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Abstract

Succinct arguments are proof systems that allow a powerful, but untrusted, prover to con-
vince a weak verifier that an input x belongs to a language L 2 NP, with communication that
is much shorter than the NP witness. Such arguments, which grew out of the theory literature,
are now drawing immense interest also in practice, where a key bottleneck that has arisen is the
high computational cost of proving correctness.

In this work we address this problem by constructing succinct arguments for general com-
putations, expressed as Boolean circuits (of bounded fan-in), with a strictly linear size prover.
The soundness error of the protocol is an arbitrarily small constant. Prior to this work, suc-
cinct arguments were known with a quasi-linear size prover for general Boolean circuits or with
linear-size only for arithmetic circuits, defined over large finite fields.

In more detail, for every Boolean circuit C = C(x,w), we construct an O(log |C|)-round
argument-system in which the prover can be implemented by a size O(|C|) Boolean circuit (given
as input both the instance x and the witness w), with arbitrarily small constant soundness error
and using poly(�, log |C|) communication, where � denotes the security parameter. The verifier
can be implemented by a size O(|x|)+poly(�, log |C|) circuit following a size O(|C|) private pre-
processing step, or, alternatively, by using a purely public-coin protocol (with no pre-processing)
with a size O(|C|) verifier. The protocol can be made zero-knowledge using standard techniques
(and with similar parameters). The soundness of our protocol is computational and relies on
the existence of collision resistant hash functions that can be computed by linear-size circuits,
such as those proposed by Applebaum et al. (ITCS, 2017).

At the heart of our construction is a new information-theoretic interactive oracle proof (IOP),
an interactive analog of a PCP, for circuit satisfiability, with constant prover overhead. The im-
proved e�ciency of our IOP is obtained by bypassing a barrier faced by prior IOP constructions,
which needed to (either explicitly or implicitly) encode the entire computation using a multipli-
cation code.

∗Department of Computer Science, University of Haifa. Email: noga@cs.haifa.ac.il. Research supported by ISF
grant 735/20.

†Department of Computer Science, Technion. Email: rothblum@cs.technion.ac.il. Supported by the Israeli Science
Foundation (Grants No. 1262/18 and 2137/19), and the Technion Hiroshi Fujiwara cyber security research center
and Israel cyber directorate.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 180 (2021)

mailto:noga@cs.haifa.ac.il
mailto:rothblum@cs.technion.ac.il


Contents

1 Introduction 1
1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 10
2.1 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Interactive oracle proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Error-correcting codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Evading set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Our results 18

4 The code family C and main lemmas 18
4.1 The code family C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 C-encoded IOPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Multi-sumcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Multi-sumcheck with constant overhead 22
5.1 Consistency checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Multi-sumcheck protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Fast IOP for circuit satisfiability 30
6.1 From multi-sumcheck to circuit satisfiability: an overview . . . . . . . . . . . . . . . . . . . . 30
6.2 Useful sub-protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 IOPP for circuit evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 IOP for circuit satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 From fast IOPs to fast arguments 39

A IOP composition 47

B Eliminating the C-encoded assumption 48
B.1 Local testing protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.2 Relaxed local correction protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C Sumcheck for rank 1 tensor coe�cients 55
C.1 Proof of Lemma C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

D Linear-size selection 60

E Linear-size evading set generator 60



1 Introduction

A proof system is a method by which a powerful, but untrusted, prover can convince a verifier,
which has limited resources, that a computational statement is true. The study of proof systems,
ranging from classical NP proofs, to interactive proofs, multi-prover proofs, PCPs and so on, has
had a profound impact on several di↵erent areas of TCS leading to groundbreaking results such as
the theory of NP-completeness, the discovery of zero-knowledge proofs as well as the PCP theorem
and its applications to hardness of approximation.

Recently, e�cient proof systems have been drawing significant interest also in practice and are
now being implemented and deployed.1 Of particular interest are succinct argument-systems [Kil92,
Mic00]. These are protocols for proving the correctness of (non-deterministic) computations of size
T , so that proving takes time proportional to T , whereas the communication as well as verification
time are much smaller than T . Such argument-systems are sound against computationally bounded
cheating provers and can often be shown to be zero-knowledge meaning that nothing beyond the
correctness of the statement is revealed to the verifier.

One of the key e�ciency bottlenecks that has been identified for these built systems is the large
overhead incurred by the prover in order to prove correctness of the computation. While poly-
logarithmic (multiplicative) overhead for the prover has been known for a while (see Section 1.2),
the actual cost of proving that a computation is correct is still orders of magnitude slower than
merely performing the computation. This fact raises the following fundamental question:

Can proving be as e�cient as computing?

In this work we address the above question from a theoretical perspective and construct a suc-
cinct argument-system with constant (multiplicative) overhead for proving correctness. Our result
holds for the model of Boolean circuits (with bounded fan-in). That is, we consider computations
that are expressed as Boolean circuits and consider the overhead incurred by the prover, when the
latter is also implemented as a Boolean circuit.2

1.1 Our results

Our main result is an argument-system in which the prover’s size is strictly linear in the size of
the original computation. Soundness holds against any computationally bounded cheating prover,
assuming the existence of e�cient cryptographic primitives, which have been shown to exist under
plausible computational assumptions [AHI+17].

Theorem 1.1 (Informally Stated, see Theorem 3.2). Assume that there exists a collision-resistant
hash function computable by linear-size circuits. Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) �
n + m Boolean circuit. There exists an O(log(S))-round argument-system for the language

�

x 2
{0, 1}n : 9w 2 {0, 1}m, C(x,w) = 1

 

with arbitrarily small constant soundness error against
circuits of size poly(�), where � denotes the security parameter. The prover has size O(S) (given
the witness as an auxiliary input), and the communication complexity is poly(log(S),�).

Furthermore, the verifier can be implemented in size O(n) + poly(log(S),�), following a size
O(S) private pre-processing step.

1See https://zkproof.org/ and resources therein for further details.
2We emphasize that in this regime of parameters the computational model is crucial since simulating a di↵erent

computational model typically incurs at least a logarithmic overhead.
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The protocol of Theorem 3.2 can be applied to circuits composed of arbitrary gates of constant
fan-in and fan-out. When measuring the size of the prover, we allow the prover to re-use com-
putations that it performed in prior rounds (in other words the prover is stateful). The protocol
can be made zero-knowledge, while retaining the same e�ciency parameters, using the standard
transformation for public-coin protocols of Ben-Or et al. [BGG+88].3

We remark that prior to our work, strictly constant overhead was not known even without the
furthermore clause of Theorem 1.1 - that is there were no succinct arguments with a linear-size
prover for general Boolean circuits even with a polynomial-time verifier (let alone a sub-linear
verifier). Rather, the most e�cient protocols had poly-logarithmic overhead ([BCGT13], building
on [BS08, Kil92] see also [CMT12]). A strictly linear-size prover was known only for arithmetic
circuits over large finite fields [BCG+17b, XZZ+19, ZWZZ20, BCG20, BCL20, LSTW21, GLS+21]
(see further discussion in Section 1.2).

While the soundness error in Theorem 3.2 is an arbitrarily small constant, it is plausible that
a similar result with sub-constant or even negligible soundness could be obtained and this remains
a fascinating open question. This is particularly important since protocols with negligible (round-
by-round [CCH+19]) soundness error can be made non-interactive using the Fiat-Shamir transform
[FS86].

As noted, the verifier of Theorem 1.1 has poly-logarithmic size, following a linear-size pre-
processing step (which depends only on the circuit).4 We emphasize though that the pre-processing
step in the protocol is private in the sense that the verifier’s random coins that were used to produce
the state, as well as the state itself, need to be kept hidden from the prover. As an alternative to
this private pre-processing, the verifier can be implemented in size linear in the circuit (without
any pre-processing) and in this case the protocol is purely public-coin and the communication is
still poly-logarithmic.

Remark 1.2. In most protocols in the literature, the input circuit C is viewed as part of the input
for the prover. In our context however even that is too much - the description size of a general
circuit of size S is O(S · log(S)), which we cannot a↵ord. Thus, in our construction, rather than
receiving the circuit as an input, the prover depends on it explicitly: in particular, the circuit C is
hardcoded within the prover’s circuit.

The technical core: Linear-size IOPs. Following a recent line of work [BCS16, AHIV17,
BCG+17b, BBHR19, BCR+19, CHM+20, BCG20, BCL20], the improved e�ciency in Theorem 3.2
stems from an improvement on an information-theoretic proof system. Specifically, we construct
an interactive oracle proof (IOP) with a linear-size prover. IOPs, introduced by Ben Sasson et
al. [BCS16] and Reingold et al. [RRR16], can be thought of as a hybrid between a classical interac-
tive proof and a PCP. Similarly to an interactive-proof there is a prover and verifier who interact
over several rounds. In each round the prover sends a message and the verifier answers with some

3Roughly speaking, rather than sending messages in the clear, the prover sends commitments. Since the verifier’s
messages do not depend on the prover’s messages, they can continue the interaction until, at the very end, the prover
proves that it knows decommitments that would make the verifier accept using a generic zero-knowledge proof for
NP. Since all the original messages are short, and the verifier’s decision predicate is small, the total additive overhead
in the transformation is sub-linear in the circuit size. We remark that this transformation makes a non-blackbox use
of the underlying collision-resistant hash function and it would be interesting to obtain a similar result that avoids
this (see [BCL20] for such a blackbox-type result for arithmetic circuits over large fields).

4A linear dependence is inherent (for general circuits), since a small change in the circuit can totally change its
functionality, and would go undetected by a sub-linear time verifier.
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random coin tosses. Similarly to a PCP however, the prover messages can be long and the verifier
only queries a few bits from each message that it receives. Ben Sasson et al. [BCS16] showed how to
extend Kilian’s PCP based approach [Kil92] for constructing e�cient arguments to IOPs. Moreover,
as pointed out in [BCG+17b, BCG20], using highly e�cient cryptographic primitives (namely, col-
lision resistant hash functions computable by linear-size circuits [AHI+17]), this compilation step
preserves the prover e�ciency (up to a constant factor).

Thus, our main technical contribution is an IOP for circuit satisfiability with a linear-size prover.
In contrast to Theorem 1.1, this result is unconditional and soundness holds even against compu-
tationally unbounded cheating provers.

Theorem 1.3 (Informally Stated, see Theorem 3.1). Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) �
n + m Boolean circuit. Then, the language

�

x 2 {0, 1}n : 9w 2 {0, 1}m, C(x,w) = 1
 

has a
O(log(S))-round IOP with arbitrarily small constant soundness error. The prover has size O(S)
(given the witness as an auxiliary input), and the query complexity is polylog(S).

Furthermore, the verifier can be implemented in size O(n) + polylog(S), following a size O(S)
private pre-processing step.

Most of the remarks following Theorem 1.1 pertain also to Theorem 1.3. In particular, the
prover is stateful and has the circuit C hardwired. As in Theorem 1.1, the pre-processing step of
the verifier must be kept hidden from the prover (or alternatively, the verifier can be implemented in
size O(S)). We assume that the verifier has oracle access to the pre-processed data. Alternatively,
since the verifier’s queries only depend on its internal randomness and a bound on the size of the
circuit, the verifier can perform these queries already in the pre-processing step and save only the
answers to these queries.

More on the computational model. As discussed, our focus is on the model of Boolean
circuits. The objective of realizing cryptography with linear-size Boolean circuits in general, and
zero-knowledge proofs specifically, was explicitly raised by Ishai et al. [IKOS08]. We find the model
of Boolean circuits to be extremely natural, and an objective and realistic representation of the
intrinsic complexity of a computational task. As circuits are a non-uniform model of computation,
we take a non-uniform perspective throughout this work.

1.2 Related work

Cryptography with constant computational overhead. The question of constructing gen-
eral cryptographic primitives with constant computational overhead was raised by Ishai et al. [IKOS08],
who also constructed several basic cryptographic primitives with such e�ciency, including private
and public key encryption and semi-honest secure two-party computation. Several more recent
works have constructed additional cryptographic primitives with constant overhead. These in-
clude universal one-way hash functions [AM17], collision-resistant hash functions [AHI+17] as well
as plausibly exponentially secure pseudorandom generators [BIO14] and pseudorandom functions
[BIP+18].

Outside (but closely related to) the domain of cryptography, are constructions of error-corrected
codes that are linear-time encodable [Spi96, DI14] and decodable [SS96] as well as linear-size pair-
wise independent hash functions [IKOS08].
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We next discuss several works that achieve linear-size provers for arithmetic circuits over large
fields, or with large (i.e., at least linear in the circuit size) communication. See also [GLS+21] for
a more thorough discussion.

Before proceeding, we emphasize that the focus of this work is theoretical and that there are
several works that achieve sub-optimal theoretical bounds but are highly e�cient in practice (e.g.,
[AHIV17]). We do not discuss all of these works here and instead refer the reader to the recent
surveys [Ish20, Tha21].

Succinct arguments over large fields. A recent exciting line of work [BCG+17b, XZZ+19,
ZWZZ20, BCG20, BCL20, LSTW21, GLS+21] has constructed succinct arguments for arithmetic
circuits (or more generally, for the R1CS problem described below) over a large finite field, of
size that is at least linear in the circuit size, where the prover can be implemented as a linear-size
arithmetic circuit. In contrast, our main results apply to Boolean circuits. While arithmetic circuits
can emulate Boolean circuits, this emulation introduces overhead that is poly-logarithmic in the
field size.

Many of the works in the arithmetic setting focus on the NP complete problem of R1CS (for
rank-1 constraint satisfaction) rather than circuit satisfiability. Roughly speaking, the input in
R1CS consists of matrices A, B and C and a vector x and the question is whether there exists a
vector z such that (Ax0)? (Bx0) = Cx0, where ? represents pointwise multiplication and x0 = (x, z).
R1CS has a linear-time reduction from circuit satisfiability (where an important benefit is that the
circuit can even have large fan-in XOR gates). Prior works considered R1CS over large finite fields,
but we believe that our results can be extended also to R1CS over the binary field (in the typical
scenario when the matrices are sparse and fixed in advance).

Non-succinct zero-knowledge. A separate line of work has considered constructing zero-knowledge
proofs with a linear-size prover, but where the communication may also grow linearly in the circuit
size (in contrast to succinct arguments which aim for sub-linear length proofs).

Such a non-succinct zero-knowledge proof, with a linear-size prover, can be derived from a ba-
sic application of the MPC-in-the-head paradigm of [IKOS09], using commitments computable in
linear-size. Similarly to our main results, the resulting protocol only achieves a constant sound-
ness error and achieving sub-constant soundness is open even in this regime (see also [DIK10]).
Recent works by Weng et al. [WYKW21] and Franzese et al. [FKL+21] construct non-succinct
zero-knowledge proof (with sub-constant soundness error), where the prover can be implemented
as a linear-time RAM program. Concurrent to [WYKW21], and using related techniques, Dittmer et
al. [DIO21] (see also the followup [YSWW21]) and Baum et al. [BMRS21] constructed zero-
knowledge proofs for arithmetic circuits with constant overhead.

1.3 Technical overview

As mentioned above, and similarly to recent works on arguments with e�cient provers (e.g.,
[BCG+17b, BCG20, BCL20, LSTW21, GLS+21]), our main contribution is the construction of
an e�cient IOP (i.e., Theorem 1.3) which can then be transformed in a straightforward manner
into an e�cient argument using a linear-size collision-resistant hash function [AHI+17], thereby
establishing Theorem 1.1. Thus, in this overview we focus on describing the e�cient IOP for circuit
satisfiability.
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E�cient IOPs via multi-sumcheck. The main idea underlying our IOP is the construction of an
e�ciently encodable systematic5 code C : {0, 1}n ! {0, 1}O(n) that supports a “multi-sumcheck”
protocol with a highly e�cient prover. In a multi-sumcheck protocol the input is a constant number
of codewords c

1

, . . . , cd 2 C and a value b 2 {0, 1} and the goal is to construct an IOP for checking
that

P

i2[n] c1(i) · · · cd(i) = b (where the arithmetic is over the binary field).6 We wish to construct
such a protocol so that the prover can be implemented by a strictly linear-size Boolean circuit
and the verifier can be implemented by a poly-logarithimic size circuit, given oracle access to the
codewords. The code itself should also be encodable by a linear-size circuit.

The goal in multi-sumcheck should be contrasted with the classical sumcheck protocol of Lund et
al. [LFKN92].7 Recall that the latter is a protocol for checking that

P

i2[n] c(i) = b, where c is
a codeword from the low degree extension code (i.e., a low degree multivariate polynomial), or
more generally any tensor code [Mei13].8 The classical sumcheck protocol can thus be viewed as an
instance of multi-sumcheck with d = 1. However, the code used in multi-sumcheck in all prior work
is a multiplication code — a code in which the pointwise product of any two (or more) codewords
results in a codeword from a related code (see details below). Multiplication codes allow for a
simple reduction from the case of general d to the case d = 1, by simply running the d = 1 protocol
on the product codeword c? := c

1

? c
2

? · · · ? cd, where a ? b denotes the vector obtained by taking
the pointwise product of vectors a and b (i.e., (a ? b)(i) = a(i) · b(i), for every coordinate i).

Since there are no known multiplication codes that are encodable by strictly linear-size cir-
cuits, in this work we depart from the above paradigm and construct a multi-sumcheck proto-
col directly for a code C that is not a multiplication code. Nevertheless, multiplication codes
will play an important role in the construction. We remark that several prior works such as
[BCG+17b, RR20, BCG20, BCL20, LSTW21, GLS+21] also do not explicitly encode the computa-
tion using a multiplication code, but do, implicitly, consider such an encoding, which introduces a
super-constant size alphabet and/or (at least) poly-logarithmic overhead.

The use of multi-sumcheck to construct IOPs for circuit satisfiability boils down to what is
known as the arithmetization step. As it is fairly standard, we postpone an overview of this step
(which loosely follows [BCG+17a]) to Section 6.1. It is worth mentioning however that the use
of private preprocessing by the verifier in our IOP arises because of the arithmetization step. See
Section 6.1 for details.

Thus, we skip directly to the overview of the new e�cient multi-sumcheck protocol, which is
the heart of our construction.

1.3.1 Multi-sumcheck with constant overhead

Since our construction heavily relies on tensor products of codes and multiplication codes, we begin
with a brief recap of these objects.

5Recall that C is systematic if the message appears as the beginning of every codeword.
6Here and throughout, for a string w 2 ⌃n and an index i 2 [n], we use w(i) to denote the i-th entry of w.
7The sumcheck protocol is typically described as an interactive proof, but interactive proofs are a special case of

IOPs (in which the verifier reads all of the bits).
8We emphasize that C is a systematic code and so

P
i2[n]

c(i) refers to the summation of the message bits of c.
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Tensor codes. Let D : {0, 1}k1 ! {0, 1}n1 and E : {0, 1}k2 ! {0, 1}n2 be linear9 codes. The
tensor product code C : {0, 1}k1⇥k2 ! {0, 1}n1

⇥n
2 , denoted by C = D ⌦ E, is defined as follows.

Given a message m 2 {0, 1}k1⇥k2 which we view as a k
1

⇥ k
2

dimensional matrix, first we encode
each one of the columns of m using the code D and then encode both the original rows, and the new
rows generated by D, using the code E. The resulting n

1

⇥ n
2

dimensional matrix is the encoding
C(m) of the message m. It is not di�cult to see that the rate and minimal relative distance of C
are, respectively, equal to the products of the rates and relative distances of D and E.10 Note that
the encoding time TC of C is equal to k

2

· TD(k1) + n
1

· TE(k2), where TD and TE are the encoding
times of D and E, respectively. See Section 2.3.1 for the formal treatment and additional details
on tensor codes.

Multiplication codes. Loosely speaking, a linear code C is a multiplication code, if the set
{c ? c0 : c, c0 2 C} spans a non-trivial error-correcting code C?. A prime example is the Reed-
Solomon code, since the product of two low degree polynomials is still a polynomial (albeit of
slightly higher degree). Other notable examples of multiplication codes are the Reed-Muller code,
algebraic geometry codes and a construction based on tensor codes [Mei13]. Closely related notions
were also studied in the context of secret-sharing and secure multiparty computation (see, e.g.,
[CDM00, CC06]).

The code C. Recall that our goal is to construct a code C that supports a multi-sumcheck with
a linear-size prover and is also encodable in linear-size.

Let a � 1 be a su�ciently large constant to be determined below. Our code C = D ⌦ E is a
tensor product of two codes, where D : {0, 1}n/a ! {0, 1}O(n/a) and E : {0, 1}a ! {0, 1}poly(a).
Notice that this tensor is highly skewed: one dimension is linear in n whereas the other dimension
is constant. We assume that D and E are linear and systematic, and therefore C is also linear and
systematic.

We turn to our choice of the codes D and E. We choose D to be encodable by linear-size
circuits (e.g., Spielman’s code [Spi96]), and we get that the encoding time of C is:

a ·O(n/a) +O(n/a) · TE(a)

which is linear in n, as long as a is constant. We emphasize that we are crucially using the fact
that a is constant so that we can use the code E, which is not linear-time encodable.

As for E, we choose E to be a multiplication code, where the product code E? has constant
relative distance. The specific choice of the code E is immaterial for this overview, and so we only
briefly remark that in the actual construction, since we wish to work over the binary alphabet, and
since E can have poor rate, we use the tensor based construction of Meir [Mei13].11

We proceed to describe the multi-sumcheck protocol for C = D⌦E. For simplicity, for the rest
of this overview we focus on the case d = 2, that is, an IOP for checking that

P

i2[n] c(i) · c0(i) = b,

9Recall that C is linear if it is a linear transformation (over the binary field).
10The rate of a code C : {0, 1}k ! {0, 1}n is defined as k/n, and it measures the amount of redundancy in encoding.

The (minimal) relative distance of C is the minimal relative Hamming distance of every two (distinct) codewords,
i.e., the minimum fraction of coordinates on which any pair of codewords di↵er.

11In a nutshell, Meir’s construction replaces the pointwise product with a tensor product and relies on the obser-
vations that the tensor product c

1

⌦ c
2

of two codewords c
1

, c
2

2 E (1) contains their pointwise product (on the
diagonal) and (2) belongs to the tensor code E⌦2.

6



where c, c0 2 C are two codewords and b 2 {0, 1}. The procedure extends in a straightforward
manner to any constant number of codewords.

Multi-sumcheck for C: First attempt. Recall that the prover gets as input the two codewords
c, c0 2 C = D ⌦ E and the verifier has oracle access to these codewords. We view c and c0 as
rectangular matrices of dimension O(n/a)⇥poly(a) in the natural way and index them accordingly:
namely, c(i, j) and c0(i, j) refer to the (i, j)-th coordinate of c and c0, respectively.

Using the fact that C is a tensor code, we start the construction similarly to the classical
sumcheck protocol. Namely, as its first step, in order to prove that

P

i2[n/a],j2[a] c(i, j) · c0(i, j) = b,

the prover sends the message w 2 {0, 1}poly(a), defined as

w =
X

i2[n/a]

c(i, ·) ? c0(i, ·),

where c(i, ·) (resp., c0(i, ·)) denotes the i-th row of the tensor codeword c (resp., c0), the star symbol
refers to pointwise multiplication of the rows c(i, ·) and c0(i, ·), and the sum refers to a sum of
codewords belonging to the product code E?. Note that by linearity, the vector w belongs to the
product code E?.

The message w can be generated in time (n/a)·poly(a), which is fine since a is a constant. Given
w, the verifier first checks that w is a valid codeword of E? and that

P

j2[a]w(j) = b. This ensures

the verifier that if w was generated correctly then the statement
P

i2[n/a],j2[a] c(i, j) · c0(i, j) =
P

j2[a]w(j) = b is indeed true.
But what if w was generated incorrectly? That is, consider a malicious prover that sends w̃ 6= w.

In this case, since w and w̃ are both codewords of E? (this is true for w by definition and true for w̃
since the verifier explicitly checks this condition), and E? has constant relative distance, it su�ces
for the verifier to choose at random r 2 [poly(a)] and check that:

w̃(r)
?

= w(r) =
X

i2[n/a]

c(i, r) · c0(i, r). (1)

It seems that we have made significant progress since Eq. (1) is a new instance of multi-sumcheck,
with respect to the codewords c(·, r), c0(·, r) 2 D, which have dimension that is smaller by a constant
factor.

At this point it seems tempting to simply continue by recursion. Indeed, this is the approach
taken in the classical sumcheck protocol. Unfortunately, this approach runs into a fundamental
problem in our setting.

In order to keep recursing we need D to also be a tensor code. As a matter of fact since
the recursive step described above only shrinks the problem by a constant factor, we will need to
recurse for a super-constant number of steps t = !(1). This e↵ectively means that C needs to be
a t dimensional tensor of the code E. Denoting the relative distance of E by �, by the Singleton
bound we have that E’s rate is at most 1� �, and therefore the rate of the tensor code C = E⌦t is
(1 � �)t. Since we need this rate to be a constant (after all C needs to be linear-time encodable),
we get that � ⇡ 1/t.

However, the soundness error incurred by even just the first round of the protocol is 1 � � =
1� 1/t = 1� o(1), which is already too large.12 As a matter of fact, things are actually far worse -

12To be precise, the soundness error is actually the relative distance of the code E? (rather than that of E) but we
ignore this minor issue here.
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since each round introduces a soundness error of 1� �, the overall soundness error is 1� �t which
is enormous (as � is at most a constant and t is logarithmic).

Thus, we cannot assume that D is a tensor code and so it is not clear how to continue the
recursion.

How to recurse? Recall that at the end of the first step the prover and verifier have reduced
the original multi-sumcheck claim that they had about codewords c, c0 2 C to a multi-sumcheck
claim about codewords c(·, r), c0(·, r) 2 D. However, as discussed above, we cannot simply assume
that D is a tensor code.

Our approach for resolving this di�culty, which is inspired by the code-switching technique in
[RR20], is to have the prover and verifier “switch” the current codewords, which belong to the code
D, to equivalent codewords under a new code C 0.

At first glance this may seem odd - after all in what way is the code C 0 better than D? The key
observation is that while we use D to encode each one of the poly(a) columns of c and c0, we will
only use C 0 to encode the r-th column, after it is selected. Since we are encoding less information,
we can a↵ord for C 0 to have worse rate than D, and therefore have larger minimal distance.

To facilitate the recursion, the code C 0 will be similar in spirit to the original code C. Namely,
a skewed tensor product of two codes D0 and E0, but with worse rate and better relative distance
than C.

To summarize, at the end of the first iteration the current claim that we have about codewords
c(·, r), c0(·, r) 2 D is switched to a claim on two related codewords, which are encoded under a
new code C 0. To perform this switch, the prover sends a fresh encoding under the code C 0 of the
messages encoded within c(·, r) and c0(·, r). We remark that these new codewords are quite long
(e.g., linear in n) and we rely here on the IOP model which allows the prover to send long messages
(from which the verifier will only read a few bits).

For the moment, let us assume that the prover indeed sends the correct new codewords and see
in more detail how the recursion proceeds. Later on we will see how we can ensure the consistency
of the di↵erent encodings.

Gradually reducing the soundness error. Recall that we want to leverage the fact that as
the recursion proceeds, the current instance being handled gets smaller and smaller and so we can
a↵ord to invest more time on the new instances in order to reduce the (per round) soundness error.

Before describing the parameters in detail, let us first establish the high level picture. In each
iteration we reduce the instance size by a factor of a, and so, in iteration ` the instance size has
reduced to n` = n/(a`). Thus, in each iteration `, we can a↵ord for the prover to run in time
n` · a`/2 = n/(a`/2) to switch to a code with relative distance ⇡ 1 � a�`/2 and therefore reduce
the soundness error incurred in this round to (roughly) a�`/2. Overall this will result in a prover
that runs in time

P

` n/(a
`/2) = O(n) and by the union bound the overall soundness error is

P

` a
�`/2  1/2 (assuming that a is su�ciently large).13

With this bird’s eye view in mind, let us proceed to a more detailed explanation. Denote the
code used in step ` of the recursion by C` = D` ⌦ E`, where we start the indexing at ` = 0 (thus,
C
0

= C, C
1

= C 0 and so on). Each code C` is defined over an alphabet F` (a finite field) of size

13The soundness error can then be reduced to any constant by simply repeating the protocol O(1) times.
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roughly a`/2.14 We set D` : Fn/(a`+1

)

` ! FO(n/(a`+1

))

` to be encodable in time (n/a`+1) · poly(a, `)
(concretely we use a straightforward extension of Spielman’s code to larger alphabets). We set

E` : Fa
` ! Fa`/2

` to be a multiplication code, encodable15 in time a`/2 · poly(`, a), and so that the
product code E?

` has relative distance roughly �(E?
` ) ⇡ 1 � a�`/2 (as noted above, in the actual

construction, we use the tensor based construction of Meir [Mei13]). This means that each code

C` : Fn/a`

` ! FO(n/a`/2+1

)

` can be encoded by a circuit of size:

a · (n/a`+1) · poly(a, `) + (n/a`+1) · poly(a, `) · a`/2 ⇡ n/(a`/2).

Summing over all `, this gives us a linear bound on the size of the prover. As for the soundness
error, in each round we get a contribution of roughly 1 � �(E?

` ) ⇡ a�`/2. Therefore, the overall
soundness error is bounded by

P

` a
�`/2 which is at most a constant.

To summarize, each round of the protocol starts by the verifier sending a codeword w` 2 E?
`

analogous to the codeword w described above. The verifier chooses a random coordinate r` of w`

to check and the prover in return sends new codewords of the code C`+1

, corresponding to the
verifier’s choice r`.

One point worth mentioning is that in later rounds (i.e., when ` is about logarithmic in n),
checking that w` 2 (E`)? becomes more challenging, since its codeword length is a`/2, which can
be quite large in the final rounds. One option for resolving this is by making E?

` locally testable
and correctable. However, a simpler solution comes by having the prover send only the message
encoded within w` and letting the verifier compute the single point that it is interested in (i.e., the
one specified by its random choice) on its own - a task that, for many codes, can be done much
more e�ciently than computing the entire encoding.

Consistency checking. Only one problem remains - one cannot simply trust the prover to
properly re-encode the messages. Thus, we would like a mechanism for checking that a pair of
codewords ↵ 2 D` and � 2 C`+1

are encodings of the exact same message.
To do so we make both D` and C`+1

be themselves balanced (i.e., unskewed) constant dimen-
sional tensor codes. For D` this is straightforward, for example, the code D

0

can be a balanced
(constant dimensional) tensor of Spielman’s code (which is also linear-time encodable).16 For C`+1

this may initially seem odd since we intentionally set it to be a skewed tensor (of D`+1

and E`+1

).

However, if both E`+1

and D`+1

are themselves balanced tensors, that is E`+1

=
⇣

eE`+1

⌘⌦t
and

D`+1

=
⇣

eD`+1

⌘⌦t
, then C`+1

can be simultaneously viewed as a skewed tensor C`+1

= E`+1

⌦D`+1

and a balanced tensor C`+1

=
�

eE`+1

⌦ eD`+1

�⌦t
.

Since both D` and C`+1

’s are balanced tensors, using known techniques (based on [BS06, Vid15,
GRR18], see [RR20]) they can be (interactively) locally tested and corrected (in the relaxed sense of

14We increase the field size since we want the code E` to have high minimal distance, and, by the Plotkin bound
[Plo60], the relative distance of a (non-trivial) code with alphabet size q is at most 1� 1/q.

15For convenience, we use here a code that is encodable in quasi-linear time (in the codeword length), but note
that the construction can be easily adapted to any polynomial-time encodable multiplication code.

16It may seem alarming at first that we make D` be a tensor code since the entire point of code switching was to
avoid (high-dimensional) tensors. The point is that once we have switched from D` to C`+1

we never have to use D`

again, so a constant-dimensional tensor, which we can a↵ord, su�ces (in particular it su�ces for D` to have constant
relative distance).
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[GRR18]) with a linear-size prover. These procedures essentially allow us to assume without loss of
generality that the messages ↵ and � that the prover sent are valid codewords from the respective
codes. However, we still need to ensure that they are encodings of the exact same message.

Thus, let us assume that ↵ 2 D` and � 2 C`+1

are valid codewords and we only need to check
that they encode the exact same message. To do so, the verifier chooses a random coordinate �
of ↵. Since D` is a systematic linear code, it holds that ↵(�) =

P

i ⌧i,� · ↵(i), where the sum is
only over the systematic part and ⌧i,� are coe�cients corresponding to the generating matrix of

D`. Denote by �̂ the encoding of the message part of � using the code D`. Note that � and �̂ are
encodings of the same message but under di↵erent codes.

If the messages encoded in ↵ and � are di↵erent, then so are the messages encoded in ↵, �̂ 2 D`.
Since D` has constant relative distance17 then with constant probability over a random coordinate
� of the codeword ↵, it holds that:

↵(�) 6= �̂(�) =
X

i

⌧i,� · �̂(i) =
X

i

⌧i,� · �(i). (2)

Equation (2) corresponds to a linear equation over the message of �. Moreover, since the code
D` is a tensor code, the coe�cients of this equation correspond to a rank 1 matrix. Thus, we can
employ the sumcheck for tensor codes with rank-1 coe�cients from [RR20] (building on [Mei13]),
applied to the codeword �, a codeword of the tensor code C`+1

, to check that the linear constraint
of Eq. (2) is indeed satisfied. The prover of this protocol can be implemented in size proportional
to the codeword length of C`+1

.

Remark 1.4 (Alphabet Switching via Field Extensions). The alphabets of the codes D` and C`+1

may not be the same. This is because we wanted the alphabet size of the C`’s to gradually increase
(in order to reduce the soundness error). We deal with this by ensuring that the alphabet of C`+1

is a field extension of that of D`. Thus, since the alphabet of D` is a subfield of that of C`+1

, we
can think of the entire consistency protocol as operating over the larger field.

This concludes the overview of the multi-sumcheck protocol, see the technical sections (i.e.,
Sections 4 and 5) for additional details. An overview of how multi-sumcheck is used to obtain
e�cient arguments is provided in Section 6.1 and the detailed proof of this fact is in Sections 6
and 7.

1.4 Organization

Preliminaries are in Section 2. We formally state our results in Section 3. In Section 4 we construct
the code family C that is the pivot of our construction. In Section 5 we give a “multi-sumcheck”
protocol for C. In Section 6 we use the multi-sumcheck protocol to construct the e�cient IOP and
lastly, in Section 7, we transform the latter into an e�cient argument-system.

2 Preliminaries

We will often view a string w 2 ⌃n, over an alphabet ⌃, as a function w : [n] ! ⌃. In particular,
the i-th entry of w is denoted w(i). For strings x, y 2 ⌃n, we let dist

⌃

(x, y) denote the fraction

17Actually, up to this point we only used the relative distance of the E` codes and here is the only place where we
use the distance of the D` codes.
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of coordinates i 2 [n] on which x and y di↵er, that is, dist
⌃

(x, y) := |{i 2 [n] : x(i) 6= y(i)}| /n.
Similarly, for ; 6= S ✓ ⌃n, we let dist

⌃

(x, S) := miny2S dist
⌃

(x, y). When the alphabet ⌃ is clear
from the context, we omit the subscript ⌃.

2.1 Circuits

We next recall the definition of a Boolean circuit. For simplicity we restrict our attention to circuits
having only NAND gates with fan-in 2 and fan-out (at most) 2. We also assume that the constants
0 and 1 are always provided as part of the input. Note that circuits as above can emulate circuits
with arbitrary gates of constant fan-in and fan-out with constant multiplicative overhead.

Thus, a Boolean circuit is a directed acyclic graph. There are three types of vertices, which we
refer to as gates:

• Input gates: having in-degree 0 and out degree 1. The n input gates are associated with
distinct integers 1 to n.

• Internal gates: having in-degree 2 and out-degree 1 or 2.

• Output gates: having in-degree 1 and out-degree 0. The output gates are similarly associated
with distinct integers 1 to m.

Given a circuit C with n input gates and an input x 2 {0, 1}n the circuit is evaluated in the
following natural manner:

1. For i 2 [n], the i-th input gate is labeled by xi.

2. The label of every internal and output gate is computed recursively by applying the NAND
function on the labels of its two children (i.e., the gates that serve as its two inputs).

3. The output of the circuit, denoted C(x), is defined as the label of the output gates.

We say that a circuit C computes the function f : {0, 1}n ! {0, 1}m if for every x 2 {0, 1}n it
holds that C(x) = f(x).

The size of the circuit C, denoted |C|, is defined as the number of vertices in the circuit.

Uniformity. We say that an ensemble of circuits (Cn)n2N is T -uniform if there exists a time
T = T (n) Turing machine that on input 1n outputs the adjacency matrix of the graph describing
the circuit Cn.

2.2 Interactive oracle proofs

We next define the notion of interactive oracle proof, due to [BCS16, RRR16]. We restrict our
attention to the public-coin setting which means that all of the verifier’s messages simply consist
of uniformly random coins. Since we care about very small factors in the parties running times,
the definition will be more detailed than usual.

An `-round (public-coin) interactive oracle protocol consists of two entities, a prover P and a
verifier V. The prover P consists of ` Boolean circuits P

1

, . . . ,P`. For every i 2 [`], the input to
Pi is the state Si�1 from the previous round (where S

0

is simply the main input x and potentially
also a witness w) as well as uniformly random coins Ri�1, which we think of as being generated
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by the verifier (note that R
0

is defined as the empty string). The output of each circuit Pi is the
state Si for the next round and a message Mi to be transmitted to the verifier. The size |P| of the
prover P is defined as the sum of the prover circuit sizes, i.e., |P| := |P

1

|+ · · ·+ |P`|.
The verifier V is a Boolean circuit that given as input the transcript (x,M

1

, R
1

, . . . ,M`�1, R`�1,M`)
decides whether to accept or reject. We will often be interested in verifiers that run in sub-linear
time, and in particular are unable to read the entire transcript. In this case we view the input
as being separated into two parts x = (x

exp

, x
imp

). The first part, x
exp

is read explicitly by the
verifier (and will often consist of a parameterization of the problem). In contrast, the verifier only
has oracle access to x

imp

. We also view the verifier V as consisting of two separate circuits. The
first circuit V

1

takes as input x
exp

, R
1

, . . . , R`�1, and outputs the set of query locations I. The
circuit V

2

then gets as input x
exp

, R
1

, . . . , R`�1, as well as the projection of (x
imp

,M
1

, . . . ,M`) to
the query set I, denoted by (x

imp

,M
1

, . . . ,M`)|I , and based on these decides whether to accept or
reject. The size |V| of the verifier V is defined as the sum of the sizes of its constituent parts, i.e.,
|V| := |V

1

|+ |V
2

|.
To facilitate composition (see Lemma 2.7 below), it will be useful to assume that V

1

is given in
a succinct manner, as defined next.

Definition 2.1. We say that V
1

is s-succinct if there exists a circuit V̂
1

of size s that takes as input
x
exp

, R
1

, . . . , R`�1, as well as an index i, and outputs the i-th query location.

Another property that will be useful for preserving the linear size of the prover during com-
position is the ability to e�ciently project the transcript to the query locations of the verifier.18

Definition 2.2. We say that V is t-projectable if there exists a circuit of size t so that given the tran-
script (x = (x

exp

, x
imp

),M
1

, R
1

, . . . ,M`�1, R`�1,M`), outputs the projection (x
imp

,M
1

, . . . ,M`)|I of
the transcript to the query locations I.

Remark 2.3. The standard definition of interactive oracle protocols in the literature (see e.g.,
[BCS16, RRR16]) allows the verifier’s queries to depend on the entire input x (and sometimes also
on answers to previous queries). For sake of simplicity, and to facilitate composition, our definition
of interactive oracle protocol only allows the query locations to depend on the explicit input x

exp

and
the verifier’s randomness (and implicitly on the input length). We note that many constructions in
the literature achieve this stronger notion.

The key parameters that we will care about are:

1. Query Complexity: the number of bits q = |I| that the verifier reads from the input and
transcript.

2. Round complexity: the number of rounds `.

3. Verifier Size: the size of the verifier V, as defined above.

18Note that (assuming that V
1

is su�ciently small) every IOP is projectable by a circuit of size O(cc · q), where
cc is the transcript length and q denotes the query complexity. This is simply because one can first generate the
transcript and query locations and then project to each one of the queries (e.g., using Proposition D.1). However,
since we aim for strictly linear size circuits, in some cases we will not be able to a↵ord this upper bound.
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4. Prover Size: the size of the prover P, as defined above. In the context of interactive oracle
protocols for NP relations we will often assume that the prover is also given as an auxiliary
input a witness w proving that the input x satisfies the relation.

Using the notion of interactive oracle protocols, we can now define interactive oracle proofs.

Definition 2.4 (Interactive oracle proof (IOP)). An `-round interactive oracle proof (IOP) with
soundness error " for a promise problem (YES,NO) is an `-round (public-coin) interactive oracle
protocol (P,V) such that:

• Completeness: If x 2 YES, then when V interacts with P, it accepts with probability 1.

• Soundness: If x 2 NO, then for every prover strategy P⇤, when V interacts with P⇤, it
accepts with probability at most ".

Focusing on promise problems allows us to model settings in which the input has some particular
structure (e.g., is encoded under an error-correcting code). In particular, this will sometimes allow
our verifier to run in time that is sub-linear even in the input. Lastly, we note that the standard
notion of PCP corresponds to the special case of IOP, when the round complexity is ` = 1.

Private Preprocessing. In this work we will sometimes allow the verifier an initial pre-processing
step which is independent of the main input x. We distinguish between public vs. private pre-
processing. In public pre-processing the random coins that were used to generate the pre-processed
state are public, and in particular are known to the prover. In contrast, in private pre-processing
(which is the type of pre-processing we will be able to achieve), neither the random coins used to
generate the pre-processed state nor the state itself are revealed to the prover.

Our focus will be on the private pre-processing model. The model is formally defined by
allowing the pre-processed state to depend on the entire randomness used by the verifier in the
actual protocol. This randomness is initially hidden from the prover but is then gradually revealed
as the protocol progresses.

In any case, we will always separately account for the time (or size) complexity of the pre-
processing step.

IOP of Proximity. A particular special case of interest is that of IOPs of proximity [BCS16,
RRR16], or IOPP for short. For a pair language L ✓ {(x

exp

, x
imp

) 2 {0, 1}⇤ ⇥ {0, 1}⇤} and x
exp

2
{0, 1}⇤, we use the notation Lx

exp

:= {x
imp

: (x
exp

, x
imp

) 2 L}.

Definition 2.5 (Interactive oracle proof of proximity (IOPP)). An `-round IOP of ↵-proximity
(↵-IOPP) with soundness error " for a pair language L ✓ {(x

exp

, x
imp

) 2 {0, 1}⇤ ⇥ {0, 1}⇤} is an
`-round IOP with soundness error " for the promise problem (YES,NO), where YES = L and
NO = {(x

exp

, y) : y is ↵-far from Lx
exp

}.

The parameter ↵ is called the proximity parameter. Once more, we note that the standard notion
of PCPP corresponds to the special case of IOPP, when the round complexity is ` = 1.
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2.2.1 Composition

A key benefit of IOPPs is that they facilitate composition. Specifically, one can compose an “outer”
robust IOP in which the prover has small (e.g., linear) size, but the verifier has relatively large (e.g.,
slightly sublinear) size, with an “inner” IOPP in which the prover has large (e.g., polynomial) size,
but the verifier has small (e.g., logarithmic) size, to obtain the best of both worlds: an IOP with
small (e.g., linear) prover size, and small (e.g., logarithmic) verifier size.

Definition 2.6. We say that an IOP (P,V) for a promise problem (YES,NO) is (↵, ")-robust if
the soundness requirement is replaced with the following stronger requirement:

• Robustness: If x = (x
exp

, x
imp

) 2 NO, then for every prover strategy P⇤, when V = (V
1

,V
2

)
interacts with P⇤, then the answers to the oracle queries that V makes (to (x

imp

,M
1

, . . . ,M`))
are ↵-close to making V

2

accept, with probability at most ".

The parameter ↵ is called the Robustness parameter.

Lemma 2.7. (Composition) Suppose that the following exist:

• (Outer IOP:) An `-round (↵, ")-robust IOP (P,V) for a promise problem (YES,NO).

• (Inner IOPP:) An `0-round q0-query ↵-IOPP (P 0,V 0) with soundness error "0 for the language

L
(P,V) :=

�

(x0
exp

, x0
imp

) | V
2

(x0
exp

, x0
imp

) = accept
 

.

Here x0
exp

, x0
imp

are viewed as (x
exp

, R
1

, . . . , R`�1) and (x
imp

,M
1

, . . . ,M`)|I , respectively, where
(x

exp

, x
imp

,M
1

, R
1

, . . . ,M`�1, R`�1,M`) is a transcript of (P,V), and I is the query set of V
on this transcript.

Suppose furthermore that V
1

is s-succinct, and that V is t-projectable.
Then, there exists an (` + `0)-round q0-query IOP (P 00,V 00) for the promise problem (YES,NO)

with soundness error " + "0, prover size |P 00| = |P| + |P 0| + t, and verifier size |V 00
1

|  |V 0
1

| · s and
|V 00

2

| = |V 0
2

|.

The use of proof composition originates in [AS98], and is articulated as a composition of a
robust PCP with a PCPP in [BGH+06, DR06]. The extension to IOPs is from [BCG+17a] (see also
[RR20, Lemma 8.2.] and [ACY21]). As our setting is slightly di↵erent (in particular, we care about
very small factors in running times), we provide a full proof of Lemma 2.7 in Appendix A.

Lastly, we shall make use of the following PCPP due to [Mie09] as the “inner PCPP” in our
composition steps.

Theorem 2.8 ([Mie09, Theorem 1]). Let L be a pair language decidable in time T = T (m +
n), where m,n are the explicit and implicit input lengths, respectively. Then for any ↵, " > 0,
there exists a poly(log(1/")/↵)-query ↵-PCPP for L with soundness error ", prover’s running time
poly(m,n, T (m+ n)), and verifier’s running time poly(m, log n, log(T (m+ n)), log(1/")/↵).

Remark 2.9. We remark on the following changes in the above theorem, compared to Theorem 1
of [Mie09]:

1. Theorem 1 of [Mie09] does not explicitly state the prover’s running time but it can be readily
verified that the prover can be implemented in the stated time bound.
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2. Theorem 1 of [Mie09] is only stated for constant proximity parameter and contant soundness
error. However, in [RR20, Theorem 8.6] it is shown how to extend this result to arbitrary
small proximity parameter ↵ and soundness error ", at the cost of increasing the verifier’s
running time and query complexity by a multiplicative factor of poly(log(1/")/↵).

Instantiating the inner IOPP in Lemma 2.7 with the PCPP given in Theorem 2.8, readily implies
the following useful corollary.

Corollary 2.10. Let (YES,NO) be a promise problem, where m,n are the explicit and implicit input
lengths, respectively. Suppose that there exists an `-round (↵, ")-robust IOP (P,V) for a promise
problem (YES,NO), satisfying that:

1. (P,V) has query complexity q and randomness complexity r.

2. The language L
(P,V), as defined in Lemma 2.7, can be decided in time T .

3. V
1

is s-succinct, and V is t-projectable.

Then for any "0 > 0, there exists an (`+ 1)-round poly(log(1/"0)/↵)-query IOP (P 0,V 0) for the
promise problem (YES,NO) with soundness error "+"0, prover size |P 0| = |P|+ t+poly(m, q, r, T ),
and verifier size |V 0| = poly (m, r, log q, log(T ), s, log(1/"0)/↵) .

2.3 Error-correcting codes

Let ⌃ be a finite alphabet, and k, n be positive integers (the message length and the codeword
length, respectively). An (error-correcting) code is an injective map C : ⌃k ! ⌃n. The elements
in the domain of C are called messages, and the elements in the image of C are called codewords.
We say that C is systematic if the message is a prefix of the corresponding codeword, i.e., for every
x 2 ⌃k there exists z 2 ⌃n�k such that C(x) = (x, z).

The rate of a code C : ⌃k ! ⌃n is the ratio ⇢ := k
n . The relative distance dist(C) of C

is the maximum � > 0 such that for every pair of distinct messages x, y 2 ⌃k it holds that
dist

⌃

(C(x), C(y)) � �.
If ⌃ = F for some finite field F, and C is a linear map between the vector spaces Fk and Fn then

we say that C is linear. The generating matrix of a linear code C : Fk ! Fn is a matrix G 2 Fn⇥k

such that C(x) = G · x for any x 2 Fk.

2.3.1 Tensor codes

A main ingredient in our constructions is the tensor product operation, defined as follows (see, e.g.,
[Sud01, DSW06]).

Definition 2.11 (Tensor codes). The tensor product code of linear codes C : Fk ! Fn and C 0 :
Fk0 ! Fn0

is the code C ⌦ C 0 : Fk⇥k0 ! Fn⇥n0
, where the encoding (C ⌦ C 0)(M) of any message

M 2 Fk⇥k0 is obtained by first encoding each column of M with the code C, and then encoding each
resulting row with the code C 0.

Note that by linearity, the codewords of C ⌦ C 0 are n ⇥ n0 matrices (over the field F) whose
columns belong to the code C, and whose rows belong to the code C 0. It is also known that the
converse is true: any n⇥ n0 matrix, whose columns belong to the code C, and whose rows belong
to the code C 0, is a codeword of C ⌦ C 0.
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Fact 2.12. A matrix w 2 Fn⇥n0
is a codeword of C ⌦ C 0 if and only if the restriction of w to any

column is a codeword of C, and the restriction of w to any row is a codeword of C 0.

The following e↵ects of the tensor product operation on the classical parameters of the code are
well known.

Fact 2.13. Suppose that C : Fk ! Fn, C 0 : Fk0 ! Fn0
are linear codes of rates ⇢, ⇢0 and relative

distances �, �0 respectively. Then, the tensor product code C ⌦ C 0 is a linear code of rate ⇢ · ⇢0 and
relative distance � · �0.

By the definition of the tensor product code, we also have the following.

Claim 2.14. The following holds for any pair of linear codes C : Fk ! Fn, C 0 : Fk0 ! Fn0
.

1. If C,C 0 can be encoded by a T, T 0-uniform Boolean circuits of sizes s, s0 respectively, then
C⌦C 0 can be encoded by a (T +T 0+n0 ·s+n ·s0)-uniform Boolean circuit of size n0 ·s+n ·s0.

2. If C,C 0 can be encoded in time T, T 0, respectively, then C⌦C 0 can be encoded in time n0 ·T +
n · T 0.

3. If each coordinate of C,C 0 can be computed in time T
0

, T 0
0

, respectively, then each coordinate
of C ⌦ C 0 can be computed in time k0 · T

0

+ T 0
0

.

For a linear code C : Fk ! Fn, let C⌦1 := C and C⌦t := C ⌦ C⌦(t�1), for any t � 2. As in
the 2-dimensional case, the codewords of C⌦t : Fkt ! Fnt

can be viewed as t-dimensional cubes,
satisfying that their projection on any axis-parallel line is a codeword of C. Once more, we have
that the converse is also true.

Fact 2.15. A cube w 2 Fnt
is a codeword of C⌦t if and only if the restriction of w to any axis-

parallel line is a codeword of C.

Moreover, by Fact 2.13 if C is a linear code of rate ⇢ and relative distance � then C⌦t is a linear
code of rate ⇢t and relative distance �t. Finally, applying iteratively the above Claim 2.14, gives
the following.

Claim 2.16. The following holds for any linear code C : Fk ! Fn.

1. If C : Fk ! Fn can be encoded by a Boolean circuit of size s, then C⌦t can be encoded by a
Boolean circuit of size tnt�1s.

2. If C : Fk ! Fn can be encoded in time T , then C⌦t can be encoded in time tnt�1T .

3. If each coordinate of C can be computed in time T
0

, then each coordinate of C⌦t can be
computed in time O(kt�1T

0

).

2.3.2 Constructible finite fields

In this work we will use finite fields of varying sizes. For sake of e�cient implementation of the
field operations, we need the field to be constructible, in the following sense.
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Definition 2.17. We say that an ensemble of finite fields F = (Fn)n2N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

Lemma 2.18 (see [Sho88]). For every S = S(n) � 1, there exists a constructible field ensemble of
characteristic 2 and size O(S).

For a constructible finite field of characteristic 2, we shall assume that all elements in F are
represented as codewords of a binary error-correcting code of message length log(|F|) and constant
rate and relative distance, that is e�ciently (poly-time) encodable and decodable. Note that any
constructible finite field can be turned into this representation while preserving the property of
being constructible.

2.3.3 Specific families of codes

For our code construction we shall use as a base code in the tensor code construction two specific
families of codes. The first of these is the well-known family of Reed-Solomon codes.

Fact 2.19 (Reed-Solomon codes, [RS60]). For any constructible finite field F and integers k 
n  |F|, there exists a systematic linear code C : Fk ! Fn of relative distance at least 1 � k

n that
is encodable in time poly(n, log(|F|)). Moreover, each coordinate of C can be computed in time
poly(k, log(|F|)).

We shall also use the linear-time encodable codes of [Spi96]. While the original construction is
over the binary field, it is easily adaptable to any constructible finite field F by simply making all
computations over F.

Theorem 2.20 (Linear-time encodable codes [Spi96], Theorem 19). For any constructible finite
field F, there exists a code family {Ck}k2N, where Ck : Fk ! Fn is a systematic linear code of
constant rate and constant relative distance that is encodable by a poly(s)-uniform Boolean circuit
of size s := k · polylog(|F|).

2.4 Evading set

Loosely speaking, an "-evading set A is a relatively small set such that for any non-zero test-vector
y, the inner product of y with a random x  A is non-zero with probability at least ". Evading
sets are very similar to small bias sets of Naor and Naor [NN93], where the only di↵erence is in
terms of parameters - while for small bias sets the inner product is non-zero with probability close
to 1/2, for an evading set this probability need only be some small constant that is greater than 0.

Definition 2.21 (Evading Set). A function S : {0, 1}d ! {0, 1}n is an "-evading set generator if
for every 0 6= y 2 {0, 1}n it holds that Prx {0,1}d [hS(x), yi 6= 0] � ".

Above, the inner product operation is defined over the field GF(2) (i.e., hx, yi =
P

i x(i) ·
y(i) mod 2).

We shall need the following proposition, which shows the existence of a linear-size evading set
generator. The proof is deferred to Appendix E.

Proposition 2.22. (Linear-size evading set generator) There exists d = O(log n), and an 0.49-
evading set generator S : {0, 1}d ! {0, 1}n that can be evaluated by a size O(n) Boolean circuit.
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3 Our results

In this section we formally state our main results. The first main result, is an IOP for circuit
satisfiability, with a linear-size prover. This result is unconditional.

Theorem 3.1. Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) � n+m Boolean circuit. There exists
an O(logS)-round IOP for the language

�

x 2 {0, 1}n : 9w 2 {0, 1}m, C(x,w) = 1
 

with constant
soundness error. The prover, given as auxiliary input also the witness w, can be implemented
by a size O(S) Boolean circuit. After a size O(S) private pre-processing step, the verifier can be
implemented by a size O(n) + polylog(S) Boolean circuit, and has polylog(S) query complexity.

The second main result is an argument-system for circuit satisfiability with a linear-size prover.
We assume here the existence of a linear-size computable hash function and the soundness holds
against computationally bounded cheating provers.

Theorem 3.2. Assume that there exists a collision-resistant hash function computable by linear
size circuits, with shrinkage factor 1/2. Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) � n + m
Boolean circuit. There exists an O(logS)-round argument-system for the language

�

x 2 {0, 1}n :
9w 2 {0, 1}m, C(x,w) = 1

 

with constant soundness error against circuits of size poly(�), where
poly(�)  S denotes the security parameter. The prover, given as auxiliary input also the witness
w, can be implemented by a size O(S) Boolean circuit. After a size O(S) private pre-processing
step, the verifier can be implemented by a size O(n) + poly(log(S),�) Boolean circuit. The total
communication complexity is poly(log(S),�).

4 The code family C and main lemmas

4.1 The code family C

We first describe the code family C = {C`}` which we use for our multi-sumcheck protocol. We
start by fixing some parameters. Fix an integer d � 2, and let t � 2 be a su�ciently large integer,
to be determined later on.19 Let q be the smallest power of 2 that is larger than (4td)t, and let
a := qt�1.

Sequence of finite fields. Next we define a sequence of finite fields F
0

,F
1

, . . ., where the code
C` will be a linear code over F`. Let F0

be the binary field (i.e., |F
0

| = 2). For every ` = 1, 2, . . ., let
F` be the smallest finite field of order |F`| � q` such that |F`| = q2

z
for some integer z � 1.20 Note

that |F`|  q2` for every ` 2 N (since there must be some power of 2 between ` and 2`). Observe
that each F` is a field extension of F`�1 (this includes the case that F` = F`�1). We further assume
that F` is constructible and that the elements of F` are represented by an e�ciently encodable
binary error-correcting code of constant relative distance (in the sense of Section 2.3.2).21

19Jumping ahead, d denotes the number of codewords for the multi-sumcheck protocol, and t is the dimension of
the tensor codes involved in the construction. The reader may find it useful to simply think of d = 2 and t = 1,
although in the actual construction they will need to be larger.

20 The reason that we set |F
0

| = 2 (rather than the more natural choice of |F
0

| = q) is that we want the code C
0

to be a binary code.
21In a nutshell, this representation allows us to directly translate robustness (cf., Definition 2.6) over the large

alphabet F` to robustness over the binary alphabet (with only a constant factor degradation).
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To define the code family C = {C`}`, we first define two other code families D = {D`}` and
E = {E`}`, and then for any `, we set C` = D` ⌦ E`.

The code family D. For any ` 2 {0, 1, . . . , loga(n) � 1}, we choose eD` to be the linear-time

encodable code over F` of message length
�

n
a`+1

�

1/t
guaranteed by Theorem 2.20, and we let D` =

( eD`)⌦t. By Theorem 2.20 and the properties of tensor codes (cf., Section 2.3.1) we have the
following.

Proposition 4.1 (Properties of eD). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code eD` satisfies the
following properties:

1. eD` is a systematic linear code over F` of message length
�

n
a`+1

�

1/t
and codeword length

⇥
⇣

�

n
a`+1

�

1/t
⌘

.

2. eD` has relative distance at least �
0

for some absolute constant �
0

> 0.

3. eD` can be encoded by a poly(s)-uniform circuit of size s :=
�

n
a`+1

�

1/t · polylog(|F`|).

Proposition 4.2 (Properties of D). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code D` satisfies the
following properties:

1. D` is a systematic linear code over F` of message length n
a`+1

and codeword length 2⇥(t) · n
a`+1

.

2. D` has relative distance at least (�
0

)t for some absolute constant �
0

> 0.

3. D` is a t-dimensional tensor product.

4. D` can be encoded by a Boolean circuit of size s := n
a`+1

· poly(log(|F`|), 2t).

The code family E. For ` = 0, we choose eE
0

to be any explicit asymptotically good binary
linear code of message length a1/t, for example the one guaranteed by Theorem 2.20. For any
` � 1, we choose eE` to be a Reed-Solomon code over F` of message length a1/t and codeword length
(a · |F`|)1/t. Note that by our choice of a = qt�1 we have that (a · |F`|)1/t = q(t�1)/t · |F`|1/t  |F`|,
and so such a code exists. Finally, we let E` = ( eE`)⌦t.22

By the properties of Reed-Solomon codes (cf., Fact 2.19) and tensor codes (cf., Section 2.3.1)
we have the following.

Proposition 4.3 (Properties of eE). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code eE` satisfies the
following properties:

1. eE` is a systematic linear code over F` of message length a1/t and codeword length ⇥
�

(a · |F`|)1/t
�

.

2. For any ` � 1 the code eE` has relative distance at least 1� 1

|F`|1/t
, and the code E

0

has relative

distance at least �
0

for some absolute constant �
0

> 0.

22The reason that E
0

is di↵erent from the other codes in the family is again due to the fact that we want C
0

to be
a binary code (c.f., Footnote 20). We also note a mild di↵erence between the definition here and the description in
the overview in Section 1.3: In the overview the codes {E`}` were set to be multiplication codes whereas here we do
not explicitly rely on this fact. Rather, we implicitly use here the multiplication code construction of Meir [Mei13]
based on tensoring. See further discussion on beginning of Section 5.2.
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3. eE` can be encoded in time poly(a1/t, |F`|1/t, log(|F`|)), and each coordinate of eE` can be com-
puted in time poly(a1/t, log(|F`|)).

Proposition 4.4 (Properties of E). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code E` satisfies the
following properties:

1. E` is a systematic linear code over F` of message length a and codeword length 2⇥(t) · a · |F`|

2. For any ` � 1 the code E` has relative distance at least
⇣

1� 1

|F`|1/t

⌘t
, and the code E

0

has

relative distance at least (�
0

)t for some absolute constant �
0

> 0.

3. E` is a t-dimensional tensor product.

4. E` can be encoded in time poly(a, |F`|, 2t), and each coordinate of E` can be computed in time
poly(a, log(|F`|)).

The code family C. For any ` 2 {0, 1, . . . , loga(n) � 1}, we define the code eC` as the tensor
product eC` = eD` ⌦ eE`, and we let C` = ( eC`)⌦t = D` ⌦ E`. By the properties of tensor codes we
have the following.

Proposition 4.5 (Properties of eC). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code eC` satisfies the
following properties:

1. eC` is a systematic linear code over F` of message length
�

n
a`

�

1/t
and codeword length ⇥

⇣

�

n
a`

· |F`|
�

1/t
⌘

.

2. eC` has relative distance at least �
0

for some absolute constant �
0

> 0.

3. eC` can be encoded by a poly(s)-uniform circuit of size s :=
�

n
a`

�

1/t ·poly(a1/t, |F`|1/t, log(|F`|)).

Proposition 4.6 (Properties of C). For any ` 2 {0, 1, . . . , loga(n) � 1}, the code C` satisfies the
following properties:

1. C` is a systematic linear code over F` of message length n
a`

and codeword length 2⇥(t) · n
a`
· |F`|.

2. C` has relative distance at least (�
0

)t for some absolute constant �
0

> 0.

3. C` is a t-dimensional tensor product.

4. C` can be encoded by a Boolean circuit of size s := n
a`

· poly(a, |F`|, 2t).

4.2 C-encoded IOPs

Throughout the technical sections, it will be convient for us to restrict our attention to IOPs in
which both the honest, and potentially cheating, provers are only allowed to send messages that
belong to the code family C. We refer to such a restricted IOP (which is defined formally below)
as a C-encoded IOP. This notion is similar in spirit to “IOPs with encoded provers” [RRR16]
and “polynomial IOPs” [BFS20, CHM+20] which consider IOPs in which the honest and dishonest
provers are only allowed to send messages that correspond to low degree polynomials. Also, similarly
to the case of polynomial IOPs, we mention that using the local testability and (relaxed) local
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correction properties of C, it is straightforward to convert a C-encoded IOP into a standard IOP
(see Proposition 4.7 below).

In more detail, a C-encoded IOP (P,V) is defined exactly like a standard IOP (see Definition 2.4)
with the following modifications. As part of the specification of the verifier V, each round i is
associated with one of the codes C`(i) in the code family. We say that a prover strategy P⇤ is
C-encoded if in every round i, the prover always sends a codeword from C`(i). We require that the
honest prover P is C-encoded and relax the soundness condition to hold only with respect to every
C-encoded cheating prover P⇤ (rather than all possible cheating prover strategies).

For convenience we also include the “identity code” I(m) = m in the code family C. This is
done to allow the prover in our IOP to also send plain messages when it needs to. We emphasize
that this does not let the cheating prover send un-encoded messages whenever it wants, because
the specification of the index of the code sent in every round is included as part of the description
of the protocol (and is therefore known to the verifier).

The following proposition shows how to transform a C-encoded IOP into a standard IOP.

Proposition 4.7. Suppose that L has an `-round C-encoded IOP (P,V) with constant soundness
error. Suppose furthermore that the verifier makes a constant number of queries to the input, and
for each message of P, the verifier either reads the entire message, or makes a constant number of
queries to this message.

Then L also has an (` + 2)-round standard IOP (P 0,V 0) with constant soundness error. If the
prover and verifier in (P,V) have sizes |P|, |V|, respectively, then the prover and verifier in (P 0,V 0)
have sizes O(|P|) and poly(|V|) + ` · polylog(|P|), respectively. Moreover, the verifier makes a
constant number of queries to the input, and for each message of P 0, the verifier V 0 either reads
the entire message, or makes a constant number of queries to this message.

The proof of Proposition 4.7 capitalizes on the fact that each of the codes in C is a tensor code
and is by now routine. We therefore defer the proof to Appendix B.

4.3 Multi-sumcheck

The main technical result that we rely on is that the code C
0

supports a multi-sumcheck protocol
with a linear-size prover. This fact is captured by the following key lemma.

Lemma 4.8 (Multi-sumcheck with constant overhead). Let d 2 N be a constant, and consider the
promise problem (YES,NO), where:

YES =
�

(c
1

, . . . , cd, b) :
X

i2[n]

c
1

(i) · · · cd(i) = b
 

,

NO =
�

(c
1

, . . . , cd, b) :
X

i2[n]

c
1

(i) · · · cd(i) 6= b
 

,

where c
1

, . . . , cd 2 C
0

, b 2 {0, 1}, and n denotes the message length of C
0

. There exists an O(log n)-
round C-encoded IOP for (YES,NO) with constant soundness error. The prover has size O(n), and
the verifier has size polylog(n).

Furthermore, the verifier makes a constant number of queries to the input, and for each prover
message, the verifier either reads the entire message, or makes a constant number of queries to this
message.
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5 Multi-sumcheck with constant overhead

In this section we construct the multi-sumcheck protocol with constant overhead, thus proving
Lemma 4.8. For this, we first introduce in Section 5.1 below a consistency checking protocol for
checking that two codewords of two di↵erent tensor codes are encodings of the same message. This
protocol will then be used as a sub-procedure in the multi-sumcheck protocol given in Section 5.2.

5.1 Consistency checking

In this section we show a protocol for checking that two codewords, c and c0, of two (possibly
di↵erent) t-dimensional tensor codes are encodings of the exact same message. The tensor codes
may have di↵erent codeword lengths, and may be defined over di↵erent fields, as long as the message
lengths are the same, and one of the fields is an extension field of the other.

Lemma 5.1 (Consistency checking). Let F and F0 be constructible finite fields of characteristic
2, where F0 is an extension field of F.23 Let C : Fk ! Fn and C 0 : (F0)k ! (F0)n0

be systematic
linear codes of relative distance �, �0, respectively. Then for every integer t � 1, there exists a
(t + O(1))-round poly(t/�)-query IOP (P,V) with soundness error 1 � 1

2

· (� · �0)t for the promise
problem (YES,NO), where:

YES =
��

C⌦t(x), (C 0)⌦t(x0)
�

: x = x0
 

,

NO =
��

C⌦t(x), (C 0)⌦t(x0)
�

: x 6= x0
 

.

Assuming that each coordinate of C can be computed by a poly(T )-uniform circuit of size T ,
and that C 0 can be encoded in time T 0, the prover has size O(t · (n0)t�1 · (T 0 + T )) + poly(T, T 0, t),
and the verifier has size poly(log(T ), log(T 0), t/�).

The proof of the above lemma relies on the following sumcheck protocol for rank 1 tensor
coe�cients from [RR20]. This protocol allows a verifier, who is given oracle access to a tensor
encoding of x, to verify expressions of the form h�, xi = b, where � is a rank 1 tensor (Namely,
there exist �

1

,�
2

, . . . ,�t 2 Fn so that � = �
1

⌦ �
2

⌦ · · ·⌦ �t 2 Fnt
, where (�

1

⌦ �
2

⌦ · · ·⌦ �t)(̄i) =
�
1

(i
1

) · �
2

(i
2

) · · ·�t(it) for any ī = (i
1

, i
2

, . . . , it) 2 [n]t).

Lemma 5.2. (Sumcheck for rank 1 tensor coe�cients) Let F be a constructible finite field of
characteristic 2, and let C : Fk ! Fn be a systematic linear code of relative distance �. Then for
every integer t � 1, there exists a (t + 1)-round poly(t/�)-query IOP (P,V) with soundness error
1� 1

2

· �t for the promise problem (YES,NO), where:

YES =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi = b
 

,

NO =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi 6= b
 

,

where b 2 F, for any i 2 [t], ⇤i is a description of a uniform circuit that on input w 2 Fk outputs
h�i, wi, and we view (⇤

1

, . . . ,⇤t) as the explicit input, and (b, C⌦t(x)) as the implicit input.
Assuming that C can be encoded in time T , and each ⇤i is a poly(T 0)-uniform circuit of size T 0,

the prover has size O(t·nt�1·(T+T 0))+poly(T, T 0, t), and the verifier has size poly(log(T ), log(T 0), t/�).

23We emphasize that this includes the degree 1 extension, that is, when F0 = F.
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Lemma 5.2 follows by composing the sumcheck protocol for rank 1 tensor coe�cients from
[RR20] with an inner PCPP to reduce the verifier running time and query complexity. For com-
pleteness, we give a full proof of Lemma 5.2 in Appendix C. We proceed to the proof of Lemma 5.1,
based on Lemma 5.2.

Proof of Lemma 5.1. The protocol (P,V) is given in Fig. 1. The protocol proceeds as follows. The
verifier first picks a random codeword entry ī 2 [n]t of C⌦t, and sends it to the prover. The parties
then engage in a protocol to verify that c := C⌦t(x) and c00 := C⌦t(x0) agree on the ī coordinate.
If x = x0, then we clearly have that c00 = C⌦t(x0) = C⌦t(x) = c, and so c00 and c agree on all their
coordinates. On the other hand, if x 6= x0 then since C⌦t has relative distance �t, c00 = C⌦t(x0) and
c = C⌦t(x) must di↵er on at least a �t-fraction of the coordinates. Consequently, the verifier will
pick a coordinate ī on which c00 and c di↵er with probability at least �t.

To verify that c00(̄i) = c(̄i) we make use of the sumcheck protocol for rank 1 tensor coe�cients
given in Lemma 5.2. The main observation is that by the structure of tensor codes, there are
coe�cients �

1

, . . . ,�t 2 Fk ✓ (F0)k so that the ī coordinate of c00 = C⌦t(x0) can be expressed as
h�

1

⌦ · · ·⌦�t, x
0i. Consequently, verifying that c00(̄i) = c(̄i) can be done by executing the sumcheck

protocol from Lemma 5.2 on the codeword c0 := (C 0)⌦t(x0) with coe�cients �
1

, . . . ,�t and b = c(̄i).

ConsistencyCheck

• Prover P’s Input: A pair of codewords c := C⌦t(x) and c0 := (C 0)⌦t(x0)

• Verifier V’s Input: Oracle access to c, c0

1. The verifier sends a uniform random index ī 2 [n]t.

2. For j 2 [t], let �
j

2 Fk ✓ (F0)k be such that (C(w))
ij = h�

j

, wi, and note that by our assumptions,
there exists a poly(T )-uniform circuit ⇤

j

of size T that on input w outputs h�
j

, wi.

3. P and V execute the protocol ⇧ given in Lemma 5.2 with the code C 0, codeword c0, b = c(̄i), and
⇤
1

, . . . ,⇤
t

. The verifier V accepts if and only if the verifier in ⇧ accepts.

Figure 1: Consistency Checking

The round complexity, query complexity, and prover and verifier sizes are an immediate conse-
quence of Lemma 5.2. Next we show completeness and soundness.

The main observation that enables us to utilize Lemma 5.2 is that by the properties of tensor
codes, for any message w 2 Fkt , the ī = (i

1

, . . . , it) coordinate of C⌦t(w) can be expressed as

(C⌦t(w))(̄i) =
X

j
1

,...,jt2[k]

�
1

(j
1

) · · ·�t(jt) · w(j1, . . . , jt) = h�1

⌦ · · ·⌦ �t, wi. (3)

Completeness. Suppose that x = x0. In that case, by Eq. (3) for any choice of ī 2 [n]t we have
that

h�
1

⌦ · · ·⌦ �t, x
0i = h�

1

⌦ · · ·⌦ �t, xi = c(̄i) = b,

and so, by the completeness condition of Lemma 5.2, the verifier of ⇧ will accept with probability
1. Consequently, V will accept with probability 1 as well.
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Soundness. Suppose that x 6= x0. Then since C has relative distance �, we have that C⌦t has
relative distance �t, and so c = C⌦t(x) and c00 := C⌦t(x0) di↵er on at least a �t-fraction of the
coordinates. This implies in turn that with probability at least �t over the choice of ī, it holds that
c(̄i) 6= c00(̄i). But if this is the case, then we have that

h�
1

⌦ · · ·⌦ �t, x
0i = c00(̄i) 6= c(̄i) = b,

and so, by the soundness condition of Lemma 5.2, the verifier of ⇧ will reject with probability at

least (�0)t

2

. Consequently, V will reject with probability at least (�·�0)t
2

.

5.2 Multi-sumcheck protocol

In this section we prove Lemma 4.8 by constructing a multi-sumcheck protocol with constant
overhead. Before we present the protocol, we describe the multiplication codes we use, and point
out the di↵erences from the high-level overview given in Section 1.3.

Recall that in the overview given in Section 1.3, we assumed that the codes {E`}` are multipli-
cation codes, in the sense that for each code E = E`, the set {e ? e0 : e, e0 2 E} spans a code E? of
su�ciently high distance, where the star symbol refers to pointwise multiplication. While in prin-
ciple we could have used such codes for our protocol (which would also simplify the presentation),
all codes we are aware of satisfying this property exactly (e.g., polynomial-based codes such as
Reed-Solomon, Reed-Muller, or algebraic geometry codes) are defined over larger alphabets, while
we would like the initial codes E` in the sequence to have small alphabet — in particular, we would
like for E

0

to be a binary code.
To this end, we implicitly use in our protocol the tensor-based construction of Meir [Mei13]

that works over any finite field, including the binary field. In more detail, recall that in our code
construction (cf., Section 4.1) we did not require the codes E` to be multiplication codes. To turn
these codes into (a variant of) multiplication codes we replace the star operation ? with the tensor-
product operation ⌦, where for a pair of vectors e, e0 2 Fn, their tensor product e ⌦ e0 2 Fn⇥n

is given as (e ⌦ e0)(i, j) = ei · e0j for any i, j 2 [n]. The first observation is that the span of

{e ⌦ e0 : e, e0 2 E} is contained in the tensor code E⌦2, and that E⌦2 has high relative distance,
provided that E has high relative distance. The second observation is that the pointwise product
e ? e0 appears as a substring of e⌦ e0 (namely on the diagonal). It is not hard to see that these two
properties su�ce for executing the multi-sumcheck protocol described in Section 1.3.

In more detail, assume for simplicity that d = 2, and recall that in the multi-sumcheck protocol
the prover is supposed to first send the codeword w :=

P

i c(i, ·)⌦ c0(i, ·) 2 E⌦2. In fact, it su�ces
for the prover to send the systematic part of w (from which the verifier can generate any entry of
w), which is given in Eq. (4). The verifier then checks that the substring of w that corresponds to
the pointwise multiplication of the systematic parts of c and c0 sums up to the given value b. If
this is the case, then the verifier chooses a random codeword entry (r, r0) in E⌦2, and computes
w(r, r0) out of the systematic part of w.24 Finally, the parties continue to the next iteration with
the restriction of c, c0 to the r, r0 columns, respectively.

The multi-sumcheck protocol is given in Fig. 2 below.

We start by showing completeness and soundness for our protocol. To this end, we shall need
the following technical claim.

24Here we use that E is a Reed-Solomon code, and consequently each individual codeword symbol in E can be
computed in time that only depends logarithmically on the field size.
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MultiSumcheck

• Prover P’s Input: A bit b 2 {0, 1} and codewords c
1

, . . . , c
d

2 C
0

.

• Verifier V’s Input: The same bit b and oracle access to the same codewords c
1

, . . . , c
d

.

1. Set b
0

 b and c
0,j

 c
j

, for every j = 1, . . . , d.

2. For ` = 0, 1, ..., log
a

(n)� 2:

(a) Consider the d-dimensional cube M
`

: [a]d ! F
`

defined as:

M
`

(j
1

, j
2

, . . . , j
d

) =
X

i2[n/a

`+1
]

c
`,1

(i, j
1

) · · · c
`,d

(i, j
d

) (4)

for every j
1

, . . . , j
d

2 [a], where each c
`,j

2 C
`

is viewed as a codeword in the two-dimensional
tensor product D

`

⌦ E
`

. The prover computes M
`

and sends it to the verifier.

(b) The verifier receives the cube M̃
`

, which is allegedly equal to M
`

. It checks that
P

j2[a]

M̃
`

(j, . . . , j) = b
`

. If not, then it rejects and aborts.

(c) The verifier chooses a random codeword entry (r
1

, . . . , r
d

) in E⌦d

`

and sends it to the prover,
and both parties set b

`+1

to be the value of the (r
1

, . . . , r
d

) coordinate of E⌦d

`

(M̃
`

).

(d) For j = 1, . . . , d:

i. Let ĉ
`,j

denote the restriction of c
`,j

to the first n

a

`+1 coordinates in the r
j

’th column (i.e.,
the systematic part of the r

j

’th column). The prover computes c
`+1,j

= C
`+1

(ĉ
`,j

), and
sends the resulting codeword to the verifier.

ii. The parties engage in the Consistency Checking Protocol of Lemma 5.1 on inputs
c
`,j

(·, r
j

) 2 D
`

and c
`+1,j

2 C
`+1

. If the verifier in the Consistency Checking Protocol
rejects, then the verifier rejects and aborts.

3. For ` = log
a

(n)� 1, the verifier explicitly checks that
P

i2[a]

c
`,1

(i) · · · c
`,d

(i) = b
`

. If not, it rejects;
Otherwise, it accepts.

Figure 2: Multi-sumcheck Protocol
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Claim 5.3. For any ` = 1, . . . , loga(n) � 2, and for any codeword entry (r
1

, . . . , rd) of E⌦d` , we
have that

⇣

E⌦d` (M`)
⌘

(r
1

, . . . , rd) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd).

Proof. In what follows, let a0 denote the codeword length of E`, let e = E⌦d` (M`) 2 F(a0)d , and let

e0 2 F(a0)d be defined as

e0(r
1

, . . . , rd) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd)

for any r
1

, . . . , rd 2 [a0]. Our goal is to show that e = e0.
We first claim that e0 is a codeword of E⌦d` . To see this, note that for any j 2 [d], the

restriction of e0 to any axis-parallel line in direction j is a linear combination of codewords of the
form c`,j(i, ·) 2 E` for i 2 [n/a`+1]. By linearity of E`, this implies in turn that the restriction of
e0 to any axis-parallel line is a codeword of E`, and consequently, by Fact 2.15, e0 is a codeword of
E⌦d` . So we conclude that both e and e0 are codewords of E⌦d` .

Next we argue that e and e0 agree on their systematic parts, and consequently, since both are
codewords of E⌦d` , we must have that e = e0. To see this, note that by the definition of M` given

in Eq. (4), and recalling that E⌦d` : Fad ! F(a0)d is a systematic code, we have that

e(r
1

, . . . , rd) = M`(r1, . . . , rd) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd) = e0(r
1

, . . . , rd)

for any r
1

, . . . , rd 2 [a]. We conclude that the codewords e and e0 agree on their systematic part of
size [a]d, and consequently e = e0, which concludes the proof of the claim.

Completeness. Completeness relies on the following claim.

Claim 5.4. Suppose that
P

i2[n] c1(i) · · · cd(i) = b. Then when V interacts with P, for any ` =
0, 1, . . . , loga(n)� 1, it holds that:

X

i2[n/a`]

c`,1(i) · · · c`,d(i) = b`. (5)

Proof. We prove by induction on `. For ` = 0, Eq. (5) just follows by our assumption that
P

i2[n] c1(i) · · · cd(i) = b, and our initial setting of b
0

 b and c
0,j  cj for j = 1, . . . , d.

Next assume that Eq. (5) holds for some ` 2 {0, 1, . . . , loga(n) � 2}, and we shall show that it
holds for `+ 1 as well. To see this, first note that by Step 2c and Claim 5.3, we have that

b`+1

=
⇣

E⌦d` (M`)
⌘

(r
1

, . . . , rd) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd).

On the other hand, by Step 2(d)i we have that c`+1,j = C`+1

(ĉ`,j) for all j 2 [d], and so we have
that

X

i2[n/a`+1

]

c`+1,1(i) · · · c`+1,d(i) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd).
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Combining the above two equalities gives the desired conclusion that
X

i2[n/a`+1

]

c`+1,1(i) · · · c`+1,d(i) = b`+1

.

Next assume that
P

i2[n] c1(i) · · · cd(i) = b (that is, the original statement is true), we will use
the above Claim 5.4 to show that in this case the verifier will accept with probability 1.

First, by the definition of M` given in Eq. (4) and Claim 5.4, in Step 2b we have that

X

j2[a]

M`(j, . . . , j) =
X

j2[a]

X

i2[n/a`+1

]

c`,1(i, j) · · · c`,d(i, j) =
X

i2[n/a`]

c`,1(i) · · · c`,d(i) = b`,

and consequently the verifier will not reject in this step.
Moreover, by Step 2(d)i, we have that both codewords c`,j(·, rj) 2 D` and c`+1,j 2 C`+1

are
encodings of the same messages ĉ`,j , and consequently, by the completeness of the Consistency
Checking Protocol, the verifier will not reject in this step.

Finally, by Claim 5.4, we also have that
P

i2[n/a`] c`,1(i) · · · c`,d(i) = b` for ` = loga(n)� 1, and
so the verifier will accept with probability 1 in Step 3.

We conclude that in case
P

i2[n] c1(i) · · · cd(i) = b, the verifier accepts with probability 1 when
interacting with the honest prover.

Soundness. We shall show that the protocol has soundness error at most 1��
0

for some absolute
constant �

0

> 0. In what follows, fix a deterministic prover strategy P⇤. Soundness relies on the
following claim.

Claim 5.5. Suppose that the following holds in some round ` 2 {0, 1, . . . , loga(n)� 2}:

1.
P

i2[n/a`] c`,1(i) · · · c`,d(i) 6= b`.

2. In Step 2b, the verifier’s check passes, that is,
P

j2[a] M̃`(j, . . . , j) = b`.

3. In Step 2(d)i, the prover sends c`+1,j = C`+1

(ĉ`,j) for all j 2 [d].

Then, with probability at least (�`)d over the choice of r
1

, . . . , rd in Step 2c, it holds that

X

i2[n/a`+1

]

c`+1,1(i) · · · c`+1,d(i) 6= b`+1

,

where �` denotes the relative distance of E`.

Proof. By the definition ofM` given in Eq. (4), and our first assumption that
P

i2[n/a`] c`,1(i) · · · c`,d(i) 6=
b`, we have that

X

j2[a]

M`(j, . . . , j) =
X

j2[a]

X

i2[n/a`+1

]

c`,1(i, j) · · · c`,d(i, j) =
X

i2[n/a`]

c`,1(i) · · · c`,d(i) 6= b`.

On the other hand, by our second assumption that the verifier’s check in Step 2b passes we have
that

P

j2[a] M̃`(j, . . . , j) = b`.
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We conclude that M` 6= M̃`, and so E⌦d` (M`) and E⌦d` (M̃`) are two di↵erent codewords of E⌦d` .

Since by Fact 2.13, E⌦d` has relative distance at least (�`)d, this implies in turn that E⌦d` (M`) and

E⌦d` (M̃`) di↵er on at least a (�`)d-fraction of coordinates. Consequently, we have that

b`+1

=
⇣

E⌦d` (M̃`)
⌘

(r
1

, . . . , rd) 6=
⇣

E⌦d` (M`)
⌘

(r
1

, . . . , rd) (6)

with probability at least (�`)d over the choice of r
1

, . . . , rd.
Next assume that Eq. (6) holds. By Claim 5.3, we have that

⇣

E⌦d` (M`)
⌘

(r
1

, . . . , rd) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd).

On the other hand, by our third assumption, we have that c`+1,j = C`+1

(ĉ`,j) for all j 2 [d], and
so we have that

X

i2[n/a`+1

]

c`+1,1(i) · · · c`+1,d(i) =
X

i2[n/a`+1

]

c`,1(i, r1) · · · c`,d(i, rd).

Combining the above two equalities with Eq. (6) gives the desired conclusion that

X

i2[n/a`+1

]

c`+1,1(i) · · · c`+1,d(i) =
⇣

E⌦d` (M`)
⌘

(r
1

, . . . , rd) 6= b`+1

.

Next assume that
P

i2[n] c1(i) · · · cd(i) 6= b (that is, the original statement is false). We will
use Claim 5.5 to show that in this case the verifier will reject with probability at least �

0

, for an
absolute constant �

0

> 0.
We first argue that we may assume that Conditions 2 and 3 in Claim 5.5 above are satisfied

in any round ` 2 {0, 1, . . . , loga(n) � 2}. To see this, first note that we may assume that in any
round ` 2 {0, 1, . . . , loga(n)� 2}, the verifier’s check in Step 2b passes, since otherwise the verifier
immediately rejects. Next we claim that we may further assume that the third condition holds.

Suppose that, on the contrary, in some round ` 2 {0, 1, . . . , loga(n) � 2}, in Step 2(d)i, the
prover sends for some j 2 [d] a codeword of C`+1

other than C`+1

(ĉ`,j). Then in this case, by
the soundness guarantee of the Consistency Checking Protocol given in Lemma 5.1, the verifier
in the Consistency Checking Protocol rejects with probability at least 1

2

· (dist(D`) · dist(C`+1

)).
Recalling that by Propositions 4.2 and 4.6, both D` and C`+1

have relative distance at least (↵
0

)t

for an absolute constant ↵
0

> 0, and that t is a constant, we conclude that the verifier rejects with
constant probability. Hence we may also assume that in every round ` 2 {0, 1, . . . , loga(n)� 2}, in
Step 2(d)i, the prover sends C`+1

(ĉ`,j) for all j 2 [d].
Next observe that by our assumption that

P

i2[n] c1(i) · · · cd(i) 6= b, and our initial setting of
b
0

 b and c
0,j  cj for j = 1, . . . , d, we have that

P

i2[n] c0,1(i) · · · c0,d(i) 6= b
0

. But given
this, by Claim 5.5, we have that

P

i2[a] c`,1(i) · · · c`,d(i) 6= b`, for every ` 2 {0, 1, . . . , loga(n) � 1},
with probability at least �

0

:=
Q

loga(n)�2
`=0

(�`)d. Consequently, the check in Step 3 will fail with
probability at least �

0

.
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Next we show that �
0

is greater than some absolute constant. To see that this is the case, recall
that by Proposition 4.4, �

0

= (↵
0

)t for an absolute constant ↵
0

> 0, and

�` =

✓

1� 1

|F`|1/t

◆t

�
⇣

1� q�`/t
⌘t

for every ` � 1. Consequently, we have that

�
0

� (↵
0

)td ·
1
Y

`=1

⇣

1� q�`/t
⌘td

� (↵
0

)td ·
1
Y

`=1

⇣

1� tdq�`/t
⌘

� (↵
0

)td ·
 

1� td
1
X

`=1

q�`/t

!

= (↵
0

)td ·
 

1� td · q�1/t

1� q�1/t

!

,

where the last expression is lower bounded by (↵
0

)

td

3

by our assumption that q � (4td)t. Finally,
we note that �

0

= ⌦(1) for any choice of constants d and t.

Next we analyze the verifier and prover sizes.

Verifier size. For every iteration `, computing the sum
P

j2[a] M̃`(j, . . . , j) in Step 2b takes

time O(ad · log(|F`|)) = poly(qtd, `) by our choice of a = qt�1 and |F`|  q2`. By Proposi-
tion 4.4 and Claim 2.16, computing the value of the (r

1

, . . . , rd) coordinate in E⌦d` (M̃`) takes
time ad · poly(a, log(|F`|)) = poly(qtd, `). Lastly, by Lemma 5.1, Proposition 4.1, and Proposi-
tion 4.5, the verifier’s running time in the Consistency Checking Protocol executed in Step 2(d)ii
is poly(log n, log a, t, log(|F`|)) = poly(log n, q, t, `). Overall, we get a running time that is upper

bounded by
P

logn
`=0

poly(log n, qtd, `) = poly(log n, qtd), which is at most polylog(n), since d, t, and
q are constants. This also implies that the verifier size is at most polylog(n).

Prover size. For every iteration `, computing the cube M` in Step 2a can be implemented by
a Boolean circuit of size ad · n

a`+1

· polylog(|F`|) = n
qt`

· poly(qtd, `) by our choice of a = qt�1 and

|F`|  q2`. By Proposition 4.4 and Claim 2.16, computing the value of the (r
1

, . . . , rd) coordinate
in E⌦d` (M`) can be implemented by a Boolean circuit of size ad · poly(a, log(|F`|)) = poly(qtd, `).
By Proposition 4.6, encoding the new codeword in Step 2(d)i can be implemented by a Boolean
circuit of size n

a`+1

· poly(a, 2t, |F`+1

|) = n
qt`

· poly(qt, q`). Lastly, by Lemma 5.1, Proposition 4.1,

and Proposition 4.5, the prover in the Consistency Checking Protocol executed in Step 2(d)ii can
be implemented by a Boolean circuit of size

n

a`
· poly(a, |F`|, 2t) + poly

✓

⇣ n

a`

⌘

1/t
, a1/t, |F`|1/t, log(|F`|), t

◆

=
n

qt`
· poly(qt, q`),

where the last equality holds for a su�ciently large constant t.
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Overall, we get a circuit size of at most

logn
X

`=0

n

qt`
· poly(qtd, q`)  n · qO(td)

logn
X

`=0

qO(`)

qt`
 n · qO(td)

1
X

`=0

q�(t�O(1))·` = O(n),

where the last equality holds for any su�ciently large constant t.

Finally, note that the round complexity is clearly O(log n) (recalling that the round complexity
of the consistency checking protocol is constant). As to the query complexity, note that the verifier
makes a constant number of queries to the input codewords of C

0

in Step 2(d)ii in the first round
as part of the consistency checking protocol. Similarly, the verifier makes a constant number of
queries to each codeword of C, sent by the prover, in Step 2(d)ii as part of the consistency checking
protocol. The rest of the prover messages are either the messages M` sent in Step 2a which the
verifier reads in their entirety, or the messages sent in Step 2(d)ii as part of the consistency checking
protocol to which the verifier makes a constant number of queries.

6 Fast IOP for circuit satisfiability

In this section we prove Theorem 3.1 by constructing an IOP for circuit satisfiability with a linear-
size prover. We start by re-stating the theorem.

Theorem 3.1. Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) � n+m Boolean circuit. There exists
an O(logS)-round IOP for the language

�

x 2 {0, 1}n : 9w 2 {0, 1}m, C(x,w) = 1
 

with constant
soundness error. The prover, given as auxiliary input also the witness w, can be implemented
by a size O(S) Boolean circuit. After a size O(S) private pre-processing step, the verifier can be
implemented by a size O(n) + polylog(S) Boolean circuit, and has polylog(S) query complexity.

Section Organization. We start in Section 6.1 with an overview of the arithmetization tech-
nique, and how to reduce circuit satisfiability to multi-sumcheck. This overview is optional and can
be skipped. The subsequent sections are devoted to the formal proof of Theorem 3.1. In Section 6.2
we develop a pair of sub-protocols that will be useful for the proof. In Section 6.3 we use these tools
to obtain an IOPP for circuit evaluation and use the latter in Section 6.4 to prove Theorem 3.1.

6.1 From multi-sumcheck to circuit satisfiability: an overview

In this subsection we provide an overview of our arithmetization step, which is loosely based on
[BCG+17a]. We remark that the overview may be read independently of the other technical sections.

Let C be a circuit of size S. For simplicity and without loss of generality we assume that C
consists only of NAND gates.25 We show how to construct an IOP proving to the verifier, who holds
x, that there exists w such that C(x,w) = 1.

Given an input x and witness w, let W 2 {0, 1}S be the values obtained by all of the gates of C
when evaluated on input (x,w) (where we assume some fixed ordering of the gates of C). Let WR

be the same as W but shifted based on the circuit topology of C as follows: for every i 2 [S], set
WR(i) = W (⇡R(i)), where ⇡R(i) is the index of the gate that serves as the right input to gate i. We

25Recall that any constant-size gate can be emulated by a constant size sub-circuit that uses only NAND gates.
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define WL similarly, but wrt the left input gate. For ease of notation and simplicity, we assume for
this overview that ⇡R and ⇡L are permutations on [S] (although in the actual construction, given
that the fan-out is greater than 1, they may not be injective).

The construction utilizes a linear-time encodable code C supporting a linear-size multi-sumcheck.
Constructing such a code is our main contribution and an overview of the construction is provided
in Section 1.3.1.

In our IOP for circuit satisfiability, the prover first computes and sends cW = C(W ), cWR =

C(WR) and cWL = C(WL). Since C is linear-time encodable, and the permutations are fixed based
on the circuit topology, this step can be implemented in linear-time.26 The verifier now needs to
check that:

1. cW , cWR and cWL are all valid codewords.

2. cWR is consistent with cW .

3. cWL is consistent with cW .

4. cW (i) = NAND
�

cWL(i),cWR(i)
�

= 1 �cWL(i) ·cWR(i), for every i 2 [S] (other than the input
gates, but let us ignore those gates here).

5. The inputs of cW are correct (i.e., are equal to x) and the output value is 1.

Test 1 can be handled using standard local testing and (relaxed) local correction techniques. In
slightly more detail, we can ensure that C is a tensor code and employ results of [Vid15, GRR18]
(see also [RR20]).

To handle Test 2 (Test 3 can be handled similarly), the verifier chooses at random r 2 {0, 1}S
and sends r to the prover.27 To check that cWR and cW are consistent, it now su�ces to check that

X

i2[S]

r(i) ·cW (⇡R(i)) =
X

i2[S]

r(i) ·cWR(i)

(the test can be repeated a constant number of times to reduce the soundness error). To perform this
test, the prover sends the value ↵ that is allegedly equal to both sides of the equation. The parties
then engage in the multi-sumcheck protocol twice. First, to check that

P

i2[S] r(i) · cWR(i) = ↵,

and then to check that
P

i2[S] r(i) ·cW (⇡R(i)) = ↵. To see that the latter is indeed an instance of

multi-sumcheck, we can rewrite it as
P

i2[S] r
0(i) ·cW (i), where r0(i) = r(⇡�1R (i)). Note that for this

step the verifier needs oracle access to C(r) and C(r0) but these can be generated by the verifier in
a preprocessing step (in linear time). This does however come at a cost - the entire preprocessing
step must be kept hidden from the prover (until after the prover sends its first message), see also
Remark 6.1.

For Test 4, the verifier similarly chooses a random r 2 {0, 1}S and the problem is reduced to
checking that

X

i2[S]

r(i) ·cW (i) =
X

i2[S]

r(i) · (1�cWL(i) ·cWR(i)).

26Note that this means that the circuit C is e↵ectively hardwired into the prover circuit, rather than being given
as an input. This seems inherent since merely describing the circuit takes O(S · logS) bits.

27In the actual protocol we choose r as the output of a small-bias generator (that can be generated in linear-time
in its output) to save on the randomness complexity.
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To perform this check, the parties employ the multi-sumcheck protocol to compute: (1) ↵ =
P

i2[S] r(i) ·cW (i), (2) � =
P

i2[S] r(i) and (3) � =
P

i2[S] r(i) ·cWL(i) ·cWR(i). The verifier checks

that ↵ = � � �.28

There are several ways to handle Test 5. One relatively easy way is to have the verifier first
encode the input x using a linear-time encodable code E, and then to apply the IOP wrt the
language {E(x) : 9w,C(x,w) = 1} (i.e., consisting of encodings of all satisfiable instances). Now,
since the input is encoded, it su�ces for the verifier to “spot check” that a constant number of the
encoded input bits agree with the corresponding bits of W . Similarly, the output bit of W can be
directly checked to be equal to 1.

Remark 6.1. As mentioned above, the reason that the verifier requires a private pre-processing
step is because it needs to generate C(r) and C(r0), while keeping their values hidden from the
prover. Indeed, it would be interesting to try to obtain a similar result with a public pre-processing
step.

6.2 Useful sub-protocols

In Section 6.2.1 we give a C-encoded IOP for checking that two codewords of the code C
0

encode
shifts of the same message, and (2) in Section 6.2.2 we give a C-encoded IOP for verifying any
pointwise relation between a constant number of codewords.

6.2.1 Shifted consistency check

The following lemma lets us check that messages encoded within two codewords of C
0

are shifts of
one another.

Lemma 6.2. Let ⇡ : [n]! [n] be a fixed function and consider the promise problem (YES⇡,NO⇡),
where

YES⇡ =
��

C
0

(x), C
0

(y)
�

: 8i 2 [n], x(i) = y(⇡(i))
 

NO⇡ = (C
0

⇥ C
0

)\YES⇡.

There exists an O(log n)-round C-encoded IOP for (YES⇡,NO⇡) with constant soundness error. The
prover can be implemented by a size O(n) Boolean circuit. After a size O(n) private pre-processing
step, the verifier can be implemented by a size polylog(n) Boolean circuit.

Furthermore, the verifier makes a constant number of queries to the input and to the pre-
processed data, and for each prover message, the verifier either reads the entire message, or makes
a constant number of queries to this message.

We emphasize that, in contrast to the description in Section 6.1, the function ⇡ can be arbitrary,
and in particular does not need to be a permutation.

Proof of Lemma 6.2. Let G : {0, 1}d ! {0, 1}n be the 0.49-evading set generator from Proposi-
tion 2.22 for d = O(log n). The C-encoded IOP is described in Fig. 3.

28Actually, the value � can be computed o↵-line during the pre-processing step.
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Shifted Consistency Check

Prover P’s Input: A pair of codewords C
0

(x), C
0

(y).

Verifier V’s Input: Oracle access to C
0

(x), C
0

(y).

Preprocessing Phase: The verifier chooses at random s 2 {0, 1}d and explicitly generates r = G(s). The
verifier also computes r0 2 {0, 1}n, where r0(i) =

P

j2⇡

�1
(i)

r(j) for every i 2 [n]. The verifier generates
the encodings C

0

(r) and C
0

(r0). The preprocessed state is (s, C
0

(r), C
o

(r0)).

Online Phase:

1. The verifier sends s to the prover. The prover generates C
0

(r) and C
0

(r0) similarly to the verifier.

2. The prover sends the value ↵ =
P

i2[n]

r(i) · x(i) to the verifier.

3. The parties engage in the multi-sumcheck protocol of Lemma 4.8 to check that
P

i2[n]

r(i) · x(i) = ↵

(with the verifier using oracle access to C
0

(x) from the input and to C
0

(r) from its pre-processed
state).

4. The parties engage again in the multi-sumcheck protocol of Lemma 4.8, this time to check that
P

i

r0(i) · y(i) = ↵ (with the verifier using oracle access to C
0

(y) from the input and to C
0

(r0) from
its pre-processed state).

5. If the verifier rejected in any of the subroutines then reject, otherwise accept.

Figure 3: Shifted Consistency Checking

Before analyzing the protocol, let us first note that for every choice of r 2 {0, 1}n it holds that:
X

i2[n]

r0(i) · y(i) =
X

i2[n]

y(i)
X

j2⇡�1

(i)

r(j) =
X

i2[n]

r(i) · y(⇡(i)), (7)

where r0 is defined as in the protocol (i.e., r0(i) =
P

j2⇡�1

(i) r(j), for every i 2 [n]).

Completeness. Assume that x(i) = y(⇡(i)) for every i 2 [n]. Then, for every choice of r it holds
that

X

i2[n]

r(i) · x(i) =
X

i2[n]

r(i) · y(⇡(i)) =
X

i2[n]

r0(i) · y(i),

where the last equality is by Eq. (7). Thus, using the completeness of the multisumcheck protocol
of Lemma 4.8, the verifier accepts in both Steps 3 and 4.

Soundness. Assume that there exists i 2 [n] such that x(i) 6= y(⇡(i)). Then, with probability at
least 0.1 over the choice of the seed s, it holds that:

X

i2[n]

r(i) · x(i) 6=
X

i2[n]

r(i) · y(⇡(i)) =
X

i2[n]

r0(i) · y(i),

where the equality is again due to Eq. (7). Assume that such a seed s was indeed chosen. Then,
one of the claims checked in either Step 3 or 4 must be false and by the soundness of the protocol
of Lemma 4.8, the verifier will reject with constant probability.
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Prover Size. The prover first explicitly generates the entire string r which, by Proposition 2.22,
can be done in linear size. The prover also computes r0 which can be computed from r using the
fixed function ⇡ in size O(n). The prover also generates the encodings C

0

(r) and C
0

(r0), which by
Proposition 4.6 can be done in linear size. Steps 3 and 4 can likewise be implemented in linear size
by Lemma 4.8.

Verifier Size. In its private pre-processing step, the verifier generates C
0

(r) and C
0

(r0) which,
as noted above, can be done by a linear-size circuit.

In the online phase, by Lemma 4.8, the verifier can be implemented by a polylog(n) size circuit.
The furthermore clause, describing the verifier’s query pattern follows directly from Lemma 4.8.

6.2.2 Arithmetic consistency check

Next, we construct a C-encoded IOP for verifying any pointwise relation between a constant number
of codewords.

Lemma 6.3. Let d 2 N be a constant, f : {0, 1}d ! {0, 1} a function. Consider the promise
problem (YESf ,NOf ), where

YESf =
n

�

C
0

(x
1

), . . . , C
0

(xd)
�

: 8i 2 [n], f
�

x
1

(i), . . . , xd(i)
�

= 0
o

NOf = (C
0

⇥ · · ·⇥ C
0

)\YES.

There exists an O(log n)-round C-encoded IOP for (YESf ,NOf ) with constant soundness error. The
prover can be implemented by a size O(n) Boolean circuit. After a size O(n) private pre-processing
step, the verifier can be implemented by a size polylog(n) Boolean circuit.

Furthermore, the verifier makes a constant number of queries to the input and to the pre-
processed data, and for each prover message, the verifier either reads the entire message, or makes
a constant number of queries to this message.

Proof. We first express f as a multilinear polynomial over the binary field. That is, f(z) =
P

S✓[d] fS · zS , where zS =
Q

j2S z(j), and fS 2 {0, 1} is the coe�cient corresponding to the

monomial zS .
Let G be the 0.49-evading set generator from Proposition 2.22 with logarithmic seed length.

The protocol proceeds as follows. The verifier chooses at random a seed s for G and sends it to the
prover. Let r = G(s). By Proposition 2.22 it su�ces for the two parties to check that:

0 =
X

i2[n]

r(i) · f
�

x
1

(i), . . . , xd(i)
�

=
X

S✓[d]

fS
X

i2[n]

r(i) ·
Y

j2S
xj(i). (8)

The prover sends the values of ↵S =
P

i2[n] r(i)
Q

j2S xj(i) for every S ✓ [d] and the verifier checks
that indeed

P

S✓[d] fS · ↵S = 0.
To verify that each ↵S was computed correctly, the two parties then run the multisumcheck

protocol of Lemma 4.8, repeated in parallel O(d) times to reduce the soundness error to 0.01 · 2�d
(where the verifier uses its oracle access to C

0

(x
1

), . . . , C
0

(xd) and C
0

(r)).
Completeness, soundness and the desired complexity follow in a straightforward way (similar

to the proof of Lemma 6.2) from Lemma 4.8 and Proposition 2.22.
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6.3 IOPP for circuit evaluation

As our next step in proving Theorem 3.1, we construct a C-encoded IOPP (an IOP of proximity,
see Section 2.2) for circuit evaluation. This is captured by the following lemma.

Lemma 6.4. Let C : {0, 1}n ! {0, 1} be a size S = S(n) � n Boolean circuit and � > 0 be a
proximity parameter. There exists an O(log(S))-round C-encoded IOPP for the set

�

x 2 {0, 1}n :
C(x) = 1

 

with constant soundness error. The prover can be implemented by a size O(S) Boolean
circuit. After a size O(S) private pre-processing step, the verifier can be implemented by a size
poly(log(S), 1/�) Boolean circuit.

Furthermore, the verifier makes O(1/�) queries to the input, a constant number of queries to
the pre-processed data, and for each prover message, the verifier either reads the entire message,
or makes a constant number of queries to this message.

Theorem 3.1 follows from Lemma 6.4 using techniques similar to the construction of PCPs for
NP from PCPPs for P (see [BGH+06, DR06]), which are described in Section 6.4. We proceed to
the proof of Lemma 6.4.

Let C : {0, 1}n ! {0, 1} be a size S Boolean circuit. We assume for simplicity and without
loss of generality that the internal gates of C are NAND gates with fan-in 2 and fan-out 2 (see
Section 2.1 for additional details). Fix an ordering of the gates of C. We assume that the input
gates are indexed by 1, . . . , n and the output gate is indexed by S. In what follows when we refer
to a gate g 2 [S] we simply mean the gate that is indexed by g in our ordering.

Let ⇡L,⇡R : [S] ! [S] be functions such that for every non-input gate g it holds that ⇡L(g)
(resp., ⇡R(g)) is the gate that corresponds to the left (resp., right) input of g. For an input gate g
we define ⇡L(g) and ⇡R(g) arbitrarily.

Given an input x 2 {0, 1}n consider an evaluation of C on input x and let W : [S] ! {0, 1}
correspond to the assignments given to each gate of the circuit in this evaluation. Let WR,WL :
[S]! {0, 1} be the assignment of the gates shifted according to the mappings ⇡L and ⇡R, respec-
tively. That is, WR = W �⇡R and WL = W �⇡L (where � refers to standard function composition).
We say that a function W : [S] ! {0, 1} represents a consistent computation with respect to C if
assigning the value W (g) to every gate g is a consistent assignment: i.e., for every non-input gate
g it holds that W (g) = NAND(WL(g),WR(g)).

Define 1n = 1n||0S�n (i.e., a sequence of n 1’s followed by S � n 0’s). We define a function
f
control

(a, b, c, d) as follows:

1. If either
�

d  n
�

or
�

a = NAND(b, c)
�

output 0.

2. Otherwise, output 1.

To gain some intuition on the definition of f
control

, it is instructive to consider the following
sequence of evaluations of f

control

:

⇣

f
control

�

W (i),WL(i),WR(i),1n(i)
�

⌘

i2[S]
.

The definition of f
control

ensures that if W is a consistent computation then this sequence of evalu-
ations will all be 0, whereas if W represents an inconsistent computation then at least one will be
1. Indeed, the following fact is immediate from the definition of f

control

.

35



Fact 6.5. Let W : [S] ! {0, 1} and define WL = W � ⇡L and WR = W � ⇡R. Then, W is a
consistent computation if and only if

f
control

�

W (i),WL(i),WR(i),1n(i)
�

= 0

for every i 2 S.

Using the above definitions and notations, we are now ready to describe the C-encoded IOPP:

1. The prover evaluates the circuit to obtain the wire evaluations W : [S]! {0, 1}.

2. The prover computes C
0

(W ), C
0

(WL) and C
0

(WR) and sends them (as oracles) to the verifier.

3. Shifted consistency check: The prover and verifier engage in the protocol of Lemma 6.2
twice, once to check that W (⇡L(·)) ⌘WL(·) and once to check that W (⇡R(·)) ⌘WR(·), where
the verifier uses its oracle access to C

0

(W ), C
0

(WR) and C
0

(WL) that were sent by the prover
beforehand.

4. Arithmetic consistency check The prover and verifier engage in the protocol of Lemma 6.3
to check that:

f
control

�

W (i),WL(i),WR(i),1n(i)
�

= 0

for every i 2 [S], where the verifier again uses its oracle access to C
0

(W ), C
0

(WR) and C
0

(WL)
that were sent by the prover beforehand and computes oracle queries to C

0

(1n) by itself.

5. Input proximity check: Repeat O(1/�) times: The verifier chooses at random i 2 [n] and
checks that W (i) = x(i) (using a single query to the input and single query to the systematic
part of the codeword C

0

(W ) that the prover sent).

6. Output check: The verifier checks that W (S) = 1 (using a single query to the systematic
part of the codeword C

0

(W ) that the prover sent).

7. If all of the verifiers checks pass then it accepts, and otherwise it rejects.

Completeness. Suppose that C(x) = 1 and C
0

(W ), C
0

(WL) and C
0

(WR) are as specified in the
protocol. By construction it is indeed the case that W (⇡L(·)) ⌘WL(·) and W (⇡R(·)) ⌘WR(·) and
so, by the completeness condition of Lemma 6.2, the verifier’s checks in Step 3 pass. Similarly, by
Fact 6.5 it holds that

f
control

(W (i),WL(i),WR(i),1n(i)) = 0

for every i 2 [S], and so by the completeness condition of Lemma 6.3 the verifier’s checks in Step 4
pass. Since the first n bits of C

0

(W ) are equal to the input x, and the S’th bit of C
0

(W ) is equal
to C(x) = 1, the verifier’s checks in Steps 5 and 6 also pass.

Soundness. Suppose that x 2 {0, 1}n is �-far from the set {x0 2 {0, 1}n : C(x0) = 1} and fix a C-
encoded cheating prover strategy P⇤. Wlog we assume that P⇤ is deterministic and denote the first
message that it sends by (Ŵ , Ŷ , Ẑ). Note that since P⇤ is C encoded it holds that Ŵ , Ŷ , Ẑ 2 C

0

.
Further, denote their systematic parts (i.e., the messages encoded therein) by W , Y and Z.
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Suppose first that either W (⇡L(·)) 6⌘ Y (·) or W (⇡R(·)) 6⌘ Z(·). Then, by the soundness condi-
tion of Lemma 6.2 the verifier rejects in Step 3 with constant probability. Thus, we may assume
that Y ⌘WL and Z ⌘WR.

Suppose that W represents an inconsistent computation. Then, by Fact 6.5 there exists some
i 2 [S] for which

f
control

(W (i), Y (i), Z(i),1n(i)
�

6= 0.

This means that the protocol of Lemma 6.3 is executed in Step 4 on a NO instance and so the
verifier rejects with constant probability.

Thus, we may assume that W represents a consistent computation. Let x0 be the first n bits of
Ŵ . Suppose that C(x0) = 0. Since W represents a consistent computation we have that W (S) = 0
and so the verifier rejects in Step 6. Thus, we may assume that C(x0) = 1, but this means that x0

is �-far from x and so the verifier rejects with constant probability in Step 5 as desired.

Prover Size. The prover first performs the computation which in particular generates all of the
values of W . These values are then shifted according to both ⇡L and ⇡R (which are fixed functions)
to produce WL and WR. This overall can be done by a size O(S) circuit.

By Proposition 4.6 we can encode these messages using additional O(S) size. The prover
e�ciency now follows from Lemmas 6.2 and 6.3. A circuit implementing the prover strategy is
depicted in Fig. 4.

Figure 4: The Prover Circuit

Verifier Size. As part of its private pre-processing step, the verifier computes C
0

(1n) and stores
it as part of its preprocessed state. By Proposition 4.6, this can be done by an O(S)-size circuit.
The rest of the pre-processing is just the pre-processing step of Lemmas 6.2 and 6.3, which can be
done by an O(S) size circuit.
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In the online phase, the verifier in the protocol only executes the verifiers of Lemmas 6.2 and 6.3
as well as the input proximity check and output check. The former checks can be implemented
by a polylog(S)-size, while the latter can be computed in time O(log(S)/�). The pattern of the
verifier’s queries follows from similar guarantees in Lemmas 6.2 and 6.3.

6.4 IOP for circuit satisfiability

We now turn to the proof of Theorem 3.1. Actually, since later on we will need some extra properties
related to the query structure of the verifier, which do not appear in the statement of Theorem 3.1,
we re-state the theorem here with an additional furthermore clause.

Lemma 6.6. Let C : {0, 1}n+m ! {0, 1} be a size S(n,m) � n +m Boolean circuit. There exists
an O(log(S))-round IOP for the language

�

x 2 {0, 1}n : 9w 2 {0, 1}m, C(x,w) = 1
 

with constant
soundness error. The prover, given as auxiliary input also the witness w, can be implemented
by a size O(S) Boolean circuit. After a size O(S) private pre-processing step, the verifier can be
implemented by a size O(n) + polylog(S) Boolean circuit, and has polylog(S) query complexity.

Furthermore, the verifier makes a constant number of queries to the the pre-processed data, and
for each prover message, the verifier either reads the entire message, or makes a constant number
of queries to this message.

The rest of this subsection is devoted to the proof of Lemma 6.6, which immediately implies
Theorem 3.1. We first construct a C-encoded IOP for circuit satisfiability, and Lemma 6.6 then
follows by applying Proposition 4.7.

Let C : {0, 1}n+m ! {0, 1} be a circuit of size S(n,m) � n + m and let E be a systematic
binary linear-time encodable code from Theorem 2.20 with constant relative distance � > 0. Given
an input x 2 {0, 1}n, let x̂ = E(x) and note that there is a linear-size circuit that checks that x̂
is properly encoded (by re-encoding). Roughly speaking, our approach is for the prover to send
the alleged witness w to the verifier and then for the two parties to run the IOPP of Lemma 6.4
on a circuit C0 that gets as input (x̂, w), checks that x̂ is properly encoded and that C(x,w) = 1.
Intuitively, in case x is not “satisfiable”, based on the distance of the code, (x̂, w) should be far
from any accepting input.

A technical problem arises in case x̂ is much shorter than w: in such a case the distance of E
does not guarantee the distance of the pair (x̂, w) from an accepting pair. To get around this we
actually make C0 get as input su�ciently many copies of x̂ to make their overall length roughly as
long as w.

Let n̂ = |x̂| and let x̄ consist of dm/n̂e copies of x̂ and denote n̄ = |x̄| = dm/n̂e · n̂. We can
bound n̄ as follows.

Fact 6.7. m  n̄  n̂+m.

Proof. For the upper bound, observe that n̄ = dm/n̂e · n̂  (m/n̂ + 1) · n̂  m + n̂. For the lower
bound, n̄ � (m/n̂) · n̂ = m.

Consider a circuit C0 : {0, 1}n̄+m ! {0, 1} which, given as input (x̄, w) checks that:

1. The input x̄ consists of dm/n̂e copies of a string x̂ 2 {0, 1}n̂;

2. x̂ 2 E; and
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3. C(x,w) = 1 where x is the message encoded by x̂.

Note that C0 can be implemented by a circuit of size O(S(n + m)) as follows: Step 1 can
be directly implemented by a size O(n̂ + m) circuit by simple equality checks. Step 2 can be
implemented by a size O(n) circuit by Theorem 2.20. Step 3 can be implemented by a size S(n,m)
circuit. Since S(n,m) � n+m and n̂ = O(n) we have that C0 has size O(S(n,m)).

In our IOP, the prover sends the witness w and both parties (locally) compute x̂. The parties
then engage in the IOPP of Lemma 6.4 to check that C0(x̄, w) = 1 using proximity parameter �/2.
The verifier and prover’s queries to x̄ are emulated by queries to x̂ (by shifting indices accordingly).

The completeness as well as complexity analysis follow immediately from Lemma 6.4.29 For
soundness, suppose that x is a NO instance, namely, for every w it holds that C(x,w) = 0. Fix the
first message w̃ sent by the (cheating) prover. In particular, C(x, w̃) = 0. Therefore, using the fact
that |x̄| = n̄ � m = |w| (by Fact 6.7) and that E has minimal relative distance � > 0, we have
that (x̄, w) is at least �/2 far from (C0)�1(1). Thus, by the soundness condition of Lemma 6.4, the
IOPP verifier rejects with constant probability.

This concludes the analysis of our C-encoded IOP. The full-fledged IOP of Lemma 6.6 and The-
orem 3.1 now follows by applying Proposition 4.7. When applying the transformation of Proposi-
tion 4.7 we observe that the verifier in our IOP uses time O(n) to create an encoding of the input x
and otherwise runs in time polylog(S). Thus, after the application of Proposition 4.7, the verifier
runs in time O(n) + polylog(S).

7 From fast IOPs to fast arguments

In this section we show how to compile the e�cient IOP that was constructed in Section 6 into
an e�cient argument-system. The compiler is based on Kilian’s [Kil92] PCP based construction,
extended to IOPs (as proposed by [BCS16]) and using linear-time computable hash functions (see
[BCG20]).

The compiler will use the following notion of a succinct commitment with local opening.

Definition 7.1. A succinct commitment with local opening consists of a probabilistic algorithm
called setup and three determinstic algorithms commit, reveal and verify. The setup algorithm, on
input n,� 2 N outputs a reference string crs. The commit algorithm, on input crs and a message
m 2 {0, 1}n outputs a commitment c. The algorithm reveal, given as input crs, m and an index
i 2 [n] outputs the value mi 2 {0, 1} as well as a proof ⇡ 2 {0, 1}poly(logn,�). The algorithm verify
gets as input crs, c, i, b and ⇡ and outputs either “accept” or “reject”.

We require:

• (Correctness:) For every n,� and m 2 {0, 1}n and i 2 [n], it holds that verify(crs, c, i,mi,⇡) =
accept, where crs setup(n,�), c = commit(crs,m) and ⇡  reveal(crs,m, i).

• (Succinctness:) The lengths of c and ⇡ are poly(�, log n).

• (Binding:) For every family of polynomial-sized circuits A = (A)�, the probability over the
choice of crs  setup(n,�) that A�(crs) outputs (c, i,⇡

0

,⇡
1

) such that verify(crs, c, i, 0,⇡
0

) =
accept and verify(crs, c, i, 1,⇡

1

) = accept is negligible.
29Regarding the query complexity, observe that the verifier of Lemma 6.4 has polylog(S) size and therefore makes

at most that many queries.
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The following lemma establishes the existence of a succinct commitment with local openings,
in which the commitment can be implemented by a linear-size circuit, based on linear-time com-
putable collision resistant hash functions. Such hash functions were constructed by Applebaum et
al. [AHI+17].

Lemma 7.2. Assuming that there exists a collision-resistant hash function computable by linear size
circuits, with shrinkage factor 1/2. Then, there exists a succinct commitment with local openings
such that the commit and reveal algorithms can be implemented by circuits of size O(n + �) and
the setup and verify algorithms can be implemented by Boolean circuits of size poly(log n,�).

Proof Sketch. The construction is based on the well known Merkle tree hashing, using authentica-
tion paths in order to decommit.

In more detail, using the linear-time encodable hash function it is straightforward to commit
to the Merkle root of the message in linear-time. In order to decommit to location i, one first
constructs the entire Merkle tree and then selects the relevant locations from the tree (namely
those blocks corresponding to the path from the i leaf in the tree to the root, together with the
corresponding siblings). We use here the fact that there exists a size O(n) circuit that on input an
array x 2 {0, 1}n and index i 2 [n] outputs xi (see Appendix D). Since we need to do two such
selections (of blocks) from each layer in the tree, and the size of the layers shrinks geometrically,
the overall size of the circuit is O(n).

The following lemma shows how use such linear-size CRHFs to e�ciently compile an IOP into
an argument-system (c.f., [BCG+17b, BCG20]).

Lemma 7.3. Suppose that L has an `-round IOP with soundness error " and communication
complexity c and that in very round either the verifier reads the prover’s entire message or a
constant number of bits. Suppose further that there exists a CRHF computable by a linear-size
circuit. Then, L has an (` + 2)-round argument-system with soundness error " + neg(�) and
communication complexity O

�

(`+ log c) · �
�

.
Furthermore, suppose that:

1. The IOP prover can be implemented as a size TP circuit, where poly(�)  TP .

2. The IOP verifier can be implemented in size TV after a private preprocessing step of size PV ,
where poly(�)  PV , and that the number of queries to the preprocessed data is also q.

Then, the prover of the argument-system can be implemented as a size O(TP ) circuit, and the verifier
can be implemented by a size TV +poly(`, log(TP ),�) circuit, following an O(PV ) preprocessing step.

Proof Sketch. The proof follow readily from an extension of Kilian’s [Kil92] protocol to IOPs (in-
stead of PCPs), as proposed by Ben Sasson et al. [BCS16]. Details follow.

The protocol involves three phases:

1. (Preprocessing:) The verifier runs the IOP verifier to generate the preprocessed data and
then commits to the data using the succinct commitment with local openings of Lemma 7.2.
The verifier preserves this commitment c

pp

for the query and decision stage.

2. (Interaction:) The parties emulate the interactive phase of the IOP, except that in every
round, rather than sending the (long) IOPmessage, the prover commits to it using the succinct
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commitment with local opening. More precisely, this is done only for rounds in which the
verifier does not read the entire prover message (recall that in such a case the verifier only
reads a constant number of bits). Since the protocol is public-coin, the parties can continue
the interaction despite the verifier not having (yet) full oracle access to the prover’s messages.

3. (Query and decision:) In the final stage of the IOP the verifier needs to query locations
in the transcript as well as the preprocessed data. In order to do so, the verifier sends these
locations to the prover, who in turn decommits. The verifier also needs to find the desired
(constant number of) bits from the pre-processed data, to which it only has the commitment
c
pp

. This is done by having the prover also decommit to these bits.

Completeness is immediate, and soundness follows from [Kil92, BCS16]. We proceed to analyze
the complexity of the protocol.

Verifier complexity. The preprocessing step simply involves the preprocessing step of the orig-
inal verifier, as well as the commitment, and can therefore be implemented by a size O(PV ) circuit.
The online phase is dominated by the online phase of the IOP which has complexity TV and the
verification of the decommitments which has complexity poly(`, q, log(TP ),�).

Overall the verifier’s online complexity is O(TV ) + poly(`, q, log(TP ),�).

Prover complexity. Denote the length of the prover message in round i by ai, and observe
that

P

i ai = O(TP ). The complexity of the prover is upper bounded by O(TP ) +
P

iO(ai + �) =
O(TP + ` · �) = O(TP ).

Theorem 3.2 now follows immediately by plugging in the IOP of Lemma 6.6 into Lemma 7.3.
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A IOP composition

In this section we prove Lemma 2.7, restated below, which gives a composition method for IOPs.
As mentioned in Section 2.2.1, the use of proof composition originates in [AS98], and is articulated
as a composition of a robust PCP with a PCPP in [BGH+06, DR06]. The extension to IOPs is from
[BCG+17a] (see also [RR20, Lemma 8.2.] and [ACY21]). As our setting is slightly di↵erent (in
particular, we care about very small factors in running times), we provide below a full proof of this
lemma.

Lemma 2.7. (Composition) Suppose that the following exist:

• (Outer IOP:) An `-round (↵, ")-robust IOP (P,V) for a promise problem (YES,NO).

• (Inner IOPP:) An `0-round q0-query ↵-IOPP (P 0,V 0) with soundness error "0 for the language

L
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is s-succinct, and that V is t-projectable.
Then, there exists an (` + `0)-round q0-query IOP (P 00,V 00) for the promise problem (YES,NO)
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Proof. The composed protocol (P 00,V 00) is given in Fig. 5.

The composed protocol (P 00,V 00):

1. The prover and the verifier interact for ` rounds according to the outer IOP (P,V) for the promise
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Figure 5: The Composed Protocol (P 00,V 00)

It can be verified that the round complexity, query complexity, and prover and verifier sizes are
as stated, next we show completeness and soundness.
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Completeness. Suppose that x = (x
exp

, x
imp

) 2 YES. Then by the guarantees of the outer IOP
(P,V), with probability 1, we have that

V
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This implies in turn that (x0
exp

, x0
imp

) 2 L
(P,V), and so by the guarantees of the inner IOPP (P 0,V 0),

the verifier V 0 will accept with probability 1. We conclude that in this case the verifier in the
composed protocol accepts with probability 1.

Soundness. Suppose that x = (x
exp

, x
imp

) 2 NO, and let P⇤ be a prover strategy. By the robust-
ness property of the outer IOP (P,V), with probability at least 1� ", x0

imp

= (x
imp

,M
1

, . . . ,M`)|I
is ↵-far from any y so that V

2

(x0
exp

, y) = 1. By the guarantees of the inner IOPP (P 0,V 0), this
implies in turn that the verifier V 0 will reject with probability at least 1 � "0. We conclude that
in this case the verifier in the composed protocol rejects with probability at least (1� ") · (1� "0).
Consequently, the soundness error is at most 1� (1� ") · (1� "0)  "+ "0.

B Eliminating the C-encoded assumption

In this Section we prove Proposition 4.7, restated for convenience below.

Proposition 4.7. Suppose that L has an `-round C-encoded IOP (P,V) with constant soundness
error. Suppose furthermore that the verifier makes a constant number of queries to the input, and
for each message of P, the verifier either reads the entire message, or makes a constant number of
queries to this message.

Then L also has an (` + 2)-round standard IOP (P 0,V 0) with constant soundness error. If the
prover and verifier in (P,V) have sizes |P|, |V|, respectively, then the prover and verifier in (P 0,V 0)
have sizes O(|P|) and poly(|V|) + ` · polylog(|P|), respectively. Moreover, the verifier makes a
constant number of queries to the input, and for each message of P 0, the verifier V 0 either reads
the entire message, or makes a constant number of queries to this message.

For the proof of Proposition 4.7, we rely on the local testing and relaxed local correction
properties of tensor codes. Specifically, whenever the verifier expects a codeword of C, it first
applies a local testing protocol on the prover’s message to reject messages that are far from the
code, and then applies a relaxed local correction protocol to decode the message to the nearest
codeword.

The local testing protocol is given in the following lemma.

Lemma B.1 (Local testing protocol for tensor codes). Let F be a constructible finite field of
characteristic 2, and let C : Fk ! Fn be a systematic linear code of relative distance �. Then for
every integer t � 3 and ↵ > 0, there exists a 2-round poly(��t/↵)-query IOP (P,V) with soundness
error 1� �O(t) · ↵ for the promise problem (YES,NO), where:

YES = C⌦t,

NO =
n

w 2 Fnt
: distF(w,C

⌦t) � ↵
o

.

Assuming that C can be encoded in time T , the prover has size O(t2 ·nt · log(|F|))+ poly(T, t), and
the verifier has size poly(log(T ), ��t/↵)
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We note that the above lemma could alternatively be phrased as an IOPP for membership in
the code C⌦t but we prefer the phrasing as an IOP to highlight that the distance is over the field F.
Lemma B.1 follows by composing the local tester for tensor codes of [Vid15] with an inner PCPP
to reduce the verifier’s running time and query complexity. For completeness, we provide a full
proof in Appendix B.1.

The relaxed local correction protocol is given in the following lemma.

Lemma B.2 (Relaxed local correction protocol for tensor codes). Let F be a constructible finite
field of characteristic 2, and let C : Fk ! Fn be a systematic linear code of relative distance �.
Then for every integer t � 1, there exists a 2-round poly(t/�)-query IOP (P,V) with soundness

error 1� 1

2

·
�

�
4

�t
for the promise problem (YES,NO), where:

YES =
n

w 2 Fnt
, ī 2 [n]t : w 2 C⌦t

o

,

NO =

(

w 2 Fnt
, ī 2 [n]t : distF(w, c) <

✓

�

4

◆t

for c 2 C⌦t with w(̄i) 6= c(̄i)

)

.

Assuming that C can be encoded in time T , the prover has size O(t2 · nt · log(|F|)) + poly(T, t),
and the verifier has size poly(log(T ), t/�).

Lemma B.2 follows by composing the relaxed local corrector for tensor codes of [GRR18, RR20]
with an inner PCPP to reduce the verifier’s running time and query complexity. For completeness,
we provide a full proof in Appendix B.2.

Next we prove Proposition 4.7, based on the above Lemmas B.1 and B.2.

Proof of Proposition 4.7. Recall that each code C in C is defined as C =
⇣

eC
⌘⌦t

, where by Propo-

sition 4.5, eC is a systematic linear code over a finite field F of relative distance at least �
0

for
an absolute constant �

0

> 0. Moreover, by Proposition 4.5 and Proposition 4.6, C and eC can be
encoded in time T := poly(m) and eT := poly(m1/t) = O(m), respectively, where m denotes the
codeword length of C, and the last equality holds for a su�ciently large constant t.

The prover and the verifier P 0,V 0 simulate the prover and the verifier P,V, with the following
modifications. Suppose that P sends a message w that is allegedly a codeword of some code
C = ( eC)⌦t 2 C. If V queries all of w, then V 0 does the same, and checks that w is a codeword of C.
If not, then V 0 rejects and aborts. If on the other hand, V makes a constant number of queries to w,
then P 0 and V 0 execute the protocol ⇧

ltc

given in Lemma B.1 with respect to proximity parameter
↵ =

�

�
0

4

�t
on input w. If the verifier of ⇧

ltc

rejects, then V 0 rejects and aborts. Then, for each
query of V to the i-th entry of w, P 0 and V 0 execute the protocol ⇧

rlcc

given in Lemma B.2 on
input w and input coordinate i. If the verifier of ⇧

rlcc

rejects, then V 0 rejects and aborts. In the
case of a non-abort, P 0 and V 0 continue with the simulation of (P,V).

To see the correctness of (P 0,V 0), note first that if V queries all of w, then we may assume
that w is a codeword of C, otherwise V 0 will readily reject. If, on the other hand, V makes a
constant number of queries to w, then we may assume that distF(w, c) <

�

�
0

4

�t
for some codeword

c of C, as otherwise, by the soundness guarantees of ⇧
ltc

, the verifier rejects with probability at

least 1 � �
O(t)
0

= ⌦(1) (assuming that t is constant). But if this is the case, then we may further
assume that w(i) = c(i), as otherwise, by the soundness guarantees of ⇧

rlcc

, the verifier rejects with
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probability at least 1 � �
O(t)
0

= ⌦(1). Thus, in both cases we may assume that the prover sent a
legal codeword of C, and correctness then follows by the C-encoded property of (P,V).

Next we compute the prover and verifier sizes. To this end note that in the case that V
queries all of w, the prover size is unchanged, while the verifier size is increased by an additive
factor of T := poly(m) that is required for checking that w is a codeword of C (by encoding the
systematic part of w via C, and checking that the resulting codeword equals w). Next recall that
⇧

ltc

and ⇧
rlcc

have prover and verifier sizes O(t2 ·m · log(|F|)) + poly( eT , t) = O(m · log(|F|)) and
poly(log( eT ), ��t

0

)  polylog(m), respectively, where the inequalities hold for a su�ciently large
constant t. Consequently, in the case where V makes a constant number of queries to w, the prover
and verifier sizes are increased by additive factors of O(m · log(|F|)) and polylog(m)  polylog(|P|),
respectively. Overall, we conclude that in the new protocol (P 0,V 0) the prover and verifier sizes are
at most O(|P|) and poly(|V|) + ` · polylog(|P|), respectively.

Finally, note that since both ⇧
ltc

and ⇧
rlcc

are 2-round protocols, and can be executed in parallel
for all queries of V, this transformation increases the round complexity by an additive factor of

2. Moreover, since the query complexity in both ⇧
ltc

and ⇧
rlcc

is ��O(t)
0

= O(1), we still have the
property that for each message of P 0, the verifier V 0 either reads the entire message, or makes a
constant number of queries to this message.

B.1 Local testing protocol

In this section we prove Lemma B.1 which gives a local testing protocol for tensor codes. The proof
follows by composing the following local testing procedure for tensor codes from [Vid15] with an
inner PCPP to reduce the verifier’s running time and query complexity.

Theorem B.3 (Local testing of tensor codes, [Vid15], Theorem 3.1). Let C : Fk ! Fn be a
systematic linear code of relative distance �. Then for every integer t � 3, there exists a randomized
oracle algorithm A satisfying the following properties.

• Input: A gets oracle access to a string w 2 Fnt
.

• Completeness: If w is a codeword of C⌦t, then A accepts with probability 1.

• Robustness: If distF(w,C⌦t) � ↵, then, in expectation, A’s view is �2t·↵
t10

-far from an ac-
cepting view (where the distance is measured over F).

• Running time: If C can be encoded in time T , then A has running time O(n · T ).

Moreover,

• A queries n2 symbols of w, and has randomness complexity t log n.

• The location of each individual query can be computed in time O(t · log n).

• There exists a Boolean circuit of size O(t2 · nt · log(|F|)) such that given the query set I and
w, outputs the query values w|I .

Remark B.4. We remark on the following di↵erences from [Vid15, Theorem 3.1]:
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1. [Vid15, Theorem 3.1] only bounds the rejection probability of the n2-query test that chooses
a random two-dimensional axis-parallel plane (according to some specified distribution), and
checks that the projection of w to the plane is a codeword of C⌦2. However, the proof shows
that this test is robust, in the sense that the average view of the tester is �2t·↵

t10
-far from C⌦2.

2. The running time is not stated explicitly in [Vid15]. However, checking whether a given string
w0 2 Fn2

is a codeword of C⌦2 can be done by first encoding the systematic part of w0 via
C⌦2, and then checking that the resulting codeword equals w0. By Claim 2.14, C⌦2 can be
encoded in time O(n · T ), which results in a total running time of O(n · T ).

3. Randomness complexity is not stated explicitly in [Vid15]. However, inspection shows that the
randomness complexity required for sampling the random two-dimensional plane is at most
t log n, and the location of each individual point in this subspaces can be computed in time
O(t log n).

4. We construct a circuit for generating the projection of w to the verifier’s query set as follows.
First, given w, the verifier generates the restriction of w to all two-dimensional axis-parallel
subspaces. Since there are

�

t
2

�

· nt�2 such subspaces, each of size n2 · log(|F|) bits, this can be
done by a circuit of size O(t2 · nt · log(|F|)).
The resulting list is viewed as a database with

�

t
2

�

· nt�2 entries, each over an alphabet of bit
length n2 ·log(|F|). The desired entry can now be selected by the multiplexer of Proposition D.1
with a size O(t2 · nt · log(|F|)) circuit.

Next we prove Lemma B.1, based on the above theorem.

Proof of Lemma B.1. We apply Corollary 2.10 on the local tester given by Theorem B.3 (which is
in particular also a 1-round robust IOP).

In more detail, by Theorem B.3, Markov’s inequality, and our assumption that the elements of
F are represented as codewords of a binary code of constant relative distance (cf., Section 2.3.2),

there exists a 1-round (⌦( �
2t·↵
t10

), 1 � �2t·↵
2t10

)-robust IOP (P,V) for the promise problem (YES,NO)
with prover size |P| = 0 and verifier size |V

1

|  poly(n, t) and |V
2

|  poly(T ).
Moreover, we have that:

1. (P,V) has query complexity n2 · log(|F|) and randomness complexity t log n.

2. The language L
(P,V) can be decided in time poly(T ).

3. V
1

is poly(log n, t)-succinct, and V is O(t2 · nt · log(|F|))-projectable.

Consequently, by Corollary 2.10 there exists a 2-round poly(��t/↵)-query IOP (P 0,V 0) for

(YES,NO) with soundness error 1� �2t·↵
4t10

= 1� �O(t) ·↵, prover size O(t2 ·nt · log(|F|)) + poly(T, t),
and verifier size poly(log(T ), ��t/↵), where we used that T � n · log(|F|).

B.2 Relaxed local correction protocol

In this section we prove Lemma B.2 which gives a relaxed local correction protocol for tensor codes.
The proof follows by composing the following relaxed local correction procedure for tensor codes
with an inner PCPP to reduce the verifier’s running time and query complexity.
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Lemma B.5 (Relaxed local correction of tensor codes). Let C : Fk ! Fn be a systematic linear
code of relative distance �. Then for every integer t � 1, there exists a randomized oracle algorithm
A satisfying the following properties.

• Input: A takes as input a coordinate ī 2 [n]t, and also gets oracle access to a string w 2 Fnt
.

• Completeness: If w is a codeword of C⌦t, then A accepts with probability 1.

• Robustness: If distF(w, c) <
�

�
4

�t
for some codeword c 2 C⌦t with c(̄i) 6= w(̄i), then with

probability at least
�

�
4

�t
, the view of A is �

8t -far from an accepting view (where the distance is
measured over F).

• Running time: If C can be encoded in time T , then A has running time O(t · T ).

Moreover,

• A queries 2tn symbols of w, and has randomness complexity t2 log n.

• The location of each individual query can be computed in time O(t2 log n).

• There exists a Boolean circuit of size O(t2 · nt · log(|F|)) such that given the query set I and
w, outputs the query values w|I .

Remark B.6. Usually a relaxed local corrector is defined as a randomized algorithm that is allowed
to output either a symbol in F or a special symbol ?. The completeness requirement then is that if
w is a codeword of C⌦t, then A outputs w(̄i) with probability 1, while the soundness requirement
is that if w is su�ciently close to a codeword c of C⌦t, then A outputs a symbol in {c(̄i),?}
with su�ciently high probability. Note, however, that our relaxed local corrector can be modified to
satisfy these requirements, by outputting ? if it rejects, and outputting w(̄i) otherwise. To facilitate
composition, it will be more convenient for us to work with our (stronger) requirements.

The above lemma is given in [RR20, Lemma 7.4] (which builds in turn on [GRR18, Lemma 5.5.]).
As our setting is slightly di↵erent than that of [RR20], we provide a full proof in Appendix B.2.1
below. Next we prove Lemma B.2, based on Lemma B.5.

Proof of Lemma B.2. We apply Corollary 2.10 on the relaxed local corrector given by Lemma B.5
(which is in particular also a 1-round robust IOP).

In more detail, by Lemma B.5, and our assumption that the elements of F are represented as
codewords of a binary code of constant relative distance (cf., Section 2.3.2), there exists a 1-round
⇣

⌦
�

�
t

�

, 1�
�

�
4

�t
⌘

-robust IOP (P,V) for the promise problem (YES,NO) with prover size |P| = 0

and verifier size |V
1

|  poly(n, t) and |V
2

|  poly(T, t).
Moreover, we have that:

1. (P,V) has query complexity 2tn log(|F|) and randomness complexity t2 log n.

2. The language L
(P,V) can be decided in time poly(T, t).

3. V
1

is poly(log n, t)-succinct, and V is O(t2 · nt · log(|F|))-projectable.

Consequently, by Corollary 2.10 there exists a 2-round poly(t/�)-query IOP (P 0,V 0) for the

promise problem (YES,NO) with soundness error 1� 1

2

·
�

�
4

�t
, prover sizeO(t2·nt·log(|F|))+poly(T, t),

and verifier size poly(log(T ), t/�), where we used that T � n log(|F|).
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B.2.1 Proof of Lemma B.5

The relaxed local corrector A is given in Fig. 6 below.

Relaxed Local Corrector A

Input: Coordinate ī = (i
1

, . . . , i
t

) 2 [n]t, oracle access to w 2 Fn

t

1. For ` = 1, ..., t:

(a) Pick uniform random indices r
`+1

, . . . , r
t

2 [n].

(b) Consider the string w
`

2 Fn defined as:

w
`

(j) = w(i
1

, . . . , i
`�1

, j, r
`+1

, . . . , r
t

),

for every j 2 [n]. Query all points in w
`

, as well as n additional copies of w
`

(i
`

).a

(c) Check that w
`

is a codeword of C, and that all n+1 copies of w
`

(i
`

) are identical; If not, reject
and abort.

2. Accept and abort.

aThese (seemingly redundant) queries are made in order to get robustness.

Figure 6: Relaxed Local Corrector for Tensor Codes

We start by showing completeness and robustness.

Completeness. Suppose that w is a codeword of C⌦t. Then by properties of tensor codes, we
have that w` is a codeword of C for any ` = 1, . . . , t. Consequently, for any ` = 1, . . . , t, A will not
reject in Step 1c. But in this case it will accept in Step 2, as required.

Robustness. Suppose that distF(w, c) <
�

�
4

�t
for some codeword c 2 C⌦t with c(̄i) 6= w(̄i). For

` = 1, . . . , t+ 1, let
ĉ` := c(i

1

, . . . , i`�1, ·, . . . , ·) 2 C⌦(t�`+1),

and
ŵ` := w(i

1

, . . . , i`�1, ·, . . . , ·) 2 Fnt�`+1

.

Note that ŵ
1

= w, ĉ
1

= c, ŵt+1

= w(̄i), and ĉt+1

= c(̄i). Soundness relies on the following claim.

Claim B.7. Suppose that for some ` 2 {1, . . . , t} it holds that distF(ŵ`, ĉ`) <
�

�
4

�t�`+1

, but

distF(ŵ`+1

, ĉ`+1

) �
�

�
4

�t�`
. Then in the `-th iteration, with probability at least 1

2

·
�

�
4

�t�`
over

the choice of r`+1

, . . . , rt in Step 1a, any v 2 F2n that is �
8

-close to the view of A (where the
distance is measured over F) in Step 1b causes A to reject.

Proof. Fix ` 2 {1, . . . , t}, and suppose that distF(ŵ`, ĉ`) <
�

�
4

�t�`+1

, but distF(ŵ`+1

, ĉ`+1

) �
�

�
4

�t�`
.

Then by assumption that distF(ŵ`, ĉ`) <
�

�
4

�t�`+1

, with probability at least 1� 1

2

·
�

�
4

�t�`
over the

choice of r`+1

, . . . , rt, we have that

distF(w`, c`) 
�

2
, (9)
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where c` := c(i
1

, . . . , i`�1, ·, r`+1

, . . . , rt). On the other hand, by the assumption that distF(ŵ`+1

, ĉ`+1

) �
�

�
4

�t�`
, with probability at least

�

�
4

�t�`
over the choice of r`+1

, . . . , rt, we have that

w`(i`) = w(i
1

, . . . , i`, r`+1

, . . . , rt) 6= c(i
1

, . . . , i`, r`+1

, . . . , rt) = c`(i`). (10)

Next assume that both events (9) and (10) above hold, which happens with probability at least
1

2

·
�

�
4

�t�`
. Suppose that v 2 F2n is �

8

-close to the view of A in Step 1b in the `-th iteration (where

the distance is measured over F), we shall show that v causes A to reject. Let v = (v(1), v(2)) where
v(1), v(2) 2 Fn.

First observe that by our assumption that v is �
8

-close to A’s view, we have that distF(v(1), w`) 
�
4

. By Eq. (9) and the triangle inequality, this implies in turn that distF(v(1), c`)  3�
4

. Since c` 2 C,

and C has relative distance �, we conclude that either v(1) = c`, or v(1) /2 C. In the latter case A
clearly rejects, and so we may assume that v(1) = c`.

Next observe that by our assumption that v is �
8

-close to A’s view, we also have that at least

a (1� �
4

)-fraction of the entries in v(2) are equal to w`(i`). On the other hand, by our assumption

Eq. (10), we have that c`(i`) 6= w`(i`). We conclude that there exists an entry in v(2) that is not
identical to c`(i`) = v(1)(i`), and consequently A rejects on v.

Next observe that by our assumptions that distF(w, c) <
�

�
4

�t
and c(̄i) 6= w(̄i), we have that

distF(ŵ1

, ĉ
1

) <
�

�
4

�t
, but distF(ŵt+1

, ĉt+1

) = 1 =
�

�
4

�

0

. Consequently, there exists ` 2 {1, . . . , t} for

which distF(ŵ`, ĉ`) <
�

�
4

�t�`+1

, but distF(ŵ`+1

, ĉ`+1

) �
�

�
4

�t�`
. But by the above Claim B.7, this

implies in turn that with probability at least 1

2

·
�

�
4

�t�` �
�

�
4

�t
, any view that is �

8

-close to A’s view
in Step 1b in the `-th iteration, would cause it to reject. We conclude that with probability at least
�

�
4

�t
, any view that is �

8t -close to A’s view will cause A to reject.

Running time. A needs to check that w` is a codeword of C in Step 1c, which can be done
in time T by encoding the systematic part of w` via the code C, and checking that the resulting
codeword equals w`. This leads to a total running time of O(t · T ).

Finally, we note that

• The query complexity is 2tn since A needs to query in Step 1b on the `-th iteration the string
w` 2 Fn, as well as n additional copies of w`(i`).

• In each iteration ` 2 {1, . . . , t}, A generates t � ` random strings of length log n in Step 1a,
and so the total randomness complexity is at most t2 log n. Moreover, the location of each
individual query can be computed in time O(t2 log n).

• We construct a circuit for generating the projection of w to the verifier’s query set as follows.
First, given w, the verifier generates the restriction of w to all axis-parallel lines. Since
there are t · nt�1 such lines, each of size n · log(|F|), this can be done by a circuit of size
O(t · nt · log(|F|)).
The resulting list is viewed as a database with t · nt�1 entries, each over an alphabet of bit
length n · log(|F|). Each desired entry (i.e., line) can now be selected by the multiplexer of
Proposition D.1 with a size O(t · nt · log(|F|)) circuit. Since there are t such lines that are
selected, the overall size is O(t2 · nt · log(|F|)).
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C Sumcheck for rank 1 tensor coe�cients

In this section we prove Lemma 5.2, restated below, which gives a sumcheck protocol for rank 1
tensor coe�cients. That is, a protocol for checking that the input satisfies a linear equation, where
the coe�cients in the linear equation have the structure of a rank 1 tensor.

Lemma 5.2. (Sumcheck for rank 1 tensor coe�cients) Let F be a constructible finite field of
characteristic 2, and let C : Fk ! Fn be a systematic linear code of relative distance �. Then for
every integer t � 1, there exists a (t + 1)-round poly(t/�)-query IOP (P,V) with soundness error
1� 1

2

· �t for the promise problem (YES,NO), where:

YES =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi = b
 

,

NO =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi 6= b
 

,

where b 2 F, for any i 2 [t], ⇤i is a description of a uniform circuit that on input w 2 Fk outputs
h�i, wi, and we view (⇤

1

, . . . ,⇤t) as the explicit input, and (b, C⌦t(x)) as the implicit input.
Assuming that C can be encoded in time T , and each ⇤i is a poly(T 0)-uniform circuit of size T 0,

the prover has size O(t·nt�1·(T+T 0))+poly(T, T 0, t), and the verifier has size poly(log(T ), log(T 0), t/�).

Lemma 5.2 follows by composing the following protocol from [RR20, Lemma 7.1] with an inner
PCPP to reduce the verifier running time and query complexity. As our setting is slightly di↵erent
than that of [RR20], we provide below a full proof of this lemma.

Lemma C.1. Let F be a constructible finite field of characteristic 2, and let C : Fk ! Fn be a
systematic linear code of relative distance �. Then for every integer t � 1, there exists a t-round
(⌦
�

�
t

�

, 1� �t)-robust IOP (P,V) for the promise problem (YES,NO), where:

YES =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi = b
 

,

NO =
�

(⇤
1

, . . . ,⇤t, b, C
⌦t(x)) : h�

1

⌦ · · ·⌦ �t, xi 6= b
 

,

where b 2 F, and for any i 2 [t], ⇤i is a description of a uniform circuit that on input w 2 Fk

outputs h�i, wi, and we view (⇤
1

, . . . ,⇤t) as the explicit input, and (b, C⌦t(x)) as the implicit input.
Assuming that C can be encoded in time T , and each ⇤i is a poly(T 0)-uniform circuit of size

T 0, the prover has size O(t · nt�1 · (T + T 0)) + poly(T 0, t) and the verifier has size poly(T, T 0, t).
Moreover,

• The query complexity is (t+ 1)n log(|F|), and the randomness complexity is t log n.

• V
2

is a poly(T, T 0, t)-uniform circuit of size poly(T, T 0, t).

• V
1

is poly(log(T ), t)-succinct, and V is O(t · nt · log(|F|))-projectable.

We first show how to use Lemma C.1 to prove Lemma 5.2. Then, in Appendix C.1 we prove
Lemma C.1.

Proof of Lemma 5.2. We apply Corollary 2.10 on the robust IOP given by Lemma C.1. In more
detail, by Lemma C.1 there exists a t-round (⌦

�

�
t

�

, 1 � �t)-robust IOP (P,V) for the promise
problem (YES,NO) with prover size |P| = O(t · nt�1 · (T + T 0)) + poly(T 0, t), and verifier size
|V| = poly(T, T 0, t).

Moreover, we have that:
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1. (P,V) has query complexity (t+ 1)n log(|F|), and randomness complexity t log n.

2. The language L
(P,V) can be decided in time poly(T, T 0, t).

3. V
1

is poly(log(T ), t)-succinct, and V is O(t · nt · log(|F|))-projectable.

Consequently, by Corollary 2.10 there exists a (t + 1)-round poly(t/�)-query IOP (P 0,V 0) for
(YES,NO) with soundness error 1 � 1

2

· �t, prover size O(t · nt�1 · (T + T 0)) + poly(T, T 0, t), and
verifier size poly(log(T ), log(T 0), t/�), where we used that T � n log(|F|).

C.1 Proof of Lemma C.1

The protocol is given in Fig. 7 below. It is similar to the standard sumcheck protocol [LFKN92,
Mei13], except that the sums are weighted by the tensor coe�cients.

Sumcheck

• Prover P’s Input: For any i 2 [t] a uniform circuit ⇤
i

computing ⇤
i

(w) = h�
i

, wi, b 2 F, and a
codeword c := C⌦t(x).

• Verifier V’s Input: The same ⇤
1

, . . . ,⇤
t

, and oracle access to b and c.

1. Set b
1

 b, c
1

 c.

2. The verifier queries n copies of b and checks that they are all identical.a If not, then it rejects and
aborts.

3. For ` = 1, ..., t� 1:

(a) Consider the string w
`

2 Fn defined as:

w
`

(j) =
X

i`+1,...,it2[k]

�
`+1

(i
`+1

) · · ·�
t

(i
t

) · c
`

(j, i
`+1

, . . . , i
t

), (11)

for every j 2 [n]. The prover computes w
`

and sends it to the verifier.

(b) The verifier receives the string w̃
`

, which is allegedly equal to w
`

. It checks that w̃
`

is a codeword
of C and that

P

j2[k]

�
`

(j) · w̃
`

(j) = b
`

. If not, then it rejects and aborts.

(c) The verifier sends a uniform random r
`

2 [n], and both parties set b
`+1

 w̃
`

(r
`

) and c
`+1

 
c
`

(r
`

, ·, . . . , ·) 2 C⌦(t�`).

4. For ` = t, the verifier explicitly checks that c
`

is a codeword of C, and that
P

j2[k]

�
`

(j) · c
`

(j) = b
`

.
If not, it rejects; Otherwise, it accepts.

aThese (seemingly redundant) queries are made in order to get robustness (recall that we regard b as part of the
implicit input).

Figure 7: Sumcheck protocol for rank 1 tensor coe�cients

We start by showing completeness and robustness. We first note the following.

Claim C.2. For any ` = 1, . . . , t� 1, we have that

w`(r`) =
X

j2[k]

�`+1

(j) · w`+1

(j),
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where wt = ct 2 C.

Proof. By Eq. (11) we have that,
X

j2[k]

�`+1

(j) · w`+1

(j) =
X

j2[k]

�`+1

(j)
X

i`+2

,...,it2[k]

�`+2

(i`+2

) · · ·�t(it) · c`+1

(j, i`+2

, . . . , it)

=
X

i`+1

,...,it2[k]

�`+1

(i`+1

) · · ·�t(it) · c`(r`, i`+1

, . . . , it)

= w`(r`).

Completeness. Completeness relies on the following claim.

Claim C.3. Suppose that h�
1

⌦ · · ·⌦�t, xi = b. Then when V interacts with P, for any ` = 1, . . . , t
it holds that

X

j2[k]

�`(j) · w`(j) = b`.

Proof. For ` = 1, we have that
X

j2[k]

�
1

(j) · w
1

(j) =
X

j2[k]

�
1

(j)
X

i
2

,...,it2[k]

�
2

(i
2

) · · ·�t(it) · c1(j, i2, . . . , it)

=
X

i
1

,...,it2[k]

�
1

(i
1

) · · ·�t(it) · c1(i1, . . . , it)

= b
1

,

where the last equality follows by the assumption that h�
1

⌦ · · ·⌦ �t, xi = b.
For ` = 2, . . . , t, by Claim C.2, we have that

X

j2[k]

�`(j) · w`(j) = w`�1(r`�1) = b`,

where the last equality follows by the definition of b`.

Next assume that h�
1

⌦ · · · ⌦ �t, xi = b. We first claim that for any ` = 1, . . . , t � 1, w` is a
codeword of C. To see this, note that by the properties of tensor codes, for any fixed i`+1

, . . . , it 2 [k]
we have that c`(·, i`+1

, . . . it) = c(r
1

, . . . , r`�1, ·, , i`+1

, . . . it) is a codeword of C. Consequently,

w` =
X

i`+1

,...,it2[k]

�`+1

(i`+1

) · · ·�t(it) · c`(·, i`+1

, . . . it)

is a linear combination of codewords of C, and by linearity is a codeword of C. Moreover, by
Claim C.3, we have that

P

j2[k] �`(j) · w`(j) = b` for any ` = 1, . . . , t � 1. We conclude that both
verifier’s checks on Step 3b will pass with probability 1.

Finally, for ` = t, we certainly have that c` is a codeword of C, and by Claim C.3 we have that
X

j2[k]

�`(j) · c`(j) =
X

j2[k]

�`(j) · w`(j) = b`.

Consequently, the verifier’s checks on Step 4 will pass with probability 1 as well.
We conclude that all tests will pass with probability 1, and so the verifier accepts with probability

1.
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Robustness. Fix a deterministic prover strategy P⇤. Robustness relies on the following claims.

Claim C.4. Suppose that in some round ` 2 {1, . . . , t � 1},
P

j2[k] �`(j) · w`(j) 6= b`, and both
verifier’s checks on Step 3b pass. Then with probability at least � over the choice of r` it holds that
P

j2[k] �`+1

(j) · w`+1

(j) 6= b`+1

.

Proof. By our assumption that the verifier’s checks in Step 3b pass, we have that
P

j2[k] �`(j) ·
w̃`(j) = b`. By our assumption that

P

j2[k] �`(j) · w`(j) 6= b`, this implies in turn that w` 6= w̃`.
Moreover, we have that both w` and w̃` are codewords of C, and since C has relative distance
�, these two codewords di↵er on at least a �-fraction of the coordinates. But this means that
with probability at least � over the choice of r` it holds that w`(r`) 6= w̃`(r`). Recalling that on
the one hand w`(r`) =

P

j2[k] �`+1

(j) · w`+1

(j) by Claim C.2, and on the other hand w̃`(r`) =
b`+1

by Step 3c, we conclude that in this case
P

j2[k] �`+1

(j) · w`+1

(j) 6= b`+1

. So it holds that
P

j2[k] �`+1

(j) · w`+1

(j) 6= b`+1

with probability at least � over the choice of r`, as stated.

The following claim readily implies that the protocol is (⌦
�

�
t

�

, 1 � �t)-robust, recalling our
assumption that the elements of F are represented as codewords of a binary code of constant
relative distance (cf., Section 2.3.2).

Claim C.5. Suppose that h�
1

⌦ · · · ⌦ �t, xi 6= b. Then with probability at least �t�1, the verifier’s
view is �

2(t+1)

-far from any accepting view, where the distance is measured over F.

Proof. Let v := (b(n), w̃
1

, . . . , w̃t�1, ct) 2 F(t+1)n be the verifier’s view, where b(n) denotes n con-
catenated copies of b. We need to show that with probability at least �t�1, any view v0 so that
distF(v, v0) <

�
2(t+1)

is rejecting. First note that if v0 is an accepting view, then it must include n
repeated field elements as its a prefix, followed by t codewords of C. By the triangle inequality,
this implies in turn that there is at most one accepting view v0 so that distF(v, v0) < �

2(t+1)

, and

moreover, it is of the form v0 := (b(n), w0
1

, . . . , w0t�1, ct), where w0
1

, . . . , w0t�1 2 C. Thus, we only
need to show that this view v0 is rejecting with probability at least �t�1.

Next assume that v0 satisfies all verifier’s checks on Step 3b, we shall show that the verifier
will reject on Step 4 with probability at least �t�1. To see this, note that by our assumption that
h�

1

⌦ · · ·⌦ �t, xi 6= b, we have that

X

j2[k]

�
1

(j) · w
1

(j) =
X

j2[k]

�
1

(j)
X

i
2

,...,it2[k]

�
2

(i
2

) · · ·�t(it) · c1(j, i2, . . . , it)

=
X

i
1

,...,it2[k]

�
1

(i
1

) · · ·�t(it) · c1(i1, . . . , it)

6= b
1

.

Consequently, by Claim C.4, assuming that v0 satisfies all verifier’s checks on Step 3b, with
probability at least � over the choice of r

1

we have that
P

j2[k] �2

(j) · w
2

(j) 6= b
2

. If this is the
case, then with probability at least � over the choice of r

2

, we have that
P

j2[k] �3

(j) · w
3

(j) 6= b
3

.

Continuing this way, we have that
P

j2[k] �t(j) · wt(j) 6= bt with probability at least �t�1. But
recalling that wt = ct, this implies in turn that

P

j2[k] �t(j) · ct(j) 6= bt. We conclude that the

verifier will reject in Step 4 with probability at least �t�1.
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Verifier size. We start by computing the size of V
1

. For this, first note that the verifier first
queries n copies of b 2 F, then the entire prover’s messages w̃

1

, . . . , w̃t�1 2 Fn, and finally the entire
codeword ct 2 Fn. Hence the total query complexity is q := (t + 1)n log(|F|). Moreover, as the
transcript has length nt · log(|F|)+O(tn log(|F|)), there exists a circuit of size poly(log(n log(|F|)), t)
that given r

1

, . . . , rt�1 and i 2 [q], outputs the location of the i-th query. We conclude that V
1

is
a poly(log(n log(|F|)), t)-succinct circuit of size poly(n, log(|F|), t). Noting that T � n log(|F|), this
implies in turn that V

1

is a poly(log(T ), t)-succinct circuit of size poly(T, t).
Next we compute the size of V

2

. In each round, the verifier needs to check that w̃` is a codeword
of C, and that

P

j2[k] �`(j) · w̃`(j) = b`. For the first task, the verifier can simply encode the first
k entries of w̃` via the code C and check that the resulting codeword equals w̃`, which can be
done in time T . The second task requires applying ⇤` which takes time poly(T 0). Hence V

2

is a
poly(T, T 0, t)-uniform circuit of size poly(T, T 0, t).

Prover size. In each round, the prover needs to compute w`. For each j 2 [n], the coor-
dinate w`(j) can be computed by first applying the circuit ⇤t for kt�`�1 times (for each value of
i`+1

, . . . , it�1 2 [k]), then applying the circuit ⇤t�1 for kt�`�2 times (for each value of i`+1

, . . . , it�2 2
[k]) and so on, till finally applying the circuit ⇤`+1

for a single time. So if each circuit ⇤i has size
T 0, then for any ` 2 {1, . . . , t} and j 2 [n], w`(j) can be computed by a circuit of size at most
(1+k+ · · ·+kt�`�1) ·T 0 = O(kt�`�1 ·T 0)  O(kt�2 ·T 0). We conclude that the whole vector w` can
be computed using a circuit of size O(n · kt�2 · T 0). The prover also needs to generate the circuits
⇤
1

, . . . ,⇤t which takes time poly(T 0). We conclude that Step 3a can be preformed with prover size
O(t · n · kt�2 · T 0) + poly(T 0, t).

Additionally, in Step 3c the prover needs to compute the restriction of c` to the hyperplane
c`(r`, ·, . . . , ·). One can construct a circuit of size O(nt�`+1 · log(|F|)) that outputs the restriction
of c` 2 C⌦(t�`+1) to the hyperplane as follows. The circuit first generates the restriction of c` to all
n hyperplanes. Then, the circuit uses the linear-size multiplexer of Proposition D.1 to output the
specified hyperplane. Thus, the size of the circuit is at most O(nt�`+1 · log(|F|)). Consequently,
Step 3c can be performed with prover size at most O(t · nt · log(|F|))

We conclude that the overall prover size is O(t · nt�1 · (T + T 0)) + poly(T 0, t), where we used
that n log(|F|)  T and k  n.

Finally, we note that

• The query complexity is (t+1)n log(|F|) since the verifier first queries n copies of b 2 F, then
the entire prover’s messages w̃

1

, . . . , w̃t�1 2 Fn, and finally the entire codeword ct 2 Fn

• In each round the verifier sends a uniform random index in [n], and so the total randomness
complexity is (t� 1) log n.

• Clearly, there is a circuit of size O(nt · log(|F|)) that given the transcript, outputs n copies of
b, as well as the entire prover’s messages w̃

1

, . . . , w̃t�1. Moreover, by the discussion above (see
’Prover size’ paragraph) there is a circuit of size O(t · nt · log(|F|)) that given the transcript,
outputs ct. We conclude that the verifier is O(t · nt · log(|F|))-projectable.
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D Linear-size selection

We construct a linear-size circuit, that given a string x 2 ⌃n, over an alphabet ⌃, and an index
i 2 [n], outputs the symbol xi (in other words, a multiplexer).

Proposition D.1. There exists a size O(n · log(|⌃|)) circuit that given as input x 2 ⌃n and i 2 [n]
outputs xi.

A proof of Proposition D.1 appears in [Sav98, Lemma 2.5.5]. We give here a sketch for a simple
alternate construction.

Proof Sketch. The circuit follows a divide and conquer strategy. Assume for simplicity that n is
a power of 2. Let x 2 ⌃n and i 2 [n] be the inputs. Denote by � the MSB of i and by i0 the
remaining bits (i.e., i0 2 [n/2]). To select the i-th index of x, the circuit recursively selects the i0

index from both the lower and upper halves of x. Then, based on �, it decides which of the two
bits to output. Overall the circuit size is:

S(n) = 2S(n/2) +O(log(|⌃|)) = · · · = O(n · log(|⌃|)),

S(1) = O(log(|⌃|)).

E Linear-size evading set generator

In this section we prove Proposition 2.22, restated below.

Proposition 2.22. (Linear-size evading set generator) There exists d = O(log n), and an 0.49-
evading set generator S : {0, 1}d ! {0, 1}n that can be evaluated by a size O(n) Boolean circuit.

We begin with a couple of basic claims. The first claim gives a way to extend the output length
of the generator, while incurring some loss in ".

Claim E.1. If S : {0, 1}d ! {0, 1}n, S0 : {0, 1}d0 ! {0, 1}n0
are ", "0-evading set generators,

respectively, then S ⌦ S0 : {0, 1}d+d0 ! {0, 1}n·n0
is an (" · "0)-evading set generator, where

(S ⌦ S0)(x, x0) = S(x)⌦ S0(x0),

for x 2 {0, 1}d, x0 2 {0, 1}d0.

Proof. Let y be a non-zero vector in {0, 1}n·n0
. We use Y 2 {0, 1}n⇥n0

to denote the matrix obtained
by viewing y as an n⇥ n0 dimensional matrix in the natural way. Then,

⌦

(S ⌦ S0)(x, x0), y
↵ ⌦

S(x)⌦ S0(x0), y
↵

=
⌦

S(x), Y · S0(x0)
↵

.

Since Y is non-zero, it has some non-zero row Yi. Since S0 is "0-evading, with probability at
least "0 it holds that hYi, S0(x0)i 6= 0. Assuming that this event holds, Y ·S0(x0) is a non-zero vector
and so since S is "-evading, hS(x), Y · S0(x0)i 6= 0 with probability at least ". Overall we get that
h(S ⌦ S0)(x, x0), yi is non-zero with probability at least " · "0.
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In what follows, for an evading set generator S we let S⌦1 := S, and S⌦t := S⌦t�1 ⌦ S for any
t � 2. The next claim gives a way to amplify the value " of an evading set generator.

Claim E.2. If S : {0, 1}d ! {0, 1}n, S0 : {0, 1}s ! {0, 1}t, are ", "0-evading set generators,
respectively, then S � S0 : {0, 1}t·d+s ! {0, 1}n is an "0 · (1� (1� ")t)-evading set generator, where

(S � S0)(x
1

, . . . , xt, z) = (S0(z))
1

· S(x
1

) + (S0(z))
2

· S(x
2

) + · · ·+ (S0(z))t · S(xt),

for x
1

, . . . , xt 2 {0, 1}d, z 2 {0, 1}s, and where addition is performed over GF(2).
Proof. Let y be a non-zero vector in {0, 1}n. Then,

⌦

(S � S0)(x
1

, . . . , xt, z), y
↵

=
⌦

(S0(z))
1

· S(x
1

) + · · ·+ (S0(z))t · S(xt), y
↵

=
⌦

S0(z), (hS(x
1

), yi , . . . , hS(xt), yi)
↵

.

Since S is "-evading, with probability at least 1� (1� ")t it holds that hS(xi), yi 6= 0 for some
i 2 [t]. If this event holds, then (hS(x

1

), yi , . . . , hS(xt), yi) is a non-zero vector, and so since S0 is
"0 evading, we have that hS0(z), (hS(x

1

), yi , . . . , hS(xt), yi)i is non-zero with probability at least "0.
Overall we get that h(S � S0)(x

1

, . . . , xt, z), yi is non-zero with probability at least "0·(1�(1�")t).

Finally, we shall make use of the following simple code-based construction of evading sets.

Claim E.3 ([NN93]). Let C : {0, 1}k ! {0, 1}n be a linear code of relative distance �, and let
G 2 {0, 1}n⇥k be the generating matrix of C. Then S : [n] ! {0, 1}k is a �-evading set generator,
where S(i) is the i-th row of G.

Proof. Let y be a non-zero vector in {0, 1}k. Then, hS(i), yi = (G · y)i = (C(y))i. Since C has
relative distance �, with probability at least � over the choice of i 2 [n] we have that (C(y))i is
non-zero, and so hS(i), yi is non-zero with probability at least �.

We now proceed to the proof of Proposition 2.22.

Proof of Proposition 2.22. We first note that it su�ces to construct a linear-size "-evading set
generator S : {0, 1}d ! {0, 1}n with d = O(log n) for some constant " > 0. Indeed, given such
an evading set generator we can increase " to 0.49 by applying Claim E.2 with t = O(1/"), and
S0 : {0, 1}O(log t) ! {0, 1}t being the 0.499-evading set generator given by Claim E.3 (for any binary
linear code of polynomial length and relative distance 0.499).

Let {Ck}k2N be an explicit family of binary linear codes of polynomial length and constant
relative distance � > 0, where Ck has message length k. Assume furthermore that the generating
matrix Gk of Ck can be computed by an O(kc̄)-size circuit for an absolute constant c̄. Let C̃ := Cn1/c̄

(i.e., the code corresponding to message length n1/c̄), and note that the generating matrix G̃ for

C̃ can be computed by an O(n)-size circuit. Let S̃ : {0, 1}O(logn) ! {0, 1}n1/c̄
be the �-evading set

generator guaranteed by Claim E.3 for the code C̃, and let S = (S̃)⌦c̄.
By Claim E.1, we have that S : {0, 1}d ! {0, 1}n is an " := �c̄ > 0-evading set generator for

d = O(log n). Next we show that S can be evaluated by an O(n)-size circuit. To this end, observe
that by definition, S receives as input c̄ random row indices in the generating matrix G̃ of C̃, and
outputs the tensor product of the corresponding rows. The circuit computing S first computes G̃
which, as noted above, can be done with a size O(n). Given G̃, each of the c̄ rows can be selected
by the multiplexer of Proposition D.1 with O(n) size. Finally, since each of the c̄ rows has size
n1/c̄, their tensor product can clearly be computed with O(n) size. Overall S can be evaluated by
an O(n)-size circuit.
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