Electronic Colloquium on Computational Complexity, Report No. 181 (2021)

The KW Games as a Teaser

Oded Goldreich*

December 30, 2021

Abstract

We advocate using KW-games as a teaser (or “riddle”) for a complexity theoretic course. In
particular, stating the KW-game for a familiar NP-complete problem such as 3-Colorability and
asking to prove that it requires more than polylogarithmic communication poses a seemingly
tractable question that requires no background. The fact that this is actually a formidable
question puts much of complexity theory in the right perspective. Indeed, complexity theory
contains numerous extremely appealing problems that require little background (beyond basic
comfort with the notion of computation) and yet are formidable.

1 The riddle

After making sure that the audience is familiar with 3-Colorability, pose the following riddle re-
garding interaction between two parties, called Alice and Bob.

Alice gets a 3-colorable n-vertex (labeled) graph, and Bob gets an n-vertex graph that
is not 3-colorable, and they want to find a pair of vertices that are connected in one
graph but not in the other. (Such a pair definitely exists, since the graphs are different.)
How many bits do they need to exchange in order to achieve this goal?

In particular, do o(n) bit suffice? Can one prove that poly(logn) bits do not suffice?
How about 10 logy n?

Note that the trivial solution is for one party, say Alice, to send her graph to the other party.

Actually, a nice observation that may be a teaser for the study of NP is that the parties can do
better than sending the entire graph by using an NP-witness; that is, Alice can send a 3-coloring of
her graph to Bob, who reply with an edge that is monochromatic in his graph (i.e., its two endpoints
have that same color in his graph). Hence, O(n) bits rather than O(n?) bits of communication
suffice, where n is the number of vertices in the graph.

The foregoing task is a special case of a KW-game (introduced by Karchmer and Wigderson [4]).
Of course, proving that this KW-game requires more than a polylogarithmic amount communication
will imply that NP is not contained in N'C (where N'C is as in Definition 3.1). Even a 10log, n
lower bound would be astonishing. This is due to the correspondence (shown in Section 3) between
the amount of communication in this KW-game and the depth of Boolean circuits that decide
whether n-vertex graphs are 3-colorable.

*Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL. FEmail:
oded.goldreich@weizmann.ac.il.

ISSN 1433-8092

2 A wider context

We start with a general statement of the KW-game, which was introduced by Karchmer and
Wigderson [4].

Definition 2.1 (the KW-game): For any Boolean function f : {0,1}" — {0,1}, we consider the
communication between two parties, called Alice and Bob, each given an n-bit string. Alice is given
x € f~Y(1), Bob is given y € f~1(0), and their aim is to output an index i € [n] such that x; # y;.
Towards this end, they send messages to each other, by following predetermined strategies that
depend on f. We denote the above game by KWy.

We may require both parties to output the same index or just require one of them to do so, since
we do not really care about an additive logy n term (which suffices for communicating the index).
For sake of concreteness, we adopt the former convention.

The communication between the parties takes place in rounds, and it is predetermined which
party goes first, and who goes last (i.e., terminates the interaction). Suppose that Alice goes first,
and let A denote the strategy that she employs. Then, on input z, she will start by sending the
message a1 < A(x), and Bob, employing the strategy B (and having input y), will answer with
Bi1 < B(y;ai). In the j*" round Alice will send the message «; < A(x; B4, ..., Bj—1), and Bob
will answer with ; < B(y;a1,...,a;). At some predetermined round ¢, Bob’s will terminate,
and B(y; a1, ...,) is considered the output (rather than a message sent to Alice).! The question
we focus upon is how many bits are exchanged in the communication, on the worst-case (x,y) €
F711) x f71(0), when using the best possible pair of strategies? This number, denoted CC(KW),
is called the communication complexity of KW.

Example 2.2 (a trivial case): Consider the function f(z) = z1. Then, the index 1 is always a
correct output, since x1 = 1 and y; = 0 must hold for any x € f~*(1) andy € f~1(0). Hence, there
is no need for communication between the parties, and CC(KW¢) = 0.

Example 2.3 (easy cases): Consider the function f(z) = V) 2i- Then, an index i such that
x; = 1 is a valid output, because f(y) = 0 implies that y; = 0 must hold (i.e., f~1(0) = {0"}).
Hence, Alice knows such an index i and just sends it to Bob, which means that CC(KW¢) < [logyn].
The same holds for f(z) = /\ie[n} zi, but in this case Bob knows the answer and sends it to Alice.

It is quite easy to see that the upper bound is actually tight.? The same holds for any function f
that depends on all its bits; this is easy to see from the connection to circuit depth that will be
reviewed in Section 3.

Example 2.4 (another easy case): Consider the function f(z) = ;e 2, and observe that
f(Z2") = f(Zef(Z"). This observation suggest a binary search for the desired index. In the
first round, Alice partitions x into two equal parts ' and z”, and sends f(z') to Bob, who responds
with f(y'). If the two values are equal then the parties proceed with x” and y”; otherwise, they
proceed with &' and y'. Hence, we get CC(KWs) < 2- [logyn].

!By our convention, Alice must know this index already; this can be formalized by requiring that
A(z; By ...y Bi—1,A) = B(y; au, ..., az), where A denotes the empty string.

For f(z) = Vie(n) #i» consider the case that v € X ef {0°7110" : i€ [n]} and y = 0". Then, the communication
between Alice and Bob cannot be the same for two different x’s in X (since Bob’s outputs must be different in such

two cases).

The foregoing upper bound is also tight. This follows from combining the connection to circuit
depth with a lower bound on the circuit depth of parity.3

In contrast to the foregoing easy cases, it turns out that almost all functions f yield KW-games
of extremely high communication complexity; that is, CC(KW;) > n — O(logn). This fact can also
be proved by the connection to circuit depth, but it does not yield an “explicit” function, let alone
a function (specifying a set) in NP.

Indeed, at this point, we should clarify that n should be viewed as a parameter, and that we
are not talking about a single n and a single f : {0,1}" — {0,1}, but rather about a collection
of function {f, : {0,1}" — {0,1}},en. We consider the communication complexity of KWy, as a
function of n, but do not bound the computational resources of the parties (i.e., the time complexity
of the strategies that they employ).

3 The connection to circuit depth

KW-games were introduced by Karchmer and Wigderson [4] with the intention of providing a
technique for proving lower bounds on the depth of (bounded fan-in) Boolean circuits computing
various explicit functions. Pivotal to that technique is the connection (which they established)
between the communication complexity of KWy and the depth of Boolean circuits computing f.

At this point we need to introduce the model of Boolean circuits; here is a brief outline (see [2,
Sec. 1.2.4.1] for more details). Basically, a Boolean circuit is a directed acyclic graph (DAG) with
source vertices corresponding to variables (or their negations), and other vertices (including the
sinks) associated with Boolean gates. (Recall that source vertices have in-degree zero, whereas
sink vertices have out-degree zero.) We refer to the bounded fan-in model in which it is postulated
that each non-source vertex has in-degree two and is associated with either an AND-gate or an
OR-gate. (The vertices having directed edges to the vertex are called its children.) Assigning values
to the variables (and proceeding from the sources to the sink (i.e., from children to their parents)),
the circuit induces a computation in the natural manner, and its output is obtained at the sink
vertices. Here we use Boolean circuits with a single output bit (i.e., a single sink vertex). Two
central complexity classes are the following.

Definition 3.1 (the classes P /poly and NC):

e A Boolean predicate f: {0,1}* — {0,1} is in P/poly if there exists a polynomial p such that
for every n the restriction of f to inputs of length n can be computed by a circuit of size at
most p(n), where the size of a Boolean circuit is the number of vertices in it.

e A Boolean predicate f : {0,1}* — {0,1} is in NC if there exists a polynomial p such that
for every n the restriction of f to inputs of length n can be computed by a circuit of size at

3An alternative direct proof follows as a special case of [4, Thm. 3.1]. We consider the restriction of KW; to

pairs (z,y) that are at Hamming distance 1 of one another. This set of pairs equals P def {(z, 200" 110") 1z €
F71(1)&i € [n]}, and in this case the valid output is uniquely determined. Let @(z,y) be the sequence of messages
sent by Alice, in interaction on input pair (z,4). Then, for every fixed y, the @(y®0"~'10" " y)’s must be distinct,
since otherwise Bob’s answer is wrong on some input (i.e., its outputs should be distinct). Since these @’s may
not be a prefix of one another, for every y € f'(0), it follows that E;cp,[[@(y$0" 10", y)|] > log, n. Hence,
Eyerll@(z,y)|] > log,n, and similarly E(, ,ep[|B(z,y)|] > log, n, where 3(z,y) denotes the sequence of Bob’s
messages.

most p(n) and depth at most p(logn), where the depth of a Boolean circuit is the length of
the longest path from one of its sources to its sink.

Recall that Boolean predicates are associated with sets; that is, f is associated with the set f~1(1).
We stress that the sequence of circuits used in the definition is arbitrary; in contrast, “uniform”
complexity classes are defined by requiring that on input n the n*® circuit can be constructed within
certain resource bounds (e.g., in poly(n)-time, or even in O(logn)-space).

We shall focus on the depth of Boolean circuits, and will not confine ourself to any specific
depth. That is, for any f : {0,1}" — {0,1}, we denote by D(f) the minimal depth of a Boolean
circuit that computes f. Indeed, we move back from predicates defined over all bit strings to
ones defined only over bit strings of a specific length, denoted n. (But n should be viewed as a
parameter.)

The cleanest relation between CC(KWy) and D(f) is obtained by using an auxiliary convention
regarding the strategies of the two parties. The (subtle) issue at hand is determining when does the
current message end (i.e., when does a party complete the transmission of the current message).
This issue is resolved by requiring that, at any stage, the set of possible messages set at this
stage must be prefix-free (where a set of strings S is prefix-free if no string in S is a proper
prefix of another string in S).* Note that failure to adopt this convention allows for the possible
encoding of information in the length of messages (i.e., logy |a| bits can be encoded by splitting
the message o between two messages), which means that information is communicated without
being accounted for in the communication complexity. On the other hand, strategies that do not
satisfy this convention can be converted to ones that satisfy the convention, while increasing the
communication complexity by at most a logarithmic factor; for example, we may prepend each
message with a [logy m|-bit long header that indicates the length of the message, where m is
the communication complexity of the original protocol (i.e., pair of strategies). We mention that
one often presents the communication model by mandating messages of fixed length (e.g., one-bit
messages)®, but the equivalence to circuit-depth requires using an analogous convention for circuits
(i.e., the child of each vertex is associated with a gate type different than the one of its parent).

With these preliminaries in place, we shall prove that CC(KWy) = D(f). This result is due to
Karchmer and Wigderson [4], and was intended as a technique for proving lower bounds on D(f);
that is, it is suggested to first establish a lower bound on CC(KW), and then use D(f) > CC(KWy).
We shall also use CC(KWs) = D(f) in order to establish lower bounds on CC(KWy) by using lower
bounds on D(f) along with CC(KW;) > D(f). But let us first show that D(f) > CC(KWy), or rather
its contrapositive.

Theorem 3.2 (using circuits to obtain protocols): For every f : {0,1}" — {0,1}, it holds that
CC(KWs) < D(f).

In particular, in order to show that NP (resp., P) is not contained in NC, pick a set S in the former
class and prove that the restriction of its characteristic function to n-bit strings yield a KW-game
of communication complexity that is larger than poly(logn).

4Recall that A(x; b1, ..., Bj—1) denotes the message sent by Alice in the 7' round, when she holds input z and
received the messages f1,...,3;—1. Then, by the foregoing convention, for every j and fi,..., -1, the potential
message A(x; B, ..., Sj—1) must be a prefix of A(z’; f1,...,8j-1), and ditto for B(y;ai,...,a;) and B(y'; a1, ..., ;).

5This more restricted formalism can be enforced at the cost of using dummy messages in the opposite direction.

Proof: The parties, who know the Boolean circuit (computing f), essentially trace a path from
the sink vertex to some source vertex such that the corresponding sub-circuits (all along this
path) evaluate to different values at the two local inputs (i.e., x and y).® Specifically, the parties
proceed in iterations such that at the beginning of each iteration they “reside” in a vertex v such
that the sub-circuit rooted at v, denoted C,, evaluates to different outputs under z and y (i.e.,
Cy(x) # Cy(y)). Denoting the two children of v by wy and ws, the parties determine j € {1,2}
such that the sub-circuit rooted at w; yields different values (i.e., Cy,(x) # Cuw;(y)). This can be
done by exchanging the values Cy,, (z) and Cy, (y). Once the parties reach a source vertex, they
output the index of the variable with which this vertex is associated. Note that the communication
complexity of this protocol is 2 - D(f). A more economical implementation is detailed next.

Let C be a circuit of depth D(f) computing f, and let C, be the sub-circuit of C' rooted at v
(i.e., the sub-DAG that feeds into the vertex v). Denoting the sink vertex of C' by s, it holds that
Cs(x) =1 # Cs(y). After j rounds (where initially j = 0), the parties are at a vertex v, which is at
distance j from the vertex s, and it holds that C,(z) = 1 # C,(y). If v is a source vertex associated
with some variable (or its negation), then the parties output the index of that variable, denoted
i. (Note that x; = 1 # y; if the vertex is associated with the i*" variable, whereas z; = 0 # y;
if the vertex is associated with the negation of the i*! variable.) Otherwise (which mandates that
Jj < D(f)), we consider two cases.

1. Vertex v is associated with an AND-gate; that is, C, = Cy, A Cy,, where w; and ws are the
vertices that feed v (i.e., have an outgoing edge to v). In this case it holds that Cy,(z) =
Cu, () A Cyy(z) = 1, whereas Cyy(y) = Cuy (y) A Cuy(y) = 0. This means that there exists
k € {1,2} such that Cy,(y) = 0 whereas Cy,,(z) = 1 holds for both &' € {1,2}. Hence,
Cu, () =1 # Cy, (y). In this case, Bob just sends (the parity of) this k& to Alice, and the
two parties set v <— w;, for the next iteration.

2. Vertex v is associated with an OR-gate; that is, C, = Cy, V Cy,, where w; and wg are
the vertices that feed v. In this case it holds that Cy,(x) = Cy,(z) V Cy,(z) = 1, whereas
Cy(y) = Cuy (y) V Cuy(y) = 0. This means that there exists k € {1,2} such that Cy, (z) =1
whereas Cy,, (y) = 0 holds for both & € {1,2}. Hence, Alice just sends (the parity of) this &
to Bob, and the two parties set v - wy for the next iteration.

After at most D(f) iterations, the parties reach a source vertex v that satisfies Cy,(z) = 1 # Cy(y)
and output the index of the corresponding variable. (Note that not all source vertices are necessarily
at distance D(f) from the sink node; only the maximum distance equals D(f).)

We mention that both strategies rely on the circuit C'. Hence, if we only know that C exists,
then we can only infer that such strategies exist. However, if C' can be constructed within some
time (or space) bounds, then essentially the same bounds apply to the computational complexity
of the strategies. W

The following result asserts that the technique suggested for establishing depth lower bounds
is actually “complete” in the sense that if the lower bound is valid then it can be established by
considering the corresponding KW-game.

Theorem 3.3 (using protocols to obtain circuits): For every f : {0,1}" — {0,1}, it holds that
D(f) < CC(Kuy).

5By a sub-circuit corresponding to (resp., rooted at) a vertex v, we mean the circuit obtained by omitting all gates
(i.e., vertices) that do not have a directed path to vertex v.

As mentioned above, Theorem 3.3 can also be used for establishing communication complexity lower
bounds on KW-games of functions for which we know a depth lower bound. In particular, in order
to show that almost all functions f have communication complexity at least n — O(logn), show
that with high probability a random function f has no circuit of size 2" /O(n) (see [2, Exer. 4.1]),
which implies D(f) > n —logyn — O(1).

Proof: We consider a generalization of the claimed result, which refers to two disjoint subsets of
{0,1}", denoted X and Y. In the generalized KW-game, denoted KWy y, Alice gets € X and Bob
gets y € Y, and their task (as before) is to find i such that x; # y;. Indeed, KW is a special case
obtained by letting X = f~!(1) and Y = f~1(0). Our goal is to construct a circuit C' (of depth
CC(KWx,y)) such that C(z) =1 for every x € X and C(y) = 0 for every y € Y, where we don’t
care about the value of C' on inputs outside X UY’; that is, C solves the “promise problem” (see [2,
Sec. 1.2.2.3]) of distinguishing inputs in X from inputs in Y.

We decompose the protocol for KWy y according to the first bit (in the first message) that is
being sent. If Alice sends the first bit, then we consider the residual protocols for KWx,y and
KWx, vy, where X} is the subset of X that causes Alice to send b as the first bit.” Assuming that we
already have circuits Cj’s that distinguish inputs in X} from inputs in Y, for both b € {0,1}, we
construct the circuit C(z) = Cy(z) V C1(z). Note that if x € X, then x € X}, for some b € {0,1},
and C(x) = Co(z) vV Ci(x) = 1 follows, since Cyp(z) = 1 must hold (for every x € X;). On the other
hand, if y € Y, then C(y) = Co(y) vV C1(y) = 0, since Cp(y) = 0 and C}(y) = 0 must both hold.

An analogous argument holds for a first bit sent by Bob, but in this case we construct the circuit
C(z) = Co(2)ACi(z). (That is, Bob’s first bit partitions Y into (Yp, Y1), and C}, distinguishes inputs
in X from inputs in Y;.)® Hence, assuming we can construct (depth t) circuits for promise problems
that correspond to generalized KW-games of communication complexity ¢, we construct such (depth
t+1) circuits for communication complexity ¢+ 1. The basis of this induction corresponds to KW-
games of communication complexity 0. In this case, an index i such that z; # y; holds for every
(z,y) € X x Y is uniquely determined by (the current) X x Y. Furthermore, there exists a bit b
such that, for every € X (resp., y € Y), it holds that z; = b (resp., y; = 1 —b).? If b = 1, then
we use the (depth 0) circuit C'(z) = z;, and otherwise we use C(z) = —z;.

As hinted above, the actual proof is by induction. The induction hypothesis is that, for every
disjoint pair (X,Y") such that CC(KWx y) < t, we can construct circuits of depth ¢ that distinguish
inputs in X from inputs in Y. The basis of the induction corresponds to ¢ = 0, and (by our con-
vention) the circuits C(z) = z; and C'(z) = —z; have depth 0. The induction step uses the fact that
the protocols for the residual games (i.e., KWy, y, KWx, vy, KWx y,, and KW y,) have communication
complexity at most CC(KWx y) —1. Note that, analogously to Theorem 3.2, the computational com-
plexity of constructing the circuits is determined by the computational complexity of the strategies.

"We assume, without loss of generality, that both X, and X, are non-empty; otherwise, sending the first bit is
redundant.

8Indeed, Y} is the subset of Y that causes Bob to send b as the first bit. On the one hand, if y € Y, then y € Y},
for some b € {0,1}, and C(y) = Co(y) A C1(y) = 0 follows, since Cy(y) = 0 must hold. On the other hand, if z € X,
then C(z) = Co(z) A Ci(x) =1, since Co(z) =1 and C1(z) = 1 must both hold.

9 Assume, towards the contradiction, that ',z € X satisfy «} # «. Then, it cannot be that both x} # y; and
i # yi.

4 Variations

As noted above, KW-games and their relation to circuit depth were devised by Karchmer and
Wigderson [4] with the intension of providing a technique for proving lower bounds on the depth
of (Boolean) circuits (of bounded fan-in) that compute explicit functions (e.g., function in P).
This suggestion was materialized by them in the context of monotone circuits. Needless to say, a
corresponding notion of KW-games needs to be defined for that to work. A different incarnation
refers to “alternating circuits” (underlying the definition of the class AC). These two variants are
reviewed below.

4.1 Monotone circuits and monotone KW-games

A monotone circuit is one in which all variables appear non-negated. Needless to say, such circuits
can only compute monotone functions (i.e., functions f that satisfy f(x) > f(y) for every x >
)19 For a monotone function f, we let mD(f) denote the minimum depth of a monotone circuit
computing f. The monotone KW-game for f, denoted mKWy, is defined as the KW-game except that
the parties are required to output an index i such that x; = 1 # y; (whereas in Definition 2.1 it
was not required that z; = 1). A careful examination of the proofs of Theorems 3.2 and 3.3 shows
that they yield the following result.

Theorem 4.1 (monotone circuits vs monotone KW-games): For every f : {0,1}" — {0,1}, it
holds that CC(mKW¢) = mD(f).

(A variant of) Theorem 4.1 was used by Karchmer and Wigderson [4] in order to prove that deciding
connectivity of n-vertex graphs requires monotone circuits of depth Q(log2 n). They proved this by
showing that the monotone communication complexity of this problem is Q(log? n).

4.2 Alternating circuits and alternating KW-games

We say that a Boolean circuit of depth d has t alternations if on every path from the sink vertex to
some source vertex there are ¢ — 1 alternations between AND-gates and OR-gates, and vice versa.
Furthermore, on all paths, these alternations occur at the same distance from the sink vertex.!!
It is customary to collapse the gates that are of the same type, forming a circuit of depth ¢ with
unbounded fan-in AND-gates and OR-gates, but we shall not follow this convention here. Let us
denote by D;(f) the minimum depth of a Boolean circuit with at most ¢ alternation that computes
f. The corresponding notion of protocols for KWy refers to protocols in which Alice and Bob switch
turns (in communication) at most ¢ — 1. We denote the corresponding measure of communication
complexity by CCy. A careful examination of the proofs of Theorems 3.2 and 3.3 shows that they
yield the following result.

Theorem 4.2 (alternating circuits vs alternating protocols for KW-games): For every f : {0,1}" —
{0,1} and every t, it holds that CCi(KWs) = Dy(f).

OFor ¢ =21 -+ -z, and Y = Y1 Yn, it holds that = > y if there exists ¢ such that x; =1 > y; = 0 and z; > y; for
all j € [n].

"That is, there exist b € {0,1} and do Co<d <dy < <di ¥ dsuch that for every i € [t] all vertices that
are at distance d’ € [d;_1,d;) from the sink vertex are associated with an AND-gate if i = b (mod 2) and with an
OR-gate otherwise.

5 Digest

In retrospect, one may argue that the riddle I posed is misleading, but I guess all riddles are so.
It is natural for the audience to forget that x is confined to f~1(1) while y is confined to f~1(0),
and reach the conclusion that proving a linear lower bound on the communication complexity is
easy. Indeed, proving a linear lower bound when the confinement of x and y is waived is easy (see
below). But, as Examples 2.2-2.4 illustrate, the foregoing confinement is crucial and under it the
communication complexity can be much lower (depending, of course, on f).

Let us consider the “unconfined” problem. Here Alice and Bob get inputs x and y, and it is
only guaranteed that x # y. As before, they need to output an index i such that z; # y;. (Almost
equivalently, z = y may be allowed, in which case the output is required to be 0.) In this case a
lower bound of n can be proved by reduction from the communication complexity of computing
the (in)equality function (i.e., NEQ(z,y) = 1 if x # y and NEQ(z, z) = 0 otherwise).

The communication complexity of the (in)equality function is one of the first results presented
in any standard exposition of the area called communication complezity (see, e.g., [5, Exer. 1.21]
and [6, Thm. 1.16]).'2 It is well known that the communication complexity of (in)equality (of
n-bit long strings) is n + 1. A simple reduction shows that this implies that the communication
complexity of the (unconfined) problem of finding an index on which n-bit strings disagree is at
least n — 1. (Specifically, to compute NEQ(z,y), the parties invoke the protocol for the unconfined
problem, obtain the index 7, exchange the i bit of their inputs, and output 1 if and only if z; # v;.)

6 Notes

With the exception of Theorem 4.2, the contents of this memo originates from the work of Karchmer
and Wigderson [4]. T heard Theorem 4.2 from Or Meir.

Communication complexity is a sub-area of complexity theory. It has its own merits as well as
applications to other sub-areas of complexity theory and theory of computation at large. Two excel-
lent books that survey the area were written some 25 years apart; the earlier one is by Kushilevitz
and Nisan [5], and a recent one is by Rao and Yehudayoff [6].

Circuit complexity is another sub-area of complexity theory. Studies in this area tend to consider
non-uniform families of circuits, as we have done in this memo, while believing that the uniformity
condition adds a layer of complication that is better avoided in the initial studies. A very brief
survey of this area appears in [2, Apdx. B.2|, and selected results are presented in [1, Chap. 13].
For a book on the area, see [3].

References

[1] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Cambridge
University Press, 2009.

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

[3] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and
Combinatorics 27, Springer, 2012.

12Quch expositions typically consider the equality function EQ = 1 — NEQ.

[4] Mauricio Karchmer and Avi Wigderson. Monotone Circuits for Connectivity Require
Super-Logarithmic Depth. SIAM J. Discret. Math., Vol. 3 (2), pages 255-265, 1990.
Preiminiary version in 20th STOC, pages 539-550, 1988.

[5] Eyal Kushilevitz and Noam Nisan. Communication Complezxity. Cambridge University
Press, 1996.

[6] Anup Rao and Amir Yehudayoff. Communication Complezity. Cambridge University
Press, 2020.

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

