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Abstract

A sunflower is a collection of sets whose pairwise intersections are identical. In
this article, we shall go sunflower-picking. We find sunflowers in several seemingly
unrelated fields, before turning to discuss recent progress on the famous sunflower
conjecture of Erdős and Rado, made by Alweiss, Lovett, Wu and Zhang.

1 Sunflowers

Figure 1: A sunflower with 4 petals.

The moral of Ramsey theory is that large systems can exhibit surprising structure.
There are many examples of this kind, starting with the prototypical one: every graph
on n vertices either contains a clique1 on (1/2) · log2 n vertices, or an independent set2

on (1/2) · log2 n vertices. Roth’s theorem [14] proves that every subset of {1, . . . , n} of
density Ω(1) must contain an arithmetic progression3. The Hales-Jewett theorem [9]
and Ajtai and Szemeredi’s Corner theorem [1] are other examples of this phenomenon.

∗This exposition appears as a companion piece to a talk given at the current events bulletin at the
Joint Mathmetical Meeting of the AMS in 2022.

1Mutually adjacent vertices
2Mutually non-adjacent vertices
3Three numbers a, a + d, a + 2d
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A sunflower with p petals is a collection of p sets whose pairwise intersections are
identical. The common intersection is called the core. In 1960, Erdős and Rado [4]
proved a Ramsey theoretic result concerning sunflowers: every large collection of sets
must contain a sunflower. They gave a simple inductive argument showing that every
collection of more than k! · (w − 1)k sets of size at most k must contain a sunflower
with w petals4. There are examples with Ω(w)k sets that have no sunflowers, and they
conjectured that the correct bound is O(w)k.

The seeds were planted, and the search for sunflowers and sunflower lemmas began
in earnest. We begin this article by taking a tour through various fields where sunflowers
are essential. We shall see examples relevant to finding arithmetic progressions in
sumsets, understanding models of computation such as monotone boolean circuits and
data structures, and fundamental questions about the threshold of a monotone function.
In each of these arenas, we skip details and zoom in to focus on the role played by
sunflowers.

In 2019, Alweiss, Lovett, Wu and Zhang [2] made significant progress towards prov-
ing the sunflower conjecture. Subsequent refining by myself [12], Frankston, Kahn,
Narayanan and Park [7] and Bell, Chueluecha and Warnke [3] led to the result that
every collection of O(w log k)k sets of size at most O(k) must contain a sunflower with
w petals. We shall return to the ideas that lead to this improved bound near the end
of this article.

2 Arithmetic Progressions in Sumsets

In 1992, Erdős and Sárközy [5] used sunflowers to find arithmetic progressions in
subset sums. Given a set T ⊆ {1, . . . , n}, let sum(T ) denote the quantity

∑
x∈T x.

Given any set S ⊆ {1, . . . , n} of size |S| � log2 n, they proved that there are subsets
T1, . . . , Tw+1 ⊆ S, with w ≈ |S|/ log2 n, such that the sequence

sum(T1), sum(T2), · · · , sum(Tw+1)

is an arithmetic progression. Much like the sunflower lemma, this is an example of
finding structure in a large system. However, the structure we seek here is an arithmetic
progression; what does this have to do with sunflowers? Erdős and Sárközy move
between the two structures as follows. First, by counting the number of possible sums
that can be obtained by subsets of S, and estimating a binomial coefficient, they show
that some (w log n)logn subsets of S of size log n must attain the same sum. By the
sunflower lemma, and the choice of parameters, this collection of sets is guaranteed to
contain a sunflower. The proof is completed by the following claim, whose proof we
leave as an exercise (Figure 2):

4Often the sunflower lemma is stated under the assumption that each set is of size exactly k rather
than at most k. Here we use the more general form because many application rely on this form, and
all of the ideas for proving the lemmas carry through.
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Figure 2: 4 petals induces an arithmetic progression of length 5.

Claim 1. If S1, . . . , Sw ⊆ {1, . . . , n} is a sunflower with core C, |S1| = · · · = |Sw|, and
sum(S1) = sum(S2) = · · · = sum(Sw), then

sum(C), sum(S1), sum(S1 ∪ S2), . . . , sum(S1 ∪ · · · ∪ Sw)

is an arithmetic progression.

3 Monotone Circuit Lower Bounds

Sunflowers have had a huge impact in theoretical computer science. Perhaps the most
well-known example is Razborov’s [13] proof from 1985 that there are no small mono-
tone circuits computing the clique function. Here, I will give a cartoon description of
this clever argument.

A boolean circuit computes with the help of gates implementing boolean logic.
These logic gates can compute the OR, AND or negation of their inputs. The inputs
to the gates are either the outputs of other gates, or input variables. The size of the
circuit is the number of wires used, which is the same as the number of connections
made between gates. A monotone circuit is a boolean circuit that does not have any
gates computing negations. The circuit computs a function if there is a gate whose
value is equal to the value of the function, for every choice of the input variables.

For a graph G on n vertices, and a set S of vertices, define

cliqueS(G) =

{
1 if G contains a clique on the vertices of S,

0 otherwise.

The function of interest for us is

cliquek(G) =
∨

S⊆{1,...,n},|S|=k

cliqueS(G),

which computes whether or not the graph contains a clique of size k. Razborov
proves that this function requires exponentially large monotone circuits, if k ≈ n1/3.
Razborov’s result is one of the few examples where we are able to prove lower bounds
on reasonable models of computation: it is a gem of theoretical computer science.

At a high level, sunflowers are used critically to show that any circuit computing
cliquek can be used to obtain a smaller circuit with the same ability. Each such step
involves a tiny error. We obtain a good approximation to the original circuit that is so
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simple that we can directly reason that it does not work. This proves that the original
circuit does not work either.

Now, let us give a few more details. Let G be a graph on n vertices that contains a
uniformly random clique of size k, and no other edges. Let H be a uniformly random
(k − 1)-partite graph. G always contains a clique of size k, while H never contains
a clique of size k. A monotone circuit computing the clique function would have to
output 1 on G and 0 on H. An input variable to the circuit is the indicator for the
presence of an edge, which can be thought of as cliqueS for some set S of size 2.

Let us discuss how to approximate the circuit by a simpler circiut. First, we claim
that cliqueS ∧cliqueT can be safely replaced by cliqueS∪T . This is because by the choice
of G,

cliqueS(G) ∧ cliqueT (G) ≤ cliqueS∪T (G),

and by the choice of H,

cliqueS(H) ∧ cliqueT (H) ≥ cliqueS∪T (H).

Thus, carrying out this approximation preserves the ability of the circuit to distinguish
G from H, while reducing the size of the circuit.

Sunflowers play a key role in approximating OR gates, via the following claim:

Claim 2. If S1, . . . , Sw form a sunflower with core C, and all sets Si are of size at most√
k, then

cliqueS1
(G) ∨ · · · ∨ cliqueSw

(G) ≤ cliqueC(G),

and with high probability over the choice of H,

cliqueS1
(H) ∨ · · · ∨ cliqueSw

(H) ≥ cliqueC(H).

When the input is G, the claim is trivial. When the input is H, the approximation
causes a problem if there is a clique on C in H, yet none of the petals constitute a
clique. This is extremely unlikely to happen: given that the core is a clique, the events
that the petals are also cliques are independent, and the choice of parameters ensures
that each occurs with probability Ω(1). So, one can argue that one of the petals will
be a clique with probability 1− 2−Ω(w).

Thus, if t is large enough, any expression of the type

cliqueS1
∨ . . . ∨ cliqueSt

can be approximated by a smaller expression of the same type—use the sunflower
lemma to find a sunflower among the sets and replace it by the core. Repeatedly
applying these operations, one can show that any arbitrary small monotone circuit can
be approximated by a circuit whose structure is so simple that it is trivial to verify
that it cannot distinguish G from H.
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4 Lower Bounds for Data Structures

Data structures are a fundamental concept in computer science. They are used to effi-
ciently maintain an object so that the object can be quickly modified and queried. Our
next example is a lower bound on the running time of data structures for the problem
of maintaining a set and computing its minimum, from my work with Ramamoorthy
[11], building on [6, 8].

We showed that any data structure that can maintain a subset of numbers T ⊆
{1, . . . , n} and can quickly and non-adaptively compute the minimum element of T must
access Ω(log n/ log logn) locations for one of its operations. Our result is independent
of the algorithm used to implement the data structure and the particular encoding of
the data (namely T ) used, the argument only relies on the sets of locations that the
data structure reads and writes to.

A valid data structure for our purposes is one that encodes the set T as a vector
enc(T ) ∈ {1, . . . , n}m. The data structure is associated with a family of subsets of the
coordinates of the encoding S1, . . . , Sn ⊆ {1, . . . ,m} and an algorithm for manipulating
enc(T ). For each i, the algorithm is able change enc(T ) to either enc(T ∪ {i}) or
enc(T − {i}) and compute the new minimum of the set by reading and writing to the
coordinates of enc(T ) given by Si. Under just these assumptions, we prove that some
set Si must be of size Ω(log n/ log log n).

If all of the sets S1, . . . , Sn are of size � logn
log logn , the choice of parameters implies

that there is a sunflower, say S1, . . . , Sw, with w ≈ (log n)100, and core C. Then the
key claim is:

Claim 3. If S1, . . . , Sw is a sunflower with core C, then every subset of {1, . . . , w} has
an encoding as a vector enc(W ) ∈ {1, . . . , n}|C|.

This claim combined with a straightforward counting argument implies that |C| ≥
Ω( logn

log logn), proving that one of the sets Si must be large. To prove the claim, for any set
T ⊆ {1, . . . , w}, arrive at its encoding by deleting the elements of the set {1, . . . , w}−T
from the encoding of {1, . . . , w}. The claimed encoding corresponds to the contents of
the core at this point, which is a string in {1, . . . , n}|C|. T can be recovered from the
encoding by computing the minimum of T , then deleting the minimum, then computing
the minimum and deleting it, and repeating these operations over and over until the
entire set T has been recovered. Because each of these operations only interact on the
coordinates of enc(T ) that correspond to the core, the contents of the core are enough
to simulate the entire process and determine T .

5 Estimating the Threshold of Monotone Functions

Suppose that we are given a parameter 0 ≤ ε ≤ 1 and sample a random graph by includ-
ing each edge independently with probability ε. How can we estimate the probability
that the graph contains a perfect matching?

This is a special case of a more general question. Let X ∈ {0, 1}n be sampled by
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independently setting each coordinate:

Xi =

{
1 with probability ε,

0 with probability 1− ε.

Let f : {0, 1}n → {0, 1} be a monotone function, meaning that x ≥ y implies that
f(x) ≥ f(y) (x ≥ y if xi ≥ yi for all i). Because f is monotone, E[f(X)] is increasing in
ε. The threshold of f is the value of ε for which E[f(X)] = 1/2. There are a couple of
generic ways to bound E[f(X)], and these bounds induce other kinds of thresholds that
capture something about the structure of f . These ideas were explored extensively by
Kahn and Kalai [10], Talagrand [15] and Frankston, Kahn, Narayanan and Park [7].

Every monotone function f admits a minimal collection of binary strings F such
that f(x) = 1 if and only if there is an element y ∈ F , with y ≤ x. So, by the union
bound:

E[f(X)] ≤
∑
y∈F

P[y ≤ X], (5.1)

The expectation-threshold is the value of ε for which the right-hand-side of (5.1) is equal
to 1/2. By (5.1), the threshold is always at least as large as the expectation-threshold.
When f computes whether or not a graph has a perfect matching, the threshold is
≈ logn

n , while the expectation threshold is ≈ 1
n . Kahn and Kalai conjectured that this

is in fact the worst possible ratio: the threshold is always at most O(log n) times larger
than the expectation-threshold.

In general, the union bound can be quite far from tight. It is not tight when the
events y ≤ X have intersections of significant measure. There is a more sophisticated
way to get upper bounds on E[f(X)], as observed by Talagrand [15]—it can be thought
of as a fractional variant of the union bound. For z ∈ {0, 1}n, let |z| =

∑n
i=1 zi. Suppose

there is a probability distribution Z on {0, 1}n and κ satisfying

f(x) ≤ κ · E
Z

[1Z≤x · ε−|Z|],

for all x. Then we obtain the upper bound:

E
X

[f(X)] ≤ κ · E
X,Z

[1Z≤X · ε−|Z|] = κ, (5.2)

since for any fixed z, the probability that z ≤ X is exactly ε|z|.
The fractional-expectation-threshold is the value of ε for which there is a distribution

Z with κ = 1/2. The union bound (5.1) can also be proved using (5.2), because if Z is
sampled so that

P[Z = z] =

{ P[z≤X]∑
w∈F P[w≤X] if z ∈ F ,

0 otherwise,
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then we have

f(x) ≤
(∑

z∈F
P[z ≤ X]

)
· E
Z

[1Z≤x · ε−|Z|] =
∑
z∈F

P[z ≤ X],

for all x, proving (5.1). So, the bound given by (5.2) is certainly at least as good as
the bound given by (5.1). In particular, this implies that the threshold is at least as
large as the fractional-expectation-threshold, which in turn is at least the expectation-
threshold. But how far apart can these numbers be?

Talagrand conjectured that the fractional-expectation-threshold is within a mul-
tiplicative factor of O(log n) from the threshold, and within an O(1) factor of the
expectation-threshold. Frankston, Kahn, Narayanan and Park [7] proved that the
fractional-expectation-threshold is within O(log n) of the threshold, so resolving Tala-
grand’s first conjecture. This allows to compute the threshold for many graph prop-
erties, such as perfect matchings, Hamiltonian circuits and bounded degree spanning
trees. The ideas used to prove new sunflower lemmas play a key role in their proof, as
we shall see below.

Talagrand made an important observation that is ultimately useful to understanding
the gap between the threshold and the fractional-expectation-threshold. Suppose that
κ is the smallest number for which there is a distribution Z establishing (5.2). Then
by von-Neumann’s minimax theorem, there is a distribution U on {0, 1}n such that for
every choice of z,

E
U

[f(U)] ≥ κ · E
U,z

[1z≤U · ε−|z|]. (5.3)

Without loss of generality, we may assume that U is supported on the min-terms of
f , since we can always modify the distribution in this way and preserve the inequality.
Moreover, the distribution of U can be thought of as the uniform distribution on a
multiset S, by equating binary strings with subsets of {1, . . . , n}, and finding a close
enough rational approximation to the distribution of U . So, after making these changes,
we can rewrite (5.3) as:

ε|z|/κ ≥ E
U,z

[1z≤U ], (5.4)

where here U samples a random element from a multi-set containing the min-terms of
f . By (5.4), this multi-set has a very interesting property: It must be spread, in the
sense that very few of these sets can all contain the same set. The fraction of min-terms
containing z is at most EU,z[1z≤U ] ≤ ε|z|/κ ≤ r−|z|, for r = κ/ε.

So, where are the sunflowers? This time, the sunflowers show up figuratively: our
best known method for finding sunflowers involves understanding the probability that
a random set contains an element of a spread family. To explain, let us put on hold
our study of these thresholds and discuss the ideas needed to prove sunflower lemmas.
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6 Finding Sunflowers (in Spread Families)

At last we return to the heart of the matter: how many sets of size k are sufficient to
ensure the presence of a sunflower with w petals? Alweiss, Lovett, Wu and Zhang dis-
covered an elementary counting argument that is surprisingly powerful to help answer
this question.

Given a collection S of sets, we shall say that the sets are r-spread (for some
parameter r = O(w log k)) if for every set T of size at most k − 1, the fraction of sets
in the collection that contain T is at most r−|T |. As we saw in the last section, this
definition naturally arose in the work of Talagrand, but it is very directly applicable to
proving a better sunflower lemma. Suppose |S| ≥ rk. If S is not r-spread, then there is
a set T such that the family S ′ = {S ∈ S : T ⊆ S} has at least rk−|T | sets. In this case,
we inductively find a sunflower in the family of sets of size at most k− |T | obtained by
deleting T from the sets of S ′. Adding T back into this sunflower gives us a sunflower
in our original family of sets. So, it only remains to find sunflowers in spread families.

The main technical claim is:

Claim 4. For r = O((1/ε) log k), if S is r-spread, and X is a random set sampled by
including each element independently with probability ε, then X contains a set of S
with probability at least 1/2.

We note that the Claim holds even if S is a multi-set, which is useful for the
application to understanding the thresholds of monotone functions. Let X1, . . . , X2w be
a random partition of the universe into 2w sets, and set ε = 1/(2w), so r = O(w log k).
Claim 4 implies that w of these sets will contain a set of the family in expectation, and
so there must be w mutually disjoint sets: a sunflower with w petals.

To exhibit the key ideas used to prove the claim, let us settle for a weaker goal.
Suppose S = {S1, . . . , Srk}, and X ⊆ {1, . . . , n} is uniformly random. We will show
that there must be a set Si ∈ S such that |X ∩ Si| ≥ 0.99k with high probability.

X
Si

St

T

Figure 3: T must be large, and so there are few choices for Si.

Consider the possible pairs (X,Si) where X does not share 0.99k elements with
any set of S, and Si is an arbitrary element of S.
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(i). There are at most 2n choices for X ∪ Si.

(ii). Given X ∪Si, let t be the smallest index such that St ⊆ X ∪Si. There is exactly
one choice for t.

(iii). Let T = St −X. This is a subset of St, so there are at most 2k choices for T .

(iv). We have now identified a set T that is contained in Si. Since X does not cover
0.99k elements of St, |T | ≥ 0.01k. Because S is r-spread, there can be at most
|S| · r−|T | choices for Si.

(v). Finally, there are at most 2k choices for X ∩ Si. Because the sets X ∪ Si, Si and
X ∩ Si determine X, all of these choices determine the pair (X,Si).

In this way, the number of such pairs (X,Si) is at most 2n · 2k · |S| · r−0.01k · 2k =
|S| · 2n+2k−0.01k log r. Because the number of choices for Si is |S|, this implies that the
probability that a random choice of X fails to intersect a set in 0.99k elements is at
most 2k(2−0.01 log r), which can be made very small for r a large constant. Methods from
information theory along with a few other ideas can be used to prove Claim 4 in its
entirety.

7 Estimating the Threshold of Monotone Functions
(contd.)

Armed with our ability to reason about random sets containing a set of the spread
family (Claim 4), we can now return to finish the story of the gap between the threshold
and the fractional-expectation-threshold.

Suppose the fractional-expectation-threshold of a monotone function f is γ. Then
recall that we have a collection of min-terms (possibly with repetitions) that correspond
to sets that are r-spread, with r = 1/(2γ). Let k be the size of the largest min-
term, and let C be some large constant. Then if we set ε = Cγ log k, we get that
r = C(1/(2ε)) log k. For some large C, Claim 4 implies that a random set X, where
each element is included in X with probability ε, will contain one of the min-terms
with probability at least 1/2. If X is viewed as a binary string, this implies that

E[f(X)] ≥ 1/2,

proving that the threshold of f is at most O(γ log k). Thus, we get that the ratio
between the threshold and the fractional-expectation-threshold is at most O(log n).

8 Conclusion

Sunflowers have had an enormous impact on a surprising number of different fields.
They are certain to spring up in new places in the future. The methods of [2] may well
lead to even stronger sunflower lemmas, or find applications in places where there are
no sunflowers. It is an exciting time to be playing with these concepts!
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