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Abstract

This paper aims to derandomize the following problems in the smoothed analysis of Spiel-
man and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and
verify small circuits’ unsatisfiability. Learning algorithms must predict a future observation
from the onlym i.i.d. samples of a fixed but unknown joint-distribution P (G(x), y) to explain
an η-noisy target P (y 6= fθ(G(x))) ≤ η < 1/2. Inverters must retrieve the hidden parameter
θ. The smoothed analysis can weaken the adversarial distribution P (x, y) by injecting an
appropriate perturbation G with larger min-entropy H∞(G) := − logming Pr[G = g]. The
previous algorithms allowed H∞(G) = poly(n) for avoiding the worst-case intractability. We
will derandomize them below H∞(G) ≤ O(log n) and establish 1–10 for planted functions
(Goldreich’s PRG) fθ(x) = f(θ ◦x1, . . . , θ ◦xd) with variables xi ∈ {0, 1, . . . , 2n−1} plugged
into θ◦xi := θ(bxi/2c)⊕xi ∈ {0, 1} in 1–4, θ◦xi := θ(bxi/2c) ·(−1)xi ∈ Zp of a large prime p
in 5 and 8–10, and θ◦xi := θi ·bxi/2c·(−1)xi in 6–7. 11–13 will verify the unsatisfiability of
small circuits in the worst case analysis (H∞(G) = 0). Suppose log n� log ds

ε +k. Randomly
pick an example (X,Y ) from the observed m data.

1. At H∞(G) = 0, MaxkCSP of any k-variate predicate f requires the sample size Ω(n(k−ϵ)/2)
≤ m ≤ Õ(nk/2) to distinguish between |maxθ P (y = fθ(x)) − maxθ P

′(y = fθ(x))| ≥ Ω(1)
and P (x, y) ≡ P ′(x, y) in nO(k) time by given access to both samplers P (x, y) and P ′(x, y).
2. At H∞(G) = c log s, the planted s-termDNF demands m ≥ nΩ(log s) for c < 1, and

m ≤ n 1
2 log s+O(1) for c > 1, to make nO(log s)-time PAC learning (even under a slight noise).

3. At H∞(G) = c log 1/ε, plantedAND needs m ≥ nΩ(log 1
ε ) for c < 1, and m ≤ n 1

2 log 1
ε+O(1)

for c > 1, to make (maxθ P (y = fθ(G(x)) + ε)-accurate agnostic learning in nO(log 1/ε)-time.
4. At H∞(G) = O(log s), the monotoneDNF with expanding s-terms is PAC learnable from
m = n · poly(s) data with Pr[bXi/2c, bXi′/2c] ≥ 1/n1+ϵ in n · Õ(slog d) time.

5. At H∞(G) = O(log p), the kFT fθ(x) =
∑

|w|≤k f̂w
∏

i∈w θ ◦ xi over Zp of p ≥ n3 is

invertible from m = O(nk+2p) data with Pr[{bXi1/2c, · · · , bXik/2c}] ≥ Ω(1/nk), |Y | ≤ r ≤
p1/2

k+1

, and Pr[Y 6= fθ(X) | bXi1/2c, · · · , bXik/2c]� 1/(nr) in O(nk+3p) time.
6. LPN and LWE over Zp of p ≥ nΩ(1) hiding small secrets ∀i, |θi| = O(1) are breakable in
polynomial time. 7. GapSVPÕ(n2) is breakable within polynomial time.

8. At H∞(G) = O(log n), any bilinear form
∑n

i,j=1 xiMijxj with sparsity |{Mij ∈ {−1, 0, 1} |
Mij 6= 0}| ≤ n2−o(1) requires Ω(n(log log n)1−ϵ) size for algebraic NC1 circuits over Zp of
p ≥ no(1) unless the matrix M is learnable from only m = no(1) data in no(1) time.
9. At H∞(G) = O(n), any 2

n
2 by 2

n
2 matrix with sparsity 2n−nϵ

demands exp(nΩ(1)) size
PHcc protocol unless it is learnable from m = exp(nϵ) data in exp(nϵ) time.
10. PHcc 6= PSPACEcc or ∀k,NP 6⊂ DEP[k log n]. 11. VP 6= VNP or ∀k, quasi-NP 6⊂ NCk.
12. PIT ∈ DTIME[npoly(log logn)] or ∀ϵ,∀k,NTIME[2n

ϵ

] 6⊂ SIZE[nk]. 13. quasi-NP 6⊂ TC0.
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1 Introduction

This paper studies the computational complexity of learning a hidden parameter θ of a fixed
but unknown data distribution Pθ(z). A learner aims to predict a new observation drawn from
Pθ(z) at a high confidence level. The only data given to the learner is a training dataset1

D = {z(1), . . . , z(m)} composed of the i.i.d. (independent and identically distributed) outcomes
emitted from the unknown target distribution Pθ(z). The worst-case analysis is the gold standard
to measure the performance of algorithms learning the target class {Pθ(z)}θ. It guarantees
the algorithm’s performance no matter which θ hides. Unfortunately, for many fundamental
computational learning problems, worst-case analyses have revealed the existence of hard-to-
compute points in the parameter space θ ∈ T . The intrinsic difficulty of the learning relied on
either information theory, proof theory, or computational complexity theory. However, such a θ
might be so rare that the learner living in an uncertain environment would seldom encounters
it. For example, many easy-to-learn points may surround a rare hard one with a small degree of
“perturbation.” Then one can rarely observe a learning curve detecting the hard one. Spielman
and Teng [ST04, ST09] formulated such worst-case demanding but practically easy learning
situations in a smoothed analysis (SA). It interpolated between the worst-case |G| = 1 and the
average-case |G| = |Z| by a more prosperous perturbation space G inducing a weaker adversary:

SA1: Let the adversary first choose a distribution Pθ(z).

SA2: Randomly generate a G over Z permutation to cause a permutation Ĝ over T .

SA3: Let the learner access the permuted distribution Pθ(G(z)) = PĜ(θ)(z).

Let us review the previous smoothed analyses in computational learning theory under typ-
ical perturbations G that have small quantity yet enough quality to circumvent the worst-case
computational intractability and provide efficient learning algorithms.

Review1: Gaussian mixture learning observes z(j) ∼ Pθ(z) emitted from a mixture of k
Gaussians over Rn with means and covariances hidden in θ [Das99]. The worst-case analysis
can estimate θ in poly(n) time for k = O(1) [FSO06, MV10, BS15]. However, it demands an
information-theoretic lower bound exp(k) of k ≥ ω(1) to the number of training examples
[MV10]. In a smoothed analysis, Ge, Huang, and Kakade [GHK15] gave a polynomial-time
algorithm to learn O(

√
n) Gaussians. It disturbed a data z emitted from the unknown

mixture by adding a random vector z + G drawn from the i.i.d.Gaussians Gi ∈ R with
means E[Gi] = 0 and variances E[G2

i ] = ϵ2 for all dimensions i ∈ (n] := {1, . . . , n}.

Review2: Perceptron learning receives a dataset D = {(x(1), y(1)), . . . , (x(m), y(m))} ∼
Pm(x, y) supervised by a halfspace y(j) = fθ(x(j)) = sgn(

∑n
i=1 θixi(j) + θ0) of x(j) =

(xi(j))
n
i=1 ∈ Rn. The famous perceptron algorithm takes exp(n) time to retrieve a hidden

1A dataset may contain the same data multiple times.
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θ ∈ Rn+1 [MP17]. Under a small additive Gaussian perturbation
(
x(j) +G, fθ(x(j) +G)

)
,

Blum and Dunagan [BD02] analyzed that the perceptron algorithm ran in polynomial time.
Even more, the perceptron resolved Linear Programming (LP) as efficiently as the practical
standard simplex algorithm of Spielman and Teng in the smoothed analysis [ST04].

Review3: PAC (Probably, Approximately, and Correctly) learn a concept (i.e., a specific
expression class) of a Boolean function f : {0, 1}n → {0, 1} from a supervised dataset
[Val84]. Elementary yet general, the most studied concept is a Disjunctive Normal Form
(DNF) f(x) :=

∨s
κ=1

∧
i∈fκ xi ⊕ fκi of given fκ ⊂ (d] := {1, . . . , d} and fκi ∈ {0, 1}. We

write it as f ∈ s-termDNFd, and f ∈ s-term kDNFd when ∀|fκ| = k [Val85]. It is learnable
in quasi-polynomial time under the product distribution P (x) =

∏n
i=1(µxi+(1−µ)(1−xi))

of mean µ ∈ [ϵ, 1 − ϵ]n [Ver90]. Kalai, Samorodnitsky, and Teng [KST09, Fel12] proved
that DNF is polynomial-time learnable under the product distribution of mean µ + Ĝ
perturbed by the uniform random vector Ĝ ∈ [− ϵ

2 ,
ϵ
2 ]
n.

Review4: Low-degree Fourier inversion is the most successful method of learning DNF
over the real-number field R: Learn Y ≈

∑
|w|≤k θw

∏
i∈w(−1)Xi by inverting the unknown

θw ≈ EX
[
Y
∏
i∈w(−1)Xi

]
under the empirical distribution, i.e., the uniform random vari-

able (X,Y ) over D [KKL88, KM93, Man95, GKK08]. It has succeeded in quasi-polynomial
time PAC learning AC0 [LMN93], polynomial-time PAC learning DNF with membership
queries [Jac97], and even without membership queries [BMOS05]. The former two results
assumed the uniform distribution P (x) = 1/|{0, 1}n|. The last one took a random walk.

Review5:Agnostic learning (empirical risk minimization) puts virtually no assumption
on a given dataset and asks to minimize err(D) = minf errf (D) of the observed error rate
errf (D) := 1

m

∑m
j=1 1[f(x(j)) 6= y(j)] of a hidden concept f ∈ F . VC-dimension theory

[BEHW89, Hau92, Vap06] promises a polynomial-size sample complexity O(log |F|), but
it might not provide polynomial-time learning. For example, AND := 1-termDNF took
nO(

√
n) time for agnostic learning [TT99, KKMS08], despite only O(n) time in PAC [Val84].

Review6: RkSAT refutation denies the existence of an assignment θ ∈ {0, 1}n satisfy-
ing the OR predicate fθ(x) :=

∨k
i=1 θ ◦ xi =

∨k
i=1 θ(bxi/2c) ⊕ xi for all constraints2

x ∈ U ⊂ [2n)k := {0, 1, . . . , 2n− 1}k drawn from P (x) = 1
(2n)k

, i.e., disprove err(U) =

minθ errθ(U) = 0 [CS88, Fei02]. It has noticed a constant αk ≈ 2k ln 2−(1+ln 2)/2 to make
a sharp threshold ∀ϵ > 0, limn Pr

[
err(U) = 1 | m/n ≥ αk − ϵ

]
= 1 = limn Pr

[
err(U) = 0 | m/n ≤ αk + ϵ

]
[Fri99, MPZ02, DSS15, COP16]. Moreover, its data size complexitym = min |U| of efficient
refutation has attained the following dichotomy. RkSAT refutation is polynomial-time
solvable abovem ≥ O(2knk/2) [GK01, FGK05, COGL07, FO07, COCF10, BM16, AOW15],
but demanding exp(nΩ(1)) proof-length or nΩ(1) proof-degree below m ≤ n(1−ϵ)k/2 in the
well-studied proof systems [BKPS98, AR01, BSW01, Gri01, Sch08, Tul09, BSI10, CLRS16,
KMOW17, BCR20]. Feige [Fei07] refuted the 3SAT of adversarialm = O(n3/2(log log n)1/2)
constraints efficiently under i.i.d. perturbations xi(j) 7→ 2bxi(j)/2c+xi(j)⊕Gij(bxi(j)/2c)
by a flipper G ∈ {0, 1}nm with a small mean E[Gij(bxi(j)/2c)] = ϵ. Abascal, Gu-
ruswami, and Kothari [AGK21] recently generalized it to the kCSP refutation targetting
the fθ(x) = f(θ ◦x1, . . . , θ ◦xk) of an arbitrary k-variable Boolean predicate f(x1, . . . ,xk).

Review7:MaxkSAT approximation aims to measure the empirical accuracy rate acc(D) :=
maxθ

1
m

∑m
j=1 1[fθ(x(j)) = 1] = 1− err(D) of the OR predicate fθ(x) =

∨k
i=1 θ ◦ xi on the

2Satisfiability problem’s data
(
x(j), y(j)

)m
j=1

suppose to take the only positive labels ∀j, y(j) = 1.
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worst-case data D ⊂ [2n)k. The (βcmp, βsnd)-gap approximation asks to distinguish be-
tween acc(D) ≤ βsnd and βcmp ≤ acc(D) of 0 < βsnd < βcmp ≤ 1. The (1, 1− 1/2k + ϵ)-gap
approximation is hard on the P 6= NP assumption [BGS98, Raz98, H̊as01]. Exponential
Time Hypothesis (ETH) conjectures that 3SAT must take exp(n) time to distinguish be-
tween acc(D) = 1 and 6= 1 [IP01], which obliges 3SAT to take exp(n/plog(n)) time even for
(1, 1 − ϵ)-gap approximation (GapETH) [Din07, BSS08, BV19]. Under ETH, MaxkCSP
of m ≤ O(nk−1) must consume 2n

1−ϵ
approximation time [FLP16, MR17]. Meanwhile,

MaxkCSP enjoys polynomial-time approximation for m ≥ Ω(nk) [AKK99]. We will study
a “promise” problem to choose P (x, y) from a promised class, e.g., LPNs (in Review9)
with Hamming-distance noise 0, 1, 2, . . . [Ale11]. RkCSP’s refutation of [AGK21] gives rise
to the promise-MaxkCSP’s approximation by only Õ(nk/2) constraints in nO(k) time.

Review8: Planted CSP asks to invert the secret assignment3 θ ∈ {0, 1}n planted in a predi-
cate f(θ◦x) := f(θ◦x1, . . . , θ◦xd), which we call a planted predicate. Goldreich studied it for
a one-way function candidate generating pseudorandom bits f(θ ◦x(1)) · · · f(θ ◦x(m)) un-
der the uniform P (x) = 1/|[2n)d| [Gol00, AIK06, App13, OW14, BBKK18, AL18, FPV18].
It involves several well-studied inversion problems, e.g., the planted dSAT by f =

∨d
i=1 xi

[BHL+02, JMS07, KMZ14], the noisy dLIN4 over F2 by (−1)f ≈
∏d
i=1(−1)xi [BFKL93,

ABW10, Ale11, DMQN12, BSV19], and the planted kDNF by f =
∨d/k
j=1

∧k
i=1 xi+jk [DSS16].

Review9: LPN and LWE5 ask to invert the hidden coefficient vector θ ∈ Znq of a noisy linear
equation y(j) =

∑n
i=1 θixi(j) +E(j) of a given matrix (xi(j))i,j ∈ Zn×mq contaminated by

i.i.d. errors E(j) ∈ Zq. LPN supposes the uniform random matrix with Bernoulli noise
Pr[E(j) 6= 0] = µ [AAB17, BCG+20, CM21, JLS21], while LWE treats Gaussian error
Pr[E(j)] = 1/

√
2gσ ·e−E(j)2/(2σ) [AD97, Reg04, KS06b, BV14]. The current best attackers

take min
(
q
O( n

logn
)
, 2Õ(σ2)

)
time for LPN and LWE having q � (σ log n)2 (where σ = µq for

LPN) [BKW03, AG11]. Remarkably, LWE enjoys a worst-case hardness guarantee even
for the binary parameter θ ∈ {0, 1}n [Reg04, LM09, Pei09, BLP+13]. Its security stands
on lattice problems enjoying average-case hardness by assuming only the worst-case one,
e.g., GapSVPγ

6 [Ajt96, Cai99, Mic02, Reg04, MR07, GPV08, GINX16].

Review10: Matrix rigidity problem asks to invert the unknown θ ∈ F
√
N×n from a limited

amount of data D = {M(i, j) ∈ F | (i, j) ∈ (
√
N]× (

√
N]} of a square matrixM over a field

F to satisfy PrI,J [M(I, J) =
∑n

κ=1 θ(I, κ)M(κ, J)] ≈ 1. It tries to predict the randomly
picked entryM(I, J) by looking at only the first nm ≤ o(N) entries [Val77, Raz89, Pud94,
Lok01, PP06, AW17, GT18, DL19, GW20]. When M(i, j) ∈ {−1, 0, 1} and −1 6= 1 in
F, it expresses a linear Fourier inversion problem Pr

[
Y =

∑d
i=1 θ(b

Xi
2 c)(−1)

Xi
]
≈ 1 of a

randomly picked example (X,Y ) ∼ {
(
(2i+ 1−M(i,j)

2 | i ∈ [n),M(i, j) 6= 0),M(κ, j)
)
}mj=1.

A more general problem asks to invert a secret θ ∈ Znq of a “noisy” degree-k Fourier

transform Pr
[
Y =

∑
|w|≤k f̂w

∏
i∈w θ(bXi/2c)(−1)Xi

]
≈ 1 of the known coefficients f̂w ∈ F.

Review11: Boolean Circuit lower bounds have brought learnability7, and vice versa

3We may sometimes consider f(θ1 ◦ x1, . . . , θd ◦ xd) with different θi and say that a target f hides θ ∈ {0, 1}dn.
4LIN: Linear equations. LIN over F2 (the Galois field of order 2) is the same as the plantedXOR.
5LPN: Learning Parity with Noise. LWE: Learning With Error.
6GapSVPγ poses a lattice L ⊂ Zn together with an integer d and asks to distinguish between v(L) ≤ d and
v(L) ≥ γd for the hidden shortest vector’s length v(L) := minz∈L−{0}‖z‖2.

7Learnable, compressible, distinguishable and derandomizable are equivalent notions under the uniform distribu-
tion in many computational complexity frontiers [CIKK16, Wil16, OS17, SCR+20].
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[NW94, IW97, FK09, Wil13, OS17]. Linial, Mansor, and Nisan [LMN93] derived AC0’s
learnability from circuit lower bounds [Ajt83, Yao83, FSS84, H̊as86]. They inverted Re-
view4’s Fourier coefficients from quasi-polynomially many data of a low-degree polynomial
over R derived from the AC0’s circuit lower bound. Carmosino, Impagliazzo, Kabanets, and
Kolokolova [CIKK16] did it on AC0[p] lower bounds [Raz87, Smo87] via Nisan-Wigderson’s
pseudorandom generator (PRG) [NW94]. Murray and Williams [Wil13, Wil14a, MW19]
established quasi-NP 6⊂ ACC by learning ACC from quasi-polynomially many data thanks to
Beigel-Tarui’s low-degree SYM+-computation8. The polynomial method [Bei93, Wil14b,
Hop18] was a consistent mechanics to make these lower bounds work.

Review12: Algebraic circuit lower bounds have been interplaying with derandomization
and learnability [SY10, CKW11, Sap14, KS19, GKS20]. Kabanets and Impagliazzo [KI04]
derandomized PIT9. It plugged (unproved) exponential10 circuit size lower bounds of
explicit multilinear polynomials to Nisan-Wigderson’s PRG. Low-rank patrial derivatives
[Nis91, NW96, KS03, KSS14, GKKS14] have brought constant-depth circuit size lower
bounds [SW01, RY09, KST16, KLSS17, KS17, LST21] and multilinear formulas [SS96,
Raz09], derandomized the PIT of constant-depth circuits [KMSV13, SV18, LST21], non-
properly learned multilinear depth-three circuits [BBB+00, KS06a], and properly learned
restricted depth-three circuits [Kay12, Sin16, KS19, GKS20, GMKP20].

Let us view these previous works of learning a dataset D = {
(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
}

through the lens of smoothed analysis. First, SA1 chooses an adversarial variate (marginal)
distribution P (x) =

∑
y P (x, y). SA2 disturbs the P (x) to P (G(x)) by a random perturbation

G ∈ G while preserving the covariate distribution Pθ(y|x) intact. SA3 generates a dataset D
from the perturbed distribution P (G(x))Pθ(y|G(x)). Its density is the supremum of probability
mass ρ(G) = sup{Pr[G(x)|x] | P (x) > 0} [BV06, RV07, BM12], and its min-entropy is H∞(G) =
− log ρ(G). In particular, the worst-case complexity assumes H∞(G) = 0, while a smoothed
one H∞(G) ≤ − log |G| with the equality H∞(G) = − log |G| ⇔ ∀g,Pr[G = g] = 1/|G|. The
shift G may look at the data {x(j)}mj=1 as a vector in the product space (x(1), . . . , x(m)) ∈
Xm and perturb each x(j) by different marginals. For example, the i.i.d.m data from the
uniform distribution over {0, 1}n have the min-entropy H∞(G) ≈ mn by the mn i.i.d. flippers
Gij disturbing the ith dimension of the jth example.

The previous works have taken the following H∞(G) to reduce the worst-case complexity in
smoothed analysis. Reviews 1 and 2 are exponentially hard at H∞(G) = 0 but polynomial-
time solvable under the Gaussian perturbation H∞(G) =

n
2 log

1
2gϵ . Review3’s DNF learning is

intractable11 at H∞(G) = 0 due to the hardness of learning [DSS16]’s canonical DNF inReview8,
but tractable under the perturbed product distribution H∞(G) = Θ(nm), and even under the
random walk H∞(G) = Θ(m log n). Review6’s 3SAT refutation is coNP-complete at H∞(G) = 0

[Coo71], but efficiently solvable under the flipper H∞(G) = Θ̃(2n(
1
ϵ
log 1

ϵ
+(1− 1

ϵ
) log(1− 1

ϵ
))). Similarly,

Review7’s MaxkSAT approximation is NP-complete at H∞(G) = 0 but tractable under the
dense constraints H∞(G) = Θ(knk log n). Exceptionally, Review9’s LPN and LWE are still
intractable even for the uniform random matrice H∞(G) = mn log q.

These worst-case intractable but average-case tractable problems separate unlearnable from
learnable by H∞(G) = 0 versus H∞(G) = poly(n). Derandomization effort might reduce this

8SYM+: Boolean functions g(f(x)) of a polynomial f over Z and g : Z → {0, 1}. quasi-NP: NTIME[2log
O(1)(n)].

9PIT: Polynomial Identity Test asks whether a given syntactic polynomial representation is identically zero.
10An “explicit” polynomial must have a polynomial-size circuit (possibly nondeterministic) computation [KS19].
11No polynomial-time algorithm can learn DNF from the only training dataset (without membership queries).
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min-entropy gap for computational complexity separation to more tight H∞(G) = 0 versus
H∞(G) ≤ O(log n). In that case, the known average-case algorithms might learn DNF, approx-
imate MaxkSAT, and invert LWE from the worst-case data with a slight perturbation. Even
more, it might solve Review10’s matrix rigidity problem in smoothed analysis, giving rise to
non-uniform circuit lower bounds beyond quasi-NP 6⊂ ACC. It motivates us to investigate these
smoothed complexities by fixing the min-entropy somewhere12 between 0 ≤ H∞(G) ≤ O(log n).

In this paper, we prove the following Theorems 1.1–1.13 in the asymptotic analysis on the
problem’s increasing magnitudes d, k, n, p, q, s, and 1/ε under dominance13 k+log(ds/ε)� log n,
s/ε ≤ dO(1) and 1� p, q ≤ nO(1). Our learnability proofs of the smoothed analysis may pick an
appropriate perturbation G. The unlearnablility ones must endure any considerable G.

When the min-entropy is zero (the worst case), the promise-MaxkCSP of Review7 must
have the number of constraints between n(1−ϵ)k/2 ≤ m ≤ Õ(nk/2) for efficiency.

Theorem 1.1 (promise-MaxkCSP, informal). For any k-variable predicate f , distinguishment

between |maxθ P (y = f(x))−maxθ P
′(y = f(x))| = Ω(1) and P (x, y) ≡ P ′(x, y) on n

1−ϵ
2
k data

must take Ω(exp(nϵ)) time14 by giving access to both samplers P (x, y) and P ′(x, y). Meanwhile,
Õ(nk/2) data can distinguish them in nO(k) time.

When the min-entropy grows to log s, the planted s-termDNF becomes PAC learnable.

Theorem 1.2 (PAC learning the planted DNF, informal). Below H∞(G) ≤ (1 − ϵ) log s, PAC
learning the planted s-termDNF on nΩ(log s) data must consume Ω(exp(nϵ)) time. At H∞(G) =

log s+O(log log n), it becomes PAC learnable from n
1
2
log s+O(1) data in nO(log s) time.

Similarly, the agnostic learnability of the planted AND (Boolean conjunction) emerges at
H∞(G) ≈ log(1/ε) to achieve the prediction accuracy maxθ P (y = f(x)) + ε.

Theorem 1.3 (agnostically learning the planted AND, informal). Below H∞(G) ≤ (1− ϵ) log 1
ε ,

agnostic learning the plantedAND on nΩ(log 1
ε
) data demands Ω(exp(nϵ)) time. At H∞(G) =

log 1
ε +O(log log n), it is agnostically learnable from n

1
2
log 1

ε
+O(1) data in nO(log 1

ε
) time.

When the min-entropy goes beyond log s, Theorem1.2’s data size barrier nΘ(log s) becomes
breakable into a linear time of n for the “monotone”15 DNF with “expanding”16 terms.

Theorem 1.4 (PAC learning monotoneDNF). At H∞(G) = O(log s), the plantedmonotone
DNFd with c-wisely c

′ log s-expanding s terms for large constants c, c′ is properly PAC learnable
by inverting θ ∈ {0, 1}dn in n·Õ(slog d) time on n·poly(s) data with pairwisely dense attributes17.

When the min-entropy reaches O(log n), even low-degree multi-linear polynomials may be-
come “invertible” so properly learnable. We will investigate it for the planted Fourier Transform
(FT) f(x) :=

∑
|w|≤k f̂w

∏
i∈w θ ◦ xi, θ ◦ xi = θ(bxi/2c)(−1)xi of Review10. Our FT inversion

algorithm can efficiently solve LPN and LWE with a binary secret θ, so GapSVP, too.

12Our theorems (e.g., Theorem1.1) assume H∞(G) = 0 unless mentioning on G nor H∞(G) in their statements.
13The dominance applies to only those parameters bounding the learning problem’s magnitudes, say the dimension
d of the target concept, the number s of terms in the target DNF, and the learning accuracy ε to achieve.

14Theorems 1.1–1.3 claim Ω(exp(nϵ)) lengths or Ω(nϵ) degrees in several well-studied weak proof systems.
15In Review3’s terminology, f ∈ DNF is monotone if i ∈ fκ ∩ fκ′⇒fκi = fκ′i.
16We say that a DNF f is c-wisely k-expanding if |fκ1 ∪ · · · ∪ fκc | ≥ ck for every distinct κ1, . . . , κc.
17A random variable X ∼ [2n)d has pairwisely dense attributes if ∀(i 6= i′),Pr[bXi/2c, bXi′/2c] ≥ Ω( 1

n1+ϵ ).
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Theorem 1.5 (inverting degree-k plantedFT). Let 1 ≤ k ≤ O(1), n2+1/2k−1 � q ∈ 2N + 1,

and r = q1/2
k+1

. At H∞(G) = O(log(nq)), the degree-k plantedFT f over Zq is invertible in
O(dknk+2r2) time on O(nk+1r2) data of the following kind. The covariate must be as small as
|Y | ≤ r. The variate must be as k-wisely sparse and noiseless at every location (w, a) ∈

(
d
k

)
×[n)k

as Pr[∀i ∈ w, bXi/2c = ai] ≥ Ω(1/nk) and Pr[Y 6= f(X) | ∀i ∈ w, bXi/2c = ai]� 1/(nr).

Theorem 1.6 (inverting LPN and LWE). LPN and LWE over Zp are breakable in polynomial
time for any prime number p ≥ nΩ(1) and O(1) size secrets ∀i, |θi| ≤ O(1) .

Theorem 1.7 (breaking GapSVP). GapSVPÕ(n2) is breakable in polynomial time.

Further, Theorem1.5 can solve Review10’s matrix rigidity problem and derive “natural”
circuit lower bounds [RR97, Wil16, SCR+20] in the following sense. Perturb an

√
N×√N matrix

by a shift G that preserves the density ρ(M) := |M|̸=0/N = |{(i, j) | M(i, j) 6= 0}|/N . We
say that an algorithm A learns the matrixM under G if A feeds the first o(N2) entries of the
perturbed matrix G(M) and predicts PrG,I,J [A(I, J) = G(M)(I, J)] ≈ 1. Our natural lower
bounds claim that all small-density matrices must have a large circuit size or fast learning time,
so denying the existence of pseudorandom bits18 emitted from the tiny circuits. In this sense,
we will establish super-linear size lower bounds against algebraic circuits to compute quadratic
polynomials over finite fields [Val77, Lok08, SY10] and communication complexity lower bounds
beyond the polynomial hierarchy [BFS86, Wun12, GPW18].

Theorem 1.8 (non-linear size lower bound). At H∞(G) = O(log n), the bilinear form of any n×n
{−1, 0, 1}-matrix having density n−o(1) requires Ω

(
n(log log n)1−ϵ

)
size algebraic NC1 circuits19

over Fp of any prime p ≥ nΩ(1), unless it is learnable in no(1) time.

Theorem 1.9 (PHcc’s sub-linear depth lower bound). At H∞(G) = O(n), any 2n/2 by 2n/2

{−1, 0, 1}-matrix of density exp(−nΩ(1)) forces any PHcc protocol20 to have depth nΩ(1) unless
it is learnable in exp(nϵ) time.

Theorem1.9 can derandomize the unsatisfiability of Williams’s circuits [Wil13, Wil14a] to
verify a short PCP [BSV14] plugged into an easy-witness lemma [MW19, CR20], yielding:

Theorem 1.10 (PH 6= PSPACE in the communication). PHcc 6= PSPACEcc or NP 6⊂ DEP[k log n]21.

Similarly, we will establish new natural lower bounds to make Williams’s approach succeed
in the following breakthrough separations of Review11’s Boolean complexity [Weg87, VL91,
Pap03, AB09, Aar16] and Review12’s algebraic complexity [Val79, Sap14, Wig19].

Theorem 1.11 (deep network 6= NP). quasi-NP 6⊂ TC0.

Theorem 1.12 (P 6= NP in algebra). VP 6= VNP or ∀k ≥ 1, quasi-NP 6⊂ NCk.

Theorem 1.13 (derndomizing PIT). Either PIT is solvable in deterministic npoly(log logn) time,
or ∀ϵ > 0, ∀k ≥ 1,NTIME[2n

ϵ
] 6⊂ SIZE[nk].

18We allow pseudorandom bits to be unbalanced (i.e., #1-bits � #0-bits) by assuming a fixed structure over
balanced bits, e.g., taking the k-wise conjunctions over balanced nk-bits to get unbalanced n bits of density 1

2k
.

19Algebraic circuits compute either + or × of syntactic polynomials over a field.
20A protocol calculates M(i, j) by communication between the two parties knowing only i or j.
21DEP[d] is a language class computed by a series of non-uniform binary-fanin circuits of depth d.
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We describe these theorems more formally in Theorems 1.14–1.30 with related notations and
previous works not mentioned in the Reviews. We will newly issue all of them in this paper.

Shifts in smoothed analysis: Let us call the SA2’s perturbation G ∈ G a shift. It must
satisfy22 Pθ(G(zi)) = PĜ(θ)(zi) at every ith dimension, as the previous works used to have. Re-

view1’s Gaussian shift causes Ĝ(µi, σ
2
i ) :=

(
µi + µ(G(zi)), σ

2
i + σ2(G(zi))

)
. Review3’s mean

shift Ĝ(µi) = µi + Ĝi stems from the continuous data shift G(zi) = zi − Ĝi over the real-value
interval zi ∈ [0, 1] through the sigmoidal function xi =

(
sgn(zi − µi) + 1

)
/2 ∈ {0, 1}. Review6’s

polarity23 flipper induces Ĝ(θ)(xi) = θ(bxi/2c)⊕G(bxi/2c), xi ∈ [2n) := {0, 1, . . . , n− 1}.
Our smoothed analysis will focus on Review8’s planted functions. We will employ the most

general shift satisfying both robustness {xi 7→ θ ◦
(
G(xi)

)
}
θ
= {xi 7→ θ ◦ xi}θ and symmetry

θ ◦
(
G(xi)

)
= Ĝ(θ) ◦ xi. These two notions are equivalent, inducing a unique decomposition

G = (Φ, Ψ) to an attribute permuter Φ ∈ Sdn and a polarity flipper Ψ ∈ {0, 1}dn such that
G(xi) := 2Φ(bxi/2c)+Ψ(bxi/2c) and Ĝ(θ)(xi) := θ

(
Φ(bxi/2c)

)
⊕Ψ(bxi/2c). A shift G is uniform

if it is the same over examples as x(j) = x(j′)⇒G(x(j)) = G(x(j′)). This paper considers non-
uniform shifts of the vectors (x(j))mj=1 ∈ Xm unless specified as uniform.

PAC learning the planted DNF in weak axiomatic proof systems: Theorem1.2’s lower
bound supposes the PAC learner to reside in bounded proof systems. The learner observes
a training dataset D drawn from the unknown target distribution P (x, y) and must choose a
hypothesis h predicting errh(D) := P (h(x) 6= y) ≈ 0 whenever errf (D) = 0. In addition, it
obliges the learner to prove errf (D) = 0→ errh(D) ≈ 0 in the following axiomatic systems. We
study resolution (Res) [DP60, DLL62, Rob65, BSW01, MMZ+01, AM20], polynomial calculus
(PC) [CEI96, BIK+96, IPS99, ABSRW02, LNSS20], Sum-of-Squares (SoS) [Ste74, Sho87, Nes00,
GV01, Par00, Las01, Lau09, BS14, LRS15, HKP+17, AH19, BHK+19], LP extended formulation
(LP) [Yan91, CLRS16, KMR17, BCR20], and extended Frege [CR79, Bus91, Kra95, BP98, Bus12,
BBCP20]. Theorem1.2 will measure the proof complexity of DNF’s learnability on these proof
systems. When the data is noisy, the learner must endure a slight amount of malicious noise
errf (D) ≈ 0 [Val85, KL93, CBDF+99, KLS09, ABL17, DKS18, DKK+18].

Historically, PAC learning DNF in “polynomial time” had been a fundamental challenge
posed by Valiant [Val84, Val85]. Unless RP 6= NP, it is hard to properly PAC learn s-term kDNF
for various specific (and unspecific) s and k [Val84, Val85, PV88, ABF+08, KS08, Fel09, GS21],
where the proper learner must choose a hypothesis from the s-term kDNF or the kindred classes.
The fastest “non-proper” s-termDNF learning time is nO(n1/3 log s) [Bsh96, TT99, KS04]. Re-
cently, Daniely and Shalev-Shwartz (DSS) [DLSS14, DSS16] dashed out hope for DNF’s non-
proper learnability as follows: Any PAC learner of the Review8’s canonical planted kDNF with
k = ω(1) must spend n(1−ϵ)k/2 examples unless he can refute the RkSAT with that many con-
straints. This assumption is the so-called Feige’s hypothesis [Fei02, BKS13], on which many
problems rely (or challenge) their average-case hardness [Ale11, DSS16, HS17, DJ19, VW21].

In this paper, we will establish the PAC learning hardness of the plantedDNF as follows by
bringing the Daniely and Shalev-Shwartz reduction into the weak axiomatic proof systems.

Theorem 1.14 (hardness of learning planted kDNF). For k ≥ 3, PAC learning the planted kDNF

under the uniform distribution must consume Ω
(
n

1−ϵ
2
k
)
data; otherwise, all of its SoS degree, PC

degree, and Res size must be Ω(nϵ), Ω(nϵ), and Ω
(
exp(nϵ)

)
. Similarly, the noisy planted kDNF

22We may write gi(zi) as g(zi) or gi(z) for a function g = (gi)i over a domain Z =
∏

i Zi composed of gi over Zi.
23We refer to xi mod 2 ∈ {0, 1} and bxi/2c ∈ [n) as the polarity and attribute of a variate xi ∈ [2n).
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demands the same sample size Ω
(
n

1−ϵ
2
k
)
, otherwise both SoS-degree Ω(nϵ) and LP-size 2Ω(nϵ).

Theorem 1.15 (hardness of learning DNF). PAC learning the planted s-termDNF under the

uniform distribution must spend Ω(n
1−ϵ
2

log s) data; otherwise, all of its SoS degree, PC de-
gree, and Res size must be Ω(nϵ), Ω(nϵ), and Ω

(
exp(nϵ)

)
, respectively. Similarly, the noisy

planted s-termDNF needs the same sample size, unless SoS-degree Ω(nϵ) and LP-size Ω
(
exp(nϵ)

)
.

Theorem 1.16 (Theorem1.2, hardness). At H∞(G) = (1 − c) log s, 0 < c < 1, PAC learning
the planted s-termDNF hiding θ ∈ {0, 1}dn under the uniform distribution needs Ω(n

c
10−4 log c

log s)
data. Otherwise, both the SoS and PC degrees must be Ω(n0.06). Similarly, the noisy planted s-termDNF
needs that sample size, unless SoS-degree Ω(n0.06) and LP-size Ω(exp(n0.06)).

Furthermore, we will establish the opposite direction of the Daniely and Shalev-Shwartz
reduction: The known RkSAT refutation algorithms can transform into PAC learning ones.
Allen, O’Donnell, and Witmer [COCF10, AOW15, BM16] succeeded in a spectrally optimal
RkSAT refutation via quadratic programming based on symmetric Grothendieck’s inequality
[Gro52, CW04, ABE+05, AN06]. Abascal, Guruswami, and Kothari [AGK21] did it for the
malicious constraints perturbed by the random polarities of Review6. We will translate them
to PAC learning algorithms working under the adversarial constraints and polarities.

Theorem 1.17 (PAC learning planted kDNF). For any k ≥ 2, the planted kDNF hiding θ ∈
{0, 1}dn is distribution-free PAC learnable from Õ(n⌈k/2⌉) data in nO(k) time.

Theorem 1.18 (Theorem1.2, algorithms). At H∞(G) = log s+O(log log n), the planted s-term

DNF of θ ∈ {0, 1}dn is distribution-free PAC learnable on n
1
2
log s+O(1) data in nO(log s) time.

In summary, in the worst-case PAC learning, the known spectral threshold logm
logn ≈ k/2 of

the RkSAT refutation on m-constraint transfers to the planted kDNF learning on m-data. In
smoothed analysis, learning the planted s-termDNF on nΘ(log s) data becomes tractable when
the min-entropy H∞(G) becomes comparable to the logarithm of the problem size (i.e., log s):

PAC1: H∞(G) = 0 takes nO(d1/3 log s) learning time by the current best algorithm [KS04, RS10a].

PAC2: H∞(G) = 0 requires 2Ω(nϵ) time to learn O(n
1−ϵ
2

log s) data under the uniform distribution.

PAC3: H∞(G) = c log s with c < 1 still demands sub-exponential time for nΩ(log s) data.

PAC4: H∞(G) = log s+O(log log n) enables us to learn any n
1
2
log s+O(1) data in nO(log s) time.

Agnostically learning the planted AND (a.k.a., planted Boolean conjunct) in weak
axiomatic proof systems: In Review5’s agnostic model, the learner must search a hypothesis
h and its proof competing with η = minf errf (D) by accuracy ε to achieve errf (D) ≤ η →
errh(D) ≤ η + ε for any malicious noise rate η ≤ 1/2 − 2ε [BEHW89, Hau92, KSS94, Vap06].
Unfortunately, even the AND function is already too complex to agnostically learn properly
[AL88, KL93, Fel06, GR09, FGRW12, GS21] and non-properly [FK15, DSS16, DJ19].

We will translate the PAC model Theorems 1.14–1.18 to establish the following agnostic ones
of leaning the planted AND, XOR, kAND, kXOR, and kJUNTA24.

Theorem 1.19 (hardness of agnostically learning plantedAND). For 2 ≤ d ≤ log 1
ε −O(1), ag-

nostically learning the plantedANDd under the uniform distribution must consume Ω
(
n(1−ϵ)d/2

)
data. Otherwise, its SoS degree must be 2Ω(nϵ).
24XOR := XORd = {

⊕
i∈w xi | w ⊂ (d]}. kJUNTA := {fk(xi, i ∈ w) | w ⊂ (d], |w| ≤ k, fk : {0, 1}k → {0, 1}}.
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Theorem 1.20 (hardness of agnostic learning planted XOR). For 2 ≤ d, agnostic learning the
plantedXORd under the uniform distribution demands Ω

(
n(1−ϵ)d/2

)
data or 2Ω(nϵ) SoS degree.

Theorem 1.21 (agnostically learning planted kJUNTA). The planted kJUNTA is agnostically
learnable from Õ(n⌈k/2⌉) data under any distribution in nO(k) time.

Theorem 1.22 (Theorem1.3, hardness). At H∞(G) = c log 1
ε , c > 0, agnostically learning the

plantedANDd hiding θ ∈ {0, 1}dn under the uniform distribution must consume Ω
(
n

log(1/ε)
10+4 log(c+1)

)
data. Otherwise, its SoS degree must be Ω(n0.06).

Theorem 1.23 (Theorem1.3, algorithms). At H∞(G) = log 1
ε + O(log log n), the plantedAND

hiding θ ∈ {0, 1}dn is distribution-free agnostic learnable from η-noisy n
1
2
log 1

1−2η
+O(1)

data in

n
O(log 1

1−2η
)
time.

In summary, agnostically learning the plantedANDd within accuracy ε from nΘ(log 1/ε) data
becomes tractable when H∞(G) reaches the learning accuracy’s entropy (i.e., log(1/ε)):

Agn1: H∞(G) = 0 takes nO(d1/2 logn) learning time by the current best algorithm [KKMS08].

Agn2: H∞(G) = 0 requires 2Ω(nϵ) time to learn O(n
1−ϵ
2

log 1
ε ) data under the uniform distribution.

Agn3: H∞(G) = c log 1
ε of c > 0 still demands sub-exponential time for nΩ(log(1/ε)) data.

Agn4: H∞(G) = log 1
ε + O(log log n) enables us to learn any nlog

1
ε
+O(1) data in nO(log 1

ε
) time.

Approximate Promise-MaxkCSP in weak proof systems: Theorems 1.19–1.21 imply

the sample complexity Ω(n
1−ϵ
2
k) ≤ m ≤ Õ(n⌈k/2⌉) of the following problem: For a predicate

f(x1, . . . ,xk), prove |acc(Pm(x, y)) − acc((P ′)m(x, y))| ≤ 3
4(βcmp − βsnd) → P (x, y) ≡ P ′(x, y)

under a promise that either maxθ P (y = fθ(x)) ≥ βcmp > βsnd ≥ maxθ P
′(y = fθ(x)) or

P (x, y) ≡ P ′(x, y) must hold. We call it (βcmp, βsnd)-gap (or (βcmp − βsnd)-gap) approxima-

tion of the promise-MaxkSAT, promise-MaxkXOR, and promise-MaxkCSP when f =
⊕k

i=1 xi,

f =
∧k
i=1 xi, and f : {0, 1}k → {0, 1}, respectively. Recently, Abascal, Guruswami, and Kothari

[AGK21] established the matching upper bound Õ(nk/2) of the MaxkCSP under the random po-
larities, which brings out that of the promise-MaxkCSP (Theorem1.26), too. Let △:= βcmp−βsnd.

Theorem 1.24 (Theorem1.1, hardness). Any gap (> 4−k) approximation of promise-MaxkSAT

under the marginally uniform distribution25 requires Ω(n
1−ϵ
2
k) constraints or Ω(nϵ) SoS-degree.

Theorem 1.25 (approximation hardness of promise-MaxkXOR). Any gap (> 2−k−1) approx-

imation of the promise-MaxkXOR under a marginally uniform distribution requires Ω
(
n

1−ϵ
2
k
)

constraints unless its SoS degree is Ω(exp(nϵ)).

Theorem 1.26 (Theorem1.1, algorithms). The promise-MaxkSAT is △-gap approximable from
Õ(nk/2/△5) constraints under any distribution in nO(k) time. So is the promise-MaxkCSP from
Õ(nk/2(2k/△)5) constraints in nO(k) time, too.

Theorem 1.27 (approximation hardness of the promise-MaxSAT in smoothed analysis). At
H∞(G) = c log 1

ε and 1− (2ε)c+1 ≤ βsnd < βcmp − 4−k, any (βcmp, βsnd)-gap approximation of the
promise-MaxSAT under the marginally uniform distribution perturbed by any flipper G requires

Ω
(
n

log(1/ε)
10+4 log(c+1)

)
constraints unless its SoS degree is Ω(n0.06).

25A joint-distribution P (x, y) is marginally uniform if it does not depend on x but may depend on y.
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Inverting monotone DNF, degree-k Fourier transforms, and LWE: When the min-
entropy reaches H∞(G) = sO(1), even the data-size barrier nΘ(log s) persistent through PAC2–4
in learning the planted s-termDNF becomes breakable for “monotone” functions. Theorem1.4
properly learns the monotone plantedDNF in almost-linear time by inverting the unknown pa-
rameter θ in the following manner. After substituting arbitrary values but leaving a single
variable xi intact, a monotone function f(x1, . . . ,xd) collapses to always xi or ¬xi unless it col-
lapses to the constants 0 or 1. Accordingly, the correlation E[(−1)Xi+f(θ◦X)] under bXi/2c = a
could detect either (−1)Xi+θ◦Xi = (−1)θ(a) or (−1)Xi+¬θ◦Xi = −(−1)θ(a) exclusively so that the
statistical correlation analysis over the filtered dataset

{
(x, y) ∈ D | bxi/2c = a

}
could invert

the hidden parameter θ(a). Notice that the correlation might diminish to the statistical zero if
the xi were a non-monotone variable of f . This correlation statistics gives rise to Theorem1.4.

Similarly, suppose the target is Review10’s FT: f(x) :=
∑

|w|≤k f̂w
∏
i∈w θ(bxi/2c)(−1)xi .

Observe the outcomes over the restricted data ∀i ∈ w, bXi/2c = ai on a “query” (w, a) ∈
(
d
k

)
×

{0, 1}w. It collapses the target function to various subfunctions f(xw) : {0, 1}w → F, inducing
the same Fourier coefficient

∑
xw∈{0,1}w f(xw)

∏
i∈w(−1)xi ≈ 2wf̂w

∏
i∈w θ(ai) independently of

the different subfunctions. In this manner, the correlation analysis E[f(X)(−1)
∑

i∈wXi ] over
the filtered dataset {(x, y) ∈ D | ∀i ∈ w, bxi/2c = ai} may retrieve the hidden

∏
i∈w θ(ai). The

correlation might vanish if w were not maximal, i.e., ∃v ) w, f̂v 6= 0. It can invert even LWE and
GapSVP due to Yao, Toda, Beigel, and Tarui’s modulus amplification [Yao90, Tod91, BT94].
LPN and LWE of Review9 ask to invert the random LP instance under strictly bounded
additive i.i.d. (Bernoulli or Gaussian) noise. A smoothed analysis can invert the hidden secret
even under any “unbounded” additive i.i.d. noise:

Theorem 1.28 (inverting LWE in smoothed analysis). For constants 1 ≤ c � k and an odd
prime p � nΩ(1), the LP instance y(j) =

∑n
i=1 θi · G(xi(j)) + E(j) of any matrix (xi(j))i,j ∈

[p)nm contaminated by any i.i.d. noises E(1), . . . , E(m) ∈ Znp is invertible with high confi-
dence to retrieve the secret θ ∈ {−c, . . . , c}n in poly(n) time under the following shift G ∈
{0, 1}nm(p−1)/2. It flips the matrix x by G(xi(j)) = bxi(j)/2c · (−1)xi(j)+G(⌊xi(j)/2⌋) such that
the random column (G(xi(J)))

n
i=1 is as k-wisely sparse and uniform at ∀w ∈

(
n
k

)
and ∀b ∈ Zp as

Pr
[
∀i ∈ w, bxi(J)2 c = 1

]
≥ Ω((2p)

k) and Pr
[∑

i ̸∈wG(xi(J)) + E(J) = b | ∀i ∈ w, bxi(J)2 c = 1
]
≈ 1

p .

We should note that Theorem1.7’s GapSVP’s decryption [Reg04, Pei09, BLP+13] demands
m = poly(n) amount of data to Theorem1.28, while the cryptographic LWE allows no larger
than m ≤ O(n log p) data for safety [GPV08, Reg09, LPR13, Pei14, BV14, ACD+18].

Natural circuit lower bounds in smoothed analysis: Theorem1.5, armed with the mod-
ulus amplification, can solve Review10’s matrix rigidity and derive natural lower bounds in
Theorems 1.8–1.10. A natural lower bound against a circuit class F entails an efficient algo-
rithm that distinguishes between the truth table of a small F-circuit and the uniform random
one. Razborov and Rudich [RR97] proved that such lower bounds deny the existence of PRG
emitting the pseudorandom bits from a small circuit in class F . In this sense, the natural lower
bounds are too weak to support cryptography.

Theorems 1.8 demonstrates a natural super-linear lower bound to learn the quadratic poly-
nomials. Historically, algebraic circuits [Val79, SY10] have enjoyed explicit lower bounds, e.g.,
super-linear lower bounds of degree-ω(1) polynomials on the general circuits [Str73, BS83],
super-polynomial lower bounds of permanent and determinant on multilinear formulas [Raz06,
Raz09], cubic lower bounds on formula size based on Nechiporuk’s argument [Nec66, Kal85],
Ω̃(n2.5) lower bounds on depth-4 circuits [Sha17, GST20], and super-polynomial lower bounds on
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constant-depth circuits [SS96, Raz10, LST21]. However, super-linear lower bounds of constant-
degree (e.g., quadratic) polynomials against NC1 circuits are still unknown. Valiant’s seminal
work [Val77] has already presented them for rigid matrices, although their explicit construction
is not yet known [Lok08, AW17]. Theorem1.5 can supply a learning algorithm to it and derive
Theorem1.8. Baur-Strassen’s partial derivates [BS83] translates a lower bound of a matrixM
to a lower bound of the bilinear form

∑
i,j xiM(i, j)xj .

Theorems 1.9 establishes a natural sub-linear depth lower bound to learn PHcc, the communi-
cation complexity class26 corresponding to the polynomial hierarchy. Structural communication
complexity [BFS86, Wun12, GPW18] has succeeded in separating primitive complexity classes
27 , e.g., BPPcc 6⊂ (PNP)cc [PSS14], (PMA)cc 6⊂ UPPcc [RS10b, CM17], MAcc 6⊂ (ZPPNP[1])cc

[GPW18], AMcc ∩ coAMcc 6⊂ UPPcc [Kla11, BCH+19]. However, no explicit lower bounds are
known for PHcc and even a much smaller AMcc ∩ coAMcc [GPW18]. Razborov [Raz89] pre-
sented super-PHcc lower bounds of rigid matrices. Again, Theorem1.5’s learning algorithm
turns Razborov’s lower bounds to those of the h-alternating protocols of 2n/2 × 2n/2 matrices:

Theorem 1.29 (Theorem1.9). Let log n � d � nϵ/h. At log
(
H∞(G)

)
= O(n), any {−1, 0, 1}-

matrix of density Ω(2−d
2h+4

) demands depth d for PHcc
h unless it is learnable in O(2d

2h+4
) time.

Theorem1.5’s learning algorithm derives even Theorem1.10, separating either PSPACE from
PH in communication complexity or quasi-NP from parallel-P in circuit complexity. The former
is a fundamental open problem in communication complexity classes [BFS86, GPW18], matrix
rigidity [Wun12], margin complexity of data classifiers (e.g., support vector machine) [LS09],
and graph complexity [PRS88, Juk12]. The latter is a lower bound beyond the class28 NC
containing cryptographic primitives [GGM86, KV94, Kha95, IN96]. Theorem1.10 is a fruit of
Williams’s algorithmic approach [Wil13, Wil14a]. It is a reduction from the uniform time unary
language hierarchy [Žák83] to the unsatisfiability of a small depth circuit through Ben-Sassen
and Viola’s short PCP [BSGH+06, BSV14] armed with an easy witness lemma for circuit depth
[NW96, CR20] derived from Sudan, Trevisan, and Vadhalan’s PRG [STV01]. Theorem1.5 can
solve this circuit unsatisfiability problem as follows. Let CMD (Connected Matrix Determinant)
be an explicit language in PSPACEcc, computing the modulo-2 determinant of the connected
matrixM, i.e.,M(i, j) ∈ {0, 1} and i− j ≥ 2⇒M(i, j) = 0.

Theorem 1.30 (Theorem1.10). CMD 6∈ PHcc or quasi-NP 6⊂ quasi-NCk.

Natural circuit lower bounds in worst-case analysis: We will provide the new natural
lower bounds of Theorems 1.11–1.13. Previously, Boolean circuits size has enjoyed explicit
lower bounds, e.g., 5n lower bound for unrestricted circuit model [Blu83, IM02], exponential
lower bounds for monotone circuits [Raz85, AB87], AC0 [Ajt83, FSS84, Yao85, H̊as86], and
AC0[p] [Raz87, Smo87]. After 30 years of silence, Murray and Williams broke this AC0[p] lower
bound barrier, establishing quasi-NP 6⊂ ACC [Wil13, Wil14a, MW19].

Theorem1.11 is another fruit of Williams’s program obtained by providing a new worst-case
learning algorithm of TC0. As far as we know, this is the first explicit (quasi-NP) lower bound
against the class TC0 = AC0[SYM]29 executing the basic arithmetic operations [Weg87, HAB02,
Vol16], PRG [KL01, NR04, BPR12, AR16], cryptographic primitives [Kha95, BGI+12, AGS21],

26F cc denotes the two-party communication correspondence of a structural complexity class F .
27BPP,ZPP, and UPP are probabilistic polynomial-time computations with bounded, zero, and unbounded errors.
AM/MA are those with bounded error to verify a proof that may/never depend on the verifier’s randomness.

28quasi-F is a class of problems (circuits) F with the magnitude of time (size) 2(logn)O(1)

.
29AC0[SYM] consists of the constant-depth circuits arming all symmetric gates of unbonded fan-in.
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and even deep neural networks [Dan17, Sha18, VS20, MYSSS21, VRPS21]. Previously, the
constant-depth MOD[m] circuits have succeeded in efficiently simulating OR [BBR94] and even
MAJ by a composite number m of O(log n) distinct primes [Tsa96, BGL06, OSS19, CW21].
Yao, Beigel, and Tarui simulated AC0[m] by SYM+ = SYM ◦ANDd of quasi-polynomially large
degree d [Yao90, BT94]. Our new learning algorithm will do it even for the depth-h TC0:

Lemma 1.31 (TC0 ⊂ SYM+). TC0
h ⊂ SYM+[deg:(c log n)2

h
, norm: exp((c log n)2

h
)].

Williams’s program brings out Theorem9.12, too. Raz’s elusive function approach [Raz10,
SY10] can supply a natural lower bound of small algebraic circuits. It can learn a small sum of
multi-linearized bilinear forms from a limited amount of data, so a succinct algebraic circuit as
well since Raz’s multi-linearization can transform the latter to the former [Raz13]. Theorem1.13
is a by-product of Kabanets-Impagliazzo’s derandomization [KI04] in Review12.

Lemma 1.32 (learning elusive bilinear functions). Any sum of s (�
√
n) set-multilinearized

bilinear forms over F is exactly learnable from O(s2n) data and O(s2n log |F|) guess bits.

Organization: As in the title, this paper splits into three parts, learning DNF until Section 7.2,
inverting Fourier transforms in Sections 7.3–8, and proving natural lower bounds in Section 9.
Technically speaking, combinatorial optimization analysis (for upper and lower bounds) ends
in Section 6, statistical correlation analysis in Sections 7–8, and purely number-theoretic and
algebraic analyses in Section 9 (Section 9 has nothing to do with the smoothed analysis in the
other sections). The reader can go immediately to Section 7.3 if interested in LWE inversion
and to Section 9 for circuit lower bounds to separate quasi-NP 6⊂ TC0 and VP 6= VNP.

2 Preliminaries

This paper measures the computational complexities by the problem’s magnitudes n, d, k, p, q
s, t, 1/ε, 1/δ under dominance k + t + log ds

εδ � log n, s
εδ ≤ dO(1) and 1 � p, q ≤ nO(1). Our

upper bound proof will exhibit only sketchy algorithms that any standard assembler language
compatible with the Turing machine can compile, say the RAM program [AHU74]. See any
computational complexity textbook for details, say [AB09, O’D14, Wig19].

Numbers: As usual, N, Z, Q, R, and F are the non-negative integers (i.e., natural numbers), the
integer ring, the rational-number field, the real-number field, and any (finite or infinite) field,
respectively. Write the ceil bac = max {i ∈ Z | i ≤ a} and floor dae = min {i ∈ Z | i ≥ a} of
a ∈ R. Let Zq := {d(1− q)/2e, . . . , 0, . . . , d(q − 1)/2e} be the integer ring modulo q represented
by the q integers nearest to zero. Let a mod q := b ∈ Zq with a − b ∈ qZ. For a, b ∈ Z, define
a = b mod m⇔ a− b ∈ mZ, and a⊕ b = (a+ b mod 2) ∈ {0, 1}.

Sets: Define [n) := {0, 1, . . . , n− 1}, (n] := {1, 2, . . . , n}, and [n] := {0, 1, 2, . . . , n}. In more
general, for integers m < n, [m,n) := {m,m+ 1, · · ·n− 1}, [m,n) := {m,m+ 1, · · · , n− 1},
and [m,n] := {m,m+ 1, · · · , n}. We sometimes abbreviate {a} as a. For sets S and T , write
their disjoint union by S t T , a difference S\T = {a ∈ S | a 6∈ T }, the complement Sc =
U\S for the (predetermined) universal set U ⊃ S, a power 2S = {T : T ⊂ S} ∼= {0, 1}S ∼=
{φ : S → {0, 1}}, a functional T S ∼= {φ : S → T }, a combination

(S
k

)
= {T ⊂ S : |T | = k},

and cartesian products S × T = {(a, b) : a ∈ S, b ∈ T }, Sn =
∏n
i=1 S = {(a1, . . . , an) | ai ∈ S}

(S0 = {null}), and S∗ =
⊔∞
n=0Sn. We call v ∈ Sn an S-vector (or sequence) of length n.

Specific vectors are an := (a, . . . , a) and 1i := (0, . . . , 0, 1, 0, . . . , 0) of 1 at the ith component.
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We write v ⊂ w v when a permuted v occurs in w as ∃i1, . . . , i|v|,∀j, vj = wij . A binary
vector may represent the binary number {0, 1}n 3 v =

∑n
i=1 vi2

i−1. The binomial coefficient(
n
k

)
= n!

(n−k)!k! is identical with a combination
(S
k

)
= {v ⊂ S | |v| = k} of some order-n set S.

The binomial sum up to k < n/2 is close to the largest term
(
n
k

)
≤
∑k

κ=0

(
n
κ

)
≤
(
n
k

)
n−k
n−2k .

Functions: As usual, log a and ln a are the logarithms of a > 0 of base 2 and e = 2.718 · · ·
(the natural logarithm). Denote the range rng(f) := f(X ) = {f(x) | x ∈ X} and the domain
(support) dom(f) := supp(f) = f−1(Y) = {f(y) | y ∈ Y}. For fi : Xi → Y, f = (fi)

d
i=1,

x ∈ X =
∏d
i=1Xi and w ⊂ (d], write Xw =

∏
i∈w Xi, xw := (xi)i∈w, f(x) = (f(xi))

d
i=1 and

f(xw) = fw(x) = (f(xi))i∈w, say bx/2cw = bxw/2c = bxi/2ci∈w for x ∈ [2n)d.

Logics: Propositional calculus of Boolean predicates writes the truth values 0 := FALSE, 1 :=
TRUE, the implication ϕ→ ψ := ¬ϕ ∨ ψ, and equivalence ϕ ≡ ψ := (ϕ→ ψ) ∧ (ψ → ϕ). Write
{a | ϕ(a)} and f(a|ϕ(a)) for the subset and subfunction induced by the condition that ϕ(a) is
TRUE. The indicator function 1[ϕ] ∈ {0, 1} takes one if ϕ is TRUE.

Graphs: A graph is a pair (V, E) of a variable set V and an edge set E ⊂
(V
2

)
. Subsets V ′ ⊂ V

and E ′ ⊂ E induce the subgraphs (V ′, E [V ′]) and (V[E ′], E ′) of E [V ′] = {e ∈ E | e ∩ V ′ 6= ∅}) and
V[E ′] = {v ∈ V | v ∈ ∃e ∈ E ′}. It is bipartite if the vertex set divides into two non-empty parts
V = I t J between which the edges span, i.e., E ⊂ I × J .

Algebras: Sn = S(S) is the permutation group over a set S of cardinality n, say S = [n). Fq
is the finite Galois field of order q, identical with Fq ∼= Zq as rings. F∗

q = Fq\{0} and Z∗
q =

{a ∈ Zq | a is coprime with q} are the groups of invertible elements. The n-variate polynomial
ring over F is F[x1, . . . ,xn] =

{∑
w∈Nn aw

∏
i∈wx

wi
i | aw ∈ F

}
having F-linear summation and

multiplication. The multilinear one is a quotient ring {f ∈ F[x0, . . . ,xn−1] | ∀i,x2
i = xi} ∼=

{f =
∑

w⊂[n) aw
∏
i∈wxi | aw ∈ F}. A polynomial f ’s degree is deg(f) = max {

∑
iwi | aw 6= 0},

and the norm is norm(f) =
∑

w |aw|. It is homogeneous of degree-k if
∑n

i=1wi 6= k⇒aw = 0.
Fundamental theorem of algebra: Any degree-d single-variable polynomial over an algebraically
closed field must have exactly d zeros. Fermat’s little theorem: ∀a ∈ Zq, a|Z

∗
q | = 1. Chinese

remainder theorem: If q1, . . . , qn are coprime, Z∏n
i=1qi

∼=
∏n
i=1 Zqi via a↔ (a mod qi)

n
i=1.

Matrices: An square matrix M is degenerate (non-singular, invertible) if it prohibits a non-
trivial linear relation, i.e., a 6= 0⇒

∑
i,j aiMij 6= 0. TheM’s rank measures the maximum size of

a non-degenerate submatrix rank(M) = max {|I| = |J | | (M(i, j))i∈I,j∈J is non-degenerate}.
We write the (i, j)-entry Mij =Mi,j =M(i, j) =Mi(j), the ith row Mi = (Mij)j , the jth
columnMj =M(j) = (Mij)i,MI = (Mi)i∈I , andMJ =M(J ) = (M(j))j∈J . We measure

M ̸=0 = {(i, j) | Mij 6= 0}, |M|̸=0 = |M̸=0|, and call
|M| ̸=0

nm the density of an n by m matrixM.

Random variables: A capital letter X denotes a random variable of an outcome x ∈ X
generated by a probability mass function Pr[X] = PrX [X = x]. Write X ∼ P (x) for ∀x,Pr[X =
x] = P (x) and Pr[X|X ′] for PrX,X′ [X = x|X ′ = x′] = Pr[X = x,X ′ = x′]/Pr[X ′ = x′].
Also, X ∼ X is the uniform random variable X ∼ Pr[X] = 1/|X |. Random variables Xi are
independent if Pr[(Xi)i] =

∏
i Pr[Xi], and mutually independent if Pr[Xi, Xi′ ] = Pr[Xi]Pr[Xi′ ] for

all i 6= i′, written as Xi⊥Xi′ . Their mixture is X =
∑

i ρiXi by a proportion
∑

i ρi = 1 obeying
to Pr[X] =

∑
i ρiPr[Xi]. A random variable X is explicit if X’s sampler runs in plog|X| time (or

O(log |X|) space), i.e., there is a plog|X| time (or O(log |X|) space) computable deterministic
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function X : Z → X to have PrX [X] = PrZ [X(Z)]. An event (a random Boolean predicate) E
occurs (becomes TRUE) with confidence 1−δ if Pr[E] ≥ 1−δ, or equivalently, with significance δ
if Pr[¬E] ≤ δ. We say that E happens with high confidence (low significance) if E[E] ≥ 1−O(δ).
A union bound guarantees Pr[E ∨ E′] ≤ Pr[E] + Pr[E′], which we will use without mentioning.
A PRG G : {0, 1}n → {0, 1}m is secure against t time if no probabilistic t-time algorithm A can
distinguish between G(Un) and the genuinely random Um ∼ {0, 1}m by accuracy Pr[A(G(Un)) 6=
A(Um)] ≥ Ω(1).

Measures: Denote by c, c′, c̃, . . . positive constants. Let ϵ be a positive constant sufficiently
close to zero, while (ε, δ) = (εn, δn) are positive variables diminishing to zero. For a, b ∈ R, write
a ≈ b⇔ |a−b| < ϵ, and a� b⇔ a/b ≤ ϵ by ϵ taken in context. |S|, |X| and |v| are polymorphic
notions denoting the number of elements in a set S, the support size |{x | Pr[X = x] > 0}| of a
random variable X, and the length of a sequence (dimension of a vector) v, respectively. The
real vector’s ℓk-norm is ‖v‖k := (

∑
i |vi|k)1/k. The statistical distance between two random

variables X and X ′ over the support X is dst(X,X
′) = 1

2

∑
x∈X

∣∣Pr[X = x]− Pr[X ′ = x]
∣∣. It

is equal to the minimum coupling distance dst(X,X
′) = min

(X̃,X̃′)∼Pr[X]×Pr[X′]
Pr[X̃ 6= X̃ ′], so

|E[g(X)]− E[g(X ′)]| ≤ dst(X,X ′)max |g(X)| for any function g : X → R.

Asymptotics: For non-decreasing sequences an, bn : N→ R starting from a0 = b0 = 1, we write
an = Θ(bn) ⇔ 0 < limn→∞ an/bn < ∞, an = O(bn) ⇔ limn→∞ an/bn < ∞, an = Ω(bn) ⇔ 0 <
limn→∞ an/bn, an = o(bn) ⇔ limn→∞ an/bn = 0, and an = ω(bn) ⇔ limn→∞ an/bn = ∞. Let
poly(an) := {bn | ∃c > 1, limn→∞ bn/a

c
n → 1}, plog(an) := {bn | ∃c > 1, limn→∞ bn/ log

c(an)→ 1},
qpoly(an) := {bn | ∃c > 1, bn/2

logc(an) → 1}, and exp(an) = {bn | ∃c > 1, limn→∞ bn/c
an = 1}.

Denote Õ(an) = O
(
an plog(an)

)
. Polynomial growth means poly(n), quasi-polynomial qpoly(n),

exponential exp(n), sub-exponential exp(nϵ), quasi-linear Õ(n), linear Θ(n), sub-linear Θ(nϵ),
poly-logarithmic plog(n), logarithmic Θ(log n), and constant O(1). For any sufficiently large scale
n, O(1)� Θ(log n)� plog(n)� Θ(nϵ)� Θ(n)� poly(n)� qpoly(n)� exp(nϵ)� exp(n).

Computational Complexity: The complexity of a computational problem is the necessary
and sufficient amount of resource for the modern computer to solve it. The time and space
are the numbers of steps and memory size. It supposes an ideal mathematical machine, called
deterministic Turing machine, whose mechanics the modern computer has inherited. It has an
ultimate performance solving any constant-size problem in a moment to measure the asymptotic
behavior of the problem scaled by n. P is the class of polynomial-time solvable problems (lan-
guages in {0, 1}∗ or functions from {0, 1}∗ to {0, 1}∗). A computational problem is tractable or
efficiently solvable if it belongs to P = DTIME[poly(n)], i.e., a computer can solve a given n-bit
instance within poly(n) time. NP is the class of efficiently verifiable problems, i.e., a computer
can verify a given proof of a given instance in polynomial time. For example, CSP ∈ NP asserts
that a polynomial-time algorithm can ascertain whether or not a presented proof (assignment)
satisfies a given instance (constraints). The class quasi-NP is the same as NP but allows qpoly(n)
complexities for proof length and verification time. The class coNP = {L ⊂ {0, 1}∗ : Lc ∈ NP}
argues the efficient verification of the refutation x 6∈ L. A language L is F-hard if it can efficiently
solve anyM ∈ F by simulation, i.e., ∀M ∈ F , ∃f ∈ P,∀x, x ∈ M⇔ f(x) ∈ L. An F-complete
problem is an F-hard problem belonging to F . Randomized algorithms can observe the fair
coin flippings, defining the complexity classes DTIME[t], DSPACE[s], RTIME[t], and RSPACE[s]
of the problems solvable by deterministic/randomized algorithms within t/s time/space.
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Circuit complexity: A circuit is a Directed Acyclic Graph (DAG) labeling each k-fan-in node,
called a gate, by a k-ary function. Every gate receives inputs from the in-coming edges and
conveys the function’s output to the outgoing edges. The size of a circuit is the number of
edges. Its depth is the maximum path length, and the depth of a node is the maximum path
length from the root to that node. SIZE[s(n)] and DEP[d(n)] are the classes of size s and
depth d circuits has fan-in 2 Boolean gates and computing Boolean functions {0, 1}n → {0, 1},
respectively. AC0 consists of those languages admitting a non-uniform computation by a series
polynomial-size, constant-depth, and unbounded fan-in circuits consisting of AND and OR gates,
having the bottom nodes labeled by the 2n literals xi and ¬xi. AC0[p] is the same as AC0

but having MOD[p] = MODp = 1[
∑

i xi 6≡ 0 mod p] gates for a fixed prime p, and ACC :=⋃
m≥2AC

0[m]. In more general, SYM is the class of all symmetric functions, and AC0[G] can
use any unbonded-fanin symmetric gates of types in G ⊂ SYM, e.g., AC0[m] = AC0[MOD[m]].
A symmetric function is representable by a set of the adequate numbers of ones in the input
bits, say the parityn

∼= [n] ∩ (2N + 1). The classes AC0
h and quasi-AC0

h are the depth-h AC0

of size poly(n) and qpoly(n). Similarly, NCk and quasi-NCk are the classes of binary fain-in

Boolean circuits of (size, depth) =
(
poly(n), O(logk n)

)
,
(
2(logn)

k
, O((log n)k)

)
. By definition,

AC0 ⊂ AC0[p] ⊂ ACC ⊂ NC1 ⊂ NC2 ⊂ · · · . An algebraic circuit over F is a DAG havingg
unbounded +-gates, binary ×-gates30 , and F-coefficient edges to compute syntactic polynomials
in F[x1, . . . ,xn] at the gates. Its ×-depth is the maximum number of ×-gates on a path. It is
homogeneous/multi-linear if all gates compute homogeneous/multi-linear polynomials.

Communication complexity: A communication protocol is a binary {AND,OR}-tree to
compute a function f(x, y) : {0, 1}n × {0, 1}n → {0, 1} by labeling to each leaf node w either
1[(x, y) ∈ Iw × Jw] or its negation for some Iw,Jw ⊂ {0, 1}n. DEPcc[d] is the class of depth-d
protocols. Its subclass PHcc

h [d] ⊂ DEPcc[d] has those protocols of all root-to-leaf paths switching
at most (h− 1) times between AND and OR gates, and PHcc

h [d] =
⋃
h≥1PH

cc
h [d].

2.1 A Learning Model

Our learning model extends the worst-case standards with proof-theoretic refutation attached.

Definition 2.1 (learning in smoothed analysis). Learn a target class F by a hypothesis class
H from η-noisy31 data D under a shift G in a proof system Q in the following manner.

Device: Fix efficient embeddings of the classes F ⊂ H ⊂ {0, 1}ℓ.

Shift: Randomly pick a shift G ∈ G.

Sufficiently
many examples: Draw a dataset D ∼

(
P (G(x))P (y | G(x))

)m
of size m� ε−2

(
ℓ+ log 1

δ

)
.

Verifiable
hypothesis: Choose a hypothesis h and its proof ξ ∈ Q with confidence 1−O(δ) to verify

(η + cε)-learning: ∃f ∈ F , errf (D) ≤ η → P (y 6= h(x)) ≤ η + cε.

We say that F is learnable from m data in t learning time and t′ prediction time if a
probabilistic algorithm receives m data, runs in t time, and outputs a function h ∈ DTIME[t′]
(or h ∈ RTIME[t′]). It defines the worst-case learning by H∞(G) = 0, the proper one by H = F ,
30If a degree-k polynomial has {+,×,÷}-circuits of size s then it has {+,×}-ones of size poly(s, k, n) [Str73, HY11].
31The noise must be below η+cε ≤ 1/2−Ω(ε) to make the (η+cε)-learning possible (even in the agnostic model).
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the exact one by ∀x, h(x) = f(x), the uniform-distribution one by P (x) = 1/|X |, the marginally
uniform-distribution one by P (x, y) = P (y)/|X |, and the empirical one by P (x(j)) = 1/m. The
PAC model (Review3) requires the clean (η = 0) or ε-noisy (η = ε) data, while the agnostic
model (Review5) puts no assumption on η. The white η-noise injects the independent random
classification error ∀x,∀y, P (f(x) 6= y | x) ≤ η [AL88, Kea98, BFKV98, KS05], on which the
PAC learner must achieve P

(
y 6= h(x)

)
≤ cε, while the agnostic one P (y 6= h(x)) ≤ η + cε.

In unbounded proof systems, say the extended Frege, hypothesis’s verification is automatic:
The learner may choose a hypothesis h together with its computational history ξ ∈ {0, 1}∗
[CR79, Bus12]. Our learnability theorems will usually adopt this unrestricted proof system but
sometimes bound it among SoS, LP, PC, and Res.

2.2 Shifts

SA2’s shift (g(x), ĝ(θ)) consists of the following permutations g ∈ S([2n)) and ĝ ∈ S({0, 1}n).

Lemma 2.2 (symmetry ≡ robustness). The following four assertions are equivalent.

Shift1: Robustness: {x 7→ θ ◦ g(x)}θ = {x 7→ θ ◦ x}θ.

Shift2: Symmetry: ∀x, θ ◦ g(x) = ĝ(θ) ◦ x.

Shift3: !∃ϕ ∈ Sn, !∃ψ ∈ {0, 1}n, g(x) = 2ϕ(bx/2c) + ψ(bx/2c)⊕ x.

Shift4: !∃ϕ ∈ Sn, !∃ψ ∈ {0, 1}n, ĝ(θ) = θ(ϕ)⊕ ψ.

Proof. We will demonstrate the following implications. Shift1 ⇒1 bx/2c ϕ7→ bg(x)/2c is awell-
defined injective mapping ⇒2 Shift3 ⇒3 θ ◦ g(x) = θ(ϕ(bx/2c))⊕ψ(bx/2c)⊕x ⇒4 Shift4 ⇒5

Shift2 ⇒6 Shift1.

⇒1: If ϕ is not well-defined, the robustness breaks down by bx/2c = by/2c ∧ bg(x)/2c 6=
bg(y)/2c∧θ◦g(x) 6= θ◦g(y)⇒

(
x 7→ θ ◦ g(x)

)
∈ {x 7→ θ ◦ g(x)}θ \{x 7→ θ ◦ x}θ. Also, if ϕ

is not injective, then bx/2c 6= by/2c∧bg(x)/2c = bg(y)/2c∧θ◦x 6= θ◦y⇒
(
x 7→ θ ◦ g(x)

)
∈

{x 7→ θ ◦ x}θ \{x 7→ θ ◦ g(x)}θ.

⇒2: The permutation ϕ over [n) induces x 7→ (g(bx/2c), g(x) mod 2) := (ϕ(bx/2c), ψ(bx/2c)).

⇒3: Review6 has defined ◦ as θ ◦
(
2ϕ(bx/2c) + ψ(bx/2c)⊕ x

)
= θ(ϕ(bx/2c))⊕ ψ(bx/2c)⊕ x.

⇒4: Suppose SA3’s distribution Pθ(g(x)) = Pĝ(θ)(x) is an injection g(x) 6= g(x′)⇒P (g(x)) 6=
P (g(x′)). It forces ∀x, ĝ(θ)◦x = θ◦g(x) = θ(ϕ(bx/2c))⊕ψ(bx/2c)⊕x, i.e., ĝ(θ) = θ(ϕ)⊕ψ.

⇒5: Shift4 and Shift3 assert ĝ(θ) ◦ x = θ(ϕ(bx/2c))⊕ ψ(bx/2c)⊕ x = θ ◦ g(x).

⇒6: {x 7→ θ ◦ g(x)}θ = {x 7→ ĝ(θ) ◦ x}θ = {x 7→ θ ◦ x}θ since ĝ is a permutation over T .

2.3 Concentration Bounds

A random variable X ∈ R can derive sharper concentrations around the average µ = E[X] from
higher moment analyses (see any textbook of the probabilistic method, say [AS98]).

Lemma 2.3 (momental concentration bounds). For any random variable X and any 0 < γ ≤ 1,

(a, b)-slice,
(min,max)-bound

: a ≤ E[X | a ≤ X ≤ b] ≤ b. In particular, minX ≤ E[X] ≤ maxX.
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Markov’s inequality: Pr[X ≥ 0] = 1 ⇒ Pr[X/E[X] ≥ 1/γ] ≤ γ.

Chebyshev’s inequality: Pr
[
|X − E[X]| ≥

√
E[(X − E[X])2]/γ

]
≤ γ.

For the i.i.d. data analysis, Chernoff-Hoeffding Bounds [Che52, Hoe63] guarantees an expo-
nentially fast convergence to the hitting rate.

Lemma 2.4 (i.i.d. data’s concentration). For a sum X =
∑

iXi and the average µ(X) =∑
i E[Xi] of i.i.d. variables Xi within range Xi ∈ {0, 1} for CB and a ≤ Xi ≤ b for HB,

Chernoff Bound (CB): Pr[X/µ(X) ≥ 1 + γ] < e
− γ2

2+γ
µ(X)

for all γ ≥ 0.

Chernoff Bound
below average : Pr[X/µ(X) ≤ 1− γ] < e−

γ2

2
µ(X) for all 0 ≤ γ ≤ 1.

Hoeffding Bound (HB): Pr[|X/µ(X)− 1| ≥ γ] < 2e
−2γ2

µ2(X)

(b−a)2n for all 0 ≤ γ ≤ 1.

We apply LLL to measure the probability of “dependent” events happening simultaneously.

Lemma 2.5 (Lovás’s Local Lemma [EL73]). For probabilistic events Ei and 0 ≤ γi < 1,

LLL: ∀i,Pr[¬Ei] ≤ γi
∏
Ei′ ̸⊥Ei

(1− γi′) ⇒ Pr[
∧n

i=1
Ei] ≥

∏n

i=1
(1− γi).

2.4 k-wise independence

When pseudorandom n bits look random at every local k-bits, they are k-wisely independent.

Definition 2.6 (local independence). Let (w, x) ∈
(
n
k

)
× {0, 1}w. A random bit-sequence X is:

Perfectly k-independent: ∀w, ∀x,Pr[∀i ∈ w,Xi = xi] = 2−k.

ε-away k-independent: ∀w,
∑

x

∣∣Pr[∀i ∈ w,Xi = xi]− 2−k
∣∣ < ε.

ε-biased k-independent: (∀v, 0 < |v| ≤ k),
∣∣E[∏i∈v(−1)Xi

]∣∣ < ε.

ε-approximate k-independent: ∀w, ∀x,
∣∣Pr[∀i ∈ w,Xi = xi]− 2−k

∣∣ < ε.

k-universal: ∀w, ∀x,Pr[∀i ∈ w,Xi = xi] > 0.

Their relative strength (with [references]) are as follows: Perfectly k-independent [ABI86,
Lub86, CG89] ⇒ ε-away k-independent [NN93] ⇒ ε-biased k-independent [CGH+85, Vaz86]
⇒ ε-approximate k-independent [NN93] ⇒ k-universal [KS73, CKMZ83, Alo86, ABN+92]. A
converse holds from the ε-bias to ε-away independence [Vaz86].

Lemma 2.7 (from bias to away). If a random bit sequence is ε-biased k-independent, then it
is ε
√
2k − 1-away k-independent.

This paper considers several variations of k-independence over a finite alphabet space S.

Definition 2.8 (local independence). Let (w, x) ∈
(
n
k

)
×Xw. A random vector X ∈

∏n
i=1Xi is:

k-wisely ρ-dense: ∀w, ∀x,Pr[∀i ∈ w,Xi = xi] ≤ 1/(|Xw|ρ).

k-wisely (µ, α)-sparse: ∀w, ∀x,Pr[Xw = xw] > αµk.
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k-wisely (µ, α)-cover: ∀x ∈ X(k],Pr[∃w,Xw ⊂ x] > αµk.

ε-away k-independent: ∀w,∑x

∣∣Pr[∀i ∈ w,Xi = xi]− 1/|Xw|
∣∣ < ε.

(hw, δ)-hashed
ε-away k-independent

: For a functional hash {hw : Swc → N}w of wc = (n]− w,

∀w, ∀ξ,
(
Pr[hw(Xwc) = ξ] > δ⇒

∑
x

∣∣Pr[∀i ∈ w,Xi = xi | hw(Xwc) = ξ]− 1/|Xw|
∣∣ < ε

)
.

The probabilistic methods [Erd59, Erd61] can provide small k-wisely independent probability
spaces of almost matching size to the counting argument’s lower bounds.

Lemma 2.9 (k-wisely universal and 1/2-dense, probabilistic). There is a k-wisely universal and
1/2-dense random n bit sequence X of cardinality |X| = O(k2k log n).

Proof. The random m i.i.d. sampling X(j) ∼ {0, 1}n provides a desired one by a non-zero
probability of chance. Lemma2.4’s Chernoff bound parameter γ = 1 guarantees the data size
m = 3 · 2k

(
ln(
(
n
k

)
2k) +O(1)

)
to gain a probabilistic existence

Probabilistic
method : Pr

[
∃w ∈

(
n

k

)
, ∃x ∈ {0, 1}k,¬(0 < Pr[∀i ∈ w,Xi(J) = xi] < 2/2k)

]
<
(
n

k

)
2k(
(
1− 2−k

)m
+ e

− 1
3

m

2k )� 1.

Lemma 2.10 (biased k-independence, probabilistic). There is an ε-biased k-independent ran-
dom n-bit sequence of cardinality O((k/ε2) log n).

Proof. When k < n/2, Lemma2.9’s probabilistic method on m = 6
ε2

(
ln(
(
n
k

)
n−k
n−2k ) +O(1)

)
sam-

ples (due to
∑k

ℓ=1

(
n
ℓ

)
≤
(
n
k

)
n−k
n−2k ) and CB parameter γ = ε demonstrates

Pr
[
1 ≤ ∃ℓ ≤ k, ∃w ∈

(
n

ℓ

)
,
∣∣E[∏

i∈w(−1)
Xi(J)]

∣∣ ≥ ε] <∑k

ℓ=1

(
n

ℓ

)
(e

− γ2

2+γ
m
2 + e−

γ2

2
m
2 )� 1.

When k ≥ n/2, take m = 6
ε2

(
ln(2n) +O(1)

)
and apply

∑k
ℓ=1

(
n
ℓ

)
≤ 2n instead of ≤

(
n
k

)
n−k
n−2k .

Lemma 2.11 (hashed k-independence, probabilistic). There is an (hw, δ)-hashed ε-away k-

independent random n-bit sequence of cardinality 6·2k
ε2δ

ln(maxw |hw(Xwc)|) +O(k log n).

Proof. Lemma2.10’s probabilistic method on m = 6
ε′2δ

(
ln(
(
n
k

)2 n−k
n−2k maxw |hw(Xwc)|) + O(1)

)
samples and CB of γ = ε′ produces a hashed ε′-biased k-independent sequence. Lemma2.7 of
bias ε′ = ε/

√
2k − 1 transforms it to the claimed ε-away one:

Probabilistic
method : Pr

(∃w ∈ (nk), ∃ξ ∈ hw(Xwc),Pr[hw(Xwc) = ξ] ≥ δ
)
, (∅ 6= ∃v ⊂ w),∣∣E[∏

i∈v(−1)
Xi | hw(Xwc) = ξ]

∣∣ ≥ ε′


< max
w
|hw(Xwc)| ·

(
n

k

)∑k

ℓ=1

(
n

ℓ

)(
e
− γ2

2+γ
δm
2 + e−

γ2

2
δm
2
)
� 1.

Theorem 2.12 (limited independence [SSS95]). For a sum X =
∑

iXi of the real numbers
0 ≤ Xi ≤ 1 of an ε-away k-wise independent random vector X with the average µ(X) = E[X],

Limited
independence: P

[
|X − µ(X)|

µ(X)
≥ γ + ε

]
< e−⌊k/2⌋ for any 0 ≤ γ ≤ 1 and any k ≤ γ2e−1/3µ(X),

Limited
independence
of short tail

: P
[
|X − µ(X)|

µ(X)
≥ γ + ε

]
< e−⌊k/2⌋ for any γ ≥ 1 and any k ≤ γe−1/3µ(X).

Proof. Schmidt, Siegel and Srinivasan [SSS95] proved them for ε = 0 on the kth moment in-
equality Pr[|X̃ − µ(X̃)| ≥ 1/γ] ≤ γkE[|X̃ − µ(X̃)|k] of 0 < γ ≤ 1 for the sum X̃ =

∑
i X̃i

of perfectly k-independent X̃i. The claimed inequalities generalize them to an ε-away k-wise
independent X on the differential bound |E[|X − µ(X)|k]− E[|X̃ − µ(X̃)|k]| ≤ ε.
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2.5 Explicit k-independence

Perfect k-independence has an explicit construction of cardinality O(nk/2) [ABI86, CG89], and
a matching lower bound Ω(n⌊k/2⌋) of any k-independent one32 [CGH+85, AGM03]. Weaker
k-independence enjoys polynomial-size explicit constructions for k = log n based on graph ex-
panders [LPS86, NN93] and three different algebraic structures [AGHP92]. One of [AGHP92] is
the inner product Xi = 〈Ai, B〉 :=

∑e−1
ν=0A

i
νBν mod 2 of the uniform random A,B ∼ F2e . The

fundamental theorem of algebra assures that the vector (Xi)
n−1
i=0 is (n/2e)-biased n-independent.

Theorem 2.13 (weak k-independence, explicit [AGHP92, NN93]). There are explicit construc-
tions of ε-approximate k-independent n-bits of cardinality (k logn2ε )2, ε-away k-independent ones

of cardinality 2k(k logn2ε )2, and ε-biased n-independent ones of cardinality ( n
ε log(n/ε))

2. They are
computable in quasi-linear time of the logarithm of their cardinalities.

Circuit lower bounds in Theorems 1.8–1.10 must employ an “explicit” shift for their smoothed
analysis. This section will provide it, beginning from its building block, a small construction of
a random splitter: A t-coloring Ψ ∈ [t)nt splits the nt nodes if ∀ℓ ∈ [t), |Ψ−1(ℓ)| = n.

Lemma 2.14 (k-independent t-splitter, explicit). For k, t ≥ 2 with log t ∈ N, let ε = n−1/3 and
εspl = (2kt + 2 + ε)ε. There is an explicit construction of εspl-away k-independent t-splitter

Ψ ∈ [t)nt with |Ψ | = ntk+1
(k log t

2ε2
log(nt log t)

)2
.

Proof. Let Ψ ∈ [t)nt ∼= {0, 1}nt log t be a perfectly k log t-independent bit sequence. It is a
random t-coloring to split the nt nodes into the t parts of equal size n in expectation ∀ℓ ∈
[t),E[|Ψ−1(ℓ)|] = n and variance (

∑
x∈[nt] E[1[Ψ(x) = ℓ] − 1/t])2 =

∑
x(Pr[Ψ(x) = ℓ] − 1/t2) =

(n/t)(1− 1/t). Although it is not precisely t-splitting, Chebyshev’s inequality of γ = ε
t gives

Almost
t-splitting: Pr

[
∀ℓ ∈ [t),

∣∣|Ψ−1(ℓ)| − n
∣∣ < √

n/(γt) · (1− 1/t) <
√
n/ε
]
≥ 1− γt = 1− ε.

To get an exact splitter, execute Ψ “sequentially” until some color gets exactly n nodes,
and stop there. The almost t-splitting may leave t

√
n/ε (or less) uncolored ones, so color them

appropriately to get an exact t-splitter Ψ̂ . If this sequential coloring Ψ̂ starts from a randomly
picked node, and runs sequentially and circularly (the next to the last node is the first one), the
probabilistic distance between Ψ(x) and Ψ̂(x) at a location w ∈

(
nt
k

)
is only:

Probabilistic
distance : Pr[∃x ∈ w, Ψ(x) 6= Ψ̂(x)] ≤ Pr[¬(almost t-splitting)] + Pr

[
Ψ̂ may leave

some node in w uncolored

]
≤ ε+ kt

√
n/ε

n
= (1 + kt)ε.

We cannot explicitly construct a perfectly k-independent Ψ within the claimed size. However,
Lemma2.13 provides an explicit Ψ̃ ∈ [t)nt of size |Ψ̃ | ≤ tk

(k log t
2ε2

log(nt log t)
)2

having statistical

distance dst(Ψ(x), Ψ̃(x)) ≤ ε2/2, yielding a t-splitter ˆ̃Ψ of the claimed size |Ψ̃ | · nt by factoring
nt to pick up the start node of the sequential coloring. Markov’s inequality parameter γ = ε
applies to the expected difference

∑
ℓ∈[t) E[

∣∣|Ψ−1(ℓ)| − |Ψ̃−1(ℓ)|
∣∣] ≤ ε2n and bounds

Pr
[
∃ℓ ∈ [t),

∣∣|Ψ̃−1(ℓ)| − n
∣∣ > √

n/ε+ ε2n/γ
]

≤ Pr
[
∃ℓ,
∣∣|Ψ−1(ℓ)| − n

∣∣ > √
n/ε
]
+ Pr

[
∃ℓ,
∣∣|Ψ−1(ℓ)| − |Ψ̃−1(ℓ)|

∣∣ > ε2n/γ = εn
]
≤ ε+ ε.

32Any random n-bit vector X having statistical distance dst(X,X ′) < 1/2 from some perfectly k-independent
n-bits X ′ must have |X| ≥ nk/2/(2kk) [AGM03], although ∀w ∈

(
n
k

)
, dst(Xw, X

′
w) ≤ ε/2 by definition.
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The probabilistic distance analysis on Pr[∃x ∈ w, ˆ̃Ψ(x) 6= Ψ̃(x)] derives the claimed deviation

Statistical
distance : 2dst

(
Ψw,

ˆ̃Ψw
)
≤ 2dst

(
Ψw, Ψ̃w

)
+ 2dst

(
Ψ̃w,

ˆ̃Ψw
)
≤ ε2 + Pr[∃x ∈ w, ˆ̃Ψ(x) 6= Ψ̃(x)]

≤ ε2 + 2ε+
kt(
√
n/ε+ εn)

n
≤ (ε+ 2 + 2kt)ε.

Theorems 1.8–1.10 want an explicitly defined k-wisely independent permutation over [N).
Our construction will color [N) by Lemma2.14’s k-splitter Ψ and permute the ℓ-color nodes
{x ∈ [N) | Ψ(x) = ℓ} by the bits 〈A(i+j)k+ℓ, B〉 of the modulo-k remainder ℓ ∈ [k). We call it a
DFT-shift since (A(i+j)k+ℓ)i,j induces a Discrete Fourier Transform over F2e .

Definition 2.15 (DFT-shift). Let N := 2n+log k for even n and log k. Let (ι, κ) ∈ {i, o}×{r, c}.

k-splitters: Lemma2.14 provides four i.i.d. εspl-away 2k-independent k-splitters Ψι,κ of [
√
N).

DFT-bits: Let Φℓ(i, j) := 〈A(i+j)k+ℓ, B〉 and Φℓ(z) :=
(∑

i∈z Φℓ(i, j)
)
j∈[n) : Z

n
2 → Zn2 , Zn2 ∼= 2[n).

Linear order: Over {x = (xr, xc) ∈ [
√
N)× [

√
N) | Ψι(x) := (Ψι,r(xr) + Ψι,c(xc)) mod k = ℓ},

introduce a linear order #ι(x) := (#ι,r(xr),#ι,c(xc), Ψι,c(xc)) ∈ [
√
N

k )× [
√
N

k )× [k) ∼= Zn2
via #ι,κ(x) := |{x′κ < xκ | Ψι,κ(x′κ) = Ψι,κ(xκ)}|.

DFT-shift: Define Φ(x) = y ⇔ Ψi(x) = Ψo(y) = ℓ ∧#o(y) = Φℓ(#i(x)).

Lemma 2.16 (k-wise independent permutation). For (zℓ 6= z′ℓ)
k−1
ℓ=0 ∈ (Zn2 × Zn2 )k,

Permutation: Pr[All Φℓ are non-singular linear maps] ≥ 1− k2n22n+1

2e .

ε-approximate
k-independence: Pr[

∣∣Pr[∀ℓ, Φℓ(zℓ) = Φℓ(z
′
ℓ)]− 2−kn

∣∣ ≤ ε] ≥ 1− 2k2n
ε2e .

Proof. Let φℓ(x|w) :=
∑

i∈w
∑

j∈[n) x
(i+j)k+ℓ of w ⊂ [e), so

∑
j∈[n) Φℓ(z)j = 〈φℓ(A|z), B〉. The

fundamental theorem of algebra over F2e on E[(−1)⟨φℓ(a|z),B⟩ | φℓ(a|z) 6= 0] = 0 promises

DFT-bits are unbiased:
∣∣E[(−1)⟨φℓ(A|w),B⟩]

∣∣ ≤ deg
(
φℓ(x|w)

)
/2e.

Permutation: Ler z ◦ z′ =
∑

(i,j)∈z×z′ 1i+j mod 2 of z, z′ ⊂ [n). The unbiased DFT-bits can

estimate the inner products of Fourier character functions33 χℓ(z, z
′) :=

∏
i∈z
∏
j∈z′(−1)Φℓ(i,j)

over the uniform random vector Z ⊂ [n):

E[χℓ(zℓ, Z) · χℓ(z′ℓ, Z)] = E[
∏
j∈Z(−1)

Φℓ(zℓ)j+Φℓ(z
′
ℓ)j | Φℓ(zℓ) = Φℓ(z

′
ℓ)]Pr[Φℓ(zℓ) = Φℓ(z

′
ℓ)]

+ E[
∏
j∈Z(−1)

Φℓ(zℓ)j+Φℓ(z
′
ℓ)j | Φℓ(zℓ) 6= Φℓ(z

′
ℓ)]Pr[Φℓ(zℓ) 6= Φℓ(z

′
ℓ)]

= PrA[Φℓ(zℓ) = Φℓ(z
′
ℓ)] + 0,∣∣E[χℓ(zℓ, Z) · χℓ(z′ℓ, Z)]− 2−n

∣∣ = ∣∣E[(−1)⟨φℓ(A|zℓ◦Z)+φℓ(A|z′ℓ◦Z),B⟩ | Z 6= ∅]Pr[Z 6= ∅]
∣∣

≤ deg(φℓ(x | zℓ ◦ Z) + φℓ(x | z′ℓ ◦ Z))/2e < 2kn/2e.

These inner product’s z′ℓ = ∅ case assures that all Φℓ must be non-singular. Some Φℓ’s sin-
gularity derives a contradiction on Markov’s inequality of γ = 2k2n/2e · 22n on µ(A,B,Z) :=∣∣Pr[Φℓ(Z) = 0n]− 2−n

∣∣’s average analysis:

∑
ℓ
EZ
[
µ(A,B,Z) | Z 6= ∅

]
= (2n − 1)−1∑

ℓ

∑
zℓ ̸=∅µ(A,B,Z) ≤

(2n − 1)k

2n − 1
· 2kn/2e

33By definition, Φℓ(∅) = 0n and χℓ(z, ∅) = 1.
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⇒ PrA,B
[∑

ℓ
EZ [µ(A,B,Z) | Z 6= ∅] ≤ 2k2n/(2eγ) = 2−2n

]
≥ 1− γ

⇒ 1

2n − 1
− 1

2n
≤
∑

ℓ
EZ
[∣∣Pr[Φℓ(Z) = 0n]− 1

2n

∣∣ | Z 6= ∅] ≤ 2−2n.

k-independence: Similarly, the inner products of the i.i.d. k tuples (Zℓ)
k−1
ℓ=0 ⊂ [n)k yields

E[
∏
ℓ
χℓ(zℓ, Zℓ) · χℓ(z′ℓ, Zℓ)]

= E[
∏
ℓ

∏
j∈Zℓ

(−1)Φℓ(zℓ)j+Φℓ(z
′
ℓ)j | ∀ℓ, Φℓ(zℓ) = Φℓ(z

′
ℓ)]Pr[∀ℓ, Φℓ(zℓ) = Φℓ(z

′
ℓ)]

+ E[
∏
ℓ

∏
j∈Zℓ

(−1)Φℓ(zℓ)j+Φℓ(z
′
ℓ)j | ∃ℓ, Φℓ(zℓ) 6= Φℓ(z

′
ℓ)]Pr[∃ℓ, Φℓ(zℓ) 6= Φℓ(z

′
ℓ)]

= Pr[∀ℓ, Φℓ(zℓ) = Φℓ(z
′
ℓ)] + 0,∣∣E[∏

ℓ
χℓ(zℓ, Zℓ) · χℓ(z′ℓ, Zℓ)]− 2−kn

∣∣
≤ E

[
(−1)⟨

∑
ℓ∈[k) φℓ(A|zℓ◦Zℓ)+φℓ(A|z′ℓ◦Zℓ),B⟩ | ∃ℓ, Zℓ 6= ∅

]
Pr[∃ℓ, Zℓ 6= ∅] ≤ 2kn/2e.

Markov’s inequality parameter γ = (2k2n)/(ε2e) on this expectation bound deduces

Pr
[∑

ℓ

∣∣Pr[∀ℓ, Φℓ(zℓ) = Φℓ(z
′
ℓ)]− 2−kn

∣∣ ≤ 2k2n/(2eγ) = ε
]
≥ 1− γ.

Theorem 2.17 (DFT-shift). Given any
√
N by

√
N matrix M of density 1/(k(δN)

1
2k ) � µ =

|M| ̸=0

N , I ⊂ [
√
N), and w ∈

([√N)
k

)
. Let µdns ≈ µ|I| and µcvr ≈ k!

(|M| ̸=0

k

)
/Nk. If k2n22kn � 2eδ,

Definition 2.15’s DFT-shift Φ permutes M as M ◦ Φ(i, j) := M(Φ(i, j)) on the random J ∼
[
√
N) ∼= {0, 1}(n+log k)/2 with high confidence in the following manner.

Inversion: Φ−1(y) is computable in O(n2) time, once having all Ψι,κ(xκ) of (ι, κ, xκ) ∈ {i, o}×
{r, c} × [

√
N) in Õ(

√
N) time, and all linear mappings Φℓ of ℓ ∈ [k) in Õ(ekn2) time.

Permutation: Φ is a permutation.

Uniform
density : E[

∣∣|(I, J) ∩ (M◦ Φ)̸=0| − µdns
∣∣]� µdns

√
1 + 4εspl.

k-cover:
∣∣Pr[(w, J) ⊂ (M◦ Φ) ̸=0, |Ψo,r(w)| = k]− µcvr

∣∣� µcvr
√

1 + 3εspl.

Proof. Inversion: The Ψ ’s coloring induces Definition 2.15’s linear order #ι(x) over the ℓ-
monotone nodes {x ∈ [N) | Ψι(x) = ℓ} ∼= [2n). Computing the n×n F2-matrices Φℓ and inverting
them for all ℓ ∈ [k) takes only Õ(ekn2) time to execute the F2e-powers A

(i+j)k+ℓ of all (i, j, ℓ) ∈
[n)× [n)× [k) [SS71, Sch77]. The DFT-shift and its inversion conduct these operations.

Permutation: Φ is a permutation if so are all Φℓ, whose confidence level Lemma2.16 guarantees.

Uniform-density and k-cover: Suppose that the four Ψι,κ are perfectly 2k-independent k-
splitters of [

√
N ]. Let ε1 := δ

2n , ε2 := ε1
2n , εk := δ

2kn
, and ε2k := εk

2kn
. Lemma2.16 on

k2n22kn � 2eδ has provided those ε-approx t-independent permutations of (ε, t) ∈ {(ε1, 1),
(ε1, 2), (εk, k), (ε2k, 2k)} with high confidence. For yλ, xλ ∈ [N), vλ ∈

(
N
k

)
, and jλ ∈ [

√
N), let

E(x, y) := 1[∀λ, Φ(xλ) = yλ | ∀λ, Ψi(xλ) = Ψo(yλ)] for x = (xλ)λ∈Λ and y = (yλ)λ∈Λ,

E(v, j) := 1[∀λ, Φ(vλ) = (w, jλ) | ∀λ, |Ψi(vλ)| = |Ψo,r(w)| = k] for v = (vλ)λ∈Λ, j = (jλ)λ∈Λ,

E(x, y) := E(x, y)− 2−|Λ|n, E(v, j) := E(v, j)− 2−|Λ|kn.
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Since Φ is a permutation, x 6= x′ ⇔ y 6= y′ under E(x, y) = E(x′, y′) = 1. Similarly, v ∩ v′ = ∅
⇔ j 6= j′ under E(v, j) = E(v′, j′) = 1. Let σ2dns ≈ 3δµ2dns and σ2cvr ≈ 3δµ2cvr. Lemma2.16’s
k-independent Φ calculates the first two moments of the k-splitting and k-covering claims:

Uniform-density’s average:
∣∣EJ [|(I, J) ∩ (M◦ Φ)̸=0|]− µdns

∣∣
=
∣∣(∑

x∈M ̸=0

∑
y∈(I,J)Pr[Φ(x) = y | Ψi(x) = Ψo(y)]Pr[Ψi(x) = Ψo(y)]

)
− µdns

∣∣
=

1

k

∣∣∑
x

∑
y
E[E(x, y)]

∣∣ ≤ ε1
k
|M|̸=0|I| = δµdns.

Uniform-density’s variance:
∣∣EJ [|(I, J) ∩ (M◦ Φ) ̸=0|]− µdns

∣∣2
=

1

k2N

∣∣∣∑x∈M ̸=0

∑
y∈I×[

√
N]
E[E(x, y)2] +

∑
(x,y) ̸=(x′,y′)

E[E(x, y)E(z′, y′)]
∣∣∣

=
1

k2N

∣∣∣∣∣∣
∑

(x,y)

(
E[E(x, y)](1− 2−n)− 2−nE[E(x, y)]

)
+
∑

(x,y)̸=(x′,y′)

(
E[E

(
(x, x′), (y, y′)

)
]− 2−n(E[E(x, y)] + E[E(x′, y′)])

)
∣∣∣∣∣∣

≤ 1

k2N

(
|M|̸=0|I|

√
N(ε1 + 2−n)(1− 2−n)

+|M|2̸=0|I|2N(ε2 + 21−nε1)

)
:= σ2dns. (∵ |M|̸=0|I|

k2
√
N2n

=
µdns
k
√
N
� σ2dns.)

k-cover’s average:
∣∣Pr[(w, J) ⊂ (M◦ Φ)̸=0, |Ψo,r(w)| = k]− µcvr

∣∣
=
∣∣ k!
kk
(
∑

v∈(M̸=0
k

)
Pr[Φ(v) = (w, J) |

∣∣Ψi(v)∣∣ = ∣∣Ψo,r(w)∣∣ = k]− 2−kn)
∣∣

=
k!

kk
|
∑

v∈(M̸=0
k

)
E[E(v, J)]| ≤ k!

kk

(
|M| ̸=0

k

)
· εk = δµcvr.

k-cover’s variance:
∣∣PrJ [Φ−1(w, J) ⊂M ̸=0 |

∣∣Ψo,r(w)∣∣ = k]− µcvr
∣∣2

=
1

N
(
k!

kk
)2

∣∣∣∣∣∣
∑

v∈(M̸=0
k

)
∑

j∈[√N]

(
E[E(v, j)](1− 2−kn)− 2−knE[E(v, j)]

)
+∑

v∩v′=∅,j ̸=j′
(
E[E

(
(v, v′), (j, j′)

)
]− 2−kn(E[E(v, j)] + E[E(v′, j′)])

)
∣∣∣∣∣∣

≤ 1

N
(
k!

kk
)2

 (
|M|̸=0

k

)√
N(εk + 2−kn)(1− 2−kn)

+
(
|M|̸=0

k

)(
|M|̸=0 − k

k

)
N
(
ε2k + 21−knεk

)
 := σ2cvr. (∵

(|M| ̸=0

k

)
(k!)2

√
NNkkk

=
k!µcvr√
Nkk
� σ2cvr.)

Chebyshev’s inequality of γ � δ−1/2 applies to these moments and establishes the claimed
concentrations. It must replace Ψι,κ with Lemma2.14’s εspl-away 2k-independent k-splitters
Ψ̃ι,κ so that µλ with µλ(1±O(εspl)) and σλ with σλ(1 +O(εspl)) for λ = dns, cvr by ratios

Pr[Ψ̃i(x) = Ψ̃o(y), Ψ̃i(x
′) = Ψ̃o(y

′)]

Pr[Ψi(x) = Ψo(y), Ψi(x′) = Ψo(y′)]
≤ 1 +

∑
κ∈{r,c}2

(
dst
(
Ψi,κ(xκ, x

′
κ), Ψ̃i,κ(xκ, x

′
κ)
)
+

dst
(
Ψo,κ(yκ, y

′
κ), Ψ̃o,κ(yκ, y

′
κ)
) ) ≤ 1 + 4εspl,

Pr[|Ψ̃i(v)| = |Ψ̃i(v′)| = |Ψ̃o,r(w)| = k]

Pr[|Ψi(v)| = |Ψi(v′)| = |Ψo,r(w)| = k]
≤ 1 + 2

(∑
κ∈{r,c}dst

(
Ψi,κ(vκ, v

′
κ), Ψ̃i,κ(vκ, v

′
κ)
)

+dst
(
Ψo,r(w), Ψ̃o,r(w)

)
)
≤ 1 + 3εspl.

3 Learning versus Refutation

The DSS reduction revealed that learning is equivalent to refuting on polynomial time compu-
tation by allowing False Negative Error (FNE) and possibly rejecting some satisfiable instances
[DSS16, Vad17, KL18]. This section will extend it from the worst-case to smoothed analysis in
the (usual) No FNE refutation [DLL62, CS88, CEI96, GK01, Fei02, App16, FPV18, BBKK18].
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Definition 3.1 (refutation in smoothed analysis). A randomized algorithm A refutes F if it
distinguishes between the training dataset D ∼

(
P (G(x))P (y|G(x))

)m
with noise η ≤ 1/2−Θ(ε)

and the random-label U ∼ (P ′(x) · 12)
m drawn from an arbitrary variate distribution P ′(x):

η-noisy refutation: PrD,U

[
∃f ∈ F , errf (D) ≤ η⇒

PrA[A(U) = refute] ≈ 1 ∧ PrA[A(D) = refute] = 0

]
≥ 1−O(δ).

A reduction from refutability to learnability is immediate. The previous reductions from
learning to refuting transformed any refutation algorithm on m constraints into a weak learner,
then boosted it to O(ε)-learner by spending Õ(mc) examples for c ≥ 3. However, they lacked
Uniform Generalization Error Bounds (UGEB) so that each new prediction might claim a new
training dataset. This section will compensate for UGEB to them. We will adopt a smooth
boosting [Imp95, DW+00, Ser03, Hat06] to realize an Õ(m2)-data reduction. It can endure even
malicious noise since it never puts too much weight on any single example.

Lemma 3.2 (learner to refuter). Any (η + cε)-learner with η + cε ≤ 1/2− ϵε in Definition 2.1
must be Definition 3.1’s η-noisy refuter.

Proof. Let the given learner feed Definition 3.1’s dataset D′ ∈ {D,U}, and choose a hypothesis
h = h(D′) to verify (err(D′)+ cε)-learning with high confidence. Let the learner refute D′ if and
only if getting a proof of err(D′) > η. Supply to the learner Definition 2.1’s sufficiently many

examples m� ε−2(log |H|+ log 1
δ ). Lemma2.4’s Chernoff bound of γ = 1/2−(η+cε)

1/2 guarantees

UGEB: P
(
errh(U) > η + cε

)
≥ 1− |H|e−

γ2

2
· 1
2
m ≥ 1− o(δ).

With high confidence, Definition 2.1’s (η+cε)-learner can get a prof of err(U) > η, but can never
that of err(D) > η, realizing Definition 3.1’s η-noisy refutation.

Theorem 3.3 (smooth boosting [Ser03]). SmoothBoost repeats producing distributions Pν(x, y)
over a given dataset D and receiving hν ∈ [−1, 1]D for ν0 ≤ 2

εα2(1−α1/2)
times. Finally, it outputs

their majority vote h = (sgn( 1
ν0

∑ν0
ν=1 hν) + 1)/2. It weights and performs over D as follows.

Counting: Nν(x, y) = Nν−1(x, y) + (−1)yhν(x)− α/(2 + α).

Weighting: Pν+1(x, y) ∝ 1[Nν(x, y) < 0] + (1− α)Nν(x,y)/2 · 1[Nν(x, y) ≥ 0].

Boosting: ∀ν,E(Xν ,Yν)∼Pν(x,y)[ |(−1)Yν − hν(Xν)|/2] ≤ 1/2− α⇒Pr(X,Y )∼D[h(X) 6= Y ] ≤ ε.

Smoothness: ∀ν, Pν(x, y) ≤ 1/(ε|D|).

Theorem 3.4 (refutation to PAC learning). Let δ3.4 :=
εδ

m4 log3m log 1
εδ

. If noise-free F is refutable

with significance O(δ3.4) from m data in t time, F is PAC learnable from m2/ε ·O
(
log m

εδ log
1
δ

)
data in t ·m4/ε ·O

(
log3m log 1

εδ

)
time, given free access to P (x).

Proof. Yao’s reduction on binary search: Let A be Definition 3.1’s refutation algorithm.
Suppose m = 2logm. Let α ≈ 1

m . Let (X,Y ) ∼ D and (X ′, Y ′) ∼ D′ be the training and test
datasets of size m, respectively. Let U ∼ {0, 1}m be the i.i.d. random m labels. Write ij =
bi/2j−1c − 2bi/2jc (the jth bit of i). For i ∈ [m) and b ∈ {0, 1}∗ with |b| ≤ logm, define Zb,i =
Z ′
b,i := (Xi, Yi) if 1 ≤ ∃j ≤ |b|, i = b mod 2|b|−1 ∧ ij = 0 6= 1 = bj ; Zb,i = Z ′

b,i := (X ′
i, Ui) if 1 ≤

∃j ≤ |b|, i = b mod 2|b|−1∧ij = 1 6= 0 = bj ; (Zb,i, Z
′
b,i) :=

(
(Xi, Yi), (X

′
i, Ui)

)
otherwise. Let Db =
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(Zb,i)
m−1
i=0 and D′

b = (Z ′
b,i)

m−1
i=0 . Let Ab = 1[A refutes D′

b] − 1[A refutetes Db]. It parses
the given refutation gap E[Anull] ≈ 1 into the m pieces by E[Ab] = E[A0b] + E[A1b], promising
E[Ab0 ] ≥ α for some b0 ∈ {0, 1}logm. Let34 Â(x, y) := 1[A refutes (Db0\Zb0,b0) t (x, y) ]. The

binary search version of Yao’s reduction gives rise to a weak learner Â(x) := Â(x, 1)− Â(x, 0):

α ≤ E[Ab0 ] = E[Â(X ′, U)− Â(X,Y )] = E
[
(1/2)

(
Â(X ′, Y ′ ⊕ 1) + Â(X ′, Y ′)

)
− Â(X,Y )

]
= E

[
(1/2)

(
Â(X ′, Y ′ ⊕ 1)− Â(X ′, Y ′)

)
+ Â(X ′, Y ′)− Â(X,Y )

]
= (1/2)E[Â(X ′)(−1)Y ′

] + E[Â(X ′, Y ′)]− E[Â(X,Y )]

⇒ Advantage: E[Â(X ′)(−1)Y ′
] ≥ 2α+ 2(E[Â(X,Y )]− E[Â(X ′, Y ′)]).

Weak learning: Let ν0 ≈ 2
εα2 , κ0 � ( logmα )2 log ν0 logm

δ , m̃ � ( 1α)
2 log ν0

δ and m̃′ � m̃
ε log 1

δ .

Sample D ∼ P m̃(x, f(x)), D′ ∼ P m̃
′
(x, f(x)) with D⊥D′ and fix them. Subsample Dν =

(Xi, Yi)
m−1
i=0 ∼ (Pν◦D)m and (X ′

i, Y
′
i )
m−1
i=0 ∼ (Pν◦D′)m of Theorem3.3’s weighting (Pν◦D)(x, y) =

Pν(x, y | (x, y) ∈ D), and feed them to Yao’s reduction. It transforms a given refuter A to an
advantageous weak learner Â through binary searching a path b reaching to b0 by induction on
|b| = 0, 1, . . . , logm−1 in the following manner. Draw the i.i.d.κ0 subsamples {(Dν,κ,D′

ν,κ)}
κ0
κ=1

,

feed them to Ab with E[Ab] ≥ (1 − ϵ − ϵ′|b|
logm) 1

2|b|
, and detect b′ ∈ {0b, 1b} to preserve E[Ab′ ] ≥

(1− ϵ− ϵ′|b′|
logm) 1

2ℓ(b
′) . Chernoff bound parameters µ = (E[Ab] + 1)/2 and γ = ϵ

2|b|µ logm
guarantees

the successful detections in all (ν, |b|) with significance ν0 logm · e−γ
2/2·µκ0 = o(δ). In addition,

∀ν, |E[Â(X,Y )]−E[Â(X ′, Y ′)]| ≤ 2ϵα since D and D′ stem from the same target P (x, f(x)). CB
of µ = (E[Â(X,Y )] + 1)/2 = (E[Â(X ′, Y ′)] + 1)/2 and γ = ϵα/µ guarantees it with significance

ν0 ·O(e
− γ2

2+γ
·µm̃

) = o(δ), deriving weak learning of advantage ∀ν,E[Â(X ′)(−1)Y ′
] ≥ 2(1− ϵ)α.

Boosting: Theorem3.3 takes the majority vote of these Hν = Â depending on {(Dν,κ,D′
ν,κ)}ν,κ

to get an ε-learner H(x) over the test dataset x ∈ D′. It consults only D’s data’s labels but
never to D′’s ones, so applying Chernoff bound parameter γ = 1 on |H| ≤ |{0, 1}m̃| promises

UGEB: Pr[P (y 6= H(x)) ≥ 2ε] ≤ |H|e−γ/3·εm̃′
< o(δ).

The number of refutation calls is no more than ν0κ0 logm, so the learning time is ν0κ0 logm·O(t).
All refutation calls may succeed with significance ν0κ0 logm · O

(
δ3.4
)
= O(δ). For every new

prediction, the learner must access P (x) and refresh Z ′ in searching b0 of Yao’s reduction.

Theorem 3.5 (refutation to noisy PAC learning). If η-noisy F is refutable, then εη-noisy F is
PAC learnable in the same way as Theorem3.4.

Proof. Theorem3.3’s smoothness for errf (D) ≤ εη guarantees errf (Dν) ≤ η. Definition 3.1’s
η-noisy refutation promises E[Anull] ≈ 1 in Theorem3.4’s Yao’s reduction on binary search. It
reduces Theorem3.5 to 3.4.

Theorem 3.6 (refutation to PAC learning in smoothed analysis). If noise-free F is refutable
with significance O(δ23.4/δ), F is PAC learnable under any shift in the same way as Theorem3.4.

Proof. Definition 3.1 assumes that the refutations called in Theorem3.4’s boosting attain the
significance levels no larger than O(δ3.4δ) on average under a random shift G. Markov’s inequality
parameter γ = δ bounds the significance of picking a correct G over all these refutations by
ν0κ0 logm ·O(δ23.4)/(γδ) = O(δ3.4) with high confidence, reducing Theorem3.6 to 3.4.
34(Db0\Zb0,b0)t(x, y) =

(
Zb0,0, . . . , Zb0,b0−1, (x, y), Zb0,b0+1, . . . , Zb0,m−1

)
=

(
Z′

b0,0
, . . . , Z′

b0,b0−1, (x, y), Z
′
b0,b0+1, . . . , Z

′
b0,m−1

)
.
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Theorem 3.7 (refutation to noisy PAC learning in smoothed analysis). If η-noisy F is refutable
with significance O(δ23.4/δ), εη-noisy F is as PAC learnable under any shift as in Theorem3.4.

Proof. A reduction to Theorem3.5, as Theorem3.6 to 3.4.

4 Proof Theoretic Hardness of PAC Learning DNF

The DSS of Review8 [DSS16] has reduced RkSAT-refutation to planted kDNF-learning. This
section will extend their worst-case reduction to smoothed ones and establish PAC2 and PAC3.

Proof ideas of PAC2 and PAC3 on SoS degree: As mentioned in Review8, what they
have proved is the hardness of refuting ∃θ ∈ {0, 1}n, errf(θ◦x)(U) = 0 for the uniformly random

data U ⊂ [2n)d/k × {0, 1} and the canonical DNF expression f =
∨d/k
j=1

∧k
i=1 xi+jk. Divide U =

P tN and observe that ∀θ, errf(θ◦x)(P) = 0 over P = {(x, y) ∈ D | y = 1} with high confidence

when 2n(1 − 2−k)d/k ≈ 0, say d ≈ k2kn ln 2. Also, ∀h, errh(U) ≈ 1/2 since Definition 2.1
supplies sufficiently many examples. Definition 2.1’s η = 0 case obliges the PAC learner to

prove ∀θ, errf(θ◦x)(N ) > 0, or equivalently,
∧

(x,0)∈N
∧d/k
j=1

∨k
i=1(θ ◦ xi+jk ⊕ 1) is unsatisfiable.

This worst-case reduction from refutation to learning is extensible to a smoothed analysis under
any polarity flipper G of min-entropy H∞(G) = (1 − c)k, 0 < c < 1. It reduces learning the

canonical DNF to proving
∧
g

∧
(x,0)∈N

∧d/k
j=1

∨k
i=1(ĝ(θ) ◦ xi+jk ⊕ 1) as unsatisfiable. Kothari,

Mori, O’Donnell, and Witmer [KMOW17] proved this refutation’s hardness in the following
manner. For every

(
j, (x, 0)

)
∈ [d/k]×N , a linear algebra (Lemma4.12) on |Sj | > 2k − 2(1−c)k

guarantees that the local solution space Sj := {0, 1}k\{
(
g(bxi+jk/2c)⊕ xi+jk ⊕ 1

)k
i=1
}
g
must

contain a (t− 1)-uniform subspace (Definition 4.8) for t = Ω(k). Then, any degree-nϵ SoS proof
may “think” the shifted kCNF satisfiable. Consequently, PAC learning DNF requires SoS degree
Ω(nϵ) even under the smoothed analysis of min-entropy H∞(G) = (1− c)k.

4.1 SoS Lower Bounds

Sum-of-Squares (SoS), known by Hilbert’s 17th problem [Pfi76], can prove non-negativity and
even positivity of low-degree multi-linear polynomials “efficiently” [Sho87, Par00, GV01, Las01].

Definition 4.1 (SoS proof). Let Qd[x] = {f(x) ∈ Q[x1, . . . ,xn]/{∀i,x2
i = xi} | deg(f) ≤ d}.

Non-negativity proof degree: degSoS[f(x) ≥ 0] = min
{
d | ∃fi ∈ Qd/2[x1, . . . ,xn], f =

∑
i
f2i }.

Positivity proof degree: degSoS[f(x) > 0] = min
{
d | ∃ϵ > 0,degSoS[f ≥ ϵ] ≤ d

}
.

As far as we know, the SoS degree is currently the most promising proof complexity for
measuring the computational hardness of RCSP refutation. It has provided not only the state-
of-the-art algorithms of RkSAT [GK01, FO05], RkCSP [COCF10, RRS17] and t-uniformRCSP35

[AOW15, AGK21] but also the matching lower bounds of RkSAT, RkXOR [Gri01, Sch08, BM16],
2-uniformRCSP [Tul09, BCK15] and t-uniformRCSP [KMOW17]. This subsection will transfer
the SoS degree lower bound of [KMOW17] to PAC learning hardness results.

Definition 4.2. The unsatisfiability rate of an assignment θ ∈ {0, 1}n to ψ = (xi+jk)(i,j)∈(k]×(m]

∈ kCNFmn ∼= [2n)km is unsatψ(θ) :=
1
m

∑m
j=1

∏k
i=1 θ ◦ xi+jk ⊕ 1 at x = θ of unsatψ(x) ∈ Qk[x].

35t-uniformRCSP is RCSP of the t-uniform predicates supporting a t-uniform random variable in Definition 4.8.
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Theorem 4.3 (SoS hardness of RSAT refutation [KMOW17]). Any sub-linear degree SoS proof
is hard to refute the uniform random kCNF expression Ψ ∈ kCNFmn with k ≥ 3 as follows:

SoS hardness of RkSAT: Pr
[
degSoS[unsatΨ (x) > 0] ≥ n

∆2/(k−2) log∆

]
≥ 1− ϵ′k for △:= m/n.

Theorem 4.4 (Theorems 1.14 and 1.15 for SoS degree36). For 3 ≤ k ≤ log s
log s logn , PAC

learning the canonical plantedDNF class {
∨s
j=1

∧k
i=1 θ ◦ xi+jk | θ ∈ {0, 1}n} under the uniform

distribution requires either sample size Ω(n
1−ϵ
2
k) or SoS degree Ω(nϵ).

Proof. Suppose the sample size 2m ≈ n(1−ϵ)k/2 and prove the SoS degree ≥ d := nϵ for the ran-
dom constraint U ∼ (kCNFsn × {0, 1})m. Theorem3.2’s UGEB has demonstrated ∀h, errh(U) ≈
1/2, so Definition 2.1 asks to prove errθ(U) > 0. We will suppose degSoS[errθ(U) > 0] < d and
derive a contradiction to Theorem4.3’s SoS hardness of RkCSP in the following manner.

Divide the data into the positive and negative ones U = P tN , and accordingly decompose

PN decomposition: errθ(U) =
|P|

|P|+ |N |
errθ(P) +

|N |
|P|+ |N |

errθ(N ).

The i.i.d. random polarities Xi+jk mod 2 of (X, 1) ∼ P must have, under log(1/δ)� log n,

No FPE: Pr[errθ(P) > 0] = Pr
[
∃(X, 1) ∈ P,∀j ∈ (s],∃i ∈ (k], θ(bXi+jk/2c)⊕Xi+jk = 0

]
< |P|(1− 1/2k)s < (1 + o(1))n(1−ϵ)k/2e−s/2

k ≤ o(δ).

It implies degSoS[errθ(N ) > 0] < d, or equivalently degSoS[unsatΨ (x) > 0] < d for the random

constraint Ψ ∈ kCNFs|N |
n , which contradicts to Theorem4.3, under k + log s� log n, by

Sub-linear degree: ∆ = (s/n)|N | ≈ sn(k−2)(1−ϵ)/2−ϵ

⇒ d ≥ n

∆2/(k−2) log∆
> (nϵ(1+

2
k−2

))/(s
2

k−2 (log s+ k log n))� nϵ.

Theorem 4.5 (Theorem1.14 and 1.15 for SoS degree under noise37). For 3 ≤ k ≤ log s
log(1/ε) ,

PAC learning the ε-noisy canonical plantedDNF is PAC learnable as Theorem4.4.

Proof. The ε-noisy model asks to negate degSoS[errθ(D) > ε] < nϵ. It rewrites Theorem4.4’s
No FPE proof by Chernoff bound of γ = ε

(1−1/2k)s
− 1 on (1− 1

2k
)s ≤ εlog e � ε as follows:

Small FPE: Pr[errθ(P) > ε] = Pr
[
ε <

1

|P|
∑

(X,1)∼P1[∀j ∈ (s],∃i ∈ (k], θ(bXi+jk/2c)⊕Xi+jk = 0]
]

< e−
γ
3
(1−1/2k)s|P| < e−( 1

3
−o(1))(ε−εlog e)m = o(δ).

Theorem4.4’s sub-linear degree analysis has shown the claimed SoS degree lower bound.

In summary, the worst-case learning hardnesses Theorems 1.14 and 1.15 on SoS degree are
fruits of the worst-case RSAT refutation hardness Theorem4.3. Similarly, the smoothed-case
hardness Theorem1.16 will stand on the following smoothed-case RSAT refutation hardness.

Theorem 4.6 (SoS hardness of RSAT refutation in the smoothed analysis [this paper]). Any
sub-linear degree SoS proof is hard to refute the uniform random expression Ψ ∼ kCNFmn of

m ≤ n
ck

10−4 log c shifted by any flipper space of size |G| ≤ 2(1−ϵ)k as follows:

SoS hardness of RkSAT
in smoothed analysis : Pr

[
degSoS[unsat∧g∈Gg(Ψ)(x) > 0] ≥ n0.06

]
≥ 1− ϵ′k.

36Set k = log s
log s logn

in Theorems 4.15, 4.16, 4.27, and 4.30.
37Set k = log s

log(1/ε)
in Theorems 4.5, 4.17, 4.18, 4.21, and 4.22.
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Previously, Molloy and Salavatipour [Mit02, MS07] provided a detailed map of the resolution
refutation complexities under the uniform random solution spaces (mentioned in the proof ideas)
Sj ⊂ {0, 1}k in terms of the co-cardinality 2k − |Sj |. Meanwhile, Theorem4.6 allows even
malicious Sj . It is a gift from a pretty general CSP refutation lower bound on SoS proof of
degree guaranteed by only an “expanding” property of factor graphs [KMOW17].

Definition 4.7 (graphical CSP). A factor graph is a bipartite graph (I t J , E) between a
variable i ∈ I and a constraint j ∈ J . It takes solution spaces Sj ⊂ {0, 1}E[j] and presents
a graphical CSP instance G =

(
I t J , E ,S

)
of density ∆ := |J |/|I| to minimize unsatG(θ) =

1
|J |
∑

j∈J 1
[
(θ(i))i∈E[j] 6∈ Sj

]
.

Definition 4.8 (uniformity of solution space). The uniformity of a space Sj ⊂ {0, 1}k is the
maximum dimension t ≤ k for S to support a t-uniform random variable X as

unif(Sj) := max
{
0 ≤ t ≤ k | ∃X ∈ Sj ,∀w ∈

(
k

t

)
, ∀x ∈ {0, 1}t,Pr[∀i ∈ w,Xi = xi] = 2−t

}
.

Definition 4.9 (expansion). Fix any ζ = o(1). A kCSP instance G = (I t J , E ,S) must
have k-regular bipartite edges E ∈ Ik|J | and solution spaces Sj ⊂ {0, 1}k. It is random if
the edge set E is the uniform random variable, and d-expanding if any edge-induced subgraph
(u t v, w) ⊂ G = (I t J , E) with at most |v| ≤ d constraints must satisfy

d-expanding: |u| ≥ |w| − (1/2− ζ)|v| − (1/2)
∑

j∈vunif(Sj).

Lemma 4.10 (RkCSP is expanding [KMOW17]). For 3 ≤ t = Ω(k) and d� |I|
k∆2/(t−2−2ζ) , any

kCSP instance G to meet ∀v ⊂ J ,
∑

j∈v unif(Sj) ≥ (t− 1)|v| must be

RkCSP is expanding: PrE [G is d-expanding] ≥ 1− ϵk for the uniform random edge set E .

Proof. The uniform random E ∼ Ik|J | assures Definition 4.9’s d-expanding with significance

PrE
[
∃w ⊂ E : v = J [w], u = I[w], |v| ≤ d, |u| ≤ k|v|, |u|+ (t/2− ζ)|v| ≤ |w| ≤ k|v|

]
≤
∑

|v|,|u|,|w|

(
|J |
|v|

)(
|I|
|u|

)(
|w| − 1

|v| − 1

)
max

(|w[j]|)j∈v

∏
j∈vPrEj∈( |I|

|w[j]|)
[Ej ⊂ u]

<
∑

|v|,|u|,|w|(
e|J |
|v|

)|v|(
e|I|
|u|

)|u|(
e|w|
|v|

)|v|(
|u|
|I|
)|w|

≤
∑

|v|,|u|,|w|

(
e
2+

|u|
|v| |u||w|
|v|2
( |u|
|I|

) t
2
−ζ−1

∆
)|v|

(∵ |u|+ (t/2− ζ)|v| ≤ |w|)

≤
∑

|u|,|w|
∑

|v|

(
k2e2+k

(
d · k∆

2
t−2−2ζ /|I|

) t
2
−ζ−1

)|v|
(∵ |u| ≤ k|v|, |w| ≤ k|v|)

⋆

< 2k4e2+k
(
d · k∆

2
t−2−2ζ /|I|

) t
2
−ζ−1

< ϵk, (∵ d� |I|
k∆2/(t−2−2ζ)

)

where
⋆

< bounds the geometric sum by its start term k2e2+k
(
kd∆

2
t−2−2ζ /|I|

) t
2
−ζ−1

= o(1).

Theorem 4.11 (SoS hardness of expanding CSP’s refutation [KMOW17]). Any low degree SoS proof
is hard to refute any d-expanding CSP instance G of maxθ valθ(G) < 1 and ∀j, |E [j]| ≤ ζd:

SoS hardness of expanding CSP: degSoS[unsatG(x) > 0] ≥ ζd/3.

Lemma 4.12. For any set Sj ⊂ {0, 1}k and any integers 1 ≤ t ≤ r ≤ k,

(
(
k

t

)
< 2r−t) ∧ (2k − 2k−r < |Sj |) ⇒ unif(Sj) ≥ t.
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Proof. Randomly generate a k× r matrixM∼ Fk×r2 . Then, all of its t× r sub-matrices happen
to have the full rank t with a probability of at least 1− 2−r2t

(
k
t

)
> 0. The probabilistic method

provides such a matrix M. Divide the k-dimensional linear space Fk2 by this M to make the
2k−r (or more if M is degenerate) cosets. Shifting the same linear kernel yields these disjoint
affine subspaces of Fk2 obtained. Then, the pigeon-hole principle over |Fk2 − Sj | < 2k−r can pick
a coset disjoint from Fk2 −Sj . It gives a desired t-uniform random variable supported by Sj .

Theorem 4.13. Let t4.13 := ck
1+log e+1.725 log((1+log e)/c) ≥ 3 and d4.13 := 3ζn

∆2/(t4.13−2−2ζ) ≥ k/ζ for

0 < c < 1. Any kCSP instance G with ∀j, |Sj | ≥ 2k − 2(1−c)k under the uniform random E has

The hardness
of graphical RkCSP: PrE∼Ik|J |

[
degSoS[unsatG(x)] > 0

]
≥ ζd4.13/3

]
≥ 1− ϵk.

Proof. Since |Sj | ≥ 2k − 2k−(r−1) for r = bckc, Theorem4.12 of t = t4.13 shows unif(Sj) ≥ t− 1:

1 + log e+ 1.725 log ((1 + log e)/c) < c ((1 + log e)/c)1.725 ⇒

2(t−1)−(r−1)
(

k

t− 1

)
< 2t−ck(

ek

t
)t = 2(1+log e+log(k/t)−ck/t)t < 2(1+log e+1.725 log 1+log e

c
− ck

t
)t = 1.

Consequently, Theorem4.10’s RkCSP’s expansion has revealed PrE
[
G is d4.13-expanding

]
≥ 1−ϵk

for d4.13 � |I|/(k∆2/(t4.13−2−2ζ)), so that Theorem4.11 with |E [j]| ≤ k ≤ ζd4.13 demonstrates
degSoS[unsatG(x) > 0] ≥ ζd4.13/3 with confidence 1− ϵk.

Theorem 4.14 (Theorem4.6). Any low-degree SoS proof is hard to refute the uniform random
kCNF expression Ψ ∼ kCNFmn shifted by any flipper of size |G| ≤ 2(1−c)k for 0 < c < 1:

SoS hardness in smoothed analysis: Pr
[
degSoS[unsat∧gg(Ψ)(x) > 0

]
≥ ζd4.13/3

]
≥ 1− ϵk.

Proof. Rewrite unsat∧gg(Ψ)(θ) = unsatG(θ) by a CSP G corresponding to Ψ = (xi+jk) ∈ kCSPmn :

I = [n),J = (m], E(G) = {(bxi+jk/2c, j) | i ∈ (k], j ∈ J },
Sj = {0, 1}I[j]\

{
(g(bxi+jk/2c)⊕ xi+jk ⊕ 1)ki=1 | Pr[G = g] > 0

}
,

unsatG(θ) =
1

m

∑
g
Pr[G = g]

∑m

j=1

∧k

i=1
θ(g(bxi+jk/2c)⊕ xi+jk ⊕ 1).

Since |Sj | ≥ 2k − |G| ≥ 2k − 2(1−c)k, Theorem4.14 reduces to 4.13 and derives 4.6 by taking38

(ϵ,d, t,m) = (0.066,d4.13, t4.13, n
ck

10−4 log c )

⇒ 2(1 + log e+ 1.725 log ((1 + log e)/c)) < (1− ϵ)(10 + 4 log(1/c))

⇒ Sub-linear degree: ζd/3 =
ζ2n

k∆2/(t−2−o(1)) >
ζ2n/k(

m
(1−ϵ)(10−4 log c)

ck · n−
t
2

) 2
t
· 1
1−(2+o(1))/t

=
ζ2n/k

n
1−ϵ−2/t

1−(2+o(1))/t

> n0.06.

Theorem 4.15 (Theorem1.16 for SoS degree under flipper). For 3 ≤ k ≤ log s
log s logn and

0 < c < 1, PAC learning the canonical plantedDNF {
∨s
j=1

∧k
i=1 θ ◦ xi+jk | θ ∈ {0, 1}n} under

the uniform distribution shifted by any flipper G of H∞(G) = (1− c)k must take either sample
size Ω(n(1−ϵ)t4.13/2) or SoS proof of degree Ω(nϵ).

38This sub-linear degree analysis will deduce not only Theorem4.6 but also Theorem1.16 from Theorems 4.15–4.18
and 4.22, and Theorem1.22 from Theorems 6.11 and 6.12, too.
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Proof. Adjust Theorem4.4’s one to H∞(G) = (1− c)k. No FPE analysis changes therein to

Pr
[
∃g, ∃(g(X), 1) ∈ P,∀j ∈ (s], ∃i ∈ (k], θ(bXi+jk/2c)⊕Xi+jk ⊕ g(bXi+jk/2c) = 0

]
< |G||P|(1− 1/2k)s < 2(1−c)k(1 + o(1))n(1−ϵ)k/2e−s/2

k ≤ o(δ).

Since Pr
[
degSoS[unsatG(Ψ)(x)] > 0

]
≥ Ω(δ)⇒ ∃g, unsatg(Ψ)(x) > 0 ⇔ unsat∧

g g(Ψ)
(x) > 0,

Theorem4.4’s sub-linear degree analysis at (t,d) = (t4.13,d4.13) derives a contradiction to 4.14:

Sub-linear degree: ζd/3 =
ζ2n/3

k∆2/(t−2−o(1)) ≥
ζ2n/3

k
(
n(1−ϵ)t/2·2/t(s/n)2/t

) 1
1−(2+o(1))/t

� nϵ.

Theorem 4.16 (Theorem1.16 for SoS degree under flipper and noise). The ε-noisy canonical
plantedDNF is PAC learnable in the same way as Theorem4.15.

Proof. Adjust Theorem4.5’s proof to get the small FPE by

Pr
[
ε <

1

|P|
∑

(X,1)∼P1[∃g, ∀j ∈ (s], ∃i ∈ (k], θ(bXi+jk/2c)⊕Xi+jk ⊕ g(bXi+jk/2c) = 0]
]

< e−
γ
3
(1−1/2k)s|P| < 2(1−c)ke−( 1

3
−o(1))(ε−εlog e)m = o(δ).

Sub-linear degree analysis is the same as Theorem4.15, which contradicts 4.14.

Theorems 4.15 and 4.16’s smoothed analysis under a flipper G ∈ {0, 1}dn are extensible
to Lemma2.2’s general shift G = (Φi, Ψi)

d
i=1 ∈ (Sn × {0, 1}n)d for learning a planted function

fd(θ1 ◦ x1, . . . , θd ◦ xd) hiding an assignment θ ∈ {0, 1}dn.

Theorem 4.17 (Theorem1.1639 for SoS degree). For 3 ≤ k ≤ log s
log(1/ε) and 0 < c < 1, PAC

learning the canonical plantedDNF class {
∨s
j=1

∧k
i=1 θi+jk ◦ xi+jk | θ ∈ {0, 1}ksn} under the

uniform distribution perturbed by any shift G ∈ (Sn × {0, 1}n)d of H∞(G) = (1 − c)k requires
either sample size Ω

(
(n/4(1−c)k)(1−ϵ)t4.13/2

)
or SoS degree Ω

(
(n/4(1−c)k)ϵ

)
.

Proof. A reduction to Theorem4.15. Force SA1’s adversary to choose the hidden parameter
θι ∈ {0, 1}n, ι = i + jk, in the following manner. Let Oι(a) = {ϕi(a) | (ϕι, ψι) ∈ O} be the
orbit permuting an attribute a ∈ [n), O−1

ι ◦ Oι(a) = {ϕ′−1
ι (ϕι(a)) | (ϕι, ψι), (ϕ′ι, ψ′

ι) ∈ O}, and
Aι ⊂ [n) be a maximal attribute set of these orbits with O(a) 6= O(a′)⇒Oι(a)∩Oι(a′) = ∅. Since⊔

Oι(a)∈Aι
O−1
ι ◦ Oι[a] ⊃ [n), |Aι| ≥ n/|O|2 := n′. Bound the adversary’s choice of the hidden

θ ∈ {0, 1}dn to make θι◦xι invariant modulo these orbits Oι(a), i.e., ∀i, bxι/2c ∈ Oι(a)⇒θι(xι) =
θι(a)⊕x. Further, the adversary must choose θ from #ι(a) = #ι′(a

′)⇒θι(a) = θι′(a
′), where #ι

is a linear order over Aι. Then, learning under G reduces to learning under the induced flipper
over

∏d
i=1(Aι×{0, 1}). It replaces n with n′ = n/|O|2, 2m with 2m′ ≈ n′(1−ϵ)t/2 of t = t4.13, and

d with d′ = 3ζn′/(sm′/n′)2/(t−2−2ζ). Still, Theorem4.15’s sub-linear degree analysis derives a
contradiction to Theorem4.14:

Sub-linear degree: ζd′/3 = 3ζn′/(sm′/n′)2/(t−2−2ζ) � n′ϵ.

Theorem 4.18 (Theorem1.16 for SoS degree under noise). For 3 ≤ k ≤ log s
log(1/ε) and 0 < c <

1, PAC learning the ε-noisy canonical plantedDNF class {
∨s
j=1

∧k
i=1 θi+jk ◦ xi+jk | θ ∈ {0, 1}ksn}

under the uniform distribution perturbed by any shift G ∈ (Sn × {0, 1}n)d of H∞(G) = (1− c)k
requires either sample size Ω

(
(n/4(1−c)k)(1−ϵ)t4.13/2

)
or SoS degree Ω

(
(n/4(1−c)k)ϵ

)
.

Proof. A reduction to Theorem4.16 as 4.17 to 4.15.
39Set (k, n′, 2m′, d′, ϵ) = (log s

log(1/ε)
, n

4(1−c)k , n
′(1−ϵ)t4.13/2, 3ζn′/(sm′/n′)2/(t4.13−2−2ζ), 0.065) ⇒ n′ϵ > n0.06.
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4.2 General LP Lower Bounds

Linear Programming is the most popular approach taken in industrial applications of opti-
mization. It enjoys polynomial-time algorithms [Kha80, Kar84] and is a practically excellent
solver over the decades with reason, the simplex algorithm with polynomial-time smoothed com-
plexity [Dan51, ST04]. Moreover, Sherali-Adams LP hierarchy can solve CSP [OS18, HST20]
and refute RCSP [OS18] as efficiently as SoS hierarchy, even matching to the known SDP
lower bound [CMM09]. Worst-case LP relaxation size lower bounds hold for not only specific
lift and project schemes, e.g., Lovás-Schrijver [LS91, ABLT06, STT07, AAT11, TW13] and
Sherali-Adams [SA90, CMM09, BGMT12, OW14, ALN16], but also the general LP hierarchy
[Yan91, CLRS16, KMR17]. Recently, Brown-Cohen and Raghavendra [BCR20] have established
“average-case” sub-exponential size lower bounds of RCSP on the general LP.

Definition 4.19 (LP proof). A lift φ of a function f(θ) : S → R are embeddings φ(f), φ(θ) ∈ Rs
to a higher dimensional metric space40 Re. Let P ⊂ Re be a polytope P = {x ∈ Re | Ax ≤ b}.

LP proof size: sizeLP[f(x) > 0] = min

{
e

∣∣∣∣∣∃φ,∃P, ∀θ ∈ S, f(θ) = 〈φ(f), φ(θ)〉∧φ(S) ⊂ P ∧ min
x∈P
〈φ(f), x〉 > 0

}
.

Theorem 4.20 (LP hardness of RSAT refutation [BCR20]). Suppose G = (I t J , E ,S) with
log(1/ε) � log |J | has solution spaces Sj ⊂ {0, 1}k with ∀j ∈ J , unif(Sj) ≥ t − 1 ≥ 2. Any
sub-exponential size LP proof cannot refute any such CSP instance G with the uniform random
bipartite edge span E ∼ Ik|J | as follows:

Expansion: Pr
[
sizeLP[unsatG(x) > ε] ≥ exp(

( |I|(t−2)/2

∆

)2(1−ϵ′)/k
)
]
≥ 1− o(1).

Theorem 4.21 (Theorems 1.14 and 1.15 for LP size under noise). For 3 ≤ k ≤ log s
log(1/ε) ,

PAC learning the ε-noisy canonical plantedDNF class {
∨s
j=1

∧k
i=1 θ ◦ xi+jk | θ ∈ {0, 1}n} under

the uniform distribution requires either sample size Ω(n(1−ϵ)k/2) or LP-size Ω(exp(nϵ)).

Proof. To follow Theorem4.5’s proof, assume sizeLP[errθ(D) > ε] ≤ exp(nϵ). The small FPE
gives sizeLP[unsatΨ (x) > ε/2] ≤ exp(nϵ). Take 2m ≈ n(1−ϵ′)k/2, t = k, ϵ = ϵ′(1− ϵ′), and derive
a contradiction to Theorem4.20 by replacing Theorem4.4’s sub-linear degree analysis with

Sub-exp size: sizeLP[unsatΨ (x) >
ε

2
] ≥ exp

(
(

2nk/2

n(1−ϵ′)k/2
)
2(1−ϵ′)

k
)
= exp

(
2

(ϵ′−1)
k nϵ

′(1−ϵ′)
)
= exp(nϵ).

Theorem 4.22 (Theorem1.16 for LP size under noise). For 3 ≤ k ≤ log s
log(1/ε) and 0 < c < 1,

PAC learning the ε-noisy canonical plantedDNF class {
∨s
j=1

∧k
i=1 θ ◦ xi+jk | θ ∈ {0, 1}ksn} under

the uniform distribution perturbed by any shift G ∈ (Sn×{0, 1}n)d of H∞(G) = (1−c)k requires
either sample size Ω

(
(n/4(1−c)k)(1−ϵ)t4.13/2

)
or LP-size Ω

(
exp
(
(n/4(1−c)k)ϵ

))
.

Proof. A reduction to 4.21, like 4.18 to 4.16.

4.3 Lower Bounds on Resolution and Polynomial Calculus

Resolution (Res) and Polynomial calculus (PC) are the most studied propositional and algebraic
proof systems in the fields of automated theorem proving and proof complexity lower bounds

40The inner product 〈a, b〉 =
∑m

i=1 aibi induces the metric into the vector field Re.

31



[BP98, Nor15]. PC may contain the twin variables41 to simulate Res for stronger lower bounds
on width and space [ABSRW02]. They have provided not only the most popular SAT solvers
[DP60, DLL62, CEI96, BJS97, MS99, MMZ+01] but also the first breakthrough of proving RSAT
refutation hardness made in Res [CS88, BP96, BKPS98, BSW01] and PC [AR01, BSI10].

Definition 4.23 (resolution proof). For disjunctive constraints ξj ∈ F = {
∨
i∈w x◦ i, w ⊂ [2n)}

over the n Boolean indeterminates {x(i)}i∈[n) with x ◦ i := x(bi/2c)⊕ i for i ∈ [2n),

Resolution proof size: sizeRes(
∧
j∈(m]ξj 6≡ 1) =

min

{
s |
∃{ξj}sj=m+1, ξe = 0,∀j > m, ∃i ∈ [n),∃κ < j, ∃κ′ < j, ∃ξ′ ∈ F ,

ξκ = ξ ∨ x ◦ (2i) and ξκ′ = ξ ∨ x ◦ (2i− 1), or ξj = ξκ ∨ ξ′

}
.

Definition 4.24 (PC proof). For low-degree multi-linear polynomial constraints ξj ∈ Qd[x],

PC proof degree: degPC(
∧m
j=11[ξj = 0] 6≡ 1) :=

min

{
d |
∃e,∃{ξj}em=m+1, ξe = 1 ∧ ∀j > m, ∃i ∈ [n),∃κ < j, ∃κ′ < j, ∃a ∈ Q,

ξj ∈
{
ξκ + aξκ′ , ξκ · x ◦ (2i), x ◦ (2i) + x ◦ (2i− 1)− 1

} }
.

Theorem 4.25 (Res hardness of RSAT refutation [BSW01] ). Any sub-exponential size Res

proof is hard to refute the uniform random Ψ ∼ kCNFmn with k ≥ 3 and ∆ = o(n
k−2
2 ) as follows:

PrΨ∼kCNFm
n

[
sizeRes[unsatΨ (x) > 0] ≥ exp(

n

∆2/(k−2) log∆
)
]
≥ 1− o(1).

Theorem 4.26 (PC hardness of RSAT refutation [AR01, BSI10] ). Any sub-exponential size PC

proof is hard to refute the uniform random kCNF Ψ ∼ kCNFmn with k ≥ 3 and ∆ = o(n
k−2
2 ):

PrΨ∼kCNFm
n

[
degPC[unsatΨ (x) > 0] ≥ Ω

( n

∆2/(k−2) log∆

)]
≥ 1− o(1).

Theorem 4.27 (Theorems 1.14 and 1.15 for Res size and PC degree). For 3 ≤ k ≤ log s
log s logn ,

PAC learning the canonical plantedDNF {
∨s
j=1

∧k
i=1 θ ◦ xi+jk | θ ∈ {0, 1}n} under the uniform

distribution requires sample size Ω(n(1−ϵ)k/2) unless Res-size is Ω(exp(nϵ)) and PC-degree Ω(nϵ).

Proof. The same with Theorem4.4’s one but applying Theorems 4.25 and 4.26 for the sub-linear
degree analysis to derive contradictions to Res size and PC degree lower bounds, respectively,
instead of Theorem4.3.

Berkholz [Ber18] showed that SoS could simulate PC over the Boolean variables with-
out blowing up degree and size, although neither non-Boolean SoS [GV01], Nullstellensatz
[BOCIP02], nor Sherali-Adams LP [Ber18] can do it.

Theorem 4.28 (PC to SoS [Ber18]). Any PCR proof of degPC[unsatΨ (x) > 0] ≤ d is rewritable
to an SoS proof of degSoS[unsatΨ (x) > 0] ≤ 2d in polynomial time.

Theorem 4.29 (PC hardness of RSAT refutation in smoothed analysis). Any low-degree PC
proof is hard to refute the uniform random kCNF expression Ψ ∼ kCNFmn shifted by any flipper
space of size |G| ≤ 2(1−c)k for 0 < c < 1 as follows:

Pr
[
degPC[unsat∧gg(Ψ)(x) > 0

]
≥ ζd4.13/3

]
≥ 1− ϵ′k.

41The twin variable of xi is another formal variable x̄i with the complementary axiom xi + x̄i − 1 = 0.
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Proof. A reduction to Theorem4.14 via 4.28.

Theorem 4.30 (Theorem1.16 for PC degree). For 3 ≤ k ≤ log s
log s logn and 0 < c < 1, PAC

learning the canonical plantedDNF {
∨s
j=1

∧k
i=1 θi+jk ◦ xi+jk | θ ∈ {0, 1}ksn} under the uniform

distribution perturbed by any shift of min-entropy H∞(G) = (1− c)k requires either sample size
Ω
(
(n/ n

4(1−c)k )
(1−ϵ)t4.13/2

)
or PCR degree Ω

(
( n
4(1−c)k )

ϵ
)
.

Proof. The same with Theorem4.17’s one but applying Theorem4.29 instead of 4.14.

5 PAC Learning DNF in Smoothed Analysis

The previous section established PAC2 and PAC3, the unlearnability of the planted s-term
DNF from nΘ(log s) data when the min-entropy is below the problem size log s. This section will
demonstrate PAC1 and PAC4 for the learnability when the min-entropy goes beyond log s.

PAC1: Let us begin by reviewing the current best worst-case DNF learning algorithm.

Theorem 5.1 (computational complexity of LP [Kar84, Vai90]). Any LP with n variables and
m constraints is solvable to ℓ-bit precision in deterministic O((m+ n)1.5nℓ) time.

Theorem 5.2 (threshold degree of planted s-termDNF [KS04]). Polynomial threshold functions
of degree d = O(d1/3 log s) can express any planted s-termDNF f(x1, . . . ,xd) by

Threshold polynomial of DNF: (−1)f(x1,...,xd) = sgn
(∑

waw(−1)
∑

i∈w xi
)
, aw ∈ Q, w ⊂ [n), |w| ≤ d.

Theorem 5.3 (PAC learning DNF [KS04]). The planted s-termDNFd hiding θ ∈ {0, 1}dn is

PAC learnable in deterministic nO(d
1/3 log s) time.

Proof. Solve an LP instance ∀j ∈ (m], (−1)y(j) = sgn
(∑

waw(−1)
∑

i∈w θi◦xi(j)
)
of Theorem5.2’s

threshold polynomial of DNF. Inside the sgn is a linear function of at most n′ :=
∑d

k=0 n
k
(
d
k

)
variables xw,a = (−1)

∑
i∈w θi(ai) ∈ {1,−1} for (w, a) ∈

(
d
k

)
×nk, k ≤ d. Hence, Theorem5.1’s LP

algorithm can find a solution by O
(
log(n′/ε)

)
-bit precision in O(m1.5n′ log(n′/ε)) time. Since

this hypothesis has bit-length O(n′ log(n′/ε)), an nO(d
1/3 log s) amount of data assures Defini-

tion 2.1’s O(ε)-learning with significance 2O(n′ log(n′/ε))(1− ε)m = o(δ).

PAC4: We will translate the known efficient RkSAT refutation [COCF10, AOW15, BM16] and
its derandomization [Fei07, AOW15, Wit17, AGK21] of Review6 into kDNF learning. They
are SDP algorithms [Kha80, Ans00, NN94, LSW15, JLSW20, JKL+20] to solve Grothendieck
Inequality (GIE) and find refutation certificates.

Theorem 5.4 (GIE [Gro52]). There is a universal constant cg ≤ g

2 ln(1+
√
2)
< 1.8 for any n by n

matrixM over R, u1, . . . , un, v1, . . . , vn ∈ R2n, and x1, . . . , xn, y1, . . . , yn ∈ R,
Grothendieck

Inequality (GIE): max∥ui∥,∥vj∥≤1

∑
i,jMij〈ui, vj〉 ≤ cgmax|xi|,|yj |≤1

∑
i,jMijxiyj .

Symmetric GIE: max∥vi∥,∥vj∥≤1

∑
i,jMij〈vi, vj〉 ≤ cgmax|xi|,|xj |≤1

∑
i,jMijxixj if ∀Mii = 0.

Theorem 5.5 (computational complexity of SDP [JKL+20]). SDP with variable size n×n and
m constraints is solvable within precision ε in time42 Õ(

√
n(mn2 + mω + nω) log(1/ε)). It is

tsdp(n) := Õ(n3.5) when m = O(n).

42ω is the exponent in the matrix multiplication complexity. The current best is ω = 2.472 · · · [Str69, AW21].
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Coja-Oghlan, Cooper, and Freize [COCF10, AOW15] reduced MaxkCSP’s “average-case”
approximation to planted kXOR’s “strong” refutation: Prove acc({

(
x(j), y(j)

)
}m
j=1

) ≤ 1/2 + ε

for the parity predicate y(j) =
⊕k

i=1 θ ◦ xi(j) and the i.i.d. random constraints (x(j), y(j)) ∈
[2n)k × {0, 1}. Furthermore, the refutation proof on the malicious constraints would yield the
planted kDNF’s PAC learnability. Recently, Abascal, Gurusuwami, and Kothari [Fei07, AOW15,
Wit17, AGK21] succeeded in derandomizing x(j) (y(j) is still random) in the following manner.

Theorem 5.6 (strongly refuting planted kXOR [AGK21]). The following refutation’s proof
enjoys a witness computable by SDP in tsdp(N

2) · O(n) time with confidence 1 − 1
N from any

m =
∑n

i=1 |Di| = N
√
n ·O( log

3N
ε5

) data of Di ⊂ [2N)2×{0, 1} having the i.i.d. random m labels:

Strong refutation: max
z∈{0,1}N ,z′∈{0,1}n

1

m

∑n

i=1

∑
(x,y)∈Di

1[(z ◦ x1)⊕ (z ◦ x2) = z′i ⊕ y] ≤ 1/2 + ε.

Theorem 5.7 (refuting planted kDNF). For k ≥ 2, the planted s-term kDNF is refutable by
nk/2 ·O

(
s5(k log n)3

)
data in tsdp(n

k) ·O(2kn) time.

Proof. Given the data D = {
(
x(j), y(j)

)
)}m
j=1

, our algorithm measures the bias of a term f =∧k
i=1 θ ◦ xi in the target planted kDNF function through a lens of Fourier coefficients:

Bias measurement: biasf (D) := 1
m

∑m
j=1(−1)y(j)+11[f(x(j)) = 1]

= 1
2km

∑m
j=1(−1)y(j)+1

∏k
i=1

∑
ai∈[n)

(
(−1)θ(ai)+xi(j)+1 + 1

)
1[bxi(j)/2c = ai]

=
∑

w⊂(k]

∑
a∈[n)w M̂w(a)

∏
i∈w(−1)θ(ai),

Fourier coefficients: M̂w(a) =
1
m

∑
j:⌊xw(j)/2⌋=a(−1)y(j)+1

∏
i∈w(−1)xi(j)+1.

Let 1 ≤ κ = b|v|/2c or b|w|/2c ≤ bk/2c. Lift and project the bias maximization problem
maxθ biasf (D) over θ ∈ {0, 1}n to the following QPs (Quadratic Programming) over z =

(za)a∈[n)κ ∈ {−1, 1}n
κ

of za =
∏κ
i=1(−1)θ(ai) and z′ = (z′b)b∈[n) of z′b = (−1)θ(b) ∈ {−1, 1}

to bound biasf (D) ≤ val(D):

QP by lift and project: val(D) :=
∑

w⊂(k],|w|∈2ZmaxzMw(z) +
∑

v⊂(k],|v|∈2Z+1maxz,z′Mv(z, z
′),

Even QP: Mw(z) :=
∑

a∈[n)κ
∑

a′∈[n)κ M̂w(aa
′)zaza′ for |w| = 2κ,

Odd QP: Mv(z, z
′) :=

∑
a∈[n)κ

∑
a′b∈[n)κ+1 M̂v

(
aa′b

)
zaza′z

′
b for |v| = 2κ+ 1.

Solve all these maximization problems and distinguish D by measuring val(D).

Completeness: Take a threshold β ≈ 1/(2s) as follows. We may assume |E[(−1)Y ]| ≤
ϵβ. Otherwise, the constant function is already Definition 3.1’s refuter to distinguish between∣∣E[(−1)Y ]∣∣ ≥ ϵβ and

∣∣E[(−1)Y ′
]
∣∣ < ϵβ for the random-label data43 (X ′, Y ′) ∼ U . It promises the

complete data errf (D) = 0 to gain an advantage by choosing the heaviest f from the s terms:

Completeness: biasf (D) = Pr[f(X) = Y = 1] ≥ 1

2s
− 1

2
|E[(−1)Y ]| := β.

Soundness: Take the sample size m� nκ ·
√
n′ ·
(
k log n

)3
/β5, N = nκ and n′ = n (resp. 1) for

odd QPs (resp. even QPs). Theorem5.6 bounds biasf (U) with significance 1/N :

Soundness: biasf (U) ≤ val(U) ≤ 1

2k

(∑
w
max

z
Mw

(
z
)
+
∑

v
max
z,z′
Mv

(
z, z′

))
� β.

43Chernoff bound parameter γ = ϵβ/2
1/2

guarantees a confidence level Pr[
∣∣E[(−1)Y

′
]
∣∣ ≥ ϵβ] ≤ 2e−γ2/3·m/2 � o(δ).
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Computational complexity: Theorem5.6 solves both even and odd QPs and provides a
certificate of val(U) � β for the soundness data U . The overall confidence level is 1 − 2k/N =
1 − o(δ) to succeed in Definition 3.1’s refutation of D′ ∈ {D,U} only when getting a certificate
of val(D′) ≤ β

2 from m data in tsdp(n
k) ·O(n) · 2k time.

Theorem5.7’s refutation algorithm can PAC learn the plantedDNF under the malicious label
y(j) (instead of the random label assumption of Theorem5.7). Grothendieck inequality can do
it by Õ(n⌈k/2⌉) data, so losing a

√
n factor in the odd k case. Moreover, the refutation’s SDP

solution is too long to make a PAC hypothesis. Charikar and Wirth [GW95, Meg01, CW04]
rounded Theorem5.4’s symmetric GIE solution in over R to a binary one over {−1, 1}.

Theorem 5.8 (rounding symmetric GIE [CW04]). Any QP: maxx
∣∣∑N

i=1

∑N
j=1 Mijxixj

∣∣ with
∀Mii = 0 over x ∈ {−1, 1}N is approximable by ratio44 γg := Ω(1/ logN) in tsdp(N

2) time.

Theorem 5.9 (Theorem1.17). For k ≥ 2, planted s-term kDNF is PAC learnable from n⌈k/2⌉ ·
O(2kk(ks log n)2/ε2) data in tsdp(n

k) ·O
(
2kn (ks log n)2/ε

)
learning time.

Proof. Theorem5.8 with N = nκ of κ = b|v|/2c or b|w|/2c approximates Theorem5.7’s QP by
lift-and-project to get even-QP’s Mw’s rounded solutions z(w) = (za(w))a∈[n)κ . Theorem5.8’s

QP requires removing the trace
∑

a M̂w(aa)zaza =
∑

a M̂w(aa). Theorem5.6 divides odd-QP’s
Mv into a sum over b ∈ [n) ofMv,b(z) = (−1)θ(b)Mv\{i}(z) on Db = {(x(j), y(j)) ∈ D | bxi(j)/2c
= b}. Theorem5.8 provides Mv,b’s rounded solutions z(v, b) = (za(v, b))a∈[n)κ , too. These

QP’s solutions induce a hypothesis function h : [2n)k → Q to bound biasf (D) ≤ biash(D) :=
E[(−1)Y h(X)] over the empirical data (X,Y ) ∈ {

(
x(j), y(j)

)
}m
j=1

:

hw(x|a) :=
∏
i∈w(−1)

xi+11[bxw/2c = a],

hw(x) :=
∑

(a̸=a′)∈[n)κ×[n)κ
hw(x|aa′)za(w)za′(w), gw(x) :=

∑
a∈[n)κhw(x|aa),

hv,b(x) := 1[bxi/2c = b]
∑

(a̸=a′)∈[n)κ×[n)κ
hv\{i}(x|aa′)za(v, b)za′(v, b),

gv,b(x) := 1[bxi/2c = b]
∑

a∈[n)κhv\{i}(x|aa),

Weak hypothesis: h(x) :=
1

2k

∑
w⊂(k],|w|∈2Zhw(x) +

1

2k

∑
u⊂(k],|v|∈2Z+1

∑
b∈[n)hv,b(x),

Trace: g(x) :=
1

2k

∑
w⊂(k],|w|∈2Zgw(x) +

1

2k

∑
v⊂(k],|v|∈2Z+1

∑
b∈[n)gv,b(x).

biasf (D)− biasg(D) ≤ val(D)− biasg(D)
=
∑

w⊂(k],
|w|∈2Z

max
z
|Mw(z)|+

∑
v⊂(k],

|v|∈2Z+1

∑
b∈[n)max

z
|Mv,b(z)|

≤ 1

γg

∑
w⊂(k],|w|∈2Zbiashw(D) +

1

γg

∑
v⊂(k],|v|∈2Z+1

∑
b∈[n)biashv,b(D)

=
1

γg
biash(D) by Theorem5.8’s ratio γg :=

Ω(1)

log(nκ)
.

Boosting: Theorem5.7’s completeness proof has shown biash(D) ≥ γg(biasf (D) − biasg(D))
≥ γg(β − biasg(D)) for β ≈ 1

2s . Theorem3.3’s SmoothBoost turns this weak hypothesis h(x) =
hν(x) feeding D = Dν ∼ (Pν ◦ D)∗ to an ε-accurate hypothesis in the following manner. First
of all, we may assume |biasg(Dν)| ≤ ϵβ. Otherwise, SmoothBoost can feed g(x) or −g(x) for a
weak predictor. Take ν0 ≈ 2

ε((1−ϵ)βγg)2 and m� n⌈k/2⌉ · 2kk(ks lognε )2. It is much larger than the

44Charikar and Wirth’s Ω(1/ logn) approximation ratio is best possible [ABE+05, AMMN06, AN06].
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logarithm of the hypothesis size |{hν}ν | ≤
∏
w |rng(z(w))| ·

∏
u,b |rng(z(u, b))| ≤ 2

∑⌊k/2⌋
κ=1 ( k

2κ)n
κ ·

2n
∑⌊k/2⌋

κ=1 ( k
2κ+1)n

κ

, so the final majority vote enjoys UGEB by Chernoff bound parameter γ = 1:

UGEB:
∏
ν∈[ν0]

|{hν}ν | · e−
1
3
·εm ≤ 2ν0

∑⌊k/2⌋
κ=1 ( k

2κ)n
κ · 2ν0n

∑⌊k/2⌋
κ=1 ( k

2κ+1)n
κ

· e−
1
3
·εm = o(δ).

The overall learning time is ν0(
∑

w tsdp(n
|w|) +

∑
v,b tsdp(n

|v|)) ≤ ν0 · tsdp(nk) ·O(2kn).

Theorem 5.10 (PAC Learning planted s-term kDNF with white noise). The planted s -term kDNF

with white η-noise is PAC learnable from n⌈
k
2
⌉ ·O(( ks lognε(1−2η))

2) data in tsdp(n
k) ·O(2

kn
ε (ks logn1−2η )2)

time.

Proof. The white η-noise replaces β ≈ 1
2s to β ≈ 1−2η

2s . It changes Theorem5.9’s boosting’s ν0
in accordance, proving the claimed sample size and learning time complexities.

Verbeurgt [Ver90] reduced DNF learning to kDNF learning under the uniform distribution.
Verbeurgt’s reduction is extensible to an arbitrary distribution in smoothed analysis.

Lemma 5.11 (DNF to kDNF in the smoothed analysis [Ver90]). Learning a planted s-termDNF
expression f under any k-wisely ρ-dense flipper G reduces to learning its degree-k sub-formula
f̃ obtained by removing all terms longer than k:

No FPE: f(x) = 0⇒f̃(x) = 0.

Recall: PrG
[
f(G(x)) = 1, f̃(G(x)) = 0

]
≤ s/(2k+1ρ).

Proof. If f(x) is false, so are all its terms, hence so is f̃(x), implying No FPE. The k-wise
ρ-dense shift G bounds the recall of Review3’s DNF’s term fκ ∼=

∧
i∈fκ xi ⊕ fκi as

PrG[f(G(x)) 6= f̃(G(x))] = PrG[f(G(x)) = 1 ∧ f̃θ(G(x)) = 0]

≤ PrG[∃κ ∈ (s], |fκ| ≥ k + 1, fκ(G(x)) = 1]

= PrG[∃κ ∈ (s], |fκ| ≥ k + 1,∀i ∈ fκ, G(bxi/2c) = θ(bxi/2c)⊕ xi ⊕ fκi ⊕ 1] ≤ s/(2kρ).

Theorem 5.12 (Theorem1.1845). The planted s-termDNF is PAC learnable from any n⌈k/2⌉·
O
(
(k

2s logn
ε )2

)
data in tsdp(n

k)·O
(2kn(ks logn)2

ε ) time under any k-wisely s
2kδ

-dense uniform flipper.

Proof. Let Theorem5.9’s proof target only Lemma5.11’s short terms in choosing Theorem5.7’s
completeness’s f with significant biasf (D). Theorem5.11’s recall guarantees biasf (D) ≥

(
1−ϵ−

s
2kργ

)
/(2s) =

(
1− ϵ− ϵ

)
/(2s) for the assumed density ρ = s

2kδ
by Markov’s inequality parameter

γ = δ/ϵ with significance O(γ). Hence, Theorem5.12 reduces to 5.9.

Theorem 5.13 (PAC learning planted s-termDNF with white noise). The planted s-termDNF with

white η-noise is PAC learnable from any n⌈(k+1)/2⌉·O(( ks lognε(1−2η))
2) data in tsdp(n

k)·O(2
kn
ε (ks logn1−2η )2)

learning time under any k-wisely s
2kδ(1−2η)

-dense uniform flipper.

Proof. By reducing to Theorem5.12 in the same way as Theorem5.10 to 5.9.

45Set k = log 2s
δ

and 1
δ
= O(1). Take Lemma2.9’s 1

2
-dense dn-bit flipper of cardinality O(2kk log(dn)).
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6 Smoothed Complexity of Agnostic Learning AND functions

This section translates the so-far obtained PAC theorems in smoothed analysis to the correspond-
ing agnostic ones, i.e., PAC1–4 to Agn 1–4. Let us begin from Agn1 to review the current best
agnostic algorithm of learning plantedANDd. It owes to Kalai, Klivans, Mansour, and Servedio
[KOS04, KKMS08, BOW10], adopting ℓ1-norm regression to Ω(

√
d)-degree approximation of

ANDd = {f(x) :=
∧
i∈f xi ⊕ fi | f ⊂ (d], fi ∈ {0, 1}} [Pat92, NS94, TT99, KKMS08].

Theorem 6.1 (polynomial degree of AND.). The ANDd functions enjoy a low-degree point-wise

approximation ∀x ∈ {0, 1}n,
∣∣(−1)∧d

i=1 xi − fd(x)
∣∣ ≤ ε by fd(x) ∈ Q[x] of degree O(d1/2 log 1

ε ).

Theorem 6.2 ([KKMS08]). The plantedANDd is agnostically learnable from η-noisy data in

deterministic nO(d1/2 log(n/(1−2η))) time.

Proof. Apply Theorem6.1 to err(D) ≤ η of the target
∧d
i=1 xi function, giving a rational poly-

nomial fd of degree d = O(d1/2 log 1
ε ) to bound 1

m

∑m
j=1 |fd(θ ◦ x(j)) − (−1)y(j)| ≤ η + ε.

Theorem5.1 can solve this LP with n′ =
∑d

k=0 n
k
(
d
k

)
variables in t = O

(
m1.5n′ log(n′/ε)

)
time

by O(log(n′/ε))-bit precision. The ℓ1-norm regression chooses a hypothesis h = (sgn(fd(θ ◦x)−
t) + 1)/2 for an appropriate threshold t ∈ [−1, 1] to become a weak empirical learner achieving
errh(D) ≤ η + ε+ o(ε) [KKMS08]. Sufficiently many examples m = O

(
ε2/η · n′ log(n′/ε)

)
turn

this weak learner of description length O(n′ log(n′/ε)) to an actual one P (y 6= h(x)) ≤ η + ε by
Chernoff bound parameter γ = ε/η with significance:

UGEB: 2O(n′ log(n′/ε)) ·
(
e−γ

2/(2+γ)·η|D| · 1[η > ε] + e−γ/3·η|D| · 1[0 < η ≤ ε]
)
= o(δ′).

6.1 Agnostic Learning versus Refutation

Theorem3.4’s reduction from refutation to PAC learning is extensible to agnostic one by coop-
erating with agnostic boosting [BDLM01, KS05, KK09, Fel10].

Theorem 6.3 (agnostic boosting [Fel10]). If η′-noisy F is (1/2−α)-learnable with significance
δ′ for η ≤ ∀η′ ≤ 1/2− ε, then it is (η+ 2ε)-learnable with significance O(δ′/α2) under the same
variate distribution P (x) by calling the (1/2−α)-learner for c6.3/α2 times. If the (1/2−α)-learner
runs in t time, then the (η′ + 2ε)-learner in O(t/α2 + 1/ε2) time.

Theorem 6.4 (noisy refutation to agnostic learning). Let δ6.4 :=
δ

m4 log3m log m
δ

. If η′-noisy F is

refutable for any η ≤ η′ ≤ 1/2− ε with significance O(δ6.4) from m data in t time, η-noisy F is
agnostic learnable from m2 ·O(log m

δ log 1
δ ) data in m4 t ·O

(
log3m log m

δ

)
+O( 1

ε2
) learning time.

Proof. Theorem3.4’s weak learning can provide Theorem6.3’s agnostic booster a weak-learner
performing well under the same variate (but possibly different covariate) distribution with the
unknown target. For α ≈ 1

m , ν0 = c6.3/α
2, κ0 � ( logmα )2 log ν0 logm

δ , m̃ � ( 1α)
2 log ν0

δ and
m̃′ � m̃

ε log 1
δ , Theorem3.4’s boosting on the agnostic booster spends m̃′ data, runs in ν0κ0 logm·

O(t/α2) +O(1/ε2) time, and succeed with significance level ν0κ0 logm ·O(δ6.4) = O(δ).

Theorem 6.5 (noisy refutation to agnostic learning in smoothed analysis). If η′-noisy F is
refutable for any η ≤ η′ ≤ 1/2 − ε with significance O(δ26.4/δ), η-noisy F is agnostic learnable
under any shift in the same way as Theorem6.4.

Proof. It reduces to Theorem6.4, as Theorem3.6 to 3.4.

37



6.2 Proof Theoretic Hardness of Agnostic Learning AND functions

Section 4 relied on Theorems 4.3 and 4.6 of PAC learning hardness. Similarly, the current
section will depend on Theorem6.8 below of agnostic learning hardness. It is an extension of
Theorem4.6 for weak refutation to a strong one.

Definition 6.6 (bounded expansion). A CSP instance G = (I t J , E) is r-bounded (d, t)-
expanding if the number of edge-induced (d, t)-expanding subgraphs are bounded by r:

r-bounded
(d, t)-expansion:

∣∣∣{(u t v, w) | ∅ 6= w ⊂ E , u t v = E [w], (∀j, j ∈ u⇒|w[j]| ≥ t),
|u| ≤ d, |v| ≤ |w| − (t/2− ζ)|u| − (t− 1)/2

}∣∣∣ ≤ r.
Lemma 6.7 (RCSP is bounded expanding [KMOW17]). For 3 ≤ t = Ω(k) and d� |I|

k∆2/(t−2−2ζ) ,
any kCSP instance G of the uniform random E and density ∆� 1 must be

r-bounded (d, t)-expanding: Pr
[
G is |I|

1
2
+ζ∆-bounded (d, t)-expanding

]
≥ 1− ϵ′k.

Proof. Theorem4.10’s analysis can count the expanding subgraphs:∑
∅≠w⊂EPrE

[
v = J [w], u = I[w], |v| ≤ d, |u| ≤ k|v|, |u|+ (

t

2
− ζ)|v| − t− 1

2
≤ |w| ≤ k|v|

]
<
∑

|v|,|u|,|w|

(
e
2+

|u|
|v| (
|u||w|
|v|2

)(
|u|
|I|
)
t
2
−ζ−1∆

)|v|
(
|u|
|I|
)−

t−1
2

<
∑

|v|,|u|,|w|

(
k2e2+k(

|u|
|I|
)
t
2
−ζ−1∆

)|v|−1 · k2e2+k( |u|
|I|
)−ζ−

1
2∆

⋆
<
∑

|v|,|w|
∑

|v|≥2
e2+kk2|v|2|I|

1
2
+ζ∆ ·

(
k2e2+k

(
kd∆

2
t−2−2ζ /|I|

) t
2
−ζ−1)|v|−1

< 4k6e4+2k|I|
1
2
+ζ∆

(
kd∆

2
t−2−2ζ /|I|

) t
2
−ζ−1

= ϵ′k|I|
1
2
+ζ∆.

The right-hand side of
⋆
< does not count |v| = 1 since the case |v| + ( t2 − ζ)|v| −

t−1
2 − |w| =

|v|+(t/2− ζ) ·1− t−1
2 −|v| = 1/2− ζ > 0 never happens in Definition 6.6’s expansion. Markov’s

inequality parameter γ = ϵ′k on this expectation derives Lemma6.7’s bounded expansion.

Theorem 6.8 (SoS hardness of bounded-expanding CSP’s refutation [KMOW17]). For any r-
bounded (d, t)-expanding CSP instance G with ∀j ∈ J , |I[j]| ≤ ζd, and any integers 2 ≤ t−1 ≤
t′, there exists J ′ ⊂ J with |J ′| ≈ |J | such that for any t′-uniform variable Xj ∈ {0, 1}I[j],

SoS hardness
on bounded expansion: degSoS

[
unsatG(x) >

1

|J |
∑

j∈J ′PrXj [Xj 6∈ Sj ] + |J | − |J ′|
|J |

]
≥ ζd

3
.

Theorem 6.9 (Theorem1.19). For 2 ≤ d ≤ log(1/ε)− O(1) and 0 ≤ η ≤ 1/2− O(ε), agnostic
learning the η-noisy canonical plantedAND class {

∧d
i=1 θ ◦ xi | θ ∈ {0, 1}n} under the uniform

distribution demands either sample size Ω
(
n(1−ϵ)d/2

)
or SoS degree Ω(nϵ).

Proof. Remake Theorem4.15’s proof to derive a contradiction to Theorem6.8’s SoS hardness
from the assumption degSoS[errθ(D) > η] < ζd/3 := nϵ. Let us learn a joint-distribution
P (x, f(x)) having the uniform variate P (x) = 1/(2n)d and the white-η̃-noisy covariate:

White noisy constraint sampler: η̃P (x)⊗ |x, 0〉+ η̃P (x)⊗ |x, 1〉+ (1− 2η̃)P (x, f(x))|x, f(x)〉

of f(x) =
∧d

i=1
θ ◦ xi and η̃ := η + (c+ ϵ)ε ≤ 1

2
− Ω(ε).

This mixture draws a data (Xj , Yj) ∼ D by first throwing the (η̃ : η̃ : 1 − 2η̃)-biased dice Bj ∈
{0, 1, 2} and then sampling the example from P (x)⊗|x, 0〉, P (x)⊗|x, 1〉 and P (x, f(x))|x, f(x)〉
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when Bj = 0, 1, 2, respectively. Lemma3.2’s UGEB has shown by Pr[errθ(D) ≤ η + cε] <

|{0, 1}n|e−γ2/2·η̃m < o(δ), so Definition 2.1 obliges the SoS learner to prove errθ(D) > η. Simi-

larly, the hitting sets Jb := {j | Bj = b}must have cardinality ∀b, | |Jb|
m −η̃| ≤ ϵεη̃ with significance

2e−
γ2

3
·η̃m = o(δ) by Chernoff bounds of γ = ϵε/η̃. The Jb with b = 0, 1 induce CSP instances

Gb =
(
I t Jb, E ,Sb

)
of the uniformity t = d:

Factor
Graph: I = [n) and E = {(j, bxi(j)/2c) | i ∈ (d], j ∈ Jb}, J ′

b ⊂ Jb for |J ′
b | ≥ |Jb| − n

− 1
2
+ζ |Jb|.

Solution
spaces : S1,j = {(xi(j)⊕ 1)di=1} and S0,j = {0, 1}I[j] − S1,j .

Unif
-ormity: Take (d− 1)-uniform variable Xb,j with Pr[X0,j ∈ S0,j ] = 1 and Pr[X1,j ∈ S1,j ] = 1

2d−1 .

These CSP instances Gb appeal |I|
k(

|Jb|
n

)2/t−2−2ζ
≥ n

kn((d−2)(1−ϵ)/2−ϵ)(2/d−2−2ζ) � d to Lemma6.7’s

SoS hardness of bounded expansion, yielding a contradiction:

∀b ∈ {0, 1}, ζd/3 ≤ degSoS

[
unsatGb

(x) >
1

|Jb|
∑

j∈J ′
b

PrXb,j
[Xb,j 6∈ Sb,j ] +

|Jb| − |J ′
b |

|Jb|

]
⇒

ζd/3 ≤ degSoS

[
errθ(D) =

∑1

b=0

|Jb|
m

unsatGb
(x) >

∑1

b=0

(∑
j∈J ′

b
Pr[Xb,j 6∈ Sb,j ]

m
+
|Jb| − |J ′

b |
m

)]
≤ degSoS

[
errθ(D) > η̃(1− 1

2d−1
) + 2η̃n−

1
2
+ζ + 2ϵεη̃

] ⋆

≤ degSoS

[
errθ(D) > η

]
<

ζd

3
.

⋆

≤: d ≤ log
1

ε
−O(1) ⇒ η̃(1− 1

2d−1
) + 2η̃n−1/2+ζ + 2ϵεη̃ < η.

Theorem 6.10 (Theorem1.20). For d ≥ 2 and 0 ≤ η ≤ 1/2 − O(ε), agnostic learning the
η-noisy canonical parity function class {

⊕d
i=1 θ◦xi | θ ∈ {0, 1}n} under the uniform distribution

demands either sample size Ω
(
n(1−ϵ)d/2

)
or SoS degree Ω(nϵ).

Proof. As in Theorem6.9, take CSP instances Gb = (I tJb, E ,Sb) of the (d−1)-uniform random
variable Xb,j ∈ Sb,j = {x ∈ {0, 1}d |

⊕d
i=1 xi = b⊕

⊕d
i=1 xi(j)}, yielding

ζd/3 ≤ degSoS

[
errθ(D) > 2η̃n−1/2+ζ + 2ϵεη̃

] ⋆

≤ degSoS

[
errθ(D) > η

]
< ζd/3,

where
⋆

≤ by η(1 + (c+ ϵ)ε/η)(2n−1/2+ζ + 2ϵε)� η.

Theorem 6.11 (Theorem1.2246 for AND function under flippers). For 0 < c < 1, let t6.11 :=
cd

1+log e+1.725 log((1+log e)/c) ≥ 3 (i.e., t6.11 = t4.13(k←d)). For 0 < c < 1, 2 ≤ d ≤ 1
c log

1
ε −O(1) and

Ω(1) ≤ η ≤ 1/2−O(ε), agnostic learning the η-noisy plantedAND class {
∧d
i=1 θ◦xi | θ ∈ {0, 1}n}

under the uniform distribution shifted by any flipperG of H∞(G) = (1−c)d requires either sample
size Ω

(
n(1−ϵ)t6.11/2

)
or SoS proof of degree Ω(nϵ).

Proof. Adjust Theorem6.9’s argument to take the shifted solution space as in Theorem4.14,
i.e.,

Solution
spaces : S1,j =

{(
g(bxi(j)2 c)⊕ xi(j)⊕ 1

)d
i=1
| Pr[G = g] > 0

}
and S0,j = {0, 1}I[j]\S0,j ,

Unif
-ormity: Pr[X0,j ∈ S0,j ] = 1 and Pr[X1,j ∈ S1,j ] ≥ max {Pr[X ∈ S1,j ] | X is t-uniform} ≥ 1− 1

2cd
.

46By d = 1
c
log(1/ε)−O(1) and replacing 1

c
− 1 7→ c.
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Let t = t6.11 of Theorem4.14. Since |S1,j | = 2(1−c)d and Lemma4.12’s cosets disjointly cover S1,j ,
Lemma4.12 presents t-uniform random variables Xb,j , deriving a contradiction to Theorem6.8:

ζd

3
≤ degSoS

[
errD(x) > η̃(1− 1

2cd
) + 2η̃n−

1
2
+ζ + 2ϵεη̃

]
≤ degSoS

[
errD(x) > η

]
<

ζd

3
.

Theorem 6.12 (Theorem1.22). For 0 < c < 1, 2 ≤ d ≤ 1
c log(1/ε) − O(1), and Ω(1) ≤

η ≤ 1/2−O(ε), agnostic learning η-noisy, agnostic learning the η-noisy canonical plantedAND
{
∧d
i=1 θ ◦ xi | θ ∈ {0, 1}dn} under the uniform distribution perturbed by any shift of H∞(G) =

(1− c)d demands either sample size Ω
(
( n
4(1−c)d )

(1−ϵ)t6.11/2
)
or SoS proof of degree Ω

(
( n
4(1−c)d )

ϵ
)
.

Proof. A reduction to Theorem6.11 by the same adversary reducing Theorem4.17 to 4.15.

6.3 Agnostic Learning AND functions

Theorem 6.13 (refuting η-noisy kAND). For k ≥ 2, the planted kAND is refutable from any

η-noisy nk/2 ·O( (k logn)
3

(1−2η)5
) data in tsdp(n

k) ·O(2kn) time.

Proof. Changing β ≈ 1
2s to (1 − 2η)/2 in Theorem5.7’s completeness analysis proves Theo-

rem6.13 since the target AND function f is a single-term planted kDNF satisfying 1 − 2η =
E[(−1)Y ] + 2biasf (D) over the data distribution (X,Y ) ∼ D, where η := Pr[Y 6= f(X)].

Theorem 6.14 (refuting η-noisy planted kXOR). For k ≥ 2, the planted kXOR is refutable

from any η-noisy nk/2 ·O( (k logn)
3

(1−2η)5
) data in tsdp(n

⌊ k−1
2

⌋) ·O(n) time.

Proof. Adapt Theorem5.7’s bias measurement to the canonical kXOR function f =
⊕k

i=1 θ ◦xi:

Bias measurement: biasf (D) := 1
m

∑m
j=1(−1)y(j)+11[f(x(j)) = 1] =

∑
a∈[n)k M̂(a)

∏k
i=1(−1)θ(ai),

Fourier coefficients: M̂(a) = 1
m

∑
j:⌊xi(j)/2⌋ki=1=a

(−1)y(j)+1
∏k
i=1(−1)xi(j)+1.

Theorem5.7’s computational complexity analysis brings Theorem6.14’s running time since the
above bias measurement fixes w = (k] rather than running over w ⊂ (k].

Theorem 6.15 (Theorem1.21 for kAND). For k ≥ 2, the planted kAND is agnostically learn-
able from any η-noisy n⌈k/2⌉ ·O

(
( k logn
ε(1−2η))

2
)
data in tsdp(n

k) ·O
(
2kn(k logn1−2η )

2
)
learning time.

Proof. Build Theorem5.9’s weak hypothesis from Theorem6.13’s refuter and apply Theorem6.3’s
agnostic boosting. For β ≈ (1− 2η)/2, ν0 = c6.3

(βγg/2)2
, m� n⌈k/2⌉ ·O

(
( k logn
ε(1−2η))

2
)
, Theorem5.9’s

UGEB holds, and Theorem6.3’s agnostic boosting finishes within ν0 · tsdp(nk) ·O(2kn) time.

Theorem 6.16 (Theorem1.21 for planted kXOR). For k ≥ 2, the planted kXOR is agnostically
learnable from any η-noisy n⌈k/2⌉ ·O

(
( k logn
ε(1−2η))

2
)
data in tsdp(n

k) ·O
(
n(k logn1−2η )

2
)
learning time.

Proof. Apply Theorem6.3’s agnostic boosting to Theorem6.14’s refutation as Theorem6.15’s
argument did to Theorem6.13’s one.

Theorem 6.17 (Theorem1.21). For k ≥ 2, the planted kJUNTA is agnostically learnable from

any η-noisy n⌈k/2⌉ ·O
(
(2

kk logn
ε(1−2η) )

2
)
data in tsdp(n

k) ·O
(
2kn(2

kk logn
1−2η )2

)
time.

Proof. Adjust Theorem6.15’s one to target an exclusive OR of at most 2k terms, one of which
must have the completeness’s threshold β ≈ 1−2η

2·2k , deducing the claimed complexities.
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Theorem 6.18 (Theorem1.2347). For k ≥ 2, the plantedAND is agnostically learnable from
any η-noisy n⌈k/2⌉ ·O

(
( k logn
ε(1−2η))

2
)
data in tsdp(n

k)·O
(
n(k logn1−2η )

2
)
learning time under any k-wisely

O( 1
2kδ(1−2η)

)-dense uniform flipper.

Proof. A reduction to Theorem6.15 as 5.12 to 5.7, since Lemma5.11’s recall guarantees biasf (D)
≥ β− 1

2k+1ργ
≈ β for β ≈ (1−2η)/2 and ρ� 1

2kβδ
by Markov’s inequality parameter γ = δ/ϵ.

6.4 Approximate promise-MaxCSP.

This section translates Section 6.3’s Theorems to those for approximating promise-MaxCSP.

Definition 6.19 (approximation of promise-MaxCSP). The (βcmp, βsnd)-gap (or △-gap, △:=
βcmp − βsnd) approximation of promise-MaxCSP assumes either acc(P ) = βcmp > βsnd = acc(P ′)
or P = P ′ must hold of the two unknown samplers P and P ′ of MaxCSP’s constraints. It asks
to discern which is the case by observing the i.i.d. outcomes D ∼ Pm and D′ ∼ P ′m as follows:

Verifiable Completeness: Show a witness to verify48 |acc(D)− acc(D′)| ≤ 3
4△→ P = P ′.

It attaches proof-theoretic refutation demand to the previous models. It covers Feige’s
(resp. Barak, Kindler, and Steurer’s) hypothesis [Fei02] (resp. [BKS13]) by taking Pcmp and Psnd
over kCNF’s (resp. kJUNTA’s) satisfiable versus random constraints and Alekhnovich’s hypoth-
esis [Ale11] by LPN’s random ones of Hamming-distance noise k versus k + 1. Moreover, it
involves distinguishment problems between “malicious” ω(m) constraints D̃ and D̃′ with a slight
difference acc(D̃)− acc(D̃′) = ϵ by taking empirical distributions to draw m i.i.d. constraints D
and D′ from D̃ and D̃′, respectively.

Theorem 6.20 (Theorem1.24). Any gap approximation of the promise-MaxkSAT under a

marginally uniform distribution requires either Ω(n
1−ϵ
2
k) constraints or Ω(nϵ) SoS-degree.

Proof. A reduction to Theorem6.9 by filtering m� n
1−ϵ
2
k positive data Gκ for κ ∈ {cmp, snd}:

Positive constraint sampler
(discard negative examples): ηκP (x)|x, 1〉+ (1− ηκ)P (x, f(x))|x, f(x)〉

of f =
∨k

i=1
θ ◦ xi and 1− 1/2k

ηκ + (1− 1/2k)(1− ηκ)
= βcmp · 1[κ = cmp] + βsnd · 1[κ = snd].

This mixture joint-distribution has the claimed accuracies βκ since P (f(x) = 0) = 1/2k.
The 2m outcomes emitted from a mixture source G := Gcmp ⊗ | + 1〉 t Gsnd ⊗ | − 1〉 must
take the weighted accuracy gap acc(Gcmp) − acc(Gsnd) ≤ (1 + ϵ)(βcmp − βsnd) with significance

e
− γ2

2+γ
·(βcmp−βsnd)m < o(δ) by Chernoff bound of γ = ϵ△

βcmp−βsnd . Definition 6.19’s verifiable com-

pleteness obliges to prove degSoS

[
|acc(Gcmp)− acc(Gsnd)| = errθ(G) ≥ 3△

4

]
≤ ζd/3 := nϵ, a con-

tradiction against Theorem6.9’s CSP instances Gκ := (I t Jκ, E ,S). Here Jκ = {(xκ(j), 1)}j
collects the only m positive examples emitted from the positive constraint sampler, and Sκ,j =
{0, 1}I[j] − {(xκ,i(j) mod 2)ki=1}. Take (k − 1)-uniform random variables Xκ,j ∈ Sκ,j .

ζd/3 ≤ degSoS

[
errθ(G) ≥

∑
κ∈{cmp,snd}sκ

|Jκ|
2m

(1− unsatGκ(x))
]

(where sκ := (−1)1[κ=cmp])

≤ degSoS

[
errθ(G) ≥ 1 + ϵ

2
(βcmp − βsnd) +

∑
κ

(sκ∑j∈J ′
κ
Pr[Xκ,j 6∈ Sκ,j ]
2m

+
|Jκ| − |J ′

κ|
2m

)]
≤ degSoS

[
errθ(G) ≥ 1 + ϵ

2
△ +n−

1
2
+ζ
]
≤ degSoS

[
errθ(G) ≥ 3△

4

]
<

ζd

3
.

47Set k = log ϵ
(1−2η)δ

. Take Theorem2.9’s 1
2
-dense dn-bit flipper of cardinality O(k2k log(dn)).

48The verifiable-completeness threshold 3
4
△ could be any c△ between 1/2 < c < 1.
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Theorem 6.21 (Theorem1.25). Any gap approximation of the promise-MaxkXOR under a
marginally uniform distribution demands either Ω

(
n(1−ϵ)k/2

)
constsrints or Ω(nϵ) SoS-degree.

Proof. A reduction to Theorem6.10 by letting MaxkXOR approximate P = Pcmp⊗|+1〉tPsnd⊗
| − 1〉 drawn from the following mixture and deriving a contradiction as in Theorem6.20:

Positive-constraint sampler
(discard negative examples): ηκP (x)⊗ |x, 0〉+ (1− ηκ)P (x, f(x))|x, f(x)〉,

where
1/2

ηκ + (1/2)(1− ηκ)
= βc · 1[κ = cmp] + βsnd · 1[κ = snd].

Theorem 6.22 (Theorem1.2749). At e(G) = (1− c)k for 0 < c < 1, any gap approximation of
the promise-MaxkSAT under a marginal uniform distribution shifted by any flipper G requires
either Ω

(
n(1−ϵ)t4.13/2

)
constraints or Ω

(
nϵ
)
SoS-degree .

Proof. A reduction to Theorem6.20, like Theorem6.11 to 6.9.

Theorem 6.23 (Theorem1.26 for promise-MaxkSAT). The promise-MaxkSAT is △-gap ap-
proximable by any nk/2 ·O

(
(k log n)3/△5

)
constraints in tsdp (nk) ·O(2kn) time.

Proof. Feed the difference of the i.i.d. random outcomes to Theorem5.7’s completeness proof in
the following manner, instead of Definition 3.1’s random-label dataset U . Draw D ∼ Pm(x, y)
and D′ ∼ P ′m(x, y) and measure their bias difference |biasf (P, P ′)| = | 1m

∑
(x,y)∈D′ 1[f(x) =

1]− 1
m

∑
(x′,y′)∈D′ 1[f(x′) = 1]|. Theorem5.7’s bias measurement on the random outcomes from

a mixture X⊗|Y 〉 ∼ 1
2P (x)⊗|+1〉+ 1

2P
′(x)⊗|−1〉 distinguishes between |biasf (Pcmp, Psnd)| ≈△

(or larger) versus |biasf (P, P )| ≈ 0. The former produces Theorem6.13’s completeness proof by
replacing 1− 2η therein with △= βcmp − βsnd, and the latter Theorem5.7’s soundness one.

Theorem 6.24 (Theorem1.26 for promise-MaxkXOR). The promise-MaxkXOR is △-gap ap-
proximable by any nk/2 ·O

(
(k log n)3/△5

)
constraints in tsdp(n

k) ·O(n) time.

Proof. Adjust Theorem6.23’s argument to Theorem6.14’s bias measurement.

Theorem 6.25 (Theorem1.26). The promise-MaxkCSP is △-gap approximable by any nk/2 ·
O
(
(k log n)3 25k/△5

)
constraints in tsdp(n

k) ·O(2kn) time.

Proof. Replace Theorem6.23’s completeness’s threshold to β ≈△ /2k instead of △ as we did in
Theorem6.17’s one since the target predicate is an exclusive OR of (at most) 2k terms.

Theorem 6.26 (approximating promise-MaxSAT). The promise-MaxSAT is △-gap approx-
imable by any nk/2 · O

(
(k log n)3/△5

)
constraints in tsdp(n

k) · O(2kn) time under any k-wisely
O( 1

2kδ△)-dense uniform flipper.

Proof. A reduction to Theorem6.23 as 6.18 to 6.15 via 5.11.

49k = (c+ 1) log 1
2ε

implies βsnd ≥ 1− 1/2k ⇔ βsnd ≥ 1− (2ε)c+1.
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7 Inverting Planted Functions in Smoothed Analysis

We have so far confirmed that efficiently PAC learning the planted kDNF took Ω(n(1−ϵ)k/2)
data necessary for the uniform distribution, and Ω̃(n⌈k/2⌉) data sufficient for any distribution.
It was so for agnostic learning the planted kJUNTA, approximating MaxkSAT, and refuting
kSAT, too. However, previous works have already broken this nk/2 barrier under the uniform
distribution [CM01, Vio05, MST06, BQ12, ABR16, LV17], e.g., inverting kCSP in O(nk/3) time
by analyzing the correlation E[(−1)

∑
i∈wXi+Y | ∀i ∈ w, bXi/2c = ai] on a location (or place)

(w, a) ∈
(
d
k

)
× [n)k under the uniform random X ∼ [2n)k [App16]. Our smoothed analysis

will work under any distribution to make the correlation analysis invert the monotoneDNF
in only Õ(n) time. Moreover, the correlation analysis on larger min-entropy can invert even
non-monotone functions approximated by low-degree polynomials over Fp.

7.1 Inverting Monotone DNF

The correlation analysis of the uniform random data can learn monotoneDNF [KLV94, SM00,
Ser04, Fel12], monotone Boolean functions [BT96, OS07], monotone JUNTA [MOS04], halfspaces
[TTV09, OS11, DDFS14], and LPN [Val15]. We will extend them to any pairwise dense data
distribution to learn monotoneDNF via approximate inclusion-exclusion [LN90, KLS96, TT99].

Definition 7.1 (approximating inclusion-exclusion of monotoneDNF). For a monotoneDNF
expression f =

∨
κ∈f fκ of fκ :=

∧
i∈fκ xi, write f∨w :=

∨
κ∈w fκ and f∧w :=

∧
κ∈w fκ. Inclusion-

exclusion expands logical expressions f ≡ b, f ′ ≡ b′ of DNF f, f ′, and b, bf , b
′ ∈ {0, 1} as

Inclusion-Exclusion
(IE) : iec(f ≡ b) :=

∑c−1
|w|=b

∑
w⊂f (−1)|w|+bf∧w.

Doubled
Inclusion-Exclusion: iec(f ≡ b, f ′ ≡ b′) :=

∑
|w∪w′|≤c−1,
b≤|w|,b′≤|y′|

∑
w⊂f,
w′⊂f ′

(−1)|w|+|w′|+b+b′(f∧w ∧ f ′∧w′).

(Inclusion-Exclusion
on average : µc(f ≡ b) :=

∑c−1
|w|=b

∑
w⊂f(−1)|w|+b2−|f∧w|.

Doubled IE
on average: µc(f ≡ b, f ′ ≡ b′) :=

∑
|w∪w′|≤c−1,
b≤|w|,b′≤|w′|

∑
w⊂f,
w′⊂f ′

(−1)|w|+|w′|+b+b′2−|f∧w∪f ′∧w′ |.

The IE of tripled DNF formulas f ≡ b, f ′ ≡ b′, f ′′ ≡ b′′ develops in the same manner. Observe
that if x ∈ {0, 1}d satisfies c′ − 1 ≥ c terms of f , its contribution to iec′(f ≡ b) − iec(f ≡ b) is

|
∑c′−1

κ=c (−1)κ
(
c′−1
κ

)
| = |

∑c−1
κ=0(−1)κ

(
c′−1
κ

)
| =

(
c′−2
c−1

)
, which we call the truncated coefficient of x.

Its contribution to iec′(f ≡ b, f ′ ≡ b′)− iec(f ≡ b, f ′ ≡ b′) is the same amount
(
c′−2
c−1

)
, once the

x satisfies c′ − 1 terms of f ∪ f ′.

Definition 7.2 (ρ-spread). A random vector X ∼ ∏d
i=1Si is ρ-spread with significance δ if

ρ-spread: ∀S ⊂
∏d

i=1
Si,∀i, |{xi ∈ Si | x ∈ S}|/|Si| ≤ ρ⇒Pr[∀i,Xi 6∈ S ∩ Si] ≥ 1− δ.

Lemma 7.3. Any 1-wisely ρ-dense random vector is δρ
d(1−δ+δ2/2) -spread with significance δ.

Proof. Suppose ∀i, |S∩Si|
|Si| ≤

δρ
d(1−δ+δ2/2) . Lemma2.5’s LLL at αi = δ/d applies to

Pr[Xi ∈ S ∩ Si] ≤ |{xi ∈ Si | x ∈ S}||Si|ρ
≤ δ

d(1− δ + δ2/2)
< pi(1− pi)d−1

of dependent n events Xi ∈ S ∩ Si, deriving Pr[∀i,Xi 6∈ S ∩ Si] ≥ (1− pi)d > 1− δ.
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Definition 7.4 ((α, β)-inversion). We say that a randomized algorithm A (α, β)-inverts {f}
planting θ ∈ {0, 1}dn on data (X,Y ) ∼ D if it can retrieve the hidden parameter θi(a) of any
α-heavy β-correlated place (i, a) ∈ (d]× [n) as follows, where δinv := δ/d.

Correlation: corri(D) = corri(X,Y ) := E[(−1)Xi+Y ]− E[(−1)Xi ]E[(−1)Y ].
Invariance: 0 < ∃µi < 1, ∀(i, a),

∣∣|corri(D)| − µi∣∣� β.

(α, β)-inversion: PrD,A

[
Pr[bXi/2c = a] ≥ α/n ∧ |corri(D)| ≥ β

⇒A(D, i, a) = θi(a)

]
≥ 1−O(δinv).

Algorithm1 (α, β)-inversion of monotoneDNF

Given data (X,Y ) ∼ D and a query (i, a) (an index-attribute pair to invert).

1: Filter D to (Xi,a, Yi,a) ∼ Di,a := {(x, y) ∈ D | bxi2 c = a}. If |Di,a|
|D| < α

n , then return ?.

2: Compute the data’s output bias E[(−1)Yi,a ] (or use the already computed value).
3: Compute corri(Xi,a, Yi,a) and return zero if it is ≥ β, one if ≤ −β, and ? otherwise.

Theorem 7.5 (inverting canonical DNF). Let β7.5 := max
( (sc)
2ck−1δinv

, ( ks
αδ4invρn

)1/2
)(
s−2
c−1

)
. Suppose

β7.5 ≤ β � 1. Algorithm1 can (α, β)-invert the canonical plantedDNF {
∨s
κ=1

∧k
i=1 θi+κk◦xi+κk |

θ ∈ {0, 1}ks} from any noise-free n·O
((
s−2
c−1

)2
/(αβ2δ3inv)

)
data with pairwisely ρ-dense attributes

under any ϵβ-away 2ck-independent flipper over {0, 1}ksn.

Proof. Definition 7.1’s IE calculates Definition 7.4’s corri(Di,a) and exhibits Algorithm1’s in-
version performance. For the target canonical DNF expression f =

∨s
κ=1

∧
i∈fκ xi, write f−κ :=∨

κ′∈(s]\{κ} fκ′ and fκ−i =
∧
i′∈fκ−{i} xi′ . They express the relevance and irrelevance of xi to f

by frel,i := fκ−i ≡ 1 ∧ f−κ ≡ 0, fir0 := fκ−i ≡ f−κ ≡ 0, and fir1 := f−κ ≡ 1 as follows. Let
µ(f ≡ 1) := 2−|f |, µ(f ≡ 0) := 1− 2−|f |, µc := µc(fir0)− µc(fir1), and µi := µc(frel,i).

Relevance,
irrelevance

: frel,i ≡ 0⇒f ≡ xi, fir0 ≡ 0⇒f ≡ 0, and fir1 ≡ 1⇒f ≡ 1.

rel+ir0+ir1
decomposition: 1[frel,i] + 1[fir0] + 1[fir1] = 1.

Averages: µc(frel,i) = µ(fκ−i ≡ 1)µc−1(f−κ ≡ 0), µc(fir0) = µ(fκ−i ≡ 0)µc(f−κ ≡ 0),
µc(fir1) = µc−1(f−κ ≡ 1), and E[(−1)Yi,a ] ≈ µc.

Claim: If G is perfectly 2ck-independent and Di,a = {
(
G(x(j)), y(j)

)
}
j
satisfies the disjointness,

the other four assertions must hold with high confidence.

Disjointness: ∀(j 6= j′),∀(i′ 6= i), bxi(j)/2c = a ∧ bxi′(j′)/2c 6= bxi′(j′)/2c.
Low degree: (∀w, |w| ≥ c), f−κ,∧w

(
θ ◦G(x(j))

)
≈ 0.

Relevance: PrG[f−κ
(
θ ◦G(x(j))

)
= b] ≈ µc(f−κ ≡ b).

Correlation
on shift : EG[corri

(
G(x(j)), y(j)

)
] ≈ (−1)θi(a)µi.

Correlation
on data : EJ,G[corri(G(x(J)), y(J))] ≈ (−1)θi(a)µi.

Low-degree: Since every term contains k (or k− 1 in fκ−i) variables in a disjoint manner, the
ck-independence of G over the first ck − 1 variables xi′ of (fκ−i ∨ f−κ)∧w evaluates

Pr[¬low-deg(θ ◦G(x(j)))] ≤ Pr
[
(∃w, |w| ≥ c), ∀i′ ∈ f−κ,∧w, θi′ ◦G(xi′(j)) = 1

]
≤
(
s

c

)
/2ck−1.
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Relevance: The inclusion-exclusion formula of f−κ ≡ b under low-deg approximates∣∣∣Pr[f−κ(θ ◦G(x(j))) = b]− µc(f−κ ≡ b)
∣∣∣

=
∣∣∣Pr[f−κ(θ ◦G(x(j))) = b]− E[iec(f−κ ≡ b)(θ ◦G(x(j)))]

∣∣∣ ≤ (
s− 2

c− 1

)
Pr[¬low-deg

(
G(x(j))

)
].

The first equality stands on the ck-independence of G. The second one bounds the truncation
error of iec at x

′ = θ ◦G(x(j)) by Pr[¬low-deg(x′)] times the truncated coefficient
(
s−2
c−1

)
of x′.

Correlation on shift: The relevance on the rel+ir0+ir1 cover yields∣∣∣E[(−1)G(xi(j))+f
(
θ◦G(x(j))

)
]− E[(−1)G(xi(j))]µ− (−1)θi(a)µi

∣∣∣ =∣∣∣∣∣(−1)
θi(a)

(
Pr[frel,i(θ ◦G(x(j)))]− µc(frel,i)

)
+ E[(−1)G(xi(j))]

∑1

b=0
(−1)b

(
Pr[firb(θ ◦G(x(j)))]− µc(firb)

)∣∣∣∣∣ ≤ 3
(
s− 2

c− 1

)
Pr[¬low-deg

(
G(x(j))

)
].

Correlation on data: Averaging the correlation over the shifted data G(x(J)) has a bound

E
[∣∣∣EJ [(−1)G(xi(J))+f(θ◦G(x(J)))]− EJ [(−1)G(xi(J))]µ− (−1)θi(a)µi − Z̄

∣∣∣]
≤ 3

(
s− 2

c− 1

)
EJ
[
Pr[¬low-deg(G(x(J)))]

]
for Z̄ := EJ

[
(−1)θi(a)Z̄rel,i(G(x(J))) + (−1)G(xi(J))

∑1

b=0
(−1)bZ̄irb(G(x(J)))

]
,

Z̄κ(x) = Ẑκ(x)− µc(fκ), and Ẑκ(x) = iec(fκ)(θ ◦ x) of κ ∈ {rel, ir0, ir1}.

They have the zero-mean E[Z̄κ(G(x(J)))] = 0. The 2k-independence of G under the disjointness
makes them mutually perpendicular as E[Z̄κ(G(x))Z̄κ′(G(x′))] = 0 between x 6= x′. Thus,

E[Z̄2] =
1

m2

∑m

j=1
E
[(
(−1)θi(a)Z̄rel,i

(
G(x(j))

)
+ (−1)G(xi(j))

∑
b
(−1)bZ̄irb

(
G(x(j))

))2]
≤ 1

m2

∑
j
E
[(∑

κ
Z̄κ
(
G(x(j))

))2] ≤ 1

m2

∑
j

(∑
κ

(
s− 2

c− 1

))2 ≤ 9
(
s− 2

c− 1

)2
/m,

deriving Pr
[
|Z̄| ≥ 3(s−2

c−1)
(δinvm)1/2

]
≤ δinv by Chebyshev’s inequality parameter γ = 1

δinv
. A similar

analysis gives E[(−1)y(J)] ≈ µ by bounding EG[
∣∣EJ [(−1)y(J)]− µ− Z̄∣∣] ≤∣∣∣∣∣

∑1

b=0
(−1)b

(
Pr[θi ◦ xi(G(x)) = b, frel,i ◦ θ(G(x))]− 1

2
µc(frel,i)

)
+
∑1

b=0
(−1)b

(
Pr[firb(θ ◦G(x))]− µc(firb)

)
∣∣∣∣∣ ≤ 4

(
s− 2

c− 1

)
Pr[¬low-deg(G(x))].

Disjoint: The pairwisely ρ-dense attributes give Pr[bxi′(J)/2c | bxi(J)/2c = a] ≤ 1/(ρn2)
α/n under

Pr[bxi(J)/2c = a] ≥ α/n. Lemma7.3 distributes the attributes {bxi′J/2c, i′ ∈ [ks] − {i} |
bxi(J)/2c = a} as αδinvρ

ks(1−δinv+δ2inv/2)
-spread with significance δinv. It extracts a sub-data Di,a of

size m ≈
(
s−2
c−1

)2
/(β2δ3inv) ≤

αδinvρn
ks(1−δinv+δ2inv/2)

(∵ ( ks
αδ4invρn

)1/2
(
s−2
c−1

)
≤ β) from the given data D by

Chebyshev’s inequality parameter γ =
|D|−|Di,a|
δinv|D| � 1 with significance e

− γ2

2+γ
δinv|D| � o(δinv).
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Invariance: The corr-on-data measures on |Di,a| = m ≥ (s−2
c−1)

2

β2δ3inv
and

(
s−2
c−1

)(
s
c

)
/2ck−1 ≤ βδinv:

Average
invar
-iance

: E
[∣∣∣corri(G(x(J)), y(J))− (−1)θ(a)µi

∣∣∣] < 7
(
s− 2

c− 1

)(
s

c

)
/2ck−1 + 7

(
s− 2

c− 1

)
/(δinvm)1/2 < 14βδinv.

It guarantees Definition 7.4’s invariance
∣∣corri(G(x(J)), y(J)) − (−1)θi(a)µi

∣∣ ≤ ϵβ by Markov’s

inequality of γ = O(δinv) with significance O(δinv). Although the actual flipper G̃ is ϵβ-away
from the perfectly independent G, TheClaim’s assertions (so the invariance as well) still hold for
the G̃ by adding an extra statistical deviation. For example, the low-degree is a local argument
at a location v of the first 2ck − 1 variables of (fκ−i ∨ f−κ)∧w to bound

Pr[¬low-deg(θ ◦ G̃(x(j)))] ≤
(
s

c

)
/2ck−1 + dst

(
G(xw(j)), G̃w(xw(j))

)
≤ 2ϵβ.

(α, β)-inversion: The invariance detects θi(a) for the following reasons. First, the corre-
lation’s average must be significant as |µi| ≥ (1 − ϵ)β. Otherwise, the invariance falsifies
|corri(Xi,a, Yi,a)| ≥ β. Secondly, µi > 0 by the relevance µi/µ(fκ−i ≡ 1) = µc−1(f−κ ≡ 0) ≈
PrG[f−κ

(
θ ◦G(x(j))

)
= 0] ≥ 0. Algorithm1 must succeed in inverting |D| ≥ (1 + ϵ)

|Di,a|
α/n

data, since then |Di,a| ≥
(
s−2
c−1

)2
/(β2δ3inv) with CB’s significance eϵ

2/2·α|D| ≤ o(δinv) under
Pr[bXi,a/2c = a] ≥ α/n.

Definition 7.6 (expanding DNF). Review3’s DNF expression f is c-wisely k-expanding if

c-wisely k-expanding: ∀v ⊂ f, |v| ≤ c ⇒
∣∣⋃

κ∈vfκ
∣∣ ≥ k|v|.

Theorem 7.7 (inverting monotoneDNF). For β7.5 ≤ β � 1, Algorithm1 (α, β)-inverts a mono-

tone variable of any planted s-term kDNF with c-wise k-expansion from any n ·O
( (s−2

c−1)
2

αβ2δ3inv

)
data

with pairwisely ρ-dense attributes under any ϵβ-away 2ck-independent flipper over {0, 1}dn.

Proof. It is similar to Theorem7.5’s one which has relied solely on the c-wise k-expansion and
the monotonicity of a queried variable. This time, divide f = f∨(t] ∨ f∨((s]−(t]) to those terms
j ∈ (t] containing i and the others not holding it, and let f∨w−i :=

∨
κ∈w fκ−i for w ⊂ (t].

Relevance,
irrelevance

: frel,i := f∨(t]−i ≡ 1∧f∨(t,s] ≡ 0, fir0 := f[t]−i ≡ f∨(t,s] ≡ 0 and fir1 := f∨(t,s] ≡ 1.

rel+ir0+ir1
cover : 1[frel,i] + 1[fir0] + 1[fir1] = 1.

Averages: µc(frel,i) = µc(f∨(t]−i ≡ 1, f(t,s] ≡ 0), µc(fir0) = µc(f∨(t]−i ≡ 0, f∨(t,s] ≡ 0)
and µc(fir1) = µc−1(f∨(t,s] ≡ 1).

Notice that the target DNF’s terms fκ may be too long, mutually overlapping, and even con-
tracting to each other, but the iec adjusts as follows to preserve Theorem7.5’s proof:

IE: iec(f ≡ b) :=
∑c−1

|w|=b
∑

w⊂f,|f∧w|<ck(−1)|w|+bf∧w.

IE on average: µc(f ≡ b) :=
∑c−1

|w|=b
∑

w⊂f,|f∧w|<ck, (−1)|w|+b2−|f∧w|.

Doubeled IE: iec(f ≡ b, f ′ ≡ b′) :=
∑

w⊂f,w′⊂f ′,|f∧w∪f ′∧w′ |<ck(−1)
|w∪w′|+b+b′f∧w ∪ f ′∧w′ .
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Algorithm2 Properly PAC learning monotoneDNF

Input a dataset (X,Y ) ∼ D, initialize h0 ≡ 0 and ν = 1, and repeat 1–6.
1: Stopping criterion. Finish and output hν−1 if Pr[hν−1(X) = 0, Y = 1] < ε.
2: Variable selection. Guess a set of variables fν ⊂ (d]. Let θν = Sν = ∅.
3: Correlation retrieval. For each (i, a) ∈ fν × [n) − Sν , feed (D, i, a) to Algorithm1 for (α, β)-

inversion. If the answer is 0 or 1, set it to θν,i(ai) and put (i, a) into Sν .
4: Positively reliable cover selection. hν(x) =

∧
(⌊xi/2⌋,i)∈Sν

θν,i ◦ xi.
5: Consistency measurement. Return FAIL unless both are true:

Recall: Pr [hν(X) = 1 | Y = 1, hν−1(X) = 0] ≥ 1/s.

Small FPE: Pr [Y = 0, hν(X) = 1] ≤ (1 + ϵ)2kβ.

6: Induction. hν := hν−1 ∨ hν , ν := ν + 1.

7.2 Linear Time Proper Learning Monotone DNF

Theorem 7.8 (properly learning canonical DNF). If
(
s−2
c−1

)(
s
c

)
s2k
εδ � 2(c−2)k, Algorithm2 can PAC

learn the canonical DNF {
∨s
j=1

∧k
i=1 θi+jk ◦ xi+jk | θ ∈ {0, 1}ksn} in n ·O

((
k2s3

εδ2
2k
(
s−2
c−1

))2)
time

from n · O
((

k2s3

εδ2
2k
(
s−2
c−1

))2)
data with pairwisely 1

n · (
22ck−1(ks)2

(sc)δ1.5
)2-dense attributes under any

ϵβ-away 2ck-independent flipper over {0, 1}ksn. It is a proper PAC learning by a hypothesis
class {

∨s
j=1

∧k
i=1 θ

′
i+jk ◦ xi+jk | θ′ ∈ {0, 1, ∗}ksn} to set θ(bxi+jk/2c) = ∗⇒θ ◦ xi+jk ≡ 1.

Proof. Set ν0 = s, δinv = α = δ
ks , β = ε

2kν0
, and ρ = (2

ck−1δinv
(sc)

)2 · ks
αδ4invn

, implying β7.5 � β � 1

by
(
s−2
c−1

)(
s
c

)
s2k
εδ ≤ 2(c−2)k. Algorithm2 may succeed if Step 5 never fails on fν = {xi+νk | i ∈ (k]}:

No
FNE: ∀(i, j), θ

′
i+jk 6= ∗⇒θ′i+jk = θi+jk.

Small
FPE : Pr[Y = 0, hν0−1(X) = 1] ≤

∑ν0−1

ν=1
Pr[Y = 0, hν(X) = 1] ≤ (1 + ϵ)2kβν0≤(1 + ϵ)ε.

It converges to Definition 2.1’s 2ε-learning by Theorem5.9’s UGEB analysis

UGEB: PrD
[
P (hν0−1(x) 6= y)− Pr[hν0−1(X) 6= Y ] ≥ ε+ ε

]
≤ |H|e−

1
3
εm ≤ (2kn)ν0−1e−

1
3
εm = o(δ)

on |H| =
∏ν0−1
ν=1 |Hν | of |Hν | counting the number 2kn of the assignments θν ∈ {0, 1}kn.

Recall: Step 2 may choose the best fν among the s terms of the target DNF to cover the
remained positive examples by a ratio Pr

[
fν(X) = 1 | Y = 1, hν−1(X) = 0

]
≥ 1

s . Step 5 can
attain the recall once Step 3 has correctly inverted θν on the locations (i+ jk, bXi+jk/2c) of all
(i, j) ∈ (k]× (s]. Theorem7.5 guarantees the inversion with significance ks ·O(δinv) = O(δ).

FPE holds under Step 3’s correct inversions and Definition 7.4’s prerequisite ∀(i, j) ∈ (k] ×
(s],Pr[bXi+jk/2c] ≥ α/n. Lemma2.3’s (0, α/n)-slice of Pr[bXi/2c = a] over a ∈ [n) guarantees

the latter with significance ks · α/n · n = ksα = δ. We may write fν =
∧k
i=1 xi and (k′, k] :=

{i ∈ (k] | (i, bXi/2c) ∈ Sν}. Divide the hypothesis Step 4’ hν into hν = tuhu over u ∈ {0, 1}k′n

of hu(x) := hν∧
∧k′

i=1 ui◦xi. Yao’s reduction takes the uniform random assignment U ∼ {0, 1}k′n
and calculates the probability differentials between the target h0 = fν and the hypothesis hν
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along a sequence h0, . . . , hk′ of AND functions hi := hν ∧
∧i
ι=1 Uι ◦ xι ∧

∧k′

ι=i+1 θι ◦ xι. For

hi,b := hν ∧
∧i−1
ι=1 Uι ◦ xι ∧ xi ⊕ b ∧

∧k′

ι=i+1 θι ◦ xι and hi,∗ := hν ∧
∧i−1
ι=1 Uι ◦ xi ∧

∧k′

ι=i+1 θι ◦ xι,

Pr[Y = b, hU (X) = 1]− Pr[Y = b, fν(X) = 1]

=
∑k′−1

i=0

(
Pr[Y = b, hi+1(X) = 1]− Pr[Y = b, hi(X) = 1]

)
=
∑k′−1

i=0

1

2
E
[
(−1)θi◦Xi1[Y = b, hi,∗(X) = 1]

]
(∵ Theorem7.5’s rel+ir0+ir1 decomposition)

=
∑k′−1

i=0

1

2
E
[
(−1)θi◦Xi

(
1[Y = b, hi,∗(X) = 1, frel,i(θ ◦X)] + 1[Y = b, hi,∗(X) = 1, firb(θ ◦X)]

)]
≤
∑k′−1

i=0

1

2

(
Pr[hi,∗(X) = 1, frel,i(θ ◦X)] + E

[
(−1)θi◦Xi1[hi,∗(X) = 1, firb(θ ◦X)]

])
≤
∑k′−1

i=0

1

2
Pr[

∧i−1

ι=1
Uι ◦X = 1]

(
Pr[frel,i(θ ◦X)] + E

[
(−1)θi◦Xi

]
E
[
firb(θ ◦X)

])
≤
∑k′−1

i=0

1

2
· 1

2i−1
(|µi|+O(βδinv)) (∵ Theorem7.5’s relevance, correlation-on-shift,

and correlation-on-data analyses )

Its b = 0 case on Pr[Y = 0, fν(X) = 1] = 0 gives rise to FPE because (i, bXi/2c) 6∈ Sν implies
|µi| < β (otherwise θi(bXi/2c) is detectable) in a summation

Pr[Y = 0, hν(X) = 1] =
∑

u
Pr[Y = 0, hu(X) = 1] = 2kPr[Y = b, hU (X) = 1]

≤ 2k(|µi|+O(βδinv)) < (1 + ϵ)2kβ.

Computational complexity: Algorithm2 spends Theorem7.5’s n ·O
( (s−2

c−1)
2

αβ2δ3inv

)
data to execute

Step 3 in kn · ν0 ·O
((s−2

c−1)
2

β2δ3inv

)
time with O(ksδinv) +O(ksα) = O(δ) significance.

Theorem 7.9 (Theorem1.450). Suppose s
ε � 2k and

(
s−2
c−1

)(
s
c

) s2k ln(1/ε)
ε2δ

≤ 2(c−2)k. Algo-

rithm2 can PAC learn the plantedmonotone s-termDNF hiding θ ∈ {0, 1}dn and having c-

wisely k-expanding terms in n · O
((

k2s3

ε2δ2
2k
(
s−2
c−1

)
(log 1

ε )
1.5
)2)

time. It works on any ϵε-noisy

n ·O
((

k2s3

ε2δ2
2k
(
s−2
c−1

)
log 1

ε

)2)
data with pairwisely 1

n · (
22ck−1(ks)2

(sc)δ1.5
)2-dense attributes under any ϵβ-

away 2ck-independent flipper over {0, 1}ksn. It loads a properhypothesis class {
∨s ln 1

ε
ν=1

∧k
i=1 θ

′
ν,i ◦

xiν | θ′ ∈ {0, 1, ∗}ksn ln( 1
ε
)}.

Proof. The same with Theorem7.8’s one but adopting 7.7 for TheoremAlgorithm2’s step cor-
relation retrieval, once Step 2 can have |fν | ≤ k. Setting ν0 := s

ε ln
1
ε (the other parameters are

the same as Theorem7.8) and applying Theorem5.11’s recall can provide it on s
2k+1 � ε:

Pr[hν(X) = 1 | Y = 1, hν−1(X) = 0] ≥ (Pr[Y = 1, hν−1(X) = 0]− ϵε− s

2k+1
)/s ≥ (1− ϵ)ε

s

⇒ Small FNE: Pr[hν0−1(X) = 0, Y = 1] = Pr[Y = 1]Pr[hν0−1(X) = 0 | Y = 1]

= Pr[Y = 1]
∏ν0−1

ν=1

(
1− Pr[hν(X) = 1 | Y = 1, hν−1(X) = 0]

)
≤ Pr[Y = 1](1− (1− ϵ)ε

s
)ν0−1 < ε.

7.3 Inverting Planted Fourier Transforms over Zq
The standard Fourier analysis (Review4) is the correlation analysis of degree-k polynomials

under the uniformly distributed polarities (Xi mod 2)i∈w of w ∈
((d]
k

)
. This section will extend

it to smoothed analysis induced by k-wisely independent shifts flipping the polarities.

50Set k = O(log s) and 1/ε, 1/δ ≤ sO(1).
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Definition 7.10 (planted Fourier transforms). Planted (probabilistic) degree-k Fourier trans-
forms over Zq of odd order q ≥ 3 are degree-k polynomial functions f(x), f(x|r) : [2n)d → Zq.
It explains a given η-noisy data (X,Y ) ∼ D by the unknown secret parameters θ ∈ Zdnq and

known coefficients f̂w ∈ Zq as follows, where θi ◦ xi := θi(bxi/2c)(−1)xi :

Planted
FT : f(x) :=

∑
|w|≤kf̂w

∏
i∈wθi ◦ xi such that Pr[Y 6= f(X)] ≤ η,

Probabilistic
planted FT : f(x|R) :=

∑
|w|≤kf̂w

∏
i∈wθR,i ◦ xi such that ∀(x, y) ∈ D,PrR[y 6= f(x|R)] ≤ η.

They are non-degenerate if ∀w ∈
(
d
k

)
, f̂w ∈ Z∗

q . Fourier (w, a)-coefficient is θw(a) := f̂w
∏
i∈w θi(a).

Definition 7.11 ((α, β)-inversion). We say that a randomized algorithm A (α, β)-inverts a
(w, a)-coefficient and a parameter θ of a degree-k plantedFT from data (X,Y ) ∼ D if it can
estimate them within accuracy β as follows, where δ7.11 ≤ δ

dn (resp. δ7.11 ≤ δ
n when θ ∈ Znq ).

Coefficinet
(α, β)-inversion: PrD,A

Pr[bXw/2c = a] ≥ αµk
(
resp.Pr[bXw/2c ⊂ a] ≥ αµk

)
⇒
∣∣A(D, w, a)− θw(a)∣∣ ≤ β

 ≥ 1−O(δ7.11).

Parameter
inversion : PrD,A [A(D) = θ] ≥ 1−O(δ).

Algorithm3 (α, β)-inverting Fourier coefficients

Input a dataset D and a query (w, a) ∈
(
d
k

)
× [n)k. Let Dw,a := {(x, y) ∈ D | bxw/2c = a}

(resp. {(x, y) ∈ D | xw ⊂ a} when θ ∈ {0, 1}n).
1: Filter D to a sub-data (Xw,a, Yw,a) ∼ Dw,a. If |Dw,a|/|D| < αµk, then return ?.
2: Compute and output corrw(Dw,a) = corrw(Xw,a, Yw,a) := E

[
Yw,a ·

∏
i∈w(−1)Xw,a,i

]
.

Algorithm3 can invert the Fourier coefficient θw(a) of a target degree-k plantedFT f through
Definition 2.8’s hash functional hw. It will employ the following three kinds of functionals
hκw(g) = hκJ,J ′(g) := (hκJ(g), h

κ
J ′(g)) indexed by κ ∈ {dim, hsh, rem} and the random J 6= J ′

to pick up (g(x(J)), y(J)), (g(x(J ′)), y(J ′)) ∼ Dw,a. Let δκ := βδ7.11
r|Qκ| . Let g ∈ {0, 1}dmn be a

flipper g(xi(j)) := 2bxi(j)/2c + xi(j) ⊕ g(bxi(j)/2c). The Fourier (w, a)-coefficient inversion

under g consumes m7.12 :=
2kr2

β2δ7.11
+ 22k

δ7.11
(resp.m′

7.12 :=
r2

β2 ln
1
δ7.11

+ 2k ln 2k

δ7.11
) examples.

Small
dimension: h

dim
j (g) := g(xwc(j)) ∈ [2n)d−k and |Qdim| := |[2n)d−k| = (2n)d−k.

Small
hashes: h

hsh
j (g) := f

(
xw mod 2 | bxw/2c = a, xwc = g(xwc(j))

)
∈ Z{0,1}w

r

and |Qhsh| := (2r + 1)2
k
.

Sparse
remainders

: hremj (g) =
(
f −

∑
v:v∩w ̸=∅ f̂v

∏
i∈v θi ◦ xi

)(
xw mod 2 | bxw/2c = a, xwc = g(xwc(j))

)
and |Qrem| :=

∣∣{ξ | Pr[hremJ (G) = ξ] ≥ δrem}
∣∣.

Theorem 7.12 (inverting Fourier coefficients). Suppose m = m7.12 (resp.m
′
7.12) � q/r, β � 1,

2krη ≤ βδ7.11. Algorithm3 can (α, ϵβ)-invert the (w, a)-coefficient of degree-k planted FT over
Zq from any η-noisy data Dw,a = {

(
G(x(j)), y(j)

)
}m
j=1

within range ∀j, |y(j)| ≤ r under any

(hκw, δκ)-hashed βδ7.11/r-away 2k-independent (resp. km-independent) flipper G.

Proof. Follow Theorem7.5’s correlation-on-data analysis over Z. The large modulus r|Dw,a|
� |Zq| can calculate Algorithm3’s Step 2’s summation

∑
j y(j)

∏
i∈w(−1)g(xi(j)) � q over Z

rather than the ring Zq. Let us first do it in an ideal situation that Pr[y(J) = f
(
G(x(J))

)
] = 1,
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∀ξ,Pr[hκJ(G) = ξ] > 0⇒Pr[hκJ(G) = ξ] ≥ δκ, and the shift G is perfectly 2k-independent.

Small coset: The Dw,a can identify the truth-table of hhshξ ∈ {hhshj (g)}
g,j

under hκJ(G) = ξ.

Since G is (hκw, δκ)-hashed 2k-independent, Chebyshev’s inequality of γ = 2k

ϵ2m
makes the m ≥

22k

δ7.11
data in Dw,a to witness (G(xw(j)) mod 2, y(j)) = (b, hhshξ (b)) for every b ∈ {0, 1}w:

1

m2
(
∑m

j=1
Pr[G(xw(j)) = b mod 2 | hκj (Gwc) = ξ]− 1

2k
)2

=
1

m2

∑m

j=1
(Pr[G(xw(j)) = b mod 2 | hκj (Gwc) = ξ]− 1

2k
)2 =

1− 1/2k

m · 2k
⇒

k-unif
on data

: PrG

[
∀b,
∣∣PrJ[G(xw(J)) = b mod 2 | hκJ(Gwc) = ξ

]
− 1

2k

∣∣ ≥ √
1− 1/2k

γ · 2km
≈ ϵ

2k

]
≤ 2k · γ ≤ O(δ7.11).

Small
hash : ∀b ∈ {0, 1}w, ∀v ⊂ w, |hhshξ (b)| ≤ r ∧ |(ĥhshξ )v| =

∣∣2−k∑
b∈{0,1}kh

hsh
ξ (b)

∏
i∈v(−1)

bi
∣∣ ≤ r.

Correlation on data: Fixing hκJ(G) = ξ induces a substitution xwc←G(xwc(J)) to collapse

hhshJ (Gwc) to hhshξ and yield hhshξ (x) = θw(a)
∏
i∈w(−1)xi +

∑
v⊂w,v ̸=w(ĥ

hsh
ξ )v

∏
i∈v(−1)xi of x ∈

{0, 1}w. It can invert θw(a) via the correlation-on-data analysis under the random flipper G:

EG,J [corrw
(
G(x(J)), y(J)

)
]

=
∑

ξ
E
[
f
(
G(x(J))

)∏
i∈w(−1)

G(xi(J)) | hκJ(Gwc) = ξ
]
· Pr
[
hκJ(Gwc) = ξ

]
=
∑

ξ
2−k

∑
b∈{0,1}wh

hsh
ξ (b)

∏
i∈w(−1)

bi · Pr[hκJ(Gwc) = ξ] =
∑

ξ
θw(a) · Pr[hκJ(Gwc) = ξ] = θw(a).

The zero-averaged correlations corrv(G(x(j))) := corrw
(
G(x(j)), y(j)

)
− θw(a) are mutually

perpendicular EG[corrw(G(x(j)))corrw
(
G(x(j′))

)
| hκw(G) = ξ] = 0 on the perfectly 2k-

independence assumption, inverting the θw(a) for variance as well:

EG,J
[
corrw

(
G(x(J)), y(J)

)2]
=
∑

ξ

1

m2

∑
j,j′

EG
[
corrw

(
G(x(j)), y(j)

)
corrw

(
G(x(j′)), y(j′)

)
| hκj,j′(Gwc) = ξ

]
· PrG[hκj,j′(Gwc) = ξ]

=
∑

ξ

1

m2

∑m

j=1
EG
[(
corrw

(
G(x(j)), y(j)

)
− θw(a)

)2 | hκj (Gwc) = ξ
]
· PrG[hκj (Gwc) = ξ]

=
∑

ξ

1

m2

∑
j

(
2−k

∑
b∈{0,1}w

∑
v⊂w,v ̸=w(ĥ

hsh
ξ )v

∏
i∈w\v(−1)

bi
)2 · Pr[hκj (Gwc) = ξ

]
≤
∑

ξ

1

m2

∑
j

∑
v⊂w,v ̸=w(ĥ

hsh
ξ )2vPr

[
hκJ(Gwc) = ξ

]
≤ r2(2k − 1)/m. (∵ the small hash.)

Chebyshev’s inequality parameter γ = O( 1
δ7.11

) and m ≥ 2kr2

β2δ7.11
guarantees

Correlation
on data : PrG

[
|corrw(G(Xw,a))| ≥

√
r2(2k − 1)γ/m� β

]
≤ O(1/γ) = O(δ7.11).

(α, β)-inversion: The η-noisy label ỹ(j) preserves the above correlation-on-data analysis by

EG,J
[
ỹ(J) 6= f

(
G(x(J))

)
| hκJ(Gwc), G(xw(J))

]
≤ η ≤ βδ7.11

2kr
(∵ 2krη ≤ βδ7.11)

⇒∀b ∈ {0, 1}k,PrG,J [ỹ(J) 6= hhshξ (b) | hκJ(Gwc), G(xw(J)) = b] ≤ ϵ′β

r
(∵ Markov-ineq of γ =

δ7.11
ϵ′
)

⇒ correration
under noise: |corrw(G(Xw,a), Yw,a)| ≤ ϵ′β +max

j
|ỹ(j)| · ϵ′β/r ≤ 2ϵ′β. (∵ correration

on data )

Although the actual shift G̃κ may take 0 < Pr[hκJ(G̃κ) = ξ] < δκ for ξ ∈ Qκ, Lemma2.3’s

(0, δκ)-slice bounds its contribution PrhκJ (G̃κ)

[
Pr[hκJ(G̃κ)] < δκ

]
≤ δκ · |Qκ| ≤ βδ7.11

r in any three
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δκ of κ ∈ {dim, hsh, rem}. The local shift G̃κ(xw(J)) may be βδ7.11
r -away from the perfect 2k-

independent G(xw(J)) on the location (w, a), bounding the correlation under G̃κ by Markov’s
inequality parameter γ = δ7.11/ϵ

′:

E[|corrw(G̃κ(Xw,a), Yw,a)|]

≤

E[
∣∣corr(G̃κ(x(J)), ỹ(J))− corr(G(x(J)), ỹ(J))

∣∣] + max
j
|ỹ(j)| · Pr

[
Pr[hκJ(Gwc)] < δκ

]
+E[

∣∣corrw(G(x(J)), ỹ(J))∣∣] | Pr[hκJ(Gwc) = ξ] ≥ δκ
]

≤ max
j
|ỹ(j)| · βδ7.11/r +max

j
|ỹ(j)| · βδ7.11/r + 2ϵ′β (∵ the correlation under noise)

⇒ (α, ϵβ)
−inversion

: Pr[|corrw(G(Xw,a), Yw,a)| ≥ 2βδ7.11γ + 2ϵ′β = 4ϵ′β] ≤ 1/γ = O(δ7.11).

Inversion under stronger independence: The data size can reduce from m� m7.12 to m�
m′

7.12 undermk-wisely independent shift G. Theorem7.12’s k-uniformity and correlation-on-data
are achievable by Chernoff bound (instead of Chebyshev’s inequality for weaker independence):

k-unif
on data

: PrG

[
∀b,
∣∣PrJ[G(xw(J)) = b mod 2 | hκJ(Gwc) = ξ

]
− 1

2k

∣∣ ≥ ϵ

2k

]
≤ 2k · e−

ϵ2

2+ϵ
m

2k ≤ O(δ7.11).

Corr
on data: PrG

[
|corrw(G(Xw,a))| ≥ ϵβ

]
= PrG

[
|corrw(G(Xw,a)) + 2r

3r
− µ| ≥ β′ := ϵβ

3r

]
≤ e

− (β′/µ)2
2+β′/µµm ≤ O(δ7.11) for µ =

θw(a) + 2r

3r
.

Algorithm4 Inverting planted parameters

Input a dataset D, execute the following 1–4 and output θ ∈ Zdnq .
1: Linear case. When k = 1, query (D, i, a) to Algorithm3 for (α, β)-inverting every θi(a) of

(i, a) ∈ (d]× [n), and finish. The following steps suppose k ≥ 2.

2: A base location selection. Guess a base location (w0 t i0, a0) ∈
( (d]
k+1

)
× [n)w0⊔i0 at which

θw0(a0)θi0(a0,i0) is invertible. Let w0,−i,+i′ := (w0\i)ti′ for (i, i′) ∈ w0×wc0 = w0×((d]\w0).
3: Fourier inverting the base parameters. Fix an arbitrary i1 ∈ w0. For all i ∈ w0, query (D, w0, a0)

and (D, w0,−i,+i0 , a0) to Algorithm3, and retrieve θi(a0,i) in the following calculus:

θi(a0,i)

θi1(a0,i1)
=

θi(a0,i)

θi0(a0,i0)
· θi0(a0,i0)
θi1(a0,i1)

=
∏
κ∈w0

θκ(a0,κ)∏
κ∈w0,−i,+i0

θκ(a0,κ)
·
∏
κ∈w0,−i1,+i0

θκ(a0,κ)∏
κ∈w θκ(a0,κ)

⇒ θki1(a0,i1) =
∏
i∈w0

θi(a0,i) ·
∏
i∈w0

θi1(a0,i1)

θi(a0,i)
.

4: Fourier inverting all parameters. Query (D, w0,−i,+i′ , a0 t ai′) to Algorithm3 for (α, β)-inversion
of θi′(ai′) = θi(a0,i) ·

∏
κ∈w0,−i,+i′

θκ((a0 t ai′)κ)/
∏
κ∈w0

θκ(a0,κ) until retrieving θ.

Theorem 7.13 (Theorem1.551). Suppose m7.12 (resp.m
′
7.12) � q/r, β � 1, and 22krη ≤ βδ7.11.

In Algorithm4, suppose that X is k-wisely (µ, α)-sparse (or (µ, α)-cover when θ ∈ Znq ) at every
location (w, a) queried in steps 3 and 4, andDw,a contains noise at most η. Then, Algorithm4 can

θ-invert degree-k plantedFT over Zq in O
(
(
(
d
k

)
+dn)m

)
time from any data {

(
G(x(j)), y(j)

)
}m
j=1

of size m = O
(
m7.12

αµk

)
(resp.m = O

(m′
7.12

αµk

)
) and range ∀j, |y(j)| ≤ r under any (hhshw , δhsh)-hashed

βδ7.11/r-away 2k-independent (resp.βδ7.11/r-away m
′
7.12k-independent) flipper G.

51Take k
αβδ

≤ O(1), q � n2+1/2k−1

, r = q1/2
k+1

, δ7.11 = 1/n, η � 1/(nr), and µ = 1/n. Lemma2.11 provides a

probabilistic shift G of cardinality Õ(q1/2(nr)3).
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Proof. If all (α, β)-inversions of Q = {(w0, a0), (w0,−i,+i0 , a0), (w0,−i,+i′ , a0 t ai′)} queried in
Steps 3 and 4 succeed, Algorithm4 could identify the correct integer coefficients θw(a) due
to β � 1/2, so retrieving the secret parameter θ ∈ Znq .

(α, β)-inverting Fourier coefficients: Algorithm4’s Step 2 must choose a location (w0, a0)
such that θw0(a0) is invertible and Pr[bXw/2c = a] ≥ αµk. They may query to Algorithm3
for |{(a, i) ∈ [n)× (d]}| locations. They can receive sufficiently many examples due to k-wisely
µ-sparse (resp. cover) over the given m = O

(
m7.12/(αµ

k)
)
(resp.m = O

(
m′

7.12/(αµ
k)
)
) data. CB

parameter γ = 1 with significance level |{(a, i) ∈ [n)× (d]}| · e−1/2·αµk·m � o(δ) guarantees:

Sufficiently
many examples: ∀(w, a),m7.12 (resp.m

′
7.12)� |Dw,a| ≤ 2m · αµk � q/r.

Since δ7.11 � δ
dn , Step 4 inverts θi(a) of ∀(i, a) ∈ (d]×[n) with significance O(δ7.11)·dn = O(δ).

7.4 Inverting Linear Fourier Transforms and Breaking LWE

Theorems 7.12 has demanded a large modulus |Dw,a| � q/r for Fourier inverting θw(a) over
Zq from Dw,a ⊂ [2n)d × Zr. Previously, modulus amplification have brought remarkable break-
throughs in computational complexity theory, e.g., Toda’s PP =

⊕
P [Tod91], Beigel and Tarui’s

ACC ⊂ SYM◦ANDplog(n) [BT94], and Williams’s NEXP 6⊂ ACC [Wil14a]. This section will show
that the modulus amplification can solve LWE and even GapSVPÕ(n2) thanks to the well-known

worst-case to average-case reduction [Ajt96, MR07, Pei09, Reg09, BLP+13].

Lemma 7.14 (modulus amplification [Yao85, Tod91, BT94]). There is a degree-(2ℓ − 1) and

norm-23ℓ polynomial ϕℓ(x) with the leading coefficient (−1)ℓ+1
(2(ℓ−1)
ℓ−1

)
such that

Modulus
amplification: (x ≡ 0 mod m⇒ϕℓ(x) ≡ 0 mod mℓ) ∧ (x ≡ 1 mod m⇒ϕℓ(x) ≡ 1 mod mℓ).

Theorem 7.15 (inverting linear Fourier transform). Let p be an odd prime number coprime

with
(2(ℓ−1)
ℓ−1

)
, k = (2ℓ− 1)v, and |Qrem| = p (so δrem =

βδ7.11
rp ). Suppose m7.12 (resp.m

′
7.12)� pℓ/r,

β � 1, and 22krη/β ≤ δ7.11. Suppose that X is k-wisely (µ, α)-sparse (resp. k-wisely (µ, α)-cover
when θ ∈ Znq ) at every location (w, a) queried in Algorithm4, and the sub-data Dw,a contains

noise at most η. Then, the linear plantedFT over Zp is invertible in O
(
(
(
d
k

)
+ dn)m

)
time from

any data {
(
G(x(j)), y(j)

)
}m
j=1

ofm = O
(
m7.12/(αµ

k)
)
(resp.m = O

(
m′

7.12/(αµ
k)
)
), ∀j, |y(j)| ≤ r,

and |y((m])| ≤ v under any (hremw , δrem)-hashed βδ7.11/r-away 2k-independent (resp. (hremw , δrem)-
hashed βδ7.11/r-away (km′

7.12)-independent) flipper G.

Proof. The variation assumption |y((m])| ≤ s presents a modulus amplified polynomial

y =
∑

y∈y((m])
y · 1[y = y] mod p, 1[y = y] =

∏
y′∈y((m])−{y}

y − y′

y − y′
⇒

Modulus
amplification: y = ψℓ(y) :=

∑
y∈y((m])

y · ϕℓ
(∏

y′∈y((m])−{y}
y − y′

y − y′
)
mod pℓ (∵ Lemma7.14)

Algorithm4 can θ-invert from the modulus amplified covariate dataset {G(x(j)), ψℓ(y(j))}mj=1.

Fixing hremJ (Gwc) :=
∑

i∈wc f̂iθ(ai)(−1)G(x(J)) = ξ ∈ Zp determines the hash function hremJ (Gwc) =∑
i∈w f̂iθ(ai)(−1)xi + ξ : {0, 1}w → Zp and its modulus amplification hremξ (x) := ψℓ(h

rem
J (Gwc)) :

{0, 1}w → Zpℓ . Accordingly, the modulus amplified degree-k Fourier transform hremξ (x) over Zpℓ
makes Theorems 7.12 and 7.13’s proofs valid on the hremJ (Gwc)’s sparseness |Qrem| = p.
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Definition 7.16 (LWE in smoothed analysis). Let q ≥ 3 be an odd number. LWE over
Zq presents a dataset {

(
g(x(j)), y(j)

)
}m
j=1

about the following linear plantedFT disturbed by
arbitrary i.i.d. noises Ej ∈ Zq. It asks to invert the hidden vector θ ∈ Znq with high confidence.

LWE: y(j) = f(g(x(j))) :=
n∑
i=1

f̂i · θi · dxi(j)/2e · (−1)gi(xi(j)) + Ej .

Let 1w = (1, . . . , 1) be the all-one vector over i ∈ w. Algorithm4 can invert LWE by
choosing a0 = 1w0 and making

∑
i∈w0

θia0,i(−1)G(a0,i) =
∑

i∈w0
±θi concentrate near zero under

the i.i.d. signs of the small secrets θi. This (α, β)-inversion algorithm queries about Ww0,i0,i1 :=

{(w0,1w0)} t {(w0,−i,+i′ ,1w0,−i,+i′ )}i∈[n) of w0 ∈
([n)
k

)
, i0 6∈ w0, i1 ∈ w0, and i

′ = i′(i) such that

(i ∈ w0⇒i′ = i0)∧ (i 6∈ w0⇒i′ = i1)∧ (i ∈ w0 t {i0}⇒θi 6= 0).

Theorem 7.17 (Theorem1.652). Let p be an odd prime coprime with
(2(ℓ−1)
ℓ−1

)
, v = 2r + 1,

|Qrem| ≈ v, k = (2ℓ− 1)w, γsm = (2k log r
βδ7.11

)1/2, m7.17 :=
22k(sγsm)5

β2δ7.11
+ 2kr2

β2δ7.11
+ 22k

δ7.11
(resp.m′

7.17 :=
(sγsm)2

β ln(2ksγsm)+
r2

β2 ln
1
δ7.11

+2k ln 2k

δ7.11
.) Supposem7.17 (resp.m

′
7.17)� pℓ/r, β � 1, and sγsm � r.

Suppose that X is k-wisely (µ, α)-sparse at every place (w,1w) ∈ Ww,i0,i1 . Then, LWE over Zp
can retrieve small secrets ∀i, |θi| ≤ s in O

(
(
(
d
k

)
+ n)m

)
time from any m� m7.17 · p/(αµk) data

under any (hremw , δrem)-hashed βδ7.11/r-away 2k (resp. km′
7.17) independent flipper G if hremJ (Gwc) ∈

Zp is βδ7.11/r-away from the uniform randomness.

Proof. A reduction to Theorems 7.12 and 7.15’s noise-free case η = 0, because the i.i.d. noise
EJ filters the data Dw,1w to Dξ = Dw,ξ := {

(
G(x(j)), y(j)

)
∈ Dw,1w | Ξ = ξ} of Ξ := hremJ (Gwc),

over which G is (hremw , δrem)-conditionally βδ7.11/r-away 2k-independent. Suppose the ideal case

discussed in Theorem7.12. Chernoff (resp. Chebyshev) bound parameter γ = γsm
k/2 (resp. 2k(sγsm)4

(ϵβ)2m7.17
)

on qξ(x) :=
∑

i∈w θi(−1)xi = hhshj −hremj makes the smallness (resp. k-uniform-on-data) sharper:

Smallness: PrG
[
|qξ(G(xw(j)))| ≥ sγsm

]
< 2e−γ

2/(2+γ)·k/2 � βδ7.11/r.

Smoothness: (|ξ| ≤ r − sγsm⇒|qξ(G(xw(J))) + ξ| ≤ r)
∧ (|ξ| > r + sγsm⇒|qξ(G(xw(J))) + ξ| > r).

k-uniform
on data

: Pr
[
∀ξ ∈ (r − sγsm, r + sγsm],∀b ∈ {0, 1}w,∣∣PrJ [G(xw(J)) = b mod 2 | Ξ = ξ]− 1

2k

∣∣ ≥ √
1− 1/2k

γ2km7.17

≈ ϵβ

2k(sγsm)2

]
≤ 2sγsm · 2k · γ ≤ O(δ7.11).

Pr
[
∀ξ, ∀b,

∣∣PrJ [G(xw(J)) = b mod 2 | Ξ = ξ]− 1

2k

∣∣ ≥ γ

2k

]
≤ 2k+1sγsm · e−

γ2

1+γ

m′
7.17

2k ≤ O(δ7.11)

by γ =
ϵβ

(sγsm)2
for km′

7.17 independent flipper
(
∵ m7.17 � 22k(sγsm)

5

β2δ7.11
and m′

7.17 �
(sγsm)

2

β
ln(2ksγsm)

)
.

Let C := {(x, y) ∈ Dw,1w | y ∈ Z2r+1} be those data having range |y| ≤ r and variation
|Z2r+1| = 2r+1 = v. We will discard all data not belonging to C∩(

⊔
ξDξ) and apply Theorem7.12

to C ∩ DΞ. We call a dataset DΞ fully colliding when DΞ ⊂ C.

Inverting fully colliding data: Under the fully colliding DΞ ⊂ C, Theorem7.13 has shown

Sufficiently
many examples: ∀(w,1w) ∈ Ww,i0,i1 ,m7.17 � |DΞ| ≤ 2m · αµk/p� pℓ/r.

52Take p ≥ nΩ(1), µ = 2
p
, α = 1, max {ℓ, s} ≤ O(1), and max {k, r} ≤ O(logn) to have 22kn+ 2kr2n � pℓ−1.
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It runs Algorithm3’s Step 2 over Z rather than Zpℓ . The smallness bounds |hhshξ − Ξ| ≤ sγsm.
Also, Theorem7.12’s small-hash and correlation-on-data hold at (w,1w) ∈ Ww,i0,i1 . Algorithm3
can uniquely identify θw(1w) of every (w,1w) ∈ Ww0,i0,i1 . Algorithm4 can invert the hidden θ
from the coefficients θw(1w) via Theorem7.15’s modulus amplification

Modulus
amplification: ψℓ(qξ(x) + ξ) =

∑
y∈{y(j)}j

yϕℓ
(∏

y′∈{y(j)}j−{y}
qξ(x) + ξ − y′

y − y′
)
≡ qξ(x) + ξ mod Zpℓ .

Inverting partially-colliding data: The partially-colliding DΞ 6⊂ C reduces to the full one by
adding to Theorem7.12’s correlation accuracy an extra overhead β as follows. It couples two
symmetric partial collisions hhshr−ℓ({0, 1}w)∩Z2r+1 and 2r+1+hhsh−(r+ℓ+1)({0, 1}

w)∩Z2r+1, where

2r+1 = (r− ℓ)− (−(r+ ℓ+1)) to make hhshr−ℓ({0, 1}w) fully colliding. The following correlation

analysis justifies it due to the k-uniform on data and smoothness in
⋆
=, and sγsm � r in

⋆
�:

E
[
hhshΞ (G(1w)) ·

∏
i∈w(−1)

Gi(1) · 1[hhshΞ (G(1w)) ∈ Z2r+1, h
hsh
Ξ ({0, 1}w) 6⊂ Z2r+1]

]

=
sγsm∑
ℓ=0

1∑
κ=0


E
[
hhshΞ (G(1w)) ·

∏
i∈w(−1)

Gi(1) · 1

[
hhshΞ (G(1w)) ∈ Z2r+1,

hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ(r − ℓ)

]]
+

E
[
hhshΞ (G(1w)) ·

∏
i∈w(−1)

Gi(1) · 1

[
hhshΞ (G(1w)) ∈ Z2r+1,

hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ+1(r + ℓ+ 1)

]]


=
∑
ℓ,κ



E
[
hhshΞ (G(1w)) ·

∏
i∈w(−1)

Gi(1) · 1

[
hhshΞ (G(1w)) ∈ Z2r+1,

hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ(r − ℓ)

]]
+ E

[
(hhshΞ (G(1w)) + (−1)κ · (2r + 1)) ·

∏
i∈w(−1)

Gi(1)

× 1

[
hhshΞ (G(1w)) ∈ Z2r+1,

hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ+1(r + ℓ+ 1)

]]
+ E

[
(−1)κ+1(2r + 1) ·

∏
i∈w(−1)

Gi(1)

× 1

[
hhshΞ (G(1w)) ∈ Z2r+1,

hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ+1(r + ℓ+ 1)

]]


⋆
=
∑

ℓ,κ
E
[
hhshΞ (G(1w)) ·

∏
i∈w(−1)

Gi(1) · 1[hhshΞ ({0, 1}w) 6⊂ Z2r+1,Ξ = (−1)κ(r − ℓ)]
]
+ β̃,

|β̃| ≤
∑

ℓ,κ
(2r + 1) · 2k · ϵβ

2k(sγsm)2
· Pr

[
Ξ ∈

⊔1
κ=0[(−1)κr − sγsm, (−1)κr + sγsm]

]
Pr
[
Ξ ∈ [−r + sγsm, r − sγsm]

] ≤ (2r + 1)ϵβ

(sγsm)2
· 2sγsm
2r − 2sγsm

⋆
� β.

Inverting the actual data: Since the statistical distance between the ideal shift G and the
actual one over DΞ is bounded by βδ7.11/r, Theorem7.12’s (α, β)-inversion has demonstrated
|corrw(DΞ)− θv(1w)| � β under the full collision DΞ ⊂ C with significance O(δ7.11). The partial
one on the actural hash may add an extra accuracy cost ϵβ to derive |corrw(C∩DΞ)−θw(1w)| �
β, since the actural one may deviate from the ideal hhshJ (Gwc) by statistical distance O(βδ7.11/r).

Inverting the almost-zero secret: When the small secret parameter θ ∈ Zns is virtually zero
as |{i ∈ (d] | θi 6= 0}| ≤ k, add 1w to w ⊂ {i : θi = 0}, and replace each data (x(j), y(j)) with
(x(j), y(j) +

∑
i∈w f̂ibxi(j)/2c(−1)xi(j)) for inverting θ + 1w.

Theorem 7.18 (GapSVP to LWE [Pei09, Reg09]). Let n ≥ 1 and q ≥ 2n/2 be integers, and let
0 < α < 1 be such that αq ≥ 2

√
n. The worst-case GapSVPÕ(n/α) is reducible to LWEn,q,α.
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Theorem 7.19 (search-to-decision for LWE [MP12]). Let q be a power of 2, and α satisfy
1/q < α < 1/ω(

√
log n). Then, LWEn,q,α reduces to decision LWEn,q,α′ for α′ = α · ω(log n).

Theorem 7.20 (LWE to binary LWE [BLP+13]). Let n, q, q′ ≥ 1, m ≥ n′ ≥ 1 be integers,
where q is a power of 2. Let α, β, δ > 0 and 0 < ε, ξ � 1 be n′ ≥ (n + 1) log q + 2 log(1/δ),
α ≥

√
ln(2n(1 + 1/ε))/π/q, β = (10n′α2 + 4n′

πq′2 ln(2n
′(1 + 1/ξ)))1/2. As decision problems,

LWEn,m,q,α is reducible to LWEn′,m,q′,β with the binary secret such that any ζ-advantageous

algorithm of the latter problem produces that of the former one with an advantage ζ−δ
3m −

41ε
2 −14ξ.

Theorem 7.21 (Theorem1.7). GapSVPÕ(n2) is solvable in probabilistic polynomial time.

Proof. Take q = 2n/2, q′ = p = O(n
√
log n), n′ = (n + 1)n/2 + 2 log(1/δ), α = 1/ω(log n),

α′ = ϵ/n, and β = (10n′α′2+ 4n′

πp2
ln(2n′(1+1/ξ)))1/2 � 1. Theorem7.18 reduces GapSVPÕ(n/α)

to LWEn,q,α, Theorem7.19 reduces it to decision-LWEn,q,α′ , and Theorem7.20 to decision-
LWEn′,p,β with the binary secret. So, Theorem7.17 inverts (search) LWEn′,p,β in poly-time.

8 Natural Lower Bounds of Matrix rigidity

This section will establish circuit lower bounds in Theorems 1.8–1.10. They apply Theorem7.15’s
linear Fourier inversion to learn all sparse

√
N by

√
N matrices M having low F-complexity of

arguing circuit classes F in a smoothed analysis. Let G ∈ {0, 1}N be any βδ7.11-away 2k0-
independent flipper, Φ be Definition 2.15’s shift, and M̃(z) :=M(Φ(z))(−1)G(Φ(z)), z = (x, y).

Definition 8.1 (learning sparse matrices in smoothed analysis). Learning an
√
N by

√
N matrix

M of density |M|̸=0/N under a shift (G,Φ) asks a learner A to choose rows and columns I ⊂ [N)
and J ⊂ (N ] to access to M̃(x, y) of (x, y) ∈ I × (N ] t [N)× J and predicts

cε-learning: PrG
[
PrX,Y [A

(
X,Y | M̃(I × (N ] t [N)× J )

)
6= M̃(X,Y )] ≤ cε

]
≥ 1−O(δ).

8.1 Unrestricted Super-Linear Lower Bounds

An F-linear circuit is an n-input n-output circuit computing an F-linear form f =
∑

i figi at
each gate f feeding the in-coming edges labeled by fi ∈ F from the child gates gi. We call it
reversible [SR11, ZW17] if reversing and relabeling the edges produce a circuit computing the
same linear form at every gate.

Lemma 8.2 (reversibility). Any binary F-linear circuit computing a reversible matrix can trans-
form to a reversible one without changing the size and depth.

Proof. By an induction starting from an output (fan-out 0) node. An obtained reversible circuit
consists of the n lines connecting the n inputs to n outputs having reversible s-input s-output
Fredkin gates of varying s per gate. Every output node is a root node of the uniquely determined
maximum sub-tree having non-leaf nodes of fan-out one and leaf nodes of fan-out greater than
one, excepting at most one leaf node. If the output node o entails a binary tree of size s
computing o =

∑
i∈(s] oigi from the s leaves computing gi, do the following. Remove this size-s

subtree below o, take an arbitrary gi with oi 6= 0, and put a new s-input s-output reversible
Fredkin gate of size s computing gi t {gi′}i′∈(s]−{i} 7→ o t {gi′}i′∈(s]−{i}. The gi might be an
input (fan-in 0) node of fan-out one, say xi. There is no more than one leaf node having one
fan-out due to the matrix’s reversibility. This case connects xi → o by a line and proceeds to
an induction step on the remainder (n− 1)-input (n− 1)-output circuit. In the other case, the
induction step takes the n output gates git{o′ | o′ 6= o} to form an n by n reversible matrix.
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Definition 8.3 (matrix rigidity). The rigidity rigM(r) of a matrixM∈ Fn×n is the minimum
number of flipping entries on each row to reduce its rank to r:

Matrix rigidity: rigM(r) = min
{
max
x
|Nx |̸=0 | rank(M+N ) ≤ r

}
.

Theorem 8.4 (Valiant). Any matrixM∈ Fn×n computable by an F-linear circuit of fanin two,
node-size s, and depth d (a power of 2) must have rigidity ∀t, rigM( t

log ds) ≤ 2dt for dt = 2−td.

Further, for dt,u = (1−2−t)ud, truncating tu
log ds to their tail nodes computing the F-linear forms

forces the circuit to have depth max(dt, dt,u).

Proof. Let C = (V, E) be an arbitrary binary circuit of node-depth ψ : V → [d]. Cut all those
nodes v such that ψ(u) < ψ(v) of the child nodes u of v differs at the ith bit for the most
significant i ∈ [log d). Take those t bits and fix them to bound the cut edges by at most
r ≤ t

log ds. The truncated circuit has depth at most dt, so every node is reachable from 2dt or
fewer input nodes. Any input-output path passing through none of these edges must increase the
accompanying node depths within 2−td bit patterns. As a dual, any input-output path passing
some of these nodes must progress them whthin the remaining (1 − 2−t)d patterns. Repeating
it for u times reduces it to (1− 2−t)ud of any path through the cut edges.

Theorem 8.5 (formulas to partial derivatives [BS83]). Any algebraic fanin-2 circuit of size s
and depth d to compute a linear y-degree polynomial f(x1, . . . ,xm,y1, . . . ,yn) =

∑n
i=1

∂f
∂yi
· yi

induces a multi-output parallel algebraic circuit of size 2s and depth 2d computing all partial
derivatives

( ∂f
∂yi

(x)
)n
i=1

.

Theorem 8.6 (Theorem1.853). Let N = n2 = 2log k2log(N/k) by even integers log k and logN/k.

Let p be an odd prime coprime with
(2(ℓ−1)
ℓ−1

)
, (r0, v, |Qrem|) = (1, 3, p), k = 3(2ℓ− 1), α = k!/kk,

β � 1, d = Θ(log n), dt = d/2t, dt,u = d(1−2−t)u, r ≤ stu/ log d, δ7.11 = δ/r, and η ≈ 22dt,u+dt/n.
Suppose m7.12 � min(pℓ, αµkn), k � k0 ≈ 4dt,uµ, and 22kη/β ≤ δ7.11. Any n by n {−1, 0, 1}-
matrixM of density µmust refute any Fp-linear circuit of size s and depth d computing M̃ unless
each row of M̃ is η-learnable from some 4dt,u of the first r rows, and the first m = O(m7.12/(αµ

k))
columns, in O(

((
k0
k

)
+ k0r

)
m) time.

Proof. Planted linear FT from matrix rigidity: Theorem8.4 obliges that the shifted matrix
M̃(x, y) =M(Φ(x, y))(−1)G(Φ(x,y)) realized by any Fp-linear circuit of size s and depth d must
have rigM̃(r) ≤ 2dt . In addition, a permutation matrix54 N ′ ∈ {−1, 0, 1}n×n makes M̃ + N ′

reversible. Theorem8.4 presents an r by n matrix B consisting of the r linear forms computed
by the cut edges. An n by r matrix A calculates the output matrix AB = M̃+N ′′ with noise
∀i, |N ′′

x |̸=0 ≤ 2dt + 1 . Lemma8.2’s reversible circuit connects each output node to at most
2dt,u edges in B. It deduces A−1A = 1r×r by ∀i,max(|Ax |̸=0, |(A−1)x |̸=0) ≤ 2dt,u . (AA−1)II =
AI(A−1)I = 1r×r for any index set 55 I ∈

(
n
r

)
of non-degenerate AI , producing (AA−1)IAIB =

M̃ +N ′′ with AIB = M̃I +N ′′
I and ∀x, |(AA−1)Ix |̸=0 ≤ 4dt,u . Thus, N := N ′′ − (AA−1)IN ′′

I
with ∀x, |Nx| ≤ 4dt,u(2dt+1) ≈ ηn brings out Definition 8.3’s matrix rigidity to invert the hidden
θx0 = (AA−1)Ix0 ∈ Frp of the following plantedFT to invert the x0th row:

53Take k � k0 ≤ O(1), α ≈
√
2πk
ek , t = ϵ

4
log log logn, u = (log log n)

ϵ
2 , p � n6/k, r = O( n

(log logn)ϵ/2
), s =

n(log log n)1−ϵ, and µ ≈ k0

4dt,u
. Lemma2.13 provides an explicit O(2−2dt,u−dt)-away 2k0-independent flipper

|G| = O
(
(22dt,u+dt logn)2

)
. Lemma2.17 gives an explicit DFT-shift |Φ| = nO(1).

54Permutation matrics must have (at most) one non-zero entry in every row and column.
551r×r is the r by r identity matrix.
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Matrix rigidity: (AA−1)IM̃I = M̃+N . Let Ix0 = {x ∈ I | θx0(x) 6= 0} ⊂ I.

Training dataset: Dx0 := {(
(
2#x+ 1−M̃(x,y)

2 | x ∈ Ix0 ,M̃(x, y) 6= 0
)
,M̃(x0, y))}y∈J ,

where |J | = m and x is the (1 + #x)th smallest number in (Ix0 ].

Planted linear FT: f(x) :=
∑k0

i=1 θx0(bxi/2c)(−1)xi .

Inverting linear planted FT: Theorem7.15 can invert this fθx(x) on |Ix0 | ≤ 4dt,u , k0 ≈ µ|Ix0 |,
µhsh ≈ µk, and m� n. Lemma2.17’s DFT-shift makes the i.i.d.m samples J ⊂ (n] to have:

Uniform
density : ∀x0 ∈ (n],PrY ∈J

[∣∣|Ix0 ∩ M̃Y
̸=0| − µ|Ix0 |

∣∣� µ|Ix0 |
]
≈ 1.

k-cover: ∀x0 ∈ (n], ∀K ∈
(Ix0
k

)
,
∣∣PrY ∈J [(K, Y ) ⊂ M̃ ̸=0]− µcvr

∣∣� µcvr.

Column-
wise error: ∀x0 ∈ (n],PrY ∈J

[
x ∈ Ix0⇒N (x, Y ) = 0

]
≥ 1− ηµ/δ · |Ix0 | (∵ Markov’s ineq of γ = δ).

Chernoff bounds of γ = ϵ
1−ϵ guarantees them with significance n ·

(
r
k

)
· e−γ2/2·(1−ϵ)m < o( 1n).

G’s βδ7.11-away 2k0-independence implies its (hremw (G), 0)-hashed βδ7.11-away 2k-independence.
Theorem7.15 inverts56 the f(x) and predicts M̃x0 from the entries over Ix0 × (n]∪ [n)×J .

8.2 Lower bounds beyond PHcc

Tarui [BFS86, Tod91, Tar93] presented low-degree probabilistic polynomials to approximate
PHcc languages with a Boolean guarantee. Razborov [Raz89, Tod91, Wun12] transformed them
into rigid matrices with two-sided error.

Theorem 8.7 (probabilistic polynomials with Boolean guarantee). Let d =
∑h

κ=1 dκ, d8.7 :=

2de+h and s8.7 =
∏h
κ=1(1+2dκ)2dκe+1. Suppose L ∈ PHcc

h [d] has the same type of gates at depths
(dκ−1, dκ]. It admits a low-degree linear computation ∀(x, y) ∈ {0, 1}n/2×{0, 1}n/2,PrR[L(x, y) 6=
ϕR(x, y)] ≈ 0 under the random seed R ∈ {0, 1}e

∑h
κ=1 2

dκ
.

Linear expression
by lift and project: ϕR(x, y) =

∑
w∈( n

d8.7
) ϕ̂w,R(1[x ∈ Iw, y ∈ Jw]) by Iw,Jw ⊂ {0, 1}

n/2,

and ϕ̂w,R ∈ Z with
∑

w∈( n
d8.7

) |ϕ̂w,R| ≤ s8.7.

Point-wise error: ∀(x, y),PrR[L(x, y) 6= ϕR(x, y)] ≤ 1/2e.

Boolean guarantee: ∀(x, y), ϕR(x, y) ∈ {0, 1}⇒ϕR(x, y) = L(x, y).

Proof. Replace binary NOR-subtrees of the PHcc
h [d] computation with Tarui’s probabilistic poly-

nomials [Tar93]. At the κth layer of PHcc
h [d], it uses e

∑h
κ=1 2

dκ number of the i.i.d. coin flips
Ri,j,ℓ ∈ {0, 1} of bias E[Ri,j,ℓ] = 1/2j and transforms a depth-dκ NOR-subtree to

Probabilistic polynomial: NORR(g1, . . . , g2dκ ) = (1 +
∑2dκ

i=1
gi)
∏e

ℓ=1

∏dκ
j=1

(1−
∑2dκ

i=1
Ri,j,ℓgi)

2.

It satisfies the Boolean guarantee, i.e., NORR(g1, . . . , g2dκ ) = 1⇒(1 +
∑
i∈[2dκ ]gi) = 1⇒∀gi = 1

and NORR(g1, . . . , g2dκ ) = 0⇒∃(1 −∑2dκ
i=1Ri,j,ℓgi) = 0⇒∃gi = 1. This replacement gives a two-

sided error computation. It incurs an error at most 1/2d+e for each of the 2d NOR gates, owing
no more than 1/2d+e ·2d = 2−e error in total. It expands into a hierarchy of (2dκe+1)-degree and
(1 + 2dκ)2dκe+1-norm polynomials at the κth layer, yielding the claimed linear expression.

56Theorem7.17’s proof takes care of the almost-zero θ’s case.
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Theorem 8.8 (Theorem1.957). Let N = 2n = 2log k2log(N/k) by even integers log(N/k) and

log k. Let p be an odd prime coprime with
(2(ℓ−1)
ℓ−1

)
, (r0, v, |Qrem|) = (1, 3, p), k = 3(2ℓ − 1),

α = k!/kk, β � 1, r ≤
(
n
d8.7

)
, δ7.11 = δ/r, k � k0 ≈ rµ, and η ≈ k0

δ2e0 . Suppose m7.12 �
min(pℓ, αµk

√
N), and 22kη/β ≤ δ7.11 � β. Any

√
N by

√
N {−1, 0, 1}-matrixM of density µ must

have lower bounds M̃−1(b) 6∈ PHcc
h [d] for some b ∈ {1,−1} unless M̃ is η-learnable fromM’s r

rows and m = O(pm7.12

αδµk
) columns in O(

((
k0
k

)
+ k0r

)
m) time.

Proof. Follow Theorem8.6’s one. Suppose M̃−1(b) ∈ PHcc
h [d] for both b = 1,−1. Theorem8.7’s

probabilistic polynomials ϕb,R approximate M̃−1(b) ∈ PHcc
h [d] by point-wise noise rate no larger

than 1/2e0 , providing the linear planted FT to make M̃ learnable. Theorem8.6’s matrix rigidity
argument transforms Theorem8.7’s linear expression into:

Matrix
rigidity: (AA−1)I(M̃I +NI) = M̃+N by A ∈ F

√
N×r
p and N ∈ F

√
N×√

N
p on I ∈

(√
N

r

)
.

Point-wise
error : ∀(x, y),Pr

[
N (x, y) 6= 0

]
≤ PrR

[
∃b, ϕb,R(x, y) 6∈ {0, 1}

]
≤ 2/2e0 .

Column-
wise error: PrY

[
∀x ∈ I,M̃(x, Y ) 6= 0⇒N (x, Y ) = 0 | ∑x∈I\M̃Y

̸=0
(M̃+N )(x, Y ) mod p

]
≥ 1− 2k0

2e0δ .

Theorem8.6 has succeeded in learning M̃ from the first m-columns of (M̃I + NI) satisfying
the uniform-density and k-cover under a fixed reminder

∑
x∈I\M̃Y

̸=0
(M̃ + N )(x, Y ) = ξ ∈ Zp.

Markov’s inequality parameter γ = δ provides mγ/p = O(m7.12

αµk
) data enough to execute it.

8.3 PHcc 6= PSPACEcc or quasi-NP 6⊂ quasi-NCk

As mentioned in TheoremReview11, Williams’s algorithmic approach [Wil13] has established
NEXP 6⊂ ACC [Wil14a] and even quasi-NP 6⊂ ACC [MW19]. This section will further extend it
to prove Theorem1.10 in virtue of Theorem7.15’s linear Fourier inversion.

Theorem 8.9 (NP hierarchy [Coo72, SFM78, Žák83] ). There is a unary language L ⊂ {1}∗
separating L ∈ NTIME[t]− ⋃

t′{NTIME[t′] | t′(n+ 1) = o(t(n))}.

Theorem 8.10 (short PCP [BSV14]). Every t-time verifier algorithm A(x,w) inputting 1n and
a witness w can induce an (n+ log t)O(1)-time computable generator 1n 7→ COn of poly(n+ log t)
size circuit with an oracle On of n = log t+O(log log t) input bits. If ∃w,A(1n, w) = accept then
∃O, COn is unsatisfiable. If ∀w,A(1n, w) = reject, then ∀O, COn has at least (1 − 1

n) satisfying

assignments. Cν is a 3CNFof the nO(1) inputs of the O’s answers.

Theorem 8.11 (easy witness lemma [MW19]). There is a universal constant c8.11 > 0 such that
if NTIME[tc8.11 ] ⊂ SIZE[nℓ], then every language in NTIME[t] must have a witness of SIZE[nO(ℓ3)].

Theorem 8.12. ∃e0, ∀h,∀ℓ, ∀d� n/e0, P 6⊂ PHcc
h [d] or NTIME[2ϵn] 6⊂ SIZE[nℓ] .

Proof. Let N = t = O(2ϵde0h/c8.11), n = log t + O(log log t), r ≤
(

n
2de0+h

)
, µ ≈ k0/r, and

pe = NO(1). Suppose NTIME[tc8.11 ] ⊂ SIZE[nℓ] and P ⊂ PHcc
h [d] for a contradiction.

Witnessing small circuits: Theorem8.9 presents L ∈ NTIME[t] − NTIME[ t1−o(1)], a unary
language separating non-deterministic time hierarchy. Theorem8.10’s short PCP transfers its

57Take e0k0hp
αβδ

= O(1) and d = nϵ. Lemma2.13 gives an explicit O(1)-away 2k0-independent N -bit flipper of

cardinality O(n2). Lemma2.17 provides the DFT-shift of cardinality NO(1).
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t-time verifier to an nO(1) non-deterministic time algorithm generating a circuit 1n 7→ COn
n of size

nO(1). Since we have assumed NTIME[tc8.11 ] ⊂ SIZE[nℓ], the easy-witness lemma (Theorem8.11)
replaces its oracle On with a witness circuitWn of size nO(ℓ3), yielding a circuit CWn

n of size nO(1).
Let 1n 7→ M be the 0-1 truth table of ¬CWn

n = 1 − CWn
n arranged in a

√
N × √N {0, 1}-matrix.

If 1n ∈ L, then all of its entries are one, while if 1n 6∈ L, it has at most 1
n fraction of the one

entries. Further, we reduce M’s one-entries to make |MU |̸=0/N = µ when |M |̸=0/N = 1, and
E[|MI |̸=0/N ] ≤ µ

n when |M| ̸=0/N ≤ 1
n , say by drawing the uniform random U ∼ [ 1µ ] and forcing

MU = 0 if (x, y) 6≡ U mod 1/µ. Let M̃(x, y) :=MU (Φ(x, y)) · (−1)G(Φ(x,y)).

Learning small circuits: The witness circuit Wn is evaluable in deterministic nO(1) time.
Our assumption P ⊂ PHcc

h [d] gives it a PHcc
h [d] protocol. Theorem8.7 presents a linear ex-

pression ϕR(x, y) to approximate Wn(Φ(x, y)). Guess the ϕR(x, y) by log(nO(ℓ3)) bits for the
circuit Wn and 2n · √N bits for its 2n input rectangles 1[x ∈ Ii] and 1[y ∈ Jj ] of all i ∈ (n]
so that 1[x ∈ Iw, y ∈ Jw] =

∏
i∈w∩(0,n/2]

∏
j∈w∩(n/2,n] 1[x ∈ Ii]1[y ∈ Jj ]. Since the short

PCP’s Cn is a 3CNF, Theorem8.7’s probabilistic polynomial (i.e., a NOR gate inputting gi =
ϕR(x, y(i))ϕR(x

′(i), y′(i))ϕR(x
′′(i), y′′(i))) transforms M̃(x, y) to Theorem8.8’s matrix rigidity

M̃′ := M̃ + N . It induces Theorem8.6’s planted FT f(x) that Theorem7.15 can invert from
the row data M̃′

I under a guessed flipper G. Let I ∈
(√

N

r

)
be Theorem8.8’s matrix-rigidity

index set. Guess a permuter Φ to satisfy

uniform density: PrY
[∣∣|{x ∈ I | M̃(x, Y ) 6= 0}| − µr

∣∣� µr
]
≈ 1.

k-cover: ∀K ∈
(I
k

)
,
∣∣PrY [(K, Y ) ⊂ M̃ ̸=0]− µcvr

∣∣� µcvr.

Theorem8.8 has shown it to meet the small column-wise error, too. Let {x ∈ I | M̃′(x, y) 6= 0} ⊂
I(y) ⊂ I with |I(y)| = k0. For every x ∈ [

√
N) and a ∈ {−1, 0, 1}k0 ,

Acceptance
probability
estimation

:

∣∣∣∣∣
1

N

∑
x

∑
(I(y),a)EU,G

[∣∣{y | M̃(I(y), y) = a}
∣∣ · 1[f(x(y)) 6= 0]

]
−(1±O(1/2e0))Pr[M̃(X,Y ) 6= 0]

∣∣∣∣∣ ≥ 1−O(δ).

It is a consequence of Theorem8.8 to learn M̃′ via the probabilistic polynomial ϕR(x, y) of a
guess R to incur an error rate |N | ̸=0/N ≤ 1/2e0 . It recognizes L by accepting 1n if the result
is at least µ/2, and rejecting it otherwise. It runs in the following non-deterministic time of the
parameters k0p

αβδ = O(1), r = nO(logc n) and t = 2n, contradicting L 6∈ NTIME[t1−o(1)]:

|U| × (Matrix entries calculation time+ Fourier inversion time+ Acceptance probability estimation time)

= |[1/µ]| ·
(√

N|I| · Õ(n) + |X | · (
(
k0
k

)
+ k0r) · m7.12

αµk
+ |X | · |I(Y)× {−1, 0, 1}k0 | · Õ(p)

)
≤ r

k0
·
(√

N · r · Õ(n) +
√
N ·O(r) · O(r3)

α(k0/r)k
+
√
N ·

(
r

k0

)
3k0 · Õ(p)

)
� t1−o(1).

Theorem 8.13 (Barrington’s theorem [Bar89]). Any depth-d circuit admits a permutation
branching program58 of width five and length 4d.

Definition 8.14 (CMD and DCMD59). CMDn(n+1)/2 asks to compute the modulo-two determi-
nant CMDn(n+1)/2(M) = det(M) mod 2 of a Boolean connected matrixM, i.e.,M(i, j) ∈ {0, 1}
58A permutation branching program of width k and length ℓ is a sequence of branching permutations
{(xij , fj , gj) | fj , gj ∈ Sk, i ∈ (n], j ∈ (m]}. An input x ∈ {0, 1}n guides the branches to select and compose
the ℓ permutations hℓ ◦ · · · ◦ h1 by hi = fj if xij = 1 and hi = gj otherwise.

59CMD: Connected Matrix Determinant. DCMD: Decomposed CMD.

59



with i ≥ j + 2⇒M(i, j) = 0. DCMDn3(n+1)/2(Mk, 1 ≤ k ≤ n2) = CMD(
∑

kMk mod 2) for
connectedMk. In particular, both CMD and DCMD belong to

⊕
L ⊂

⊕
Pcc ⊂ PSPACEcc.

Theorem 8.15 (CMD is
⊕

L-complete [IK02, CR20]). Any permutation branching program

C(x1, . . . , xn) of width k and length ℓ admits a projection mapping p(x) : {0, 1}n → {0, 1}
m(m+1)

2

with m ≤ k! · ℓ such that the modulo-two counting of C(x)’s accepting paths equals CMD(p(x)).

Definition 8.16 (approximate sum). We say that a function f admits a Sumε ◦ F circuit if
there are functions Ci ∈ F and coefficients αi ∈ R approximate ∀x,

∣∣f(x)−∑i=1 αiCi(x)
∣∣ ≤ ε.

Its weight is the sum of absolute coefficients
∑

i |αi|.

Lemma 8.17 (boosting DCMD by CMD [CR20]). If a non-uniform circuit class F can (1/2+η)-
approximate DCMDn3(n+1)/2, Sumε ◦ F can compute CMDn(n+1)/2 by O(( nεη )

2) circuits in F
with the sum of absolute coefficients O(1/η).

Theorem 8.18 (easy witness lemma for depth [CR20]). If every quasi-NP (resp.NP) language
is (12+

1

2logk n
) (resp. (12+

1
nk ))-approximable by circuits of O(logk n) (resp. k log n) depth for some

k ≥ 1, then every unary NTIME[exp(n)] language must have a witness of DEP[nϵ] (resp.DEP[ϵn])
for any constant ϵ > 0.

Theorem 8.19 (Theorem1.10). Suppose PHcc either computes CMD or approximates DCMD
by advantage 1

2+
1

exp(no(1))
. Then DEP[k log n] cannot (12+

1
nk )-approximate NP for all k ≥ 1 , i.e.,

some NP language L cannot have DEP[k log n] circuits Cn of advantage PrU [L(U) = Cn(U)] ≥
1
2 + 1

nk over the uniform random n-bit U .

Proof. Adapt Theorem8.12’s proof to Theorem8.11’s easy witness lemma for depth. Suppose
NP admitted (12 +

1
nk )-approximation by DEP[k log n] circuits. Take Theorem8.12’s parameters

but ε = o( 1
n32n

), d = ϵn, d′ = 2(ch+ 2)d+ 3 log n+ 2 log 1
ε + no(1), and d′′ = 2e0d

′ + h+ 3� n.

Witnessing shallow circuits: The easy witness lemma for depth (Theorem8.18) makes any
exp(n)-time verifier V (1n, y) to compress an N -bit witness y of V (1n, y) = 1 to a depth-d cir-
cuit, i.e., y must be a truth table of the circuit. Barrington’s theorem (Theorem8.13) transfers
it to a permutation branching program of size 4d and Theorem8.15 to CMDm(m+1)/2(p(x))

by a projection mapping p(x) of m = 5! · 4d. By assumption, PHcc
h [c log n] must commute

CMDn(n+1)/2 or (12 + 1
exp(nζ)

)-approximate DCMDn3(n+1)/2, ζ = o(1), so PHcc
h [c logm] must

contain CMDm(m+1)/2 or (12 + 1
exp(nζ)

)-approximate DCMDm3(m+1)/2. In the latter case, The-

orem8.17 writes CMDm(m+1)/2 ∈ Sumε ◦ PHcc
h [c logm] by a linear combination of (mε )

2 exp(nζ)

PHcc-circuits with the weight exp(nζ). Let us derive a contradiction from the latter case since
the former is easier to do it (by avoiding Sumε computation).

Learning shallow circuits: Let V (x, y) have Theorem8.10’s short PCP’s witness circuit CWν
ν .

It admits a 3CNF computation, providing an (h+3)-layered circuit of fan-in O(n3) AND gate at
the top, fan-in 3 OR gate at the second, fan-in (mε )

2 exp(nζ) Sumε gate at the third, and fan-in
22cd AND or OR gates at the remaining h layers. Theorem8.7 transfers it to a probabilistic
polynomial of degree d′′ := 2e0d

′ + h + 3 for dh+3 = log(n3), dh+2 = 2, dh+1 = 2 log(mε ) + nζ ,

dh = · · · = d1 = c logm, and d′ =
∑h+3

κ=1 dκ. The probabilistic polynomial NOR(g1, . . . , gn3)
of the top AND gate may contain an additional error term O(n3ε exp(nζ)) = o(1) since each
gi is OR of 3 Sumε gates having an error term ε and the weight exp(nζ). Theorem8.12’s
acceptance probability estimation recognizes {1n | ∃y, V (1n, y) = 1} ∈ NTIME[t]\NTIME[t1−o(1)]
in NTIME[t1−o(1)] time, a contradiction.
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9 Natural Lower Bounds for NP 6⊂ TC1 and VP 6= VNP

In this section, in the worst-case analysis (H∞(G) = 0), we translate number-theoretic/algebraic
structures of TC0 and VP circuits into data-compressing exact learning algorithms in Lemmas
1.31 and 1.32. These learning algorihtms plug into William’s program in Review11 to estimate
circuit’s acceptance probabilities and yield the circuit lower bounds of Theorems 1.11 and 1.12.

9.1 quasi-NP 6⊂ quasi-TC0

Let us briefly explain a number-theoretic mechanics to simulate TC0 by SYM+ in Lemma1.31.
It simulates every SYM gate feeding the outcomes g(x) ∈ {0, 1} from the previous layer by a sum
of EXACT gates, and every EXACT gate by a truncated Taylor series via the Chinese remainder

theorem
∑

g g(x) = a⇔
∑

iMODpi(
∑

g g(x)−a) = 0⇔
∑k0

k=0 ∀t,
(∑

i MODpi (
∑

g g(x)−a)
k

)
(1/qt) =

at by k = O(1), distinct primes pi ≤ ln a, and distinct base points qt = t + O(1). Vandermode
algebra in Lemmas 9.2 and 9.3 makes it a collision-free hash function. It promises the existence
of (at)t, and the modulus lifting of Lemma9.1 turns it into a SYM+ computation.

Lemma 9.1 (modulus lifting [BT94]). For any multi-linear polynomial f ∈ Q[x1, . . . ,xn] of
2norm(f) + 1 ≤ mℓ, and any integers ai ∈ {0, 1}+mZ,

Modulus lifting: f(a1 mod m, · · · , an mod m) = f(ϕℓ(a1), . . . , ϕℓ(an)) mod mℓ.

Lemma 9.2 (Vandermonde’s kernel [PR07]). The kernel of a generalized Vandemond matrix
Mt,n = (ajt′)(t′,j)∈(t]×[n) of distinct numbers at′ has dimension n− t and admits a basis spanned
by the cyclic shifts v0, . . . , vn−t of the following kinds. Let σ(i) =

∑
1≤t1<···<ti≤t at1at2 · · · ati .

vk =
(
0, · · · , 0︸ ︷︷ ︸

k

, (−1)tσ(t), · · · , (−1)iσ(i), · · · ,−σ(1), 1, 0 · · · , 0︸ ︷︷ ︸
n−t−k

)
.

Lemma 9.3 (Vandermonde’s conditional number [DSSS21]). For n ∈ 2N and the n distinct
primitive 2nth root of the unit ζi, the conditional number ‖M‖F‖M−1‖F of the Frobenius norm
‖M‖F :=

√
Tr(M∗M) of the cyclic Vamdemond matrixM = (ζji )i,j∈[n) is n.

Definition 9.4 (ACC circuits). Let 2 = p1 < p2 < · · · be the smallest prime numbers. An
SYMm,q,t gate is t-tuple set f̃ ⊂ Nt/q to express f = 1[

∑
g∈in(f) ĝ ∈ f̃ ], i.e., each input

g of f associates a t-tuple number ĝ = (ĝt′)
t
t′=1 ∈ Nt/q bounded by

∑
g

∑
t′ ĝt′ ≤ m/q. A

depth-(2h + 1) circuit SYM ◦ ACCh = SYMmh,qh,th ◦ (ANDkd ◦ {MOD[p1], . . . ,MOD[psd ]})hd=1

consists of these SYMth,qh,mh
gates at the top, AND gates of fanin kd at each depth 2d, and

MOD gates of modulus pξ(λdh) ∈ {p1, . . . , psd} of some ξ ∈ Qdh :=
∏h
d=1(sd]

Λdh of Λdh :=∏h
d′=d(kd′ ]. In this SYM ◦ ACCh[ξ] circuit, the AND gates at depth 2d must take the moduli

AND(MOD[pξ(1λ(d+1)h)], · · · ,MOD[pξ(kdλ(d+1)h)]) along with a path λ of depths from 2h down to 2d.

Lemma 9.5 (from AC0[SYM] via SYM◦ACC to SYM+ (Lemma1.31)). Given increasing positive
integers h�△h≤ · · · ≤△1� 2△h/h, and kd, ℓdi,md, nd, qdt, sd and td as follows60.

Let kd = O(1),md =△△d
d(△d+O(d))

d , nd = O(△d+1
d ), sd = O(△d), td = O(△d), p̃d =

∏sd
i=1
pi ≈ ssdd ,

k̃d =
∏h

d′=d
kd′ , qdt − t = qd1 = O(△d+1

d ), ℓdi =
∑h

d′=d+1
△2h−d′

sd′ + i· △2h−d
for △� sd+1,

60In this subsection, we often write an index ij to mean i, j for convenience, say qdt = qd,t.
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udi � ℓd0, qdt = 2nd−1 + t, q̃dt = kd!q
nd
dt to satisfy nd = sdtd · |Q1d|,md =

(
n
kd−1

d e△d |Q1d|td
|Q1d|td

)
,

e△dmd−1q̃(d−1)ttd−1 � p̃d, e
2△d+1n5d � (2− ϵ)td ,

∏h

d′=d

∏sd(i−1)(d
′)

i′=1

(
23ℓd′i′m

pi′−1
d′

)ud′i′ � pℓdii .

Then, SYMh◦· · ·◦SYM1 circuits having SYMd’s fanin e△d transform into SYMrd,ud,md
◦(ANDkd◦

{MOD[p1], . . . ,MOD[psd ]})hd=1 circuits, and even SYM+[deg: △2h ,norm: exp(△2h)] circuits of
△= O(△1). These transformations are deterministic O(log n)-space computation.

Proof. Truncated Talyor analysis transfers any SYMd◦· · ·◦SYM1-circuit f to {(f̂ξt)t ∈ ACCd[ξ]}ξ
with f(x) = 1

[∑
ξ(f̂ξts(x))t ∈ f̃

]
in a recursion from the bottom-to-top layers:

Modularize SYM circuit: f(x) =
∑

a∈f1
[∑

g∈in(f)g(x) = a
]

(∵ f ⊂ N represents f(x) = 1[
∑

i
xi ∈ f ])

⋆
=
∑

(aξ′t′ )ξ′,t′⊂N
: (

∑
ξ′aξ′t′ )t′∈f̃

∧
ξ′∈Q1(d−1)

∧
t′∈(td−1]

1
[∑

g

∑
ĝξ′∈ACCd−1[ξ

′]

:
∑

ξ′ ĝξ′∈g̃
q̃(d−1)t′ ĝξ′t′(x) = aξ′t′

]
(by induction hypothesis for an appropriate f̃ ⊂ [p̃d]

td−1 taken in
⋆⋆
=)

=
∑

(aξ′t′ )

∧
ξ′,t′

∧sd
i=1

MODpi

(∑
g
q̃(d−1)t′ ĝξ′t′(x)− aξ′t′

)
(∵ Chinese remainder by ∀aξ′t′ < p̃d)

⋆⋆
= 1
[∑

ξ

(
f̂ξt(x)

)
t
∈ f̃
]
for f̂ξ(x) = (aξ′t′)t′ and |{(aξ′t′)ξ′,t′ |

∑
ξ′
(aξ′t′)t′ ∈ f̃}| ≤ md.

Truncated
Tayler
series

:f̂t(x) :=
∑kd

k=0

(
j(x)

k

)
(
1

qdt
)k of j(x) :=

∑
ξ′,t′,i
¬MODpi

(∑
g
q̃(d−1)t′ ĝξ′t′(x)− aξ′t′

)
≤ nd,

so that f̂t(x) =
∑

ξ∈Q1d
f̂ξt(x) of f̂ξt(x) :=

∑
t′
rξtt′

q̃dt

∏kd
k=1

MODpξ(k)

(∑
g
q̃(d−1)t′ ĝξ′t′(x)− aξ′t′

)
,

f̂ξt(x) ∈ ACCd[ξ] of rξtt′ ∈ N, ξ′(λ1(d−1)) = ξ(λ1(d−1)), and ξ(k) = ξ(λ1(d−1)k) over λ ∈ Λ1d.

We can verify
⋆
= by induction on d because the Vandermond algebras (Lemmas 9.2 and 9.3)

guarantee
⋆⋆
= to incur no collision (yj(x))j 6= (yj(x

′))j⇒
∑

f,j yj(x)f̂(j) 6=
∑

f,j yj(x
′)f̂(j) of

Hash
function: f̂(j) = (f̂t(j))t for f̂t(j) := f̂t(x) of j := j(x).

Taylor series
approximation: f̂t(j) =

∑kd
k=0

(
j

k

)
(
1

qdt
)kd = (1 +

1

qdt
)j(1− εtd(j)),

εtd(j) :=
(
j

kd

)
/(1 +

1

qdt
)j ·
∫ 1

qdt

0
(1 + z)j−kd−1(

1

qdt
+ z)kddz ≈ 0. (∵ qdt � j and kd � 1)

Colliding
numbers

: yj(x) =
∣∣{f ∈ F |∑

ξ
f̂ξ(x) ∈ f̃, j(x) = j

}∣∣ for a given F of size |F| ≤ e△d+1 ,

where j ∈ [nd] and
∑nd

j=0
yj(x) ≤ e△d+1nd.

No
collision: (yj(x))j 6= (yj(x

′))j ∧
∑

j
yj(x)f̂(j) =

∑
j
yj(x

′)f̂(j)

⇒ By Lemma9.2 of at = 1 + 1/qdt, ∃αj ∈ R,∑nd−td
j=0

αjvj =
(
(yj(x)− yj(x′)) · (1− εtd(j))

)
j
∈ (Nnd\0nd)(1± ϵ)

⇒ βj := αjσ(t) has a norm ‖(βj)j‖ ≥ 1− ϵ
√
nd

since Lemma9.2’s triangular matrix

(
vkj
σ(t)

)k,j has the diagonals
vkk
σ(t)
∈ {1,−1} and the norm ‖( vkj

σ(t)
)−1‖F =

√
nd

⇒ (
∑td

j=0
αjx

j) ·
∏td
t=1

(x− at) = (
∑td

j=0
βjx

j) ·
∏td
t=1

(x/at − 1)

=
∑nd

j=0
(yj(x)− yj(x′))(1− εtd(j))xj in the polynomial ring Z[x]

⇒ ‖(βj)j‖2
‖
(
(yj(x)− yj(x′) · (1− εtd(j))

)
j
‖2
≤ ‖(1[i = j]

∏nd

i=1
(
ζi
at
− 1))−1

i,j ‖F · ‖(ζ
j
i )i,j‖F · ‖(ζ

j
i )

−1
i,j ‖F
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for ζi = e2π
√
−1·(i+nd/2)/(2nd) with

∣∣ζi/at − 1
∣∣ ≥ √

1 + 1/a2t

⇒ 1− ϵ
(1 + ϵ)

√
nd · e△d+1nd

≤ nd√∑
i
∏
t(1 + 1/a2t )

, contradicting to e2△d+1n5d � (2− ϵ)td .

The modulus lifting (Lemma9.1) transfers the obtained f̂(x)(= f̂t(x)) ∈ ACCh[ξ] to an
SYM+ circuit f̌(x) in a top-to-bottom recursion. Write f̂(xd) for the circuit f̂ considering the
MOD-gates xdκ at depth 2d − 1 as the input variables xd = (xdκ)κ. So, x = x0, f̂(x) = xh+1,
and xdκ ∈ MOD[pκ] ◦ ACCd−1[ξκ] of pκ = pξ(λd) and ξκ(λ1d) = ξ(λ1d) on every path λ passing

through xdκ. The induction hypothesis gives f̌(xd) of degree ud and asks to present a f̌t(xd−1)
of degree ud−1 via replacing every xdκ in the above f̂ ’s construction of

Truncated
Tayler series: x̃dκ :=

∑
f∈Fκ

q̃dtf̂ξκt(xd−1)− aξκ =
∑
f
∑
t′rξκtt′

∏kd
k=1x(d−1)κ′ − aξκ , κ′ := κkt′.

Modulus
lifting : Induce f̌(xd) 7→ f̌(xd−1) by substitution to all xdκ := ϕℓκ(x̃

pκ−1
dκ ) over depth 2d−1

so that f̌(xd) = f̌(xd−1) mod pℓκκ on norm(f̌(xd)) � pℓκκ . Refine it to f̌d(i−1) 7→ f̌di by

substitution xdκ(i) := ϕℓi(x̃
pi−1
dκ(i)) to the all variable of type xdκ(i) ∈ MOD[pi]◦ACCd−1[ξκ(i)].

SYM+ degree: Let f̌d0 := f̌(d+1)sd+1
, ud := deg(f̌d0), and udi := deg(MOD[pi]) = the maximum

number of MOD[pi]-variables xdκ(i) occuring in an AND-term of f̌d0. They increase by

deg(f̌di) − deg(f̌d(i−1)) ≤ deg
(
ϕℓdi(x̃

pi−1
dκ(i))

)
· udi = (2ℓdi − 1)(pi − 1)udi := vdi for i =

1, . . . , sd, so that deg(f̌di) ≤
∑h
d′=d

∑sdi(d′)
i′=1 vd′i′ of sdi(d

′) := sd′ · 1[d′ > d] + i · 1[d′ = d].

SYM+ norm: The ratios icrease by norm(f̌di)

norm(f̌d(i−1))
≤ norm

(
ϕℓdi(x̃

pi−1
dκ(i))

)udi ≤ (23ℓdimpi−1
d

)udi ,
so that norm(f̌d(i−1)) ≤

∏h
d′=d

∏sd(i−1)(d
′)

i′=1

(
23ℓd′i′m

pi′−1
d′

)ud′i′ � pℓdii .

Theorem 9.6 ([Wig94]). NL/poly ⊂
⊕

L/poly

Theorem 9.7 (Theorem1.11). Suppose AC0
h[SYM] of size 2(logn)

O(1)
either computes CMD or

approximates DCMD by advantage 1
2 + 1

2(logn)O(1) . Then DEP[(log n)k] cannot (12 + 1

2logk n
)-

approximate NTIME[2(logn)
O(1)

] for all k ≥ 1.

Proof. Follow Theorem8.19’s proof. Suppose AC0
h[SYM] of size 2(logn)

O(1)
approximates DCMD

by advantage 1
2 +

1

2(logn)O(1) . Let {1}∗ ⊃ L ∈ NTIME[2ν ]−NTIME[2ν/poly(ν)]. Theorem8.11 has

provided Theorem8.10’s short PCP a witness circuit CWν
ν of a 3CNF formula Cn and poly(n)-size

circuit Wν . If 1
ν ∈ L, then the circuit CWν

ν always outputs zero, while if 1ν 6∈ L, it outputs one
but at most 1/n fraction of error. Instead of measuring the acceptance probability of this CWν

ν

to distinguish these two cases, we will follow Williams’s trick [Wil14a] to reduce the input bits
from n to n−n′ ≈ n by measuring the induced OR-top circuit the acceptance probability of the
OR-top circuit

∑
x∈{0,1}ν−n′

∨
x∈{0,1}n′ CWν

ν (x, x) of ν = n+n′ = n+nϵ. The easy witness lemma

for depth (Theorem8.18) would compress a witness y of exp(n)-time verification V (1n, y) = 1
into a depth-d circuit with d = nϵ/c for constants c, c′, and c′′. Consequently, Theorem9.6
reduces

∨
x∈{0,1}n′ CWν

ν (x, x) to a DCMD’s approximation. Suppose that quasi-AC0
h[SYM] of

fan-in 2(logn)
c
admits the DCMD’s approximation by advantage 1

2 + 1

2(logn)c
′ . Let m = O(4d),

ε0 = o( 1

2(logn)c
′ ) and e0 ≈ 1

log δ . Guess an Sumε ◦ AC0
h[SYM] circuit (inputting m(m+ 2)/2 bits)

of fan-in (m/ε0)
2 at the top Sumε gate and depths △h= · · · =△1= 2(log(m(m+2)/2))c = 24

cnϵ
of

the AC0
h’s h layers to realize the

∨
x∈{0,1}n′ CWν

ν (x, x) circuit. Lemma9.5 transforms it to f̌ ∈
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SYM+[deg:22
h4cnϵ

,norm: exp(22
h4cnϵ

)] to compute Pr[f̂ ′(X) =
∨
x∈{0,1}n′ CWν

ν (X,x)] ≥ 1 − δ.
Williams’s dynamic program [Wil14a] can estimate it in a contradictory fast time

Nondeterministic time
for acceptance probability estimation: poly(n) ·

(
2n + 2n

′ · norm(f̌)
)
� 2ν(1−o(1)).

9.2 VP 6= VNP

We take Raz’s elusive function approach to prove Theorem1.12. It requires set-multilinear
polynomials, so we fix a number q ∈ 2N of order q = (log n)O(logn) and identify a binary string
x̃ with the q-nary vector x via [q)n 3 x ∼= x̃ ∈ 2ñ. It algebraizes a language L ⊂ [q)n ∼= {0, 1}ñ
to a set-multilinear polynomial L̂ :=

∑
x∈[q)n L(x)

∏n
i=1xi,xi , and F̂ := {L̂ | L ∈ F}.

Theorem 9.8 (circuits to formulae [Hya79]). Any size-s circuit computing a degree d polynomial
transforms to a formula of size sO(log d) and depth O(log d).

Definition 9.9 (multi-linear polynomial). A polynomial is set-multilinear over variables X1 t
· · · t Xr if every term (monomial) contains one Xi variable. A circuit is set-multilinear if so is
every gate over subsets of {X1, · · · ,Xr}.

Lemma 9.10 (multi-linearization). Any algebraic circuit of size s and depth d computing a
set-multilinear polynomial over variables X1 t · · · t Xr can transfer to a set-multilinear circuit
of size (d+ 2)r · s and depth 2d.

Lemma 9.11 (Theorem1.32). Any sum f =
∑s

k=1

∑n
i,j=1 xiλi(k)µj(k)xj of s � n bilinear

forms overMij(k) ∈ F with multi-linearity ∀i,∀j, ∀k, i 6= j⇒λi(k)µj(k) 6= 0 is exactly learnable
from O(s2n) data and O(s2n log |F|) guess bits in O(s2n) time.

Proof. Without loss of generality, we may assume that given s bilinear forms have disjoint keys
(i.e., specific indices) K = {ik, jk | k ∈ (s], λik(k)µjk(k) 6= 0}. Otherwise, there exist 2s′ (< 2s)
keys K to cover either {i | λi(k) 6= 0} ⊂ K or {j | µj(k) 6= 0} ⊂ K over all k > s′ so that f is
learnable by only s′n queries f(1ik + 1j) and f(1i + 1jk) over {ik, jk} ∈ K. Fix all these λik(k)
and µjk(k) as non-zero values in F, and all λik(k

′) and µjk(k
′) of k′ 6= k as well. The same

argument holds for λ̃ik and µ̃ik induced in Gaussian elimination.

Gaussian elimination (Jacobian matrix triangularization) can force ∀(k′ < k), λ̃ik′ (k) :=
λik′ (k) +

∑
k′<k ak′,kλik′ (k

′) = 0 and ∀k′ < k, µ̃jk′ (k) := µjk′ (k) +
∑

k′<k bk′,kµjk′ (k
′) = 0 by

taking the inductively induced coefficients ak′,k and bk′,k in F. It makes

A quadratic
polynomial
mapping

:
(
λ̃i(k), µ̃j(k) | i 6∈ {ik′ | k′ ≤ k}, j 6∈ {jk′ | k′ ≤ k}

)s
k=1
7→
(
f̃(1i + 1j) | (i, j) ∈ Λ

)s
k=1

,

f̃(1ik + 1j) := f(1ik + 1j) +
∑

k′<k
ak′,kf(1ik′ + 1j), f̃(1i + 1jk) := f(1i + 1jk) +

∑
k′<k

bk′,kf(1i + 1jk′ )

an invertible mapping over F
∑s

k=1 2(n−k), so uniquely identify the all argued λ̃i(k) and µ̃j(k),
and all λi(k) and µi(k) as well. Additional s(s+ 1)/2 queries to evaluate f̃(1ik + 1jk′ ) over all
1 ≤ k′ ≤ k ≤ s can determine the unargued coefficients λik′ (k) and µjk′ (k), too.

Theorem 9.12. N̂P 6⊂ VSIZE[2
o(n)

log3 n log logn ] or ∀ϵ > 0, ∀k ≥ 1,NTIME[exp(nϵ)] 6⊂ SIZE[nk].
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Proof. Follow Theorem9.7’s argument on Theorem8.12’s way to apply the easy witness lemma
(Theorem8.11). Suppose NTIME[tc8.11 ] ⊂ SIZE[νk·c8.11/ϵ] for t := 2ν . Williams’s trick [Wil14a]
has reduced the recognition of L ∈ NTIME[2ν ]\NTIME[2ν/poly(ν)] to measuring the acceptance
probability of an OR-top circuit Cn(x) :=

∨
w∈{0,1}ν−ñ CWν

ν (x, w) ∈ NP of x ∈ [q)n by taking ñ =

1−ϵ
3 ν. The assumption N̂P ⊂ VSIZE[s] of s = 2

o(ñ)

log3 ñ log log ñ = 2
o(n)

log2 n presents an algebraic circuit

Ĉn := ĈWν
ν of a homogeneous polynomial Ĉn(x) =

∑
x∈[q)n Cn(x)xx of the terms xx =

∏n
i=1 xi,xi .

Learning elusive bilinear decompositions of algebraic circuits: Theorems 9.8 and 9.10
transfer Ĉn to a set-multilinear formula of size no more significant than (d+2)nsO(logn) and depth

d = O(log n). Decompose it to a sum of bilinear forms Ĉn =
∑s′

k=1

∑
x∈Ik

∑
y∈Jk

xxλx(k)λy(k)xy

of Ik ×Jk ∼= [q)n with balance n/3 ≤ logq |Ik| ≤ 2n/3. There are s′ ≤ ((d+ 2)nsO(logn))d forms

with (d + 2)d � q and s′ ≤ sO(logn)·d = 2o(n). Lemma9.11 can identify them by querying

for
∑s′

k=1(|Ik| + |Jk|) times to evaluate Ĉn in s′ · q2n/3 · 2ν−ñ · poly(ν) � 2ν(1−ϵ+o(1)) time.
Once getting all coefficients λx(k) and λy(k), one can estimate the acceptance probability in
s′ ·qn ·

∑
k |Ik||Jk| ≤ s′ ·qn ·qn � 2ν(2/3−ϵ+o(1)) time, contradicting to L 6∈ NTIME[2ν/poly(ν)].

Theorem 9.13 (generalized easy witness lemma for depth [CR20]). Given smooth functions61

ℓ(n), d(n) and log s(n). Suppose s(s(s(n)c9.13)c9.13)c9.13 ≤ 2d(ℓ(n)) and t(n) := exp
( c9.13·ℓ2(n)
d(ℓ(n))

)
is non-

decreasing. If every NTIME[t(n)] language is (1/2 + 1/s(n))-approimable by circuits of depth
log s(n), then every unary NTIME[exp(n)] language must have a witness of DEP[d(n)].

Theorem 9.14 (Theorem1.12). Suppose VP either computes CMD or approximates DCMD by

advantage 1
2 +

1

2(logn)O(1) . Then DEP[(log n)k] cannot (12 +
1

2logk n
)-approximate NTIME[2(logn)

k3

].

Proof. The same with Theorem9.12’s one but taking Theorem8.19’s way to apply the general-
ized easy witness lemma for depth (Theorem9.13). Take the same parameters with Theorem8.18

but d(n) = ϵn/ log2(n), ℓ(n) = logk n, and s(n) = 2(logn)
(1−ϵ)k1/3

, so t(n) = exp(logk n log log n).
Apply Theorem9.13 to the algebraic circuit class C, s = 2d and t = poly(n), yielding Wν ∈
DEP[d(n)] of 1−ϵ

3 ν = ñ, so Ĉn ∈ Sumε0 ◦ DEP[4d] by Theorem9.14 for Theorem9.7’s m =

O(4d(n)), ε0 = o( 1

2(logn)c
′ ) and e0 ≈ 1

log δ . Theorem9.12 has learned the elusive bilinear decom-

position of the Ĉn in a contradictory fast time.

Theorem 9.15 (combinatorial design [NW94]). For k = O(m2/ log n) and n < 2m there is
S1, . . . ,Sn ⊂ [k] with |Si| = m and i 6= j⇒|Si ∩ Sj | ≤ log n. Such an m-set family S is
constructible in deterministic poly(n, 2k) time and called (m, log n)-combinatorial design.

Theorem 9.16 (hardness to derandomization [KI04]). Let S be an (m, log n)-combinatorial
design. Let f(x) be an m-variate multi-linear polynomial which an algebraic circuit of size s
cannot compute. Let C(y) be an n-variate circuit of size s′ and degree d. If (s′nmd)5 < s then
C(y) ≡ 0⇔ C(f(x↾S1), . . . , f(x↾Sn)) ≡ 0.

Theorem 9.17 (derandomizing PIT). Either PIT is solvable in deterministic npoly(log logn) time,
or ϵ > 0,∀k ≥ 1,NTIME[exp(nϵ)] 6⊂ SIZE[nk].

Proof. Theorem9.12’s algebraic circuit hardness derandomizes PIT. Suppose N̂TIME[poly(m)]

6⊂ VSIZE[s] for s = 2
o(m)

log3 m log logm . Let m = log n(log log n)3+2ϵ. We have an m-variate f(x) ∈ NP

61A function f(n) is smooth if f(2n) ≤ cf(n) holds for a constant c > 0.
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whose algebraic circuit size must be s = 2
Ω(

logn(log logn)ϵ

log log logn
)
. Since (s′nmd)5 < s for s′ = poly(n)

and d = n, PIT is solvable in |{0, 1}m| ·s′ ·2O(m2/logn) = O(2logn(log logn)
6+4ϵ

) time by exhausting
the input space x ∈ {0, 1}m to evaluate Theorem9.16’s C

(
f(x↾S1), . . . , f(x↾Sn)

)
.

10 Discussions and Open Problems

Our effort to understand smoothed complexities of min-entropy below O(log n) has brought
several new insights into machine learning, combinatorial optimization, cryptography, and com-
putational complexity by relying on only the well-established results and methodologies in these
fields. Can we go further from here without fundamentally new mathematical discoveries?

From refutation to approximation: MaxkSAT of O(nk−1) constraints required 2n
1−ϵ

time
to approximate maxθ P (y = fθ(x)) under ETH [FLP16]. Meanwhile, we have shown that
promise-MaxkSAT to distinguish between |maxθ P (y = fθ(x) − maxθ P

′(y = fθ(x))| ≥ ϵ and
P (x, y) ≡ P ′(x, y) is possible with only Õ(nk/2) constraints in nO(k) time. Is this sample
complexity gap persistent for the other fθ in combinatorial optimization, as well as fθ(x) =∧n
i=1 θ ◦xi? For example, MaxCUT requires the sample complexities (number of edges) Ω(n2−ϵ)

for O(2n
ϵ′
)-time approximation ([FLP16]), but only Õ(n) edges for the Õ(n)-time distinguish-

ment (Theorem6.21 of k = 2). How about MaxkCSP, DensestkSubgraph, MinBisection, etc.?

PAC learning planted kDNF (in the worst-case): We have shown that the planted kDNF
is PAC learnable from any Õ(n⌈k/2⌉) data in nO(k) time. The best possible might be Õ(nk/2)
data since all sub-linear degree SoS, sub-linear degree PC, and sub-exponential time Res have
demanded Ω(n(k−ϵ)/2) data. Sub-exponential size LP might require Ω(n(k−ϵ)/2) data learning
since it was so for noisy PAC learning [BCR20].

Linear time DNF learning in smoothed analysis: Our correlation analysis has derived
a linear time proper learning of plantedmonotoneDNF with expanding terms. It has safely
detected the correlation Pr[(−1)G(Xi)+Y | bXi/2c = a] under an O(log s)-independent flipper G.
Unfortunately, the correlation of a non-monotone variable Xi could vanish. Thus, linear time
PAC learning (non-monotone) plantedDNF in the smoothed analysis is wide open, even though
PAC learnability of monotoneDNF implies that of non-monotone DNF [KLV94].

Inverting planted Fourier transform and LWE: Fortunately, degree-k multi-linear poly-
nomials f(x1, . . . ,xd) =

∑
|w|≤k

∏
i∈w θ(bxi/2c)(−1)xi over Zq have the statistically non-zero

correlation Pr[Y · (−1)
∑

i∈w G(Xi) | bXw/2c = a] at any |w| = k. Our smoothed analysis has
retrieved the hidden Fourier coefficient

∏
i∈w θi(ai) from any data of small max |Y | with noise

Pr[Y 6= f(G(X)) | bXw/2c = a] ≈ 0. It has solved LWE with arbitrary i.i.d. noise in polynomial
time due to the concentration of

∑
i∈w±θi over the randomly flipping signs of the small secrets

∀i, |θi| = O(1). However, it does not apply to non-constant θi, nor a small q. Particularly, LWE
with the random θi ∈ Zq and LPN with q = 2 are still away from polynomial-time inversion.

Computational complexity lower bounds: We have shown that either PSPACEcc 6⊂ PHcc

or ∀k, quasi-NP 6⊂ quasi-NCk must hold. The latter quasi-NP 6⊂ quasi-NCk may not extend
immediately to quasi-NP 6⊂ quasi-NC (so NEXP 6⊂ PSPACE). For example, Theorem8.12’s non-
deterministic time analysis allows a sparsity |M |̸=0/

√
N ≥ 2n−ϵn, but the hardness magnification

demands a much sparser |M |̸=0 ≤ 2cn for c < 1 [CJW19]. We have established quasi-NP 6⊂ TC0
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in Boolean circuit complexity. It might be far beyond our reach to demonstrate lower bounds
of explicit problems beyond O(log n)-depth or O(log n)-space, say to prove quasi-NP 6⊂ NC1

and quasi-NP 6⊂ L. As for algebraic circuit complexity, we have shown either VP 6= VNP or
∀k, quasi-NP 6⊂ NCk. Extending Murray-Williams-Chen-Ren’s easy witness lemmas and replac-
ing the latter quasi-NP 6⊂ NCk with NP 6⊂ P/poly might establish VP 6= VNP.
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[RV07] Heiko Röglin and Berthold Vöcking. Smoothed analysis of integer programming.
Mathematical programming, 110(1):21–56, 2007.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[SA90] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

[Sap14] Ramprasad Saptharishi. Recent progress on arithmetic circuit lower bounds. Bul-
letin of EATCS, 3(114), 2014.

[Sch77] A. A. Schönhage. Schnelle multiplikation von polynomen über Körpern der charak-
teristik 2. Acta Informatica, 7:395–398, 1977.

[Sch08] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. In 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’08), pages
593–602. IEEE, 2008.

[SCR+20] R Santhanam, L Chen, N Rajgopal, Ján Pich, IC Oliveira, and S Hirahara. Be-
yond natural proofs: Hardness magnification and locality. Leibniz International
Proceedings in Informatics, 151, 2020.

[Ser03] Rocco A Servedio. Smooth boosting and learning with malicious noise. Journal of
Machine Learning Research, 4(Sep):633–648, 2003.

[Ser04] Rocco A Servedio. On learning monotone DNF under product distributions. In-
formation and Computation, 193(1):57–74, 2004.

[SFM78] Joel I Seiferas, Michael J Fischer, and Albert R Meyer. Separating nondeterministic
time complexity classes. Journal of the ACM (JACM), 25(1):146–167, 1978.

[Sha17] Abhijat Sharma. An improved lower bound for depth four arithmetic circuits.
Master’s thesis, Indian Institute of Science, Bangalore, India, 2017.

[Sha18] Ohad Shamir. Distribution-specific hardness of learning neural networks. The
Journal of Machine Learning Research, 19(1):1135–1163, 2018.

89



[Sho87] Naum Z Shor. Class of global minimum bounds of polynomial functions. Cyber-
netics, 23(6):731–734, 1987.

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st
Conference on Computational Complexity (CCC’16). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[SM00] Yoshifumi Sakai and Akira Maruoka. Learning monotone log-term DNF formulas
under the uniform distribution. Theory of Computing Systems, 33(1):17–33, 2000.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In 19th annual ACM Symposium on Theory of computing
(STOC’87), pages 77–82, 1987.

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation grosser zahlen.
Computing, 7(3):281–292, 1971.

[SS96] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and
interpolation problems. Computational Complexity, 6(4):301–311, 1996.

[SSS95] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995.

[ST04] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the ACM (JACM),
51(3):385–463, 2004.

[ST09] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain
the behavior of algorithms in practice. Communications of the ACM, 52(10):76–84,
2009.

[Ste74] Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geome-
try. Mathematische Annalen, 207(2):87–97, 1974.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356, 1969.

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte
Mathematik, 1973(264):184–202, 1973.

[STT07] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality gaps
for Lovász-Schrijver LP relaxations of vertex cover and max cut. In 39th annual
ACM Symposium on Theory of computing (STOC’07), pages 302–310. ACM, 2007.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[SV18] Shubhangi Saraf and Ilya Volkovich. Black-box identity testing of depth-4 multi-
linear circuits. Combinatorica, 38(5):1205–1238, 2018.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of char-
acteristic zero. Computational Complexity, 10(1):1–27, 2001.

90



[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Now Publishers Inc, 2010.

[Tar93] Jun Tarui. Probabilistic polynomials, ac0 functions and the polynomial-time hier-
archy. Theoretical Computer Science, 113(1):167–183, 1993.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, 1991.

[Tsa96] Shi-Chun Tsai. Lower bounds on representing boolean functions as polynomials in
z m. SIAM Journal on Discrete Mathematics, 9(1):55–62, 1996.

[TT99] Jun Tarui and Tatsuie Tsukiji. Learning DNF by approximating inclusion-
exclusion formulae. In 14th Annual IEEE Conference on Computational Complexity
(CCC’99), pages 215–220. IEEE, 1999.

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and
efficiently simulating every high-entropy distribution. In 24th Annual IEEE Con-
ference on Computational Complexity (CCC’09), pages 126–136. IEEE, 2009.

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In 41st annual
ACM Symposium on Theory of computing (STOC’09), pages 303–312. ACM, 2009.

[TW13] Madhur Tulsiani and Pratik Worah. Ls+ lower bounds from pairwise independence.
In 28th Annual IEEE Conference on Computational Complexity (CCC’13), pages
121–132. IEEE, 2013.

[Vad17] Salil P Vadhan. On learning versus refutation. Proceedings of Machine Learning
Research vol, 65:1–14, 2017.

[Vai90] Pravin M Vaidya. An algorithm for linear programming which requires o(((m +
n)n2 + (m + n)1.5n)L) arithmetic operations. Mathematical Programming, 47(1-
3):175–201, 1990.

[Val77] Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In Interna-
tional Symposium on Mathematical Foundations of Computer Science, pages 162–
176. Springer, 1977.

[Val79] Leslie G Valiant. Completeness classes in algebra. In 11th annual ACM Symposium
on Theory of computing (STOC’79), pages 249–261, 1979.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[Val85] Leslie G Valiant. Learning disjunction of conjunctions. In 9th International Joint
Conference on Artificial Intelligence (IJCAI’85), pages 560–566, 1985.

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applications to
learning parities and the closest pair problem. Journal of the ACM (JACM),
62(2):1–45, 2015.

[Vap06] Vladimir Vapnik. Estimation of dependences based on empirical data. Springer
Science & Business Media, 2006.

91



[Vaz86] Umesh Vazirani. Randomness, adversaries and computation. PhD thesis, Univer-
sity of California, 1986.

[Ver90] Karsten A Verbeurgt. Learning DNF under the uniform distribution in quasi-
polynomial time. In 3rd Annual Conference on Computational Learning Theory
(COLT’90), pages 314–326. Springer, 1990.

[Vio05] Emanuele Viola. On constructing parallel pseudorandom generators from one-
way functions. In 20th Annual IEEE Conference on Computational Complexity
(CCC’05), pages 183–197. IEEE, 2005.

[VL91] Jan Van Leeuwen. Handbook of theoretical computer science (vol. A) algorithms
and complexity. Mit Press, 1991.

[Vol16] Sergey Volkov. Finite bases with respect to the superposition in classes of elemen-
tary recursive functions, dissertation. arXiv preprint arXiv:1611.04843, 2016.

[VRPS21] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth
separation in approximating natural functions with neural networks. arXiv preprint
arXiv:2102.00314, 2021.

[VS20] Gal Vardi and Ohad Shamir. Neural networks with small weights and depth-
separation barriers. Advances in Neural Information Processing Systems, 33, 2020.

[VW21] Nikhil Vyas and Ryan Williams. On super strong eth. Journal of Artificial Intel-
ligence Research, 70:473–495, 2021.

[Weg87] Ingo Wegener. The complexity of boolean functions, 1987.

[Wig94] Avi Wigderson. NL/poly ⊆ ⊕L/poly. In 9th Annual IEEE Conference on Structure
in Complexity Theory (SCT’09), pages 59–62. IEEE, 1994.

[Wig19] Avi Wigderson. Mathematics and Computation: A Theory Revolutionizing Tech-
nology and Science. Princeton University Press, 2019.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. SIAM Journal on Computing, 42(3):1218–1244, 2013.

[Wil14a] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM
(JACM), 61(1):1–32, 2014.

[Wil14b] Ryan Williams. The polynomial method in circuit complexity applied to algorithm
design (invited talk). In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS’14). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2014.

[Wil16] R Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Com-
puting, 45(2):497–529, 2016.

[Wit17] David Witmer. Refutation of random constraint satisfaction problems using the
sum of squares proof system. PhD thesis, Technion–Israel Institute of Technology,
2017.

92



[Wun12] Henning Wunderlich. On a theorem of razborov. Computational Complexity,
21(3):431–477, 2012.

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear
programs. Journal of Computer and System Sciences, 43(3):441–466, 1991.

[Yao83] Andrew C Yao. Lower bounds by probabilistic arguments. In 24th Annual Sym-
posium on Foundations of Computer Science (FOCS’83), pages 420–428. IEEE,
1983.

[Yao85] A. C.-C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual
Symposium on Foundations of Computer Science (FOCS’85), pages 1–10. IEEE,
IEEE, 1985.

[Yao90] AC-C Yao. On ACC and threshold circuits. In 31st Annual IEEE Symposium on
Foundations of Computer Science (FOCS’90), pages 619–627. IEEE, 1990.
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