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On the Gaussian surface area of spectrahedra
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Abstract

We show that for sufficiently large n > 1 and d = Cn?/* for some universal constant C' > 0,
a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian
surface area ©(n'/®) with high probability.

1 Introduction

A spectrahedron S C R™ is a set of the form

S = {meR”:inA(i) 53},

for some d x d symmetric matrices A1, ... A B € Sym,. Here we will be concerned with the
Gaussian surface area of S, defined as
gn(se)

GSA(S) = hgnﬁ\l(l]lf —5 (1)
where S§" = {z ¢ S : dist(x,S) < &} denotes the outer d-neighborhood of S under Euclidean
distance and G"(-) denotes the standard Gaussian measure on R™. Ball showed that the GSA of
any convex body in R™ is O(n'/4) [Bal93], which was later shown to be tight by Nazarov [Naz03].
Moreover, Nazarov [KOSO08] showed that the GSA of a d-facet polytope' in R" is O(y/logd) and
this fact has found application in constructing pseudorandom generators for polytopes [HKM13,
ST17, CDS19]. Motivated by recent work [AY21], this raises the question of whether the GSA of
spectrahedra is also small. In this note we answer this question in the negative.

Theorem 1. For a universal constant C > 0 and any integers n,d > 1 satisfying d < n/C the
following hold. If A, ...  A™ are i.i.d. drawn from the d x d Gaussian orthogonal ensemble (see
below for the definition), then the spectrahedron

T = {xeR”:inA(i) 52\/%-11} (2)

satisfies GSA(T) = Q(v/n/d) with probability at least 1 — C exp(—dn=3/*/C). Moreover, for any
integer d satisfying d < n/C, GSA(T) = O(y/n/d) holds with probability at least 1 — exp(—n/50).
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The theorem shows the existence of spectrahedra with GSA of Q(n'/®). (In fact, a random
spectrahedron as above satisfies this with constant probability). This lower bound is close to the
GSA upper bound of Ball [Bal93] of O(n'/%) for arbitrary convex bodies. Moreover, the lower bound
shows that in contrast to the case of polytopes, the GSA of spectrahedra can depend polynomially on
d. A natural open question is how large the GSA of arbitrary spectrahedra can be; can spectrahedra
achieve a GSA of ©(n'/*)?

2 Preliminaries

We use g, x, A to denote random variables. We let G(0, %) be the normal distribution with mean 0
and variance 02. We denote by Hy the d x d Gaussian orthogonal ensemble (GOE). Namely, A ~ Hqy
if it is a symmetric matrix with {4;;}, <, independently distributed satisfying A;; ~ G(0,1) for
i <jand A;; ~ G(0,2). To keep notations short, for b > 0 we use [a & b] to represent the interval
[a —b,a+b]. For every ¢ > 0, we use ¢ - [a £ b] to represent the interval [ac & bc]. We denote the
set of n-dimensional unit vectors by S”~!. Finally, we let y,, be the x distribution with n degrees
of freedom, which is the square root of the sum of the squares of n independent standard normal
variables. The following are some simple facts about the x distribution.

Fact 2. Let n € Z~q and h(-) be the pdf of xn. Then h(x) > ¢ for x € [\/n £ ¢|, where ¢ > 0 is an
absolute constant.

Fact 3. Let n € Z~q and h(-) be the pdf of xn. Then h(x) < O(y/n/|z|) for x € R.

Proof. Recall that by definition

1
h(a:) — mxnflefxzﬂ
2:71(5)
for z > 0, and h(z) = 0 otherwise. Hence the fact is trivial for x < 0. For x > 0, the fact follows from
the inequalities z"e~*"/2 < n/2¢="/2 and T'(z) > v/2m2°~Y2e77 for all z > 0 [AAR99, Jam15]. [

Lemma 4 ([LMO00, comment below Lemma 1]). Forn > 1, let r be a random variable distributed
according to xn. Then for every x > 0, we have

Pr [n —2v/nx <7’ <n+2ynr+ 2:U] >1-—2e" ",

For our purposes, it will be convenient to use an alternative definition of Gaussian surface area
in terms of the inner surface area. Namely, for Sy = {x € S : dist(z, 5} < ) where S¢ is the
complement of the body S, we define,

G (s5) o

5
It follows from Huang et al. [HXZ21, Theorem 3.3] that this definition is equal to the one in Eq. (1)
when S is a convex body that contains the origin, which is sufficient for our purposes.

GSA(S) = lim
%

To prove our main theorem, we use the following facts, starting with a well known bound on
the size of an e-net of the n-dimensional sphere.

Fact 5 ([Taol2, Lemma 2.3.4]). For every d > 1 and any 0 < & < 1 there exists an e-net of the
sphere ST1 of cardinality at most (C/e)? for some universal constant C' > 0.



Claim 6 ([RS15, Page 134, Theorem 3]). Let x,y be two real-valued random variables and f be
the pdf of (x,y). Then the pdf of z = x -y is given by

o z 1

o) = [ f(@2) e

Theorem 7 ([LR10, Theorem 1]). Let A ~ Hy. For every 0 < n < 1, it holds that
Pr [ Anax(4) € 2Vd[1 0] | 21— €70,

for some absolute constant C' > 0.

3 Proof of main theorem

The core of the argument is in the following lemma, bounding ¢(2v/nd) where ¢ is the pdf of
the largest eigenvalue of the matrix showing up in Eq. (2). We will later show that this value is
essentially the same as GSA(T), where T is the spectrahedron in the statement of the theorem.

Lemma 8. Forn,d >1 and AV, .. A ¢ Symyg, let q(-) be the probability density function of
)\max (Z mzA(z)> )
where x = (@1, ...,xy,) is a random vector and each entry is i.i.d. drawn from G(0,1). IrA® . AM

are i.i.d. drawn from the d x d Gaussian orthogonal ensemble, then q(2vnd) = Q(y/1/d) with prob-
ability at least 1 —C exp(—dn=3/*/C) (over the choice of AN, ... A™ ) where C > 0 is a universal
constant. Moreover, for any integer d and any d x d matrices A1) ..., A™  ¢(2v/nd) = O(y/1/d).

Proof. Let y ~ S™ ! be chosen uniformly from the unit sphere and for matrices A®), ... A®),

denote by p the pdf of Apax (ZZ yiA(i)). Let » ~ x, and notice that ry is distributed like .
Denote by h the pdf of r. By Claim 6, we have

q<2m> = /_0; h<2\/@/z)p(2)idz : (4)

2|

Using Fact 3, h(2v/nd/z)/|z| = O(1/+/d) for all z. Hence Eq. (4) can be bounded as O(1/+/d) 2 p(2)dz =
O(1/+/d), establishing the claimed upper bound on g.

To prove the lower bound on g, let AW AM™ <, be n matrices chosen i.i.d. from the
GOE. Observe that by Theorem 7, we have

Pr {)\max (Z yiA(i)> € I} >1-— C’exp(fdn_g/zl/C) ) (5)
i=1
where

I=2Vd-[1+¢/vn],

for some universal constants C, ¢ > 0. Define the set of matrices

6= { (40 o o S0 ) 1] 2 1
i=1
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Then, using the definition of G and Eq. (5), we have
Pr [(A(l), . ,A(”)) € G} >1—2C exp(—dn=3/*/C) .

Now fix any (A(M, ..., A™) € G. By definition of G, J;p(2)dz > 1/2, and therefore the right-hand
side of Eq. (4) is at least

1 1
/h<2\/nd/z>p(z)zdz > 0(1)- /p(z)zdz > 0(1/Vd) (6)
I I
where we used Fact 2 to conclude that h(2vnd/z) > Q(1) for all z € I. O

We next relate q(2v/nd) to GSA(T). For a vector v € S9! and d x d symmetric matrices
AW AM | define the vector

Wy = (UTA(I)’U, T A®y, UTA(”)U) e R™. (7)
Notice that 7 can be written as

T:{IL‘ERNZZ:L‘iA(i) 52\/%-]1}: {mGR":VUGSd_l, (x, Wy) SQW}.

We say that AL, ..., A™ are good if
1
Yo € 8971, SV < Wl <2V

Lemma 9. There exists a constant C' > 1 such that for all integers n and d < n/C, random
matrices AV ...  A™ drawn i.i.d. from Hg are good with probability at least 1 — exp (—n/50).

Proof. For a fixed v € S9!, we claim that
Pr(n < [|[W,]* < 3n] > 1 — 2exp (—n/40). (8)

To see this, observe that for A ~ H4 and unit vector v € R?, v’ Av is distributed according to

1/2
4 vh?+2> o} -G(0,1) =+/2-G(0,1).

1<j

Therefore, each entry in W, is distributed according to G(0,2), and Lemma 4 implies Eq. (8). We
next prove that with high probability (over the A®)s), for every unit vector z, |W, || is large. First,
by Fact 5, there exists a set V = {v1,...,vq04p7)a} C R of unit vectors that form a 10~*-net of
the unit Euclidean sphere where M is a constant. Applying a union bound on V, we have

Pr[vv e V:n < ||W,|* < 3n] >1—2exp (—n/40) - (10*M)? > 1 — exp (—n/50) , 9)

here we used that M is a constant and d < n/C for a sufficiently large C.
To conclude the proof, it suffices to show that if AM, ... A are such that

Yo eV, n<||Wy|? <3n,



then also )
Vz € Sd_la ||WZH > 5\/ﬁ .

Let bpmax = max,cgi—1 [|[W,| and byin = min,cga—1 [|[W,|. Let Zmax and zmin be the vectors
achieving the maximum and the minimum respectively. Let vpax and vy, be the vectors in V
that are closest to zpax and zmin, respectively For any vectors z,v € S9=1 with |z — | < 1074,

applying the spectral decomposition of zzT — vu”, there exist unit vectors u;,us and 0 < A < 160
such that

22l —vol =X (uluip — uquT) . (10)
Hence

W W = i (ZTA(i)Z _ UTA(i)v>2 _ i (Tr(A(i) (227 — WT)))Q

=1 i=1

< 11W z": (u{A(i)ul — U%—‘A(Z’)UQ)Q
i=1

it (a0 (a0

b2

max

— 2500

Choosing z = zpax and v = Upax, We have

b
||WzmaxH S ||W'Umax” + = .

50
Now, since [|[W_ . || = bmax, we have
50 50
X < < — V <2 .
bma - 49||vaax” = 49 3n — \/ﬁ

Similarly, we set z = Zmin and v = Vi, and obtain

b 1 1
bmin > ||W'UmmH - r5ngx = \/ﬁ_ 275\/771 > 5\/ﬁ .

This concludes the result. O

For the following claim, we define the inner and outer shells of T as

Dy = {a Amax(za;l ) evn-[2vd-62vdl},
Dyt = {a )\max<Za;z D) e v [2Vd,2Vd+ ]} .

Also recall the inner and outer neighborhoods of 7, defined as

={zxeT:ye¢T:|z—vy|l| <},
T ={z ¢ T:eT:|z—yl| <.

Claim 10. For sufficiently small 6 > 0 and any good AM), ... AM™  we have Djs - 'Tm and
Tout C Dout‘



Proof. For every x € Dj;n, let v be a unit eigenvector of ) _; 2; A® with the eigenvalue Amax (D _; xiA(i)).

Therefore,
(2, W) = o7 (324D v > (2Vd - )V

Setting y = 20y/nW,/||W,||?, we have
(& +y, W) = (a2, W) +20v/m > (2\/&—5)\/ﬁ+25\ﬁ: (2\/&+5)\/ﬁ,

and so z +y ¢ T. Moreover, since A1, ... A are good, ||y|| = 26v/n/||W,|| < 46 and therefore
T € 41(?, as desired. For the other containment, let z € 7}"”. Then for any unit vector v, by
Cauchy-Schwarz and using |W,| < 2y/n,

(x, W,) < 2Vnd + 26/n ,
implying that = € D9P*, as desired. O
We now prove our main theorem.

Proof of Theorem 1. First observe that since q(+) is continuous, the lower bound on the pdf in
Lemma 8 implies that Q”(Dm ) > Q(d4/n/d) for sufﬁ(nently small § > 0. Thus, G"(T1s) = Q(d\/n

by Claim 10. By definition of GSA(S) = lims_,0 G"(S)/§, we obtain the desired lower bound
on GSA. Similarly, using the upper bound on the pdf in Lemma 8, g"(D$") = O(d+/n/d) for
sufficiently small 6 > 0. Thus, G"( 5(}15“ = 0(d4/n/d) by Claim 10. We complete the proof usmg

GSA(S) = lim;_,o G™(S9") /0. O
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