 1

γ

≥ H(p)
(1 + 2ε) γ , (3.36)

where to go from the second to the third line we assume that H(p) ≥ 3γ + 1/2ε ≥ 1
γ , i.e.,

as before, that the entropy of the input distribution is bounded away from zero, with a
small increase in the approximation factor.

This shows that Algorithm 3 outputs a (1 + 2ε)γ-multiplicative approximation of
H(p) and thus establishes its correctness.
Complexity: Finally, the query complexity of Algorithm 3 is the sum of the complexities
of steps (3) and (4). From the complexities Eqs. (3.7) and (3.29) of Algorithms 1 and 2
respectively, we have a net query complexity that scales as

O
(
αn1/2γ2 log2 n

ε

)
+ Õ

(
αn1/2γ2 log2 n

ε log γ

)
= Õ

(
αn1/2γ2 log2 n

ε log γ

)
, (3.37)

which completes our proof of Lemma 1.
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3.4. Proving Theorems 1 and 2
For classical probability distributions accessed via a purified quantum query oracle Up
as in Eq. (2.10), we can construct projected unitary encodings of the kind required
in Lemma 1 with α = 1 (see Appendix A). This immediately furnishes a proof of
Theorem 1.

Similarly, for an arbitrary n-dimensional quantum density matrix accessed via a
purified quantum query oracle Uρ as in Eq. (2.9), we can construct a projected unitary
encoding with α =

√
n (see Appendix A). Since S(ρ) is equal to the Shannon entropy

of the spectrum of ρ, we can plug this encoding into Lemma 1 to obtain a proof of
Theorem 2.

The key difference between the case of classical distributions and quantum mixed states
is that for the former, we know that the purified access oracle produces a superposition
over computational basis states in the second register, and we can use this knowledge to
our advantage. On the other hand, for the latter case we do not a priori know the basis
in which the quantum state is diagonal, which reflects in the fact that we do not know
the states |ψi〉 and |φi〉 appearing in Eq. (2.9) beforehand.

4. Lower bounds
Batu et al. [BDK+02] proved that even if we restrict to distributions with entropy
H(p) ≥ logn/γ2, any algorithm that estimates H(p) within a multiplicative γ > 1 requires
Ω(n1/2γ2) = O(

√
n) samples. By arguing about the fingerprints of samples drawn from

the unknown distribution, for small approximation factors γ ∈ (1,
√

2) they were able
to show a stronger lower bound of Ω(n2/(5γ2−2)) samples, which is o(n2/3), even when the
input is known to be a distribution with H(p) ≥ 5 logn

10γ2−4 . This was later improved by
Valiant [Val11] to Ω(n1/γ2−o(1)), which showed the original upper bound of Batu et al. to
be essentially tight.

The intuition behind proving lower bounds is to notice that estimating the entropy
to a suitable multiplicative factor can suffice to distinguish between a given pair of
distributions p and p̃. Recall that any γ-approximation algorithm must output an
estimate H̃ such that

H(p)
γ
≤ H̃(p) ≤ γH(p)

H(p̃)
γ
≤ H̃(p̃) ≤ γH(p̃). (4.1)

If the ratio of entropies is larger than γ2, then we have that

H̃(p̃) ≤ γH(p̃) ≤ H(p)
γ
≤ H̃(p), (4.2)
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and so γ-estimating H will allow us to distinguish p and p̃.
In this section we prove lower bounds similar to those of [BDK+02] but for the case

of quantum algorithms that output a γ-multiplicative estimate of the Shannon entropy
of a classical distribution. We prove our bounds for the quantum frequency vector model.
Recalling that this model is capable of emulating both the purified access model and
the model that quantumly queries a classical list of samples, these lower bounds carry
over to both these models as well. The technique we use for this is a reduction from the
collision problem to multiplicatively approximating entropy.

We also prove what is perhaps the first non-trivial lower bound for the vanilla quantum
samples model by showing a reduction from the promise problem of distinguishing two
classical distributions in Hellinger distance to γ-multiplicative approximation of entropy.

4.1. Distributions with non-zero entropy
We first show that no algorithm working with input models (i)-(iv) that makes only
polynomially many queries can estimate the Shannon entropy of all distributions over [n]
to multiplicative precision. Consider p = (1− ε, ε

n−1 , . . . ,
ε

n−1) and p̃ = (1, 0, . . . , 0). The
Hellinger distance between p and p̃ is given by

dH(p, p̃) =
√

1
2
∑
i

(√pi −
√
p̃i)2

=
√

1−
√

1− ε. (4.3)

The binomial theorem tells us that for |ε| ≤ 1 and β ∈ R,

(1− ε)β = 1 +
∞∑
k=1

(β)(β − 1) . . . (β − k)
k! (−ε)k. (4.4)

Therefore 1− ε < (1− ε)1/2 < 1− ε/2, and we have

√
ε ≥ dH(p, p̃) ≥

√
ε

2 , (4.5)

i.e., dH(p, p̃) = Θ(
√
ε).

We also have H(p̃) = 0 and

H(p) = −(1− ε) log(1− ε)− ε log ε+ ε log(n− 1)
= Ω(ε logn), (4.6)

since h(ε) := −(1 − ε) log(1 − ε) − ε log ε ∈ [0, log 2] is the binary entropy. Thus any
algorithm that outputs an approximation for H to a multiplicative factor γ must output
exactly 0 on input p̃ and at least ε

γ logn on input p.
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From [Bel19], we know that distinguishing p and p̃ has query complexity

Θ
( 1
dH(p, p̃)

)
,

in any of the four input models (i)-(iv). In particular, any algorithm requires Ω (1/
√
ε)

queries to distinguish p from p̃. Picking ε = n−k, for ∀k > 0, shows that no nk-
query algorithm can distinguish p and p̃, whence no such algorithm can output a good
multiplicative approximation of the entropy for arbitrary input distributions.

4.2. General sub-logarithmic lower bounds
Leaning on the lower bound in [Bel19] for the promise problem of distinguishing two
probability distributions, we also get a weak lower bound on the query complexity of
entropy estimation for any input model, and in particular, for the vanilla quantum
samples model.

Consider the distributions p = (1− ε, ε
n−1 , . . . ,

ε
n−1) and p̃ = (1− ε, ε, 0, . . . , 0) with

H(p) = Ω (ε logn)
H(p̃) = h(ε) ≤ log 2, (4.7)

so that the ratio of entropies is

H(p)
H(p̃) ≥ 1 + ε log(n− 1)

log 2 = Ω(ε logn). (4.8)

The Hellinger distance between these two distributions is given by

dH(p, p̃) =

√√√√1
2

(√
ε

n− 1 −
√
ε

)2
+

n∑
i=3

ε

n− 1

=
√
ε

(
1− 1√

n− 1

)
≤
√
ε, (4.9)

so that the inverse of the Hellinger distance is of order Ω(1/
√
ε). If we now make the

choice
ε = γ2

logn, (4.10)

Belovs’ query lower bound for distinguishing p and p̃ translates into a

Ω
(√

logn
γ

)
(4.11)

lower bound for γ-estimating H(p).
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4.3. Polynomial lower bounds in the frequency vector and purified access
models

For γ > 1, consider the domain [N ] of size N = n · n1/γ2 , and consider the uniform
distribution p on [N ], and a family of uniform distributions on subsets S ⊂ [N ] of size
|S| = n1/γ2 .

For any such distribution p̃, an input vector of length N in the frequency vector input
model represents an r-to-1 function f : [N ] → S, where r = N/|S| = n. On the other
hand for inputs of this length p corresponds to a 1-to-1 function since each label in [N ]
must occur exactly once in the input string.

Note then that the ratio of Shannon entropies is

H(p)
H(p̃) = γ2 + 1 > γ2, (4.12)

so that estimating H to multiplicative precision γ will enable us to distinguish the two
distributions, and by extension, the two corresponding functions in the frequency vector
input model. [AS04] show that distinguishing a 1-to-1 function from an r-to-1 functions
requires Ω

(
(N/r)1/3

)
queries to the input function oracle, where N is the size of the

domain of the functions. This for us translates to a lower bound of

Ω
((

N

r

)1/3
)

= Ω
(
n

1/3γ2
)
.

Recalling from Section 2.2 that any algorithm in the purified query access model
implies an algorithm with the same complexity in the frequency vector model, and the
fact that classical distributions are automatically examples of density matrices that
are diagonal in the computational basis, we see that this lower bound applies to the
estimation of both Shannon and von Neumann entropies, and to Models (i), (ii), and
(iv).

5. Conclusions and outlook
In this paper, we initiated the investigation of quantum algorithms of sublinear query
complexity for the task of γ-multiplicative approximation of both Shannon and von
Neumann entropies. Our algorithm for probability distributions achieves a quadratic
quantum speedup over classical algorithms, whilst our algorithm for mixed states indicates
that it may be possible to estimate other global properties of quantum states with sublinear
query complexity in their dimension.

Our results throw some light on the interesting question of the relation between the
four input models discussed in Section 2.2, which was first raised by [Bel19]. In particular,
the sub-logarithmic lower bound we obtain for the quantum samples model shows that
there are problems that cannot be solved in this model with complexity independent
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of the dimension, where to our knowledge no such non-trivial problems were previously
known for this model. It still remains open whether or not in the quantum samples
model (which is strictly stronger than the general purified access models that we study),
stronger speedups are possible for entropy estimation and similar tasks.

An immediate question left open by our work is to tighten the lower bounds we obtain,
both for Shannon and von Neumann entropies. For the latter, the quantum polynomial
method [BKT18] applied to the frequency vector model might yield better bounds. On
the other hand, the strong intuition that quantum algorithms typically achieve quadratic
speedups indicates that the upper bounds we obtain are tight up to polylogarithmic
factors. A potential way to improve on these polylogarithmic factors may be to refine
the approximation of log x by constructing functions such as x2a + xa − x−a − x−2a,
reminiscent of symmetric Laurent series.

Our methods can also be extended to other information quantities such as Renyi and
Tsallis entropies, and Kullback-Leibler and other divergence measures. Tight bounds on
the complexity of multiplicative approximation of these quantities for both probability
distributions and mixed states appear within reach, and we hope to report results in this
direction in future work.

We close by remarking that this line of work has close and interesting connections
to distributional property testing, a rich and active field in classical complexity theory,
offering exciting avenues for investigation in quantum complexity theory.
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A. Creating block encodings or projected unitary encodings
from the purified access oracle

We give an overview of the methods used by [GL20] to obtain projected unitary encodings
from purified access oracles in this appendix. Recall that following [GSL+19, Definition
43], we defined an (α, a, ε) projected unitary encoding of an operator A acting on s qubits
is a unitary U acting on a+ s qubits, such that

‖A− αΠ†UΠ̃‖ ≤ ε, (A.1)

where the first register consists of ancillary qubits, Π and Π̃ represent projections,
i.e. Π := |0〉⊗a ⊗ 1s is an isometry mapping (C2)⊗s 7→ spanC{|0〉⊗a} ⊗ (C2)⊗s, and
α, ε ∈ (0,∞). Below, we recall how to obtain such block encodings from purified access
oracles to classical probability distributions and mixed states.

A.1. Classical distributions
In the case of a classical input distribution, the purified access oracle in Eq. (2.10) can
be turned into a block encoding for a matrix with singular values equal to the √pj as
follows.

We choose Π :=
∑
i∈[n]

1⊗ |i〉〈i| ⊗ |i〉〈i|, and Π̃ := |0〉〈0| ⊗ |0〉〈0| ⊗ 1, where each of the

three registers is of dimension n. With W = U ⊗ 1, we have that

P = ΠUΠ̃ =
∑
i∈[n]

√
pi |φiii〉〈00i| . (A.2)

The right hand side above represents the singular value decomposition (SVD) of a matrix
P with singular values σi = √pi, left singular vectors |φiii〉 and right singular vectors
|00i〉, i.e.

P |00i〉 = √pi |φiii〉
P † |φiii〉 = √pi |00i〉 .

Hence we see that U furnishes a (1, dlogne, 0) block encoding of P .

A.2. Arbitrary quantum density matrices
Classical probability distributions correspond to the special case when ρ is diagonal in
the computational basis. For arbitrary density matrices, it is a little bit harder to create
a projected unitary encoding that has the square roots of the eigenvalues of ρ, √pi, as
the singular values. Instead, [GL20] give a construction which has singular values

√
pi
n .

Since we do not know the eigenbasis of ρ beforehand, we define the projection operators
Π = 1⊗ |0〉〈0| ⊗ |0〉〈0| and Π̃ = |0〉〈0| ⊗ |0〉〈0| ⊗ 1. As before, the third register contains
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the ancilla, and the first two contain states of the system. We also need a unitary map W
that prepares the maximally entangled state on the two copies of the system register:

|0〉 |0〉 7−→ 1√
n

n∑
j=1
|j〉 |j〉 .

With these operators and the purified access oracle Uρ of Eq. (2.9), we can define the
unitary

U ′ =
(
1⊗ U †ρ

)
(W ⊗ 1) ,

which gives rise to the following projected unitary encoding

ΠU ′Π̃ = 1√
n

n∑
j=1

∣∣∣φ′j〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈ψj | ,
where {

∣∣∣φ′j〉} is a Schmidt basis for the first half of the bipartite maximally entangled
state of dimension n.

This encoding has a leading normalisation factor of 1√
n
, which directly contributes a

factor of
√
n to the complexity of entropy estimation for quantum density matrices.

B. Implementing power functions of block encoded matrices
Polynomial functions of a matrix are defined through its singular value decomposition.
An n× n matrix P has n real singular values σj , with a singular value decomposition
in terms of its left and right singular vectors |vj〉 and |wj〉. An even or odd polynomial
function f of such a matrix is then defined as having the same singular vectors, but with
the eigenvalues f(σj), as follows

P =
n∑
j=1

λj |vj〉 〈wj | ;

f(P ) =
{∑n

j=1 f(σj) |wj〉 〈wj | when f(x) = f(−x)∑n
j=1 f(σj) |vj〉 〈wj | when f(x) = −f(−x)

(B.1)

The key trick in using QAE to estimate a functional ϕ(p) := ∑
i f(pi) of an input

vector p (in our case, a probability mass function) is to use the input purified access
unitary that performs the map

U
∣∣∣0d〉 ∣∣∣0d〉 = |ψp〉 =

n∑
i=1

√
pi |φi〉 |ψi〉
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where d = dlogne, to construct a new unitary circuit which on a chosen, easy to prepare
initial state performs a map of the type

W |ψρ〉 |0〉flag =
n∑
i=1

√
f(pi) |φi〉 |ψi〉 |0〉flag + |...〉 |1〉flag ,

so that value of the target functional ϕ is encoded in the amplitude of the part of the
output state marked by the |0〉 subspace of the flag register.

A projected unitary encoding U of a matrix P can be used to implement such
smooth functions of the input matrix via polynomial approximations, with the following
theorem.
Theorem 3 (Theorem 56, [GSL+19]). Given an (α, a, ε) block encoding U of a Hermitian
matrix P , for any degree m polynomial f(x) that satisfies ∀ x ∈ [−1, 1], |f(x)| < 1/2,
there exists a (1, a+ 2, 4m

√
ε/α + δ) block encoding Uf of f(P/α). We can construct Up

using m applications of U and U †, a single application of controlled-U , and O((a+ 1)m)
additional 1- and 2-qubit gates. A description of the circuit of Uf can be calculated in
O(poly(m, log 1/δ)) time on a classical computer.

Using Theorem 3, we can implement ε-approximate block encodings of power functions
P c on the part of the singular value spectrum of P that is contained in [δ, 1] for δ > 0 by
using polynomial approximations. The lower cutoff δ is necessary because power functions
for non-integer exponents c ∈ R are not differentiable at x = 0. On the other hand,
monomials for c = 1, 2, . . . can be implemented exactly on the entire domain [0, 1].

We first note the following way [CGJ19; GSL+19] of obtaining polynomial approxi-
mations of any desired degree for positive and negative power functions over a domain
[x0 − r − δ, x0 + r + δ] of radius r ∈ (0, 2] centred around a point x0 ∈ [−1, 1], with some
wiggle room for the polynomial to vary, specified by the parameter δ ∈ (0, r].
Positive Power functions: Consider f(x) = xc for c > 0. The Taylor series expansion
of f around x0 = 1

f(1 + x) = (1 + x)c

= 1 +
∞∑
k=1

(
c

k

)
xk (B.2)

converges ∀x ∈ [−1, 1], where(
c

k

)
:= c(c− 1)(c− 2) . . . (c− k + 1)

k! .
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Notice that we have

1 +
∞∑
k=1

∣∣∣∣∣
(
c

k

)∣∣∣∣∣ (1− δ + δ)k = 1 +
∞∑
k=1

∣∣∣∣∣
(
c

k

)∣∣∣∣∣
= 1−

∞∑
k=1

(
c

k

)
(−1)k

= 2−
∞∑
k=0

(
c

k

)
(−1)k

= 2− f(1− 1)
= 2.

Specific to our purpose, this means we can choose x0 = 1, r = 1−
√
β/2, δ =

√
β/2, and the

normalisation factor B = 2 for implementing positive power functions of block encodings
of P with singular values p = (√p1, . . . ,

√
pn) on the domain [

√
β, 1] corresponding to

the heavy elements i ∈ Bβ with probability masses pi ≥ β.
Negative Power functions: Consider f(x) = x−c for c > 0. The Taylor series
expansion of f around x0 = 1

f(1 + x) = (1 + x)−c

= 1 +
∞∑
k=1

(
−c
k

)
xk (B.3)

converges ∀x ∈ [−1, 1], where(
−c
k

)
:= −c(−c− 1)(−c− 2) . . . (−c− k + 1)

k! .

With δ′ := δ
2 max(1,c) notice that we have

1 +
∞∑
k=1

∣∣∣∣∣
(
−c
k

)∣∣∣∣∣ (r + δ′)k = 1 +
∞∑
k=1

(
−c
k

)
(−r − δ′)k

= (1− r − δ′)−c

= (δ − δ′)−c

= δ−c(1− δ′

δ
)−c

= δ−c(1− 1
2 max(1, c))−c

= 2δ−c.

If we choose to normalise the original function to δc

2 x
−c, the above calculation shows

that we can choose x0 = 1, r = 1−
√
β/2, δ =

√
β/2, and the normalisation factor B = 1
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for implementing negative power functions over [
√
β, 1]. Since the case of negative power

functions is more illustrative than positive ones, we state this formally below. A similar
statement holds for the positive case.
Lemma 3 (Corollary 67, [GSL+19]). Given a (α, a, 0) unitary block encoding U of a
matrix with singular value decomposition P = ∑

i σi |v〉〈w|, and an even polynomial fc(x)
on [−1, 1] that approximates the negative power function x−c for c > 0 such that∣∣∣∣fc(x)− δc

2 x
−c
∣∣∣∣ ≤ ε ∀x ∈ [δ, 1]

|fc(x)| ≤ 1 ∀x ∈ [−1, 1]

m = deg f = O
(max(1, c)

δ
log 1

ε

)
,

we can implement a (2/δc, a+ 2, ε) block encoding Uf of the matrix polynomial fc(P ) =∑
i fc(σi) |w〉〈w| using m applications of U and U †, a single application of controlled-

U , and O(ma) additional one- and two-qubit gates. Furthermore, a description of the
quantum circuit Uf can be computed classically in time O(poly(m, log 1/ε)).

C. Quantum phase estimation and singular value estimation
We would like to use Quantum Phase Estimation as a subroutine to separately flag
the subspaces of heavy and light elements. In essence we want to perform the map in
Eq. (3.3), i.e. ∑

i∈[n]

√
pi |φi〉 |i〉 ⊗ |0m〉 7→

∑
i∈[n]

√
pi |φi〉 |i〉 |qi〉 , (C.1)

where
∣∣√pi − qi∣∣ ≤ 2−(m+1) =: ε, and m is the number of bits of precision.

Recall that we have a block encoding U of a matrix P that represents our input
distribution, where P has the singular value decomposition

P = Π̃UΠ =
∑
i∈[n]

√
pi |φiii〉〈00i| . (C.2)

Functions of P defined by even or odd polynomials f or f̃ respectively acting on the
singular values then have the form

f(P ) :=
∑
i∈[n]

f(√pi) |00i〉〈00i|

f(P ) :=
∑
i∈[n]

f(√pi) |φiii〉〈00i| . (C.3)

In principle, we can simply use the standard textbook version of the quantum phase
estimation algorithm (QPE) which requires controlled-U operators and the quantum
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fourier transform (QFT) in order to estimate the phases θj ∈ [0, 1) of the eigenvalues
λj = e2πiθj of U . We consider e2πiPt as the input unitary, which can be implemented
using the block encoding of P via Hamiltonian simulation, with query complexity to U
and U † bounded by

O
(
t+ log 1/ε

log log 1/ε

)
where ε is a precision parameter defined by ∀j ∈ [n],

∣∣∣e2πi√pj − λj
∣∣∣ ≤ ε [LC17; GSL+19].

This condition translates to
∣∣∣θj −√pj∣∣∣ ≤ 1

π arcsin
√
ε

2 ≤
√
ε. This error is benign as far as

we are concerned: we can choose it to be of order 1/n or even 1/n2 while incurring only a
additive logarithmic overhead in the complexity. Indeed, we shall choose it to be inverse
polynomial in n, so that the subsequent step that uses QPE to estimate θj still behaves
as we expect it to — it will produce an estimate of zero whenever θ2

j ≤ β ⇐⇒ pj < β.
While the above explanation is the high level intuition, in practice things can be a

bit more delicate, and we use technique of quantum singular value estimation (QSVE).
Since P is not Hermitian, we consider a symmetrised version of it defined by P̂ =
|0〉〈1| ⊗ P + |1〉〈0| ⊗ P †, which has eigenvectors |0〉 ⊗ |φiii〉+ |1〉 ⊗ |00i〉 and eigenvalues√
pi. The problem then is to perform the map in Eq. (3.3) using the block encoding of P̂ ,

which in turn can easily be constructed using the block encoding of P . This matches the
problem addressed in [KP20; CGJ19; GSL+19], and the complexity is essentially Õ (1/ε)
where ε is the precision to which we would like to estimate the singular values.

We can then choose m = log
√

1/β, and the query complexity of the QSVE subroutine
becomes

O
(1
ε

)
= O

( 1√
β

)
.

D. Quantum amplitude estimation
Quantum amplitude estimation (QAE) is a technique wherein quantum phase estimation
(QPE) is used to estimate the amplitude of a certain basis state (more generally, of any
state about which we can perform a reflection operation) in a superposition produced by
applying a unitary operation U to a given input state. The QPE algorithm is applied to
estimate the eigenvalues of the Grover iterate constructed from the input unitary. We
also note that the most modern methods of QAE do not rely on QPE or the quantum
fourier transform in an essential way [SUR+20; AR20].
Theorem 4 ([BHM+02], Theorem 12). Given a unitary U with the action

U |0〉 |0〉 = √p |0〉 |φ〉+ |⊥〉 ,
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where |φ〉 is a normalised state on the system register, and (|0〉〈0| ⊗ 1) |⊥〉 = 0, the
quantum amplitude estimation algorithm outputs p̃ ∈ [0, 1] satisfying

|p− p̃| ≤ 2π
√
p(1− p)
M

+ π2

M2 ,

with a success probability at least 8/π2, making M uses of U and U †.
To get an approximation p̃ that is correct to a constant additive precision ε ∈ (0, 1/2),

we can choose M = d2π
(2√p

ε + 1√
ε

)
e = Θ

(√
p
ε + 1√

ε

)
, and hence with a complexity of

Θ(1/ε) we can estimate p to additive precision ε.
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