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Abstract

k-median and k-means are the two most popular objectives for clustering algorithms.
Despite intensive effort, a good understanding of the approximability of these objectives,
particularly in `p-metrics, remains a major open problem. In this paper, we significantly
improve upon the hardness of approximation factors known in literature for these objec-
tives in `p-metrics.

We introduce a new hypothesis called the Johnson Coverage Hypothesis (JCH), which
roughly asserts that the well-studied Max k-Coverage problem on set systems is hard to
approximate to a factor greater than (1− 1/e), even when the membership graph of the set
system is a subgraph of the Johnson graph. We then show that together with generaliza-
tions of the embedding techniques introduced by Cohen-Addad and Karthik (FOCS ’19),
JCH implies hardness of approximation results for k-median and k-means in `p-metrics for
factors which are close to the ones obtained for general metrics. In particular, assuming
JCH we show that it is hard to approximate the k-means objective:

• Discrete case: To a factor of 3.94 in the `1-metric and to a factor of 1.73 in the `2-metric;
this improves upon the previous factor of 1.56 and 1.17 respectively, obtained under
the Unique Games Conjecture (UGC).

• Continuous case: To a factor of 2.10 in the `1-metric and to a factor of 1.36 in the `2-
metric; this improves upon the previous factor of 1.07 in the `2-metric obtained under
UGC (and to the best of our knowledge, the continuous case of k-means in `1-metric
was not previously analyzed in literature).

We also obtain similar improvements under JCH for the k-median objective.
Additionally, we prove a weak version of JCH using the work of Dinur et al. (SICOMP ’05)

on Hypergraph Vertex Cover, and recover all the results stated above of Cohen-Addad and
Karthik (FOCS ’19) to (nearly) the same inapproximability factors but now under the stan-
dard NP 6= P assumption (instead of UGC).

Finally, we establish a strong connection between JCH and the long standing open prob-
lem of determining the Hypergraph Turán number. We then use this connection to prove
improved SDP gaps (over the existing factors in literature) for k-means and k-median objec-
tives.
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1 Introduction

Over the last 15 years, the Unique Game Conjecture has enabled tremendous progress on
the understanding of the (in)approximability of fundamental graph problems, such as Vertex
Cover [KR08], Max Cut [KKMO07], Betweeness [CGM09], and Sparsest Cut [CKK+06, KV15,
AKK+08], sometimes even leading to tight results. Yet, the approximability of most NP-hard
geometric problems remains wide open: even for fundamental geometric problems such as the
Traveling Salesman Problem, Steiner Tree, k-median, and Facility Location, the hardness of ap-
proximation in various `p-metrics has remained below 1.01. On the other hand, approximation
algorithms for the aforementioned problems in Ω(log n) dimensions do not achieve much bet-
ter guarantees than what they do for general metrics. This situation stands in stark contrast
to the bounded dimension versions of the same problems, whose approximabilities are mostly
well understood.

The main approach for proving hardness of approximation for geometric problems in
`p-metrics consists of two components: (1) establishing hardness of approximation in general
metric spaces; (2) finding an embedding of the hard instances into `p-metrics that preserves
the gap. The challenge here is to make (1) and (2) meet at a sweet spot: we would like the
hard gap instances in general metric spaces to be ‘embeddable’, i.e., to be mapped into the
`p-metric space while preserving the distances between points, but, proving a significant in-
approximability bound for ‘embeddable’ instances requires a deep understanding of the hard
instances (in the general metric) of the problem at hand. This paper aims at characterizing
the sweet spot between (1) and (2), hence providing a general framework for obtaining strong
inapproximability for a large family of clustering and covering problems.

Hardness of Clustering Problems in `p-metrics. Given a set of points in a metric space, a
clustering is a partition of the points such that points in the same part are close to each other.
Thus studying the complexity of finding good clustering is a very natural research avenue:
On one hand these problems have a wide range of applications, ranging from unsupervised
learning, to information retrieval, and bioinformatics; on the other hand, as we will illustrate
in this paper, such problems are very natural generalizations of set-cover-type problems to the
metric setting, and as such are very fundamental computational problems. The most popu-
lar objectives for clustering in metric spaces are arguably the k-median and k-means problems:
Given a set of points P in a metric space, the k-median problem asks to identify a set of k repre-
sentatives, called centers, such that the sum of the distances from each point to its closest center
is minimized (for the k-means problem, the goal is to minimize the sum of distances squared) –
see Section 2 for formal definitions. In general metrics, the k-median and k-means problems are
known to be hard to approximate within a factor 1.73 and 3.94 respectively [GK99], whereas
the best known approximation algorithms achieve an approximation guarantee of 2.67 and 9
respectively [BPR+15, ANSW20].

A natural question arising from the above works is whether one can exploit the structure
of more specific metrics, such as doubling or Euclidean metrics to obtain better approximation
or bypass the lower bound. If the points lie in an Euclidean space of arbitary dimension, a
6.357-approximation and a 2.633-approximation are known for k-means and k-median respec-
tively [ANSW20], while a near-linear time approximation scheme is known for doubling met-
rics [CSF19]1. In terms of hardness of approximation: the problems were known to be APX-
Hard since the early 2000s [Tre00, GI03] in Euclidean spaces of dimension Ω(log n) and have

1With doubly exponential dependency in the dimension
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recently been shown to be hard to approximate within a factor of 1.17 and 1.06 for k-means and
k-median respectively [CK19]. Perhaps surprisingly, for some other structured metrics such as
Hamming or Edit distance, no better approximation algorithms are known while the hardness
known for both Hamming and Edit distances were 1.56 for k-means problem and 1.14 for k-
median problem. Summarizing, the gap between upper and lower bounds for the Euclidean,
Hamming, and Edit metrics, remains huge.

Technical Barriers. A well-known framework to obtain hardness of approximation results
in the general metric for clustering objectives is through a straightforward reduction from the
Max k-Coverage2 or the Set Cover problem. We create a ’point’ for each element of the universe
and a ’candidate center’, namely a location where it is possible to place a center, for each set.
Then, we define the distance between a point (corresponding to an element of the universe)
and a candidate center (corresponding to a set) to be 1 if the set contains the element and 3
otherwise. This reduction due to Guha and Khuller [GK99] yields lower bounds of 1 + 2/e
and 1 + 8/e for the k-median and k-means problems, respectively, in general discrete metric
spaces.

However, for the k-median and k-means objectives, the above strong hardness results for
Max k-Coverage produce instances that are impossible to embed in Rn without suffering a
huge distortion in the distances, and thus would yield only a trivial gap for k-means or k-
median problems in `p-metrics. This issue has been faced for most other geometric problems as
well, such as TSP or Steiner tree. It is tempting to obtain more structure on the “hard instances”
of set-cover-type problems with the large toolbox that has been developed around the Unique
Games Conjecture over the last 15 years for fundamental graph problems such as Vertex Cover
or Sparsest Cut. However, it seems that most of these hardness of approximation tools would
not provide the adequate structure on the set cover instances constructed, namely a structure
that would make the whole instance easily “embeddable” into an `p-metric.

This illustrates the main difficulty in understanding k-median/ k-means in `p-metrics; Guha-
Khuller type reductions from general set systems with strong (perhaps optimal) gaps are not
directly “embeddable”, but the current results use hardness for very restricted systems in a
black-box way and thus cannot be extended to give strong hardness of approximation results.
Thus, we ask:

What structure on hard instances of Max k-Coverage problem would yield
meaningful hardness of k-median and k-means in `p-metrics?

1.1 Our Results

This paper addresses the above question in a unified manner, providing a general framework
for obtaining strong inapproximability in `p-metrics (see Table 1 for a summary of our results).
We segregate our results below in terms of conceptual and technical contributions and provide
more details in the subsequent subsubsections.

Our main conceptual contribution is proposing the Johnson Coverage Hypothesis (JCH)
and identifying it as lying at the heart of the hard instances of k-means and k-median problems
in `p-metrics. Intuitively, JCH conjectures that the (1 − 1/e)-hardness of approximation for
Max k-Coverage [Fei98] holds even for set systems whose bipartite incidence graph (between

2Given a set system and k ∈N, the problem asks to choose k sets to maximize the size of their union.
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Metric Discrete
k-means

Discrete
k-median

Continuous
k-means

Continuous
k-median

Assumption

`0

1.56 [CK19] 1.14 [CK19] 1.21 [CK19] 1.07 [CK19] UGC Previous

1.38 1.12 1.16 1.06 NP 6= P This paper

3.94 1.73 2.10 1.36 JCH/JCH∗ This paper

`1

1.56 [CK19] 1.14 [CK19] – 1.07 [CK19] UGC Previous

1.38 1.12 1.16 1.06 NP 6= P This paper

3.94 1.73 2.10 1.36 JCH/JCH∗ This paper

`2

1.17 [CK19] 1.06 [CK19] 1.07 [CK19] – UGC Previous

1.17 1.07 1.06 1.015 NP 6= P This paper

1.73 1.27 1.36 1.08 JCH/JCH∗ This paper

`∞ 3.94 [CK19] 1.73 [CK19] Open3 Open3 NP 6= P Previous

General 3.94 [GK99] 1.73 [GK99] 4 [CKL21] 2 [CKL21] NP 6= P Previous

Table 1: State-of-the-art inapproximability for k-means and k-median clustering objectives in various metric
spaces for both the discrete and continuous versions of the problem. All the results for `p-metrics stated inside the
table are when the input points are given in O(log n) dimensions. The NP-hardness reductions for the continuous
objectives are randomized.

sets and elements) is a subgraph of the Johnson graph (see Section 1.1.1 for the formal defini-
tion). Johnson graphs are well-studied objects in combinatorics that also admit nice geometric
embedding properties. More generally, we argue that identifying an intermediate mathemat-
ical property between geometry and combinatorics, and revisiting fundamental combinato-
rial optimization problems (Max k-Coverage in this paper) restricted to instances having that
property is a fruitful avenue to understand approximability of high dimensional geometric
optimization problems.

Our main technical contributions are two-fold. First, we generalize the embedding tech-
nique introduced in [CK19] that gives a reduction from covering problems to clustering prob-
lems. The embedding technique in [CK19] has two components: the first component is em-
bedding the incidence graph of the complete graph into `p-metrics and the second component
is a dimension reduction technique developed by designing efficient protocols for the Vertex
Cover problem in the communication model. We generalize both these components: we show
how to embed the incidence graph of the complete hypergraph into `p-metrics and we provide
a dimension reduction technique by designing efficient protocols for the Set Cover problem
in the communication model. These generalization were necessary to prove strong inapprox-
imability results for clustering objectives as we needed to handle the less structured instances
arising from JCH and its variants (as opposed to [CK19] whose reduction started from the more
structured Vertex Coverage problem).

Combining JCH with the new embedding results above, we deduce strong and perhaps
even surprising inapproximability results: for example, we show that k-means and k-median

problems are no easier in the `1-metric/Hamming metric/Edit distance metric than in general

3See Open Problem 5.5.
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metric spaces4, or obtain a much higher inapproximability for `2-metric (see Table 1 and Sec-
tion 1.1.3 for the whole list of results we obtain). Indeed, our framework accommodates hard-
ness of any variant of JCH defined in Section 1.1.2 in order to show new hardness of clustering
problems; for instance, the classic Set Cover hardness of Feige (or any APX-hardness of Max
k-Coverage) can be plugged into our framework to produce APX-Hardness for k-means and k-
median in all `p-metrics in both the discrete and the continuous case (see Remarks 3.14 and 3.19
for precise details)

Our second technical contribution is a new NP-Hardness of approximation result for a
(weaker) variant of JCH corresponding to Hypergraph Vertex Coverage in 3-uniform hyper-
graphs. Consequently, with the above generalized embedding technique, we obtained NP-
Hardness results for clustering problems to factors that nearly match and sometimes even
improve upon the previous best hardness results (which were based on the Unique Games
Conjecture); see Table 1 for the precise factors. Our proof relies on (i) tighter analysis of the
Multilayered PCP constructed by Dinur et al. [DGKR05], followed by (ii) a densification pro-
cess to ensure that the resulting instance is dense enough to be used for clustering hardness.
As the previous best NP-hardness results for clustering [CK19] rely on the hardness of Vertex
Coverage [AKS11, Man19, AS19] obtained by recent advances on the 2-to-2 Games Conjec-
ture [KMS17, DKK+18a, DKK+18b, KMS18, BKS19, BK19], we believe that further study on
JCH and its variants will lead to more interesting ideas in hardness of approximation that will
be useful for understanding geometric optimization problems.

1.1.1 Johnson Coverage Hypothesis

We introduce the Johnson Coverage Hypothesis (JCH) which states that for every ε > 0, there
is some z ∈ N, such that given a parameter k ∈ N and a collection E of z-sized subsets (z-sets
henceforth) of [n] as input, it is NP-hard to distinguish between the following two cases:

Completeness: There are k subsets of [n] each of cardinality z− 1, say S1, . . . , Sk, such that for
every T ∈ E there is some i ∈ [k] such that Si ⊂ T.

Soundness: For every k subsets of [n] each of cardinality z − 1, say S1, . . . , Sk, we have that
there is E′ ⊆ E such that

• For every T ∈ E′ and every i ∈ [k] we have Si 6⊂ T.

• |E′| ≥
( 1

e − ε
)
· |E|.

We will often say that a set S covers another T if S ⊆ T.

We refer to the gap problem described above in JCH as the Johnson Coverage problem.
Notice that when z = 2, the Johnson Coverage problem is just the Vertex Coverage problem,
for which [AS19] have shown that a value close to 0.93 is the correct inapproximability ratio
assuming the Unique Games Conjecture. Therefore, for larger values of z, JCH suggests that
the Johnson Coverage problem (which is a generalization of the Vertex Coverage problem) gets
harder to approximate and approaches the same inapproximability as Max k-Coverage.

Introducing JCH is the main conceptual contribution of this paper. Most previous hard-
ness results for geometric optimization problems [Tre00, GI03, ACKS15, LSW17] use hard-
ness of graph problems in bounded degree graphs and embed them to `p-metrics, where the

4It is interesting to note that approximate nearest-neighbor search, a problem closely related to clustering, is
easier to solve in the `1-metric than general metrics.
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bounded degree condition was crucial for the inapproximability ratio. Cohen-Addad and
Karthik [CK19], at least in the context of clustering, were the first to show how to embed in-
stances of Vertex Coverage problem (with no restriction on the degree) to obtain hard instances
of k-means and k-median.

In this work, we further study embeddability of coverage problems, and show that the
embedding of [CK19] can be further generalized to covering problems on hypergraphs, i.e., to
the Johnson Coverage problem, which may be as hard as the general covering problem. John-
son Coverage problem is a purely combinatorial covering problem, but the implicit geometric
structure of the problem allows us to seamlessly embed it to `p-metrics.

Plausibility of JCH and Connection to Hypergraph Turán Number. One may reformulate
the Johnson Coverage problem as a special case of Max k-Coverage, by asking for instances of
Max k-Coverage whose sets and elements correspond to subsets of size (z− 1) and z of some
universe [n] respectively. So it is natural to study the performance of the standard LP or SDP
relaxation, which is closely related to relaxations for the clustering problems.

A natural gap instance for Johnson Coverage problem is the complete z-uniform hyper-
graph, i.e., E := ([n]z ). Since each e ∈ E contains exactly z subsets of size (z− 1), the standard
LP relaxation and SDP relaxation admit a feasible solution whose value is at most ( [n]

z−1)/z and
( [n]

z−1)/z−1 respectively [GL17]. Interestingly, the soundness analysis of this proposed gap in-
stance is closely related to the Hypergraph Turán problem, a long standing open problem in
extremal combinatorics [Tur41].

Given r < z ∈N, let Tu(n, z, r) be the minimum f ∈N such that there exists an r-uniform
hypergraph H = ([n], F) with n vertices and f edges where every set T ∈ ([n]z ) contains at least
one hyperedge from F. Let t(z, r) = limn→∞ Tu(n, z, r)(n

r)
−1. The classical Turan’s theorem

states that t(z, 2) = 1/(z−1), with the extremal example being the union of (z− 1) equal-sized
cliques. However, the quantity of our interest t(z, z− 1) is not well understood when z > 3; the
best lower bound is 1/(z−1) [DC83] and the best upper bound is (1/2+o(1)) ln z/z [Sid97], with the
conjecture t(z, z− 1) ≥ ω(1/z) still open [DC91]. We refer the reader to more recent surveys
by Sidorenko [Sid95] and Keevash [Kee11].

What will happen if H has at most a 1/(z−1) fraction of hyperedges, which is much less than
the conjectured value of t(z, z − 1)? Then some T ∈ ([n]z ) will not be covered by hyperedges
of H. If we consider a random hypergraph where each hyperedge is picked with probability
1/z−1, S ∈ ([n]z ) is covered with probability 1− (1− 1/z−1)z, which converges to 1− 1/e as z
increases. It is thus natural to hypothesize that this is indeed optimal as z increases.

Hypothesis 1.1. Any (z− 1)-uniform hypergraph with n vertices and ( n
z−1)/z−1 hyperedges covers at

most a d(n, z) fraction of sets of size z, where limz→∞ limn→∞ d(n, z) = 1− 1/e.

If Hypothesis 1.1 is true, then the afore-proposed gap instance for Johnson Coverage prob-
lem (the complete z-uniform hypergraph) has an integrality gap of (1− 1/e + ε) for any ε > 0
for the LP and SDP relaxation. Thus, a refutation of JCH either implies interesting construc-
tions in extremal combinatorics or establishes that there is a polynomial time algorithm out-
performing the LP and SDP relaxation, on which the current best approximation algorithms
for both k-median and k-means in any metric are based [BPR+15, ANSW20].

At first glance, the hypothesis looks rather strong (i.e., less likely to be true) because of the
existence of extremal structures that are strictly better than random hypergraphs. However,
these advantages often diminish as the size of the object of interest increases. One example is
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the z-clique density in graphs corresponding to t(z, 2). After the work of Razborov (for z =

3 [Raz08]) and Nikiforov (for z = 4 [Nik11]), Reiher [Rei16] proved that the graph that covers
the most number of Kz with the given edge density is the union of disjoint cliques of the same
size. In our context, since every Kz has (z

2) edges, the desired edge density is 1/w−1 with w = (z
2),

so the extremal graph is the union of w disjoint cliques and the probability that a random copy
of Kz is not covered by this graph is ∏z

i=1(1− i−1
(z

2)−1 ), which converges to 1/e as z increases. So
for large z, the extremal examples do not have an advantage over a random graph! Indeed,
this connection already gives improved SDP gaps for various clustering objectives in natural
hard instances in `p-metrics (see Theorem 1.6, or for more details, see Section 3.5).

Technical Barriers. One may wonder if it is possible to start from Feige’s hard instances of
Max k-Coverage [Fei98] (which have the desired gap of 1 − 1/e) and simply provide a gap-
preserving reduction to Johnson Coverage problem. In Theorem A.1 we showed that if such
a reduction exists, then it should significantly blow up the witness size (the number of sets
needed to cover the universe in the completeness case). At the heart of this observation is that
we are transforming arbitrary set systems (arising from hard instances of Max k-Coverage)
to set systems with bounded VC dimension (as in the Johnson Coverage problem). In fact, a
reduction in this spirit was recently obtained in [CKL21], and that reduction did indeed blow
up the witness size. Therefore the result in [CKL21] where we show Max k-Coverage is hard to
approximate beyond 1− 1/e factor on set systems of large girth (thus bounded VC dimension)
may be seen as moral progress on understanding JCH.

Additionally, in Theorem A.11, we revisit Feige’s framework for showing hardness of ap-
proximation of Max k-Coverage, and highlight that certain simple modifications to his reduc-
tion would not prove JCH. In particular, we show that no “partition system” can be combined
with standard label cover instances to yield JCH. This provides some evidence that in order
to prove JCH, we would need to potentially prove hardness of approximation result for some
highly structured label cover instances.

Subsequent Work. Motivated by an earlier version of this paper, Guruswami and Sandeep
[GS20] initiated the study of the minimization variant of JCH, where the goal is to select as few
(z− 1)-sets as possible to ensure that every z-set in E is covered by a chosen (z− 1)-set. While
the naive algorithm gives a z-approximation, they obtained an (z/2 + o(z))-approximation
algorithm. They also asked as an open problem whether JCH and hardness of the minimization
version can be formally related.

1.1.2 Generalized Johnson Coverage Problem

Motivated by the connections in previous subsubsection to t(z, r) for general z > r ≥ 1, we
consider more generalized Johnson Coverage problems where the input is still a collection
of z-sized sets E but instead of choosing (z − 1)-sized sets, we choose r-sized sets for some
r ∈ {1, . . . , z − 1} to cover as many sets in E as possible. (See Definition 3.1 for the formal
definition.) For example, when r = 1, the problem becomes the z-Hypergraph Vertex Coverage
problem. We prove the following for the 3-Hypergraph Vertex Coverage problem:

Theorem 1.2 (Informal statement; See Theorem 4.1). For every ε > 0, the 3-Hypergraph Vertex
Coverage problem is NP-Hard to approximate to a factor of 7/8 + ε.

While the covering version of the above problem, namely the (Minimum) 3-Hypergraph
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Vertex Cover has been studied actively in literature, culminating in [DGKR05], the coverage
version does not seem to have been explicitly studied.

We remark that the above inapproximability result is higher than the inapproximability of
Vertex Coverage problem proved under UGC (of roughly 0.93) and more so under NP 6= P (of
roughly 0.98), and this higher gap will be useful in the next subsubsection for applications.

In Section 3, we provide a embedding framework which converts any hardness result for
Generalized Johnson Coverage problem (where z > r ≥ 1) with hardness ratio α < 1 to directly
yield inapproximability results for various clustering objectives. Together with Theorem 1.2,
this framework produces NP-Hardness results nearly matching or improving the best known
hardness results assuming UGC. The case z = 4, r = 2 also yields improved SDP gaps for
various clustering objectives in Section 3.5.

1.1.3 Inapproximability Results for k-means and k-median in `p-metrics

First, we present our results for the “discrete” k-median and k-means problems. In these ver-
sions, the centers must be chosen from a specific set of points of the metric.

Theorem 1.3 (Discrete version; Informal statement of Theorems 3.12 and 3.13). Assuming JCH,
given n points and poly(n) candidate centers, it is NP-hard to approximate:

• the k-means objective to within a 1 + 8/e ≈ 3.94 factor in `1-metric and 1 + 2/e ≈ 1.73 factor
in `2-metric.

• the k-median objective to within a 1 + 2/e ≈ 1.73 factor in `1-metric and 1.27 factor in `2-metric.

In fact, we obtain inapproximability results for all `p-metrics (where p ∈ R≥1), and the
details are provided in Section 3. Also, the results obtained in the above theorem significantly
improves on the bounds of [CK19] (see Table 1). Finally, we note that the bounds obtained for
the `1-metric might be optimal as approximating k-means and k-median to a factor of 3.95 and
1.74 is fixed parameter tractable even for general metrics [CGK+19].

We now sketch the proof of Theorem 1.3. We use the notations concerning JCH established
in Section 1.1.1. We create a point for each (z size) subset in E and a candidate center for each
subset of [n] of size z− 1. Both the points and candidate centers are just the characteristic vec-
tors of their corresponding subsets of [n], i.e., the points are all Boolean vectors of Hamming
weight z and the candidate centers are all Boolean vectors of Hamming weight z− 1. In the
completeness case, it is easy to see that there is a set C of k candidate centers such that every
point has a center in C at (Hamming) distance 1. Also, in the soundness case, it is easy to see
that for every set C of k candidate centers, we have that at least 1/e− ε fraction of the points
in E are at (Hamming) distance at least 3 from every center in C . Note that the dimension of
this embedding is n, and that we reduce it to O(log n) by developing a generalization of the
dimenionality reduction machinery introduced in [CK19]. Furthermore, the proof from the
Hamming metric to other `p-metrics goes through the composition of various graph embed-
ding gadgets introduced in [CK19] and generalized in this paper to hypergraph embedding.

We now shift our attention to the continuous case, where the centers can be picked at
arbitrary locations in the metric space. We show the following5.

5Note that Theorem 1.4 depends on a slight strengthening of JCH, which we call JCH∗, where we further assume
that for the hard instances of JCH, we have |E| = ω(k) (see Section 3.4 for further discussion).
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Theorem 1.4 (Continuous version; Informal statement of Theorems 3.16, 3.22, 3.24, and 3.25).
Assuming JCH∗, given n points, it is NP-hard to approximate:

• the k-means objective to within 2.10 factor in `1-metric and 1 + 1/e ≈ 1.36 factor in `2-metric.

• the k-median objective to within a 1 + 1/e ≈ 1.36 factor in `1-metric and 1.08 factor in `2-metric.

The above theorem for k-median in `1-metric is obtained through an intermediate hardness
of approximation proof for k-median in the Hamming metric (see Theorem 3.20). Additionally,
the fact that medians and means have nice algebraic definitions in `1 and `2 respectively allow
us to transfer the hardness from Hamming metrics without much loss. Furthermore, thanks to
a technical result of Rubinstein [Rub18] on near isometric embedding from Hamming metric
in d dimensions to Edit metric in O(d log d) dimensions, we can translate all our (discrete case)
results in the Hamming metric to the Edit metric (see Appendix A in [CK19] for details).

We also prove the first hardness of approximation results for k-median in `2-metric (Theo-
rem 3.24) and k-means in `1-metric (Theorem 3.25). Even though continuous k-median in `2 has
been actively studied for the bounded d or k [ARR98, BHPI02, KSS10, FL11], and to the best
of our knowledge, no hardness of approximation for the general case was known in the litera-
ture. We remark that independent to our work, in [BGJ21], the authors prove APX-hardness of
the Euclidean k-median problem under UGC.

Next, we move our attention to proving NP-Hardness results. With general versions of
Theorem 1.3 and Theorem 1.4 for generalized Johnson Coverage problem, Theorem 1.2 proves
the following NP-Hardness results presented in Table 1. For continuous versions, more tech-
nical work and randomized reductions are needed to ensure enough density (see Section 4.5).

Theorem 1.5. It is NP-hard to approximate the following clustering objectives; discrete k-means in
`1 within 1.38, discrete k-median in `1 within 1.12, discrete k-means in `2 within 1.17, discrete k-
median in `2 within 1.07, continuous k-means in `1 within 1.16, continuous k-median in `1 within
1.06, continuous k-means in `2 within 1.06, and continuous k-median in `2 within 1.015. The results
for continuous k-median and k-means hold under randomized reductions.

Finally, we present another evidence for usefulness of (generalized) Johnson Coverage
problem via the clique density theorem of Reiher [Rei16], which gives improved SDP gaps of
149/125 = 1.192 for discrete k-median in `1-metric and k-means in `2-metric when the instances
are well-separated. (I.e., points are not closed to one another.) Moreover, this result holds even
when the integral solution is allowed to use Ω(k) more centers. Previously, the best gaps were
1.14 and 1.17 for k-median in `1-metric and k-means in `2-metric respectively, both following
from the SDP gaps of the Unique Games hardness [CK19].

Theorem 1.6 (Informal version of Theorem 3.26). Fix any ε > 0. For discrete k-median in `1 and
discrete k-means in `2, there is a family of well-separated instances where the SDP relaxation has a gap
of at least 149/125− ε ≈ 1.192− ε, even when the integral solution opens Ω(k) more centers.

1.2 Organization of the Paper

The paper is organized as follows. In Section 2, we introduce some notations that are used
throughout the paper, and some tools from coding theory. In Section 3, we introduce JCH, and
show how it implies the inapproximability of k-means and k-median in various `p-metrics (i.e.,
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Theorems 1.3 and 1.4). In Section 4 we prove a weak version of JCH. In Section 5 we present
some open problems of interest.

2 Preliminaries

Notations. For any two points a, b ∈ Rd, the distance between them in the `p-metric is de-

noted by ‖a − b‖p =
(

∑d
i=1 |ai − bi|p

)1/p
. Their distance in the `∞-metric is denoted by

‖a− b‖∞ = max
i∈[d]
{|ai − bi|}, and in the `0-metric is denoted by ‖a− b‖0 = |{i ∈ [d] : ai 6= bi}|,

i.e., the number of coordinates on which a and b differ. For every n ∈ N, we denote by [n] the
set of first n natural numbers, i.e., {1, . . . , n}. We denote by ([n]r ), the set of all subsets of [n] of
size r. Let ei denote the vector which is 1 on coordinate i and 0 everywhere else. We denote by(
~1
2

)
, the vector that is 1/2 on all coordinates.

Clustering Objectives. Given two sets of points P and C in a metric space, we define the k-

means cost of P for C to be ∑
p∈P

(
min
c∈C

(dist(p, c))2
)

and the k-median cost to be ∑
p∈P

(
min
c∈C

dist(p, c)
)

.

Given a set of points P in a metric space and partition π of P into P1∪̇P2∪̇ · · · ∪̇Pk, we define the

k-minsum cost of P for π to be ∑
i∈[k]

(
∑

p,q∈Pi

dist(p, q)

)
. Given a set of points P, the k-means/k-

median (resp. k-minsum) objective is the minimum over all C (resp. π) of cardinality k of the
k-means/k-median (resp. k-minsum) cost of P for C (resp. π). Given a point p ∈ P, the contribu-
tion to the k-means (resp. k-median) cost of p is min

c∈C
(dist(p, c))2 (resp. min

c∈C
dist(p, c)).

Error Correcting Codes. We recall here a few coding theoretic notations. An error correcting
code of block length ` over alphabet set Σ is simply a collection of codewords C ⊆ Σ`. The rela-
tive distance between any two points is the fraction of coordinates on which they are different.
The relative distance of the code C is defined to be the smallest relative distance between any
pair of distinct codewords in C. The message length of C is defined to be log|Σ| |C|. The rate of
C is defined as the ratio of its message length and block length.

Theorem 2.1 ([GS96, SAK+01]). For every prime square q greater than 49, there is a code family
denoted by AG over alphabet of size q of positive constant (depending on q) rate and relative distance at
least 1− 3√

q . Moreover, the encoding time of any code in the family is polynomial in the message length.

An informal argument justifying the existence of the above code family is provided in
[CK19]. Furthermore, as noted in [CK19], random codes obtaining weaker parameters than the
parameters stated above (see Gilbert-Varshamov bound [Gil52, Var57]) suffice for the results in
this paper and it may even be possible to use concatenated codes (arising from Reed-Solomon
codes) which approach the Gilbert-Varshamov bound in the proofs in this paper instead of the
aforementioned algebraic geometric codes.

3 Conditional Inapproximability of k-means and k-median in `p-metrics

In this section, we first formally introduce the Johnson Coverage Hypothesis (JCH), then gen-
eralize the gadget constructions via graph embedding which were introduced in [CK19], and
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finally prove how JCH implies the hardness of approximation results for k-means and k-median,
i.e., Theorems 1.3 and 1.4. We also prove improved integrality gaps inspired by JCH (i.e., The-
orem 1.6).

3.1 Johnson Coverage Hypothesis

In this subsection, we first introduce the Johnson Coverage problem, followed by the Johnson
Coverage hypothesis.

Let n, z, y ∈ N such that n ≥ z > y. Let E ⊆ ([n]z ) and S ∈ ([n]y ). We define the coverage of
S w.r.t. E, denoted by cov(S, E) as follows:

cov(S, E) = {T ∈ E | S ⊂ T}.

Definition 3.1 (Johnson Coverage Problem). In the (α, z, y)-Johnson Coverage problem with z >

y ≥ 1, we are given a universe U := [n], a collection of subsets of U, denoted by E ⊆ ([n]z ), and a
parameter k as input. We would like to distinguish between the following two cases:

• Completeness: There exists C := {S1, . . . , Sk} ⊆ ([n]y ) such that

cov(C) := ∪
i∈[k]

cov(Si, E) = E.

• Soundness: For every C := {S1, . . . , Sk} ⊆ ([n]y ) we have |cov(C)| ≤ α · |E|.

We call (α, z, z− 1)-Johnson Coverage as (α, z)-Johnson Coverage.

Notice that (α, 2)-Johnson Coverage Problem is simply the well-studied vertex coverage
problem (with gap α). Also, notice that if instead of picking the collection C from ([n]y ), we

replace it with picking the collection C from ([n]1 ) with a similar notion of coverage, then we
simply obtain the Hypergraph Vertex Coverage problem (which is equivalent to the Max k-
Coverage problem for unbounded z).

We now put forward the following hypothesis.

Hypothesis 3.2 (Johnson Coverage Hypothesis (JCH)). For every constant ε > 0, there exists a
constant z := z(ε) ∈N such that deciding the

(
1− 1

e + ε, z
)
-Johnson Coverage Problem is NP-Hard.

Since Vertex Coverage problem is a special case of the Johnson Coverage problem, we
have that the NP-Hardness of (α, z)-Johnson Coverage problem is already known for α = 0.94
[AS19] (under unique games conjecture).

On the other hand, if we replace picking the collection C from ( [n]
z−1) by picking from ([n]1 ),

then for the Hypergraph Vertex Coverage problem, we do know that for every ε > 0 there is
some constant z such that the Hypergraph Vertex Coverage problem is NP-Hard to decide for
a factor of

(
1− 1

e + ε
)

[Fei98].

Related work to JCH. Johnson Coverage problem can be considered as a special case of Max
k-Coverage in set systems with a natural additional structure. Such a restriction of fundamen-
tal covering / packing / constraint satisfaction problems to structured instances often arise
in geometric settings such as Independent Set of Rectangles [CE16]. The VC dimension has
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been an important combinatorial notion capturing many implicit structures posed by geomet-
ric problems that allow better algorithms [BG95, BKL12] than general set systems in some
regimes. Recently, Alev et al. [AJT19] studied approximating constraint satisfaction problems
on a high-dimensional expander, another object that bridges graph theory and geometry, and
showed that this structure makes CSPs easier to approximate.

3.2 Gadget Constructions via Graph Embeddings

In this subsection, we recall a notion of graph embedding that was introduced in [CK19]. And
then we prove some bounds on the embedding for important `p-metrics. These embedding
are then used in the next subsection to prove inapproximability results.

Let q, t, r ∈ N such that q ≥ t ≥ r. Let J(q, t, r) denote the incidence graph of the Johnson
graph [HS93]. Elaborating, we define J(q, t, r) to be the bipartite graph on partite sets ([q]t ) and
([q]r ) where we have an edge (S, S′) ∈ ([q]t )× ([q]r ) in J(q, t, r) if and only if S′ ⊆ S. We use the
shorthand J(q, t) to denote J(q, t, t− 1).

We would like to analyze the embedding of J(q, t) into `p-metric spaces for all p ∈ R≥1.

Definition 3.3 (Gap Realization of a Bipartite graph [CK19]). Let p ∈ R≥1. For any bipartite
graph G = (A∪̇B, E) and λ ≥ 1, a mapping τ : V → Rd is said to λ-gap-realize G (in the `p-
metric) if for some β > 0, the following holds:

(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) ∈ (A× B) \ E, we have ‖τ(u)− τ(v)‖p ≥ λ · β.

Moreover, we require that τ λ-gap-realize G in the `p-metric efficiently, i.e., there is a polynomial time
algorithm (in the size of G) which can compute τ.

We remark here that the above definition is a variant of the notion gap contact dimension
introduced in [KM20] and is closely related to notion of contact dimension which has been
well-studied in literature since the early eighties [Pac80, Mae85, FM88, Mae91, DKL19]. We
refer the reader to [CK19] for further discussion.

Definition 3.4 (Gap number). Let p ∈ R≥1. For any bipartite graph G = (A∪̇B, E), its gap number
in the `p-metric gp(G) is the largest λ for which there exists a mapping τ that λ-gap-realizes G in a
d-dimensional `p-metric space6 where d ≤ poly(|A|+ |B|).

In [CK19], the authors studied gp(J(q, t, 1)). In this paper, we are interested in analyz-
ing gp(J(q, t, t − 1)) for all q, t ∈ N (q ≥ t) and p ∈ R≥1. We remark that we do not study
g∞(J(q, t, t− 1)) in this paper, as this was already settled to be equal to 3 in [CK19]. We recall
the following upper bound on gap number which follows immediately from triangle inequal-
ity:

Proposition 3.5 (Essentially [CK19]). Let q ≥ 3, t ≥ 2 (where q ≥ t), and p ∈ R≥1. We have
gp(J(q, t)) ≤ 3.

We consider the `1-metric and show that we can meet the upper bound in Proposition 3.5.

6For all the main results of this paper to hold, we do not require the specified upper bound on the dimension of
the mapping realizing the gap number; any finite dimensional realization suffices.
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Lemma 3.6. For all q ≥ 3 and t ≥ 2 (where q ≥ t), we have g1(J(q, t)) = 3. More generally,
g1(J(q, t, s)) = (t− s + 2)/(t− s).

Proof. For the `1-metric consider the mapping τ : ([q]t ) ∪ ([q]s ) → {0, 1}q defined as follows. For
every S ∈ ([q]t ) ∪ ([q]s ), we define

τ(S) = ∑
i∈S

ei.

Fix some (S, S′) ∈ ([q]t )× ([q]s ) such that S′ ⊆ S. Then we have that

τ(S)− τ(S′) = ∑
i∈S\S′

ei ⇒ ‖τ(S)− τ(S′)‖1 = t− s.

On the other hand if we fix some (S, S′) ∈ ([q]t )× ([q]s ) such that S′ 6⊂ S then we have that

‖τ(S)− τ(S′)‖1 =

∥∥∥∥∥
(

∑
i∈S\S′

ei

)
−
(

∑
i∈S′\S

ei

)∥∥∥∥∥
1

≥ t− s + 2.

Thus we have that τ, (t− s + 2)/(t− s)-gap-realizes J(q, t, s) in the `1-metric.

Now we focus our attention to bounding the gap number in the Euclidean metric. First,
we see that the below lower bound simply follows from τ constructed in the above proof.

Corollary 3.7. For all q ≥ 3 and t ≥ 2 (where q ≥ t), we have g2(J(q, t)) ≥
√

3 and g2(J(q, t)) ≥√
(t− s + 2)/(t− s).

However, we improve the lower bound with a different embedding.

Lemma 3.8. For all q ≥ 3 and t ≥ 2 (where q ≥ t), we have g2(J(q, t, 1)) ≥
√

1 + 1√
t−1

. More

generally, g2(J(q, t, s)) ≥
√

1 + 1√
ts−s

.

Proof. For the `2-metric consider the mapping τ : ([q]t ) ∪ ([q]s ) → Rq defined as follows. For
every T ∈ ([q]t ), we define

τ(T) = ∑
i∈T

ei.

For every S ∈ ([q]s ), we define

τ(S) =

√
t
s
·∑

i∈S
ei.

Fix some (T, S) ∈ ([q]t )× ([q]s ) such that S ⊆ T. Then we have that

τ(T)− τ(S) =

((√
t
s
− 1

)
·∑

i∈S
ei

)
+

(
∑

i∈T\S
ei

)

⇒ ‖τ(T)− τ(S)‖2 =

√√√√s ·
(√

t
s
− 1

)2

+ t− s
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=
√

2 ·
√

t−
√

ts

On the other hand if we fix some (T, S) ∈ ([q]t )× ([q]s ) such that S 6⊂ T then we have that

‖τ(T)− τ(S)‖2 =

∥∥∥∥∥
((√

t
s
− 1

)
· ∑

i∈S∩T
ei

)
+

(√
t
s
· ∑

i∈S\T
ei

)
+

(
∑

i∈T\S
ei

)∥∥∥∥∥
2

≥

√√√√(s− 1) ·
(√

t
s
− 1

)2

+ t− s + 1 +
t
s

=
√

2 ·

√
t−
√

ts +

√
t
s

=
√

2 ·

√
(t−
√

ts) ·
(

1 +
1√

ts− s

)

Thus we have that τ,
√(

1 + 1√
ts−s

)
-gap-realizes J(q, t, s) in the `2-metric. When s = 1, τ√(

1 + 1√
t−1

)
-gap-realizes J(q, t, 1) in the `2-metric.

In order to see that the lower bound on g2(J(q, t, s)) given in Lemma 3.8 is indeed higher
than the one given in Corollary 3.7, note the following:(

1 +
1√

ts− s

)
−
(

t− s + 2
t− s

)
=

1√
ts− s

− 2
t− s

=
t− s− 2

√
ts + 2s

(
√

ts− s)(t− s)
=

(
√

t−
√

s)2

(
√

ts− s)(t− s)
> 0,

as t > s.

We wrap up our computation of gap numbers by showing that as p grows the gap number
of J(q, t) in the `p-metric approaches 3.

Lemma 3.9. For all q ≥ 3 and t ≥ 2 (where q ≥ t), we have that for every ε > 0 there exists p ∈ N

such that gp(J(q, t)) > 3− ε.

Proof. Fix q ≥ 3, t ≥ 2, and ε > 0. Let p ∈ N such that q1/p < 1 + ε/3. Consider the mapping
τ : ([q]t ) ∪ ( [q]

t−1)→ Rq defined as follows. For every S ∈ ( [q]
t−1), we define

τ(S) =

(
~1
2

)
+ ∑

i∈S
ei,

and for every T ∈ ([q]t ), we define
τ(T) = ∑

i∈T
ei.

Fix some (S, T) ∈ ( [q]
t−1)× ([q]t ) such that S ⊂ T. Then we have that

η := τ(T)− τ(S) =

(
∑

i∈T\S
ei

)
−
(
~1
2

)
.
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Since η ∈ {−1/2, 1/2}q, we have that ‖η‖p = ‖τ(T)− τ(S)‖p = q1/p/2.

On the other hand if we fix some (S, T) ∈ ( [q]
t−1)× ([q]t ) such that S 6⊂ T, i.e., ∃u ∈ [q] such

that u ∈ S \ T then we have that

‖τ(T)− τ(S)‖p ≥ |(τ(T))u − (τ(S))u| =
3
2

.

Thus we have that τ,
(

3
q1/p

)
-gap-realizes J(q, t) in the `p-metric. Finally note that 3

q1/p >
9

3+ε = 3− 3ε
3+ε > 3− ε.

We remark that the embeddings given in Lemmas 3.6 and 3.9 are essentially small modi-
fications of the ones given in [CK19].

For the sake of compactness of statements in the future, we introduce the following.

Definition 3.10. For all p ∈ R≥1, we define γp = inf
q≥t

gp(J(q, t)), and γp,∆ = inf
q≥t≥∆+1

gp(J(q, t, t−

∆))

Finally, we conclude this subsection by recalling the following ‘hereditary’ property of the
embedding which is important for applications to hardness of approximation.

Proposition 3.11 ([CK19]). Let q ≥ 3 and t ≥ 2 (where q ≥ t), and p ∈ R≥1. Let E ⊆ ([q]t ) and G
be the subgraph of J(q, t) induced by the vertex set E ∪ ( [q]

t−1). Let τ be a λ-gap realization of J(q, t) in
the `p-metric. Then τ restricted to the vertices of G is a λ-gap realization of G in the `p-metric.

3.3 Conditional Inapproximability of Discrete k-means and k-median

In this subsection, we show how JCH or any hardness of (α, z, y)-Johnson Coverage implies
the hardness of approximation of the discrete case of k-means and k-median in all `p-metrics,
i.e., we prove Theorem 1.3.

First, we define for every p ∈ R≥1,the quantities ζ1(p, ∆, α) and ζ2(p, ∆, α) as follows:

ζ1(p, ∆, α) := 1 + (1− α)(γp,∆ − 1) and ζ2(p, ∆, α) := 1 + (1− α)(γ2
p,∆ − 1).

Also let ζ1(p) := ζ1(p, 1, 1− 1/e) and ζ2(p) := ζ2(p, 1, 1− 1/e). Notice that ζ1(1) ≈ 1.73,
ζ2(1) = 3.94, ζ1(2) ≈ 1.27, ζ2(2) ≈ 1.73, and as p → ∞, we have ζ1(p) → ζ1(1) and ζ2(p) →
ζ2(1).

Now, we state our inapproximability results for k-means and k-median.

Theorem 3.12 (k-means with candidate centers in O(log n) dimensional `p-metric space). Let
p ∈ R≥1. Assuming (α, z, y)-Johnson Coverage is NP-hard, for every constant ε > 0, given a point-set
P ⊂ Rd of size n (and d = O(log n)), a collection C of m candidate centers in Rd (where m = poly(n)),
and a parameter k as input, it is NP-Hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

p ≤ ρn(log n)2/p,
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• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

p ≥ (ζ2(p, z− y, α)− ε) · ρn(log n)2/p,

for some constant ρ > 0.

In particular, assuming JCH, k-means is NP-Hard to approximate within a factor ζ2(p),
which is at least 3.94 in `1 and at least 1.73 in `2.

Theorem 3.13 (k-median with candidate centers in O(log n) dimensional `p-metric space). Let
p ∈ R≥1. Assuming (α, z, y)-Johnson Coverage is NP-Hard, for every constant ε > 0, given a point-set
P ⊂ Rd of size n (and d = O(log n)), a collection C of m candidate centers in Rd (where m = poly(n)),
and a parameter k as input, it is NP-Hard to distinguish between the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ C and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖p ≤ ρn(log n)1/p,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖p ≥ (ζ1(p, z− y, α)− ε) · ρn(log n)1/p,

for some constant ρ > 0.

In particular, assuming JCH, k-median is NP-Hard to approximate within a factor ζ2(p),
which is at least 1.73 in `1 and at least 1.27 in `2.

Remark 3.14. Notice that for every q, z, and p, from the embedding given by Lemma 3.6, we can
deduce that gp(J(q, z, 1)) is a constant (depending on q, z, and p) bounded away from 1. Thus we have
for i ∈ {1, 2} that ζi(p, z − 1, α) ≥ 1 + δ for some positive constant δ depending only on p, α, and
z. On the other hand, Feige [Fei98] showed that for any constant ε > 0 there is a constant z := z(ε)
such that (1 − 1/e + ε, z, 1)-Johnson Coverage problem is NP-Hard. Plugging these parameters in
Theorems 3.12 and 3.13, we have that k-means and k-median are APX-Hard in all `p-metrics. In fact,
we do not even need to invoke the tight result of [Fei98], as it’s relatively easy to show that (1− δ, z, 1)-
Johnson Coverage problem is NP-Hard directly from the PCP theorem [AS98, ALM+98, Din07] for
some constants δ > 0 and z ∈N.

The proof of the above two theorems follows by generalizing the embedding framework
established in [CK19]. In [CK19], the authors considered a two-player communication game
between Alice and Bob, where Alice holds as input an edge in a publicly known graph and Bob
holds as input a vertex in the same graph, and the goal is for Bob to send a message to Alice
(using public randomness), so that Alice can decide if her edge is incident on Bob’s vertex. The
authors then showed how an efficient randomized protocol for this communication problem
can be combined with a certain embedding of the complete graph (into `p-metrics) to obtain
inapproximaility results for k-means and k-median in `p-metrics.

Below we consider the game where Alice holds a z-sized subset of [n] and Bob holds a
y-sized subset of [n], and the goal is for Bob to send a message to Alice (using public random-
ness), so that Alice can decide if her subset completely contains Bob’s subset. We then design
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an efficient randomized protocol for this communication problem using Algebraic Geometric
codes (as in [CK19]) and show how the transcript of the protocol can be combined with a cer-
tain embedding of the Johnson graph (into `p-metrics) to obtain the two theorems. We skip
providing further details about the framework for the sake of brevity, and point the reader to
[CK19].

Proof of Theorems 3.12 and 3.13. Fix ε > 0 as in the theorem statement. Also, fix p ∈ R≥1. Let
ε′ := ε/11 (setting ε′ to be ε/4 suffices for Theorem 3.13). Starting from a hard instance of
(α, z, y)-Johnson Coverage problem (U, E, k), we create an instance of the k-means, or of the k-
median problem using Algebraic-Geometric codes and the embedding given in Proposition 3.11

as follows. Let q be a (constant) prime square greater than
(

18z2

ε′

)2
. Let AG be the code guar-

anteed by Theorem 2.1 over alphabet of size q of message length η := logq n (recall |U| = n),
block length ` := Oq(η), and relative distance at least 1− 3/√q. Let τ be a gp(J(q, z, y))-gap
realization embedding of J(q, z, y) which maps vertices of J(q, z, y) to a d∗-dimensional space
(note that q, z, and y are all constants, and thus so is d∗). Let β > 0 be the constant from
Definition 3.3.

Construction. The k-median or k-means instance consists of the set of candidate centers C ⊆
R`·d∗ and the set of points to be clustered P ⊆ R`·d∗ which will be defined below. First, we
define functions AE : E× [`] → ([q]z ) ∪ {⊥} and AF : ([n]y )× [`] → ([q]y ) ∪ {⊥} below. Then, we

will construct functions ÃE : E → Rd∗·` and ÃF : ([n]y ) → Rd∗·`. Given ÃE and ÃF the point-set
P is just defined to be {

ÃE(T)
∣∣T ∈ E

}
,

and the set of candidate centers C is just defined to be{
ÃF(S)

∣∣∣S ∈ ([n]
y

)}
.

For every γ ∈ [`] and every S ∈ ([n]y ), we define Ry
S,γ ⊆ [q], where µ ∈ [q] is contained in

Ry
S,γ if and only if there exists some u ∈ S such that7 AG(u)γ = µ. Then, we define AF(S, γ) =

Ry
S,γ if |Ry

S,γ| = y and AF(S, γ) =⊥ otherwise. Similarly, for every γ ∈ [`] and every T ∈ E ⊆
([n]z ) we define Rz

T,γ ⊆ [q], where µ ∈ [q] is contained in RT,γ if and only if there exists some
u ∈ T such that AG(u)γ = µ. Then, we define AE(T, γ) = Rz

T,γ if |Rz
T,γ| = z and AE(T, γ) =⊥

otherwise.

For every x, y ∈ [q] such that x < x′ we define Λx,x′ : ([q]x ) → ([q]x′ ) as follows: For every
X ∈ ([q]x ) define ∆X to be the set of (x′ − x) many smallest integers in [q] not contained in X.
Then Λx,x′(X) = X ∪ ∆X. Now we can construct functions ÃE : E → Rd∗·` and ÃF : ([n]x′ ) →
Rd∗·` as follows:

∀γ ∈ [`], ÃE(T)|γ=

τ(AE(T, γ)) if AE(T, γ) 6=⊥
τ(Λ|Rz

T,γ|,z(Rz
T,γ)) otherwise

and ÃF(S)|γ=

τ(AF(S, γ)) if AF(S, γ) 6=⊥
τ(Λ|Rx′

S,γ|,x′
(Rx′

S,γ)) otherwise
.

7Here we think of γ as a field element of Fq by using some canonical bijection between [q] and Fq.
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Structural Observations. Fix S ∈ ([n]y ). We define the set Ly
S as follows:

Ly
S := {γ ∈ [`] : |Ry

S,γ| = y}.

Consider the set WS = {AG(u) | u ∈ S}. Since any two codewords of AG agree on at most
3/
√

q fraction of coordinates, we have by union bound that there are at least 1− (y
2)(3/

√
q)

fraction of coordinates of [`] on which all codewords in WS are distinct. Therefore, we have
that |Ly

S| ≥ (1− (y
2)(3/

√
q)) · `. Also, note that for all γ ∈ Ly

S we have AF(S, γ) 6=⊥.

Similarly, we fix T ∈ E. We define the set Lz
T as follows:

Lz
T := {γ ∈ [`] : |Rz

T,γ| = z}.

By following the averaging argument above, we also have that |Lz
T| ≥ (1 − (z

2)(3/
√

q)) · `.
Again, note that for all γ ∈ Lz

T we have AE(T, γ) 6=⊥.

Finally, for every (S, T) ∈ ([n]y )× E, we define LS,T := Ly
S ∩ Lz

T, and note the following

|LS,T| ≥
(

1− 3zy
√

q

)
· `.

Let us now compute a few distances. Consider (S, T) ∈ ([n]y )× E such that S ⊂ T then we
have

‖ÃE(T)− ÃF(S)‖p = β · `1/p. (1)

This is because, if S ⊂ T then for all γ ∈ [`] we have Ry
S,γ ⊆ Rz

T,γ. Fix γ ∈ [`]. If γ ∈ LS,T

then we have that ‖ÃE(T)|γ − ÃF(S)|γ‖p
p = βp as (Ry

S,γ, Rz
T,γ) is an edge in J(q, z). On the

other hand if γ /∈ Lz
T then either γ /∈ Ly

S and we have that Λ|Ry
S,γ|,y

(Ry
S,γ) ⊆ Λ|Rz

T,γ|,z(Rz
T,γ)

because Ry
S,γ ⊆ Rz

T,γ, or we have γ ∈ Ly
S, in which case, we have Rz

T,γ = Ry
S,γ and thus Ry

S,γ ⊆
Λ|Rz

T,γ|,z(Rz
T,γ). In the former case, we have that (Λ|Ry

S,γ|,y
(Ry

S,γ), Λ|Rz
T,γ|,z(Rz

T,γ)) is an edge in

J(q, z) and in the latter case we have that (Ry
S,γ, Λ|Rz

T,γ|,z(Rz
T,γ)) is an edge in J(q, z). The final

result in both cases is that ‖ÃE(T)|γ − ÃF(S)|γ‖p
p = βp. Therefore, we have

∑
γ∈[`]
‖ÃE(T)|γ − ÃF(S)|γ‖p

p = ‖ÃE(T)− ÃF(S)‖p
p = βp · `.

Consider (S, T) ∈ ([n]y )× E such that S 6⊂ T. Let u ∈ U such that u ∈ S but u /∈ T. We
define Good := {γ ∈ [`] : AG(u)γ /∈ Rz

T,γ}. Since the relative distance of AG is 1− 3/√q, we
have by simple union bound that

|Good| ≥
(

1− 3z
√

q

)
· `.

Then, we have

‖ÃE(T)− ÃF(S)‖p ≥ (gp(J(q, y, z))− δ) · β · `1/p, (2)

where δ := 18zy√
q (note that δ ≤ ε′). To see this first observe that:
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‖ÃE(T)− ÃF(S)‖p
p ≥ ∑

γ∈LS,T∩Good
‖ÃE(T)|γ − ÃF(S)|γ‖p

p.

Fix γ ∈ LS,T ∩ Good. Notice that Ry
S,γ 6⊂ Rz

T,γ and thus (Ry
S,γ, Rz

T,γ) is not an edge in J(q, z).
Therefore, we have

‖ÃE(T)|γ − ÃF(S)|γ‖p
p ≥ gp(J(q, z, y))p · βp.

Since |LS,T ∩ Good| ≥ (1− 3z/√q− 3zy/√q) · ` ≥ (1− 6zy/√q) · `, (2) follows immediately by
noting that (i) gp(J(q, z, y)) ≤ 3, and (ii) for any η ∈ [0, 1], (1− η)1/p ≥ (1− η).

We now analyze the k-means and k-median cost of the instance. Consider the completeness
case first.

Completeness. Suppose there exist S1, . . . , Sk ∈ ([n]y ) such that
⋃

i∈[k]
cov(Si, E) = E. Then, we

define C ′ = {ÃF(Si) | i ∈ [k]} and we define σ : P → C ′ as follows: for every a ∈ P , where
a := ÃE(T) for some T ∈ E, let σ(a) be equal to ÃF(Si) such that Si ⊂ T (if there is more than
one i ∈ [k] for which Si is contained in T then we choose one arbitrarily). Therefore for any
a ∈ P we have from (1)

‖a− σ(a)‖p = β · `1/p.

The k-means cost of the overall instance is thus β2 · `2/p · |P|, while the k-median cost is
β · `1/p · |P|. Finally, we turn to the soundness analysis.

Soundness. Consider any set of centers C ′ = {c1, . . . , ck} ⊂ C that is optimal for the k-median

or k-means objective (and that σ : P → C ′ simply maps to the closest center in C ′). Let S :=
{S1, . . . , Sk} ⊆ ([n]y ) be the collection of y sized subsets of U corresponding to the centers of C ′,
namely

S =

{
Si ∈

(
[n]
y

)∣∣∣ÃF(Si) ∈ C ′
}

.

By the assumptions of the soundness case, we have cov(S) ≤ α · |E|. For each T ∈ cov(S), from
(1), we have that the contribution of ÃE(T) to the k-means cost is exactly β2 · `2/p, and to the k-
median cost is exactly β · `1/p. However, from (2), for any other T ∈ E \ cov(S), the contribution
of ÃE(T) to the k-median and k-means cost is (at least) respectively (gp(J(q, y, z))− δ) · β · `1/p

and (gp(J(q, y, z))− δ)2 · β2 · `2/p. Therefore, the optimal solution w.r.t. k-median objective has
cost at least:

α · |E| · β · `1/p + (1− α) · |E| · (γp,z−y − δ) · β · `1/p

≥ |P| · β · `1/p · (ζ1(p, z− y, α)− δ)

≥ |P| · β · `1/p · (ζ1(p, z− y, α)− ε) .

Similarly, the optimal solution w.r.t. k-means objective has cost at least:

α · |E| · β2 · `2/p + (1− α) · |E| · (γp,z−y − δ)2 · β2 · `2/p

≥ |P| · β2 · `2/p · (ζ2(p, z− y, α)− 2δ)

≥ |P| · β2 · `2/p · (ζ2(p, z− y, α)− ε) .
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We remark that the above proof can be made significantly notation-light, if we wanted
to prove Theorem 1.3 in high dimensions (i.e., poly(n) dimensions). In particular, we could
skip the use of Algebraic Geometric codes. However, the result is more interesting when the
dimension is O(log n), as proving the same NP-Hardness for (log n)1−o(1) dimensions would
violate the Exponential Time Hypothesis [IP01, IPZ01], due to the sub-exponential time ap-
proximation algorithm of [Coh18] for such dimensions.

3.4 Conditional Inapproximability of Continuous k-means and k-median

In this subsection, we show how JCH or any hardness of (α, z, y)-Johnson Coverage implies
the hardness of approximation of various clustering objectives in the continuous case and i.e.,
we prove Theorem 1.4. In order to prove the results in this section, we need to assume a slight
strengthening of JCH.

Hypothesis 3.15 (Dense Johnson Coverage Hypothesis (JCH∗)). JCH holds for instances (U, E, k)
of Johnson Coverage problem where |E| = ω(k).

More generally, let (α, z, y)-Johnson Coverage∗ be the special case (α, z, y)-Johnson Cov-
erage where the instances satisfy |E| = ω(k · |U|z−y−1). Then JCH∗ states that for any ε > 0,
there exists z = z(ε) such that (1 − 1/e + ε, z, z − 1)-Johnson Coverage∗ is NP-Hard. This
additional property has always been obtained in literature by looking at the hard instances
that were constructed. In [CK19], where the authors proved the previous best inapproxima-
bility results for continuous case k-means and k-median, it was observed that hard instances of
(0.94, 2, 1)-Johnson Coverage constructed in [AKS11, AS19] can be made to satisfy the above
property.

First, we consider Euclidean k-means.

Theorem 3.16 (k-means without candidate centers in O(log n) dimensional Euclidean space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between
the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

2 ≤ ρn log n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ C and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

2 ≥
(

1 +
(1− α)

(z− y)
− ε

)
· ρn log n,

for some constant ρ > 0.

Proof. The construction of the point-set P in the theorem statement is the same as in the proof
of Theorem 3.12 (with a further simplification as we fix the embedding given in Lemma 3.8).
However, the soundness analysis to prove the theorem is more intricate.

Fix ε > 0 as in the theorem statement. Also, fix p ∈ R≥1. Let ε′ := ε/11. Starting from a
hard instance of (α, z, y)-Johnson Coverage∗ problem (U, E, k) with |U| = n and |E| = ω(nz−y),
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we create an instance of the k-means using Algebraic-Geometric codes and the embedding

given in Lemma 3.8 as follows. Let q be a (constant) prime square greater than
(

18z2

ε′

)2
. Let AG

be the code guaranteed by Theorem 2.1 over alphabet of size q of message length η := logq n
(recall |U| = n), block length ` := Oq(η), and relative distance at least 1− 3/√q.

Construction. The k-means instance consists of the set of points to be clustered P ⊆ {0, 1}`·q
which will be defined below. Recall the function AE : E× [`]→ ([q]z )∪{⊥} defined in the proof
of Theorem 3.12 (also recall the definitions Rz

T,γ, Λx,y, Lz
T, ÃF). We construct ÃE : E→ {0, 1}q·`

below. Given ÃE the point-set P is just defined to be{
ÃE(T)

∣∣T ∈ E
}

.

Let τ map a subset of [q] to its characteristic vector in {0, 1}q. Now we can construct ÃE

as follows:

∀γ ∈ [`], ÃE(T)|γ=

τ(AE(T, γ)) if AE(T, γ) 6=⊥
τ(Λ|Rz

T,γ|,z(Rz
T,γ)) otherwise

.

Structural Observations. We compute distances in a couple of cases. Consider distinct T, T′ ∈
E such that |T ∩ T′| = y. Then we have

(2(z− y)− δ) · ` ≤ ‖ÃE(T)− ÃE(T′)‖2
2 ≤ 2(z− y)`, (3)

where δ := 18z2/
√

q (note that δ ≤ ε′).

Now consider distinct T, T′ ∈ E such that |T ∩ T′| < y. Then we have

(2(z− y) + 2− δ) · ` ≤ ‖ÃE(T)− ÃE(T′)‖2
2. (4)

We now analyze the k-means cost of the instance. To do so, we will make use of the fol-
lowing classic fact about the k-means cost of a partition C1∪̇ · · · ∪̇Ck = P of a set of points in
Rd.

Fact 3.17. Given a clustering C1∪̇ · · · ∪̇Ck = P , the k-means cost is exactly

k

∑
i=1

1
2|Ci| ∑

p∈Ci

∑
q∈Ci

‖p− q‖2
2.

Consider the completeness case first.

Completeness. Suppose there exist S1, . . . , Sk ∈ ([n]y ) such that
⋃

i∈[k]
cov(Si, E) = E. Then, we

define a clustering C1∪̇ · · · ∪̇Ck = P as follows: for every a ∈ P , where a := ÃE(T) for some
T ∈ E, let a ∈ Ci such that T ∈ cov(Si, E) (if there is more than one i ∈ [k] for which Si is
contained in T then we choose one arbitrarily). We now provide an upper bound on the k-
means cost of clustering C := {C1, . . . , Ck}. (3) implies that for each Ci, for any pair T, T′ such
that ÃE(T), ÃE(T′) ∈ Ci, we have that ||ÃE(T)− ÃE(T′)||22 ≤ 2`. Hence, if we let Wi be the
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k-means cost for the Ci,

Wi =
1

2|Ci| ∑
q∈Ci

∑
p∈Ci

||p− q||22 ≤
1

2|Ci| ∑
q∈Ci

∑
p∈Ci ,p 6=q

2(z− y)` ≤ (z− y)|Ci|`.

Thus, the cost of clustering C is at most (z− y)`|P|. Finally, we turn to the soundness analysis.

Soundness. Consider the optimal k-means clustering C := {C1, . . . , Ck} of the instance (i.e.,
C1∪̇ · · · ∪̇Ck = P). We aim at showing that the k-means cost of C is at least ((z− y) + 2(1−
α)− o(1))`|P|. Given a cluster Ci, let Ei := {T ∈ E : ÃE(T) ∈ Ci} be the collection of z-sets of
E corresponding to Ci. For each S ∈ ([n]y ), we define the degree of S in Ci to be

di,S :=
∣∣∣{T | S ⊂ T and ÃE(T) ∈ Ci}

∣∣∣ .

Let t0 = (2z− 2y− δ)`, t1 = (2z− 2y)`, and t2 = (2z− 2y + 2− δ)`. For each cluster Ci, let

Fi =

∣∣∣∣{(p, q) ∈ C2
i : ‖p− q‖2

2 ≥ t2}
∣∣∣∣

Mi =

∣∣∣∣{(p, q) ∈ C2
i : ‖p− q‖2

2 ∈ [t0, t1]}
∣∣∣∣

Ni =

∣∣∣∣{(p, q) ∈ C2
i : ‖p− q‖2

2 < t0}
∣∣∣∣.

By (3) and (4), Fi, Mi, and Ni are the number of (ordered) pairs within Ci whose corresponding
z-sets in the Johnson Coverage instance intersect in < y, = y, and > y elements respectively.
Let ∆i = max

S∈([n]y )
di,S. We write the total cost of the clustering as follows.

k

∑
i=1

Wi

≥
k

∑
i=1

1
2|Ci|

(
Fit2 + Mit0

)
=

k

∑
i=1

1
2|Ci|

(
(|Ci|2 −Mi)t2 + (Mi)t0 − Nit2

)
(5)

We first upper bound ∑i(Nit2)/(2|Ci|). For each z-set T, there are at most (z− y) · ( z
z−y−1) ·

nz−y−1 sets that intersect with T in at least y+ 1 elements. Therefore, Ni ≤ |Ci| ·max(|Ci|, O(nz−y−1))

and
k

∑
i=1

Ni

2|Ci|
≤

k

∑
i=1

max(|Ci|, O(nz−y−1)) ≤ O(k · nz−y−1)).

By the definition of Johnson Coverage∗, |E| = ω(k · nz−y−1), so ∑i Nit2/(2|Ci|) is at most
o(`|P|).

For Mi, we prove the following claim that bounds Mi/|Ci| in terms of ∆i and |Ci|.

Claim 3.18. For every i ∈ [k], either |Ci| = o(|P|/k) or Mi/|Ci| ≤ (1 + o(1))∆i + o(|Ci|).
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This proves the theorem because we can lower bound (5) as

k

∑
i=1

1
2|Ci|

(
(|Ci|2 −Mi)t2 + (Mi)t0 − Nit2

)
≥

k

∑
i=1

1
2|Ci|

(
(|Ci|2 −Mi)t2 + (Mi)t0

)
− o(`|P|)

=
1
2

k

∑
i=1

(
t2|Ci| − (t2 − t0)(Mi/|Ci|)

)
− o(`|P|)

=
1
2

(
t2|P| − (t2 − t0)

k

∑
i=1

(Mi/|Ci|)
)
− o(`|P|)

≥ 1
2

(
t2|P| − (t2 − t0)

k

∑
i=1

∆i

)
− o(`|P|),

where the last inequality used the fact that either either Mi/|Ci| ≤ (1 + o(1))∆ + o(|Ci|) or
|Ci| = o(|E|/k) where we can use trivial bound Mi/|Ci| ≤ |Ci| = o(|P|/k) so that all the terms
multiplied by o(1) can be absorbed by the last term o(`|P|). By using the soundness condition
∑k

i=1 ∆i ≤ α|P| and plugging in the values of t0 and t2, the total cost is at least by

|P| t0

2
+ |P| (t2 − t0)

2

(
1− α

)
− o(`|P|) = `|P|

(
(z− y) + (1− α)− δ/2− o(1)

)
.

Therefore, it remains to proof Claim 3.18.

Proof of Claim 3.18. Note that Mi ≤ ∑S∈([n]y )
d2

i,S. First, consider the set S = {S ∈ (n
y) | di,S <

γ|Ci|} for some small γ > 0 that will be determined later, and let E0
i = {T ∈ Ei | ∃S ∈ S , S ⊆

T}. We have that
1
|Ci| ∑

S∈S
d2

i,S ≤
γ|Ci|
|Ci| ∑

S∈S
di,S ≤

(
z
y

)
γ|E0

i |, (6)

because each z-set T can contribute to the degree di,S of at most (z
y) different sets.

We then bound ∑S/∈S d2
i,S. Let S ′ = (n

y) \ S and E1
i = {T ∈ Ei | ∃S1, S2 ∈ S ′, S1 6= S2, S1 ⊆

T, S2 ⊆ T}. We claim that

∑
S∈S ′

di,S ≤
(

z
y

)
|E1

i |+ |Ei|. (7)

Indeed, consider an element T ∈ Ei, we have that either there is at most one element S of S ′
such that S ⊂ T, in which case T will be counted at most once in ∑S∈S ′ di,S, or T contains more
than one element of S ′. The elements of E1

i are counted at most (z
y) times in the sum and from

there follows (7).

We claim that if |E1
i | > γ|Ei| or |Ei| is small. From (7) we deduce that there exists S ∈ S ′

such that di,S ≤ ((z
y)|E1

i |+ |Ei|)/|S ′|. Moreover, since S ∈ S ′ we also have that di,S ≥ γ|Ei| ≥
γ|E1

i | and so, combining the two bounds yields γ|E1
i | ≤ ((z

y)|E1
i | + |Ei|)/|S ′|. Rearranging

gives

|S ′| ≤
(

z
y

)
/γ +

|Ei|
γ|E1

i |
.

If |E1
i | > γ|Ei| we get |S ′| ≤ (z

y)/γ + 1/γ2. Hence, |E1
i | is at most ((y

z)/γ + 1/γ2)2 · nz−y−1
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since for each pair S, S′ ∈ S ′, S 6= S′ there is at most nz−y−1 T ∈ Ei such that S ⊂ T, S′ ⊂ T.
Thus, |Ei| ≤ ((y

z)/γ + 1/γ2)2/γ · nz−y−1, proving the claim.

For i with |E1
i | ≤ γ|Ei|, using (7) together with the above bound on |E1

i |, we obtain

∑
S/∈S

d2
i,S ≤ ∆i ∑

S/∈S
di,S ≤ ∆i(|Ei|+

(
z
y

)
|E1

i |) ≤ ∆i(1 + γ

(
z
y

)
)|Ei|. (8)

Combining (6) and (8) we deduce that 1
|Ei | ∑S d2

i,S ≤ (1 + γ(z
y))∆i + γ(z

y)|Ei|.

Finally, since |E| = ω(knz−y−1), we can choose γ = o(1) such that

γ

(
z
y

)
= o(1) and

(((
y
z

)
/γ + 1/γ2

)2

/γ

)
· knz−y−1 = o(|E|).

Therefore, if |E1
i | ≤ γ|Ei|, then Mi/|Ei| ≤ (1 + o(1))∆i + o(|Ei|), and if |E1

i | > γ|Ei|, |Ei| =
o(|E|/k). This finishes the proof of the claim and the theorem.

Remark 3.19. Similar to Remark 3.14, we note here that given (1− δ, z, 1)-Johnson Coverage problem
is NP-Hard for some constants δ > 0 and z ∈ N, plugging those parameters in Theorem 3.16, we
immediately have that continuous k-means is APX-Hard in `2-metric.

Before, we address continuous case of k-median in `1-metric, we prove hardness of ap-
proximating the continuous case of both k-means and k-median in the Hamming metric. The
inapproximability of k-median in `1-metric then follows by a simple observation.

Theorem 3.20 (k-median without candidate centers in O(log n) dimensional `0-metric space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between
the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ {0, 1}d and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖0 ≤ ρn log n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ {0, 1}d and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖0 ≥

(
1 +

(1− α)

(z− y)
− ε

)
· ρn log n,

for some constant ρ > 0.

Theorem 3.21 (k-means without candidate centers in O(log n) dimensional `0-metric space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between
the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ {0, 1}d and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

0 ≤ ρn(log n)2,
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• Soundness: For every C ′ := {c1, . . . , ck} ⊆ {0, 1}d and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

0 ≥
(

1 +
(1− α)(2(z− y) + 1)

(z− y)2 − ε

)
· ρn(log n)2,

for some constant ρ > 0.

Proof of Theorems 3.20 and 3.21. The construction of the point-set P in the theorem statement is
the same as in the proof of Theorem 3.16. The completeness case is the same as in Theorem 3.12.
Therefore, we have that the k-means cost of the overall instance is at most `2 · |P|, while the
k-median cost is at most ` · |P|. The soundness analysis to prove the theorem follows by a case
analysis, which is elaborated in [CK19] and we skip it here for the sake of brevity.

We consider below k-median in `1-metric.

Theorem 3.22 (k-median without candidate centers in O(log n) dimensional `1-metric space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between
the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖1 ≤ ρn log n,

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖1 ≥

(
1 +

(1− α)

(z− y)
− ε

)
· ρn log n,

for some constant ρ > 0.

Proof Sketch. The proof follows from a simple observation that for instances where all the coor-
dinates of the points to be clustered are in {0, 1}, we have that for any subset (i.e. cluster) of the
points of the instance, an optimal center of the set is such that its ith coordinate is the median of
a set of values in {0, 1}, i.e., we may assume without loss of generality that the ith coordinate
of the center is also in {0, 1}. Therefore, simply mimicking the proof of Theorem 3.20 yields
the desired theorem statement. See [CK19] for a formal argument.

Finally, we finish the section by proving the remaining hardness results for continuous
k-median and k-means: k-median in `2-metric and k-means in `1-metric. Especially, k-median in
`2-metric for k = 1 is known as the geometric median and is actively studied for bounded d or
k [ARR98, BHPI02, KSS10, FL11], but to the best of our knowledge, no (hardness of) approxi-
mation algorithms have been studied for general d and k. First, we prove the following lemma
that if points are pairwise far apart, there is no good center that is close to all of them.

Lemma 3.23. For any ε ∈ (0, 1), if p1, . . . , pn ∈ Rd with n > 4/ε + 1 satisfy ‖pi − pj‖2 ≥
√

2,
then, for any c ∈ Rd, maxi∈[n] ‖c− pi‖2 ≥ 1− ε.
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Proof. Assume towards contradiction that there exists c such that maxi∈[n] ‖c − pi‖2 < 1− ε.
Without loss of generality let c = ~0 and consider the matrix A ∈ Rn×n such that Ai,j =

〈pi, pj〉 = (‖pi‖2
2 + ‖pj‖2

2 − ‖pi − pj‖2
2)/2 < (2(1− ε)2 − 2)/2 ≤ ε. Then A is positive semidef-

inite, so if~1 denotes the all-ones vector,

(~1T)A~1 ≤∑
i

Ai,i + ∑
i<j

Ai,j ≤ n−
(

n
2

)
ε ≥ 0,

which leads to contradiction if n > 4/ε + 1.

Theorem 3.24 (k-median without candidate centers in O(log n)-dimensional `2-metric space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂ Rd

of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between the
following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2 ≤ n

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2 ≥

(
α +

√
z− y + 0.5

z− y
(1− α)− ε

)
n

Proof. Given an instance (U, E, k) of (α, z, y)-Johnson Coverage∗, for any S ⊆ U, let τ(S) be the
indicator vector of S. (The dimension can be reduced to O(log n) by the standard dimension
reduction technique.)

In the completeness case, every point is connected to a center at distance
√

z− y. For the
soundness case, fix one cluster C and its center c ∈ RU . Fix ε > 0, and remove all points from
C whose `2 distance to c is greater than (

√
z− y + 0.5− ε). Assume C = ω(nz−y−1). We will

show that there exists S′ ∈ (U
y ) that covers all but O(nz−y−1) sets in C.

We claim that no two y-sets can both cover ω(nz−y−1) number of z-sets in C. Assume
towards contradiction that there exist S′, T′ ∈ (U

y ) be such that each of them covers at least
t = ω(nz−y−1) sets in C. Let s = |S′ ∩ T′| and I = S′ ∩ T′. Consider the center c and its
squared distances to τ(S′) and τ(T′) in coordinates Q = (S′ ∪ T′) \ I. Since τ(S′) and τ(T′)
are different in these coordinates, (ci − τ(S′)i)

2 + (ci − τ(T′)i)
2 ≥ 0.5 for each i ∈ Q. Without

loss of generality, assume that (ci − τ(S′)i)
2 ≥ (y− s)/2 ≥ 0.5.

Now let us consider the points restricted to the coordinates O = U \ (S ∪ T). First, we
claim that we can choose S1, . . . , S` with ` = ω(1) such that Si ∈ C, S′ ⊆ Si, Si \ S ⊆ O,
and Si’s are pairwise disjoint. First the number of S ∈ C that contains S′ and intersects T′

with in at least one element outside S′ is at most |T′| · nz−y−1, which is only an o(1) fraction
of the z-sets in C covered by S′. Remove them from C. Now, consider a greedy iteration for
i = 1, . . . , ` where we pick an arbitrary set Si ∈ C that contains S′, and remove all sets from
C that insect Si outside S′. Each time, the number of removed sets is only (z− y)nz−y−1, and
since C = ω(nz−y−1), this process can continue ` = o(1) iterations.

Then τ(Si) and τ(Sj) on coordinates in O are at distance at least
√

2(z− y) from each
other. Since the contribution of ‖c − Si‖2

2 from Q is already at least 0.5, Lemma 3.23 shows
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there is no center can cover every point in C at distance at most
√

z− y + 0.5− o(1), leading
to the desired contradiction.

Now we prove that there exist a bounded number of y-sets that collectively cover every
z-sets. Consider the following process starting with C′ = C and i = 1.

1. Let Si be an arbitrary set from C′.

2. Delete all S ∈ C′ such that |S ∩ Si| ≥ y.

3. If C′ is nonempty, increase i by 1 and repeat from 1.

Let t be the final value of i, and consider S1, . . . , St. They are at distance at least
√

2(z− y + 1)
from each other, so again by Lemma 3.23 and using that

√
2(z− y + 1)/

√
2 =

√
z− y + 1 >√

z− y + 0.5, t is most some absolute constant. Then y-sets in {S′ ⊆ U : |S′| = y and S′ ⊆
Si for some i ∈ [t]} cover all sets in C. A similar argument for C∗ = {S : ‖τ(S) − c‖2 <√

z− y− ε} and y + 1 implies that |C∗| ≤ O(nz−y−1).

So far, we showed that (1) there are a constant number of y-sets that collectively cover
every S ∈ C (2) except one set, every y-set can cover at most O(nz−y−1) sets in C, and (3)
|C∗| ≤ O(nz−y−1). Therefore, whenever |C| = ω(nz−y−1), there exists S′ ∈ (U

y ) that covers all
but a subconstant fraction of sets in C. Since |E| = ω(kny−z−1), we can use an argument similar
to Theorem 3.16 to show that in the soundness case, the fraction of points that are covered by
a center at distance at most

√
z− y + 0.5− ε is at most α + o(1), and at most an o(1) fraction

of points are covered at distance at most
√

z− y− ε. This proves the theorem.

Theorem 3.25 (k-means without candidate centers in poly(n)-dimensional `1-metric space).
Assume (α, z, y)-Johnson Coverage∗ is NP-Hard. For every constant ε > 0, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n)) and a parameter k as input, it is NP-Hard to distinguish between
the following two cases:

• Completeness: There exists C ′ := {c1, . . . , ck} ⊆ Rd and σ : P → C ′ such that

∑
a∈P
‖a− σ(a)‖2

1 ≤ n

• Soundness: For every C ′ := {c1, . . . , ck} ⊆ Rd and every σ : P → C ′ we have:

∑
a∈P
‖a− σ(a)‖2

1 ≥
(

α + (1− α)
(z− y + 1)2

(z− y)2 − ε

)
n.

Proof. Given an instance (U, E, k) of (α, z, y)-Johnson Coverage∗, for any S ⊆ U, let τ(S) be the
indicator vector of S. We analyze the completeness and soundness of this simple reduction.
Since every point is in the boolean hypercube, the embedding of 3.12 ensures that one can
reduce the dimension to O(log n) with losing an arbitrarily small constant in the inapproxima-
bility factor.

In the completeness case, every point is connected to a center at distance z − y. For the
soundness case, fix one cluster C and its center c ∈ RU . Fix ε > 0, and remove all points from
C whose `1 distance to c is at least (z− y + 1− ε).

First, note that for every S, T ∈ C, |S ∩ T| ≥ y. Otherwise, ‖τ(S)− τ(T)‖1 ≥ 2(z− y + 1),
so there is no center that are at distance strictly less than z− y + 1 from both τ(S) and τ(T).
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Fix any S ∈ C. Then every T ∈ C is covered by a y-set in F = {S′ ⊆ U : |S′| = y and S′ ⊆
S}. Furthermore, argument similar to the proof of Theorem 3.24 show except possibly one,
every y-set can cover at most O(nz−y−1) sets in C, and the number of points that are covered
at distance strictly less than z− y is also at most O(nz−y−1).

Therefore, whenever |C| = ω(nz−y−1), there exists S′ ∈ (U
y ) that covers all but a sub-

constant fraction of sets in C. Since |E| = ω(kny−z−1), we can use an argument similar to
Theorem 3.16 to show that in the soundness case, the fraction of points that are covered by a
center at distance at most z− y+ 1− ε is at most α+ o(1), and at most an o(1) fraction of points
are covered at distance at most z− y− ε. This proves the theorem.

3.5 Integrality Gaps

In this subsection we present improved integrality gaps. Given an instance of discrete k-median

or k-means with a set of candidate centers C, a set of points P , and distances {dp,c}p∈P ,c∈C ,
the basic LP relaxation for k-median or k-means is the following. (For k-means, dp,c becomes a
squared distance.)

Minimize ∑
p∈P

∑
c∈C

xp,c · dp,c

Subject to ∑
c∈C

xp,c = 1 ∀p ∈ P

xp,c ≤ yc ∀p ∈ P , c ∈ C

∑
c∈C

yc ≤ k

x, y ≥ 0.

The basic SDP relaxation, which replaces xp,c and yc by ‖vp,c‖2
2 and ‖uc‖2

2 for some vectors
{vp,c} and {uc} with additional constraints, is the following.

Minimize ∑
p∈P

∑
c∈C
‖vp,c‖2

2 · dp,c

Subject to 〈v0, v0〉 = 1

〈vp,c, v0〉 = ‖vp,c‖2
2 ∀p ∈ P , c ∈ C (9)

〈uc, v0〉 = ‖uc‖2
2 ∀c ∈ C (10)

〈vp,c, uc〉 = ‖vp,c‖2
2 ∀p ∈ P , c ∈ C (11)

‖∑
c∈C

vp,c − v0‖2
2 = 0 ∀p ∈ P (12)

∑
c∈C
‖yc‖2

2 ≤ k

We give stronger integrality gap instances than the standard notion. The LP or SDP relax-
ation has a robust gap of α > 1 if there exists a family of instances for infinitely many values of
k where for any ε > 0, there exists δ > 0 and k0 ∈ N such that for all instances in the family
with k ≥ k0, the gap between the optimal fractional solution and the optimal integral solution
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is at least α− ε even when the optimal integral solution is allowed to open k + δk facilities.

Our instances additionally satisfy well-separated the property that every pair of points in
(P∪C2 ) are at distance at least 1 far part, where each instance is normalized so that 1 is the
average connection cost of each point in the SDP solution.

The basic LP relaxation for metric k-median has a gap of 2 under the standard notion [JMS02],
but this instance does not give a robust gap. The best approximation algorithms for k-median

and k-means in both general and Euclidean metrics bound the robust gap of the LP relax-
ation [BPR+15, ANSW20], and to the best of our knowledge, for well-separated instances, no
robust gap of the LP relaxation better than computational hardness results [GK99, CK19] were
previously known.

Theorem 3.26. Fix any ε > 0. For discrete k-median in `1 and discrete k-means in `2, there is a family
of well-separated instances where the SDP relaxation has a gap of at least 149/125− ε ≈ 1.192− ε,
even when the integral solution opens Ω(k) more centers.

Proof. Consider the complete graph Kn = ([n], E) with E = ([n]2 ). Let τ : 2E → Rn where for
any p ⊆ E, τ(p) is defined to be the characteristic vector of ∪e∈pe. The set points P is defined
to be P := {τ(p) : p forms a 4-clique in Kn}. The set C of candidate centers, for each edge
e ∈ E, has a center τ(e). To simplify notation, we use p (resp. e) to also denote τ(p) (resp. τ(e))
when p (resp. e) is used as part of the clustering instance.

We say that an edge e ∈ E covers a 4-clique p if e ∈ p; in this case a center e ∈ C also
covers a point p ∈ P . Note that ‖e− p‖0 = ‖e− p‖1 = 2 if e covers p and at least 4 otherwise.
Since each 4-clique has 6 edges and each edge yields m centers, note that each point p ∈ P is
covered by exactly 6 centers. Therefore, there is an LP solution that picks 1/6 of each e ∈ C and
fractionally covers every p ∈ P . We prove that even for the SDP, there is such a solution that
picks 1/5 of each e ∈ C.

Claim 3.27. There exists a feasible SDP solution where every p ∈ P is fractionally connected to only
centers at distance at most 2, and ‖ue‖2

2 = 1/5 for every e.

Proof. Let t = 5. Let v0 and {we, w′e}e∈E be pairwise orthogonal unit vectors. We explicitly
construct the vectors for the SDP relaxation.

• For each e ∈ E, ue =
v0
t +

( (t−1)
√

t+1
t2

)
we +

(√t−1
t2

)
w′e.

• For each e ∈ E, and a 4-clique p, if e ∈ p,

vp,e =
1

t + 1
· v0 +

t
(t + 1)3/2 · we − ∑

f∈p\{e}

1
(t + 1)3/2 · w f .

Otherwise vp,e = 0.

Note that every point p ∈ P is only connected to e that covers p. We check each constraint of
the SDP. The first constraint 〈v0, v0〉 = 1 is true by definition. Since

‖ue‖2
2 =

1
t2 +

(t− 1)2(t + 1)
t4 +

t− 1
t4 =

1
t2 +

t− 1
t2 =

1
t
= 〈v0, ue〉,
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it satisfies (10). Since for e ∈ p,

‖vp,e‖2
2 =

1
(t + 1)2 +

t2

(t + 1)3 +
t

(t + 1)3 =
1

t + 1
= 〈v0, vp,e〉,

it satisfies (9). Furthermore, for each p ∈ P , ∑e∈p vp,e = v0, since the coefficient of we in the
sum for any e ∈ p is t

(t+1)3/2 (from vp,e) minus t times 1
(t+1)3/2 (from every other vp, f ), which is

0. It satisfies (12). Finally, (11) can be checked as for every 4-clique p, e ∈ p,

〈ue, vp,e〉 =
1
t
· 1

t + 1
+

(t− 1)
√

t + 1
t2 · t

(t + 1)3/2 =
1

t(t + 1)
+

t− 1
t(t + 1)

=
1

t + 1
= ‖vp,e‖2

2.

Since the solution satisfies every SDP constraint, each p ∈ P is only connected to a center
covering p, and ‖ue‖2

2 = 1/t for every e, the claim is proved.

Therefore the optimal relaxation value is at most 2 · (n
4) when k = (n

2)/5. Now we consider
if we pick at most k edges E integrally, how many 4-cliques can be covered by them. Equiva-
lently, we ask if we pick at least (n

2)− k edges, how many 4-cliques are completely contained
by them. The clique density theorem of Reiher [Rei16] answers this question, proving that if
we pick at least an (1− 1/t) fraction of edges for some integer t ≥ 4, the number of 4-cliques
completely contained in them is at least that of complete t-partite graph with each partition
having the same size. Note that in the complete t-partite graph, the probability that a random
4-tuple becomes a clique is roughly 1 · t−1

t ·
t−2

t ·
t−3

t .

Theorem 3.28 ([Rei16]). Let t ≥ 4 be an integer. In every graph on n vertices with at least (t−1)
t · (n

2)

edges, the number of 4-cliques is at least(
n
4

)
· t(t− 1)(t− 2)(t− 3)

t4 .

Applying the above theorem with t = 5 shows that if we pick k edges, the fraction of
4-cliques covered by them is at most 1− (5·4·3·2)/54 = 24/125. Therefore, while every point is
connected at distance 2 the SDP solution, in the integral solution at least a 24/125 fraction of the
points are connected at distance at least 4. The gap is at least (2 + 2(24/125)/2) = 149/125 ≈
1.192.

4 NP-Hardness of Approximatig 3-Hypergraph Vertex Coverage prob-
lem

In this section, we prove the following theorem showing that for any ε > 0, (7/8 + ε, 3, 1)-
Johnson Coverage Problem is NP-hard for randomized reductions (even in the dense case).
By the results in Sections 3.3 and 3.4, we obtain the inapproximability results for clustering
problems stated in Theorem 1.5 and Table 1.

Theorem 4.1. For any ε > 0, given a simple 3-hypergraph H = (V, H) with n = |V|, it is NP-hard
to distinguish between the following two cases:

• Completeness: There exists S ⊆ V with |S| = n/2 that intersects every hyperedge.
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• Soundness: Any subset S ⊆ V with |S| ≤ n/2 intersects at most a (7/8 + ε) fraction of
hyperedges.

Furthermore, with randomized reductions, the above hardness holds when |H| = ω(n2).

We first prove Theorem 4.1 without the lower bound on |H|; Section 4.1 presents the con-
struction and proves the completeness of the reduction, and Section 4.2, 4.3, and 4.4 analyze
its soundness. Finally, Section 4.5 shows how to ensure |H| = ω(n2).

4.1 Overview and Construction

Consider the setting of Theorem 4.1. A random set of |V|/2 elements will intersect each hy-
peredge with probability 7/8, so the theorem says that it is hard to do even slightly better
than the random solution. It is similar to the notion of approximate resistance mainly studied
for constraint satisfaction problems. Indeed, given an instance of Max 3-SAT with variables
{x1, . . . , xn} and clauses {(`i,1 ∪ `i,2 ∪ `i,3)}i∈[m] where each `i,j denotes a literal xk or xk, con-
sider the simple reduction of creating a vertex for each literal and a hyperedge (`i,1, `i,2, `i,3)

for each clause. This reduction almost proves the above theorem, except that the soundness
property only holds for S that satisfies |S∩{xi, xi}| ≤ 1 for each i ∈ [n]. However, the resulting
hypergraph produced by this reduction combined with Håstad’s celebrated hardness for Max
3-SAT [Hås01] is always bipartite due to the underlying bipartite structure of the outer verifier,
so there is a vertex cover of size at most |V|/2 even in the soundness case.

We bypass the above problem by plugging in Håstad’s inner verifier to the outer verifier
constructed in Guruswami et al. [DGKR05] and Khot [Kho02]. This outer verifier is called a
multilayered PCP and used for proving hardness of the covering version of our problem called
k-Hypergraph Vertex Cover. We give a new analysis for the multilayered PCP and combine
the analysis for Håstad’s inner verifier to bound the number of uncovered hyperedges for all
S with |S| ≤ |V|/2.

We now formally present the reduction. We first describe multilayered PCPs that we use.

Definition 4.2. An `-layered PCPM consists of

• An `-partite graph G = (V, E) where V = ∪`i=1Vi. Let Ei,j = E ∩ (Vi ×Vj).

• Sets of alphabets Σ1, . . . , Σ`.

• For each edge e = (vi, vj) ∈ Ei,j, a surjective projection πe : Σj → Σi.

Given an assignment (σi : Vi → Σi)i∈[`], an edge e = (vi, vj) ∈ Ei,j is satisfied if πe(σj(vj)) = σi(vi).
There are additional properties thatM can satisfy.

• η-smoothness: For any i < j, vj ∈ V, and x, y ∈ Σj, Pr(vi ,vj)∈Ei,j
[π(vi ,vj)(x) = π(vi ,vj)(y)] ≤ η.

• Path-regularity: Call a sequence p = (v1, . . . , v`) full path if (vi, vi+1) ∈ Ei,i+1 for every
1 ≤ i < `, and let P be the distribution of full paths obtained by (1) sampling a random vertex
v1 ∈ V1 and (2) for i = 2, . . . , `, sampling vi from the neighbors of vi−1 in Ei−1,i. M is called
path-regular if for any i < j, sampling p = (v1, . . . , v`) from P and taking (vi, vj) is the same
as sampling uniformly at random from Ei,j.
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Theorem 4.3 ([DGKR05, Kho02]). For any τ, η > 0 and ` ∈ N, given an `-layered PCPM with
η-smoothness and path-regularity, it is NP-hard to distinguish between the following cases.

• Completeness: There exists an assignment that satisfies every edge e ∈ E.

• Soundness: For any i < j, no assignment can satisfy more than an τ fraction of edges in Ei,j.

Given an `-layered PCPM described as above, we construct the reduction from to John-
son Coverage. For simplicity of presentation, the produced instance will be vertex-weighted
and edge-weighted, so that the problem becomes “choose a set of vertices of total weight at
most k to maximize the total weight of covered edges.” Vertex weights can be easily removed
by duplicating vertices according to weights and creating edges between duplicated vertices
with appropriate weights. Edge weights will be handled in Section 4.5.

• Let Ci := {±1}Σi and Ui := Vi × Ci. The resulting hypergraph will be denoted by H =

(U, H) where U = ∪`i=1(Vi × Ci). The weight of vertex (v, x) ∈ Vi × Ci is

w(v, x) :=
1
`
· 1
|Vi|
· 1
|Ci|

.

Note that the sum of all vertex weights is 1.

• Let DI be the distribution where i ∈ [`] is sampled with probability (` − i)2/(6`(` −
1)(2`− 1)), and D be the distribution over (i, j) ∈ [`]2 where i is sampled from DI and
j is sampled uniformly from {i + 1, . . . , `}. For each i < j, we create a set of hyperedges
Hi,j that have one vertex in Ui and two vertices in Uj. Fix each e = (vi, vj) ∈ Ei,j and a set
of three vertices t ⊆ ({vi} × Ci) ∪ ({vj} × Cj). The weight w(t) is (the probability that
(i, j) is sampled fromD) · (1/|Ei,j|) · (the probability that t is sampled from the following
procedure). The reduction is parameterized by δ > 0 determined later.

– For each a ∈ Σi, sample xa ∈ {±1}.
– For each b ∈ Σj,

* Sample yb ∈ {±1}.
* If xπ(b) = −1, let zb = yb with probability 1− δ and zb = −yb otherwise.

* If xπ(b) = 1, let zb = −yb.

– Output {(vi, x), (vj, y), (vj, z)}.

Note that the sum of all hyperedge weights is also 1.

Completeness. If M admits an assignment (σi : Vi → Σi)i∈[`] that satisfies every edge e ∈
E, let S := {(vi, x) : vi ∈ Vi, xσi(vi) = −1}. Fix any e = (vi, vj) ∈ Ei,j and consider the
above sampling procedure to sample x ∈ {±1}Σi and y ∈ {±1}Σj when b = σj(vj). Since
πe(σj(vj)) = σi(vi), at least one of xσi(vi), yσj(vj), zσj(vj) must be −1 always. This proves that S
intersects every hyperedge with nonzero weight.

4.2 Soundness.

In the soundness case, we want to prove that any subset of weight at most 1/2 intersects
hyperedges of total weight at most 7/8 + o(1). We prove the equivalent statement that for any
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S ⊆ V of weight greater than 1/2 contains hyperedges of total weight approximately at least
1/8− o(1).

Fix a set S ⊆ V with w(S) ≥ 1/2. Let Si := S ∩ Vi. Let F = {e ∈ H : e ∈ S} and
Fi,j := F ∩ Hi,j. Our goal is to show w(F) is approximately at least 1/8− o(1).

Given a vertex v ∈ Vi, let Cv := {v} × Ci ⊆ U and

αv := `|Vi| ·
(

∑
v∈(S∩Cv)

w(v)
)

be the normalized weight of S in Cv. Given vertices vi ∈ Vi and vj ∈ Vj with i < j, let
Di,j = Pr(i′,j′)∼D[i = i′, j = j′] and

βvi ,vj :=
1

Di,j
· |Ei,j| ·

(
∑

e∈(F∩H(Cvi∪Cvj ))

w(e)
)

be the normalized weight of F in H(Cvi ∪ Cvj), where given T ⊆ V, H(T) is defined as {e ∈
H : e ⊆ T}. Note that all αv, βvi ,vj are in [0, 1]. Furthermore,

Ei∈[`]Ev∈Vi [αv] = w(S),

and
E(i,j)∼DE(vi ,vj)∈Ei,j

[βvi ,vj ] = w(F).

Let αi := Ev∈Vi [αv] and βi,j := E(vi ,vj)∈Ei,j
[βvi ,vj ]. Finally, for each full path p = (v1, . . . , v`), let

αp,i := αvi and βp,i,j := βvi ,vj .

Call a triple (p, i, j) good if βp,i,j < αp,iα
2
p,j − ε. The following lemma says that we are done

if few triples are good.

Lemma 4.4. If Prp∈P ,(i,j)∈D [(p, i, j) is good] ≤ ε, then w(F) ≥ 1/8− 3(
√

ε + 1/`).

Therefore, it remains to consider the case that the condition of Lemma 4.4 does not hold.
Then, there exists i < j such that Prp∈P [(p, i, j) is good] ≥ ε. The following lemma, essentially
from Håstad’s analysis for Max 3-SAT [Hås01], states that it cannot happen if there is no good
assignment for the multilayered PCP instanceM. For completeness, we reproduce a proof in
Section 4.4

Lemma 4.5. Fix any i < j. If Prp∈P [(p, i, j) is good] ≥ ε, then there is an assignment for M that
satisfies at least an (εδ4/2) · (ε/2− 2δ− 2ηδ−4)2 fraction of edges in Ei,j.

First take small enough ε > 0 and large enough ` ∈ N will ensure w(F) ≥ 1/8− 3(
√

ε +

1/`) is almost at least 1/8. Choosing δ = ε2/4, η = δ6 will ensure that the guarantee in
Lemma 4.5 is at least εc for some absolute constant c ∈ N. By taking τ in Theorem 4.3 smaller
than that, we can ensure that Prp∈P [(p, i, j) is good] ≤ ε and w(F) ≥ 1/8− 3(

√
ε + 1/`) in the

soundness case, proving Theorem 4.1.
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4.3 Proof of Lemma 4.4

Proof. Recall that for any i < j, sampling p = (v1, . . . , v`) ∈ P and choosing (vi, vj) is the same
as sampling (vi, vj) ∈ Ei,j uniformly at random. Therefore,

w(F) = E(i,j)∼DE(vi ,vj)∈Ei,j
[βvi ,vj ]

= E(i,j)∼DEp∈P [βp,i,j]

= Ep∈PE(i,j)∼D[βp,i,j].

Say p is atypical Pr(i,j)∈D [(p, i, j) is good] ≥
√

ε. Since Prp∈P ,(i,j)∈D [(p, i, j) is good] ≤ ε,

Pr
p∈P

[p is atypical] ≤
√

ε.

Fix a typical p. Then
E(i,j)∼D[βp,i,j] ≥ E(i,j)∼D[αi,pα2

j,p − ε]−
√

ε,

since we can apply the lower bound βp,i,j by αi,pα2
j,p − ε with probability at least 1−

√
ε and 0

otherwise.

Now we analyze E(i,j)∼D[αi,pα2
j,p]. Recalling the definition of D and applying Cauchy-

Schwarz,

E(i,j)∼D[αi,pα2
j,p] ≥ Ei∼DI ,j∈{i+1,...,`}[αi,pα2

j,p] ≥ Ei∼DI ,j,k∈{i+1,...,`}[αi,pαj,pαk,p]. (13)

We compare the RHS of (13) to(
Ei[αi,p]

)3
= Ei,j,k∈[l][αi,pαj,pαk,p]. (14)

If we fix i < j < k, the probability that the monomial αi,pαj,pαk,p contributes to the expectation,
after incorporating permutations between i, j, k, is 6/`3 in (14) and

(`− i)2

`(`− 1)(2`− 1)/6
· 2
(`− i)2 =

2 · 6
`(`− 1)(2`− 1)

in (13), which is greater than 6/`3. Since Pr[i = j or j = k or k = i] ≤ 3
` when we sample

i, j, k ∈ [`] independently,

Ei∼DI ,j,k∈{i+1,...,`}[αi,pαj,pαk,p] ≥ Ei,j,k∈[l][αi,pαj,pαk,p]−
3
`
=
(
Ei[αi,p]

)3 − 3
`

.

Therefore, if p is typical, then

E(i,j)∼D [βp,i,j] ≥
(

Ei∈[`][αi]

)3

− 3
`
− 2
√

ε.
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Using EpEi[αp,i] ≥ 1/2 and Jensen’s inequality,

w(F) = Ep∈PE(i,j)∼D [βp,i,j]

≥ Ep∈P

[(
Ei∈[`][αi]

)3
]
− 3

`
− 2
√

ε− Pr
p∈P

[p is atypical]

≥
(

Ep∈PEi∈[`][αi]

)3

− 3
`
− 3
√

ε

≥ 1
8
− 3

`
− 3
√

ε.

4.4 Proof of Lemma 4.5

Proof. Fix i < j given in the condition of the lemma. Call an edge e = (vi, vj) ∈ Ei,j good if
βvi ,vj < αvi α

2
vj
− ε. For vi ∈ Vi, let fvi : Ci → {0, 1} be the indicator function of S ∩ ({vi} × Ci),

and Let vj ∈ Vj, let gvj : Cj → {0, 1} be the indicator function of S ∩ ({vj} × Cj).

The path regularity and the promise of the lemma implies that at least an ε fraction of
e ∈ Ei,j is good. Fix such an edge e = (vi, vj). For notational simplicity, let π = πe, L = Σi,
R = Σj, f := fvi and g := gvj .

We use the standard notations in analysis of boolean functions. See [Hås01, O’D14] for
references. For two functions f1, f2 : Ci → R, let 〈 f1, f2〉 := Ex∈{±1}L [ f1(x) f2(x)] be the inner
product between f1 and f2. For A ⊆ L, let χA : Ci → R defined as χA(x) = ∏a∈A xa. It is well
known that {χA}A⊆L forms an orthonormal basis, so that f can be written as ∑A⊆L f̂ (A)χA

with f̂ (A) = 〈 f , χA〉. Define {χB}B∈⊆R similarly and write g as ∑B⊆R ĝ(B)χB.

Now note that αi = Ex[ f (x)] = f̂ (∅), αj = Ey[g(y)] = ĝ(∅), and βi,j = Ex,y,z[ f (x)g(y)g(z)]
where x, y, z were jointly sampled the reduction given e. Expanding Fourier decompositions
for f and g,

Ex,y,z[ f (x)g(y)g(z)] = ∑
A⊆L,B⊆R,C⊆R

f̂ (A)ĝ(B)ĝ(C)E[χA(x)χB(y)χC(z)]

= ∑
B⊆R,A⊆π(B)

f̂ (A)ĝ(B)2E[χA(x)χB(y)χB(z)]

= ∑
B⊆R

ĝ(B)2 ∑
A⊆π(B)

f̂ (A)E[χA(x)χB(y)χB(z)]. (15)

The second equality holds because if b ∈ B \ C, then χB(y) contains yb and it is independent
from any other variable appearing in χA(x)χB(y)χC(z). Similarly, the existence of c ∈ C \ B or
a ∈ A \ (B ∪ C) will make χA(x)χB(y)χC(z) vanish.

Suppose B ⊆ π−1(a) for some a ∈ L. For each b ∈ B, E[ybzb] = −1 if xa = 1 and (1− 2δ)

otherwise, so

E[χB(y)χB(z)] =
1
2
(
(−1)|B| + (1− 2δ)|B|

)
,

and
E[xaχB(y)χB(z)] =

1
2
(
(−1)|B| − (1− 2δ)|B|

)
.

Therefore, if we consider E[χA(x)χB(y)χB(z)] for general A ⊆ B, letting sa := |B ∩ π−1(a)|,
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ps := ((−1)s + (1− 2δ)s)/2, qs := ((−1)s − (1− 2δ)s)/2, it is equal to(
∏
a∈A

qsa

)
·
(

∏
a∈π(B)\A

psa

)
. (16)

Note that p2
s + q2

s ≤ 1− δ for any s ≥ 1. Then for fixed B,

∑
A⊆π(B)

(
E[χA(x)χB(y)χB(z)]

)2 ≤ ∑
A⊆π(B)

E[(χA(x)χB(y)χB(z))2]

= ∑
A⊆π(B)

(
∏
a∈A

q2
sa ∏

a∈π(B)\A
p2

sa

)
= ∏

a∈π(B)
(p2

sa
+ q2

sa
)

≤ (1− δ)|π(B)|.

Finally, we analyze (15). When B = ∅, we get f̂ (∅)ĝ(∅)2 = αiα
2
j . Say B big if |B| > δ−2 and

small if 1 ≤ |B| ≤ δ−2. Fix large B and v ∈ Vj, and consider a random edge (u, v) ∈ Ei,j. Since
M is η-smooth, the probability that |π(B)| ≥ δ−2 is at least 1− ηδ−4, so using (1− δ)1/2δ2 ≤ δ,

E(u,v)∈Ei,j
(1− δ)|π(β)|/2 ≤ δ + ηδ−4.

Therefore, for any fixed v ∈ Vj, we can bound (15) for big B as:

E(u,v)∈Ei,j

[∣∣∣∣ ∑
B big

ĝ(B)2 ∑
A⊆π(B)

f̂ (A)E[χA(x)χB(y)χB(z)]
∣∣∣∣]

≤ E(u,v)∈Ei,j

[
∑

B big
ĝ(B)2

(
∑

A⊆π(B)
f̂ (A)2

)1/2(
∑

A⊆π(B)
E[χA(x)χB(y)χB(z)]2

)1/2]

≤ E(u,v)∈Ei,j

[
∑

B big
ĝ(B)2(1− δ)|π(β)|/2

]
≤ δ + ηδ−4.

Similarly, we can bound (15) for small B and A = ∅. With probability at least 1− η|π(B)|2 ≥
1− ηδ−4 we have |π(β)| = |β|, and if this happens, E[|χB(y)χB(z)|] ≤ |p1| = δ. Therefore,

E(u,v)∈Ei,j

[∣∣∣∣ ∑
B small

ĝ(B)2 f̂ (∅)E[χB(y)χB(z)]
∣∣∣∣]

E(u,v)∈Ei,j

[∣∣∣∣ ∑
B small

E[χB(y)χB(z)]
∣∣∣∣]

ηδ−4 + δ.

Finally, for small B and ∅ ( A ⊆ π(B), we bound (15) as∣∣∣∣ ∑
B small

ĝ(B)2 ∑
∅(A⊆π(B)

f̂ (A)E[χA(x)χB(y)χB(z)]
∣∣∣∣
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≤
(

∑
B small

ĝ(B)2 ∑
∅(A⊆π(B)

f̂ (A)2
)1/2(

∑
B small

ĝ(B)2 ∑
∅(A⊆π(B)

E[χA(x)χB(y)χB(z)]2
)1/2

≤
(

∑
B small

ĝ(B)2 ∑
∅(A⊆π(B)

f̂ (A)2
)1/2

.

Since at least an ε fraction of e ∈ Ei,j is good, at least an ε/2 fraction of v ∈ Vj satisfies that
at least an ε/2 fraction of (u, v) ∈ Ei,j is good. Call such v good. If v is good,

ε/2 ≤ E(u,v)∈Ei,j

[∣∣∣∣βu,v − αuα2
v

∣∣∣∣] ≤ 2δ + 2ηδ−4 + E(u,v)∈Ei,j

[(
∑

B small
ĝ(B)2 ∑

∅(A⊆π(B)
f̂ (A)2

)1/2]
.

Consider the randomized assignment where all v ∈ Vj first chooses a set B ⊆ R with prob-
ability ĝ(B)2 and gets random b ∈ B. (Similarly, u ∈ Vi chooses a set A ⊆ L with probability
f̂ (A)2 and gets random a ∈ A.) Since the sum of squared Fourier coefficients is at most 1 for
every f and g, this is a well-defined strategy. For good v, it will satisfy at least a

(ε/2− 2δ− 2ηδ−4)2

|A||B| ≤ δ4(ε/2− 2δ− 2ηδ−4)2

fraction of constraints incident on v in expectation. Therefore, there is an assignment between
that satisfies at least an (εδ4/2) · (ε/2− 2δ− 2ηδ−4)2 fraction of edges in Ei,j.

4.5 Make instances dense

In this section, we show how to convert hard instances to ensure |H| = ω(|V|2) while pre-
serving hardness, finishing the proof of Theorem 4.1. From the previous discussion, given an
edge-weighted 3-hypergraph H = (V, H) with n = |V|, m = |H|, and k = n/2 (without loss
of generality, assume that the sum of weights is 1), it is NP-hard to distinguish whether (1)
there exists S ⊆ V that intersects every hyperedge or (2) every S ⊆ V with |S| ≤ n/2 intersects
hyperedges of weight at most (7/8 + ε), for any constant ε > 0.

Let b = max(n, m)β, c = b2.5 where β is a constant chosen later. Our reduction creates a
new hypergraphH′ = (V ′, H′) where

• V ′ = V × [b].

• For each hyperedge (u, v, w) ∈ H with weight w(u, v, w), for bc · w(u, v, w)c times inde-
pendently,

– Sample x, y, z ∈ [b] independently.

– Add hyperedge ((u, x), (v, y), (w, z)) to H′.

• If any hyperedge is added more than once, delete all occurrences of the hyperedge.

By the last step,H′ is simple. The number of hyperedges added before the last step is at least

∑
e∈H
bc · w(e)c ≥

(
∑

e∈H
c · w(e)

)
−m = c−m.
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Fix (u, v, w) ∈ H and let (x, y, z) be the triple sampled in the ith iteration for (u, v, w) such that
((u, x), (v, y), (w, z)) is added to H′. The probability that the same triple (x, y, z) is chosen in
another iteration so that ((u, x), (v, y), (w, z)) is deleted in the last step is at most c/b3. There-
fore, the expected number of hyperedges deleted in the last step of the reduction is at most
c · (c/b3), and the with probability at least 0.9, it is at most c · (10c/b3).

Completeness. If S ⊆ V intersects every hyperedge in H with nonzero weight, S′ = S× [b]
does the same for H′.

Soundness. For soundness, we upper bound the number of hyperedges before the last dele-
tion step intersected by S′ with |S′| ≤ |V ′|/2, because this is only an overestimate. Fix e =

(u, v, w) ∈ E and consider the hyperedges created when considering e and let ce = bc · w(e)c
be the number of them. Fix X, Y, Z ∈ [b] and αu = |X|/b, αv = |Y|/b, αw = |Z|/b. The
expected number of hyperedges not intersecting ({x} × X) ∪ ({y} ×Y) ∪ ({z} × Z) is exactly
ce(1− αu)(1− αv)(1− αw). By Hoeffding’s bound, the probability that it is less than the ex-
pected value minus t is at most exp(−2t2/ce). By union bound, the probability that this hap-
pens for any choice of u, v, w, X, Y, Z is at most

m · 23b · exp(−2t2/ce) ≤ m · exp(3b− 2t2/c).

By taking t = b1.8 ensures 2t2/c = 2b1.1 so that the above probability is at most m exp(−b1.1).
Since b will be greater than m, this probability is o(1). Therefore, with probability 1− o(1),
for any (u, v, w) ∈ H and X, Y, Z ⊆ [b], the number of hyperedges created from (u, v, w) not
intersecting ({x} × X) ∪ ({y} ×Y) ∪ ({z} × Z) is at least

ce(1− αu)(1− αv)(1− αw)− t.

Then for any S′ ⊆ V with |S′| = |V ′|/2, let αv := |({v} × [b]) ∩ S′|/b for v ∈ V, so that
Ev[αv] = 1/2. Then the total number of edges not intersecting S′ is at least(

∑
e=(u,v,w)∈H

ce(1− αu)(1− αv)(1− αw)

)
−mt

≥ c ·
(

∑
e=(u,v,w)∈H

we(1− αu)(1− αv)(1− αw)

)
−m(t + 1).

Note that the first term of the RHS is exactly c times the expected weight of edges of H not
intersecting S, where S ⊆ V is a random subset that includes v ∈ V with probability αv

independently. By invoking the soundness condition for H = (V, H), the RHS is at least
c(1/8− ε)−m(t + 1).

Finishing up. Therefore, with probability at least 0.9− o(1), H′ has at least c−m− 10c2/b3

hyperedges. In the completeness case, there exists S with |S| ≤ |V ′|/2 that intersects every
hyperedge, and in the soundness case, every S with |S| ≤ |V ′|/2 does not intersect at least
c(1/8 − ε) − m(t + 1) hyperedges. Recall the parameter setting c = b2.5, t = b1.8 and b =

max(n, m)β. Setting β ≥ 2 will ensure m(t + 1) = o(c), so that H′ has (1− o(1))c hyperedges
and the gap is preserved to be 7/8 + ε + o(1). The number of vertices |V ′| = nb ≤ b1+1/β

and the number of hyperedges |H′| ≥ (1− o(1))c ≥ Ω(b2.5), so setting β = 5 will ensure that
|H′| = ω(|V ′|2).
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5 Open Problems

In this section, we list some open problems related to hardness of approximation of clustering
objectives. In this regard, the most important and also immediate question is whether JCH is
true?

Open Problem 5.1. Is the Johnson Coverage Hypothesis true?

Another important question is whether there is a ‘black-box’ way to ensure that the hard
instance of JCH has large number of clusters. We point the reader to Section 4.5 which seems
to be a first step in this direction.

Open Problem 5.2. Does JCH imply JCH∗?

Next, we move to discuss open questions with a more combinatorial-geometric flavor.
We showed in Lemma 3.8 that g2(J(q, t + 1, t)) ≥

√
1 + 1√

t2+t−t
. As t increases, the value

of
√

1 + 1√
t2+t−t

converges to
√

3. However, the naive upper bound from triangle inequality
(Proposition 3.5) states that γ2 ≤ 3. For small values of t we can indeed obtain an improved
value: it is easy to see that g2(J(3, 2, 1)) = 2 by placing the six points on the vertices of a regular
hexagon in the plane. On the other hand, we suspect that γ2 ≤ 2, and confirming such a claim
would also be interesting.

Open Problem 5.3. Is γ2 ≥ 2?

We provided a few lower bounds on γp in Section 3.2, but we are still very far from having
good bounds on it.

Open Problem 5.4. Is there a closed form expression for γp (in terms of p)?

We now shift our attention to understanding various clustering objectives. First, we high-
light that there is no inapproximability results for k-median and k-means in `∞-metric in the
continuous case in O(log n)-dimensions. The main obstacle that we are not able to overcome is
that many natural embedding techniques create fake centers in the `∞-metric. We emphasize
the requirement of O(log n)-dimensions because in higher dimensions (i.e., poly(n) dimen-
sions), we were recently able to prove very strong inapproximability for k-means and k-median

without candidate centers in `∞-metric [CKL21].

Open Problem 5.5. What is the hardness of approximation for k-means and k-median in the `∞-metric
in O(log n) dimensions?

In [CKL21] we highlighted that there are inherent differences between the continuous and
discrete cases for clustering problems and maybe basing hardness of clustering problems in
the continuous case on JCH might not lead to a tight understanding. Elaborating, by starting
from coloring problems (instead of covering problems), we obtained strong inapproximability
results for clustering problems in the continuous case in the `∞-metric. It is natural to ask if
this approach can be extended to other `p-metrics.

Open Problem 5.6. Can we show inapproximability of k-means in the continuous case to a factor more
than 1 + 1/e?
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Apart from k-means and k-median, another clustering objective of interest is k-minsum (see
Section 2 for the definition). However, for k-minsum in `p-metrics (for finite p), only APX-
Hardness is known, leaving it open to prove stronger inapproximability results.

Open Problem 5.7. Does JCH (or JCH∗) imply any non-trivial inapproximability results for k-
minsum in `p-metrics?

Finally, we discuss a more technical challenge. Our analysis of continuous case of k-median

in the Euclidean metric in Theorem 3.24 is not tight and we raise the following question.

Open Problem 5.8. Assuming JCH∗, can we show that k-median in Euclidean metric is hard to
approximate to a factor less than 1 +

√
2−1
e ?

Acknowledgements

We are truly grateful to Pasin Manurangsi for various detailed discussions that inspired many
of the results in this paper.
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[AS19] Per Austrin and Aleksa Stanković. Global cardinality constraints makes approxi-
mating some max-2-csps harder. In APPROX, 2019.
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A Obstacles that need to be Overcome to prove Johnson Coverage
Hypothesis

In this section, we consider a few natural approaches to proving JCH, and demonstrate central
obstacles to proceed using this approach.

It is well known that Max k-Coverage is hard to approximate to factor beyond 1− 1/e and
one may wonder if there are any “simple” gap preserving reductions from Max k-Coverage to
Johnson Coverage problem. In the below theorem, we show that if there is such a reduction
then there should be a significant blowup in size of the witness. In fact our result is stronger, as
we show that even to reduce gap Max k-Coverage to exact Johnson Coverage problem (i.e., at
the cost of losing the all the gap in Max k-Coverage), we still need to blow up in witness size.

Theorem A.1. Let α, δ ≥ 0. Let z be some fixed constant. Suppose there is an algorithm A that
on given as input a Max k-Coverage instance (U ,S , k), outputs a (α, z)-Johnson Coverage instance
([n], E, k′) such that the following holds.

Size: |U | = |S|O(1) = nO(1) and k′ = F(k) for some computable function F.

Completeness: If there are k sets in S that cover U then there exists C := {S1, . . . , Sk′} ⊆ ( [n]
z−1) such

that
cov(C) := ∪

i∈[k′]
cov(Si, E) = E.

Soundness: If no k sets in S cover (1− δ) fraction of U then for every C := {S1, . . . , Sk′} ⊆ ( [n]
z−1)

we have |cov(C)| ≤ α · |E|.

Running Time: A runs in time T(k) · poly(n) for computable function T.

Then the following consequences hold:

• If δ = 0 then W[2]=FPT.

• If δ ≤ 1/k then W[1]=FPT.

• If δ ≤ 1/e− ε for some constant ε > 0 then Gap-ETH is false.

In order to understand the consequences, we remark the following:

Remark A.2. Note that W[2] 6= FPT is a weaker assumption than W[1] 6= FPT, which is in turn a
weaker assumption than ETH and consequently Gap-ETH.

The proof of Theorem A.1 follows from Lemma A.3, Theorem A.4, Theorem A.6, and a
result of [DF95].

Lemma A.3. There is an algorithm running in time zk · nO(1) that can decide any (0, z)-Johnson
Coverage instance.

Proof. We essentially follow the same idea as the FPT algorithm for vertex cover. Let ([n], E, k)
be a (0, z)-Johnson Coverage instance. Pick an arbitrary set S ∈ E. There are z possible subsets
in ( [n]

z−1), say T1, . . . Tz, that can cover S. We branch and consider all z possibilities. Suppose
we branch and pick Ti. Then we remove all subsets in E that are covered by Ti, and repeat by
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picking another arbitrary subset S′ in E. We stop the algorithm after the branching tree is of
height k. If there are k subsets in ( [n]

z−1) that cover all subsets in E, then in one of the branching,
we would have found it. The size of the branching tree is at most zk. and at each step, updating
E can be done in linear time.

Theorem A.4 (Essentially [KLM19]). Given an instance (U ,S , k) of Max k-Coverage, it is W[1]-
Hard (when parameterized by k) to distinguish between the following two cases:

Completeness: There are k sets in S that cover U .

Soundness: No k sets in S cover
(
1− 1

k

)
fraction of U .

Proof Sketch. We use the notation and terminology of MaxCover problem given in [KLM19].
Our starting point is the following result.

Theorem A.5 ([KLM19]). For every ε > 0, given an instance Γ of MaxCover as input, it is W[1]-Hard
to distinguish between the following two cases:

Completeness: MaxCover(Γ) = 1.

Soundness: MaxCover(Γ) ≤ ε.

Moreover, this holds even when the size of each left super node is a constant only depending on k and ε.

Then we can simply apply Feige’s [Fei98] proof framework to conclude the corollary; de-
tails follow. Let the input instance to Maxcover be Γ := (U := U1 ∪ · · · ∪Uq, W := W1 ∪ · · · ∪
Wk, E). We build an instance (U ,S , k) of Max k-Coverage as follows:

U := {(i, f ) | i ∈ [t], f : Ui → [k]},S := {Sj,w | j ∈ [k], w ∈Wj}, and

(i, f ) ∈ Sj,w ⇔ ∃u ∈ Ui such that f (u) = j and (u, w) ∈ E.

Its easy to see that a labeling of W corresponds to a k-tuple of sets in S . In the completeness
case, a labeling of W which yields MaxCover(Γ) = 1 also corresponds to k sets in S that cover
all of U . In the soundness case, we claim that there are at least (1 − ε) · q many universe
elements in U that are not covered by any k sets in S . Note that |U | = ∑i∈[q] k|Ui | = Ok,ε(q).
With the right choice of ε, the theorem statement follows.

Theorem A.6 ([CGK+19, Man20]). Assuming Gap-ETH, for every ε > 0, there is no algorithm
running in time no(k) which given an instance ([n],S , k) of Max k-Coverage, can distinguish between
the following two cases:

Completeness: There are k sets in S that cover [n].

Soundness: No k sets in S cover
(
1− 1

e + ε
)

fraction of [n].

Proof of Theorem A.1. Suppose there is an algorithm A as claimed in the theorem statement.
Let (U ,S , k) be a Max k-Coverage instance. We run A to obtain a (α, z)-Johnson Coverage
instance ([n], E, k′). We then run the algorithm in Lemma A.3 to distinguish if ([n], E, k′) is part
of the completeness case or the soundness case. Thus we obtained an algorithm for deciding
(U ,S , k) that runs in time T′(k) · poly(|U |) for some computable function T′. Depending on
the value of δ, this contradicts either W[2]-Hardness of Max k-Coverage [DF95], Theorem A.4,
or Theorem A.6.
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It’s worth noting that Theorem A.1 only holds for constant z. In fact, if it suffices to only
show Gap-ETH is false as a consequence in Theorem A.1 then we can allow z to be no(1). On the
other hand, we could completely get away with any kind of restriction on z by setting δ > 0 in
Theorem A.1 and invoking the result in [BKL12] instead of Lemma A.3.

Next, we show that in order to prove JCH, we would require to prove NP-hardness of
a plausibly highly structured Label Cover instance. We first recaptiluate here proof of the
(1− 1/e)-factor inapproximability of Max k-Coverage shown by Feige [Fei98]. We present the
proof outline below in terms of label cover (as in [Mos15, DS14]) instead of multi-prover proof
systems (as in [LY94, Fei98]).

We formally define the label cover problem and state its hardness of approximation result
that follows from the application of the parallel repetition theorem [Raz98, DS14] to the PCP
theorem [AS98, ALM+98]. Below we state a restricted bounded degree and bounded alphabet
size version of gap label cover problem.

Definition A.7 (Label Cover problem8). Let ε > 0, d, α ∈ N. Let ΣU , ΣV be two finite sets.
The input to a (ε, d, α)-label cover problem Π is a bipartite graph G(U ∪ V, E) and a set of projection
functions π = {πe : ΣU → ΣV | e ∈ E} such that the following holds:

• |ΣU |, |ΣV | ≤ α.

• for all u ∈ U ∪V, we have degree of u is at most d.

For every assignment σ := (σU : U → ΣU , σV : V → ΣV) to Π, we define sat(Π, σ) as follows:

sat(Π, σ) := E
e:=(u,v)∼E

[πe(σU(u)) = σV(v)].

The goal of the (ε, d, α)-label cover problem is to distinguish between the following two cases.

• Completeness: There exists an assignment σ to Π such that sat(Π, σ) = 1.

• Soundness: For every assignment σ to Π we have that sat(Π, σ) ≤ ε.

An immediate consequence of the PCP theorem is that it is NP-hard to decide an instance
Π(G, π) of (1− ε, d, α)-label cover problem for some constants ε > 0, d, α ∈N. By applying the
parallel repetition theorem to the gap instances arising from the PCP theorem, and followed by
a strengthening of the soundness guarantee due to Moshkovitz [Mos15] we get the following.

Theorem A.8 (Bounded Label Cover Inapproximability [AS98, ALM+98, Raz98, Mos15]). For
every constant ε > 0, there exist constants d := d(ε) ∈ N and α := α(ε) ∈ N such that it is NP-
hard to decide an instance Π(G, π) of (ε, d, α)-label cover problem. Moreover, this holds even for the
following soundness guarantee: for every assignment σU : U → ΣU we have the following:

weak-sat(σU) :=
|{v ∈ V | ∃u1 6= u2 ∈ N(v), πu1,v(σ(u1)) = πu2,v(σ(u2))}|

|V| ≤ ε

We define a gadget relevant to Max k-Coverage:

8The label cover problem as defined here is known in literature as the label cover problem with projection
property or as the projection game problem, but we drop the word ‘projection’ here for brevity.
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Definition A.9. Let d, q ∈ N and S ⊆ [d]q. We say that S is (d, q)-resistant if the following holds:
for every H1, · · · , Hd be d axis-parallel hyperplanes such that no two are mutually parallel, there is a
point in S not contained in any of the hyperplanes.

Theorem A.10 (Essentially Feige [Fei98]). Let Π(G, π) be a hard instance of (ε, d, α)-label cover
problem as in Theorem A.8 and let S be a (d, |ΣV |)-resistant set. Consider the following set-system
(U ,S):

U := {(v, s) | v ∈ V, s ∈ S},S := {Su,a | u ∈ U, a ∈ ΣU}, and

(v, s) ∈ Su,a ⇔ (u, v) ∈ E and sπ(u,v)(a) = v.

Then, it is NP-Hard to distinguish between the following:

Completeness: There are |U| sets in S that cover U .

Soundness: No |U| sets in S cover (1− δ) fraction of U for some positive constant δ only depending
on ε, |ΣU |, |ΣV |, and d.

In fact by using S to be the entire space [d]|ΣV | and with a more tighther analysis, Feige
showed the tight 1− 1/e inapproximability of Max k-Coverage. He even noted that a random
subset S of small cardinality (roughtly Õ(d|ΣV |)) suffices. We show below that there is no such
subset S for which we could use Feige’s framework to obtain JCH.

Theorem A.11. Let Π(G, π) be a hard instance of (ε, d, α)-label cover problem as in Theorem A.8 and
let S be a (d, |ΣV |)-resistant set. Consider the following set-system (U ,S):

U := {(v, s) | v ∈ V, s ∈ S},S := {Su,a | u ∈ U, a ∈ ΣU}, and

(v, s) ∈ Su,a ⇔ (u, v) ∈ E and sπ(u,v)(a) = v.

Suppose (U ,S) is an instance of (0, z)-Johnson Coverage problem (for some constant z) then Gap-ETH
is false.

The proof follows by noting the following lower bound on parameterized label cover
problem and Lemma A.3.

Theorem A.12 (Parameterized Label Cover Inapproximability with total disagreement [Man20]).
Assuming Gap-ETH, for every constant ε > 0, there exist constants d := d(ε) ∈ N and α := α(ε) ∈
N such that no algorithm running in time αo(k) given as input a instance Π(G, π) of (ε, d, α)-label
cover problem (where |U| = k), can distinguish between the following two cases.

• Completeness: There exists an assignment σ to Π such that sat(Π, σ) = 1.

• Soundness: For every assignment σU : U → ΣU we have weak-sat(σU) ≤ ε.
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