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Abstract. Merge Resolution (MRes [4]) is a recently introduced proof sys-
tem for false QBFs. Unlike other known QBF proof systems, it builds win-
ning strategies for the universal player within the proofs. Every line of this
proof system consists of existential clauses along with countermodels. MRes
stores the countermodels as merge maps. Merge maps are deterministic
branching programs in which isomorphism checking is efficient as a result
MRes is a polynomial time verifiable proof system.

In this paper, we introduce a family of proof systems MRes-R in which, the
information of countermodels are stored in any pre-fixed complete repre-
sentation R, instead of merge maps. Hence corresponding to each possible
complete representation R, we have a sound and refutationally complete
QBF-proof system in MRes-R. To handle arbitrary representations for the
strategies, we introduce consistency checking rules in MRes-R instead of
isomorphism checking in MRes. As a result these proof systems are not
polynomial time verifiable. Consequently, the paper shows that using merge
maps is too restrictive and can be replaced with arbitrary representations
leading to several interesting proof systems.

The paper also studies proof theoretic properties of the family of new proof
systems MRes-R. We show that eFrege+∀red simulates all valid refutations
from proof systems in MRes-R. Since proof systems in MRes-R may use
arbitrary representations, in order to simulate them, we first represent the
steps used by the proof systems as a new simple complete structure. As a
consequence, the corresponding proof system belonging to MRes-R is able
to simulate all proof systems in MRes-R. Finally, we simulate this proof
system via eFrege+∀red using the ideas from [10].

On the lower bound side, we lift the lower bound result of regular MRes ([5])
for all regular proof systems in MRes-R. To be precise, we show that the
completion principle formulas from [17] which are shown to be hard for
regular MRes in [5], are also hard for any regular proof system in MRes-R.
Thereby, the paper lifts the lower bound of regular MRes to an entire class
of proof systems, which use some complete representation, including those
undiscovered, instead of merge maps.

1 Introduction

Proof complexity is a sub-branch of computational complexity in which the main
focus is to understand the complexity of proving (refuting) theorems (contradic-
tions) in various proof systems. Informally, a proof system is a polynomial time
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computable function which maps proofs to theorems. Several propositional proof
systems like resolution [23], Cutting planes [13], and Frege [15] have been developed
for proving (refuting) propositional formulas. The relative strength of these proof
systems has been well studied [24]. In the literature, several proof systems which
are not polynomial time computable (verifiable) have also been well studied. For
example, semantic cutting planes [14].

Quantified Boolean formulas (QBFs) extend propositional logic by adding quan-
tifications ∃ (there exists) and ∀ (for all) to the variables. Several QBF proof sys-
tems like Q-Res [19], QU-Res [26], LD-Q-Res [2], ∀Exp+Res [18], IR-calc, and IRM-
calc [7] have been proposed in the literature. These are all either CDCL (Conflict
Driven Clause Learning)-based, or expansion-based QBF proof systems. Cutting
planes proof systems has also been extended for QBFs (CP+∀red) [8].

A new proof system Merge resolution (MRes) [4] has been developed recently.
It follows a different QBF-solving approach. In MRes, winning strategies for the
universal player are explicitly represented within the proof in the form of determin-
istic branching programs, known as merge maps [4]. MRes builds partial strategies
at each line of the proof such that the strategy at the last line (corresponding
to the empty clause) forms the complete countermodel for the input QBF. As a
result, MRes admits strategy extraction by design. Before applying the refutation
rules, MRes needs to check the partial strategies of the hypothesis to be isomorphic.
Note that the isomorphism checking in ‘merge maps’ is efficient, hence MRes is a
polynomial time verifiable proof system.

In this paper, we extend MRes to a family of sound and refutationally complete
QBF proof systems MRes-R. We observe that the representation of strategies in
the proofs as merge maps is not relevant for the soundness and completeness of
the proof system. Strategies can be depicted by any complete representation and
by slightly modifying the refutation rules to include arbitrary complete represen-
tations, the soundness and completeness of the proof system remains intact. To be
precise, we change the isomorphism checking rule in MRes to ‘consistency’ checking
(Section 3.1) defined for Dependency Quantified Boolean Formulas (DQBFs) in [9].
This leads to the definition of a new proof system (Say P) for each complete rep-
resentation. All these new proof systems together form the family of proof systems
denoted by MRes-R. However, due to the consistency checking rules, the proof
systems in MRes-R are not polynomial time verifiable. In literature, many interest-
ing non-polynomial time verifiable proof systems have been studied, for example,
semantic cutting planes for QBFs (SemCP+∀red) [8]. Because of the introduction
of such powerful consistency checking rules, proof systems in MRes-R allow a few
forbidden resolution steps of MRes (ref. Example 2)

The paper also studies in detail the strength of these new proof systems. We
show that eFrege+∀red is powerful enough to simulate valid refutations of the proof
systems in MRes-R. Since these systems admit strategy extraction by design, we
show the said simulations by using the ideas from [10]. Furthermore, the paper lifts
the lower bound results from [5] of regular MRes to every regular proof system P ∈
MRes-R. We explain our contributions in detail in the following section.
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1.1 Our Contributions

1. Introducing a new family of proof systems MRes-R: MRes [4] uses merge
maps to store the countermodels within proofs. We observe that merge maps
are not important for the soundness and completeness of the proof system.
They just make the proof system polynomial time verifiable. However, at the
same time they are too restrictive. In this paper, we propose a family of proof
systems MRes-R, one for each arbitrary complete representation of strategies
into proofs (instead of merge maps). In order to make these proof systems
sound and complete, we only need to modify the rules of MRes slightly. To be
precise, we check the consistency relation instead of isomorphism among the
strategies before applying the resolution rules (ref. Section 3).
Although, this modification makes the proof systems not polynomial time veri-
fiable; however, makes them very interesting, since the representations of strate-
gies can be arbitrary. We only need that the representations be complete, in
the sense that every finite function has at least one representation in the same.
We need this for proving the completeness of our proposed proof systems (in
Claim 7).
To be precise, for proving completeness of MRes-R, we consider the MRes-
M proof system in MRes-R which uses merge maps as the representation for
strategies. We then prove that MRes-M system p-simulates the MRes proof
system (which is known to be complete) by showing that every rule of MRes
is also valid in MRes-M (Theorem 6). We then show how any MRes-M-proof
can be (non-efficiently) converted to P-proof for any P ∈ MRes-R (Claim 7).
The soundness proof of MRes-R follows from proving that every line of the
proof gives a partial falsifying strategy for the universal player.

2. Proving a lower bound for Regular MRes-R: The Completion Formulas
CRn were first introduced in [17], to show that level-ordered Q-Res cannot
p-simulate ∀Exp+Res. They were also used to show that level-ordered Q-Res
cannot p-simulate tree-like Q-Res [22]. It has been shown recently in [5], that
CRn formulas are even hard for regular MRes. In this paper, we lift this lower
bound of the Completion Formulas CRn to all regular proof systems in MRes-R.
That is, we show that any regular proof system P ∈ MRes-R, takes exponential
time to refute the CRn formulas.
For this lower bound proof, we mostly follow the proof from [5, Theorem 9]
where they have used the fact that most of the clauses in the MRes proof are
going to be free of all the literals from right (in quantifier prefix) of the only
universal variable z of CRn. They showed that the number of such clauses are
exponential in n proving the required lower bound.
We established the similar argument for every regular proof system in MRes-
R. In [5, Theorem 9], the major part of the proof relied on the fact that MRes
uses isomorphism so they could rule out the variables not in one hypothesis
merge map of a resolution step, as also not to be present in the other. However,
this is not the case in MRes-R. So we provide a new Claim (ref. Claim 14) that
even though MRes-R insists on consistency rather than isomorphism, the above
property holds. That is, the clauses in CRn make it such that the variables not in
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one hypothesis strategy cannot be present in the other as well when consistency
is maintained in the resolution steps.

3. eFrege+∀red simulates MRes-R: We show that eFrege+∀red simulates valid
refutations in every proof system belonging to MRes-R. Since proof systems
in MRes-R can use arbitrary representations, simulating the same is difficult
even for powerful proof systems. However MRes-R family uses simple rules for
refuting, which can even be detected by just observing the clauses of the lines,
without exploring the representation parts. If one can come up with a complete
representation which can represent the rules performed by any MRes-R proof
system, then one can show the required simulation.
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Fig. 1: Various QBF proof systems and efficient simulations. New results and proof
systems are written in bold. MRes-T belongs to MRes-R. Regular MRes-R are below
the ‘known lower bound’ dashed line, due to Theorem 16. MRes-T p-simulates
MRes due to Proposition 9. For the simulations of MRes, IRM-calc, and LQU+-Res
by eFrege+∀red, and other known simulations refer [10, Fig. 1].

We use this observation and define a new complete representation, denoted as
the T -representation (ref. Section 5.1). To handle all the MRes-R rules, we came
up with this hybrid representation consisting of both circuits and branching
programs. It is capable of representing all the refutation rules allowed in any
MRes-R proof. To achieve this we introduce a new type of node, namely ‘#’
node, which deals with the new consistency checking property (ref. Fig 2a).
We also show that T representation is a complete representation, therefore the
corresponding MRes-T proof system (5.1) belongs to MRes-R.
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The idea of the simulation is to convert every valid P-proof (P ∈ MRes-R)
efficiently into an MRes-T -proof as explained in Theorem 8. Then, as MRes-T
admits strategy extraction by definition, we use the idea from [10] to simulate
the valid MRes-T -proof in eFrege+∀red. Thereby proving that eFrege+∀red sim-
ulates any valid refutations from proof system in MRes-R.
This simulation result is a way forward towards uniform certification in QBF [10].
In [10], they used a very distinguished technique that allows eFrege+∀red to
simulate few proof systems that admit strategy extraction. Using this tech-
nique, they showed that eFrege+∀red can simulate proof systems MRes, IRM-
calc and LQU+-Res. We use the same technique and prove that eFrege+∀red
even simulates the family of proof systems MRes-R.
Observe that the proposed eFrege+∀red simulation algorithm (Section 5) of
the proof systems P in MRes-R assumes that the given P-refutations are valid.
As a result one cannot use this simulation algorithm to efficiently verify the
correctness of the given P-refutations. That is, even if the resulting eFrege+∀red
proof is valid (which is efficiently verifiable), one cannot infer if or not the
initial P-refutation is valid. However, the proposed simulation algorithm always
produces a valid eFrege+∀red proof for a given valid P proof.
Further, for the current simulation order among QBF proof systems refer Fig 1.

1.2 Organization of the paper

We present important notations and preliminaries used in this paper in Section 2.
In Section 3, we present the new family of proof systems MRes-R. We prove the
soundness and refutational completeness of proof systems in MRes-R in Section 4.
In Section 5, we show that eFrege+∀red simulates proof systems in MRes-R. We
establish the lower bound results for every regular proof system in MRes-R in
Section 6. Finally, we conclude and present a few open problems in Section 7.

2 Notations and Preliminaries

For a Boolean variable x, its literals can be x and x. A clause C is a disjunction
of literals and a conjunctive normal form (CNF) F is a conjunction of clauses.
We denote the empty clause by ⊥. vars(C) is a set of all variables in C and
width(C) = |vars(C)|.
A proof system [11] for a non-empty language L ⊆ {0, 1}∗ is a polynomial time
computable function f : {0, 1}∗ → {0, 1}∗ such that Range(f) = L. For string
x ∈ L, we say a string w ∈ {0, 1}∗ is an f -proof of x if f(w) = x. A proof system
f for L is complete if and only if for every x ∈ L we have a corresponding f -proof
for x. A proof system f for L is sound if and only if the existence of an f -proof for
x implies that x ∈ L. Informally, a proof system is a function f which maps proofs
to theorems (or contradictions).

A proof system f p-simulates (polynomially simulates) another proof system g,
if every g-proof of input x can be translated into an f -proof for the same input
in polynomial time w.r.t the size of the g-proof. We denote this as f ≤p q. Proof
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systems for L = FQBFs/ TQBFs are said to be QBF proof systems where, FQBFs
(TQBFs) denote the set of all false (true) QBFs.
Quantified Boolean formulas: QBFs are an extension of the propositional
Boolean formulas where each variable is quantified with one of {∃,∀}, the sym-
bols having their general semantic definition of existential and universal quantifier
respectively.

In this paper, we assume that QBFs are in closed prenex form with CNF matrix
i.e., we consider the form Q1X1...QkXk. φ(X), where Xi are pairwise disjoint sets
of variables; Qi ∈ {∃, ∀} and Qi 6= Qi+1, and φ(X) is in CNF form over variables
X = X1 ∪ · · · ∪Xk, called the matrix of the QBF. We denote QBFs as F := Q.φ in
this paper, where Q is the quantifier prefix. If x ∈ Xi then we denote Q(x) to be
equal to Qi. For a variable x if Q(x) = ∃ (resp. Q(x) = ∀), we call x an existential
(resp. universal) variable. If a variable x is in the set Xi, any y ∈ Xj where j < i,
we say that y occurs to the left of x in the quantifier prefix and write y≤Qx. On
the other hand, if j > i we say that y occurs to the right of x in the quantifier
prefix and write y ≥Q x. The set of existential variables to the left of a universal
variable u will be denoted by LQ(u) in this paper.

Let C ∈ φ and Q(u) = ∀, then the ‘falsifying u-literal’ is defined to be 0 if
u ∈ C, and 1 if u ∈ C and ∗ if u /∈ vars(C). Also, the existential subclause of C is
the clause formed by only the existential literals from C.

If S is any set of variables, a complete assignment of S will be an assignment
which assigns every variable in S to either 1 or 0. Similarly, a partial assignment
is an assignment which assigns a subset of variables in S to either 1 or 0. Note
that the vars(S) that have not been assigned to 1 or 0 in a particular partial
assignment of S are denoted as having an assignment of ‘∗’. We denote 〈S〉 as the
set of all possible complete assignments of S and 〈〈S〉〉 as the set of all possible
partial assignments of S.

QBFs as a game: [1] Given a QBF F = ∃X1∀X2 . . . ∃Xn.φ we may view
it as game between universal and existential player. The rules of the game being
that according to the quantification sequence the players assign values to the sets
Xis alternatively. At the end, when substituting the complete assignment to all
variables in φ, if φ evaluates to 1 (resp. 0) the existential (resp. universal) player
wins.

For a QBF Q.φ, a strategy of universal player is a decision function that
returns the assignment to all universal variables of Q, where the decision for each
u depends only on the variables in LQ(u). If Hu is the strategy for the universal
variable u then, vars(Hu) is the subset of existential variables from LQ(u) which
are actually used in building the strategy Hu.

Winning strategy for the universal player is a strategy which gives an assign-
ment to all universal variables of the given QBF for every possible assignment of
existential variables, such that the substitution of this complete assignment falsifies
the QBF. Winning strategy of the universal player is also called a countermodel
in case of a false QBF. A QBF is false iff there exists a winning strategy for the
universal player [1].
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We say that a QBF proof system f admits strategy extraction if for any
given valid f -proof of a false QBF F , one can compute a winning strategy for the
universal player in the time polynomial to the size of the f -proof.

As said earlier, strategies are basically decision functions. For the portrayal
of the same, many representations can be used like truth tables, directed acyclic
graphs (DAGs), merge maps, etc. A complete representation is the one in which
every possible finite decision function can be represented.
Resolution [23] is the most studied redundancy rule in both SAT and QBF worlds,
we define the same below:

C ∨ x D ∨ x
C ∨D

,

where C,D are clauses and x is the pivot variable. The clause (C ∨D) is called the
resolvent. We denote this step as ‘res(C ∨ x,D ∨ x, x)’ throughout the paper.
Next, we define a few QBF proof systems that we require in this paper.

Q-Res [19] is one of a basic QBF proof system. It is an extension of the resolution
proof system for QBFs. It allows the resolution rule defined above with the pivot
variable being existential. For dealing with the universal variables, it defines a
‘universal reduction’ rule as follows:

The Universal Reduction (UR) rule of Q-Res allows dropping of a universal
variable u from a clause C in the QBF, provided no existential variable x ∈ C
appears to the right of u in the quantifier prefix.

2.1 MRes

MRes is a proof system for false QBFs introduced in [4]. We describe MRes briefly
in this section, please refer to [4] for its formal definition.

For a false QBF Q.φ, an MRes refutation will be a sequence of lines of the form
Li = (Ci, {Mu

i }); where Ci is a clause consisting of only existential literals and
{Mu

i } is the set of merge maps of each universal variable u ∈ Q.
The Merge maps represent the partial strategies for each universal variable at

any line. The merge map Mu
i is a decision branching graph with definite strategies

{0, 1, ∗} at the leaves nodes (∗ is used when no strategy for u exists till that line).
The intermediate nodes of merge map Mu

i branch on some existential variable (say
x) ∈ LQ(u). That is, if Li = res(La, Lb, x) for some a, b < i, then Mu

i will get
connected to Mu

a with an edge label of x and to Mu
b with an edge label of x.

An important property used in MRes refutation rules is defined below:
Isomorphism: Two merge maps are isomorphic if and only if there exists a

bijection mapping from the nodes of one to that of another. In other words, two
isomorphic merge maps represent exactly the same strategy.
Two operations needed for MRes refutations are defined below:

Select operation is defined on two merge maps. If they are isomorphic, then it
outputs one of them. Or, if one of them is trivial (i.e ∗), then it outputs the other.

Merge(Mu
a ,M

u
b , n, x) operation is defined when a, b < n, and it returns a new

merge map where the new root node is connected to Mu
a with x and to Mu

b with
x. Also, if any common line nodes exist in Mu

a ,M
u
b , it merges them into a single

node.
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Now we define the MRes proof system:
For a false QBF Q.φ, the MRes proof Π := L1, L2, ..., Lm where every line Li :=
(Ci, {Mu

i :for every universal variable u in Q}) is derived using either an ‘Axiom’
step or a ‘Resolution’ step. In the axiom step, Ci will be the existential subclause
of some C ∈ φ and every Mu

i will be a leaf node with the falsifying u-literal of C.
In the resolution step, Ci is obtained from res(Ca, Cb, x) where x is an existential
variable and a, b < i. For this step to be valid, each Mu

i must either be equal to
select(Mu

a ,M
u
b ) or if x <Q u then it can be equal to merge(Mu

a ,M
u
b ,i,x).

The final line Lm is the conclusion of Π, and Π is a refutation of Q.φ iff
Cm = ⊥. GΠ be the derivation graph corresponding to Π with edges directed from
the hypothesis to the resolvent (i.e from the axioms to the final line). A refutation
Π is said to be regular if no leaf-to-root path in GΠ has any existential variable x as
a pivot more than once. For some given line L, ΠL is defined as the sub-derivation
of Π deriving the line L.

2.2 eFrege+∀red

Frege systems are fundamental proof systems of propositional logic. Lines in a Frege
proof are formulas inferred from the previous lines via few sound rules. The rules
are not important as all Frege systems are p-equivalent, the only condition is that
a Frege system needs to be sound and complete. So w.l.o.g, we can assume that
‘modus ponens’ is the only rule in a Frege system. The modus ponens is defined
as: if A→ B and A are present in the hypothesis then B can be logically implied
by the hypothesis. For a detailed definition and explanation refer [20].

Extended Frege (eFrege) [12] is an extention of Frege systems which allows
introduction of new variables not present in previous lines of the proof. This rule
allows lines of the form v ↔ f(S) where v is a new variable and f can be any
formula on the set of variables S, where v /∈ S.

For QBFs, eFrege is modified to be eFrege+∀red (Extended Frege + ∀ reduc-
tion) [6] which requires that the extention variable must be added in the prefix and
quantified to the right of the variables used to define it. To deal with the universal
variables, the universal reduction (UR) rule as defined in Q-Res is introduced into
eFrege+∀red. The formal definition is as follows:

Lj
Li = Lj [u/B]

(∀red)

where Lj is some previous line in the eFrege+∀red proof, u is a universal variable
that is also rightmost in the prefix among all variables in Lj and B is the Herband
function of u [6]. That is, a universal variable u in a formula can be replaced by 0
or 1 when no other variable in that formula are to the right of u in the prefix.

For the rest of known QBF-proof systems depicted in Fig 1, refer to [25]. We define
the following formulas needed for proving lower bound later in the paper.
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2.3 Completion Principle Formulas [17]

The QBFs CRn are defined as follows:

CRn = ∃
i,j∈[n]

xij , ∀z, ∃
i∈[n]

ai, ∃
j∈[n]

bj

( ∧
i,j∈[n]

(Aij ∧Bij)
)
∧ LA ∧ LB

where,
Aij = xij ∨ z ∨ ai Bij = xij ∨ z ∨ bj
LA = a1 ∨ · · · ∨ an LB = b1 ∨ · · · ∨ bn

For any CRn formula, we define the setsA := {a1, a2, ..., an} andB := {b1, b2, ..., bn}
as the set of all a, b variables respectively.

3 MRes-R: A new family of proof systems for false QBFs

We define a family of proof systems MRes-R, inspired from the MRes proof system.
In MRes ([4]), strategies are built within the proof and are represented by merge
maps. We observed that merge maps or any specific representations of strategies
are not important for the soundness or completeness of the proof system. Since,
isomorphism problem is efficient in merge maps, they make the proof systems
polynomial time verifiable.

Based on this observations, we define a family of MRes-R where every proof sys-
tem P ∈ MRes-R has it’s own complete representation to represent the strategies.
To allow the use of arbitrary representations in MRes-R, we introduce consistency
checking rules for strategies which are not as efficient as checking isomorphism for
MRes. As a result, our proof systems are not polynomial time verifiable. However
their soundness & completeness doesn’t depend on their representations, which
makes them interesting.

We use the idea of consistency checking from [9], which uses the same for
DQBFs. For simplicity, we use the same notations from [9] whenever possible. We
begin by defining some important notations and operations needed before actually
defining the MRes-R systems.

3.1 Important notations used in MRes-R

To begin, let us define what consistency means for any two assignments of a set of
variables.

Definition 1 ([9]). Let X be any set of variables and ε, δ ∈ 〈〈X〉〉. We say that ε
and δ are consistent, denoted by ε ' δ, if for every x ∈ X for which ε(x) 6= ∗ and
δ(x) 6= ∗ we have ε(x) = δ(x).

Let Hu and H ′u be individual strategy functions for the universal variable u, the
consistency between two strategies is defined as follows:

We say that Hu and H ′u are consistent (written Hu ' H ′u) when Hu(ε) ' H ′u(ε)
for each ε ∈ 〈〈LQ(u)〉〉. Recall that LQ(u) are the existential variables to the left of
u in the prefix. In other words Hu and H ′u are consistent, if the u-assignment given
by Hu(ε) and H ′u(ε) should be consistent for every possible LQ(u)-assignment ε.
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By a change in notation, we can see (partial) assignments as both functions
and sets of literals, i.e. an assignment ε corresponds to the set of literals it satisfies.
For example, {x1, x2, x3, x4} represents an assignment which sets 1 to the variables
x1 and x2 and 0 to x3 and x4. In this notation as sets of literals, a union (∪) of
assignments ε, δ is defined when ε ' δ and it is equal to ε ∪ δ.

We now define a union operation (‘◦’) on two consistent strategies Hu and H ′u.

Definition 2 ([9]). Given two consistent strategies Hu and H ′u (i.e., Hu ' H ′u),
we define the union strategy H ′′u of Hu and H ′u, denoted by H ′′u = Hu ◦ H ′u, as
follows:

H ′′u (ε) = Hu(ε) ∪H ′u(ε) for each ε ∈ 〈LQ(u)〉.

For example, if Hu&H ′u be defined as below, then H ′′u = Hu ◦H ′u will be:

Hu =

{
1 : x
∗ : x

H ′u =

{
∗ : x
0 : x

H ′′u =

{
1 ∪ ∗ = 1 : x
∗ ∪ 0 = 0 : x

We now define a if-else operation (‘./’) on any two strategies Hu and H ′u.

Definition 3 ([9]). Given any two strategies Hu and H ′u and an existential vari-
able x, we define the if-else operation of Hu and H ′u on x to give the strategy H ′′u ,

denoted by H ′′u = Hu
x
./ H ′u, for every ε ∈ 〈LQ(u)〉 as follows:

H ′′u (ε) =

{
Hu(ε) : ε(x) = 1
H ′u(ε) : ε(x) = 0

For example, if Hu&H ′u be defined as below, then H ′′u = Hu
x
./ H ′u will be:

Hu =

{
1 : y
∗ : y

H ′u =

{
∗ : z
0 : z

; H ′′u =


1 : xy
∗ : xy
∗ : xz
0 : xz

Note that the input strategies Hu, H ′u need not be consistent for an ‘./’ opera-
tion, but they must be in case of an ‘◦’ operation.

3.2 Definition of MRes-R

Let Φ = Q.φ be a QBF with existential variables X and universal variables U . A
MRes-R derivation of Lm from Φ is sequence π = L1, ..., Lm of lines where each
Li = (Ci, {Hu

i : u ∈ U}) in which at least one of the following holds for i ∈ [m]:

a. Axiom. There exists a clause in C ∈ φ such that Ci is the existential subclause
of C, and for each u ∈ U , Hu

i is the strategy function for u mapping it to the
falsifying u-literal for C or,

b. Resolution. There exist integers a, b < i and an existential pivot x ∈ X such
that Ci = res(Ca, Cb, x) and for each u ∈ U :

i. if x <Q u, then Hu
i = Hu

b

x
./ Hu

a

ii. else if x >Q u, then Hu
i = Hu

a ◦Hu
b .
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π is a refutation of Φ iff Cm = ⊥. Size of π is the number of lines i.e |π| = m. Observe
that similar to MRes, proof systems in MRes-R have only existential literals in the
clause part of the lines in a proof.

Let S be a subset of the existential variables X of a false QBF F . We say that
a P-refutation π of F (where P ∈ MRes-R) is S-regular if for each x ∈ S, there
is no leaf-to-root path in Gπ that uses x as pivot more than once. An X-regular
proof is simply called a regular proof.

4 Soundness and Completeness of MRes-R

In this section, we show that each proof system in MRes-R is sound and refuta-
tionally complete for false QBFs.

4.1 Soundness

The soundness proof of MRes-R follows closely to that of the MRes proof system.
The following lemma proves the soundness of MRes-R family of proof systems.

Lemma 4. Let P ∈ MRes-R be any proof system. Let π = L1, L2, . . . , Lm be a
valid P-proof of QBF Φ = Q.φ. Then, the strategy functions {Hu

m : u ∈ U} in the
conclusion line Lm of π, will form a countermodel for Φ.

Proof. Given π := L1, ..., Lm be an P-refutation of a QBF Φ = Q.φ. Let each
Li = (Ci, {Hu

i : u ∈ U}) and X,U are sets of all existential and universal variables
in Q respectively. Further, for each i ∈ [m],

• let αi := {l : l ∈ Ci} be the smallest assignment falsifying Ci ,
• let Ai := {α ∈ 〈X〉 : Ci ∩ α = ∅} be all complete assignments to X consistent

with αi,
• for each α ∈ Ai, let lui (α) := Hu

i (α) and Hi(α) := {lui (α) : u ∈ U} \ {∗}.

Induction statement:By induction on i ∈ [m], we show, for each α ∈ Ai, that
the restriction of φ by α ∪Hi(α) contains the empty clause.

Proof: For the base case i = 1, let α ∈ A1. As L1 is introduced as an axiom,
there exists a clause C ∈ φ such that C1 is the existential subclause of C, and each
Hu

1 is the function outputting the falsifying u-literal for C. Hence, for each u ∈ U ,
lu1 (α) is the falsifying u-literal for C, so C[α ∪H1(α)] = ∅.

For the inductive step, let i ≥ 2 and let α ∈ Ai. The case where Li is introduced
as an axiom is identical to the base case, so we assume that Li was derived by
resolution. Then there exist integers a, b < i and an existential pivot x ∈ X such
that Ci = res(Ca, Cb, x)

(1) Suppose that x ∈ α, each u ∈ U has to satisfy either:

(i) x <Q u and Hu
i = Hu

b

x
./ Hu

a : In which case, lui (α) = lua(α).
(ii) x >Q u and Hu

i = Hu
a ◦Hu

b : In which case, lui (α) = {lua(α) ∪ lub (α)}.
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It follows that lui 6= lua only if lua = ∗, and hence Ha(α) ⊆ Hi(α). Since
Ca \ {x} ⊆ Ci, we have α ∈ Aa, so the restriction of φ by α ∪ Hi(α) con-
tains the empty clause by the inductive hypothesis that α∪Ha(α) contains the
empty clause.

(2) Suppose that x ∈ α. A similar argument shows that Hb(α) ⊆ Hi(α).
ut

Since αm is the empty assignment, we have Am = 〈X〉 (i.e all complete assignments
to X). We therefore prove the lemma at the final step i = m, as we show that
{Hu

m : u ∈ U} is a countermodel for Φ. ut

4.2 Completeness

One would notice that a major change of MRes-R from MRes is the usage of
‘consistency’ check instead of ‘isomorphism’ check. Note that the relation between
them is as such: isomorphism ⇒ consistency but not vice-versa. We use this in our
proofs for completeness of MRes-R.

We show the completeness by first showing that MRes-M p-simulates MRes
(Theorem 6). Here, MRes-M is a proof system in MRes-R which uses merge maps
as the representation. Further, we show in Claim 7 that a MRes-M-proof can be
transformed into any MRes-R-proof in exponential time. Nevertheless, complete-
ness is guaranteed as MRes is complete and any MRes-proof can be transformed
into a MRes-M-proof which in-turn can be transformed as any MRes-R-proof.

We will need the following remark from the paper introducing MRes [4].

Remark 5. [4, Proposition 10] Any two isomorphic merge maps compute the same
function.

Theorem 6. MRes-M p-simulates MRes.

Proof. Given a QBF Φ and its MRes-proof π = L1, ..., Lm, where every line Li =
{Ci, {Mu

i : u ∈ U}}. We intend to build an MRes-M-proof Π = L′1, ..., L
′
m for Φ,

where each L′i = {C ′i, {Hu
i : u ∈ U}}.

For every line Li in π starting from i = 1 to m, if Li is an axiom step then
directly C ′i = Ci and Hu

i = Mu
i for all u ∈ U . Otherwise, if Li is an resolution step

i.e for some a, b < i, Ci = res(Ca, Cb, x); then set C ′i = Ci and for each u ∈ U if

x <Q u then set Hu
i = Hu

b

x
./ Hu

a else set Hu
i = Hu

a ◦ Hu
b . We see that these are

sound steps as resolution in MRes can be of the following types:

(i) x >Q u and Mi = select(Mu
a ,M

u
b ) ; in this case we set Hu

i = Hu
a ◦Hu

b which
holds given the Remark 5 and that isomorphism ⇒ consistency.

(ii) x <Q u and Mi = merge(Mu
a ,M

u
b , i, x) ; in this case we set Hu

i = Hu
b

x
./ Hu

a

which is same as the merge function of MRes.

(iii) x <Q u and Mi = select(Mu
a ,M

u
b ) ; in this case we set Hu

i = Hu
b

x
./ Hu

a which
is allowed as MRes did the isomorphism test on Mu

a andMu
b , but we need no

such check for ./ in MRes-R. (ref. the note just after Definition 3).
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In case-(iii) above it remains to note that adding a ./ to two isomorphic maps or
when one of them is ∗, doesn’t add any new strategy: it just dilutes the strategy
represented by the corresponding merge map. That is, we are adding an if-else
condition where both the outcomes are same or one of them is ∗. Hence doesn’t
affect future consistency checks which may arise in the proof. (For further clarity,
one is suggested to look at Example 1 but it is not needed for the proof).
Therefore, one can clearly see that the proof Π constructed in this process is a
valid MRes-M-proof for Φ. Hence this proves the above theorem. ut

Claim 7. Every MRes-M-proof can be transformed into an MRes-R-proof for any
representation R in exponential time.

Proof. Given a QBF Φ and its MRes-M-proof π = L1, ..., Lm, where every line
Li = {Ci, {Mu

i : u ∈ U}}. We intend to build an MRes-R-proof Π = L′1, ..., L
′
m for

Φ, where each L′i = {C ′i, {Hu
i : u ∈ U}}.

For every line Li in π, we keep the clause part intact while we convert the merge
maps into plain functions. Further as R is a complete representation, these functions
should have a corresponding representation inR; we extensively search for the same.
This search terminates at some point owing to R being a complete representation.
(This is the place where we used the property that R is a complete representation).
The result is an MRes-R-proof for Φ. This process is not polynomial in time but
regardless still proves completeness for the family of proof systems MRes-R. ut

Let us consider example 1 (below) which was referred in Theorem 6. This ex-
ample considers the situation corresponding to the case-(iii) of Theorem 6. That
is, two isomorphic merge maps can be combined with an if-else and the resulting
strategy will still output the same as input merge maps. Or when one of the input
merge map being ∗, makes the resulting strategy diluted in the sense that for half
the assignments it gives a ∗ and for others the same as the non-trivial input merge
map.

Example 1. Let Mu
1 = Mu

2 = 1 be leaf nodes in MRes proof. It implies that corre-
sponding Hu

1 = 1 and Hu
2 = 1 in MRes-R proof. Now say MRes performs a resolu-

tion on pivot variable x which is to the left of u, resulting in Mu
3 = select(Mu

1 ,M
u
2 ).

Whereas the corresponding MRes-R rule needs to be a Hu
3 = Hu

1

x
./ Hu

2 from
case(iii) (ref. Theorem 6). That is, Hu

3 in function form would be defined as fol-
lows:

Hu
3 =

{
1 : x
1 : x

Notice how this is just a diluted way of writing the strategy Hu
3 = 1. Hence when

in the next line of MRes if a Mu
4 = 1 which is isomorphic to Mu

3 is encountered;
the corresponding Hu

4 = 1 in MRes-R will still remain to be consistent with Hu
3

(though they might seem to be structurally different).
In the same example if Mu

2 = ∗ (i.e. trivial), the strategy Hu
3 would have been:

Hu
3 =

{
1 : x
∗ : x
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Notice how this is another way of diluting the strategy and is still consistent with
Hu

4 = 1.

So far, we showed that each proof system in MRes-R is sound and refutationally
complete for false QBFs. Next, we present an example of MRes-R allowing few
resolution steps which are not allowed in MRes. Such examples may be useful for
the separation results between the proof systems in MRes-R and the MRes proof
system.

Example 2. Consider any proof system P in MRes-R which uses some complete R
representation for strategies. The following Table 1 is a P-refutation of the false
QBF : ∃x∀u∃y (y ∨ x ∨ u) ∧ (y ∨ x) ∧ (y ∨ x) ∧ (y ∨ x ∨ u)

Line Rule Ci Hu
i

L1 axiom {y, x} 0
L2 axiom {y, x} *

L3 res(L1, L2, x) {y} Hu
2

x
./ Hu

1
L4 axiom {y, x} *
L5 axiom {y, x} 1

L6 res(L4, L5, x) {y} Hu
5

x
./ Hu

4
L7 res(L3, L6, y) {} Hu

3 ◦H
u
6

Table 1: P-refutation, where P ∈ MRes-R, of the false QBF in Example 2

The strategies Hu
3 and Hu

6 in function format are as follows:

Hu
3 =

{
0 : x = 0
∗ : x = 1

Hu
6 =

{
∗ : x = 0
1 : x = 1

One can see that these strategies are consistent (but not isomorphic), hence the
resolution of L3, L6 on y is allowed in the P-refutation. But the analogous resolution
would be blocked in MRes since the corresponding merge maps Mu

3 ,M
u
6 will not

be isomorphic.

5 eFrege+∀red simulates MRes-R

In this section, we show that eFrege+∀red can efficiently simulate any valid refuta-
tion from proof system in MRes-R. Therefore, the stronger proof systems like QRAT
(Quantified Resolution Asymmetric Tautologies) [16] and G (Gentzen/Sequent Cal-
culus) [21] can also simulate the same.

However, proof systems in MRes-R can have arbitrary representations. Simulat-
ing the same is a nightmare for even the strongest proof systems. But observe that
the rules to construct the strategies in any representation are the same as defined in
Section 3.2. We capture these rules as a new tree structure T . That is, given a valid
proof π of any proof system P ∈ MRes-R, π = (C1, R1), (C2, R2), . . . , (Cm, Rm),
we construct a proof π′ := (C1, T1), (C2, T2), . . . , (Cm, Tm) in such a way that the
representation Ti captures the rules that have been used to construct the strategy
Ri.
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We show that the representation T is also a complete representation for finite
functions. Therefore, MRes-T also belongs to the family MRes-R. Further, we show
that any valid P-proof π (where P ∈ MRes-R) can be efficiently converted to a
MRes-T -proof π′. Finally using the ideas from [10], we show that eFrege+∀red can
efficiently simulate MRes-T . This shows that eFrege+∀red can simulate any proof
systems in MRes-R. We now proceed and define the proof system MRes-T .

5.1 MRes-T proof system

Given a false QBF F , a MRes-T proof π of F is a sequence of lines

(C1, T1), (C2, T2), . . . , (Cm, Tm)

where Cm = ⊥ and each Ti is constructed as follows: if (Ci, Ti) is an axiom step,
then Ti is constructed as in the MRes proof system. Otherwise if (Ci, Ti) is a
Resolution step on a pivot left of the universal variable in question (i.e if-else step
(‘./’) of MRes-R), then Ti is constructed, as a merge node is constructed in MRes.
Further, if (Ci, Ti) is constructed from a resolution step on (Cj , Tj) and (Ck, Tk)
with pivot being right of the universal variable in question and both Tj and Tk are
consistent (i.e union step (‘◦’) of MRes-R), then Ti is constructed by adding a new
type of node called the # node (defined below) with inputs Tj and Tk.

The # node is defined assuming both its inputs are consistent, and it outputs
the result of a union operation on them; more clearly, it’s truth table is shown in
the Fig. 2a.

A B A # B

1 1 1

0 0 0

∗ 0/1 0/1

0/1 ∗ 0/1

∗ ∗ ∗

(a) Truth table for # operator.
(It assumes inputs to be consistent.) ./

# #

./

./

∗

./

∗
1

∗ 1

1 0

y y

x
x

x x

x x

T7 T12

T6

T3

T5

T4

T11

T10

T2 T1

T8 T9

(b) Tu
13 graph for Example 3

Fig. 2: Truth table of # operator is shown in Fig. 2a and its use in MRes-T depicted
by an example QBF in Fig.2b

Note that A = 1, B = 0 and vice-versa cannot happen in a valid MRes-R
proof owing to the definition of union(‘◦’) which needs the input strategies to be
consistent. Therefore, the corresponding rows are omitted from the # node truth
table in Fig 2a. Let us illustrate a MRes-T -proof below for an example QBF.
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Example 3. Let Φ := ∃x, y, ∀u,∃a, b (x, y, u, a) ∧ (x, y, a) ∧ (x, y, u, a) ∧ (x, y, a) ∧
(x, y, u, b) ∧ (x, y, u, b) ∧ (y, b). The MRes-T proof of Φ is shown below in Table 2:

Line Rule Ci Tu
i Type of node

L1 axiom {x, y, a} 1 Leaf
L2 axiom {x, y, a} * Leaf

L3 res(L1, L2, x) {y, a} Tu
2

x
./ Tu

1 if-else
L4 axiom {x, y, a} 1 Leaf
L5 axiom {x, y, a} * Leaf

L6 res(L5, L4, x) {y, a} Tu
4

x
./ Tu

5 if-else
L7 res(L3, L6, a) {y} Tu

3 ◦ T
u
6 #

L8 axiom {x, y, b} 1 Leaf
L9 axiom {x, y, b} 0 Leaf

L10 res(L9, L8, x) {y, b} Tu
8

x
./ Tu

9 if-else

L11 axiom {y, b} * Leaf
L12 res(L10, L11, b) {y} Tu

10 ◦ T
u
11 #

L13 res(L12, L7, y) {} Tu
7

y
./ Tu

12 if-else

Table 2: A MRes-T refutation of the false QBF in Example 3

The final T -graph of winning strategy for the only universal variable u from
Example 3 is shown in Figure 2b. One can see that this graph is a hybrid structure
of both branching programs and circuits. Since it has both ‘branching’ nodes (./
nodes) and ‘circuit’ nodes (# nodes).

Observe that the proposed T representation is complete. That is, any valid finite
function can be represented by a T graph. This follows since, merge maps are a
subset of T -graphs (i.e without # nodes) which are just branching programs, but
known to be complete for all valid functions. Since T representations are complete,
MRes-T is a member of MRes-R proof systems. Therefore this is a sound and
complete proof system. Also note that MRes-T is not claimed to be polynomial
time verifiable.

5.2 Conversion of MRes-R proofs into MRes-T proofs

In this section we show how to convert a valid P-proof π into a valid MRes-T -proof
π′, where P be any proof system in MRes-R. Let π = (C1, R1), (C2, R2), . . . , (Cm, Rm)
be a valid P proof of a QBF F . We show how to convert π into a valid MRes-T -
proof π′ = (C1, T1), (C2, T2), . . . , (Cm, Tm) of the same QBF F . Note that here Ti
is not the representation of Ri, but Ti is capturing how Ri has been constructed
from some hypothesis Rj , Rk with j, k < i using rules from Section 3.2. For this
we do not need to interpret Ri’s, but we can extract the required information from
the clauses Cj , Ck and Ci of π.

It is also useful to note that, during this conversion, one doesn’t need to check
if the two strategies Rj , Rk are consistent or not. The conversion is smooth and
simple as it assumes π to be a valid P-proof of F . We now proceed to give a detailed
method for the same.
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Theorem 8. Any valid P-proof (P ∈ MRes-R) can be converted efficiently into
an MRes-T proof.

Proof. For a false QBF F , proofs of proof systems belonging to MRes-R can have
arbitrary representations for the strategies computed. However, the rules allowed to
construct a strategy Ri using any strategies Rj and Rk (where j, k < i) are fixed.
They must follow the rules mentioned in Section 3.2. MRes-T proof π′ captures
these rules only.

To be precise, given a P-proof π of F where π = (C1, P1), (C2, P2), ..., (Cm, Pm),
we construct MRes-T -proof π′ as follows:

From the clause part of the proof π i.e C1, ..., Cm (in this sequence) based
on what step is being followed (axiom, or resolution where pivot is on left, or
resolution where pivot is on right), we build the corresponding T -maps as shown
in the Figure 3.

cu

(a) Axiom
./

Tu
j Tu

k

x x

(b) if-else node
(res when x is left of u in prefix)

#

Tu
j Tu

k

(c) # node (i.e union node)
(res when x is right of u in prefix)

Fig. 3: Rules to construct T -graphs. In Figure 3a, cu is the falsifying strategy of u
for the axiom clause Ci. In Figure 3b, Ci = res(Cj , Ck, x) and x is left of u in prefix

i.e Tui = Tuk
x
./ Tuj . In Figure 3c, Ci = res(Cj , Ck, x) and x is right of u in prefix

i.e Tui = Tuj ◦ Tuk . Note that the truth table of the ‘# gate’ is defined in Figure 2a

After following this procedure for all lines in π, the sequence of lines so formed
i.e π′ = (C1, T1), (C2, T2), . . . , (Cm, Tm) is a valid MRes-T proof as the clauses
C1, ..., Cm are the same as in the original MRes-R proof hence we know that Cm
is definitely ⊥ and that T1, ..., Tm are built using the same rules as used when
building the valid P-proof π. Therefore Tm is a countermodel as it is building the
same strategy as in Rm. ut

Now we proceed to show that MRes-T proof system can be efficiently simulated
by eFrege+∀red. However before proving the same, observe that MRes-T efficiently
simulates MRes proof system: due to Theorem 8, MRes-T simulates any MRes-R
proof system, and therefore, it also simulates efficiently the MRes-M ∈ MRes-
R proof system, which is known to simulate the MRes proof system efficiently
(Theorem 6). Thus we have the following:

Proposition 9. MRes-T efficiently simulates MRes.
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5.3 eFrege+∀red simulates MRes-T

In this section, we show that eFrege+∀red efficiently simulates valid MRes-T refu-
tations. We use the ideas from [10, Theorem 1] which shows how eFrege+∀red
efficiently simulates MRes. Let us briefly explain the idea from [10, Theorem 1]:
Given an MRes-proof π = (C1,M1), (C2,M2), ..., (Cm,Mm) of a false QBF F , we
know that if π is valid then the merge map Mm in the last line gives a winning
strategy S for the universal player of F . That is, if we assign values of the universal
variables based on S, it falsifies F . In [10] they derived an eFrege+∀red proof π′

from π efficiently in two phases: in the first phase, they derived F eFrege (S → ⊥)

using π. This is equivalent to F eFrege S. This first phase was purely propositional.

Later in the second phase, they used universal reduction to prove S eFrege+∀red ⊥.

Implying from both phases that F eFrege+∀red ⊥. We also use the same tricks for sim-
ulating MRes-T with eFrege+∀red. Hence, we also simulate the same in two phases.
However, in the first phase, they used a double induction in which the second in-
duction depicted how to handle ‘Select’ and ‘Merge’ nodes of MRes. We extend
this to MRes-T by introducing ‘# nodes’ and giving a method to handle those in
the second induction. We now prove this in detail.

Theorem 10. eFrege+∀red efficiently simulates MRes-T .

Proof. Phase-1:
Given a valid MRes-T proof π := (C1, T1), (C2, T2), ..., (Cm, Tm) of a false QBF F ,
we create new extension variables for each node in every strategy appearing in the
proof. That is, sui,t is created for the node t in the strategy Tui for the universal
variable u.

We define sui,t based on whether the corresponding Tui (t) is an axiom node,
if-else node or # node as follows:

sui,t :=


{1/0/∗} Tui (t) = {1/0/∗}
(y ∧ sui,b) ∨ (y ∧ sui,c) Tui (t) = Tui (b)

y
./ Tui (c)

sui,b#s
u
i,c Tui (t) = Tui (b) ◦ Tui (c)

In the quantifier prefix, we place the newly created variables sui,t to the immediate
left of u to maintain the soundness of the proof, as strategies for u depends on
these variables.

We now prove the outer induction in ‘Induction 1’ which assumes that ‘Induc-
tion 2’ is valid and hence can derive the clause Ci by assigning local strategies to
universal variables through a simple resolution for every line Li.

Induction 1 Consider the ith line of π, that is, (Ci, Ti). It is easy for eFrege+∀red
to prove

∧
u∈Ui

(u ↔ sui,r(u,i)) → Ci, where r(u, i) is the index of the root node of
Tui . Ui is the subset of U for which Tui is non-trivial.

Proof:
Base case: Axiom: Suppose Ci is derived by axiom download of some clause
C ∈ F . If u has a non-trivial strategy, it is because it appears in the clause C and
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so u ↔ sui,1, where sui,1 ↔ cu for cu ∈ >,⊥. The constant cu is correctly chosen to
oppose the literal in C so that Ci is just the simplified clause of C replacing all
universal u with the corresponding constant cu’s. This is easy for eFrege+∀red to
prove.
Inductive step: Resolution: If Cj is resolved with Ck to get Ci with pivots
x ∈ Cj and x ∈ Ck, where j, k < i. From the induction hypothesis, we have∧
u∈Uj

(u ↔ suj,r(u,j)) → Cj and
∧
u∈Uk

(u ↔ suk,r(u,k)) → Ck. Observe that using
these clauses, we cannot prove the required statement. However, note that if on
the left hand side of theses clauses, one changes the j and k respectively to i, then
using resolution we can derive Ci on the right hand side. We show in the Induction
2 (below) how to achieve the same. To be precise, from Induction 2 we prove that,∧
u∈Ui

(u↔ sui,r(u,i)) → Cj and
∧
u∈Ui

(u↔ sui,r(u,i)) → Ck holds. We then resolve
these together to derive Ci. This proves Induction 1.

ut
Now in Induction 2 below, we prove what we claimed before in Induction 1 i.e,

given
∧
u∈Uj

(u ↔ suj,r(u,j)) → Cj , we show
∧
u∈Ui

(u ↔ sui,r(u,i)) → Cj holds. We
proceed by handling each u ∈ Ui one by one as follows:

Induction 2 Ui is partitioned into W the set of adjusted variables and V the set
of variables yet to be adjusted. For every such V,W , the following holds:

(
∧
v∈V ∩Uj

(v ↔ svj,r(v,j))) ∧ (
∧
w∈W (w ↔ swi,r(w,i))) → Cj

Recall that Ui is the subset of U for which Tui is non-trivial.

Proof:
Base case: Initially W is empty and as strategies cannot go back to be trivial
Uj ⊆ Ui. Hence the statement to prove is exactly the statement given above in the
hypothesis. Therefore, base case is trivially true.
Inductive step:
Starting with (

∧
v∈V ∩Uj

(v ↔ svj,r(v,j))) ∧ (
∧
w∈W (w ↔ swi,r(w,i))) → Cj .

We pick a u ∈ V to adjust into i-terms, i.e we show the following:
(u↔ sui,r(u,i)) ∧ (

∧
v∈{V ∩Uj}\{u}(v ↔ svj,r(v,j))) ∧ (

∧
w∈W (w ↔ swi,r(w,i))) → Cj .

We have three cases based on the rule used to derive the line Li = (Ci, Ti):

i Tuj = ∗
ii Tuj 6= ∗, Tui = Tuj

x
./ Tuk

iii Tuj 6= ∗, Tui = Tuj ◦ Tuk
In case (i) we can easily adjust the universal variable u. That is, we can simply
add the following: (u ↔ sui,r(u,i)). This is sound because the clause (u ↔ suj,r(u,j))
has never appeared before in the left hand side of the hypothesis but still we were
able to derive Cj . Therefore, adding (u ↔ sui,r(u,i)) to the left hand side of the
hypothesis, will still be able to derive Cj .
In case (ii) we prove inductively that for each node t in Tuj , (s

u
i,t ↔ suj,t) holds. This is

true for all leaf and intermediate nodes of Tuj as we are only going to connect two T -
graphs( i.e Tuj , T

u
k ) by an extra if-else node in Tui , i.e. all nodes of Tuj are present in

Tui . Hence eventually at the root of Tuj , we will have sui,r(u,j) ↔ suj,r(u,j). However to

prove the induction statement (Induction 2), we need to show this relation between
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roots of Tui and Tuj i.e, sui,r(u,i) ↔ suj,r(u,j). For this we use the definition of merging

that x → (sui,r(u,i) ↔ sui,r(u,j)) and so we have (sui,r(u,i) ↔ sui,r(u,j)) ∨ x. We almost
got the relation we needed but only x is the extra literal. But note that x is already
∈ Cj . So, the x is absorbed by the Cj in right hand side of the implication.
In case (iii) using a similar induction as used in case (ii), we can derive sui,r(u,j) ↔
suj,r(u,j): because we are not deleting any strategies just adding an # gate. By the
definition of the # gate, sui,r(u,i) 6= sui,r(u,j) only when sui,r(u,j) ↔ ∗, in which case

it is directly case-(i) above. That is, we can directly add u↔ sui,r(u,i) to the given
hypothesis and we are done. In the other case when sui,r(u,i) = sui,r(u,j), we can
simply add sui,r(u,i) ↔ sui,r(u,j) which directly proves the induction step. ut

Phase-2:
At this point, from the Induction 1, we have derived:

F eFrege (
∧

u∈Um

(u↔ sum,r(u,m)) → ⊥)

In other words, we have derived the winning strategy (say S) for the universal

player in the QBF F i.e F eFrege (S → ⊥). Equivalently, F eFrege S. Also, observe
that so far we are only in the propositional world. Using the ideas from [10], now
from the negation of the strategies for the universal player (i.e., S), we can easily
derive the empty clause using the universal reduction steps.

That is, we have the following S :=
∨n
i=1(ui⊕sui

m,r(ui,m)), where Um = {u1, u2, . . . , un}
in this order in the prefix. Observe the following property for some k = 1 to k = n
in this order:

n−k+1∨
i=1

(ui ⊕ sui

m,r(ui,m))

From the above formula, just pull out the last term and we have:

n−k∨
i=1

(ui ⊕ sui

m,r(ui,m)) ∨ (un−k+1 ⊕ s
un−k+1

m,r(un−k+1,m))

Performing the universal reduction step on un−k+1 is the same as:

n−k∨
i=1

(ui⊕sui

m,r(ui,m))∨(0⊕sun−k+1

m,r(un−k+1,m))
∧ n−k∨

i=1

(ui⊕sui

m,r(ui,m))∨(1⊕sun−k+1

m,r(un−k+1,m))

Which is same as:

n−k∨
i=1

(ui ⊕ sui

m,r(ui,m)) ∨ (s
un−k+1

m,r(un−k+1,m))
∧ n−k∨

i=1

(ui ⊕ sui

m,r(ui,m)) ∨ (s
un−k+1

m,r(un−k+1,m))

Note that we can perform universal reduction on un−k+1 as the only existential
new variable appearing in the clause is to the left of it in the prefix.
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We can resolve these two to get the following:

n−k∨
i=1

(ui ⊕ sui

m,r(ui,m))

Note that we used the following rule above: 0⊕ x is x and 1⊕ x is x̄. We continue
reducing all ui’s to derive the ⊥ at the end.

The proof of Theorem 9 can be concluded by combining the results of Phase-
1 and Phase-2 i.e, F eFrege S and S eFrege+∀red ⊥. Implying from both phases that

F eFrege+∀red ⊥.
ut

Note that given a valid MRes-T proof, by the simulation in Theorem 10 one can
obtain a valid eFrege+∀red proof. But the validness of the resultant eFrege+∀red
proof cannot be used to determine if the initial MRes-T proof was valid or not. That
is, an invalid MRes-T proof may result into a valid eFrege+∀red proof. Therefore
as claimed before, these MRes-R proof systems are not polynomial time verifiable
even after being simulated by the powerful eFrege+∀red proof system. From the
above discussions, Theorem 8 and Theorem 10 imply the following:

Theorem 11. eFrege+∀red efficiently simulates valid refutations from proof sys-
tems in MRes-R.

6 Lower Bound for Regular MRes-R

In this section, we lift the lower bound of Completion Formulas (CRn, Section 2.3)
for Regular-MRes [5, Theorem 9], to Regular-MRes-R. We state the CRn formulas
once again for ease of reference.

CRn = ∃
i,j∈[n]

xij , ∀z, ∃
i∈[n]

ai, ∃
j∈[n]

bj

( ∧
i,j∈[n]

(Aij ∧Bij)
)
∧ LA ∧ LB

where,
Aij = xij ∨ z ∨ ai Bij = xij ∨ z ∨ bj
LA = a1 ∨ · · · ∨ an LB = b1 ∨ · · · ∨ bn
The lower bound follows from a stronger result that we prove below in Theorem

12 that any (A ∪ B)-regular refutation of CRn in any proof system belonging to
MRes-R must have size 2O(n). We use the ideas from [5] to prove the lower bound.
We try to maintain the same notations wherever possible for simplicity.

Before presenting the lower bound proof in detail, we present the basic idea for
the same. The proof setup is depicted in Figure 4. As every clause in CRn has a
variable from the set A ∪B, but the refutation should derive a ⊥ at the final line;
there must be a ‘section’ of the proof (See shaded region S′ in Fig 4) which only
has X variables in all its clauses. This section also includes the final line. The set
of clauses at the ‘border’ (See the bold line S in Fig 4) of this section of the proof
is shown to be wide (in terms of number of literals) in Lemma 13. Using this and
the argument that the conjunction of clauses in S itself forms a false CNF formula,
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we show in Theorem 12 that the number of clauses in S is large (exponential in n).
This directly implies that the size of the MRes-R-proof is also large.

To establish the width bound, we note that the pivots which are used while
deriving clauses in S are variables from A ∪ B and that they are all to the right
of z. Meaning that the corresponding resolutions must all be union steps i.e the
incoming strategies must be consistent (not isomorphic as is the case in MRes). This
especially makes it difficult to directly lift the lower bound proof of MRes from [5].
However we successfully overcome this issue in Claim 14 by arguing how LA, LB
are the only clauses with trivial strategies and how any other clause which resolves
with these will mask this trivial-ness with its own definitive strategy. Further, by
analysing what axiom clauses cannot be used in the derivation of the clauses in S,
we show that many variables cannot be resolved before these lines. Hence, these
variables will still be present in the clause ∈ S, making it wide. We now clearly
state and prove the theorem for the lower bound result.

S′

⊥

Axioms

S
L = (C,Hz)

L1 = (C1, H
z
1 ) L2 = (C2, H

z
2 )

an an

Anj LA

Fig. 4: Lower bound proof illustration. Given any P ∈ MRes-R, a CRn formula
and it’s P-proof Π, this figure shows the graph GΠ . Claim 14 illustrates that
xij /∈ var(Hz

2 ) for i ∈ [n− 1], j ∈ [n] . Claim 15 illustrates that |vars(C2)| ≥ n− 1.
Lemma 13 shows that |vars(C)| ≥ n− 1. Theorem 12 proves that |S| ≥ 2n−1

Theorem 12. Every (A ∪ B)-regular refutation of CRn in any proof system be-
longing to MRes-R has size 2Ω(n).

Proof. For P ∈ MRes-R, let Π be a P-refutation of CRn (for n > 2). Let the set
of lines S, S′ be defined as follows:

S′: This set consists of all the lines L = (C,Hz) from Π such that vars(C)∩{A∪
B} = ∅ and there exists a path from L to ⊥ in GΠ consisting of lines only from
S′.

S: This set contains all the lines L ∈ S′ such that L = Res(L1, L2, v) where
L1, L2 /∈ S′. Observe that the pivot variable v must belong to {A ∪B}.
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Let F =
∧

(C,Hz)∈S
C. Note that F is a false CNF formula because there exists a sub-

derivation Π̂ = {C|∃L = (C,Hz) ∈ S′} which derives a ⊥ given F . The variables
in F are only xij ’s where i, j ∈ [n], therefore it consists of n2 variables. In Lemma
13 we prove that each clause in F has width ≥ n − 1. That is each clause can
be falsified by setting atleast n-1 variables to 0. Hence the number of complete
assignments of X that can falsify a clause ∈ F will be at most 2n

2−(n−1). Since
F is a false CNF formula, all assignments to X should falsify some clause of F .
Therefore, the number of clauses in F should be ≥ 2n−1. This implies that the
number of lines in S is at least 2n−1. Therefore, the number of lines in Π must also
be exponential in n. ut

Now it remains to prove Lemma 13 which we prove below.

Lemma 13 ([5]). For all L = (C,Hz) ∈ S, width(C) ≥ n− 1.

Proof. Observe that L is not an axiom as all axioms of CRn have a variable from
A∪B and so they cannot belong to S. So, let L = res(L1, L2, v) where L1, L2 /∈ S′.
Since two lines not belonging in S′ resolve to make the resultant ∈ S′, the pivot
(i.e v) should be from A∪B. Assume v ∈ A, a similar argument can be made when
v ∈ B. Without loss of generality, assume that v = an

1; and an ∈ C1 and an ∈ C2.
Since Π is (A ∪ B)-regular, an does not occur as a pivot in the sub-derivation

ΠL1
. It implies that the axiom clause LA cannot be used in deriving L1, because

otherwise C1 will have both an & an which makes it a tautology. That implies,
axioms with other positive literals ai’s cannot be used in ΠL1

as the negated
literals ai’s are only available in LA which in-turn cannot be used in ΠL1

. Positive
literals of ai’s only ∈ Aij for all j ∈ [n]. Hence, axioms Aij for i ∈ [n − 1], j ∈ [n]
also cannot be used in deriving the line L1. Now, we know xij only occur in Aij ;
so Hz

1 has no xij variable for i ∈ [n− 1], j ∈ [n]. Also, Hz
1 is not a trivial strategy

as some Anj for j ∈ [n] has been used because an ∈ C1.
Since the pivot an at the resolution step obtaining line L is to the right of z,by

the rules of MRes-R, Hz
1 and Hz

2 are consistent. In Claim 14, we prove that even
though MRes-R only insists on consistency, it still holds that for each i ∈ [n − 1],
and each j ∈ [n], xij /∈ var(Hz

2 ). Using this result we prove in Claim 15 below,
that C2 will have at least n− 1 variables (including an). Therefore, at least n− 2
variables from C2 belong in C.

Also, observe that xnj ∈ C1 for some j ∈ [n]: Since some clause Anj for j ∈ [n]
was used in ΠL1 , the literal xnj is introduced into the proof and resolution of xnj is
not possible before L1. This is because, the clause Bnj needed to resolve it, brings
with it literal bj which needs to be resolved before L1 (as L1 cannot have any A∪B
literals other than an). To resolve this bj , one needs to introduce the clause LB ,
but LB brings all b’s into the resultant which cannot be further resolved as the
B-clauses needed for the same do not have consistent strategies anymore. That is,
because of the use of Anj the resolvent has a 0 strategy for some assignment to X

1 Note that here an is used only for ease in dividing the set A into partitions. nowhere
in the proof we use the fact that an is the last variable in A. Hence it is indeed w.l.o.g
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variables, but B-clauses have a constant strategy of 1 hence these strategies will
not be consistent to resolve further.

Hence, we know xnj ∈ C1 for some j ∈ [n]. It implies that xnj ∈ C as well. This
xnj cannot ∈ C2 as the corresponding axiom clause needed for the same has an in
it, which would make C2 a tautology. Using the three results above, we can derive
that width(C) ≥ n− 1. ut

Claim 14. For i ∈ [n− 1], and each j ∈ [n], xij /∈ var(Hz
2 ).

Proof. At the point of use of this claim in the proof of Lemma 13, we definitely know
that for i ∈ [n− 1] & j ∈ [n]; xij /∈ Hz

1 . That is, if f1 is the function representing
the strategy Hz

1 , then for any assignment σ of xnj ’s and i ∈ [n − 1], j ∈ [n], it
implies that:

f1(σ, xij = 0) = f1(σ, xij = 1) (1)

Let f2 be the function representing the strategy Hz
2 . Since an is to the right of

z, we know that Hz
1 and Hz

2 are consistent, i.e for any assignment σ′ (an extension
of σ) and for i ∈ [n− 1], j ∈ [n], it implies that:

f2(σ′, xij = 0) ' f1(σ′, xij = 0) (2)

f2(σ′, xij = 1) ' f1(σ′, xij = 1) (3)

Only remaining question is if f2(σ′, xij = 0) = f2(σ′, xij = 1)? Observe that if this
equality holds, then f2 will be independent of xij ’s, which implies that xij /∈ Hz

2

for i ∈ [n− 1], j ∈ [n]. Now, we are heading towards proving the equality holds.
Note that if none of the terms in equation 2 and equation 3 give a ‘∗’ for any
assignment of X, the equality in question definitely holds. So, now we prove that
none of them can give a ‘∗’ for any given assignment.

The only axiom clauses of CRn with trivial strategies are LA, LB and these
axioms only contain variables of A∪B, which are all to the right of z. Hence if any
other clause is to be resolved with these clauses, the pivot has to be in A ∪ B i.e.
a union step needs to be performed. At this point the trivial-ness of LA (or LB)
is masked and does not show up in the final strategy of the resultant line; this is
because union of any strategy with a trivial strategy will be the strategy itself. The
only case by which a ‘∗’ can be in the resulting strategy is if LA is resolved with
LB , which can clearly not happen as they have no common variable.

Since C1, C2 are definitely not the axiom clauses LA (or LB), using the above
argument it is simply not possible for the functions f1 (or f2) to output a ‘∗’
for any input assignment provided. This means the equality in question above
holds; meaning that Hz

2 also doesn’t depend on xij ’s when i ∈ [n − 1], j ∈ [n] i.e
xij /∈ vars(Hz

2 ). ut

Now we prove claim 15 which was used in Lemma 13.

Claim 15 ([5]). Either for all i ∈ [n − 1], C2 has a variable of the form xi∗, or
for all j ∈ [n], C2 has a variable of the form x∗j
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Proof. At this point in the proof of Lemma 13, we definitely know that an ∈ C2,
and for all i ∈ [n − 1], for all j ∈ [n], xij /∈ var(Hz

2 ). We prove this claim by
contradiction. Suppose the claim is wrong i.e, there exists some u ∈ [n− 1] where
for all l ∈ [n] xul /∈ var(C2) and some v ∈ [n] where for all k ∈ [n] xkv /∈ var(C2).

Let ρ be the minimum partial assignment falsifying C2. Then we know that :

. ρ sets an = 1, leaves all other variables in A ∪B unset, since they /∈ C2.

. ρ does not set any xul or xkv, since by our assumptions they all are not in C2.

Now, extend ρ to assignment α by setting:

. au = bv = 0 and rest all unset variables from A ∪B to 1.

. Also except xuv, set xu∗ = 1 and x∗v = 0.

Observe that the assignment α satisfies all axiom clauses except Auv and Buv and
does not falsify any axiom.
Now extend α to α0 and α1 by setting xuv = 0 and 1 respectively.

The extension α0 satisfies one more axiom i.e. Buv; similarly α1 satisfies one
more axiom i.e. Auv. Note that they still do not falsify the remaining axiom. That
is, α0 does not falsify Auv and similarly, α1 does not falsify Buv.

α0 and α1 agree everywhere except on xij , and since xij /∈ var(Hz
2 ), it follows

that Hz
2 (α0) = Hz

2 (α1), say this value is equal d.
From the proved Induction in Lemma 4, the partial strategy of universal player

at every line combined with the extension of the existential assignment falsifying
it’s clause part, should falsify some axiom of the QBF. Also, α0 and α1 falsify C2,
since they extend ρ. Hence, it is a contradiction that (αd, d) satisfies all axioms.
Therefore, the claim needs to be true.

ut

From the above discussions and due to Theorem 12, we have the following:

Theorem 16. Every MRes-R-regular refutation of CRn has size 2Ω(n).

7 Conclusion and Future work

MRes proof system introduced recently in [4] builds strategies into proofs for false
QBFs. We extend this proof system to a new family of sound, refutationally com-
plete but not polynomial time verifiable proof systems MRes-R. For each complete
representation R, we have a proof system in MRes-R. We also define a complete
representation T , and it’s proof system MRes-T belonging to MRes-R. We show
how this MRes-T proof system efficiently simulates the before-mentioned MRes
proof system. We also prove that eFrege+∀red can simulate every valid refutation
from proof systems belonging to MRes-R. Further, we establish a lower bound of
Completion Formulas (CRn) for every regular-proof system in MRes-R. Refer Fig 1
for the resulting landscape of QBF-proof systems with efficient simulations.

Still several open problems remain in the scope of this paper. We would like to
end our discussions by pointing out a few of them.
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The simulation relation between proof systems in MRes-R and MRes is still
open. Since proof systems in MRes-R uses strong consistency checking rules as
compared to the isomorphism rule in MRes, we believe that there exists a family
of QBFs which are easy for proof systems in MRes-R but hard for MRes. For the
motivation of the same refer Example 2. It presents the resolution steps forbidden
in MRes but allowed in MRes-R.

Another important open problem, is to establish a lower bound for proof systems
in MRes-R. Note that whether KBKF-lq formulas from [3], is hard or easy for proof
systems in MRes-R is still open. These formulas have been shown to be hard for
the MRes proof system in [5].

MRes proof system is inspired from the LD-Q-Res proof system. It allows some
forbidden resolution steps of LD-Q-Res. It has already been shown that MRes effi-
ciently simulates the reduction-less LD-Q-Res proof system [4]. However, it is still
open whether MRes and LD-Q-Res are incomparable, or if one can simulate the
other.
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