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Abstract
Merge Resolution (MRes [4]) is a recently introduced proof system for false QBFs. Unlike other
known QBF proof systems, it builds winning strategies for the universal player (countermodels)
within the proofs as merge maps. Merge maps are deterministic branching programs in which
isomorphism checking is efficient, as a result MRes is a polynomial time verifiable proof system.

In this paper, we introduce a family of proof systems MRes-R in which the information of
countermodels are stored in any pre-fixed complete representation R. Hence, corresponding to each
possible complete representation R, we have a sound and refutationally complete QBF-proof system
in MRes-R. To handle these arbitrary representations, we introduce consistency checking rules in
MRes-R instead of the isomorphism checking in MRes. As a result these proof systems are not
polynomial time verifiable (Non-P). Consequently, the paper shows that using merge maps is too
restrictive and with a slight change in rules, it can be replaced with arbitrary representations leading
to several interesting proof systems.

We relate these new systems with the implicit proof system from the algorithm in [8], which was
designed to solve DQBFs (Dependency QBFs) using MRes like clause-strategy pairs. We use the
OBDD (Ordered Binary Decision Diagrams) representation suggested in the paper and deduce that
‘Ordered’ versions of the proof systems in MRes-R are indeed polynomial time verifiable.

On the lower bound side, we lift the lower bound result of regular MRes ([5]) by showing that
the completion principle formulas (CRn) from [16] which are shown to be hard for regular MRes
in [5], are also hard for any regular proof system in MRes-R. Thereby, the paper lifts the lower
bound of regular MRes to an entire class of proof systems, which use some complete representations,
including those undiscovered, instead of only merge maps. Thereby proving that the hardness of
CRn formulas is intact even after changing the weak isomorphism checking in MRes to the stronger
consistency checking in MRes-R.
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2 Extending Merge Resolution to a Family of QBF-Proof Systems

1 Introduction
Proof complexity is a sub-branch of computational complexity in which the main focus is to
understand the complexity of proving (refuting) theorems (contradictions) in various proof
systems. Informally, a proof system is a polynomial time computable function which maps
proofs to theorems. Several propositional proof systems like resolution [21], Cutting planes
[12], and Frege [15] have been developed for proving (refuting) propositional formulas. The
relative strength of these proof systems has been well studied [22]. Several proof systems
which are not polynomial time verifiable (unless NP = co-NP ) have also been well studied.
For example, semantic resolution [17] and semantic cutting planes [14].

Quantified Boolean formulas (QBFs) extend propositional logic by quantifying every
variable by ∃ (there exists) and ∀ (for all). There are two major approaches for QBF-proof
systems, namely, the CDCL (Conflict-Driven Clause Learning)-based and expansion-based
systems. The basic systems in these approaches are Q-Res [18] and ∀Exp+Res [16] respectively.
The Q-Res system was later extended to LD-Q-Res in [2] to allow a certain type of tautological
clauses on universal variables in the proofs (which were always discarded in Q-Res) using
merged literals. These merged literals have been shown to be interpreted as partial strategies
rather than tautologies. These strategies were represented explicitly in [4] to form a new
proof system called the MRes system. MRes (Merge Resolution) proof system [4] follows a
different QBF solving approach. It builds partial strategies as ‘merge maps’ at each line
of the proof such that the strategy at the last line forms the countermodel for the input
QBF. Before applying the refutation rules, MRes needs the strategies of the hypothesis to
be isomorphic. As isomorphism checking is known to be efficient in merge maps, MRes is a
polynomial time verifiable proof system.

In this paper, we extend MRes to a family of sound and refutationally complete QBF proof
systems MRes-R. We observe that the representation of strategies in the proofs as merge
maps is not relevant for the soundness and completeness of the proof system. Strategies can
be depicted by any complete representation (Sec:2) and by slightly modifying the refutation
rules to include arbitrary representations, the soundness and completeness of the proof
system remains intact. To be precise, we change the isomorphism checking rule in MRes to
‘consistency’ checking rule (Sec: 3.1) defined initially for Dependency Quantified Boolean
Formulas (DQBFs, [20]) in [8]. This leads to the definition of a new proof system for each
complete representation. All these new proof systems together form the family of proof
systems denoted by MRes-R. Since the consistency checking rules are computationally hard,
the proof systems in MRes-R are not polynomial time verifiable (Non-P proof systems).
In literature, many interesting Non-P QBF proof systems have been studied, for instance,
semantic cutting planes for QBFs (SemCP+∀red) [7] and QBF proof systems modulo NP [10].

The paper also studies in detail the strength and limitations of these new proof systems.
In [4], the authors demonstrated how MRes allows a few forbidden resolution steps of LD-
Q-Res. Similarly, we show that because of the introduction of such powerful consistency
checking rules, proof systems in MRes-R also allow a few forbidden resolution steps of MRes
(ref. Example 8). We also show a Lower bound on a restricted version of proof systems in
MRes-R. We explain our contributions in detail in the following section:

1.1 Our Contributions
1. Introducing a new family of non-polynomial time verifiable proof systems

MRes-R for QBFs: As already stated, proof systems in MRes-R use consistency
checking instead of isomorphism rules of MRes. Informally, an ‘isomorphism’ check
confirms whether two strategies are exactly the same or not. On the other hand, a
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‘consistency’ check confirms whether or not two strategies can give a non-contradicting
output for every possible assignment of input variables. Precisely, an output of ‘∗’ (trivial
strategy) doesn’t contradict with any output of the other strategy, while an output of ‘1’
from one strategy and ‘0’ from another is considered contradicting. MRes allows select
operation (Sec:2.1) on isomorphic strategies. Whereas, proof systems in MRes-R allow
union operation (Definition 2) on consistent strategies (i.e it retains both strategies and
outputs the non-trivial assignment (if possible) from their outputs). For the further
explanations of the MRes and MRes-R proof systems, refer Section 2.1 and 3 respectively.
For proving refutational completeness of the MRes-R family, we consider the MRes-M
proof system ∈ MRes-R which uses merge maps as the representation. We then prove
that every valid rule of MRes is also valid in MRes-M (Theorem 6). We then show how
to convert a MRes-M proof into a proof of any P ∈ MRes-R (Claim 7). This conversion
is non-efficient, but still guarantees the completeness of systems in MRes-R.
The soundness proof of any P (∈ MRes-R) proof system follows from proving that every
line of the P-refutation gives a partial falsifying strategy for the universal player. Hence
at the last line, we prove that it gives a countermodel for the input QBF (Lemma 4).
In [4], resolution steps where the strategy of the universal variables left of the pivot being
same were shown to be forbidden in LD-Q-Res but allowed in MRes. We show in example
8, of resolution steps where the strategy of universal variables left of the pivot being
consistent but not isomorphic to be forbidden in MRes but allowed in MRes-R.

2. Relating MRes-R with the implicit proof system from [8]: In [8], the authors
introduce an algorithm to solve DQBFs, which works with clause-strategy pairs like the
MRes system. They also give a representation called the OBDDs (Ordered Binary Decision
Diagrams [8, Definition 3]) which can support the consistency check in polynomial time.
We observed that the implicit proof system from this algorithm is closely related to the
MRes-R systems. More specifically, this algorithm outputs ‘ordered’-MRes-R proofs using
OBDDs as the representation (denoted by MRes-O). We also show in Proposition 12 that
Ordered MRes-R systems are polynomial time verifiable. For this, we first show how any
MRes-R proof can be efficiently converted into a proof of MRes-T (the MRes-R system
using a T -representation defined in Section 4.1). Then, in Theorem 11, we give a method
to convert efficiently an ordered MRes-T proof into an ordered MRes-O proof. Hence
making the former system polynomial time verifiable. By transitivity from Theorem 9, it
implies that all ordered systems in MRes-R are also polynomial time verifiable.

3. Proving a lower bound for Regular MRes-R: A Lower bound for a proof system is
a family of problems which are hard (exponential) to refute in that particular system. We
establish one such lower bound for a restricted version of all proof systems in MRes-R (i.e
regular MRes-R, Sec:3.2) with a family of QBFs called Completion Principle Formulas
(CRn). The CRn formulas (ref. Definition 13) were first introduced in [16], to show that
level-ordered Q-Res cannot p-simulate the ∀Exp+Res proof system. It has been shown
recently in [5], that CRn formulas are even hard for regular MRes. In this paper, we lift
this lower bound to all regular proof systems in MRes-R (Sec:5).
To establish the lower bound, we mostly follow the ideas of the lower bound proof of
regular MRes from [5, Theorem 9]. In [5], the major part of the proof relied on the fact
that MRes uses isomorphism, so in a resolution step, they could rule out the variables
not in one hypothesis merge map as also not to be present in the other. However, this is
not the case in MRes-R. So we provide a new Claim (ref. Claim 16) with proof that even
though MRes-R insists on consistency rather than isomorphism, the clauses in CRn make
it such that the above property holds. Fig 4 shows the exact illustration of the proof idea.
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This result implies that the lower bound result in [5] for regular-MRes is not because
of the strictness of isomorphism checking in MRes, but it persists independent of the
strategy representations.

We sum up our contributions in Fig 1. The figure also shows current p-simulation order
among QBF proof systems with the contributions of this paper being in bold.
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Figure 1 Various QBF proof systems and p-simulations. Regular MRes-R are below the ‘known
lower bound’ dashed line by Theorem 18. MRes-T p-simulates MRes by Proposition 10. Ordered
MRes-R systems are polynomial time verifiable due to Proposition 12. For other known simulations
refer[11, Fig.1], in-comparability results refer [19, 5, 6]

2 Notations and Preliminaries
For a Boolean variable x, its literals can be x and x. A clause C is a disjunction of literals
and a conjunctive normal form (CNF) formula F is a conjunction of clauses. We denote the
empty clause by ⊥. vars(C) is a set of all variables in C and width(C) = |vars(C)|.
Given a language L ⊆ {0, 1}∗ and a string x ∈ L, a proof system f for L is an inference
system, which is capable of showing that x is indeed in L. To do this, f derives a sequence of
lines inferred via a set of predefined rules in a step by step fashion either from the hypothesis
(i.e x) or from previously inferred lines. This sequence of lines are called an f -proof of the fact
that x ∈ L. A proof system f for L is complete iff for every x ∈ L we have a corresponding
f -proof for x. A proof system f for L is sound iff the existence of an f -proof for x implies
that x ∈ L. By definition, a proof system must be sound and complete for the language L.
In addition, it must be polynomial time computable (verifiable). That is, given a sequence of
lines, it must be check-able whether every line is derived by a valid rule of the system in time
polynomial w.r.t the size of the input sequence, in which case, it is said to be a valid f -proof.
A non-polynomial time verifiable proof system (Non-P proof system) for a language L is
a proof system but without needing to be polynomial time verifiable.

Quantified Boolean formulas: QBFs are an extension of the propositional Boolean
formulas where each variable is quantified with one of {∃, ∀}, with their general semantic
meaning of existential and universal quantifier respectively. In this paper, we assume that
QBFs are in closed prenex form with CNF matrix i.e., we consider the form Q1X1...QkXk.
ϕ(X1 ∪· · ·∪Xk), where Xi are pairwise disjoint sets of variables; Qi ∈ {∃, ∀} and Qi ≠ Qi+1,
and the matrix ϕ is in CNF form. We denote QBFs as F := Q.ϕ in this paper, where Q is
the quantifier prefix. If x ∈ Xi then we denote Q(x) to be equal to Qi. For a variable x if
Q(x) = ∃ (resp. Q(x) = ∀), we call x an existential (resp. universal) variable. If a variable x
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is in the set Xi, any y ∈ Xj where j < i (j > i), we say that y occurs to the left (right) of x

in the quantifier prefix and write y≤Qx (y ≥Q x). The set of existential variables to the left
of a universal variable u will be denoted by LQ(u) in this paper.

Let C ∈ ϕ and Q(u) = ∀, then the ‘falsifying u-literal’ is defined to be 0 if u ∈ C, and 1
if u ∈ C and ∗ if u /∈ vars(C). Also, the existential subclause of C is the clause formed by
only the existential literals from C. If S is any set of variables, a complete assignment of S

will be an assignment which assigns all variables in S to either 1 or 0. Similarly, a partial
assignment is an assignment which assigns a subset of variables in S to either 1 or 0 and the
rest are denoted as having an assignment of ‘∗’. We denote ⟨S⟩ and ⟨⟨S⟩⟩ as the sets of all
possible complete assignments and partial assignments of S respectively.

For a QBF Q.ϕ, a strategy of universal player is a decision function that returns the
assignment to all universal variables of Q, where the decision for each u depends only on
the variables in LQ(u). If Hu is the strategy for the universal variable u then, vars(Hu)
is the subset of variables from LQ(u) which are actually used in building the strategy Hu.
Winning strategy for the universal player is a strategy which for every possible assignment
of existential variables, gives an assignment to all universal variables such that it falsifies
the QBF. A QBF is false iff there exists a winning strategy for the universal player [1].
We say that a QBF proof system f admits strategy extraction if for any given valid
f -proof of a false QBF F , one can compute a winning strategy for the universal player in the
time polynomial to the size of the f -proof. As said earlier, strategies are basically decision
functions. For the portrayal of the same, many representations can be used like truth tables,
directed acyclic graphs (DAGs), merge maps, etc. A complete representation is the one
in which every possible finite decision function can be represented.
Resolution [21] is the most studied redundancy rule in both SAT and QBF worlds, we
define the same as: C∨x D∨x

C∨D , where C, D are clauses and x is the pivot variable. We denote
this step as ‘res(C ∨ x, D ∨ x, x)’ throughout the paper.
Next, we define a few QBF proof systems that we require in this paper.

Q-Res [18] is one of a basic QBF proof system. It is an extension of the resolution proof
system for QBFs. It allows the resolution rule defined in Section 2 with the pivot variable
being existential. For dealing with the universal variables, it defines a ‘universal reduction’
rule which allows dropping of a universal variable u from a clause C, provided no existential
variable x ∈ C appears to the right of u.

LD-Q-Res [2] was developed as an improvement to the Q-Res system. The main ‘Long
distance rule’ used in this system is: (C1 ∪ U1 ∪ {x}) (C2 ∪ U2 ∪ {x})

C1 ∪ C2 ∪ U , where x is the ∀ pivot
variable, U1&U2 are literals of all the universal variables common in both the hypothesis
such that if u1(∈ U1) and u2(∈ U2) are literals of the same variable z then either u1 = u2 or
u1/u2 = z∗. Here U = {u∗|u ∈ U1}.
2.1 MRes
MRes is a proof system for false QBFs introduced in [4], we describe MRes briefly in this
section. For a false QBF Q.ϕ, an MRes refutation will be a sequence of lines of the form
Li = (Ci, {Mu

i }); where Ci is a clause of only existential-literals and {Mu
i } is the set of

merge maps of each universal variable u ∈ Q. The merge map Mu
i is a decision branching

graph with definite strategies {0, 1, ∗} at the leaves nodes (‘∗’ is used when no strategy for
u exists till that line) and the intermediate nodes branch on some existential variable (say
x) ∈ LQ(u). That is, if Li = res(La, Lb, x) for some a, b < i, then Mu

i will get connected to
Mu

a with an edge label of x and to Mu
b with an edge label of x.

An important property used in MRes rules is: Isomorphism: Two merge maps are isomorphic
iff there exists a bijection mapping from the nodes of one to that of another.
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Operations needed for MRes rules are defined as follows: Select operation on two isomorphic
merge maps, outputs one of them. Or if one of them is trivial (i.e ‘∗’), outputs the other.
Merge(Mu

a , Mu
b , n, x) operation, defined when a, b < n, returns a new merge map where

the root node is connected to Mu
a with x and Mu

b with x.
Now we define the MRes proof system:
For a false QBF Q.ϕ, the MRes proof Π := L1, L2, ..., Lm where every line Li is derived using
either an ‘Axiom’ step or a ‘Resolution’ step. In the axiom step, Ci will be the existential
subclause of some C ∈ ϕ and every Mu

i will be a leaf node with the falsifying u-literal of C.
In the resolution step, Ci is obtained from res(Ca, Cb, x) where x is an ∃-variable and a, b < i,
also each Mu

i must either be select(Mu
a , Mu

b ) or if x <Q u then can be merge(Mu
a , Mu

b , i, x).
Π is a refutation iff Cm = ⊥.
GΠ is the derivation graph corresponding to Π with edges directed from the hypothesis to
the resolvent (i.e from the axioms to the final line). For some given line L, ΠL is defined as
the sub-derivation of Π deriving the line L.

3 MRes-R: A new family of proof systems for false QBFs
Inspired from MRes, we define a family MRes-R where every proof system P (∈ MRes-R) has
its own complete representation to represent the strategies. We use the idea of consistency
checking used in MRes-R from [8], which uses the same for DQBFs. For simplicity, we use the
same notations from [8] whenever possible. We begin by defining some important notations
and operations needed before formally defining the MRes-R systems.

3.1 Important notations used in MRes-R
To begin, let us define what consistency means for any two assignments of a set of variables.
Then we will extend it for two strategies.

▶ Definition 1 ([8]). Let X be any set of variables and ε, δ ∈ ⟨⟨X⟩⟩. We say that ε and δ are
consistent, denoted by ε ≃ δ, if for every x ∈ X for which ε(x), δ(x) ̸= ∗ we have ε(x) = δ(x).
Let Hu and H ′

u be individual strategy functions for the universal variable u, we say that Hu

and H ′
u are consistent (written Hu ≃ H ′

u) when Hu(ε) ≃ H ′
u(ε) for each ε ∈ ⟨⟨LQ(u)⟩⟩. In

other words Hu and H ′
u are consistent, if the u-assignments given by Hu(ε) and H ′

u(ε) are
consistent for every possible LQ(u)-assignment ε.

By a change in notation, we can see (partial) assignments as both functions and sets
of literals, i.e. an assignment ε corresponds to the set of literals it satisfies. For example,
{x1, x2, x3, x4} represents an assignment which sets 1 to the variables x1 and x2 and 0 to x3
and x4. In this notation as sets of literals, a union (∪) of assignments ε, δ is defined when
ε ≃ δ and it is equal to ε ∪ δ.
We now define a union operation (‘◦’) on two consistent strategies Hu and H ′

u.
▶ Definition 2 ([8]). Given two consistent strategies Hu and H ′

u (i.e., Hu ≃ H ′
u), we define

the union strategy H ′′
u of Hu and H ′

u, denoted by H ′′
u = Hu ◦ H ′

u, as:
H ′′

u (ε) = Hu(ε) ∪ H ′
u(ε) for each ε ∈ ⟨LQ(u)⟩.

For example, if Hu and H ′
u are defined as below, then H ′′

u = Hu ◦ H ′
u will be:

Hu =
{

1 : x

∗ : x
H ′

u =
{

∗ : x

0 : x
; H ′′

u =
{

1 ∪ ∗ = 1 : x

∗ ∪ 0 = 0 : x
We now define a if-else operation (‘▷◁’) on any two strategies Hu and H ′

u.
▶ Definition 3 ([8]). Given any two strategies Hu and H ′

u and an existential variable x,
we define the if-else operation of Hu and H ′

u on x to give the strategy H ′′
u , denoted by

H ′′
u = Hu

x
▷◁ H ′

u, for every ε ∈ ⟨LQ(u)⟩ as follows:

H ′′
u (ε) =

{
Hu(ε) : ε(x) = 1
H ′

u(ε) : ε(x) = 0



S. Chede and A. Shukla 7

For example, if Hu and H ′
u be defined as below, then H ′′

u = Hu
x
▷◁ H ′

u will be:

Hu =
{

1 : y

∗ : y
H ′

u = 0 ; H ′′
u =


1 : xy

∗ : xy

0 : x

3.2 Definition of MRes-R
Let Φ = Q.ϕ be a QBF with existential variables X and universal variables U . A MRes-R
derivation of Lm from Φ is sequence π = L1, ..., Lm of lines where each Li = (Ci, {Hu

i : u ∈
U}) in which at least one of the following holds for i ∈ [m]:
a. Axiom. There exists a clause C ∈ ϕ such that Ci is the existential subclause of C, and

for each u ∈ U , Hu
i is the strategy function mapping u to the falsifying u-literal for C or,

b. Resolution. There exist integers a, b < i and an existential pivot x ∈ X such that
Ci = res(Ca, Cb, x) and for each u ∈ U :
i. if x <Q u, then Hu

i = Hu
b

x
▷◁ Hu

a

ii. else if x >Q u, then Hu
i = Hu

a ◦ Hu
b .

π is a refutation of Φ iff Cm = ⊥. Size of π is the number of lines i.e |π| = m.
Regular MRes-R: Let S be a subset of existential variables X of a QBF F . We say that a
P-refutation π of F (P ∈MRes-R) is S-regular if for every x ∈ S, there is no leaf to root
path in Gπ that uses x as pivot more than once. A X-regular proof is simply a regular proof.
Ordered MRes-R: Let X be the set of all existential variables of a false QBF F and ≤X be
a fixed ordering of variables in X. We say that a P-refutation π of F (where P ∈MRes-R) is
ordered if it is regular and for each leaf-to-root path in Gπ, the pivots follow ≤X .

3.3 Soundness of MRes-R:
Soundness of MRes-R is proved by the next lemma, it follows closely to that of MRes in [4].
▶ Lemma 4. Let π = L1, . . . , Lm be a P refutation (P ∈ MRes-R) of QBF Φ. Then, strategy
functions {Hu

m : u ∈ U} in the conclusion line Lm will form a countermodel for Φ.
Proof. Given π := L1, . . . , Lm be a P-refutation of QBF Φ = Q.ϕ. Each Li=(Ci, {Hu

i : u ∈
U}) and X, U are sets of all existential and universal variables in Q respectively. For i ∈ [m],
• let αi := {l : l ∈ Ci} be the smallest assignment falsifying Ci ,
• let Ai := {α ∈ ⟨X⟩ : Ci ∩ α = ∅} be all complete assignments to X consistent with αi,
• for each α ∈ Ai, let lu

i (α) := Hu
i (α) and Hi(α) := {lu

i (α) : u ∈ U} \ {∗}.
Induction statement:By induction on i ∈ [m], we show, for each α ∈ Ai, that the restriction
of ϕ by α ∪ Hi(α) contains the empty clause.
Proof: For the base case i = 1, let α ∈ A1. As L1 is introduced as an axiom, there exists
a clause C ∈ ϕ such that C1 is the existential subclause of C, and each Hu

1 is the function
mapping u to the falsifying u-literal for C. Hence, for each u ∈ U , lu

1 (α) is the falsifying
u-literal for C, so C[α ∪ H1(α)] = ∅.

For the inductive step, let i ≥ 2 and let α ∈ Ai. The case where Li is introduced as an
axiom is identical to the base case, so we assume that Li was derived by resolution. Then
there exist integers a, b < i and an existential pivot x ∈ X such that Ci = res(Ca, Cb, x).
Suppose that x ∈ α (a similar argument holds when x ∈ α), each u ∈ U has to satisfy either:

(i) x <Q u and Hu
i = Hu

b

x
▷◁ Hu

a : In which case, lu
i (α) = lu

a(α).
(ii) x >Q u and Hu

i = Hu
a ◦ Hu

b : In which case, lu
i (α) = {lu

a(α) ∪ lu
b (α)}.

It follows that lu
i ̸= lu

a only if lu
a = ∗, and hence Ha(α) ⊆ Hi(α). Since Ca \ {x} ⊆ Ci, we

have α ∈ Aa, so the restriction of ϕ by α ∪ Hi(α) contains the empty clause by the inductive
hypothesis that α ∪ Ha(α) contains the empty clause. ◀

Since αm is the empty assignment, we have Am = ⟨X⟩. We therefore prove the lemma at
the final step i = m, as we show that {Hu

m : u ∈ U} is a countermodel for Φ. ◀
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3.4 Completeness of MRes-R:
Completeness of MRes-R is proved by the following Theorem 6 and Claim 7. We will need the
following remark from the paper introducing MRes [4]. For proof of Claim 7, refer Appx: A.
▶ Remark 5. [4, Proposition 10] Any two isomorphic merge maps compute the same function.
▶ Theorem 6. MRes-M (MRes-R using merge maps as representation) p-simulates MRes.
Proof. Given a QBF Φ and its MRes-proof π = L1, ..., Lm, where every Li = {Ci, {Mu

i : u ∈
U}}. We build an MRes-M proof Π = L′

1, ..., L′
m for Φ, where each L′

i = {C ′
i, {Hu

i : u ∈ U}}.
For every line Li in π starting from i = 1 to m, if Li is an axiom step then directly C ′

i = Ci

and Hu
i = Mu

i for all u ∈ U . Otherwise, if Li is an resolution step i.e for some a, b < i,
Ci = res(Ca, Cb, x); then set C ′

i = Ci and for each u ∈ U if x <Q u then set Hu
i = Hu

b

x
▷◁ Hu

a

else set Hu
i = Hu

a ◦ Hu
b . These are sound steps as resolution in MRes can be either:

(i) x >Q u and Mi = select(Mu
a , Mu

b ) ; in this case we set Hu
i = Hu

a ◦ Hu
b which holds given

the Remark 5 and that isomorphism ⇒ consistency.
(ii) x <Q u and Mi = merge(Mu

a , Mu
b , i, x) ; in this case we set Hu

i = Hu
b

x
▷◁ Hu

a which is
same as the merge function of MRes.

(iii) x <Q u and Mi = select(Mu
a , Mu

b ) ; in this case we set Hu
i = Hu

b

x
▷◁ Hu

a which is allowed
as MRes did the isomorphism test on Mu

a and Mu
b , but we do not need it for ▷◁ in MRes-R.

In case-(iii) above it remains to note that adding a ▷◁ to two isomorphic maps or when
one of them is ∗, doesn’t add any new strategy: it just dilutes the strategy represented by
the corresponding merge map. That is, we are adding an if-else condition where both the
outcomes are same or one of them is ∗. Hence doesn’t affect future consistency checks which
may arise in the proof. (For further clarity, one is suggested to look at Appx:Example 19 but
is not needed for the proof). Finally, the constructed Π is a valid MRes-M proof of Φ. ◀

▶ Claim 7. Every MRes-M-proof can be transformed into an MRes-R-proof for any repres-
entation R in exponential time.
These guarantee the completeness of proof systems in MRes-R as MRes is complete and any
MRes-proof can be transformed into a MRes-M-proof (by Theorem 6) which in-turn can be
transformed as any MRes-R-proof (by Claim 7).

Next, we present an example (Example 8) of MRes-R allowing few resolution steps which
are forbidden in MRes. Such examples may be useful for the separation results between the
proof systems in MRes-R and the existing MRes proof system.

Table 1 P-refutation, where P ∈ MRes-R, of the false QBF in Example 8

Line Rule Ci Hu
i

L1 axiom {y, x} 0
L2 axiom {y, x} *
L3 res(L1, L2, x) {y} Hu

2
x
▷◁ Hu

1
L4 axiom {y, x} *
L5 axiom {y, x} 1
L6 res(L4, L5, x) {y} Hu

5
x
▷◁ Hu

4
L7 res(L3, L6, y) {} Hu

3 ◦ Hu
6

▶ Example 8. Consider any proof system P in MRes-R which uses some complete R

representation for strategies. The following Table 1 is a P-refutation of the false QBF :
∃x∀u∃y (y ∨ x ∨ u) ∧ (y ∨ x) ∧ (y ∨ x) ∧ (y ∨ x ∨ u)
The strategies Hu

3 and Hu
6 in function format are as follows:

Hu
3 =

{
0 : x = 0
∗ : x = 1 Hu

6 =
{

∗ : x = 0
1 : x = 1



S. Chede and A. Shukla 9

One can see that these strategies are consistent (but not isomorphic), hence the resolution
of L3, L6 on y is allowed in the P-refutation. But the corresponding resolution would be
blocked in MRes since the corresponding merge maps Mu

3 , Mu
6 will not be isomorphic.

4 MRes-T proof system
In this section, we will define a particular proof system MRes-T from the family of MRes-R
proof systems. The importance of this system is that any P-refutation (P ∈ MRes-R) can
be efficiently converted into an MRes-T -refutation. That is, all proof systems in MRes-R can
be p-simulated by this MRes-T system. Later in this section, we will discuss how this system
relates to the implicit proof system of the algorithm defined in [8].

4.1 Definition of MRes-T
For a false QBF F , the sequence of lines π := (C1, T1), . . . , (Cm, Tm) is an MRes-T refutation
if Cm = ⊥ and each Ti is built based on the derivation of Ci from parents Cj , Ck as follows:

Ti :=
{

Axiom node as in MRes Axiom step of MRes-R
Merge node over Tj , Tk as in MRes If-else step (‘Cj

x
▷◁ Ck’) of MRes-R

# node (defined below) on Tj , Tk Union step (‘Cj ◦ Ck’) of MRes-R
The # node is defined assuming both its inputs are consistent, and it outputs the result of
a union operation on them; Precisely, it’s truth table is shown in Fig. 2.

A B A # B
1 1 1
0 0 0
∗ 0/1 0/1

0/1 ∗ 0/1
∗ ∗ ∗

Figure 2 Truth table for # operator (It assumes inputs to be consistent).
Note that A = 1, B = 0 and vice-versa cannot happen in a valid MRes-R proof owing to the
definition of union(‘◦’). Therefore, the corresponding rows are omitted from the truth table
in Fig 2. For an illustrative example of an MRes-T -proof, see Appx:Example 20.

Observe that the proposed T representation is complete. That is, any valid finite function
can be represented by a T graph. This follows since, merge maps are a subset of T -graphs
(i.e without # nodes) which are just branching programs, but known to be complete for all
valid functions. Since T representations are complete, it implies MRes-T ∈ MRes-R.

4.2 Conversion of MRes-R proofs into MRes-T proofs
In this section, we show how to convert a P-proof π (P ∈ MRes-R) into a MRes-T proof π′.
Let π = (C1, R1), . . . , (Cm, Rm) be a P proof of a QBF F . We show how to convert π into a
MRes-T proof π′ = (C1, T1), . . . , (Cm, Tm) of the same QBF F . Note that here Ti is not the
representation of Ri, but Ti is capturing how Ri has been constructed from some hypothesis
Rj , Rk with j, k < i using rules from Section 3.2. For this we do not need to interpret Ri’s,
but we can extract the required information from the clauses Cj , Ck and Ci of π (illustration
of the same is given in Fig 3).
▶ Theorem 9. Any P-proof (P ∈ MRes-R) can be converted efficiently into an MRes-T
proof.
Proof. For a false QBF F , proofs of proof systems belonging to MRes-R can have arbitrary
representations for the strategies computed. However, the rules allowed to construct a
strategy Ri using any strategies Rj and Rk (where j, k < i) are fixed. They must follow the
rules mentioned in Section 3.2. MRes-T proof π′ captures these rules only.

To be precise, given a P-proof π of F where π = (C1, P1), (C2, P2), ..., (Cm, Pm), we
construct MRes-T -proof π′ as follows: From the clause part of the proof π i.e C1, ..., Cm (in
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this sequence) based on what step is being followed (axiom, or resolution where pivot is on
left, or resolution where pivot is on right), we build the corresponding T -graphs as shown
in the Figure 3. After following this procedure for all lines in π, the sequence of lines so
formed i.e π′ = (C1, T1), (C2, T2), . . . , (Cm, Tm) is a MRes-T proof as the clauses C1, ..., Cm

are the same as in the original MRes-R proof hence we know that Cm is definitely ⊥ and
that T1, ..., Tm are built using the same rules as used when building the P-proof π. ◀

cu

(a) Axiom
▷◁

T u
j T u

k

x x

(b) if-else node
(res when x is left of u in prefix)

#

T u
j T u

k

(c) # node (i.e union node)
(res when x is right of u in prefix)

Figure 3 Rules to construct T -graphs. In Figure 3a, cu is the falsifying strategy of u for the
axiom clause Ci. In Figure 3b, Ci = res(Cj , Ck, x) and x is left of u in prefix i.e T u

i = T u
k

x
▷◁ T u

j . In
Figure 3c, Ci = res(Cj , Ck, x) and x is right of u in prefix i.e T u

i = T u
j ◦ T u

k .

Observe that due to Theorem 9, MRes-T p-simulates any MRes-R proof system, and therefore,
it also p-simulates the MRes-M ∈ MRes-R proof system, which is known to simulate the
MRes proof system (Theorem 6). Thus we have the following:
▶ Proposition 10. MRes-T p-simulates MRes.

4.3 MRes-T versus Implicit proof system in [8]
The authors in [8] give an algorithm to work with DQBFs and a representation for strategies
(OBDDs) to make the consistency check in the algorithm efficient. In this section we discuss
how the implicit proof system from this algorithm relates to our newly defined proof systems.

The algorithm in [8] is designed to eliminate pivots in any fixed order by taking all possible
resolvents at every stage. Hence, one can clearly see that the algorithm works implicitly on
the ordered-MRes-R system which uses OBDDs for the representation (denoted as MRes-O).
As the consistency check and union operation on OBDDs are shown to be efficient ([8, 13]),
it makes the corresponding ordered-MRes-O systems polynomial time verifiable.

We note that the ‘ordered’-T -representation is much similar to an OBDD with an extra
# node. We can efficiently convert an ‘ordered’-T strategy into an OBDD representation as
follows: At every # node, recursively from leaf-to-root, perform the union operation on the
hypothesis strategies assuming them to be OBDDs and then replace the # node with the
resultant OBDD-representation. This will end finally with a complete OBDD representation
of the initial strategy represented by the ordered-T -representation. When clubbed with
ordered-MRes-O being polynomial time verifiable, it implies the following theorem. For an
example of this conversion, see Appx D.
▶ Proposition 11. Ordered MRes-T is polynomial time verifiable proof system.

Proposition 11 along with the algorithm in Theorem 9 provided for conversion of any MRes-R
proof into MRes-T , deduces the following:
▶ Proposition 12. Ordered MRes-R is a family of polynomial time verifiable proof systems.

Observe that regular MRes-T cannot be guaranteed to be polynomial time verifiable. This
is because, a regular MRes-T would need an FBDD (Free BDD) to use as a representation
for strategies and according to [13], FBDDs cannot guarantee polynomial time verifiability.
Therefore, polynomial time verification, even with the usage of OBDDs, stops at ordered-
proofs itself, which are a restriction of regular proofs which in-turn are a restricted version of
general proofs. Refer Fig 1 for the complete picture of all the above discussed proof systems.
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5 Lower Bound for Regular MRes-R
▶ Definition 13 (Completion Principle Formulas (CRn) [16]).
CRn = ∃

i,j∈[n]
xij, ∀z, ∃

i∈[n]
ai, ∃

j∈[n]
bj

( ∧
i,j∈[n]

(Aij ∧ Bij)
)

∧ LA ∧ LB

where, Aij = xij ∨ z ∨ ai Bij = xij ∨ z ∨ bj

LA = a1 ∨ · · · ∨ an LB = b1 ∨ · · · ∨ bn

We define the sets A := {a1, a2, ..., an} and B := {b1, b2, ..., bn} for ease of usage.
In this section, we prove that the CRn formulas are hard to refute in regular proof systems
of MRes-R. The lower bound result follows from a stronger result that we prove below in
Theorem 14. We use the ideas from [5] and try to maintain the same notations wherever
possible for simplicity. The proof setup is depicted in Figure 4. The basic idea of the proof is:
As every clause in CRn has a variable from the set A ∪ B, but the refutation should derive
a ⊥ at the final line; there must be a ‘section’ of the proof (See shaded region S′ in Fig 4)
which only has X variables in all its clauses. This section also includes the final line. The set
of clauses at the ‘border’ (See the bold line S in Fig 4) of this section of the proof is shown
to be wide (in terms of number of literals) in Lemma 15. Using this and the argument that
the conjunction of clauses in S itself forms a false CNF formula, we show in Theorem 14
that the number of clauses in S is exponential in n. This directly implies the lower bound.

To establish the width bound, we note that the pivots which are used while deriving
clauses in S are variables from A ∪ B and that they are all to the right of z. Meaning that
the corresponding resolutions must all be union steps i.e the incoming strategies must be
consistent (not isomorphic as is the case in MRes). This especially makes it difficult to
directly lift the lower bound proof of MRes from [5]. However we overcome this issue in Claim
16 by arguing how LA, LB are the only clauses with trivial strategies and how any other
clause which resolves with these will mask this trivial-ness with its own definitive strategy.
Further, by analysing what axiom clauses cannot be used in the derivation of the clauses in
S, we show that many variables cannot be resolved before these lines. Hence, these variables
will still be present in the clause ∈ S, making it wide. We now clearly state the Theorem,
Lemma and Claims explained above and give the proof for those with vital changes from the
proofs in [5], for remaining detailed proofs see Appx:C.

S′

⊥

Axioms

S
L = (C, Hz)

L1 = (C1, Hz
1 ) L2 = (C2, Hz

2 )
an an

Anj LA

Figure 4 Lower bound proof illustration. Given a CRn formula and it’s P-proof Π (P ∈ MRes-R),
this figure shows the graph GΠ. Claim 16 proves xij /∈ var(Hz

2 ) for i ∈ [n − 1], j ∈ [n] . Claim 17
shows |vars(C2)| ≥ n − 1. Lemma 15 shows |vars(C)| ≥ n − 1. Theorem 14 proves that |S| ≥ 2n−1.
▶ Theorem 14. Every (A ∪ B)-regular refutation of CRn in any proof system belonging to
MRes-R has size 2Ω(n).
For P ∈ MRes-R, let Π be a P-refutation of CRn (for n > 2). Let the set of lines S, S′ be
defined as follows:
S′: This set consists of all the lines L = (C, Hz) from Π such that vars(C) ∩ {A ∪ B} = ∅

and there exists a path from L to ⊥ in GΠ consisting of lines only from S′.
S: This set contains all the lines L ∈ S′ such that L = Res(L1, L2, v) where L1, L2 /∈ S′.

Observe that the pivot variable v must belong to {A ∪ B}.
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▶ Lemma 15 ([5]). For all L = (C, Hz) ∈ S, width(C) ≥ n − 1.
Proof. Observe that L is not an axiom as all axioms of CRn have a variable from A ∪ B and
so they cannot belong to S. So, let L = res(L1, L2, v) where L1, L2 /∈ S′. Since two lines not
belonging in S′ resolve to make the resultant ∈ S′, the pivot (i.e v) should be from A ∪ B.
Assume v ∈ A, a similar argument can be made when v ∈ B. Without loss of generality,
assume that v = an; and an ∈ C1 and an ∈ C2 (Note: an is used only for ease in dividing the
set A into partitions. Nowhere in the proof we use the fact that an is the last variable in A.)

Since Π is (A ∪ B)-regular, an does not occur as a pivot in the sub-derivation ΠL1 . It
implies that the axiom clause LA cannot be used in deriving L1, because otherwise C1 will
have both an & an making it a tautology. That implies, axioms with other positive literals
ai’s cannot be used in ΠL1 as the negated literals ai’s are only available in LA which in-turn
cannot be used in ΠL1 . Positive literals of ai’s only ∈ Aij for all j ∈ [n]. Hence, axioms Aij

for i ∈ [n − 1], j ∈ [n] also cannot be used in deriving the line L1. We know xij only occur in
Aij ; so Hz

1 has no xij variable for i ∈ [n − 1], j ∈ [n]. Also, Hz
1 is not a trivial strategy as

some Anj for j ∈ [n] has been used because an ∈ C1. Fix this j for the rest of the proof.
Since the pivot an at the resolution step obtaining line L is to the right of z, by the rules

of MRes-R, Hz
1 and Hz

2 are consistent. In Claim 16, we prove that even though MRes-R
only insists on consistency, it still holds that for each i ∈ [n − 1], and each j ∈ [n], xij /∈
var(Hz

2 ). Using this result we prove in Claim 17 below, that C2 will have at least n − 1
variables (including an). Therefore, at least n − 2 variables from C2 belong in C.

At this point, if we can show that at least one extra variable is present in C1 but not in
C2, then |C| ≥ n − 1 and the proof is complete. To prove this, there will be two cases, in the
first case, we easily prove that xnj ∈ C1 but not in C2. In the second case (which is lengthy),
where xnj is not in C1, we prove that one extra x variable must belong to C1 \ C2.
Case-1 Since the clause Anj (as fixed above) was used in ΠL1 , the literal xnj is introduced

into the proof and resolution of xnj is not possible before L1. This is because, the clause
Bnj needed to resolve it, brings with it literal bj which needs to be resolved before L1
(as L1 cannot have any A ∪ B literals other than an). To resolve this bj , one needs to
introduce the clause LB , but LB brings all b’s into the resultant which cannot be further
resolved as the B-clauses needed for the same do not have consistent strategies anymore.
That is, because of the use of Anj the resolvent has a 0 strategy for some assignment to
X variables, but B-clauses have a constant strategy of 1 hence these strategies will not
be consistent to resolve further. This xnj cannot ∈ C2 as the corresponding axiom clause
needed for the same has an in it, which would make C2 a tautology.

Case-2 One can forcefully take a longer way to get rid of xnj from the clause C1. That will
be by resolving LB with B∗p’s for p ∈ [n] − j and with Bnj . Then, resolve with Anj to get
rid of xnj . One should note that in this process instead of 1 we now have n − 1 variables
other than an in C1. The final C1 in this process will be {an, x∗p’s for p ∈ [n] − j}.
Now for C2 to already have all these literals, one should start from LB and use the same
B∗p’s for p ∈ [n] − j and a B∗j as well to clear out all b’s from the clause. The resultant
clause will be {x∗p’s for p ∈ [n]}. Now one needs to introduce the an literal from LA but
no pivot variable is available for direct resolution. Even if one cleverly uses some Akj for
k ∈ [n − 1] to resolve and remove xkj which was anyhow not in C1; later resolving with
LA blocks any further resolutions to remove remaining a’s as the strategies will no longer
be consistent. So, one will have to resolve first with all A∗p’s, which will remove all x∗p’s
as well. But further when resolving with LA, both literals of all a’s will be present, which
is a tautology. Hence atleast one extra literal will belong to C1 which will be passed to C.

Using the three results above, we can derive that width(C) ≥ n − 1. ◀
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▶ Claim 16. For i ∈ [n − 1], and each j ∈ [n], xij /∈ var(Hz
2 ).

Proof. At the point of use of this claim in the proof of Lemma 15, we definitely know that
for i ∈ [n − 1] & j ∈ [n]; xij /∈ Hz

1 . That is, if f1 is the function representing the strategy
Hz

1 , then for any assignment σ of xnj ’s and i ∈ [n − 1], j ∈ [n], it implies that:
f1(σ, xij = 0) = f1(σ, xij = 1) (1)

Let f2 be the function representing the strategy Hz
2 . Since an is to the right of z, we

know that Hz
1 and Hz

2 are consistent, i.e for any assignment σ′ (an extension of σ) and for
i ∈ [n − 1], j ∈ [n], it implies that:

f2(σ′, xij = 0) ≃ f1(σ′, xij = 0) (2)

f2(σ′, xij = 1) ≃ f1(σ′, xij = 1) (3)
Only remaining question is if f2(σ′, xij = 0) = f2(σ′, xij = 1)? Observe that if this equality
holds, then f2 will be independent of xij ’s, which implies that xij /∈ Hz

2 for i ∈ [n−1], j ∈ [n].
Now, we are heading towards proving the equality holds. Note that if none of the terms
in equation 2 and equation 3 give a ‘∗’ for any assignment of X, the equality in question
definitely holds. So, now we prove that none of them can give a ‘∗’ for any given assignment.

The only axiom clauses of CRn with trivial strategies are LA, LB and these axioms only
contain variables of A ∪ B, which are all to the right of z. Hence if any other clause is to
be resolved with these clauses, the pivot has to be in A ∪ B i.e. a union step needs to be
performed. At this point the trivial-ness of LA (or LB) is masked and does not show up in
the final strategy of the resultant line; this is because union of any strategy with a trivial
strategy will be the strategy itself. The only case by which a ‘∗’ can be in the resulting
strategy is if LA is resolved with LB , which can clearly not happen as they have no common
variable. Since C1, C2 are definitely not the axiom clauses LA (or LB), using the above
argument it is simply not possible for the functions f1 (or f2) to output a ‘∗’ for any input
assignment provided. This means the equality in question above holds; meaning that Hz

2
also doesn’t depend on xij ’s when i ∈ [n − 1], j ∈ [n] i.e xij /∈ vars(Hz

2 ). ◀

▶ Claim 17 ([5]). Either for all i ∈ [n − 1], C2 has a variable of the form xi∗, or for all
j ∈ [n], C2 has a variable of the form x∗j

From the above discussions and due to Theorem 14, we have the following:
▶ Theorem 18. Every MRes-R-regular refutation of CRn has size 2Ω(n).

6 Conclusion and Future work
This paper extends MRes proof system into a family of non-P proof systems MRes-R and
provides a motivation example of forbidden steps of MRes being allowed in MRes-R. This
paper also deduces that ‘ordered’ versions of proof systems in MRes-R are polynomial time
verifiable and gives a lower bound for ‘regular’ versions of proof systems in MRes-R. Still
several open problems remain in the scope of this paper. We point some of them as follows:

The relative strength of proof systems in MRes-R and MRes is still unclear. Since proof
systems in MRes-R use strong consistency checking rules as compared to the isomorphism
rule in MRes, we believe that there exists a family of QBFs which are easy for proof systems
in MRes-R but hard for MRes.

Another direction is to establish a lower bound for proof systems in MRes-R. It is open
whether KBKF-lq formulas [3] (shown to be hard for the MRes proof system in [5]), are
hard or easy for proof systems in MRes-R. Note that, by slightly modifying the formula to
KBKF-lq-split [19] it has been shown to be easy for MRes and hence making them easy for
MRes-R as well.
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Appendix-1

A Missing proof and example from Section: 3.4

This example considers the situation corresponding to the case-(iii) of Theorem 6. That is,
two isomorphic merge maps can be combined with an if-else and the resulting strategy will
still output the same as input merge maps. Or when one of the input merge map being ∗,
makes the resulting strategy diluted in the sense that for half the assignments it gives a ∗
and for others the same as the non-trivial input merge map.

▶ Example 19. Let Mu
1 = Mu

2 = 1 be leaf nodes in MRes proof. It implies that corresponding
Hu

1 = 1 and Hu
2 = 1 in MRes-R proof. Now say MRes performs a resolution on pivot variable

x which is to the left of u, resulting in Mu
3 = select(Mu

1 , Mu
2 ). Whereas the corresponding

MRes-R rule needs to be a Hu
3 = Hu

1
x
▷◁ Hu

2 from case(iii) (ref. Theorem 6). That is, Hu
3 in

function form would be defined as follows:

Hu
3 =

{
1 : x

1 : x

Notice how this is just a diluted way of writing the strategy Hu
3 = 1. Hence when in the

next line of MRes if a Mu
4 = 1 which is isomorphic to Mu

3 is encountered; the corresponding
Hu

4 = 1 in MRes-R will still remain to be consistent with Hu
3 (though they might seem to be

structurally different).
In the same example if Mu

2 = ∗ (i.e. trivial), the strategy Hu
3 would have been:

Hu
3 =

{
1 : x

∗ : x

Notice how this is another way of diluting the strategy and is still consistent with Hu
4 = 1.

Claim 7. Every MRes-M-proof can be transformed into an MRes-R-proof for any represent-
ation R in exponential time.

Proof. Given a QBF Φ and its MRes-M-proof π = L1, ..., Lm, where every line Li =
{Ci, {Mu

i : u ∈ U}}. We intend to build an MRes-R-proof Π = L′
1, ..., L′

m for Φ, where each
L′

i = {C ′
i, {Hu

i : u ∈ U}}.
For every line Li in π, we keep the clause part intact while we convert the merge maps

into plain functions. Further as R is a complete representation, these functions should have a
corresponding representation in R; we extensively search for the same. This search terminates
at some point owing to R being a complete representation. (This is the place where we used
the property that R is a complete representation). The result is an MRes-R-proof for Φ.
This process is not polynomial in time but regardless still proves completeness for the family
of proof systems MRes-R. ◀

B Missing example from Section: 4

▶ Example 20. Let Φ := ∃x, y, ∀u, ∃a, b (x, y, u, a)∧(x, y, a)∧(x, y, u, a)∧(x, y, a)∧(x, y, u, b)∧
(x, y, u, b) ∧ (y, b). The MRes-T proof of Φ is shown below in Table 2:

The final T -graph of winning strategy for the only universal variable u from Example 20
is shown in Figure 5. One can see that this graph is a hybrid structure of both branching
programs and circuits. Since it has both ‘branching’ nodes (▷◁ nodes) and ‘circuit’ nodes (#
nodes).
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Table 2 A MRes-T refutation of the false QBF in Example 20

Line Rule Ci T u
i Type of node

L1 axiom {x, y, a} 1 Leaf
L2 axiom {x, y, a} * Leaf
L3 res(L1, L2, x) {y, a} T u

2
x
▷◁ T u

1 if-else
L4 axiom {x, y, a} 1 Leaf
L5 axiom {x, y, a} * Leaf
L6 res(L5, L4, x) {y, a} T u

4
x
▷◁ T u

5 if-else
L7 res(L3, L6, a) {y} T u

3 ◦ T u
6 #

L8 axiom {x, y, b} 1 Leaf
L9 axiom {x, y, b} 0 Leaf
L10 res(L9, L8, x) {y, b} T u

8
x
▷◁ T u

9 if-else
L11 axiom {y, b} * Leaf
L12 res(L10, L11, b) {y} T u

10 ◦ T u
11 #

L13 res(L12, L7, y) {} T u
7

y
▷◁ T u

12 if-else

▷◁

# #

▷◁

▷◁

∗

▷◁

∗
1

∗ 1

1 0

y y

x
x

x x

x x

T7 T12

T6

T3

T5

T4

T11

T10

T2 T1

T8 T9

Figure 5 T u
13 graph for Example 20

C Missing proofs from Section: 5

Theorem 14. Every (A ∪ B)-regular refutation of CRn in any proof system belonging to
MRes-R has size 2Ω(n).

Proof. For P ∈ MRes-R, let Π be a P-refutation of CRn (for n > 2). Let the set of lines
S, S′ be defined as follows:
S′: This set consists of all the lines L = (C, Hz) from Π such that vars(C) ∩ {A ∪ B} = ∅

and there exists a path from L to ⊥ in GΠ consisting of lines only from S′.
S: This set contains all the lines L ∈ S′ such that L = Res(L1, L2, v) where L1, L2 /∈ S′.

Observe that the pivot variable v must belong to {A ∪ B}.

Let F =
∧

(C,Hz)∈S

C. Note that F is a false CNF formula because there exists a sub-derivation

Π̂ = {C|∃L = (C, Hz) ∈ S′} which derives a ⊥ given F . The variables in F are only xij ’s
where i, j ∈ [n], therefore it consists of n2 variables. In Lemma 15 we prove that each clause
in F has width ≥ n − 1. That is each clause can be falsified by setting atleast n-1 variables
to 0. Hence the number of complete assignments of X that can falsify a clause ∈ F will be
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at most 2n2−(n−1). Since F is a false CNF formula, all assignments to X should falsify some
clause of F . Therefore, the number of clauses in F should be ≥ 2n−1. This implies that
the number of lines in S is at least 2n−1. Therefore, the number of lines in Π must also be
exponential in n. ◀

Claim 17.([5]) Either for all i ∈ [n − 1], C2 has a variable of the form xi∗, or for all j ∈ [n],
C2 has a variable of the form x∗j

Proof. At this point in the proof of Lemma 15, we definitely know that an ∈ C2, and for all
i ∈ [n − 1], for all j ∈ [n], xij /∈ var(Hz

2 ). We prove this claim by contradiction. Suppose the
claim is wrong i.e, there exists some u ∈ [n − 1] where for all l ∈ [n] xul /∈ var(C2) and some
v ∈ [n] where for all k ∈ [n] xkv /∈ var(C2).

Let ρ be the minimum partial assignment falsifying C2. Then we know that :
▷ ρ sets an = 1, leaves all other variables in A ∪ B unset, since they /∈ C2.
▷ ρ does not set any xul or xkv, since by our assumptions they all are not in C2.
Now, extend ρ to assignment α by setting:
▷ au = bv = 0 and rest all unset variables from A ∪ B to 1.
▷ Also except xuv, set xu∗ = 1 and x∗v = 0.
Observe that the assignment α satisfies all axiom clauses except Auv and Buv and does not
falsify any axiom.
Now extend α to α0 and α1 by setting xuv = 0 and 1 respectively.

The extension α0 satisfies one more axiom i.e. Buv; similarly α1 satisfies one more axiom
i.e. Auv. Note that they still do not falsify the remaining axiom. That is, α0 does not falsify
Auv and similarly, α1 does not falsify Buv.

α0 and α1 agree everywhere except on xij , and since xij /∈ var(Hz
2 ), it follows that

Hz
2 (α0) = Hz

2 (α1), say this value is equal d.
From the proved Induction in Lemma 4, the partial strategy of universal player at every

line combined with the extension of the existential assignment falsifying its clause part, should
falsify some axiom of the QBF. Also, α0 and α1 falsify C2, since they extend ρ. Hence, it is
a contradiction that (αd, d) satisfies all axioms. Therefore, the claim needs to be true. ◀

D Missing example from Section: 4.3

In [8], the authors describe a way to use 2-valued OBDD functions to represent 3-valued
strategy functions (including the don’t care (*)). They represent each strategy function Hu

as a pair of 2 functions (H⊤
u , H⊥

u ) which can then represented by 2 OBDDs. This pair is
simply defined as follows:

H⊤
u (ε) =

{
1 : ifHu(ε) = 1
0 : otherwise

H⊥
u (ε) =

{
1 : Hu(ε) = 0
0 : otherwise

In [8, Proposition 1], the authors also give the following formulas to perform union and if-else
operation on OBDDs efficiently:
1. (Gu ◦ Hu)⊤ = G⊤

u ∨ H⊤
u ; (Gu ◦ Hu)⊥ = G⊥

u ∨ H⊥
u

The algorithm for ‘∨’ on OBDDs (called bounded disjunction) is very well-known, it was
introduced in [9]. (We will not discuss it here, rather will directly use it in Example 21).

2. (Gu
x
▷◁ Hu)⊤ = G⊤

u

x
▷◁ H⊤

u ; (Gu ◦ Hu)⊥ = G⊥
u

x
▷◁ H⊥

u

Next, we will see how to convert a T -represented strategy into an OBDD-represented
strategy. For this we use the graph of T u

13 from previously shown Example 20, the graph of
the same is already shown in Figure 5 for ease of cross-checking.
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▶ Example 21. For the input T -strategy, we use T u
13 from Example 20 (shown in Figure 5).

As explained in Section 4.3, we follow recursively from leaf-to-root in this graph, converting
it into OBDD pairs and applying ◦ and ▷◁ operations (as stated above) wherever applicable.
Note that in OBDDs, we fix that the left edge of non-leaf node represents the positive edge
and the right one is the negative edge (for ease in drawing).

T ⊤
1 = 1 , T ⊥

1 = 0
T ⊤

2 = 0 , T ⊥
2 = 0

T ⊤
3 = x

0 1

, T ⊥
3 = x

0 0

T ⊤
4 = 1 , T ⊥

4 = 0
T ⊤

5 = 0 , T ⊥
5 = 0

T ⊤
6 = x

1 0

, T ⊥
6 = x

0 0

T ⊤
7 = x

1 1

, T ⊥
7 = x

0 0

T ⊤
8 = 1 , T ⊥

8 = 0
T ⊤

9 = 0 , T ⊥
9 = 1

T ⊤
10 = x

1 0

, T ⊥
10 = x

0 1

T ⊤
11 = 0 , T ⊥

11 = 0

T ⊤
12 = x

1 0

, T ⊥
12 = x

0 1

T ⊤
13 = y

x x

1 1 1 0

, T ⊥
13 = y

x x

0 0 0 1
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This completes the conversion of T -graph to OBDD-pairs. To cross-check let us compute
the resulting function from (T ⊤

13, T ⊥
13). The process to extract the strategy (Hu) back from

the OBDD-pair (H⊤
u , H⊥

u ):

Hu(ε) =


1 : ifH⊤

u (ε) = 1
0 : ifH⊥

u (ε) = 1
∗ : otherwise

So the truth-table of the resultant function (say T ′
13) from (T ⊤

13, T ⊥
13) is as follows:

x y T ′
13

0 0 0

0 1 1

1 0 1

1 1 1

One can cross check that this is exactly the function computed by T u
13 in Figure 5.
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