
A super-polynomial separation between resolution and

cut-free sequent calculus

Theodoros Papamakarios1

1Department of Computer Science, University of Chicago, Chicago (papamakarios@uchicago.edu)

November 29, 2021

Abstract

We show a quadratic separation between resolution and cut-free sequent
calculus width. We use this gap to get, for the first time, first, a super-
polynomial separation between resolution and cut-free sequent calculus for
refuting CNF formulas, and secondly, a quadratic separation between resolu-
tion width and monomial space in polynomial calculus with resolution. Our
super-polynomial separation between resolution and cut-free sequent calculus
only applies when clauses are seen as disjunctions of unbounded arity; our ex-
amples have linear size cut-free sequent calculus proofs writing, in a particular
way, their clauses using binary disjunctions. Interestingly, this shows that the
complexity of sequent calculus depends on how disjunctions are represented.

1 Introduction

Whether cut-free sequent calculus can polynomially simulate resolution for refuting
CNF formulas is a question existing since the beginnings of proof complexity. It
was first raised in [13] and iterated e.g. in [26]. Cook and Reckhow [13] show that
in the tree-like case, there are examples where resolution can have exponentially
smaller proofs. Arai, Pitassi and Urquhart [3] point out that the answer may
heavily depend on how clauses are represented. A clause consisting of the literals,
say `1, `2, `3, `4, can be seen as either a single disjunction of arity four, or as a series
of applications of binary disjunctions, for example (`1 ∨ `2)∨ (`3 ∨ `4), and this can
have a profound impact on the complexity of sequent calculus proofs. The result
of Cook and Reckhow above applies in the case where clauses are seen as single
disjunctions of unbounded arity, or the case where the order in which the binary
disjunctions are applied is fixed. If we are free to choose the order, then tree-like
cut-free sequent calculus can quasi-polynomially simulate tree-like resolution, and
this is optimal [3]. In the DAG-like case, and if we are free to choose the order in
which binary disjunctions are applied, Reckhow [22] shows that cut-free sequent
calculus can polynomially simulate regular resolution, and Arai [2] shows that it can
polynomially simulate resolution for refuting k-CNF formulas, where k = O(log n).
However, the general question has remained unresolved.
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We define the width of a sequent calculus proof as the maximum number of
formulas occurring in a sequent of the proof. This definition extends in a natural
way the concept of the width of a resolution proof to stronger proof systems.
Furthermore, it allows for a simple, abstract characterization of sequent calculus
width generalizing the characterization of Atserias and Dalmau for resolution width
[4]. Using this characterization, we show a quadratic gap between resolution width
and cut-free sequent calculus width. Resolution is a sequent calculus system that
has only atomic cuts, so this says that including atomic cuts in cut-free sequent
calculus can shorten the width of proofs. Utilizing then this gap, we show a super-
polynomial separation between cut-free sequent calculus and resolution. To put
it in other words, atomic cuts can super-polynomially decrease the size of proofs.
This result applies only when clauses are seen as disjunctions of unbounded arity.
There is a way to write the clauses in our examples using binary disjunctions, so
that the resulting formulas have linear size cut-free sequent calculus refutations.
Thus, as it was already known for the tree-like case, the complexity of sequent
calculus proofs can depend on how disjunctions are represented.

Several notions of width have been used to show space lower bounds in differ-
ent proof systems, demonstrating a close relationship between the two measures
[5, 14, 4, 11, 12, 10, 9, 17, 21]. We note that our characterization of cut-free sequent
calculus width for refuting CNF formulas coincides with the concept of dynamic
satisfiability, introduced by Esteban, Galesi and Messner [14] as a tool for proving
space lower bounds in resolution and k-DNF resolution. It is easily seen that dy-
namic satisfiability is a weakened version of resolution width. How much weaker
however is a question that has not been addressed. We show that it is strictly
weaker, the quadratic gap between resolution and cut-free sequent calculus width
being a quadratic gap between the two. Furthermore, our basic construction ex-
tends to stronger versions of dynamic satisfiability used to prove monomial space
lower bounds in algebraic proof systems [11, 12], allowing us to make progress
towards separating resolution width from monomial space.

To put things into perspective, Atserias and Dalmau [4] show that for a k-CNF
formula F , W (F ` ⊥), the minimum width, and CSpace(F ` ⊥), the minimum
clause space needed to refute F in resolution satisfy

W (F ` ⊥) ≤ CSpace(F ` ⊥) + k,

and Galesi, Ko lodziejczyk and Thapen [17] show a similar relation between reso-
lution width and the minimum monomial space needed to refute F in polynomial
calculus with resolution:

W (F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+ k.

Ben-Sasson and Nordström [6, 7] give for every n, a formula F of size n such that
W (F ` ⊥) = O(1) and CSpace(F ` ⊥) = Ω(n/ log n), rendering a relation between
resolution width and clause space in the opposite direction impossible. Whether
monomial space can be meaningfully bounded in terms of clause space is unknown,
but the two measures are related in a more indirect way: they coincide up to
polynomial and log n factors once regularized, meaning that a super-polynomial
separation of them would imply a strong trade-off between monomial space and
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size [21]. Despite however this close relationship, no separation between width and
monomial space is currently known — the techniques of [6, 7] in particular fail to
generalize to the case of monomial space. Our result shows a quadratic separation
between the two.

2 Sequent calculus

The sequent calculus was introduced by Gentzen [18] to formulate and prove his
famous cut-elimination theorem. Many authors describe it as the most elegant
proof system, and indeed, it illustrates the symmetries of logic at the level of
syntax, like no other system.

Sequent calculus’s version for classical logic is often denoted by LK. We shall
use LK to denote its propositional part. LK operates with sequents. A sequent is a
tuple of the form (Γ,∆), where Γ and ∆ are finite sets of formulas. Traditionally, a
sequent (Γ,∆) is written as Γ→ ∆. This is to remind us its semantic interpretation:
Γ→ ∆ is to be read as “if all formulas in Γ are true, then at least one formula in
∆ is true”.

Let us present the rules of the system. In what follows, A,B represent arbitrary
formulas, and Γ,∆,Γ′,∆′ represent finite sets of formulas. Sets are written in a
quite plain manner: We write Γ, A instead of Γ∪{A}, A instead of {A}, A,B instead
of {A,B} and so on. The axioms of LK are all sequents of the form A → A. Of
the inference rules, first we have a rule, which allows us to add formulas to the left
or right part of a sequent. This rule is called the thinning or weakening rule and
has the form

Γ→ ∆

Γ′ → ∆′
,

where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Next, we have rules for each connective. These come
in pairs; a connective is treated differently according to which side of its sequent
it appears. The rules for the connectives ∧, ∨ and ¬ are shown in Table 1. These

¬L :
Γ,¬A→ ∆, A

Γ,¬A→ ∆
¬R :

Γ, A→ ∆,¬A
Γ→ ∆,¬A

∧L1 :
Γ, A ∧B,A→ ∆

Γ, A ∧B → ∆

∧L2 :
Γ, A ∧B,B → ∆

Γ, A ∧B → ∆

∧R :
Γ→ ∆, A ∧B,A Γ→ ∆, A ∧B,B

Γ→ ∆, A ∧B

∨R1 :
Γ→ ∆, A ∨B,A

Γ→ ∆, A ∨B

∨R2 :
Γ→ ∆, A ∨B,B

Γ→ ∆, A ∨B

∨L :
Γ, A ∨B,A→ ∆ Γ, A ∨B,B → ∆

Γ, A ∨B → ∆

Table 1: The analytic LK rules
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rules are called analytic, and they already form a complete proof system for proving
tautologies; we shall call this system cut-free LK or LK−. Finally, there is the cut
rule:

Γ, A→ ∆ Γ→ ∆, A

Γ→ ∆
. (2.1)

So, already having a proof of, say → B, we may use it to prove → A: → A can be
derived from B → A and → B via the cut rule, and now to prove → A, we need
to prove the weaker formula B → A. B can be anything. It doesn’t need to have
any intuitive relation to A, but even as such, it might be the case that a proof of
B → A is much shorter than a proof of → A. Gentzen’s cut elimination theorem
says that there is always an effective procedure of eliminating all applications of
the cut rule from a proof, making it purely analytic. We refer to the formula A in
applications of rule (2.1) as the formula being cut, or as the cut formula.

An LK proof of a sequent σ is a derivation of σ starting with the axioms and
applying the rules of LK. More formally, it is a sequence consisting of sequents that
ends with σ, in which every sequent is either an axiom, or results from previous
sequents by one of the LK rules. An LK− proof is an LK proof that never uses
the cut rule. We may view proofs as DAGs, by drawing edges from premises to
conclusions in applications of the inference rules. If the DAG corresponding to a
proof is a tree, we shall refer to the proof as being tree-like.

3 Sequent calculus as a satisfiability algorithm

It will be particularly convenient to consider the following view of LK. Following
Smullyan [24], let us write a sequent A1, . . . , Ak → B1, . . . , B` as

T A1, . . . , T Ak, F B1, . . . , F B`.

That is, we annotate the formulas appearing on the left side of a sequent by T , the
formulas appearining on its right side by F , and conjoin the two sides to form a
single set. T and F stand for true and false respectively —T A should be thought
of as asserting that A is true and F A as asserting that A is false.

Annotated formulas that are not annotated variables are naturally divided into
two groups: those of a conjunctive and those of a disjunctive type. Formulas of
the form T A ∧B, F A ∨B, T ¬A or F ¬A belong to the former group, and those
of the form T A ∨ B or F A ∧ B to the latter. We use the letter “α” to stand for
an arbitrary annotated formula of conjunctive type, and the letter “β” to stand for
an arbitrary annotated formula of disjunctive type. We define the components αi
of a formula α and the components βi of a formula β as shown in Table 2.

These provisions allow on the one hand for an extremely concise description of
the rules of Table 1; they can be written as:

S, α, α1

S, α
,

S, α, α2

S, α
,

S, β, β1 S, β, β2

S, β
.

More importantly, they reveal an algorithmic interpretation of LK. An LK proof,
seen from the top to the bottom, i.e. from the sequent σ := A1, . . . , Ak → B1, . . . , B`
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α α1 α2 β β1 β2
T A ∧B T A T B F A ∧B F A F B
F A ∨B F A F B T A ∨B T A T B
T ¬A F A
F ¬A T A

Table 2: Smullyan’s notation

it is proving to the axioms, describes the execution of an algorithm that tries to
find a truth assignment (or more generally a model) that falsifies σ. The algorithm
begins with σ written as T A1, . . . , T Ak, F B1, . . . , F B`, asserting that there is an
assignment that makes all Ai true and all Bi false, or equivalently, an assignment
that falsifies σ. Then it keeps expanding this set, by applying the LK rules in
reverse, that is from the conclusion to the premises. This expansion takes the form
of a tree (or a DAG if we identify nodes labelled by the same set). At any point, we
may choose a leaf labelled by S, α and add to it a single child labelled by S, α, αi,
as any assignment satisfying α must also satisfy every αi. Or we may choose a
leaf labelled by S, β and add to it two children, one labelled by S, β, β1 and the
other by S, β, β2, as any assignment satisfying β must either satisfy β1 or β2. The
thinning rule allows the algorithm to forget information: We may add to a leaf
labelled by S, a child labelled by a subset of S. Finally, the cut rule allows us to
add to a leaf labelled by S, two children, one labelled by T A and the other by
F A for any formula A, as every assignment must satisfy either A or ¬A. This may
greatly facilitate the search procedure. If at any point a set of the form T A,F A
is reached, then the search process may terminate at that particular branch, as no
assignment can set A to both true and false. Notice that the contradiction T A,F A
corresponds to the axiom A → A. A tree (or DAG) constructed this way, every
branch of which ends with a leaf labelled by a set of the form T A,F A, is an LK
proof of σ.

A depth-first implementation of the algorithm described above is shown as Algo-
rithm 1 below. Algorithm 1 is called on a sequent represented as a set of annotated

Algorithm 1 The LK algorithm

procedure LK(S)
if S contains both T A and F A for some formula A then

return false
if for every α ∈ S, all αi ∈ S and for every β ∈ S, there is a βi ∈ S then

return true
go to either 1, 2 or 3
1. select an S′ ⊆ S and return LK(S′)
2. select an arbitrary formula A and return LK(S, T A) or LK(S, F A)
3. select an A ∈ S
if A = α then

select a component αi and return LK(S, αi)

if A = β then
return LK(S, β1) or LK(S, βk)
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formulas. It will return false if there is an LK proof of that sequent and true other-
wise. The algorithm chooses at each recursive call non-deterministically what rule
to apply and which formula to apply it to. As presented, line 1, corresponding to
the thinning rule, is redundant. However, incorporating memoization, that is the
ability to stop the search when a set S has already been encountered in a previous
recursive call that has returned, effectively identifying nodes labelled by the same
set, this line makes it possible to greatly prune the search for a falsifying assign-
ment. In terms of proofs, DAG-like proofs may be shorter than tree-like proofs.
The key point in analyzing the correctness of that algorithm (or equivalently the
completeness of LK), is that when at the base case true is returned, we can create
an assignment consistent with S by setting for each formula A, A to true if T A ∈ S,
and false otherwise.

4 The width of sequent calculus proofs

We define the width of a sequent as the number of formulas it contains, and the
width of a sequent calculus proof as the maximum of the widths of the sequents
it contains. It is not hard to see that for any provable sequent S0, there is an LK
proof of S0 of width a constant plus the width of S0. The concept of the minimum
width needed to prove a sequent becomes non-trivial only if we restrict the class of
cut formulas we are allowed to use. We shall be mainly interested in the minimum
width over all LK− proofs of S0, which we denote by WLK−(` S0).

We are going to give a characterization of WLK−(` S0) in terms of the definition
below. In what follows, sequents are viewed as in the above section, viz. as sets of
annotated formulas.

Definition 4.1. Following the terminology of [24], let us call a sequent S0 analyt-
ically k-consistent if there is a set of sequents S containing S0 and such that for
each S ∈ S:

1. for any formula A, S does not contain both T A and F A;

2. S′ ⊆ S =⇒ S′ ∈ S;

3. |S| < k & α ∈ S =⇒ S, αi ∈ S for every component αi of α;

4. |S| < k & β ∈ S =⇒ S, βi ∈ S for some component βi of β.

If the following condition is also satisfied, then we call S0 synthetically k-consistent
with respect to the set C:

5. |S| < k =⇒ S, T A ∈ S or S, F A ∈ S for any formula A ∈ C.

It is often helpful to see definitions such as the above, as describing a strat-
egy for the adversary, in a game between a prover and an adversary played on a
formula/sequent/set of formulas. In this case, the game is as follows: The config-
urations of the game are sequents. The initial configuration is S0. In every round,
the prover either deletes some formulas in the current sequent S, or selects an α-
formula in S and adds a component of it to S, or selects a β formula, in which
case the adversary adds a component of it to S. Allowing condition 5, the prover
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may choose an arbitrary formula A ∈ C and the adversary must respond by adding
either T A or F A to S. The game ends with prover winning once S contains
T A and F A for some formula A. The prover can always win provided that S0 is
provable. The question is: given a bound k, can she win always maintaining that
the size of S is at most k? Definition 4.1 describes a strategy for the adversary,
permitting the prover from winning when she maintains that bound.

Theorem 4.1. Suppose that |S0| ≤ k. Then S0 is analytically k-consistent if and
only if WLK−(` S0) > k. It is synthetically k-consistent with respect to C if and
only if every LK proof of S0 in which every cut formula belongs to C has width
more than k.

Proof. Let us only show the former sentence. Suppose first that S0 is analytically
k-consistent, and let S be the set of sequents witnessing this. We will show that
in every tree-like LK− derivation (not necessarily beginning with axioms) τ of S0,
of width at most k, there is an initial sequent (i.e. one appearing as a leaf) in S.
From the first condition of Definition 4.1 that sequent is not an axiom, thus τ is
not a proof. It is enough to show this for tree-like derivations, since a DAG-like
derivation can be transformed into a tree-like one without increasing the width.

Base case. If τ contains just S0, then we are done since S0 ∈ S.

Inductive step. Take some initial sequents S1, . . . , Sr from which a sequent S is
derived via an inference rule ρ, and remove them to get the derivation τ ′. From
the induction hypothesis, there is an initial sequent in τ ′ that belongs to S. If that
sequent is not S, then it also appears in τ and we are done. Otherwise, we have
the following cases according to what rule ρ is:

Case 1. If it is the weakening rule, and thus r = 1 and S1 ⊆ S, then from the
second condition of Definition 4.1, S1 ∈ S.

Case 2. If ρ is the α-rule, and thus r = 1, α ∈ S and S1 = S, α1 for some αi,
then since τ has width at most k, |S| < k, and hence from the third condition of
Definition 4.1, S1 ∈ S.

Case 3. If ρ is the β-rule, and thus β ∈ S and each Si is of the form S, βi, then
again |S| < k, and from the fourth condition of Definition 4.1, some Si belongs to
S.

Now suppose that WLK−(` S0) > k. Set

S := {S | |S| ≤ k & WLK−(` S) > k}.

Clearly S0 ∈ S. We will show that S satisfies the conditions 1–4 of Definition 4.1.
For each S ∈ S, first S cannot contain T A and F A for some A. This is so, because
such a sequent is a weakening of an axiom, and having size at most k, it has a proof
of width at most k. For the closure under subsets, if S′ ⊆ S, then WLK−(` S′) > k,
for otherwise WLK−(` S) ≤ k since S follows from S′ via the weakening rule. For
the α condition, if α ∈ S and |S| < k, then for each αi it must be that S, αi ∈ S,
for otherwise WLK−(` S) ≤ k since S follows from S, αi via the α-rule. Finally,
if β ∈ S and |S| < k, then there must be a βi such that S, βi ∈ S, otherwise
WLK−(` S) ≤ k, since S follows from all S, βi via the β-rule.
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5 LK− for refuting CNF formulas and resolution

A literal is a propositional variable x, or the negation of propositional variable ¬x.
We let x

def
= ¬x and ¬x def

= x. A clause is a disjunction (possibly empty) of literals,
and a CNF formula is a conjunctions of clauses. The width, W (F ), of a CNF
formula F is the number of literals in the largest clause of C.

Refuting a CNF formula F = C1 ∧ · · · ∧ Cm means proving that the clauses
Ci cannot be simultanesouly satisfied, that is, it means proving C1, . . . , Cm →.
LK− for proving such sequents has the following form. Of the rules in Table 1,
the only one that is relevant is ∨L, which now, seeing clauses as disjunctions of
unbounded arity, has as many premises as the number of literals in the clause it is
deriving. Moreover, there is no reason to always carry the clauses Ci in sequents.
We may as well delete them from every sequent, but keep in our mind that they are
implicitly there. What remains are sequents of the form `1, . . . , `r →, where the
`i’s are literals, and such sequents are nothing other than clauses. To be explicit,
the axioms of the resulting system are clauses of the form x∨¬x, and the inference
rules are the weakening rule

C

C ∨D
and

C ∨ `1 · · · C ∨ `r
C

, (5.1)

where C and D are clauses and `1∨· · ·∨`r is a clause of the formula we are refuting.
A proof of C1, . . . , Cm →, in other words a refutation of F = C1 ∧ · · · ∧ Cm, in
LK−, is a derivation of the empty clause using the above rules. The size of such a
derivation is the number of clauses it contains, and its width is the size of the largest
clause occurring in it. We shall denote by SLK−(F ` ⊥) and WLK−(F ` ⊥) and
the minimum size and the minimum width respectively over all LK− refutations of
F .

Resolution is the system we get by adding to the above system the cut rule (2.1),
where the cut formula A is restricted to be a propositional variable:

C ∨ x C ∨ ¬x
C

. (5.2)

We may make such a proof “cut-only”, by pushing all applications of the rule (5.1)
at the bottom levels. Namely, we can simulate rule (5.1) by (5.2) as follows: Start
with `1 ∨ · · · ∨ `r, derive from it and C ∨ `1, C ∨ `2 ∨ · · · ∨ `r, then derive from
C ∨ `2 ∨ · · · ∨ `r and C ∨ `2, C ∨ `3 ∨ · · · ∨ `r, and so on, until C is derived. Now
the leaves containing clauses of F and these can be derived from axioms by (5.1).
Deleting all axioms, and incorporating the thinning rule into (5.2), writing it as

C ∨ x D ∨ ¬x
C ∨D

, (5.3)

we get the usual presentation of resolution: A resolution refutation of a CNF
formula F is a derivation of the empty clause from the clauses of F , using only the
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rule (5.3). We shall denote by WR(F ` ⊥) and SR(F ` ⊥) the minimum width and
minimum size respectively, over all resolution refutations of F , and by STR(F ` ⊥)
the minimum size, over all tree-like resolution refutations of F .

6 Dynamic satisfiability

Adapting Definition 4.1 for resolution we get the characterization of [4] for resolu-
tion width. Adapting it for LK− restricted to refuting CNF formulas, we get the
definition of dynamic satisfiability from [14]. Namely, let us call sets of literals that
do not contain contradictory literals partial assignments. We think of the assign-
ment, say {x,¬y, z}, as making x true, y false and z true. A partial assignment
satisfies a clause C, if it contains a literal of C. It falsifies C if it contains ` for
every ` in C. We get:

Definition 6.1 [14]. Let F be a CNF formula, and let k be a natural number.
F is said to be k-dynamically satisfiable is there is a non-empty set A of partial
assignments to its variables such that for every assignment α ∈ A,

1. if α′ ⊆ α then α′ ∈ A;

2. if |α| < k and C is a clause of F , then there is an α′ ⊇ α in A that satisfies
C.

Theorem 4.1 in particular, becomes:

Theorem 6.1. A CNF F is k-dynamically satisfiable if and only if WLK−(F `
⊥) > k.

In the game corresponding to Definition 6.1, prover chooses in each round a
clause of F , and the adversary responds by choosing a literal in that clause, which
adds to the current assignment. Again, the closure under subsets condition corre-
sponds to the ability of the prover to delete at any round literals from the current
assignment. The prover wins once the current assignment falsifies a clause of F .

We get a characterization of resolution width by having the prover selecting
variables instead of clauses, and the adversary responding by giving values to them.
More specifically, in every round the prover selects a variable x of F . Then the
adversary selects either x or ¬x, and the prover updates the current assignment α
by deleting (if she wants) literals and adding the choice of the adversary. Again the
prover wins once α falsifies a clause of F . She can win always maintaining |α| < k
if and only if WR(F ` ⊥) ≤ k [4].

Notice that, if W (F ) is small, the prover in the second game is more powerful.
Namely, we have

WR(F ` ⊥) ≤WLK−(F ` ⊥) +W (F )− 1.

We already saw this when we explained how the resolution rule can simulate (5.1).
In terms of games, the argument goes as follows: When the prover in the first game
selects a clause C, the prover in the second game can start selecting, one by one the
variables of C. If the game does not end, then the current assignment satisfies C,
and then the prover can delete literals to match the assignments in the two games.
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Definition 6.1 was introduced in [14] as a tool for proving space lower bounds in
resolution and k-DNF resolution. The following definition is from [15, 1]. A memory
configuration in resolution, is a set of clauses. A resolution refutation of a CNF
formula F , in configurational form, is a sequence M1, . . . ,Mt of configurations
where M1 is empty, Mt contains the empty clause and for i > 1, Mi is obtained
from Mi−1 by one of the following rules:

Axiom download: Mi =Mi−1 ∪ {C}, where C is a clause of F .

Inference: Mi = Mi−1 ∪ {C}, where C is derived from clauses in Mi−1 by the
resolution rule.

Erasure: Mi ⊆Mi−1.

The clause space of such a refutation is max1≤i≤t |Mi|. The clause space of a CNF
formula F , denoted by CSpace(F ` ⊥), is the minimum clause space, over all
refutations, in configurational form, of F .

Theorem 6.2 [14]. If F is k-dynamically satisfiable, then CSpace(F ` ⊥) ≥ k.

We thus have

WR(F ` ⊥)−W (F ) + 1 ≤WLK−(F ` ⊥) ≤ CSpace(F ` ⊥). (6.1)

It is shown in [6] that there are 6-CNF formulas F of size O(n) such that WR(F `
⊥) = O(1) and CSpace(F ` ⊥) = Ω(n/ log n). It is easy to show that WLK−(F `
⊥) = O(1), thus these formulas in fact provide a gap between WLK−(F ` ⊥) and
CSpace(F ` ⊥). The question of whether there is a gap between WR(F ` ⊥) and
WLK−(F ` ⊥) has not been addressed, and it is what we will deal with next.

7 A quadratic gap between LK− and resolution width

Let F =
∧s
i=1Ci and G =

∧t
i=1Di be unsatisfiable CNF formulas. We define

F ×G def
=

s∧
i=1

t∧
j=1

(Ci ∨Dj).

F ×G is the CNF expansion of the formula F ∨G, which is also unsatisfiable.
Remarkably, LK− width and resolution width exhibit a different behavior with

respect to this construction. This disparity ultimately relies on the fact that the
cut rule gives us the ability to combine given proofs into a more complicated proof.

On one hand, we have:

Lemma 7.1. If F and G are over disjoint sets of variables, then

WLK−(F ×G ` ⊥) ≥WLK−(F ` ⊥) +WLK−(G ` ⊥)− 1.

Proof. Suppose that F is k-dynamically satisfiable, G is `-dynamically satisfiable,
and let A and B respectively be sets witnessing this. We need to show that F×G is
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(k+`)-dynamically satisfiable, that is we need to find a set satisfying the conditions
of Definition 6.1 for the parameter k + `. We claim that

C := {α ∪ β | α ∈ A & β ∈ B}

is such a set. Closure under subsets immediately follows from the fact that A and B
are closed under subsets. For the second condition, suppose that γ ∈ C, |γ| < k+`,
and let Ci ∨Dj be a clause of F ×G, where Ci is a clause of F and Dj is a clause
of G. Since γ ∈ C, there is an α ∈ A and a β ∈ B such that γ = α ∪ β. Moreover,
since |γ| < k and F and G do not share variables, either |α| < k or |β| < `. In the
first case there is an α′ ⊇ α in A satisfying Ci, and thus α′ ∪ β is an assignment in
C satisfying Ci ∨Dj . In the second case there is a β′ ⊇ β in B satisfying Dj , and
thus α ∪ β′ is an assignment in C satisfying Ci ∨Dj .

For resolution on the other hand, we have:

Lemma 7.2. WR(F ×G ` ⊥) ≤ max{WR(F ` ⊥) +W (G),WR(G ` ⊥)}.

Proof. Let π and ρ be resolution refutations of F and G respectively, both of
minimum width. Replacing every clause C in π with C ∨ Di we get a resolution
proof πi of Di from F ×G. πi has width at most WR(F ` ⊥) +W (F ). Replacing
then every clause Di in ρ with πi we get a resolution refutation of F ×G with the
stated width.

Choosing an appropriate seed and iterating, we get our result.

Theorem 7.1. There are CNF formulas G with n2 variables, size O(n)n, and such
that WR(G ` ⊥) = O(n) and WLK−(G ` ⊥) = Ω(n2).

Proof. Let F be a formula with constant width, n variables, size Θ(n), and such
that WR(F ` ⊥) = Θ(n). Such formulas exist from e.g. [8]. Consider the formula

Fn := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables. From
Lemma 7.2, WR(Fn ` ⊥) = O(n). On the other hand WLK−(F ` ⊥) = Ω(n)
from (6.1), and hence from Lemma 7.1, WLK−(Fn ` ⊥) = Ω(n2).

8 Separating resolution width from monomial space

Monomial space is a generalized version of clause space. While configurations in
the case of clause space are sets of clauses, for monomial space, arbitrary linear
combinations, over a field F, of clauses are allowed as the contents of a configuration,
where such a linear combination P is interpreted as the asserting that P = 0. As
a matter of fact, all known lower bounds for monomial space even hold in the case
where arbitrary Boolean functions of clauses are allowed. The term monomial space
comes from the fact that this concept captures space in proof systems employing
algebraic reasoning.

Namely, seeing clauses as monomials — a clause `1 ∨ · · · ∨ `r is seen as the
monomial `1 . . . `r — the question of whether a set of clauses over the variables
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x1, . . . , xn is unsatisfiable, becomes the question of whether the polynomial 1 be-
longs to the ideal generated by those clauses and the clauses x2i −xi and xi+xi−1
in F[x1, . . . , xn, x1, . . . , xn]. A systematic way of generating this ideal, in a space
oriented model, is the following [1]. Configurations are sets of polynomials over
F[x1, . . . , xn, x1, . . . , xn]. A refutation of a CNF formula F , in configurational form,
is a sequence M1, . . . ,Mt of configurations where M1 is empty, Mt contains the
empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following
rules:

Axiom download: Mi = Mi−1 ∪ {C}, where C is either a clause of F , x2i − x,
or xi + xi − 1.

Inference: Mi =Mi−1 ∪ {P}, where P is either a linear combination of polyno-
mials in Mi−1 or a literal multiplied by some polynomial in Mi−1.

Erasure: Mi ⊆Mi−1.

The monomial space of such a refutation is the the maximum number of distinct
monomials occurring in a configuration. The monomial space, MSpace(F ` ⊥), of
F , is the mimimum monomial space over all refutations of F .

The gap shown in the previous section can be extended to stronger versions of
dynamic satisfiability that have been used to show monomial space lower bounds,
thus showing a gap between resolution width and monomial space. The configu-
rations in those are not assignments anymore, but sets of assignments. They will
not be arbitrary sets however; they will have a certain structure. Namely, we call
a set H of assignments admissible, if it is of the form

H = H1 × · · · ×Hr
def
= {α1 ∪ · · · ∪ αr | αi ∈ Hi},

where each Hi is a non-empty set of non-empty assignments, for any two assign-
ments αi ∈ Hi and αj ∈ Hj for i 6= j, the domains of αi and αj do not intersect,
and moreover, if an assignment α ∈ Hi gives the value ε to a variable x, then there
is also an assignment α′ ∈ Hi giving to x the value 1− ε. The Hi’s are called the
factors of H; we write ‖H‖ for their number. We write H ′ v H if every factor of
H ′ is a factor of H.

Definition 8.1 [11, 12]. Let F be a CNF formula and let k be a natural number.
We say that F is k-extendible if there is a non-empty set of admissible configurations
H such that for each H ∈ H,

1. if H ′ v H, then H ′ ∈ H;

2. if ‖H‖ < k and C is a clause of F , then there is an H ′ w H in H, such that
every α ∈ H ′ satisfies C.

Theorem 8.1 [11, 12]. If F is k-extendible, then MSpace(F ` ⊥) ≥ bk/4c.

Lemma 7.1 with the same proof applies here as well.

Lemma 8.1. Let F and G be CNF formulas over disjoint sets of variables. If F
is k-extendible and G is `-extendible, then F ×G is (k + `)-extendible.
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Proof. Let H and I be sets of admissible configurations witnessing the k and `-
extendibility of F and G. Since F and G are over disjoint sets of variables, we may
assume that the domains for any of two assignments in H and I do not intersect.
Set

J := {H × I | H ∈ H & I ∈ I}.

Clearly, J is a set of admissible configurations. We claim that it satisfies the
conditions of Definition 8.1 for the parameter k+ `. Closure under v immediately
follows from the fact that H and I are closed under v. For the second condition,
suppose that J = H × I ∈ J , ‖J‖ < k + `, and let Ci ∨Dj be a clause of F ×G,
where Ci is a clause of F and Dj is a clause of G. Since ‖J‖ < k+`, either ‖H‖ < k
or ‖I‖ < `. In the first case, there is an H ′ w H in H such that all assignments
in H ′ satisfy Ci. Then H ′ × I is an admissible configuration in J such that all
assignments in it satisfy Ci ∨Dj . The second case is analogous.

Therefore, we get:

Theorem 8.2. There are CNF formulas G with n2 variables, size O(n)n, and such
that WR(G ` ⊥) = O(n) and MSpace(G ` ⊥) = Ω(n2).

Proof. Again, let F be a CNF with constant width, n variables and size Θ(n), that
is Ω(n)-extendible. Such formulas exist, see [11, 16, 12, 9]. The formulas

Fn := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables, have res-
olution width O(n), and from Lemma 8.1 they are Ω(n2)-extendible, thus from
Theorem 8.1 require Ω(n2) monomial space.

9 A super-polynomial separation between resolution
and LK− size

Many of the relations in resolution involving width, can be as well stated for LK−.
In fact, they seem to be better suited for LK−; there, the additive W (F ) factor
that naturally comes with resolution width disappears. We have already seen that
WLK−(F ` ⊥) ≤ CSpace(F ` ⊥), refining the relation between clause space and
width of [4]. But let us give an alternative, constructive proof, here. For sets S and
T of formulas, we write S |= T if every total assignment satisfying every formula
in S, also satisfies every formula in T .

Theorem 9.1. For any unsatisfiable CNF formula F ,

WLK−(F ` ⊥) ≤ CSpace(F ` ⊥).

Proof. LetM1, . . . ,Mt be a refutation of F , of clause space s. We shall construct
a sequence T1, . . . ,Tt of trees, the vertices of which are labelled by sets of literals,
such that for every set S labelling a leaf of Ti, S |=Mi and |S| ≤ |Mi|.

We set T1 to be a tree with one vertex labelled by the empty set. Now, suppose
we have constructed Ti−1. If Mi results from Mi−1 via an inference step, we set
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Ti := Ti−1. If Mi ⊆ Mi−1, then we add to every leaf of Ti−1 labelled by a
satisfiable set S, a child labelled by a subset S′ ⊆ S such that |S′| ≤ |Mi| and
S′ |=Mi. Finally, ifMi =Mi−1 ∪{C}, for a clause C = `1 ∨ · · · ∨ `r of F , we add
to every child of Ti labelled by a satisfiable set S, r children labelled by the sets
S ∪ {`j}.

Replacing each set {`1, . . . , `k} occurring in Tt, by the clause `1 ∨ · · · ∨ `k, we
get an LK− refutation of F of width at most s. It is clear from the construction
of Tt that every clause has width at most s and every clause not at a leaf, results
from the clauses at its children via either the weakening or the ∨L rule. Moreover,
since Mt is unsatisfiable, no set labelling a leaf of Ti is satisfiable, that is sets at
the leaves become weakenings of axioms.

Let us note that Theorem 9.1 is generalized in [21] to show that WLK(F ` ⊥) is
equal, up to a constant factor, to the minimum Σ2 space, a natural analogue of
clause space for depth 2 Frege systems, needed to refute F .

Next, we have the size-width relations of [8]. Here the proofs are the same as
those in [8]. We shall need the following lemma, saying that LK− proofs are closed
under taking restrictions. For a partial assignment α and an LK− refutation π
of a CNF formula F , the restriction π|α of π to α is obtained from π by deleting
all clauses that become true by α, and deleting from all clauses the literals that
become false by α.

Lemma 9.1. π|α is an LK− refutation of F |α.

Lemma 9.1 also holds for resolution as long as we add the weakening rule [8].

Theorem 9.2. For any unsatisfiable CNF formula F ,

WLK−(F ` ⊥) ≤ logSTR(F ` ⊥) + 1.

Proof. This is in fact a weakened version of Theorem 9.1, as CSpace(F ` ⊥) ≤
logSTR(F ` ⊥) + 1 [15]. But let us give a direct construction instead. We shall
construct, by induction on s, for every tree-like resolution refutation T of F of size
s, an LK− refutation of F of width at most log s+ 1.

Base cases. If T has size 1, then it has width 0; if it has size 3 then it has width 2.

Inductive step. Suppose that T has size s > 3. Let T1 and T2 be the subproofs
of T, deriving ¬x and x respectively for some variable x. One of T1 and T2, say
T1, must have size at most s/2. T1|x is a refutation of F |x of size at most s/2,
and T2|x is a refutation of F |x of size less than s. From the induction hypothesis,
there are LK− refutations π1 and π2 of F |x and F |x of width log s and log s + 1
respectively. Start with π2. To every application of the rule

C ∨ `1 · · · C ∨ `r
C

,

where `1 ∨ · · · ∨ `r ∨ x is a clause of F , add the extra premise C ∨ x. But x can
be derived from π1, and hence all those C ∨ x can be derived via the weakening
rule from x: We can do the same to π1, now adding C ∨ x as the extra premise,
and moreover add to every clause the variable x. The refutation obtained when we
combine π1 and π2 is a valid LK− refutation of F of width at most log s+ 1.
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Theorem 9.3. For any unsatisfiable CNF formula F over n variables,

WLK−(F ` ⊥) = O

(√
n logSLK−(F ` ⊥)

)
.

Proof. The construction will be the same as that of Theorem 9.2. The problem
here is that it is not clear what variable to choose to recurse on. The trick is to
choose the variable that appears more often in the clauses of the proof.

For an LK− refutation π of a CNF and a d ≥ 0, let π∗ be the set of clauses in
π of width greater than d. We call the clauses in π∗ the fat clauses of π. We show,
by induction on n, that for any CNF F in n variables, any LK− refutation π of F
and any integers d, b ≥ 0,

|π∗| < ab =⇒ WLK−(F ` ⊥) ≤ d+ b,

where

a =

(
1− d

2n

)−1
.

The theorem follows taking π to be of minimum size and d :=
⌈√

n logS(π)
⌉
.

Base case. If n = 1, then there is an LK− refutation of F of width 2, and in the
case that b+ d < 2 the implication becomes trivially true.

Inductive step. Suppose that n > 1, let d, b ≥ 0, and let π be an LK− refutation
of F with |π∗| < ab. If b = 0, then π itself is a refutation of width at most d + b.
Suppose b > 0. There are 2n literals, so there must be some literal, say the variable
x, appearing in at least d|π∗|/(2n) clauses in π∗. π|x is an LK− refutation of F |x
with at most

|π∗|
(

1− d

2n

)
< ab−1

fat clauses, so by the induction hypothesis (notice that a is a decreasing function of
n), there is an LK− refutation π′ of F |x of width at most d+b−1. Furthermore, π|x
is an LK− refutation of F |x with less than ab clauses, so by the induction hypothesis,
there is an LK− refutation π′′ of F |x of width at most d+ b. Combining π′ and π′′

as in the proof of Theorem 9.2, we get an LK− refutation of F of width at most
d+ b.

Notice that in Theorems 9.1 and 9.2, we have LK− in the left hand side and
resolution in the right hand side. That is to say, cuts are eliminated when con-
structing the small width proofs. It is tempting to speculate on whether the same
is also true for Theorem 9.3, that is whether we can replace SLK−(F ` ⊥) with
SR(F ` ⊥). After all, the only place where we need LK− in the right hand side is
the case b = 0. Theorem 7.1 says that this cannot be true. In fact, the formulas of
Theorem 7.1 give the main theorem of this section, which is:

Theorem 9.4. There is a CNF formula F with n2 variables and size O(n)n, such
that SR(F ` ⊥) = O(n)n but SLK−(F ` ⊥) ≥ exp(Ω(n2)).
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Proof. The formulas of Theorem 7.1 are such. The upper bound SR(F ` ⊥) =
O(n)n follows from the construction of Lemma 7.2. The lower bound follows from
the fact that WLK−(F ` ⊥) = Ω(n2) and Theorem 9.3. Namely, Theorem 9.3 gives

SLK−(F ` ⊥) ≥ exp

(
Ω

(
(WLK−(F ` ⊥))2

n2

))
= exp

(
Ω
(
n2
))
.

It is important to note that the exp
(
Ω
(
n2
))

lower bound in Theorem 9.4 holds
for the version of LK− operating on clauses, where the clauses of the CNF formula
F to be refuted are viewed as disjunctions of unbounded arity. It does not hold
when the clauses of F are made up from binary disjunctions and moreover we are
free to choose the order in which they are applied. If ∨ in the definition

F ×G def
=

s∧
i=1

t∧
j=1

(Ci ∨Dj)

of F × G, is seen as a binary disjunction, then having derived C1, . . . , Cn → and
D1, . . . , Dt →, it is easy to see that we may derive from these sequents in s · t steps,
C1∨D1, . . . , C1∨Dt, . . . , Cs∨D1, . . . , Cs∨Dt →, and in this case Fn in Theorem 9.4
has an LK− refutation of size nO(n). An analogous situation occurs between the
tree-like versions of LK− and resolution [3]. But let us notice, concluding, that with
binary disjunctions, LK− cannot be seen as a system operating on clauses, and it
becomes rather unnatural to compare it with resolution — it is not even clear, in
this case, whether resolution can polynomially simulate LK−. LK− for clauses
consisting of binary disjunctions is closer to resolution with limited extension, in
which case resolution does polynomially simulate it [25].

10 Conclusion

We showed a quadratic gap between resolution and cut-free sequent calculus width.
In terms of the sequent calculus, this says that atomic cuts can shorten the width of
proofs. It is well known that cuts can make proofs exponentially shorter. Allowing
arbitrary cuts we get a system polynomially equivalent with any Frege system.
These are very powerful; proving non-trivial lower bounds for them is completely
out of reach of current methods. But even allowing cuts of depth d + 1 in an
LK system that has cuts of depth d for any constant d ≥ 0, gives exponentially
shorter proofs [20]. And this goes lower: For any constant k ≥ 0, allowing as cut
formulas conjunctions and disjunctions of size k+1 in an LK system that has as cuts
conjunctions and disjunctions of size at most k, again gives exponentially shorter
proofs [23]. We show in this paper that even allowing propositional variables as
cuts, gives super-polynomially shorter proofs.

Cut-free sequent width for refuting CNF formulas naturally compares to well
studied complexity measures related to resolution: it sits between resolution width
and clause space. Our quadratic gap in particular, provides a separation between
resolution width and clause space. Stronger such separations are known [6, 7].
Nontheless, our basic construction extends to provide a quadratic gap between
resolution width and monomial space. This is to be seen in conjunction with the
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result of Galesi et al. [17] showing that monomial space provides an upper bound
to resolution width:

WR(F ` ⊥) ≤ O
(

(MSpace(F ` ⊥))2
)

+W (F ). (10.1)

Several questions remain open:

1. Can cut-free sequent calculus width for refuting CNF formulas be bounded
in terms of resolution width? Given the similarity between the two measures,
the combination of Lemmas 7.1 and 7.2 giving a quadratic separation might
come as a surprise. Can this separation be improved? A strong separation
in particular, would give an exponential separation between resolution and
cut-free sequent calculus.

2. Our super-polynomial separation of resolution and cut-free sequent calcu-
lus on the one hand applies only when clauses are seen as disjunctions of
unbounded arity. On the other hand, it concerns formulas whose size grows
exponentially on the number of variables. Can there be a separation indepen-
dent of the representation of clauses? Can there be a separation for formulas
of size polynomial to the number of variables?

3. Cut-free sequent calculus width is bounded by clause space. Can it be
bounded in terms of monomial space in a relation similar to (10.1)? This
is a good point to also mention that whether (10.1) can be improved to a
linear inequality or there are examples where it is tight is unknown as well,
and there do not seem to be strong indications for which case is true.

4. We show that resolution width and monomial space cannot coincide. Whether
they coincide up to polynomial factors however remains open, although it is
speculated (cf. [19]) that this is not the case, and moreover, as it is the case
for resolution width and clause space [6, 7], there is an O(1) vs Ω(n/ log n)
separation.
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