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Abstract

Random walks in expander graphs and their various derandomizations (e.g., replacement/zig-
zag product) are invaluable tools from pseudorandomness. Recently, Ta-Shma used s-wide replace-
ment walks in his breakthrough construction of a binary linear code almost matching the Gilbert-
Varshamov bound (STOC 2017). Ta-Shma’s original analysis was entirely linear algebraic, and
subsequent developments have inherited this viewpoint. In this work, we rederive Ta-Shma’s anal-
ysis from a combinatorial point of view using repeated application of the expander mixing lemma.
We hope that this alternate perspective will yield a better understanding of Ta-Shma’s construction.
As an additional application of our techniques, we give an alternate proof of the expander hitting
set lemma.

1 Introduction
Error correcting codes (ECCs) allow a sender to encode a message so that the receiver can recover the
full message even if several codeword bits are lost or flipped during transmission. ECCs are incredibly
useful, both in theory and in practice [Sha79, STV01, CJW19] (and many, many more). Formally, a
binary code is a map C : {0, 1}k → {0, 1}n which sends a message m ∈ {0, 1}k to the codeword
C(m) ∈ {0, 1}n. Two important parameters of a code are the distance and rate, which are respectively
measures of the code’s quality and efficiency. Rate is the ratio k/n, the number of message bits per
codeword bit while distance refers to the minimum fraction of coordinates (in [n]) on which two distinct
codewords disagree. One of the holy grails in coding theory is to find the best tradeoff between the
distance and rate of a binary code. It is known that codes with optimal distance δ = 1/2 must have
exponentially small rate [Plo60]. The Gilbert-Varshamov (GV) bound [Gil52, Var57] states for any
δ ∈ (0, 1/2), there exists a code Cn with blocklength n and distance d with rate 1 − H(δ) − on(1)
where H(·) is Shannon’s binary entropy function. Unfortunately, this is a probabilistic (or greedy)
construction and we do not know of explicit binary codes matching this bound. For distances δ close to
1/2, the GV bound states that there exists a code with distance (1−ε)/2 and rate Ω(ε2). On the other hand,
it is known that any code with distance (1−ε)/2 must have rateO

(
ε2 · log(1/ε)

)
[ABN+92]. Constructing

an explict code matching the GV bound even for these distance parameters is a major open problem.
A few years ago, in a breakthrough result, Ta-Shma [TS17] described an explicit construction which

got very close: he constructed a family of codes {Cn}n with rate Ω(ε2+oε(1)) and distance (1−ε)/2. The
core of his construction is an amplification procedure which increases the distance of the code using
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certain special types of random walks on expander graphs. Specifically, Ta-Shma encodes a message
m ∈ {0, 1}k as follows.

1. Use a “base code” C0 : {0, 1}k → {0, 1}n with a good (but not optimal) rate/distance tradeoff, to
encode message m ∈ {0, 1}k into a n-bit codeword C0(m) which we will equivalently interpret
as function f : [n]→ {0, 1}.

2. Identify the coordinate set [n] with the vertices of an expander graph A.1

3. Let W ⊂ At = [n]t be a special subset of the set of all t-length walks in A. Define g : W →
{0, 1} by g(a1, . . . , at) = f(a1)⊕ · · · ⊕ f(at), where ⊕ is the bit XOR. Output g ∈ {0, 1}|W |.

The ingenious component in TaShma’s construction is the choice of the subsetW . As we will soon see,
choosing W to be the set of all t-length walks in A does not yield an optimal distance/rate tradeoff.
TaShma, instead, uses a derandomized subset of walks, resulting from taking an s-wide replacement
product walk on A. In the ordinary replacement product, another expander B is chosen with |B| =
deg(A) so that given a ∈ A, each b ∈ B corresponds to some a′ ∈ N(a). A t-length replacement
product walk in A chooses a random a ∼ A and a (t − 1)-length walk (b1, . . . , bt−1) in B and outputs
the walk (a1, . . . , at) in A where a1 = a and ai+1 is the bi-th neighbor of ai for i = 1, . . . , t − 1.
Note the set of replacement product walks in A is a proper subset of the set of all walks. The s-wide
replacement product is a parametrized version of the ordinary replacement product. We explain the
s-wide replacement product in detail in Section 2.

1.1 Our Contribution
In this note, we rederive the analysis of TaShma [TS17] using repeated applications of the Expander
Mixing Lemma. TaShma’s original analysis, as well as subsequent developments, convey a strongly
linear algebraic viewpoint. In this writeup, we take the expander mixing lemma as our starting point
and proceed from there in a combinatorial fashion. Thus, we demonstrate that no linear algebra is
needed for the analysis of Ta-Shma’s code beyond that which is needed to prove the expander mixing
lemma. We would like to be forthcoming and stress that our analysis is completely equivalent to Ta-
Shma’s original analysis. So if you are hoping to read about a new code with improved parameters,
you should read something else. This paper is for those researchers who have had difficulty penetrating
the intuition behind Ta-Shma’s construction. We believe that this alternate perspective will appeal to a
wider audience and make it easier for the scientific community to innovate on Ta-Shma’s breakthrough
work.

Our proof is the same as the original proof insofar as a random walk on a graph can be modelled
both as a random process and as a linear operator. The original analysis takes the linear operator view,
we take the random process view. In theory, the linear operator view is convenient for quantitatively
reason about random walks because it reduces the task to understanding repeated multiplication by a
fixed matrix. However, when analyzing replacement product walks from the linear operator perspective,
the adjacency matrices of the outer and inner expander graphs have to be combined using some kind of
tensor product. The situation is worse for the s−wide replacement product since then one has to keep
track of s different tensor product matrices and the iterated matrix product needs to alternate over these
s matrices. Thus, it seems there are diminishing returns in terms of the simplicity afforded by the linear
operator perspective when the set of all random walks is to be derandomized. By using the random

1We abuse notation by refering to A both as the graph and the vertex set.
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process view, we are able to express the same ideas in a much simpler way. This, in turn, makes it
easier to see what is going on in certain key steps of the argument.

1.2 Techniques: Expander Mixing Lemma and consequences
Notation. Throughout this paper, we refer to graphs by their vertex sets, and use ∼ to indicate that
two vertices are connected with an edge. So for example, if A is a graph and a, a′ ∈ A are vertices, we
write a ∼ a′ if there is an edge between a and a′. We write RWt

A (resp. RWt
A(a)) for the distribution

which outputs a t−length random walk in A (resp. a t−length random walk in A which begins at a).
Given two distributions D and D′, we will write D ≡ D′ to denote that they are same.

In order to get a sense for our technique, let us analyze the distance amplification procedure resulting
from taking a random walk on an expander. Typically expander graphs are defined via the second largest
eigenvalue of the adjacency matrix of the graph; in this paper we will use the following equivalent
definition (similar definitions have been used in other works, e.g., [DK17]).

Definition 1. We say that a graph A is a λ−expander if for all f, g : A→ R, the following holds:∣∣∣Ea∼a′[f(a) · g(a′)
]
− µfµg

∣∣∣ ≤ λσfσg,

where µf and σf are the expectation and standard deviation of the random variable f(a) (namely,
µf = Ea

[
f(a)

]
and σ2

f + µ2
f = Ea

[
f(a)2

]
, and similarly for µg and σg).

Now consider the distance amplification framework above instantiated with A being a constant
degree, d−regular λ−expander, and W being the set of all t−length random walks in A. Note that
|W | = n · dt−1, and so the rate of the resulting code is O(d−t). If A is Ramanujan (i.e., an expander
with the best possible relationship between λ and d) then λ ≈ 2/

√
d which makes the rateO

(
(λ/2)2t

)
.

Regarding the distance, note that for any n−bit string f : [n]→ {0, 1}, if the fraction of non-zero coor-
dinates is 1−ε

2
, then ε = −Ev∼[n]

[
(−1)f(v)

]
. For this reason, we show that the amplification framework

above decreases bias, where
Bias(f) :=

∣∣∣Ev∼[n][(−1)f(v)
]∣∣∣.

The claim below shows that when W is the set of all t−length walks in A, a regular Ramanujan
expander graph with expansion λ, and when Bias(f) ≤

√
λ, then Bias(g) ≤ 1

2
· (4λ)t/2. It follows that

if the distance of the amplified code is 1−ε
2

, then the rate is Ω(ε4 · 8−2t
)
. For any constant α > 0, it is

possible to choose parameters so that εα ≤ 8−2t, in which case the rate is Ω(ε4+α).

Claim 1. Let A be a regular λ−expander, f : A → {0, 1} a function of bias
∣∣Ea[(−1)f(a)

]∣∣ ≤ √λ.
For k ≥ 1, define hk : A→ R as

hk(a) := E(a1,...,ak)∼RWk
A(a)

[
(−1)f(a1)⊕···⊕f(ak)

]
.

Let εk :=
∣∣Ea[hk(a)

]∣∣ and σk be such that σ2
k + ε2k = Ea

[
hk(a)2

]
. Then for all k ≥ 1:

εk ≤
1

2
· (4λ)k/2; σk ≤

√
Ea
[
hk(a)2

]
≤ (4λ)

k−1
2 .

We will actually prove the following slight generalization of Claim 1, which will be more useful in our
analysis later on. Note Claim 1 is recovered from Claim 2 by letting H be the constant function which
always outputs 1, and noting that ε̂1 ≤

√
λ and σ̂1 ≤ 1.
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Claim 2. Let A be a regular λ−expander, f : A → {0, 1} a function of bias
∣∣Ea[(−1)f(a)

]∣∣ ≤ √λ,
and H : A→ R any function. For k ≥ 1, let ĥk : A→ [0, 1] be defined by

ĥk(a) = E(a1,...,ak)∼RWk(a)

[
(−1)f(a1)⊕···⊕f(ak) ·H(ak)

]
.

Let ε̂k :=
∣∣Ea[ĥk(a)

]∣∣ and σ̂k such that σ̂2
k + ε̂2k = Ea

[
ĥk(a)2

]
. Then for k ≥ 2,

ε̂k ≤ 2k−2 · (λ
k−1
2 ε̂1 + λ

k
2 σ̂1); and σ̂k ≤

√
Ea
[
ĥk(a)2

]
≤ 2k−2 · (λ

k−2
2 ε̂1 + λ

k−1
2 σ̂1).

Proof. The key observation is that for k ≥ 2, ĥk(a) = (−1)f(a) ·Ea′∼N(a)

[
ĥk−1(a

′)
]
. This lets us bound

ε̂k and σ̂k in terms of ε̂k−1 and σ̂k−1 using the expander mixing lemma (Definition 1) as follows:

· ε̂k =
∣∣Ea[ĥk(a)

]∣∣ =
∣∣Ea∼a′[(−1)f(a) · ĥk−1(a′)

]∣∣ ≤ √λε̂k−1 + λσ̂k−1;

· σ̂2
k ≤ σ̂2

k + ε̂2k = Ea
[
ĥk(a)2

]
= Ea

[
Ea′∼N(a)

[
ĥk−1(a

′)
]2]

= Ea′∼A2a′′
[
ĥk−1(a

′) · ĥk−1(a′′)
]

≤ ε̂2k−1 + λ2σ̂2
k−1,

where a′ ∼A2 a′′ indicates that (a′, a′′) is a uniform edge in A2 (a λ2−expander). We have used that
the distribution which draws a ∼ A, a′, a′′ ∼ N(a) and outputs (a′, a′′) is identical to the uniform edge
distribution on A2. The claim follows by induction.

1.3 Improving the rate via s-wide replacement product walks
The rate of the above code is roughly ε4, which is too low. In order for it to have rate ≈ ε2, we would
have needed εt ≤ λt rather than what we got which was εt ≤ λt/2 (actually we got something weaker,
we are oversimplifying to clarify the discussion). The recursive formulas which appeared in the proof
were:

· εk ≤ Bias(f) · εk−1 + λσk−1 ≤
√
λεk−1 + λσk−1 (we assumed Bias(f) ≤

√
λ);

· σk ≤ εk−1 + λσk−1 (implied by σ2
k ≤ ε2k−1 + λ2σ2

k−1).

The problem here is the bound σk ≤ εk−1 + λσk−1, specifically the εk−1 term on the right since we are
moving from a k−th level term to a (k − 1)−th level term without gaining a factor of λ. Plugging this
into the first equation gives εk ≤

√
λεk−1 + λεk−2 + λ2σk−2, where the first two terms are problematic

(we are moving from level k to level k − 1 and k − 2 but gaining only one factor of
√
λ and λ,

respectively). The first problematic term could be fixed by choosing λ such that Bias(f) ≤ λ; but the
second problematic term cannot be easily fixed. This phenomenon was observed in [TS17] where the
problem is summarized by saying “one out of every two steps works”.

A natural idea for derandomizingW is to work with a set of replacement (or zig-zag) product walks.
Unfortunately this yields no improvement as the “one out of every two steps works” problem persists.
Ben-Aroya and Ta-Shma [BATS11] solved this problem in a different context by using an expander
graph B on a slightly larger vertex set of size ds for s ≥ 2, and by analyzing the resulting walk s steps
at a time. This is called the s-wide replacement product. Ta-Shma was then able to successfully argue
that “s− 4 out of every s steps work”. When interpreted in our language, this observation translates to
a recursive formula like εk ≤ λs−4 · εk−s, where we move from a k−th level term to a (k− s)−th level
term, while gaining (s − 4) factors of λ. Gaining s factors of λ would have let us solve to the optimal
εk ≤ λk, obtaining rate of ≈ ε2; gaining (s − 4) factors of λ lets us solve instead to εk ≤ λk(1−4/s)

which is almost as good when s is large.
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2 Preliminaries
Random Walks on Graphs. Let A be the vertex set of a graph. Given a, a′ ∈ A, we write a ∼ a′

if a and a′ are connected by an edge. For a ∈ A, let N(a) ⊂ A denote the neighborhood of A, i.e.,
N(a) := {a′ ∈ A : a ∼ a′}. For an integer d ≥ 1, we say that A is d−regular if |N(a)| = d for all
a ∈ A. For an integer k ≥ 1, let

RWk
A := {(a1, . . . , ak) ∈ Ak : ai ∼ ai+1 ∀ i = 1, . . . , k − 1}

denote the set of k−length random walks in A. Similarly, for a ∈ A, RWk
A(a) is the set of k−length

random walks in A which begin at a, so RWk
A(a) := {(a1, . . . , ak) ∈ RWk

A : a1 = a}. We will often
view RWk

A as a distribution, where (a1, . . . , ak) ∼ RWk
A means that a1 ∼ A is drawn uniformly and

then ai+1 ∼ N(ai) is drawn for i = 1, . . . , k − 1.

Expander Graphs. Graph expansion is usually defined as the second largest eigenvalue of the graph’s
adjacency matrix,2 i.e.,

λ := max
x,y⊥11

|〈x,My〉|
|x||y|

, (1)

where the max is over all nonzero x, y ∈ R|A|−{0} which are perpendicular to the all 1s vector 11. Our
Definition 1 can be recovered from (1) for any f, g : A→ R by setting x, y ∈ R|A| to be xa = f(a)−µf
and ya = g(a)− µg.

Cayley Graphs. Given a finite group G and a subset U ⊆ G, the Cayley graph Cayley(G,U) has
vertex set G with g ∼ g′ iff g−1g′ ∈ U . Note that Cayley(G,U) is |U |−regular; additionally, if U
is closed under inversion, then Cayley(G,U) is undirected. Cayley graphs play a key role in many
explicit constructions of expander graphs. Ta-Shma’s original construction used two Cayley graphs as
explicit expander constructions. The first Cayley graph was over Fk2, and the second was over PGL2(Fq),
the projective general linear group over a large finite field. The use of this second Cayley graph put
restrictions on some of the parameters, which required some care in order to navigate. Subsequently
to Ta-Shma’s original paper, new constructions of expanders based on Cayley graphs have been given.
We will use a new construction, due to Alon [Alo21], instead of the PGL2(Fq) construction as it will
give us more flexibility.

Theorem 1. We have the following expander constructions from [Alo21] and [AGHP92], respectively.

The Outer Graph: For all integers n, d ∈ N there is an explicit construction of a d−regular
Cayley graph with n · (1 + on(1)) vertices and expansion λ ≤ 8√

d
.

The Inner Graph: For all integers r, ` ∈ N such that ` ≤ r/2, there exists an explicit3 construc-
tion of an undirected 22`−regular Cayley graph over Fr2 which is a (r − 1)2−`−expander.

2The adjacency matrix of the graph A is M ∈ {0, 1}|A|×|A|, where M(a, a′) = 1 iff a ∼ a′.
3This Cayley graph construction is actually fully explicit, in the sense that given any vertex, the i−th neighbor can be

computed in polylogarithmic time.
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The Shifted Neighborhood Distribution. Let B be a Cayley graph on Fms2 , and let d = 2m. For
any b =

(
b[1], . . . , b[s]

)
∈ B ∼= [d]s, let shift(b) =

(
b[2], . . . , b[s], b[1]

)
∈ B be the element obtained

by circularly shifting the coordinates of b. Given b ∈ B, the shifted neighborhood distribution of b,
denoted Ñ(b), draws u ∼ U (the generator set of the Cayley graph) and outputs shift(b+u) (note b+u
is a random neighbor of b in B). It is clear that the expansion of B is not affected by using the shifted
neighborhood distribution instead of the original neighborhood distribution. Indeed,∣∣∣E b∼B

b′∼Ñ(b)

[
f(b) · g(b′)

]
− µfµg

∣∣∣ =
∣∣∣E b∼B

b′∼N(b)

[
f(b) · g̃(b′)

]
− µfµg̃

∣∣∣ ≤ λσfσg̃ = λσfσg,

where g̃ = g ◦ shift; clearly (µg̃, σg̃) = (µg, σg). Let ˜RW
k

B denote the set of k−length shifted random
walks in B. We prove the following claim about ˜RW

k

B, when k is small.

Claim 3. For all k ≤ s, the distribution that chooses (b1, . . . , bk) ∼ ˜RW
k

B and outputs the tuple
(b1[1], b2[1], . . . , bk[1]) ∈ [d]k is identical to the uniform distribution on [d]k.

Proof. It suffices to prove the claim for k = s, since when k < s, the distribution ˜RW
k

B is identical
to the distribution which draws (b1, . . . , bs) ∼ ˜RW

s

B and outputs (b1, . . . , bk). Note that ˜RW
s

B draws
u1, . . . , us−1 ∼ U , b1 ∼ B and outputs (b1, . . . , bs) ∈ Bs, where bi = shift(bi−1+ui−1) for i = 2, . . . , s.
This means that for all i = 1, . . . , s, bi[1] = b1[i] +

∑
j<i uj[i− j + 1] (addition over Fm2 ). Uniformity

of
(
b1[1], b2[1], . . . , bt[1]

)
follows from the uniformity of b1 =

(
b1[1], . . . , b1[s]

)
∼ [d]s.

2.1 The s-wide Replacement Product
Let A and B denote, respectively, the outer and inner graphs promised by Theorem 1. So A is a
d−regular graph on (roughly) n vertices, while B is a Cayley graph over Fms2 , where 2m = d, so that
vertices ofB are identified with s−tuples of elements in [d]: b =

(
b[1], . . . , b[s]

)
∈ [d]s. Given a ∈ A, a

vertex b ∈ B can be identified with an s−tuple of neighbors of a since |N(a)| = d. Define the rotation
map φ : A × B → A via φ(a, b) = a′ where a′ is the b[1]−th neighbor of a. Since φ only depends on
the first coordinate of b, we write φ(a, b̂) where b̂ is shorthand for b[1]. For any k ≥ 1, the k−length
s−wide replacement walk distribution, denoted sRWk

A,B draws a ∼ A and (b1, . . . , bk−1) ∼ ˜RW
k−1
B ,

and outputs (a1, . . . , ak) ∈ Ak where a1 = a and ai+1 = φ(ai, b̂i) for i = 1, . . . , k − 1. Since
the graphs A and B will be fixed throughout this paper, we write sRWk rather than sRWk

A,B. Given
a ∈ A, the distribution sRWk(a) outputs a sample from sRWk conditioned on a1 = a. Likewise, given
(a, b) ∈ A×B, sRWk(a, b) outputs a sample from sRWk conditioned on (a1, b1) = (a, b). The s−wide
replacement walk is shown in Figure 1.
For our graphs A and B (specifically, since A is d−regular and B is a Cayley graph over Fms2

∼= [d]s)
the next fact follows immediately from Claim 3.

Fact 1 (Pseudorandomness). For all k = 1, 2, . . . , s, s+ 1 and all a ∈ A, sRWk(a) ≡ RWk
A(a).

Following Ta-Shma’s nomenclature, we will refer to the fact above as the pseudorandomness property.
This property will play a crucial role in our proofs below as it will allow us to transform a short s−wide
walk into a pure random walk on A, thus eliminating the dependency on the graph B.
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Figure 1: Illustration of s-wide random walk on A using a graph B.

Local Invertibility. Since A is undirected, its edge relation is symmetric. This means that whenever
a, a′ ∈ A and b ∈ B are such that a′ = φ(a, b̂), there must exist some b̂′ ∈ [d] such that a = φ(a′, b̂′).
In this case we say that (b̂, b̂′) are inverses with respect to the A−edge (a, a′). Local invertibility in
our context means that these inverse relations are independent of the A edges. So, specifically, for all b̂
there exists b̂′ such that (b̂, b̂′) are inverses with respect to all A edges. This means, for example that for
all a ∈ A, if you walk to a′ = φ(a, b̂) and then continue to a′′ = φ(a′, b̂′), then a′′ = a. This property is
easy to establish in our situation because A is a Cayley graph.

Practically speaking, what this means for us is that s−wide replacement walks can be “started in the
middle”. For standard random walks, the distribution RWk

A which outputs (a1, . . . , ak) is identical to the
distribution which first chooses ai ∼ A randomly, and then draws (ai, ai+1, . . . , ak) ∼ RWk−i+1

A (ai)
and (ai, ai−1, . . . , a1) ∼ RWi

A(ai), outputting (a1, . . . , ak). This follows from the regularity of A.
Likewise, because of local invertibility, the s−wide replacement walk distribution sRWk is identical to
the following “start in the middle” version which draws ai ∼ A and bi ∼ B, then draws (bi, . . . , bk−1) ∼
˜RW

k−i
B (bi) and (bi, . . . , b1) ∼ ˜RW

i

B(bi) (in this case the shifted neighborhood distribution needs to shift
the other way), then sets aj+1 = φ(aj, b̂j) for j = i, . . . , k − 1 and aj−1 = φ(aj, b̂

′
j) for j = i, . . . , 2,

where b̂′j is the inverse of b̂j; finally (a1, . . . , ak) is output.

3 Main theorem
Theorem 2. For every ε > 0 there exists an explicit linear code {Ck}k that has distance ≥ 1

2
− ε and

rate = Ω(ε2+o(1)).

Proof. Fix k ∈ N. The construction of Ck uses the following building blocks.

• The Base Code: Let C0 : {0, 1}k → {0, 1}n0 be an explicit code of bias ε0 and rate R0. We use
the construction in [ABN+92], so that R0 = O(ε−30 ).

• The Outer Graph: Let A be the dA−regular Cayley graph with expansion λA. We use the
construction of Theorem 1, so that λA ≤ 8/

√
dA and |A| = n0 ·

(
1 + on0(1)

)
.
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• The Inner Graph: Let B be a dB−regular Cayley graph over Fr2 with expansion λB. We use
the construction of Theorem 1 so that λB = (r− 1) · 2−` and dB = 22` for integers `, r ∈ N such
that ` ≤ r/2.

The building blocks carry several parameters which we now connect. In order to set up the s−wide
replacement product, define additional parameters s,m ∈ N such that r = ms, and let dA = 2m, so
B ' [dA]s. It will be important for our analysis to have λA ≤ λ2B; in order to arrange this, set m = s
and ` = s/5. This gives

λA ≤
8√
dA

= 8 · 2−m/2 =
8

2`/2
· 2−2` ≤ (ms− 1)2 · 2−2` = λ2B,

where the final inequality holds whenever s ≥ 2. We will also require ε0 ≤ λB/2 which we ensure by
setting ε0 = s2−1

2
· 2−s/5. At this point, all parameters so far have been defined in terms of s; we will

specify s later. Note that our setup allows us to use B to take s−wide replacement walks in A. We now
describe the code. Given x ∈ {0, 1}k, Ck(x) is computed as follows.

• Compute C0(x) ∈ {0, 1}n0 , and define f : A→ {0, 1} by setting

f(a) =

{
C0(x)i, a = ι(i)

0, otherwise

where ι : [n0] ↪→ A is some fixed embedding.

• Define g : sRWt → {0, 1} by setting g(a0, . . . , at) = f(a0)⊕· · ·⊕f(at). Output g ∈ {0, 1}sRWt
.

The rate of Ck is

Ratek =
k

|sRWt|
≥ k

|A|
· 1

|B|
· 1

dt−1B

= Ω(ε−30 ) · 2−s2 · d−(t−1)B = Ω
(
s−6 · 2−s2

)
· d−(t−1)B .

To bound the bias of Ck, we use the following lemma which is proved in the next section.

Lemma 1 (Bias Reduction of Wide Replacement Product Walks). Let integers s, t ∈ N and graphs
A and B be as above; so in particular A and B are λA and λB expanders with λA ≤ λ2B. Let
f : A→ {0, 1} be any function such that

∣∣Ea[(−1)f(a)
]∣∣ ≤ λB. Then∣∣∣E(a0,...,at)∼sRWt

[
(−1)f(a0)⊕···⊕f(at)

]∣∣∣ ≤ (2λB)t(1−4/s).

Note that the function f : A→ {0, 1} defined in the first step of computing Ck(x) satisfies∣∣∣Ea[(−1)f(a)
]∣∣∣ ≤ 2 ·

∣∣∣Ei∼[n0]

[
(−1)C0(x)i

]∣∣∣ ≤ 2ε0 ≤ λB,

and so Lemma 1 ensures that Biask ≤ (2λB)t(1−4/s). Putting the calculations of Rankk and Biask
together and using λB = (s2 − 1)/

√
dB gives

Ratek = Ω
(
s−6 · (s2 − 1)−2t · 2−2t−s2+2s/5 · (2λB)8t/s

)
· Bias2k = Ω

(
s−5t · (2λB)8t/s

)
· Bias2k,

where the right most equality holds whenever 6 log s ≤ 2s/5 (implied by s ≥ 100) and t ≥ s2. Note,
therefore, that for η ∈

(
0, 1/2

)
, Ratek = Ω

(
Bias2+ηk

)
holds whenever (2λB)t(η−4η/s−8/s) ≤ s−5t which,
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if η ≥ 24/s is implied by (2λB)η/2 ≤ s−5. Finally, by plugging in λB = (s2 − 1) · 2−s/5, we see that
this holds whenever ηs ≥ 60 log s.

So finally, let us prove the theorem. Suppose that we are given ε > 0 and η ∈
(
0, 1/2

)
, and we

want to construct Ck such that Biask ≤ ε and Ratek = Ω
(
Bias2+η

)
. We let Ck be the construction

defined above with s chosen large enough so that ηs ≥ 60 log s; this ensures Ratek = Ω
(
Bias2+ηk

)
as

noticed above. Finally, let us choose t large enough so that t ≥ s2 and (2λB)t(1−4/s) ≤ ε; this ensures
Biask ≤ ε, as desired.

4 Proof of Lemma 1
In this section we prove the key bias reduction lemma that was the core of Theorem 2. Our proof will
be by induction, just like Claim 2, so we will need to modify the statement of Lemma 1 so it adheres to
an inductive argument.

4.1 Lemma Statement
Let A and B be the graphs from Section 3. Write λ instead of λB for the expansion of B and recall
that λA ≤ λ2. Let f : A → {0, 1} be a function such that

∣∣Ea[(−1)f(a)
]∣∣ ≤ λ. For any k ≥ 0, define

gk : A×B → R by
gk(a, b) = E(a0,...,ak)∼sRWk(a,b)

[
(−1)f(a0)⊕···⊕f(ak)

]
. (2)

Let εk =
∣∣Ea,b[gk(a, b)]∣∣ and let σk be such that σ2

k + ε2k = Ea,b
[
gk(a, b)

2
]
. We prove the following.

Lemma 2 (Implies Lemma 1). Assume the above setup. For all k ≥ 0

εk ≤ (2λ)k(1−4/s); σk ≤ (2λ)(k−2)(1−4/s).

As mentioned, we prove Lemma 2 by induction. The following two claims combine to easily prove
Lemma 2; we will prove them in Sections 4.3 and 4.4.

Claim 4 (Base Case.). Assume the above setup. For all k = 0, 1, . . . , s:

εk ≤
1

2
· (2λ)k+1; σk ≤ 2 · (2λ)k−1.

Claim 5 (Induction Step.). Assume the above setup. For all k > s:

· εk ≤ 1
2
(2λ)s(εk−s + 3σk−s);

· σ2
k ≤ 1

2
(2λ)s−2(εk−2 + λσk−1)

(
εk−s + (2 + λ)σk−s

)
+ λsσk−sσk−1 + λ2σ2

k−1

Proof of Lemma 2. Claim 4 clearly establishes the base cases since 1
2
· (2λ)k+1 ≤ (2λ)k(1−4/s) and

2 · (2λ)k−1 ≤ (2λ)(k−2)(1−4/s). For the first part of the induction step, we have

εk ≤
1

2
· (2λ)s · (εk−s + 3σk−s) ≤

1

2
· (2λ)s ·

[
(2λ)(k−s)(1−4/s) + 3 · (2λ)(k−s−2)(1−4/s)

]
= 8λ4 ·

[
(2λ)k(1−4/s) + 3 · (2λ)(k−2)(1−4/s)

]
≤ 2λ2(4λ2 + 3) · (2λ)k(1−4/s) ≤ (2λ)k(1−4/s).
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The bound 2λ2(4λ2 + 3) ≤ 1 holds because λ ≤ 1/3. The second part of the induction step is similar:

σ2
k ≤

1

2
· (2λ)s−2 · (εk−2 + λσk−1)

(
εk−s + (2 + λ)σk−s

)
+ λsσk−sσk−1 + λ2σ2

k−1

≤ 1

2
· (2λ)2 ·

[
(2λ)(k−2)(1−4/s) + λ(2λ)(k−3)(1−4/s)

]
·
[
(2λ)k(1−4/s) + (2 + λ)(2λ)(k−2)(1−4/s)

]
+

+ λs(2λ)(k−s−2)(1−4/s)(2λ)(k−3)(1−4/s) + λ2(2λ)2(k−3)(1−4/s)

= 2λ2(2λ)(2k−2)(1−4/s) + 2λ3(2λ)(2k−3)(1−4/s) + (4λ2 + 2λ3)(2λ)(2k−4)(1−4/s) +

+ (4λ3 + 2λ4)(2λ)(2k−5)(1−4/s) + 24−sλ4(2λ)(2k−5)(1−4/s) + λ2(2λ)(2k−6)(1−4/s)

≤
[
2λ2 + 2λ3 + (4λ2 + 2λ3) + (2λ2 + λ3) + 23−sλ3 +

1

4

]
· (2λ)(2k−4)(1−4/s) ≤ (2λ)(2k−4)(1−4/s),

where the last bound has used 8λ2 + 6λ3 ≤ 3/4 which holds because λ ≤ 1/4.

4.2 Key Intuition
In this section we zoom in on some of the key steps in the coming proofs in order to give extra expla-
nations and intuitions.

s−wide Replacement Product Walks inA. Recall that a random s−wide replacement product walk
in A (i.e., a random sample from sRWk) is produced as follows:

1. choose base points (a, b) ∼ A×B;

2. generate (b1, . . . , bk) ∈ Bk as follows:

(i) set b1 = b;

(ii) for i ≥ 2, draw bi ∼ N(bi−1) and set bi = shift(bi), where shift cycles the coordinates of an
element of B ' [d]s, so shift

(
bi[1], . . . , bi[s]

)
=
(
bi[2], . . . , bi[s], bi[1]

)
.

3. generate and output (a0, . . . , ak) ∈ Ak+1 as follows:

(i) set a0 = a;

(ii) for i ≥ 1, set ai = φ(ai−1, b̂i) where b̂i = bi[1] ∈ [d] denotes the first coordinate of bi ∈ [d]s,
and where φ is the rotation map of A.

Pseudorandomness. As mentioned in Section 2, when k ≤ s the distributions sRWk and RWk+1
A

are identical. That is, a random k−step s−wide replacement product walk in A is just a random
(k + 1)−step random walk in A. The following is an example of how this concept manifests itself in
the next section. Let εk(a) = Eb

[
gk(a, b)

]
.

εk(a) = E(a0,...,ak)∼sRWk(a)

[
(−1)f(a0)⊕···⊕f(ak)

]
= E(a0,...,ak)∼RWk+1

A

[
(−1)f(a0)⊕···⊕f(ak)

]
= hk+1(a),

whenever k ≤ s, where hk+1 is the function defined and analyzed in Claim 1.
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The Ignore First Step Trick. This refers to a key step in the proof that for all k ≥ 1,

σ2
k ≤ Ea

[
εk−1(a)2

]
+ λ2σ2

k−1. (3)

This bound is useful as it reduces the task of bounding σ2
k to the task of bounding Ea

[
εk−1(a)2

]
, which

will turn out to be much easier. The proof of (3) requires other ideas as well. Recall from the previous
paragraph the definition of εk(a); additionally let σk(a) be such that σk(a)2 + εk(a)2 = Eb

[
gk(a, b)

2
]
.

σ2
k ≤ σ2

k + ε2k = Ea,b
[
gk(a, b)

2
]

= Ea,b
[
Eb′∼N(b)

[
gk−1(a

′, b′)
]2]

= E a∼A
b∼B2b′

[
gk−1(a, b) · gk−1(a, b′)

]
≤ Ea

[
εk−1(a)2

]
+ λ2Ea

[
σk−1(a)2

]
≤ Ea

[
εk−1(a)2

]
+ λ2σ2

k−1.

The second equation on the first line holds because gk(a, b) = (−1)f(a) · Eb′∼N(b)

[
gk−1(a

′, b′)
]
, where

a′ = φ(a, b̂); the first inequality on the second line follows from the expander mixing lemma (Def-
inition 1) on B2 (a λ2−expander); the final inequality has used Ea

[
σk−1(a)2

]
≤ σ2

k−1 which holds
because

Ea
[
σk−1(a)2 + εk−1(a)2

]
= Ea,b

[
gk−1(a, b)

2
]

= σ2
k−1 + ε2k−1,

and ε2k−1 ≤ Ea
[
εk−1(a)2

]
(Jensen’s inequality). The ignore first step trick is the reasoning behind the

final equation on the first line. The observation is that the distribution which draws (a, b) ∼ A × B
and b′, b′′ ∼ N(b) and outputs (a′, b′, b′′) where a′ = φ(a, b̂) is identical to the distribution which draws
a′ ∼ A and a random edge b′ ∼B2 b′′ in B2 and outputs (a′, b′, b′′). See Figure 2 for intuition.

Figure 2: “Ignore first step” trick.

Starting the Replacement Walk in the Middle. A useful feature of random walks on an undirected
d−regular graph is that the steps can be generated out of order. Specifically, the vertices in a k−step
random walk can be generated by choosing ai ∼ A first for any i ∈ [k] and then drawing two walks
(ai, ai+1, . . . , ak) ∼ RWk−i+1

A (ai), (ai, ai−1, . . . , a1) ∼ RWi
A(ai) and outputting (a1, . . . , ak). Replace-

ment product walks also have this feature, though correctly formulating it requires precision. We will
use that the following distribution is identical to sRWk for any i ∈ {0, 1 . . . , k − 1}:

1. ai ∼ A and a random edge bi ∼ bi+1 in B; set bi+1 = shift(bi+1);

2. generate (b1, . . . , bk) ∈ Bk as follows:

(i) for j ≥ i+ 2, draw bj ∼ N(bj−1) and set bj = shift(bj);

(ii) for j ≤ i− 1, draw bj ∼ N(bj+1) and set bj = shift−1(bj);
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3. generate and output (a0, . . . , ak) ∈ Ak+1 as follows:

(i) for i ≥ i + 1, set ai = φ(ai−1, b̂i) where b̂i = bi[1] ∈ [d] denotes the first coordinate of
bi ∈ [d]s, and where φ is the rotation map of A;

(ii) for j ≤ i−1, set aj = φ−1(aj+1, b̂j) where φ−1(a, b̂) = φ(a, b̂′) where b̂′ is the local inverse
of b̂.

An example of how this is used is the first step of the bound for εk when k > s:

εk =

∣∣∣∣E(a0,...,ak)∼sRWk

[
(−1)f(as) · (−1)f(a0)⊕···⊕f(as) · (−1)f(as)⊕···⊕f(ak)

]∣∣∣∣
=

∣∣∣∣Eas∼A
bs∼bs+1

[
(−1)f(as) · ~gs(as, bs) · gk−s(as, bs+1)

]∣∣∣∣,
where ~gs(a, b) indicates that the repalcement walk is drawn in the “backwards” fashion according
to Steps 2(ii) and 3(ii) above. Equivalently, ~gs(a, b) is the expectation of (−1)f(a0)⊕···⊕f(as) over
(a0, . . . , as) ∼ sRWs conditioned on (as, bs) = (a, b).

Figure 3: Starting the Replacement Walk in the Middle.

4.3 Bounding the εk Terms
In this section we bound the εk terms in Claims 4 and 5, thereby proving half of each claim. We bound
the σk terms in the next section.

The Base Case. This follows directly from the pseudorandomness property, and the analysis already
done in Section 1.2 (Claim 1). Specifically, when k ≤ s, we have

εk =
∣∣∣Ea[εk(a)

]∣∣∣ =
∣∣∣Ea[hk+1(a)

]∣∣∣ ≤ 1

2
· (2λ)k+1,

where εk(a) = hk+1(a) by pseudorandomness (hk+1 is the function defined in Claim 1).

The Induction Step. Fix k > s. We have

εk =

∣∣∣∣Ea∼A
b∼b′

[
(−1)f(a) · ~gs(a, b) · gk−s(a, b′)

]∣∣∣∣ ≤ ∣∣∣∣Ea∼A[(−1)f(a) · ~εs(a) · εk−s(a)
]∣∣∣∣+ λσsσk−s,
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where the equality holds by starting the replacement walk in the middle, and the inequality is the
expander mixing lemma (Definition 1) on B. We are using the shorthand ~εs(a) for Eb

[
~gs(a, b)

]
, and we

have used Cauchy-Schwarz to bound the standard deviation terms, just as we did in the computation in
the “ignore first step trick” paragraph in Section 4.2. Specifically,

Ea
[
~σs(a) · σk−s(a)

]
≤
√
Ea[ ~σs(a)2]

√
Ea[σk−s(a)2] ≤ ~σsσk−s = σsσk−s.

By pseudorandomness, (−1)f(a) · ~εs(a) = (−1)f(a) ·hs+1(a) = Ea′∼N(a)

[
hs(a

′)
]

= Ea′∼N(a)

[
εs−1(a

′)
]
,

and so we get the desired bound on εk via the expander mixing lemma on A, as follows:

εk ≤
∣∣∣Ea∼a′[εs−1(a) · εk−s(a′)

]∣∣∣+ λσsσk−s ≤ εs−1εk−s + λ2σs−1σk−s + λσsσk−s

≤ 1

2
(2λ)s(εk−s + 3σk−s).

4.4 Bounding the σk Terms
The Base Case. We have already noted that when 1 ≤ k ≤ s, εk−1(a) = hk(a) by pseudorandom-
ness. Thus, Ea

[
εk−1(a)2

]
= Ea

[
hk(a)2

]
≤ (2λ)2k−2, by Claim 1. It follows from the first step trick

that σ2
k ≤ (2λ)2k−2 + λ2σ2

k−1, which implies σk ≤ (2λ)k−1 + λσk−1. Iterating this bound gives

σk ≤ λk−1 ·
(
2k−1 + 2k−2 + · · ·+ 2 + 1

)
≤ 2 · (2λ)k−1.

The Induction Step. Fix k > s. As mentioned in the “ignore first step trick” paragraph in Sec-
tion 4.2, σ2

k ≤ Ea
[
εk−1(a)2

]
+ λ2σ2

k−1 holds and so it suffices to bound Ea
[
εk−1(a)2

]
. By starting the

replacement walk in the middle, we get

Ea
[
εk−1(a)2

]
= Eas−1∼A

bs−1∼bs

[
(−1)f(as−1) · gk−s(as−1, bs) ·G(as−1, bs−1)

]
,

where G : A×B → R is defined by G(a, b) := E(a0,...,as−1)

[
(−1)f(as−1)⊕···⊕f(a0) · εk−1(a0)

]
, where the

expectation is over (a0, . . . , as−1) drawn as follows:

· set bs−1 = b; for 1 ≤ i ≤ s− 2, draw bi ∼ N(bi+1) and then set bi = shift−1(bi);

· set as−1 = a; for 0 ≤ i ≤ s− 2 set ai = φ−1(ai+1, b̂i+1).

The expander mixing lemma (Definition 1) on B gives

Ea
[
εk−1(a)2

]
≤ Ea

[
(−1)f(a) · εk−s(a) · µG(a)

]
+ λσk−sσG,

where µG := Ea,b
[
G(a, b)

]
, µG(a) := Eb

[
G(a, b)

]
and σG is such that σ2

G + µ2
G = Ea,b

[
G(a, b)2

]
.

By pseudorandomness, µG(a) = E(a0,...,as−1)∼RWs
A(a)

[
(−1)f(a0)⊕···⊕f(as−1) · εk−1(as−1)

]
= ĥs(a), where

ĥs : A→ R is given by ĥs(a) = E(a1,...,as)∼RWs
A

[
(−1)f(a1)⊕···⊕f(as) · εk−1(as)

]
. Note this is the function

defined in Claim 2, instantiated with H(a) = εk−1(a). We have (−1)f(a) ·µG(a) = Ea′∼N(a)

[
ĥs−1(a

′)
]
,

and so by the expander mixing lemma on A and Claim 2 we have

Ea
[
εk−1(a)2

]
≤ Ea∼a′

[
εk−s(a) · ĥs−1(a′)

]
+ λσk−sσG

≤ εk−s · 2s−3(λs−2 · ε̂1 + λs−1σ̂1) + λ2σk−s · 2s−3(λs−3ε̂1 + λs−2σ̂1) + λσk−sσG,
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where ε̂1 and σ̂1 are the notations from Claim 2. In our case, ε̂1 = Ea
[
(−1)f(a) · εk−1(a)

]
= εk−2,

and σ̂1 =
√

Ea[εk−1(a)2]− ε̂21 ≤
√
Ea,b[gk−1(a, b)2]− ε̂21 =

√
σ2
k−1 + ε2k−1 − ε2k−2 ≤ σk−1. We

have used Jensen’s inequality and that εk−2 ≥ εk−1. Using these values and remembering the bound
σ2
k ≤ Ea

[
εk−1(a)2

]
+ λ2σ2

k−1 gives

σ2
k ≤

1

2
(2λ)s−2(εk−2 + λσk−1)(εk−s + λσk−s) + λσk−sσG + λ2σ2

k−1. (4)

This is almost the required bound except we still need to simplify σG. For this purpose, let us add a
parameter to our notation forG, writingGs−1 instead ofG, since it is an expectation over a length (s−1)
“backwards” replacement walk. For r ≤ s − 1, let µr := Ea,b

[
Gr(a, b)

]
, let µr(a) := Eb

[
Gr(a, b)

]
and τr such that τ 2r + µ2

r = Ea,b
[
Gr(a, b)

2
]
. We need to boundτs−1. By the ignore first step trick and

expander mixing lemma on B2,

τ 2s−1 ≤ Ea,b
[
Gs−1(a, b)

2
]

= Ea∼A
b∼B2b′

[
Gs−2(a, b) ·Gs−2(a, b

′)
]
≤ Ea

[
µs−2(a)2

]
+ λ2τ 2s−2.

We have already seen that µs−2(a) = ĥs−1(a), and so by Claim 2 and our computation of ε̂1 and σ̂1
above, τ 2s−1 ≤ (2λ)2s−6(εk−2+λσk−1)

2+λ2τ 2s−2, which implies τs−1 ≤ (2λ)s−3(εk−2+λσk−1)+λτs−2.
Iterating this bound (and using τ0 ≤ σk−1) gives

τs−1 ≤ λs−3(εk−2 + λσk−1)(2
s−3 + 2s−4 + · · · ) + λs−1τ0 ≤ 2 · (2λ)s−3(εk−2 + λσk−1) + λs−1σk−1.

Plugging this into (4) gives the desired bound:

σ2
k ≤

1

2
(2λ)s−2(εk−2 + λσk−1)

(
εk−s + (2 + λ)σk−s

)
+ λsσk−sσk−1 + λ2σ2

k−1.

5 Expander Hitting Set Lemma
Just for fun, we include a new proof of the classical expander hitting set lemma.

Lemma 3. Let A be a λ−expander, and let S ⊂ A be a set of size |S| = ρ|A|. Then for all t ≥ 1,

Pr(a1,...,at)∼RWt

[
ai ∈ S ∀ i = 1, . . . , t

]
≤ ρ ·

(
ρ+ λ(1− ρ)

)t−1
.

Proof. Let 1S : A→ {0, 1} be the indicator function of S. For k ≥ 1, define gk : A→ R by

gk(a) = Pr(a1,...,ak)∼RWk(a)

[
ai ∈ S ∀ i = 1, . . . , k

]
.

Let εk := Ea
[
gk(a)

]
and σk be so σ2

k + ε2k = Ea
[
gk(a)2

]
. Our proof is by induction on t; it is clear that

the lemma holds in the base case. For k ≥ 2, note that gk(a) = 1S(a) · Ea′∼N(a)

[
gk−1(a

′)
]

holds, and
so

σ2
k + ε2k = Ea

[
gk(a)2

]
= E a∼A

a′,a′′∼N(a)

[
1S(a) · gk−1(a′) · gk−1(a′′)

]
= ε2k−1.
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We have used that 1S(a)2 = 1S(a) holds for all a ∈ A, and that choosing a ∼ A and then two (k − 1)
length walks starting at a is identical to simply choosing a random walk of length (2k − 1). Now, fix
t ≥ 2 and k, ` ≥ 1 such that t = k + `. We have

εt = E(a1,...,at)∼RWt

[
1S(a1) · · ·1S(at)

]
= Ea∼a′

[
gk(a) · g`(a′)

]
≤ εkε` + λσkσ`

≤
√
ε2k + λσ2

k ·
√
ε2` + λσ2

` =
√

(1− λ)ε2k + λε2k−1 ·
√

(1− λ)ε2` + λε2`−1

where the last inequality on the first line is the expander mixing lemma on A and the first inequality on
the second line is Cauchy-Schwarz. Note that if 2k − 1 < t then we can use induction to bound the
terms on the right hand side:

(1− λ)ε2k + λε2k−1 ≤ ρ ·
(
ρ+ λ(1− ρ)

)2k−2 · [(1− λ)ρ+ λ
]

= ρ ·
(
ρ+ λ(1− ρ)

)2k−1
.

Therefore, if t is even, we can set k = ` = t/2 to obtain εt ≤ ρ ·
(
ρ + λ(1 − ρ)

)t−1, as desired. This
does not fully work if t is odd since if we set k =

⌈
t/2
⌉

and ` =
⌊
t/2
⌋
, then 2k − 1 = t and so we

cannot use induction to bound ε2k−1. However, we can bound εk, ε`, ε2`−1 by induction; this gives

ε2t ≤
(

(1− λ)ρ2
(
ρ+ λ(1− ρ)

)2k−2
+ λεt

)
·
(
ρ
(
ρ+ λ(1− ρ)

)2`−1)
= 2A · εt +B,

where A = λρ
2
·
(
ρ+ λ(1− ρ)

)t−2 and B = (1− λ)ρ3
(
ρ+ λ(1− ρ)

)2t−3. Collecting the terms in this
way allows us to proceed by completing the square. We get εt ≤ A +

√
A2 +B and we complete the

proof by showing that A+
√
A2 +B = ρ

(
ρ+ λ(1− ρ)

)t−1. For this last calculation, set the shorthand
Φ := ρ+ λ(1− ρ). We have

A+
√
A2 +B = ρ · Φt−2 ·

[
λ

2
+

√
λ2

4
+ ρ(1− λ)Φ

]
= ρ · Φt−1,

where the final equation holds because Φ = λ/2 +
√
λ2/4 + ρ(1− λ)Φ, which is verified by a simple

calculation.
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