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Abstract

The propositional proof system Sherali-Adams (SA) has polynomial-size proofs of the
pigeonhole principle (PHP). Similarly, the Nullstellensatz (NS) proof system has polynomial
size proofs of the bijective (i.e. both functional and onto) pigeonhole principle (ofPHP).
We characterize the strength of these algebraic proof systems in terms of Boolean proof
systems the following way. We show that SA (resp. NS over Z) with unary coefficients lies
strictly between tree-like resolution and tree-like depth-1 Frege + PHP (resp. ofPHP). We
introduce weighted versions of PHP and ofPHP, resp. wtPHP and of-wtPHP and we show that
SA (resp. NS over Z) lies strictly between resolution and tree-like depth-1 Frege + wtPHP
(resp. of-wtPHP). We also show analogue results for “depth-d” versions of SA and NS.

1 Introduction
The Nullstellensatz proof system (NS) was introduced in [BIKPP94] due to a connection with a
big (and yet open) problem in proof complexity: the problem of proving super-polynomial size
lower bunds for bounded-depth Frege systems with modular gates. NS received some attention
during the late ’90s [BCEIP98; BP96; Bus98] (among others), then, the interest gradually
shifted towards stronger algebraic proof systems such as Polynomial Calculus. More recently,
Nullstellensatz has gained some renewed interest mostly due to the fact that lower bounds in this
system can be lifted to lower bounds for stronger proof systems via composition with gadgets
[DMNR21; PR17; PR18; RLNS21; RPRC16].

Sherali-Adams (SA) was introduced in [SA90] as a method to give a hierarchy of linear
programming relaxations of any 0-1 integer program. The interest in studying this system relies
primarily in its connections to approximation algorithms for important NP-hard optimisation
problems, see for instance the excellent survey [FKP19].

Sherali-Adams, as a propositional proof system, also showed-up naturally in the context of
proof systems for MaxSAT extending MaxSAT resolution [BBIMM18; BL20; FMSV20; LR20a;
LR20b], and in the context of enriching the DAG structure of resolution refutations, as in
circular resolution [AL19].

In this paper we want to compare the strength of these semi-algebraic proof systems with
the standard restrictions of Frege systems, like resolution and bounded-depth Frege. That is,
we look at such propositional proof systems SA (NS) from the point of view of the questions:

“What axioms do we need to add to constant-depth Frege to p-simulate SA (NS)?”
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“What is the minimal depth of constant-depth Frege (plus the extra axioms) needed
to p-simulate SA (NS)?”

The axioms we want to add should be “natural”, in the sense that they should have some
clear combinatorial meaning. For instance, constant-depth Frege with counting MOD2 axioms
(Definition 4.9) p-simulates NS with coefficients over Z2 [IS06]. For the formal definition of
propositional proof system and p-simulation see the beginning of Section 2.

We use the pigeonhole principle (PHP, see Definition 4.1), which informally says that n+ 1
pigeons cannot all fly to n pigeonholes without any two of them sharing a pigeonhole. We
use the bijective (i.e. onto-functional) pigeonhole principle (ofPHP, see Definition 4.1). We
also use a generalization of PHP, the weighted pigeonhole principle (wtPHP, see Definition 5.1).
The wtPHP informally captures a similar combinatorial principle, where the pigeons have some
“mass” and the holes have some “capacity”. The mass of the ith pigeon is the same as the
capacity of the ith hole, but there is an extra pigeon with positive mass. Now, each pigeon can
fly once with the whole mass or twice with half mass. Each hole can accept either 1 pigeon
filling the full capacity or 2 pigeons filling half capacity each. This principle is provable in SA
but it seems to require binary coefficients (Theorem 5.4).

In this paper we answer the questions above for NS and SA with coefficients over Z (Definition
2.7 and Definition 2.8). A bit unexpectedly, their strength seems to depend on whether the
coefficients of the polynomials are encoded in unary or binary. We summarise visually our
results although the formal statements of the cited theorems are slightly stronger than what is
shown in the figures.

As you can see in Fig. 1.1, tree-like depth-1 Frege + wtPHP is strictly stronger than SA
and SA is strictly stronger than resolution. On the other hand tree-like depth-1 Frege + PHP is
strictly stronger than unary SA and unary SA is is strictly stronger than tree-like resolution. We
also show that SA and unary SA are p-equivalent to other Boolean proof systems, in particular
weighted Resolution (see Definition 3.1).

As you can see in Fig. 1.2, tree-like depth-1 Frege + of-wtPHP is stronger than NS. On
the other hand tree-like depth-1 Frege + ofPHP is stronger than unary NS and unary NS is is
strictly stronger than tree-like resolution. We also show that NS and unary NS are p-equivalent
to other Boolean proof systems.

SA is p-equivalent to weighted Resolution and we can generalize weighted Resolution to
weighted depth-d Frege (see Definition 3.1). Informally, one could think of weighted depth-d
Frege as SA over depth-d formulas. Fig. 1.3 shows the generalisation of the results in Fig. 1.1
from “depth-0” to “depth-d”, i.e. the results for “SA over depth-d formulas” aka weighted
depth-d Frege.

Another contribution is Theorem 3.9, a way of looking at semi-algebraic proof systems such
as NS/SA as weighted resolution, i.e. a proof systems handling weighted clauses where we have
two distinct soundness conditions, one characterizing NS and the other characterizing SA. The
interest in this result is that it allows to think at derivations of semi-algebraic proof systems
in a natural and visual way. It is a natural language in which to describe the p-simulations in
Fig. 1.1 and 1.2. For instance, using this characterization of NS/SA, it is very clear why some
p-simulations will only work for SA/NS with coefficients in unary. Moreover, for instance, with
the language of weighted resolution, it is very easy to show that tree-like depth-1 Frege + MOD2
p-simulates NSZ2 . Thus, partially, reproving [IS06, Theorem 4.4], but with a tighter bound on
the depth of formulas used in the p-simulation.

From the p-simulations we prove (and known results from the literature) it is also immediate
to infer that MOD2 does not have polyonmial-size refutations in unary SA over depth-d formulas,
at least for d = o( log logn

log log logn) (Corollary 4.10).
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Figure 1.1: The p-simulations for SA. The notation P → Q means that the proof system P p-simulates
the proof system Q. The p-simulations are annotated with “ 6=” if the p-simulation is known to be strict, or with
“=?” if it is an open question if the p-simulation is strict or not. An arrow → means the p-simulation is trivial.
The color • is used to visually differentiate the results for the proof systems with unary weights/coefficients. The
new proof systems introduced in this paper are highlighted .
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Figure 1.2: The p-simulations for NS.

1.1 Organisation of the paper

Section 2 contains all the basic definitions we need: the notion of depth-d Frege, depth-d
Frege + ϕ, circular depth-d Frege and the semi-algebraic proof systems NS and SA.

Section 3 introduces the proof system weighted depth-d Frege with two soundness conditions,
proves some basic facts about them, and the connection to semi-algebraic proof systems.

Section 4 contains the definition of the pigeonhole principle PHP and the simulation of unary
SA (resp. unary NS) by depth-1 Frege + PHP (resp. depth-1 Frege + ofPHP).

Section 5, builds on the previous section and introduces a weighted version of the pigeonhole
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Figure 1.3: The p-simulations for weighted depth-d Frege.

principle wtPHP. we show how to refute it in SA and we show how to simulate SA by depth-1
Frege + wtPHP.

Appendix A recalls a way to refute PHP in SA.
Appendix B contains the proof of a technical lemma needed to show that the weighted

pigeonhole principle is provable in SA.

2 Preliminaries
For n ∈ N let [n] = {1, . . . , n}.

A propositional proof system is as polynomial time function P : {0, 1}∗ → {0, 1}∗ whose
range is exactly the set TAUT of propositional tautologies in the DeMorgan language [CR79].

The notion we use to compare the strength of two propositional proof systems is the notion of
p-simulation. Given two propositional proof systems P,Q we say that P p-simulates Q if there
exist a polynomial time function f : {0, 1}∗ → {0, 1}∗ such that for all strings x, Q(x) = P (f(x)).
If P p-simulates Q and Q p-simulates P we say that P and Q are p-equivalent. If P p-simulates
Q and they are not p-equivalent we say that the p-simulation is strict.

2.1 Constant depth Frege systems

We follow the notation and definitions of [BB19] with minor changes. Propositional formulas
are constructed from literals, i.e. Boolean variables xi or negated variables ¬xi, and unbounded
fan-in conjunctions ∧ and disjunctions ∨.

All formulas are either literals, “∨-formulas” or “∧-formulas”. They are defined inductively:

• If Φ is a finite set of literals and ∨-formulas, then ∧Φ is a ∧-formula.

• If Φ is a finite set of literals and ∧-formulas, then ∨Φ is a ∨-formula.
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Figure 2.1: Inference rules of depth-d Frege. The cedents Γ,Γ′,Φ,∨Φ,∧Φ, ϕ,¬ϕ all are Θd-
cedents.

The point of this definition is that an ∧-formula cannot be the argument of an ∧, hence
intuitively, adjacent ∧ (resp. ∨) must be collapsed.
Definition 2.1 (depth-d formulas). Let d ∈ N. The classes of formulas Θd over a set of variables
X are defined inductively as follows:

1. ϕ ∈ Θ0 iff ϕ is a literal, i.e. either x or the negation ¬x of some variable x ∈ X.

2. ϕ ∈ Θd+1 iff ϕ ∈ Θd or ϕ = ∧Ψ or ϕ = ∨Ψ where Ψ is a finite set of resp. ∨-formulas or∧-formulas in Θd.
We refer to ϕ ∈ Θd as ϕ being of depth d.

For ϕ ∈ Θd we denote by ¬ϕ the formula in Θd obtained from ϕ interchanging ∨ and ∧ and
interchanging variables and their negations.

A Θd-cedent is a finite multiset of formulas of depth d. A Θ0-cedent is a clause. The
intended meaning of a cedent Γ is ∨Γ. A CNF formula F is a set of clauses. The intended
meaning of F is the conjunction of its members. We sometimes abuse notation by writing a
cedent Γ ∪ Φ simply as Γ,Φ.
Definition 2.2 (depth-d Frege). Let F be a set Θd-cedents. A depth-d Frege derivation of a
Θd-cedent Γ is a tree T in which each node is labeled with a Θd-cedent, the root has label Γ,
each leaf has label either the empty cedent or a cedent from F , and for each node in the tree
the label it gets is a consequence of the labels of its parents via one of the inference rules in Fig.
2.1. The size of T is the number of symbols of distinct cedents in the derivation. If we count
the number of symbols in all occurrences of cedents we use the adjective tree-like. A depth-d
Frege refutation of F is a derivation of the empty cedent.

The definition of depth-d Frege in [BB19] is essentially the one given above with the con-
traction rule given implicitly, since cedents are sets. For us it is more convenient to have it
given explicitly. The propositional proof system resolution is depth-0 Frege. In this system the∧ and ∨ rules of Fig. 2.1 cannot be applied.
Theorem 2.3 ([BB19, Theorem 4]1). Let d ∈ N, n ∈ N and ϕn a collection of Θd-cedents.
Then ϕn has a depth-d Frege refutation of size polynomial in n if and only if ϕn has a tree-like
depth-(d+ 1) Frege refutation of size polynomial in n.

1The same result was proved in [BB05, Theorem 10] but one of the constructions there was incorrect and
[BB19] corrects them.
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Definition 2.4 (depth-(d, k) Frege and Res(k)). Let d, k ∈ N. The system depth-(d, k) Frege
is the restriction of depth-d Frege where the ∧-introduction rule from Fig. 2.1 is limited to
sets of Θd−1 formulas Φ of size at most k. The system depth-(1, k) Frege is also called Res(k).

Given ϕ = (ϕn)n∈N a family of unsatisfiable cedents, for instance when ϕn is the pigeonhole
principle PHPn+1

n (see Section 4 for the definition of PHPn+1
n ), the notion of depth-d Frege + ϕ

has been considered for instance in [Ajt90; BP96] and in the context of bounded arithmetic it
is also very common (see for instance [Kra19]). Informally, this is the system depth-d Frege
where we would be allowed to infer substitution instances of the tautology ¬ϕn for free.

Here we want to limit the number of times we are allowed to use the tautology ¬ϕn and we
want to limit a bit depth-d Frege as-well. That is, we are interested in defining depth-(d, k)
Frege + ϕ. Informally, depth-(d, k) Frege + ϕ is depth-(d, k) Frege where we have the extra
power to reduce the formula we want to refute to a substitution instance of some ϕn, and ϕn
is given for free in the sense that we already know it is unsatisfiable. In some sense, in the
system depth-(d, k) Frege + ϕ we only allow the formulas ϕn to be used only once. Formally,
the definition is the following.

Definition 2.5 (depth-(d, k) Frege + ϕ). Let ϕ = (ϕn)n∈N, where ϕn is a set of s many Θd-
cedents in n variables x1, . . . , xn. A refutation of a set of Θd-cedents F in depth-(d, k) Frege+ϕ
is a set of depth-(d, k) Frege derivations Γ1, . . . ,Γs of G1, . . . , Gs such that: either (1) G1 = ∅,
i.e. Γ1 is refutation of F and s = 1, or (2) there is an n ∈ N such that the set of cedents
{G1, . . . , Gs} is a substitution instance of ϕn.2 The height of the refutation is the maximum
height of Γ1, . . . ,Γs. The size of the refutation is the sum of the sizes of Γ1, . . . ,Γs.

2.2 Circular depth-d Frege

Atserias and Lauria [AL19] introduced the notion of circular proofs as a way to enrich the DAG
structure of Frege derivations while preserving the soundness of the proof system. This notion
is not strictly needed to understand the main results in this paper. The reading of this section
can be deferred until the theorems/corollaries about circular Resolution and circular depth-d
Frege. The formal definition of circular proofs in the context of depth-d Frege is the following.

Definition 2.6 (circular depth-d Frege). Given the inference rules of depth-d Frege (that is the
ones in Fig. 2.1), a set of depth-d formulas H and a depth-d formula C, a circular depth-d Frege
proof of F from H is a bipartite direct graph G = (V,E) with V a multiset with bipartition
(I,F), where I is a multiset of inference rules of depth-d Frege and F is a multiset of formulas.
We have edges (I, F ) ∈ E if F is a conclusion of the rule I and (F, I) ∈ E if F is a premise
of the rule I. Let N in(F ) = { I ∈ I : (I, F ) ∈ E } and Nout(F ) = { I ∈ I : (F, I) ∈ E }. We
require that there exists a function f : I → N+ such that∑

I∈N in(C)
f(I)−

∑
I∈Nout(C)

f(I) > 0

and if for some formula F ∈ F ∑
I∈N in(F )

f(I)−
∑

I∈Nout(F )
f(I) < 0

then F ∈ H. If all the formulas in F have depth at most d then we say the derivation is in
circular depth-d Frege. The size of a circular depth-d Frege derivation is the sum of all the
length of all the formulas in F .

2The cedent {G1, . . . , Gs} is a substitution instance of ϕn if there are depth-d formulas ψ1, . . . , ψn s.t. once
we substitute in ϕn all the xis with the ψis we get exactly {G1, . . . , Gs}.
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Notice that the function f is not part of the circular proof, instead, given a circular proof
to check it’s correctness we need to calculate f and we can do it in polynomial time via linear
programming (see [AL19] for more details).

In [AL19] the authors proved that circular depth-0 Frege, i.e. circular Resolution, is polyno-
mially equivalent to Sherali-Adams (see Definition 2.8) while adding the power of “circularity”
to Frege or TC0-Frege does not make the systems stronger. Bonet and Levy [BL20] proved that
circular resolution is also polynomially equivalent to MaxSAT resolution with Extension (see
Definition 3.1).

A natural question is then to ask what is the strength of circular depth-d Frege. It is
clearly stronger than depth-d Frege, but how much stronger? Theorem 5.11 is an answer to this
question.

2.3 Algebraic and semi-algebraic proof systems

In this section we define formally the proof systems Nullstellensatz [BIKPP94] and Sherali-
Adams [SA90].

Definition 2.7 (Nullstellensatz). Given a ring R, variables x1, . . . , xn, x̄1, . . . , x̄n and polyno-
mials p0, . . . , p` ∈ R[x1, . . . , xn, x̄1, . . . , x̄n], a Nullstellensatz over R (NSR) proof of the equality
p0 = 0 from the equalities p1 = 0, . . . , p` = 0 is a polynomial identity of the form

p0 =
∑̀
i=1

qipi +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) , (1)

where qi, rj , r′j are polynomials in R[x1, . . . , xn, x̄1, . . . , x̄n]. A refutation of p1 = 0, . . . , p` = 0
is a derivation of the equality c = 0 where c ∈ R r {0}. The size of the polynomial identity in
(1) is the length of a bit-string representing the polynomials qi, rj , r′j , including the coefficients.
The degree of the polynomial identity in (1) is the maximum degree of the polynomials qi, rj , r′j .

Definition 2.8 (Sherali-Adams). Given a ordered ring (R,<), variables x1, . . . , xn, x̄1, . . . , x̄n
and polynomials p0, . . . , p` ∈ R[x1, . . . , xn, x̄1, . . . , x̄n], a Sherali-Adams over R (SAR) proof of
p0 > 0 from p1 > 0, . . . , p` > 0 is a polynomial identity of the form

p0 =
∑̀
i=1

qipi +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) + q0 , (2)

where rj , r′j are polynomials in R[x1, . . . , xn, x̄1, . . . , x̄n] and the qis are polynomials with positive
coefficients. A refutation of p1 > 0, . . . , p` > 0 is a derivation of c > 0 where c ∈ R and
negative. The size of the polynomial identity in (2) is the length of a bit-string representing the
polynomials qi, rj , r′j , including the coefficients. The degree of the polynomial identity in (2) is
the maximum degree of the polynomials qi, rj , r′j .

If in the definitions above we restrict the polynomials r′j to be identically 0, the resulting
systems are known to be exponentially weaker [RLNS21], with respect to size. The degree of
the two versions of the systems is obviously the same.

In this paper we consider only Nullstellenstatz and Sherali-Adams over the ring Z, resp.
NSZ and SAZ, hence from now we refer to them simply as NS and SA omitting the reference to
Z. When we restrict all the polynomials appearing in NS and SA derivations to have coefficients
±1, we refer to those system as unary NS and unary SA.
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Theorem 2.9 (Normal form for NS/SA proofs). Given a (unary) NS derivation π of p0 as in
eq. (1), there is a (unary) NS derivation of p0 of the form

p0 =
∑̀
i=1

cpi +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′′j (xj + x̄j − 1)−
∑̀
i=1

q′ipi (3)

with size only polynomially larger than π, a constant c > 0 and all polynomials q′i with positive
coefficients. Similarly, given a (unary) SA derivation π of p0 as in eq. (2), there is a (unary) SA
derivation of p0 of the form

p0 =
∑̀
i=1

cpi +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′′j (xj + x̄j − 1) + q0 −
∑̀
i=1

q′ipi (4)

with size only polynomially larger than π, a constant c > 0 and all polynomials q′i with positive
coefficients.

Proof. Let axjm be a monomial in qi. If a < 0 consider this monomial to be part of q′i. If a > 0
then we can rewrite amxjpi as

amxjpi = ampi(xj + x̄j − 1)− amx̄jpi + ampi ,

where the polynomial ampi is going to be part of r′′j and the polynomial amx̄j is going to be
part of q′i. We then rewrite ampi in an analogous way, variable by variable. We repeat this
for all the monomials in all the qis. This way the sum ∑

i∈[`] qipi is rewritten as ∑i∈[m] cipi for
some constants ci > 0 at the cost of adding monomials to the r′js and q′is. Let c = maxi∈[`] ci.
We can then further rewrite ∑i∈[`] cipi as∑

i∈[`]
cipi =

∑
i∈[`]

cpi −
∑
i∈[`]

(c− ci)pi .

To conclude we just consider all monomials c− ci as part of q′i. �

Notice that, if p1, . . . , p` are polynomials with negative coefficients, then the Normal form
for SA in the theorem above gets further simplified to

p0 =
m∑
i=1

cpi +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′′j (xj + x̄j − 1) + q′0 , (5)

for some polynomial q′0 with positive coefficients, since all monomials in−∑`
i=1 q

′
ipi have positive

coefficients.

This is exactly what happens for the natural encoding of sets of clauses in the context of
(semi)algebraic proof systems. A clause C = {xi,¬xj : i ∈ I, j ∈ J } is represented as the
monomial −∏i∈I x̄i

∏
j∈J xj , intended to be = 0 in NS, and > 0 in SA. In the algebraic

context, we follow the common convention that a variable being 0 means it is true, while in the
propositional contenxt it is the opposite, 0 means false and 1 means true. A set of clauses is
then represented by the set of the (in)equalities corresponding to its clauses.

Under this natural representation it is well-known that SA p-simulates resolution (see for
instance [AO18, Lemma 3.5]) and NS with unary coefficients p-simulates tree-like resolution.
Moreover, both p-simulations are known to be strict.
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3 Weighted depth-d Frege and (semi)-algebraic proof systems
A weighted Θd-cedent over Z is a pair [Γ;w] where Γ is a Θd-cedent and w ∈ Z. Given two
weighted cedents [Γ;w] and [∆; z] we say that [Γ;w] is a weakening of [∆; z] if Γ ⊇ ∆.

In this paper we only consider proof systems handling weighted depth-d formulas over Z,
although the definitions can be extended easily to weighted polynomials, linear inequalities etc.

[Γ, ϕ, ϕ;w]
[Γ, ϕ;w] (contraction)

[Γ,¬ϕ;w] [Γ, ϕ;w]
[Γ;w] (symmetric cut)

[Γ, ϕ;w] for ϕ ∈ Φ
[Γ,∧Φ;w] (

∧
-introduction)

[Γ;u], [Γ;w]
[Γ;u+ w] (fold)

[Γ;u], [Γ;−u] (removal)

[ϕ,¬ϕ;w] (excluded middle)

[Γ;w]
[Γ,¬ϕ;w] [Γ, ϕ;w] (split)

[Γ,Φ;w]
[Γ,∨Φ;w] (

∨
-introduction)

[Γ,∨Φ;w]
[Γ,Φ;w] (

∨
-elimination)

[Γ;u+ w]
[Γ;u], [Γ;w] (unfold)

[Γ;u], [Γ;−u] (introduction)

Figure 3.1: Inference rules of weighted depth-d Frege. The cedents Γ,Φ,∨Φ,∧Φ, ϕ,¬ϕ all
are Θd-cedents, u,w ∈ Z.

Definition 3.1 (weighted depth-d Frege). A weighted depth-d Frege derivation (over Z) of a
Θd-cedent Γ from a set of Θd-cedents F = {Γ1, . . . ,Γm} is a sequence L1, . . . ,Ls of multisets of
weighted Θd-cedents over Z such that:

1. L1 = {[Γ1;w], . . . [Γm;w]} where w ∈ N,

2. [Γ; z] ∈ Ls for some z > 0, and either

(2.1) all cedents in Ls r {[Γ; z]} have positive weights (soundness-SA), or
(2.2) all cedents in Ls r {[Γ; z]} have positive weights and, moreover, they are also weak-

enings of cedents in F (soundness-NS).

3. each Li is obtained from Li−1 applying one of the inference rules in Fig. 3.1 as substitution
rules, i.e. removing the premises from Li−1 and adding the conclusions.

A weighted depth-d Frege refutation of F is a weighted depth-d Frege derivation of the empty
cedent. The size of a weighted depth-d Frege derivation L1, . . . ,Ls is the total number of
occurrences of symbols in L1, . . . ,Ls including the weights. Unless explicitly stated, the weights
are assumed to be encoded in binary. If the weights are restricted to−1, 1 then we call the system
unary weighted depth-d Frege. In the system with weights in unary there are no applications
of the fold/unfold rules and the weighted cedents in L1 are given as a multiset, instead of
[Γi;w] we have {[Γi; 1], . . . , [Γi; 1]︸ ︷︷ ︸

w

}.
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We refer to weighted depth-d Frege with the soundness-SA condition, simply as weighted
depth-d Frege. Weighted Resolution is weighted depth-0 Frege. This system comes essentially
from [BL20; LR20b].

Remark 3.2. The rules in Fig. 3.1 are redundant, e.g. the split rule can be simulated using
the others. Moreover, only one among fold/unfold is enough.

We don’t use a minimal set of rules just to highlight the natural symmetry among the rules
and to have more freedom to write down weighted resolution proofs.
Remark 3.3. Restricting weighted depth-d Frege to have negative weights only in the introduc-
tion/removal rules results in a system p-equivalent to weighted depth-d Frege. For instance,
a way to p-simulate the rule [Γ,ϕ;−1] [Γ,¬ϕ;−1]

[Γ;−1] is the following:

[Γ, ϕ;−1] [Γ,¬ϕ;−1]
[Γ, ϕ;−1] [Γ,¬ϕ;−1] [Γ; 1] [Γ;−1]

[Γ, ϕ;−1] [Γ,¬ϕ;−1] [Γ, ϕ; 1] [Γ,¬ϕ; 1] [Γ;−1]
[Γ,¬ϕ;−1] [Γ,¬ϕ; 1] [Γ;−1]

[Γ;−1] .

Moreover, weighted depth-d Frege is also p-equivalent to weighted depth-d Frege with all weights
restricted to be powers of 2.
Remark 3.4. In the definition of weighted depth-d Frege (with the soundness-NS/SA condition)
the first property required is that L1 = {[Γ1;w], . . . [Γm;w]} where w ∈ N. We could have
required instead
(1) L1 = {[Γ1;w1], . . . [Γm;wm]} where w1, . . . , wm ∈ N or even
(2) L1 = {[∆1;w1], . . . [∆m;wm]} with w1, . . . , wm ∈ N and for all i ∈ [m], [∆i;wi] weakening of
[Γi;wi].

All the three possibilities would have resulted in p-equivalent systems. The reason is that, in
the first case, we can always take w = maxi∈[m]wi. In the second case, given cedents Γi,∆′i, it
is immediate to see that it is possible to infer in depth-d Frege from the weighted cedent [Γi;wi]
a set S of weighted cedents containing [Γi,∆′i;wi]. Moreover, all cedents in S are weakenings of
[Γi;wi]. This proof is just a sequence of |∆′i| applications of the split rule.

Lemma 3.5. For every d ∈ N, the proof system weighted depth-d Frege is sound. The same is
true for weighted depth-d Frege with the soundness-NS condition.

Proof. Given a truth assignment α : {x1, . . . , xn} → {>,⊥} and a multiset of weighted cedents
L, let

W (L, α) =
∑

[Γ;w]∈L
α(Γ)=⊥

w .

Suppose F has a weighted depth-d Frege refutation (L1, . . . ,Ls). If F was satisfiable, then there
would exist an assignment α satisfying all cedents in F , hence W (L1, α) = 0. Since [⊥;w] ∈ Ls
for some w > 0 and Ls satisfies soundness-NS or soundness-SA, then

W (Ls, α) > 0 .

On the other hand, the inference rules of Fig. 3.1 guarantee that in the derivation (L1, . . . ,Ls)

W (L1, α) = W (L2, α) = · · · = W (Ls, α) = 0 .

This means that F must be unsatisfiable. �
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We now prove the p-equivalences and some of the p-simulations summarized in Fig. 1.1, 1.2
and 1.3.

Proposition 3.6. For all d ∈ N, weighted depth-d Frege is p-equivalent to circular depth-d
Frege.

Proof. (sketch) Lemma 4 and 5 in [BL20] prove, in our language, that weighted Resolution is
p-equivalent to circular Resolution. Their argument consider clauses, i.e. Θ0-cedents, but it is
immediate to adapt the argument to Θd-cedents. �

Theorem 3.7. For every d ∈ N, weighted depth-d Frege p-simulates depth-d Frege.

Proof. (sketch) Derivations in depth-d Frege are special cases of circular depth-d Frege proofs,
hence, by Proposition 3.6, weighted depth-d Frege p-simulates depth-d Frege.

Alternatively, and more directly, it is easy to see that, given a depth-d Frege refutation π
it is possible to assign weights to Θd-cedents to respect the rules of weighted depth-d Frege.
Basically the idea is to set [∅; 1] and then proceed bottom-up in π setting the weight of any
Θd-cedent Γ looking at all the times it is used and summing the weights of those weighted
cedents. �

Theorem 3.8. For all d ∈ N, unary weighted depth-d Frege with the soundness-NS condition
p-simulates tree-like depth-d Frege.

This result is basically a generalisation of the proof that NS p-simulates tree-like Resolution.

Proof. (sketch) Consider a depth-d Frege derivation of Γ from a set of cedents ∆1, . . .∆`. This
proof is a tree T with cedents labeling its nodes. First, transform T “pushing all the weakenings
towards the leaves”. That is, whenever in a node v it is applied a weakening Γ

Γ,Γ′ , instead
of doing this we add Γ′ to all cedents in the subtree of T rooted in v. After doing this for
all weakenings in T we obtain a depth-d Frege derivation of Γ from ∆1, . . .∆` with size just
polynomially bigger than T and such that all weakening rules are just applied immediately
on ∆1, . . .∆` to get ∆′1, . . .∆′`. Let T ′ be the tree corresponding to this proof pruned of the
leaves ∆1, . . .∆`, i.e. the leaves of T ′ have labels ∆′1, . . .∆′`.

Now, give weight 1 to each cedent in T ′ and take an ordering on the vertices of T ′ respecting
the depth, first the leaves, then nodes at depth 1, then depth 2 etc. Let L1 be the multiset
{[∆′1; 1], . . . , [∆′`; 1]}. Then L2 is the multiset obtained removing the premises of the first node
v1 of depth 1 in T ′ and adding the label of it. Then form L2 remove the premises of the second
node v2 in T ′ with depth 1 and add the label of v2 to form L3. Proceeding in this orderly way,
from nodes f low depth to nodes of higher depth in T ′ we can process all the nodes of T ′, finishing
in Ls which will contain the weighted cedent labeling the root of T ′. By Remark 3.4 this is
p-equivalent to a refutation in weighted depth-d Frege with the soundness-NS condition. �

One of the reasons we introduced weighted depth-d Frege is that, varying the soundness
condition, it gives a characterisation of distinct (semi)-algebraic proof systems in a more logic
language.

Theorem 3.9. 1. (Unary) SA is p-equivalent to (unary) weighted Resolution.

2. (Unary) NS is p-equivalent to (unary) weighted Resolution with the soundness-NS con-
dition.
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The part of this theorem for SA is already known: weighted Resolution is p-equivalent to
circular Resolution [BL20] and circular Resolution is p-equivalent to SA [AL19]. As far as we
know, there is no natural restriction of circular Resolution characterising unary SA nor (unary)
NS. Here we present a proof covering all cases at the same time, modulo minor changes. Hence,
in particular, we re-prove the result for SA in a more direct way.3

Proof. Given a clause C = {xi : i ∈ I }∪{¬xj : j ∈ J } letM(C) be the monomial∏i∈I x̄i
∏
j∈J xj

and viceversa given a monomial m = ∏
i∈I x̄i

∏
j∈J xj let C(m) be the clause {xi : i ∈ I } ∪

{¬xj : j ∈ J }.
The argument is essentially the same for all the cases. Let’s see it first for NS. Suppose

we have some set of clauses F = {C1, . . . , C`}. By Theorem 2.9 a NS refutation of F can be
supposed to have the form

− z −
`′∑
i=1

wimiM(Ci) = −
∑̀
i=1

wM(Ci) +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) , (6)

for some z > 0, w,wi > 0, polynomials rj , r′j , monomialsmi and `′ > `. If j > `, Cj is one among
the clasues C1, . . . , C`. Recall that −M(Ci) is how the clause Ci is encoded in (semi)-algebraic
proof systems.

The idea now is to interpret each monomial in eq. (6) as a weighted clause: a monomial
−wm is interpreted as the weighted clause [C(m);w].

Given two clauses C,D we slightly abuse notation and denote C ∪D simply as C,D. For
instance, −z is the weighted clause [∅; z] and −wimiM(Ci) is [Ci, C(mi);wi]. We can then start
constructing a weighted resolution refutation (L1, . . . ,Ls) of F .

The multiset L1 is { [Ci;w] : i = 1, . . . , ` } and corresponds to −∑`
i=1wM(Ci). Suppose we

already constructed Lj , then pick any binomial of the form wm(x2
j − xj), not already picked

from the sum ∑n
j=1 rj(x2

j − xj), and let

Lj+1 = Lj ∪ {[C(m),¬xj ,¬xj ;−w], [C(m),¬xj ;w]} . (7)

We need to justify how to obtain Li+1 from Li applying the rules of Fig. 3.1. This is immediate.
We interleave intermediate multisets between Li and Li+1

Lj
Lj , [C(m),¬xj ,¬xj ;w], [C(m),¬xj ,¬xj ;−w]
Lj , [C(m),¬xj ;w], [C(m),¬xj ,¬xj ;−w] .

Continue this way till all the binomials from ∑n
j=1 rj(x2

j − xj) are picked. Then continue with
the trinomials from ∑n

j=1 r
′
j(xj + x̄j − 1). Suppose we constructed Lk, then pick any trinomial

of the form wm(xj + x̄j − 1), not already picked from the sum ∑n
j=1 r

′
j(xj + x̄j − 1), and let

Lk+1 = Lk ∪ {[C(m),¬xj ;−w], [C(m), xj ;−w], [C(m);w]} . (8)

Again, we need to justify how to obtain Lk+1 from Lk applying the rules of Fig. 3.1. Again,
this is immediate. We interleave intermediate multisets between Lk and Lk+1

Lk
Lk, [C(m), xj ;w], [C(m), xj ;−w]

Lk, [C(m), xj ;w], [C(m), xj ;−w], [C(m),¬xj ;w], [C(m),¬xj ;−w]
Lk, [C(m);w], [C(m), xj ;−w], [C(m),¬xj ;−w] .

3If circular Resolution was defined with the function witnessing the balances given explicitly as part of the
proof, then the p-equivalence from [BL20] would have worked also in the unary case.
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After we finish this process let Ls′ the multiset we got. We exhausted all the terms from the
RHS of eq. (6) and all the monomials, except the ones in the LHS of eq. (6), must cancel. This
means that from Ls′ with some applications of the fold/unfold/removal rules we eventually
get to

Ls = { [∅; z], [Ci, C(m′i);w′i] : i = 1, . . . , ` } .
This multiset satisfies the soundness-NS condition and hence concludes the proof that weighted
Resolution with the soundness-NS condition p-simulates NS.

For the case of SA the argument is completely analogous. A SA refutation of F has the
form

− z −
∑
i∈J

w′im
′
i = −

∑̀
i=1

wM(Ci) +
n∑
j=1

rj(x2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) , (9)

for some z > 0, wi, w′i > 0, polynomials rj , r′j and monomials mi. With the same construction
as above we arrive to a

Ls = { [∅; z], [C(m′i);w′i] : i ∈ I } ,
and this multiset clearly satisfies the condition soundness-SA.

The other direction of the p-simulations is easier. Given a weighted Resolution refutation
(L1, . . . , Ls) we want to construct an algebraic expression having the form of a NS/SA refu-
tation. Let S1 = ∑

[C;w]∈L1 −wM(C). By assumption all the clauses C in S1 are clauses from
F . Then suppose we constructed an algebraic expression Si = −∑[C;w]∈Li wM(C) having the
form of a NS/SA derivation. We want then to construct Si+1.

If from Li to Li+1 is applied a symmetric cut rule [C,x;w] [C,¬x;w]
[C;w] , then add to the sum

the terms
−wM(C) + wM(C, x) + wM(C,¬x) = wM(C)(x+ x̄− 1) .

If from Li to Li+1 is applied a split rule [C;w]
[C,x;w] [C,¬x;w] , then add to Si the terms

wM(C)− wM(C, x)− wM(C,¬x) = −wM(C)(x+ x̄− 1) .

If from Li to Li+1 is applied a contraction rule [C,¬x,¬x;w]
[C,¬x;w] then add to Si the terms

−wM(C,¬x) + wM(C,¬x,¬x) = wM(C)(x2 − x) .

If from Li to Li+1 is applied a contraction rule [C,x,x;w]
[C,x;w] then add to Si the terms

−wM(C, x) + wM(C, x, x) = wM(C)(x̄2 − x̄)
= wM(C)(x2 − x) + (wM(C)x̄− wM(C)x)(x̄+ x− 1) .

If from Li to Li+1 is applied a excluded middle rule [x,¬x;w] then add to Si the terms

−wM(x,¬x) = −wxx̄
= −x(x+ x̄− 1)− x(x2 − x) .

If Li to Li+1 is applied some of the other rules let Si+1 = Si.4
It is immediate to see that Si+1 constructed following the procedures above has the property

that Si+1 = −∑[C;w]∈Li+1 wM(C).
Then, the soundness conditions will guarantee that the final sum Ss has the form required

to be a NS/SA refutation respectively. �

4The other rules are not important since, in NS/SA, the cancellations between monomials are done implicitly
by the underlying algebraic structure. That is, for instance, there is no need of a rule saying that m+m−2m = 0.
Instead in weighted Resolution, all the cancellations between weighted clauses are done explicitly by applications
of some rules.
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4 The pigeonhole principle and unary NS/SA
In this section we prove the p-simulations relative to the unary parts of Fig. 1.1, 1.2 and 1.3.

Definition 4.1 (pigeonhole principle). Let m,n ∈ N with m > n and let pi,j be Boolean
variables with i ∈ [m] and j ∈ [n]. The pigeonhole principle is the set of clauses

PHPmn = { {pi,1, . . . , pi,n} : i ∈ [m] } ∪ { {¬pi,j ,¬pi′,j} : i, i′ ∈ [m] distinct, j ∈ [n] } .

The onto-functional pigeonhole principle ofPHPmn is the formula PHPmn together with the set of
cedents

{ {¬pi,j ,¬pi,j′} : i ∈ [m] j, j′ ∈ [n] distinct } (functionality axioms) (10)

and the set
{ { pi,j : i ∈ [m] } : j ∈ [n] } (onto axioms) . (11)

Given a bipartite graph G = (P ∪ H,E) with |P | = m and |H| = n, the graph pigeonhole
principle PHPmn (G) is the formula PHPmn restricted by a partial assignment mapping pi,j = ⊥ for
all (i, j) 6∈ E, i.e. we remove the literal pi,j from every clause of PHPmn where it appears and
remove all clauses of PHPmn containing ¬pi,j . The onto-functional graph pigeonhole principle
ofPHPmn (G) is defined in the same way.

It is well-known that PHPn+1
n has polynomial size unary SA refutations and ofPHPn+1

n has
polynomial size unary NS refutations. To refute PHPn+1

n in SA first derive∑
j∈[n+1]

∑
i∈[n]

pi,j − (n+ 1) > 0 (12)

n−
∑
i∈[n]

∑
j∈[n+1]

pi,j > 0 . (13)

Then, sum the two inequalities to get −1 > 0. For completeness, a proof of (12) and (13) is
in Appendix A. The same argument can be easily adapted to show the results for unary NS.
Moreover, for a bipartite graph G with maximum degree d, PHPn+1

n (G) has degree-d unary SA
refutations and ofPHPn+1

n (G) has degree-d unary NS refutations.

We now show some sort of converse of the previous results: depth-1 Frege + PHPn+1
n (G)

p-simulates unary SA and depth-1 Frege + ofPHPmn (G) p-simulates unary NS.

Theorem 4.2. For every d, tree-like Res(d)+PHPn+1
n (G) p-simulates degree-d unary SA, where

G is restricted to bipartite graphs of degree at most 3 and the height of the tree-like Res(d) +
PHPn+1

n (G) derivations is 5.

Notice that tree-like Res(n) is tree-like depth-1 Frege. The PHPn+1
n (G) in this result could

be replaced by the propositional formulas HEX, SINK and 2SINK from [Bus06]. This would
result in an analogous p-simulation. The proof of this result is loosely inspired by the proof of
[BBIMM18, Theorem 4].

Proof. We use the characterisation of SA given by Theorem 3.9. Let (L1, . . . ,Ls) be a weighted
resolution refutation of some set of clauses F = {C1, . . . , Cm}. Since the weights are in
unary, all the weights in π are just ±1. In this proof there will be no application of the
fold/unfold rules. Without loss of generality we can assume that all the weights in the
contraction/symm.cut/split/excl. middle rules are +1 (see Remark 3.3).
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Let Ls+1 = {[∅; 1]} and let P be the multiset given by the disjoint union of the multisets
L1, . . . ,Ls+1 and H be the multiset given by the disjoint union of the multisets L1, . . . ,Ls. In
particular, |P | = |H| + 1. The multiset P will represent the pigeons and H the holes.

Now for each α ∈ P and each β ∈ H we want to define pα,β as conjunctions of at most d
literals (d-terms) such that we have small tree-like Res(d) derivations of the cedents

{ pα,β : β ∈ H } for all α ∈ P

and
{¬pα,β,¬pα′,β} for all β ∈ H and distinct α, α′ ∈ P .

We also want that pα,β 6= ⊥ for at most 3 values of β and pα,β 6= ⊥ for at most 3 values of
α.

To define pα,β we introduce some terminology. Given α ∈ P , let α = [Cα;wα] and let iα be
the unique index such that α belong to Liα ; similarly for β ∈ H. Given α, β as above we say
that β is a contraction/symm.cut/split-premise of α if iα = iβ + 1 and between the layers
Liβ and Liα there is applied the contraction/symm.cut/split rule of weighted resolution
with β one of the premises and α one of the conclusions. There are no applications of the
fold/unfold rules so the only rule having two premises is the symmetric cut. We say that
α is a copy of β if iα = iβ +1 and between the layers Liα and Liβ the inference rule applied does
not involve α and β. In particular, [∅; 1] in Ls+1 is a copy of some element in Ls. Moreover, if
α is a copy of β then Cα = Cβ and wα = wβ. If wα = 1 we say that α is a positive-copy of β, if
wα = −1 we say that α is a negative-copy of β. Finally, we say that α, β are appearing (resp.
disappearing) siblings if iα = iβ and α and β are the result of an introduction rule on the
layer Liα (resp. α and β are used as premises of a removal rule on the layer Liα+1).

Informally, we want the formulas pα,β to express that if the clause Cα is true then α flies to
itself (as a hole). That is, we set pα,α to be the formula ∨Cα.

If Cα is false and its weight is +1, it flies to the false premise Cβ used to derive it or to its
appearing sibling. The way to say that Cα and Cβ are false is to use the formula ¬∨Cα∧¬∨Cβ,
but this is redundant since it is always the case that either Cα contains Cβ or the opposite.

If Cα is an initial clause α always flies to itself. So we set pα,α = x ∨ ¬x.
If Cα is false and the weight of Cα is −1 then α flies to its copy Cβ in the direction of the

proof, or to its disappearing sibling. The way to define pα,β is analogous as before.
Formally,

pα,β =



x ∨ ¬x if α = β and α ∈ L1∨
Cα if α = β and α /∈ L1

¬
∨
Cβ if



α is a positive-copy of β
β is a symm.cut-premise of α
β is a contraction-premise of α
α, β are appearing siblings and wα = 1
β is a negative-copy of α
α, β are disappearing siblings and wα = −1

¬
∨
Cα if β is a split-premise of α

⊥ otherwise .

The totality axioms { pα,β : β ∈ H } are easily derivable in tree-like Res(d) from the initial
clauses C1, . . . , Cm. We need to check several cases.
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• If Cα is one of the initial clauses C1, . . . , Cm or an instance of the excluded middle
rule, in both cases { pα,β : β ∈ H } = {pα,α}. The cedent {pα,α} can be obtained by the
excluded middle rule and ∨-introduction rule.

• If Cα is the result of the application of a contraction rule on Cβ

{ pα,γ : γ ∈ H } = {
∨
Cα,¬

∨
Cβ} .

Let ∨Cα = ∨
C ′α ∨ ` and

∨
Cβ = ∨

C ′α ∨ ` ∨ ` for some clause C ′α and some literal `. But
then it is immediate to derive this in Res(d) in height 4:
∨
C ′α ∨ ` ∨ `, ¬(∨C ′α ∨ ` ∨ `)
C ′α, `, `, ¬(∨C ′α ∨ ` ∨ `)
C ′α, `, ¬(∨C ′α ∨ ` ∨ `)∨
C ′α ∨ `, ¬(∨C ′α ∨ ` ∨ `)

• If Cα is the result of the application of a split rule on Cβ or α is a copy of β or α, β are
appearing/disappearing siblings then

{ pα,γ : γ ∈ H } = {
∨
Cα, ¬

∨
Cα}

is an instance of the excluded middle rule of Res(d), the height to derive it is 1.

• The only remaining case is when α is the conclusion of a symmetric cut with premises
β, β′. Then, ∨Cβ = ∨

Cα ∨ x and ∨Cβ′ = ∨
Cα ∨ ¬x, and the totality axiom for the

pigeon α is
{ pα,γ : γ ∈ H } = {

∨
Cα, ¬

∨
Cα ∧ ¬x, ¬

∨
Cα ∧ x} .

This formula can be derived first deriving by excluded middle

{
∨
Cα ∨ x, ¬

∨
Cα ∧ ¬x} and {

∨
Cα ∨ ¬x, ¬

∨
Cα ∧ x}

then by symmetric cut on weakenings of the previous two cedents we derive

{
∨
Cα, ¬

∨
Cα ∧ ¬x, ¬

∨
Cα ∧ x}

This derivation has height 5.

The injectivity axioms {¬pα,β, ¬pα′,β} are easily derivable from the initial clauses C1, . . . , Cm.
As before we have several cases.

• Case α′ = β

– If β /∈ L1, then {¬pα,β, ¬pβ,β} is either {¬∨Cβ,∨Cβ} or {¬∨Cβ, ∨Cα} if β is a
split-premise of α. In both cases these are easy tautologies derivable in small height.

– If β ∈ L1, then {¬pα,β, ¬pβ,β} is either {
∨
Cβ, ¬(x ∨ ¬x)} or {∨Cα, ¬(x ∨ ¬x)} if

β is a split-premise of α. In both cases they are derivable from Cβ, a clause that is
a weakening of an initial clause from C1, . . . , Cm, in small height.

• Case α, α′ 6= β.

– If wβ = −1, then there are no axioms of the form {¬pα,β, ¬pα′,β} since in β can only
fly two pigeons, β itself and the copy of β from the previous layer (or its disappearing
sibling).
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– If wβ = 1, having the variables pα,β and pα′,β distinct from ⊥means in particular that
iα = iα′ = iβ+1 and β is a premise of both α and α′. That is, at level Liβ we applied
a split rule on β obtaining α, α′. I.e. ∨Cα = ∨

Cβ ∨ x and ∨Cα′ = ∨
Cβ ∨ ¬x for

some variable x. Hence

{¬pα,β, ¬pα′,β} = {¬(¬
∨
Cβ ∧ ¬x), ¬(¬

∨
Cβ ∧ x)} = {

∨
Cβ ∨ x,

∨
Cβ ∨ ¬x} ,

which is a tautology derivable in small height in Res(d) being a weakening of x∨¬x.

We showed that from the clauses C1, . . . , Cm in tree-like Res(d) it is possible to derive all the
clauses of the formula PHPn+1

n (pα,β), which is a PHPn+1
n (G) for some graph G of degree at most

3. This concludes the refutation in tree-like Res(d) + PHPn+1
n (G). It is a refutation of height

5. �

Remark 4.3. The construction of the formulas pα,β in the previous proof satisfies clearly the
functionality axioms of ofPHPn+1

n (G) but it does not satisfy the onto axioms. The reason is
that the last layer Ls might contain arbitrary weighted clauses [Cβ;wβ]. If they are true they
are mapped to themselves. If they are false they are mapped to some hole in Ls−1. We have
no guarantees that the holes in Ls receive some pigeon, but if Ls satisfies the soundness-NS
condition we can adapt the definition of pα,β in the proof of Theorem 4.2 to satisfy the onto
axioms of the pigeonhole principle.

Theorem 4.4. For every d, tree-like Res(d) + ofPHPmn (G) p-simulates degree-d unary NS,
where G is restricted to bipartite graphs of degree at most 3 and the height of the tree-like
Res(d) + ofPHPmn (G) derivations is 5.

Proof. (sketch) We use the characterisation of unary NS given by Theorem 3.9 and we reason
basically as in Theorem 4.2. We know that the problematic clauses in Ls are weakenings of
initial axioms or several copies of [∅; 1]. We can define the formula pα,β as in Theorem 4.2. Now
the onto axioms for the holes in Ls become weakenings of inital clauses except for the holes
corresponding to the copies of [∅; 1]. Those, as in the case of SA are copied in the layer Ls+1.
With the exception that for the argument in SA we only needed to copy one of the [∅; 1], here
we need to copy all of them. Hence instead of PHPn+1

n (G) we use ofPHPmn (G). �

The proofs of Theorem 4.2 and 4.4 will work, almost without changes, if instead of clauses
we have Θd-cedents.

Theorem 4.5. For every d ∈ N, tree-like depth-(d+ 1) Frege + PHPn+1
n (G) p-simulates unary

weighted depth-d Frege, where G is restricted to bipartite graphs of degree at most 3 and the
height of the tree-like depth-(d+ 1) Frege + PHPn+1

n (G) derivations is 5.

Theorem 4.6. For every d ∈ N, tree-like depth-(d+ 1) Frege+ ofPHPmn (G) p-simulates unary
weighted depth-d Frege and the condition soundness-NS, where G is restricted to bipartite
graphs of degree at most 3 and the height of the tree-like depth-(d + 1) Frege + ofPHPmn (G)
derivations is 5.

A consequence of the previous theorems is the following corollary.

Corollary 4.7. For every d ∈ N, tree-like depth-(d + 1) Frege + PHPn+1
n (G) p-simulates tree-

like depth-d Frege, where G is restricted to bipartite graphs of degree 3 and the height of the
tree-like depth-(d+ 1) Frege + PHPn+1

n (G) derivations is 5.

A priori, it is not even immediately clear why tree-like depth-(d + 1) Frege + PHPn+1
n (G)

should be complete, when we restrict the height of the derivations to 5. But it is, and it is
strong enough to p-simulate tree-like depth-d Frege.
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Proof. It follows from Theorem 4.5, Theorem 2.3 and Theorem 3.7. �

We conclude this section with a couple of separations/lower-bounds.

Proposition 4.8. For every d = o( log logn
log log logn), depth-d Frege does not p-simulate unary

weighted depth-d Frege.

Proof. Any refutation of PHPn+1
n in depth-d Frege must have size at least 2n(1/6)d (see for instance

[UF96]). PHPn+1
n has polynomial size unary SA refutations and hence it has polynomial size

refutations in unary weighted depth-d Frege . �

Definition 4.9 (MOD2 principle). Given n ∈ N, the MOD2-principle is the set of cedents in
the variable xi,j for i 6= j ∈ S

MODn2 ={ {xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,2n+1} : i ∈ [2n+ 1] }
∪ { {¬xi,j ,¬xi′,j} : i, i′ ∈ [2n+ 1] distinct, j ∈ [2n+ 1] } .

Corollary 4.10. Given n ∈ N and d = o( log logn
log log logn), MODn2 has not polynomial-size unary

weighted depth-d Frege refutations.

Proof. Any refutation of MODn2 in depth-d Frege + PHP must require size at least exp(nΩ(1/d4d))
[BP96, Theorem 4]. By Theorem 4.5 depth-(d + 1) Frege + PHP p-simulates unary weighted
depth-d Frege the lower bound follows: MODn2 requires unary weighted depth-d Frege refutations
of size exp(nΩ(1/(d+1)4d)). �

Definition 4.11 (bit-pigeonhole principle). Let n = 2k. The formula bit- PHPn has variables
bi` for each i ∈ [n+ 1] and ` ∈ [k]. The variables bi1, . . . , bik represent the binary expansion of
a hole, the hole i is mapped to. Then bit- PHPn only need to enforce injectivity:

bit- PHPn = { {b1−h1
i1 , . . . , b1−hkik , b1−h1

i′1 , . . . , b1−hki′k } : i 6= i′ ∈ [n+ 1], h ∈ [n] h = (h1, . . . , hk)2] } ,

where (h1, . . . , hk)2 is the binary expansion of the hole h and bhjij = bij if hj = 1 and bhjij = ¬bij
if hj = 0.

Corollary 4.12. SA does not p-simulate tree-like depth-1 Frege + PHPn+1
n .

Proof. bit- PHPn does not have polynomial-size SA refutations [DGM20]. To prove bit- PHPn
in tree-like depth-1 Frege + PHPn+1

n we use the substitution pij = bj1i1 ∧ · · · ∧ b
jk
ik where j =

(j1, . . . , jk)2. For i 6= i′ ∈ [n + 1] and j ∈ [n], {¬pij ,¬pi′j} is immediately derivable from the
axioms of bit- PHPn by ∨-introduction. For every i ∈ [n + 1], the cedent {pi1, . . . , pin} is
tautological and it has k = logn variables. By exluded middle, derive all the {pij ,¬pij} and
then with weakening and 2k applications of symm. cut it is easy to obtain {pi1, . . . , pin}. �

5 The weighted pigeonhole principle and SA
In this section we generalise the constructions given for unary SA/NS and unary weighted
depth-d Frege to systems with binary weights/coefficients. We prove all remaining p-simulations
in Fig. 1.1, 1.2 and 1.3.

It is not clear at all how to adapt Theorem 4.5 to show that tree-like depth-1 Frege +
PHPn+1

n (G) p-simulates SA. For this reason we introduce a new combinatorial principle, a
weighted version of PHP.
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The weighted pigeonhole principle maps n2 + 1 into n2. First we partition both sets of
pigeons and holes into n pieces of equal size, except for the first pigeon-part that also contains
the pigeon n2 + 1. Formally, given n ∈ N and ` ∈ [n], let W1 = {n2 + 1} ∪ [n] and, for
` ∈ {2, . . . , n} let W` = [(`− 1)n, `n] = {(`− 1)n+ 1, . . . , `n}. Let W0 = Wn+1 = ∅.

Definition 5.1 (weighted pigeonhole principle, wtPHP). The weighted pigeonhole principle has
variables xij for each i ∈ [n2 + 1] and each j ∈ [n2]. The formula wtPHPn

2+1
n2 has the following

clauses. For every ` ∈ [n], every pigeon p ∈W` it has clauses

{¬xpj} for all j /∈W`−1 ∪W` ∪W`+1

{xpj : j ∈ [n2] }
{¬xpj , xpj′ : j′ ∈W`−1 r {j} } for all j ∈W`−1, j 6= n2 + 1

{¬xpj1 , ¬xpj2 , ¬xpj3} for all distinct j1, j2, j3 ∈W`−1, j1, j2, j3 6= n2 + 1 (?)

and every hole h ∈W` (h 6= n2 + 1) it has clauses

{¬xih, ¬xi′h} for all distinct i ∈W` ∪W`+1 and i′ ∈W`−1 ∪W` ∪W`+1

{¬xi1h, ¬xi2h, ¬xi3h} for all distinct i1, i2, i3 ∈W`−1 .

The intended meaning of the variable xij for i ∈ W` depends on j: for j ∈ W` ∪W`+1, xij = 1
means “the pigeon i flies to j with weight 2`”; for j ∈ W`−1, xij = 1 means “i flies to j
with weight 2`−1” and i needs to fly somewhere else in W`−1 with the same weight too. If
j /∈W`−1 ∪W` ∪W`+1 then xij = 0.
Similar to the case of PHP, given a bipartite graph G = (P ∪ H,E) with |P | = n2 + 1 and
|H| = n2, the graph weighted pigeonhole principle wt PHPn

2+1
n2 (G) is the formula wtPHPn

2+1
n2 �α

where α is a partial restriction mapping xi,j = ⊥ for all (i, j) 6∈ E.

Remark 5.2. The clauses in (?) are not needed to have an unsatisfiable formula, but, they are
useful to have a short proof of this principle in SA. Indeed Lemma B.1 uses them. When
considering wt PHPn

2+1
n2 (G), the graphs G we need to consider turn out to always have at most

2 edges of the form (p, j), (p, j′) with p ∈ W` and j, j′ ∈ W`−1. Hence, for those graphs G, the
axioms in (?) will always be satisfied: one of the variables xpj1 , xpj2 , xpj3 is always set to ⊥.

Remark 5.3. We defined wt PHPn
2+1
n2 (G) to have W1, . . . ,Wn of some particular form, in partic-

ular all of size n and W1 to be of size n+ 1. It is easy to see that allowing W1,W2, . . . ,Wn to
be disjoint and of size at most n (resp. at most n + 1 for W1) does not make a more general
principle. Basically we could just add “padding” to all Wjs till they have the same size and
change G to a graph that forces the new vertices in the padding to be mapped to themselves.
We call the wt PHPn

2+1
n2 (G) where the sets W1, . . . ,Wn are disjoint and of size at most n (resp.

at most n+ 1 for W1) the wt PHPn
2+1
n2 (G) without padding.

Perhaps, it is not immediately clear that the formula wtPHPn
2+1
n2 is unsatisfiable. Informally,

a way to see this is to notice that for every pigeon p (say p ∈ W`) the axioms of wtPHPn
2+1
n2

can be interpreted to imply the weight flying away from p is at least 2` and, for every hole h
(say h ∈ W` ∩ [n2]), the weight it can accomodate is at most 2`. So the holes can, in total,
accomodate a total weight of at most ∑`∈[n] n2` which is strictly smaller than the total weight
of the pigeons flying, that is 2 +∑

`∈[n] n2`.

Theorem 5.4. The formula wtPHPn
2+1
n2 has polynomial-size SA refutations. Moreover, for

every bipartite graph G = (P ∪̇H,E) with |P | = n2 + 1, |H| = n2 and degree d, the formula
wt PHPn

2+1
n2 (G) has SA-refutations of degree d.
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Proof. (sketch) First observe that the axioms imply, for every i ∈ [n2 + 1] with i ∈ W`, the
inequality

2
∑

j∈W`∪W`+1
j 6=n2+1

xij +
∑

j∈W`−1
j 6=n2+1

xij − 2 > 0 , (14)

and, for each j ∈ [n2] with j ∈W`, the inequality

2− 2
∑

i∈W`∪W`+1

xij −
∑

i∈W`−1

xij > 0 . (15)

This is proved in Appendix B.
To conclude we want to sum (appropriate multiples of) (14) and (15) in a way that all the

variables in equation (14) cancel with variables in (15) and after all the cancelations is just get
some negative constant:

∑
`∈[n]
i∈W`

2`

 2
∑

j∈W`∪W`+1
j 6=n2+1

xij +
∑

j∈W`−1
j 6=n2+1

xij − 2

+
∑
`∈[n]
j∈W`

j 6=n2+1

2`
2− 2

∑
i∈W`∪W`+1

xij −
∑

i∈W`−1

xij

 > 0 . (16)

Consider a variable xij in (16), with i ∈ W`. If j ∈ W`, the coefficient multiplying xij is
2` ·2−2` ·2 = 0. If j ∈W`+1, the coefficient multiplying xij is 2` ·2−2`+1 = 0. If j ∈W`−1, the
coefficient multiplying xij is 2` − 2 · 2`−1 = 0. That is, all the variables xij cancel out in (16).

The constants in (16) sum to

−2
∑
`∈[n]
i∈W`

2` + 2
∑
`∈[n]
j∈W`

j 6=n2+1

2` =
∑
`∈[n]

2`+1(−|W`| + |W` ∩ [n2]|)

= −2 .

That is, the sum in (16) after cancelations reduces to the trivial contradiction −2 > 0. �

Notice that there is a different way to use (14) and (15) to infer a contradiction (priv. comm.
by Sam Buss). For a generic ` ∈ [n] we can sum (14) and (15) just for all pigeons and holes in
W`:

∑
i∈W`

 2
∑

j∈W`∪W`+1
j 6=n2+1

xij +
∑

j∈W`−1
j 6=n2+1

xij − 2

+
∑
j∈W`

j 6=n2+1

2− 2
∑

i∈W`∪W`+1

xij −
∑

i∈W`−1

xij

 > 0 . (17)

Let
Net(`) =

∑
i∈W`
j∈W`+1
j 6=n2+1

xij −
∑

i∈W`+1
j∈W`

j 6=n2+1

xij .

After cancelations, the inequality in (17), depending on `, simplifies to
−Net(n− 1) > 0
−2 + 2Net(1) > 0
2Net(`)− Net(`− 1) > 0 for 1 6 ` < n− 1 .

(18)

The last inequality allows us to infer that, for each `, Net(`) > 0. This is a contradiction when
` = n− 1.
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Remark 5.5. The system of inequalities in (18) does not have polynomial-size unary SA refu-
tations. This can be seen by a minor modification of the techniques in [Hak21]. Hence this
set of polynomial inequalities separates SA and unary SA. Recently, Mika Göös (together with
Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert Robere, and
Ran Tao) showed that SA and unary SA are separated also by polynomial inequalities encoding
propositional formulas (priv. comm.). In other words, SA and unary SA are not p-equivalent.

It is easy to see that depth-1 Frege + wtPHP proves PHP in polynomial size. We don’t know
if the opposite is true, but we conjecture it is not.

Conjecture 5.6. For every constant d, the formula wtPHP does not have polynomial size
refutations in depth-d Frege + PHP.

The conjecture above implies, via Theorem 4.2 and Theorem 4.5, not only that wtPHPn
2+1
n2

is hard to refute in unary SA but even in unary weighted depth-d Frege at least for constant d.
We now prove a sort of converse of Theorem 5.4.

Theorem 5.7. For every d ∈ N, tree-like Res(d)+wt PHPn
2+1
n2 (G) p-simulates degree-d SA, where

G is restricted to bipartite graphs of degree at most 3 and the tree-like Res(d) + wt PHPn
2+1
n2 (G)

derivations have height 5.

As for Theorem 4.2 the choice of the principle here could be substituted by a weighted
version of SINK or some weighted version of the flow tautologies.

Proof. The structure of the proof is similar to the proof of Theorem 4.2. By Theorem 3.9 it is
enough to prove the result for weighted Resolution. Let π = L1, . . . ,Ls be a weighted resolution
refutation of a set of clauses {C1, . . . , Cm}. W.l.o.g. we can assume that no weighted cedent in π
has weight 0 and, by Remark 3.3, we can assume that all the weights appearing in π are powers
of 2 and all the fold/unfold rules have positive weights. Moreover, since π is a refutation, we
can assume [∅; 1] ∈ Ls, indeed if the last layer of π had [∅; 2z] for some z > 0 using the unfold
rule we can reduce to a proof just slightly longer with last layer containing [∅; 1].

We want to define a substitution instance of wt PHPn
2+1
n2 (G) without padding (see Remark

5.3) such that we have shallow Res(d) derivations of it.
Let S+ 1 be the size of π, let Ls+1 = {[∅; 1]} and let W1, . . . ,WS be a partition of L1∪ · · · ∪

Ls+1 according to the weight, i.e. all the weighted clauses in Wj have weight 2j−1 or −2j−1.
By assumption all those multisets have size at most S except W1 that has size at most S + 1.
Let W0 = WS+1 = ∅.

Let P be the multiset W1 ∪ · · · ∪WS and H = W1 ∪ · · · ∪WS r Ls+1. Now, for all ` ∈ [S]
and all α ∈ W` and β ∈ W` r Ls+1 we want to define ∧-formulas xα,β such that we can easily
derive from C1, . . . , Cm the cedents

{¬xαβ} for all β /∈W`−1 ∪W` ∪W`+1 (19)
{xαγ : γ ∈ H } (20)

{¬xαγ , xαγ′ : γ′ ∈W`−1 r {γ} } for all γ ∈W`−1 (21)
{¬xαγ1 , ¬xαγ2 , ¬xαγ3} for all distinct γ1, γ2, γ3 ∈W`−1 , (22)

{¬xγβ, ¬xγ′β} for all distinct γ ∈W` ∪W`+1 and γ′ ∈W`−1 ∪W` ∪W`+1
(23)

{¬xγ1β, ¬xγ2β ∨ ¬xγ3β} for all distinct γ1, γ2, γ3 ∈W`−1 , (24)

Informally the idea is very similar to Theorem 4.2. We want the ∧-formulas xα,β to express
that if the clause Cα is true then α flies to itself (as a hole), if it is false and its weight is
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positive, it flies to all the false premises used to derive it or to its appearing sibling. If Cα is a
weakening of an initial clause it flies to itself. If the weight of Cα is negative then α flies to its
copy in the direction of the proof, or to its disappearing sibling. If we define a mapping from
pigeons to holes in this way there might be collisions due to the unfold rules. But those types
of collisions are exactly the ones we are allowed to have in the wt PHPn

2+1
n2 (G) principle.

Given α ∈ π ∪ Ls+1 let iα be the unique index such that α belong to Liα and wα is the
weight of α. Recall that given α, β in π we say that β is a premise of α if iα = iβ + 1 and
between the layers Liβ and Liα there is applied one of the inference rules of Fig. 3.1 with β
one of the premises and α one of the conclusions. It is a unfold-premise if β is a premise of α
and the rule applied is a unfold rule. The rest of terminology is the same as in the proof of
Theorem 4.2.

Using the terminology from Theorem 4.2 then the definition of xα,β is exactly the same as
the definition of pα,β just that now we have more inference rules

xα,β =



{x,¬x} if α = β and α ∈ L1∨
Cα if α = β and α /∈ L1

¬
∨
Cβ if



α is a positive-copy of β
β is a symm.cut-premise of α
β is a contraction-premise of α
β is a fold-premise of α
β is a unfold-premise of α
α, β are appearing siblings and wα > 0
β is a negative-copy of α
α, β are disappearing siblings and wα < 0

¬
∨
Cα if β is a split-premise of α

⊥ otherwise .

The axioms that require a slightly different argument from the proof of Theorem 4.2 are
(21)–(24). The axiom (21) is a weakening of > in all cases except when α is the conclusion of
a fold rule and γ is one of its premises. Let 2` be the weight of α, i.e. both its fold premises
β, γ have weights 2`−1 and

{¬xαγ , xαγ′ : γ′ ∈W`−1 r {γ} } = {
∨
Cα,¬

∨
Cα} .

The axiom (22) is always a weakening of > since all inference rules have at most 2 premises and
hence at least one among the variables xαγ1 , xαγ2 , xαγ3 is ⊥.

The axioms in (23) cover all the cases of the injectivity as in Theorem 4.2 with the new case
when β is a unfold-premise. Only one among γ and γ′ can be a conclusion of β, the other
variable is set to ⊥ and hence, again the axioms in (23) are weakening of >.

The axiom (24) is always a weakening of > since even in the unfold rule there are two
conclusions, hence one among the variables xγ1β, xγ2β, xγ3β is always ⊥.

We showed that from the clauses C1, . . . , Cm in tree-like Res(d) it is possible to derive all
the clauses of the formula wt PHPn

2+1
n2 (G) in the formulas xα,β, which is a wt PHPn

2+1
n2 (G) for

some graph G of degree at most 3. �

Remark 5.8. The construction of the formulas xα,β in the previous proof does not satisfy the
onto axioms

{xαγ : α ∈ P } . (25)
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The reason is the same we had for PHP and unary SA: the last layer Ls might contain arbitrary
weighted clauses [Cβ;wβ]. If they are true they are mapped to themselves. If they are false they
are mapped to some hole in Ls−1. We have no guarantees that the holes in Ls receive some
pigeon, but if Ls satisfies the soundness-NS condition we can adapt the definition of xα,β in
the proof of Theorem 5.7 to satisfy the onto axioms of the weighted pigeonhole principle (as in
eq. (25)).

Let of-wtPHPn
2+1
n2 be the set of cedents

of-wtPHPn
2+1
n2 = wtPHPn

2+1
n2 ∪{ {xih : i ∈ [n2 + 1] } : h ∈ [n2] } .

For the of-wtPHPn
2+1
n2 we place the pigeon n2 + 1 not in W1 but we allow it to be in any of the

W1, . . . ,Wn.
It is immediate to see that of-wtPHPn

2+1
n2 has polynomial-size NS refutations. A minor

adaptation of Theorem 5.4 will prove this.
Theorem 5.9. For every d, tree-like Res(d)+of-wtPHPn

2+1
n2 (G) p-simulates degree-d NS, where

G is restricted to bipartite graphs of degree at most 3 and the height of the tree-like Res(d) +
of-wtPHPn

2+1
n2 (G) derivations is 5.

Proof. (sketch) We use the characterisation of NS given by Theorem 3.9 and we reason basically
as in Theorem 4.4. We know that the problematic clauses in Ls are weakenings of initial axioms
or a single instance of [∅; z]. We copy [∅; z] to a Ls+1 and we define the formula xα,β as in
Theorem 5.7. Now the onto axioms for the holes in Ls become weakenings of inital clauses
except for the hole [∅; z], which receive a pigeon flying there from the layer Ls+1. �

It is immediate to generalize Theorem 5.7 and 5.9 from clauses to Θd-cedents.
Theorem 5.10. For every d ∈ N, tree-like depth-(d + 1) Frege + wt PHPn

2+1
n2 (G) p-simulates

weighted/circular depth-d Frege, where G is restricted to bipartite graphs of degree at most 3
and the tree-like depth-(d+ 1) Frege + wt PHPn

2+1
n2 (G) derivations are of height 3.

Recall that the systems circular depth-d Frege and weighted depth-d Frege are p-equivalent
by Proposition 3.6.
Theorem 5.11. For every d ∈ N, tree-like depth-(d+ 1) Frege + of-wtPHPn

2+1
n2 (G) p-simulates

weighted depth-d Frege with the soundness-NS condition, where G is restricted to bipartite
graphs of degree at most 3 and the tree-like depth-(d+ 1) Frege+ of-wtPHPn

2+1
n2 (G) derivations

are of height 3.
Corollary 5.12. For every d ∈ N, tree-like depth-(d + 1) Frege + wt PHPn

2+1
n2 (G) p-simulates

depth-d Frege and the tree-like tree-like depth-(d+ 1) Frege+ wt PHPn
2+1
n2 (G) derivations are of

height 3.
Proof. It follows from Theorem 5.10, Theorem 2.3 and Theorem 3.7. �

Regarding size lower bounds we conjecture the following.
Conjecture 5.13. For every constant d, the formula MOD2 (see Definition 4.9) does not have
polynomial size refutations in depth-d Frege + wtPHP.

This conjecture, together with the previous results, implies super-polynomial size lower
bounds for weighted depth-d Frege and circular depth-d Frege (at least for d constant).
Acknowledgements. We would like to thank Albert Atserias, Massimo Lauria, Sam Buss,
Neil Thapen and Moritz Müller for very fruitful conversations that simplified and improved this
paper. In particular the way to refute wtPHPn

2+1
n2 dynamically is the result of conversations with

Sam Buss.
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A Upper bound of PHPn+1
n in Sherali-Adams

In this section we show how to infer from PHPn+1
n the inequalities (12) and (13). The crucial

lemma is below. This is not needed to understand the main results of this paper, but it might
be useful to compare this argument with the proof of Lemma B.1.

Lemma A.1. Given variables a1, . . . , am, from the axioms−∏i∈[m] āi > 0, there is a polynomial-
size SA derivation of the inequality ∑

i∈[m]
ai − 1 > 0 . (26)

From the axioms {−aiaj > 0 : i, j ∈ [m], i 6= j } there is a polynomial-size SA derivation of the
inequality

1−
∑
i∈[m]

ai > 0 . (27)

Proof. Let A0 = 1 and, for k > 1, let Ak = ∏
`∈[k] ā`. First notice we have the algebraic

equalities

Ai − 1 =
∑
j∈[i]

(Aj−1(aj + āj − 1)−Aj−1aj) , (28)

∑
i∈[m]

ai − 1 = −Am +
∑
i∈[m]

(Ai−1(ai + āi − 1) + (ai − aiAi−1)) . (29)

Hence, multiplying (28) by ai+1 we get a SA derivation of

ai+1Ai − ai+1 > 0

from {−aiaj > 0 : i, j ∈ [m] i 6= j }. By multiplying (28) by −ai+1 we get a SA derivation of

ai+1 − ai+1Ai > 0

from −∏i∈[m] āi > 0. To prove (26) just substitute the SA derivation of ai−aiAi−1 > 0 in (29).
To prove (27) we just fist multiply both sides of (29) by −1, recall that Am is a monomial and
substitute the SA derivation of aiAi − ai > 0 in (29). �

B Upper bound of wtPHPn
2+1
n2 in Sherali-Adams

In this section we show how to infer from wtPHPn
2+1
n2 the inequalities (14) and (15), i.e. the part

that was missing in the proof of Theorem 5.4. The crucial lemma is below.
In this section we use, unlike the rest of the paper, the convention [n] = {0, . . . , n− 1}.

26



Lemma B.1. Given variables a0, . . . , an−1, b1, . . . , bm−1, from the axioms
−bibjbk > 0 for all distinct i, j, k ∈ [m] ,
−
∏
i∈[n] āi

∏
j∈[m] b̄j > 0 ,

−b`
∏
j∈[m]r{`} b̄j > 0 for all ` ∈ [m] .

there is a polynomial-size SA derivation of the inequality

2
∑
i∈[n]

ai +
∑
j∈[m]

bj − 2 > 0 . (30)

From the axioms 
−aiaj > 0 for all distinct i, j ∈ [n] ,
−aibj > 0 for all i ∈ [n], j ∈ [m] ,
−bibjbk > 0 for all distinct i, j, k ∈ [m] .

there is a polynomial-size SA derivation of the inequality

2− 2
∑
i∈[n]

ai −
∑
j∈[m]

bj > 0 . (31)

Proof. (sketch) Let A0 = 1, B0 = 1, B0,1 = 1 and for every j, k > 1 let Ak = ∏
`∈[k] ā`,

Bk = ∏
`∈[k] b̄` and Bj,k = ∏

`∈[k]r{j} b̄`. For sake of shortness let also use the notation ãi to
denote the axiom ai + āi − 1 and b̃i to denote the axiom bi + b̄i − 1. We have the following
equalities

Ak − 1 =
∑
j∈[k]

(Aj ãj −Ajaj) , (32)

Bk − 1 =
∑
`∈[k]

(B`b̃` −B`b`) , (33)

Bi,k − 1 =
∑

`∈[k]r{i}
(Bi,`b̃` −Bi,`b`) , (34)

∑
i∈[n]

ai − 1 = −An +
∑
i∈[n]

(Aiãi + (ai − aiAi)) , (35)

∑
j∈[m]
j 6=i

bj − 1 = −Bi,m +
∑
j∈[m]
j 6=i

(Bi,j b̃j + (bj −Bi,jbj)) . (36)

Now, multiplying (36) by bi and summing for every i ∈ [m], we get

2
∑
i∈[m]

∑
j∈[i]

bibj −
∑
i∈[m]

bi = −
∑
i∈[m]

biBi,m +
∑
i∈[m]

∑
j∈[m]
j 6=i

Bi,jbib̃j + (bibj −Bi,jbibj) (37)

= −
∑
i∈[m]

biBi,m +
∑
i∈[m]

∑
j∈[m]
j 6=i

Bi,jbib̃j + (bibj −Bi,jbibj) , (38)

and, we can multiply the equality in (34) by bibj , and substitute for bibj−Bi,jbibj in the equality
above. What we get is a polynomial-size SA derivation of the inequality

2
∑
i∈[m]

∑
j∈[i]

bibj −
∑
i∈[m]

bi > 0 (39)
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from S and the axioms −biBi,m > 0.
We now multiply (35) by Bm and we add to both sides of the obtained equality Bm +∑

i∈[n](ai − aiBm) and we get∑
i∈[n]

ai = Bm +
∑
i∈[n]

(ai − aiBm)−AnBm +
∑
i∈[n]

(AiBmãi + (aiBm − aiAiBm)) . (40)

We need to expand a bit on Bm. From (33), we get

Bm = 1 +
∑
`∈[m]

(B`b̃` − b`B`) .

That is we can substitute back inside this expression the corresponding expression for B` and
again another time:

Bm = 1 +
∑
`∈[m]

(B`b̃` − b`B`)

= 1 +
∑
`∈[m]

(
B`b̃` − b`

(
1 +

∑
k∈[`]

(Bk b̃k −Bkbk)
))

= 1−
∑
`∈[m]

b` +
∑
`∈[m]

∑
k∈[`]

b`bkBk +
∑
`∈[m]

(
B`b̃` −

∑
k∈[`]

b`Bk b̃k

)
= 1−

∑
`∈[m]

b` +
∑
`∈[m]

∑
k∈[`]

b`bk

(
1 +

∑
z∈[k]

(Bz b̃z − bzBz)
)

+
∑
`∈[m]

(
B`b̃` −

∑
k∈[`]

b`Bk b̃k

)
= 1−

∑
`∈[m]

b` +
∑
`∈[m]

∑
k∈[`]

b`bk −
∑
`∈[m]

∑
k∈[`]

∑
z∈[k]

b`bkbzBz +
∑
`∈[m]

(
B`b̃` −

∑
k∈[`]

(
b`Bk b̃k −

∑
z∈[k]

b`bkBz b̃z

))
.

That is, substituting this last expression for Bm in (40) and multiplying by 2, we get a polyno-
mial size SA derivation of

2
∑
i∈[n]

ai + 2
∑
`∈[m]

b` − 2
∑
`∈[m]

∑
k∈[`]

b`bk − 2 > 0 (41)

from S and the axioms −b`bkbz > 0. Hence there is a polynomial-size SA derivation of the sum
of (39) and (41), that is we proved in SA that

2
∑
i∈[n]

ai +
∑
`∈[m]

b` − 2 > 0 .

This equality implies (30). If we multiply (39) and (41) by −1 and we sum we get an
analogue expression implying (31). �
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