
Approximating Large Powers of Stochastic
Matrices in Small Space

Gil Cohen*

Dept. of Computer Science
Tel Aviv University

gil@tauex.tau.ac.il

Dean Doron
Dept. of Computer Science

Ben Gurion University
deand@bgu.ac.il

Ori Sberlo†

Dept. of Computer Science
Tel Aviv University

orisberlo@mail.tau.ac.il

Abstract

We give a deterministic space-efficient algorithm for approximating powers of
stochastic matrices. On input a w×w stochastic matrix A, our algorithm approximates
An in space Õ(log n+

√
log n · logw) to within high accuracy. This improves upon the

seminal work by Saks and Zhou [SZ99], that requires O(log3/2 n+
√
log n·logw) space,

in the regime n ≫ w.

*Funded by ERC starting grant 949499 and by ISF grant 1569/18.
†Funded by ERC starting grant 949499 and by ISF grant 952/18.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 8 (2022)

1 Introduction

One of the great challenges in complexity theory is the BPL vs. L problem: To what
extent is randomness necessary for space-bounded algorithms? More concretely, can ev-
ery probabilistic algorithm be fully derandomized with only a constant factor blowup
in space? It is widely believed that BPL = L, as indeed follows from plausible circuit
lower bounds [KvM02], and in contrast to the time-bounded case, there are no known
barriers for the unconditional derandomization of BPL. Over the past decades, signif-
icant progress has been made, notably in the construction of pseudorandom generators
(PRGs) for various classes of branching programs, and in space-efficient derandomization
of fundamental problems in graph theory and linear algebra.

Savitch’s result [Sav70] can be extended to show that any two-sided error randomized
algorithm that uses S space can be simulated deterministically using O(S2) space, giving
BPL ⊆ DSPACE(log2 n). Nisan [Nis92, Nis94] devised a time-efficient derandomization
with a quadratic overhead in space, namely, BPL ⊆ DTISP(poly(n), log2 n). Focusing
solely on space, Saks and Zhou [SZ99] cleverly built on Nisan’s work to deterministically
simulate two-sided error space S randomized algorithms in space O(S3/2). The state-
of-the-art is a recent improvement by Hoza [Hoz21], giving a deterministic simulation
in space O(S3/2/

√
logS), utilizing recent advances in weighted PRGs for branching pro-

grams in the low-error regime [BCG18, CL20, CDR+21, PV21].
A more general setting is where we consider derandomization of space-S algorithms

that use R random coins, where R is not necessarily assumed to be 2Θ(S). Nisan and Zuck-
erman [NZ96] proved that any space-S randomized algorithm that uses R = polylog(S)
coins can be simulated deterministically in space O(S). See also [Arm98] for a different
range of parameters. The distinction between R and S is also widely, and successfully,
studied in the context of PRGs for branching program, where w = 2Θ(S) corresponds to
the width of the program, and R corresponds to its length (for the formal definitions,
see Section 2.3). For a few examples, often for more restricted classes of space-bounded
computation, see [RR99, BRRY14, MRT19, DMR+21] and references therein.

Approximating powers of stochastic matrices. It is easy to see that approximating pow-
ers of stochastic matrices is in BPL, by estimating the probability of a random walk over
the corresponding Markov chain. Conversely, it is possible to convert any randomized
space-bounded machine into a stochastic operator A such that the probability the ma-
chine moves from a state s to a state t in k steps is Ak[s, t]. Therefore, derandomizing
space-bounded algorithms amounts to deterministically, and space-efficiently, approxi-
mating powers of A. Namely, for two-sided error space-logw algorithms that use n bits of
randomness, the task would be to approximate the entries of An for any w × w stochastic
operator A.

Following Savitch [Sav70], using repeated squaring we can compute An exactly in
space O(log n · logw) (ignoring bit representation issues, see Claim 2.6). When w ≪ n, one
can get better space complexity by using an algorithm based on the Cayley–Hamilton

1

theorem.

Theorem 1.1. For any n,w ∈ N there exists a deterministic algorithm that on input a w × w
matrix A, represented by poly(w) bits, outputs An using space O(log n+ log2w).

Although the proof of Theorem 1.1 uses standard linear algebra and known results
from parallel circuit complexity, we are not aware of any reference in which it explicitly
appears. Thus, for completeness, we give the formal details in Appendix A.

For stochastic matrices, introducing ε > 0 approximation error, the Saks–Zhou algo-
rithm runs in space

O
(√

log n · log nw

ε

)
.

The dependence on ε was recently improved by Ahmadinejad, Kelner, Murtagh, Peebles,
Sidford, and Vadhan [AKM+20] using the Richardson iteration (see Section 2.4), obtaining

O

(√
log n · log(nw) + log lognw

1

ε
· log(nw)

)
space.

1.1 Main Result

The main result of this work is an algorithm that improves upon the classical Saks-Zhou
algorithm (as well as [AKM+20]) in the regime n ≫ w.

Theorem 1.2 (main result; see also Theorem 6.1). For any w, n ∈ N, and ε > 0, there exists a
deterministic algorithm that given a w × w stochastic matrix A, approximates An to within error
ε = 2− polylog(n) in space

Õ
(
log n+

√
log n · logw

)
,

where the Õ notation hides doubly-logarithmic factors in n and w. More precisely, our algorithm
requires

O

((
log n+

√
log n · logw

)
· log log(nw) + log log

1

ε
· log(nw) +

(
log log

1

ε

)2
)
.

space.

Our algorithm outperforms previous results (including Theorem 1.1) whenever

2
√
logn ≪ w ≪ n.

For concreteness, let us take w = 2log
α n for some constant α ∈ (1

2
, 1). Our algorithm runs

in Õ(log1/2+α n) space, whereas the Saks–Zhou algorithm requires O(log3/2 n) space, and
the algorithm that is given by Theorem 1.1 requires O(log2α n) space.

There are two natural ways to further interpret our result.

2

Approximating long random walks. Our result yields approximation of long random
walks on arbitrary digraphs with super-polynomial mixing time. Letting A be a w × w
stochastic matrix, n = n(w) ≫ w, and v ∈ Rw be any initial distribution, Theorem 1.2
gives a space-efficient algorithm for approximating Anv, outperforming previous meth-
ods. When A corresponds to an irreducible and aperiodic Markov chain with a polynomial
mixing time, n = poly(w) already suffices for Anv to be very close to the stationary dis-
tribution. When the underlying Markov chain is not poly-mixing, which is often the case
for arbitrary digraphs, the regime n ≫ w may give us valuable information about the
behavior of random walks.

Space-bounded derandomization. In the lens of derandomization, Theorem 1.2 proves
that any randomized algorithm that uses R random bits and S space can be simulated de-
terministically in O(logR+

√
logR ·S) space. In the regime R = 2S

1/α for α < 1, where our
algorithm shines, there is a subtlety that one should bear in mind. Conventionally, ran-
domized algorithms use at most 2O(S) random coins. Otherwise, the algorithm reaches the
same state twice, implying that there are (infinite) sequences of random coins for which
the algorithm never terminates. To settle the halting issue, it is natural to consider the
model in which a randomized algorithm uses S space, and R random coins in expectation.
With this modification, our simulation result holds. We make two additional remarks: (1)
For R = 2O(S), the above modification agrees with the standard model, and (2) Taking
R ≫ 2S may decide languages outside BPL, e.g., if R = 22

O(S) then we can decide the
directed connectivity problem which is not known to be in BPL.

1.2 Our Algorithm

Our result is based on the beautiful Saks–Zhou algorithm which consists of two ingredi-
ents: (1) The celebrated Nisan generator, which is used as a randomized matrix exponen-
tiation algorithm, and (2) the shift and truncate technique (see Section 4). By the latter, we
mean subtracting a small quantity from intermediate calculations (i.e., shift), and keep-
ing only some of the most significant digits (i.e., truncate). To approximate An given some
stochastic matrix A, the [SZ99] algorithm follows by using (1) to approximate the 2

√
logn-th

power, iteratively for
√
log n times, and applying (2) between consecutive iterations. Ap-

plying (2) (in tandem with a canonicalization step we discuss in Section 3) allows [SZ99]
to reuse the randomness needed for repeated applications of Nisan generator.

We start by noting that each shift must be taken to be smaller than 1
n

as the quality
of approximation deteriorates as we take higher powers. A key observation of our work
is that, in contrast to the magnitude of each shift, the amount of randomness the [SZ99]
algorithm needs for the shifts can be taken to be independent of n. Concretely, choosing
a random shift from the set

{
1 · n−1, . . . , 2ℓ · n−1

}
requires ℓ random bits, even though

the shifts themselves are of magnitude 1
n

. Indeed, our algorithm invests roughly logw
random bits for choosing the shifts and each shift is of magnitude roughly 1

n
.

While these parameters suffice for the analysis to work, this observation does not

3

readily yield any improvement: Nisan generator is costly if the input matrix is repre-
sented using too many bits of precision. If we keep log n bits of accuracy for each entry,
Nisan generator runs in space log n, eventually resulting in an overall space complexity
of log3/2 n.1 We would want each iteration to run in space

√
log n + logw ≪ log n, and it

is unclear how to utilize the aforementioned observation in order to get an improvement
upon [SZ99].

We thus employ the following approximation scheme. First, we purposely decrease the
precision of the input matrix to the Nisan generator by truncating its entries to a precision
of 1

w
. The output of the generator then gives us a “mild” approximation to the 2

√
logn-th

power. Then, to restore the (required) high precision approximation of 1
n

, we invoke the
Richardson iteration. Primarily used as an iterative method for solving linear systems, the
Richardson iteration has been extremely useful in graph algorithms, and was recently ap-
plied in the space-bounded setting (see Section 2.4). In our work, we use it to obtain a
high precision approximation of matrix powers from mild approximations. It is instruc-
tive to note that although we decrease the precision before using Nisan generator, this
precision is not lost since we still “keep” the untruncated matrix. In turn, the Richard-
son iteration combines the untruncated matrix with mild approximation of its 2

√
logn-th

power, in order to get a high-precision approximation of that power.
We provide a rough outline of our algorithm (see also Figure 1). The precise descrip-

tion is given in Section 5. The algorithm gets as input a stochastic matrix A ∈ Rw×w,
auxiliary randomness for the Nisan generator as well as for the shifts, and proceeds as
follows.

1. Set M̃0 = A.

2. For i = 1, . . . ,
√
log n,

(a) Truncate M̃i−1 to a precision of 1
w

and denote this by ⌊M̃i−1⌋.

(b) Set the Nisan generator to work with accuracy 1
w

and use it to approximate
⌊M̃i−1⌋2

√
logn . Note that since M̃i−1 ≈ ⌊M̃i−1⌋, we get M̃2

√
logn

i−1 ≈ ⌊M̃i−1⌋2
√
logn .

(c) Use the mild approximation obtained above to compute a high precision ap-
proximation Ri ≈ M̃2

√
logn

i−1 by applying the Richardson iteration. We stress that
the Richardson iteration improves our approximation with respect to the pre-
vious high precision approximation M̃i−1 and not its truncation.

(d) Shift Ri by a random shift of magnitude 1
n

, and truncate it to a precision of 1
n

.
We set M̃i to be the result of that shift and truncation.

3. Output M̃√
logn.

1In fact, the “inner” seed length will also be log3/2 n, which is a bigger issue, since the space complexity
can be improved by employing the sampler trick together with the INW generator instead of Nisan’s.

4

M̃0

⌊M̃0⌋ ≈ ⌊M̃0⌋2
√
logn

R0 M̃1

⌊M̃1⌋ ≈ ⌊M̃1⌋2
√
logn

R1 M̃2

. . .

Truncate

Nisan

R
ic

ha
rd

so
n

Richardson
S&T

Truncate

Nisan

R
ic

ha
rd

so
n

Richardson
S&T

Figure 1: Our Improved SZ Algorithm. “S & T” refers to “shift and truncate”.

The above outline, and Figure 1, illustrate the alternating nature of the algorithm, zig-
zagging between a mild approximation of 1

w
and a high precision approximation of 1

n
.

Setting the parameters appropriately, we get that with high probability over the auxiliary
randomness, i.e., the seed for the Nisan generator and the shifts, the algorithm outputs a
good approximation for An using space Õ(log n+

√
log n · logw).

Averaging over the auxiliary randomness, as done in [SZ99], would yield a space-
efficient deterministic algorithm, albeit with accuracy of 1

w
. It is thus tempting to try and

apply an additional layer of the Richardson iteration in order to improve the accuracy to
an arbitrary ε > 0.2 However, to apply the Richardson iteration, the initial accuracy needs
to be at least 1

n
≪ 1

w
. To overcome this issue, we observe that while the average does not

give us a good enough guarantee, the median does. Applying the Richardson iteration
after taking the median over the auxiliary randomness, we get our final high-precision
approximation.

2 Preliminaries

2.1 Matrix Notation

For a matrix A ∈ Rw×w, we denote ∥A∥max = maxi,j∈[w] |A[i, j]| and by ∥A∥∞ we denote its
induced ℓ∞ norm, i.e., ∥A∥∞ = maxi∈[w]

∑
j∈[w] |A[i, j]|. Clearly,

Claim 2.1. For any matrix M ∈ Rw×w we have that ∥M∥∞ ≤ w ∥M∥max.

We say a real matrix is stochastic if it is row-stochastic, i.e., if its entries are nonnega-
tive and every row sums to 1. We say that a real matrix is sub-stochastic if its entries are
nonnegative and every row sums to at most 1, i.e., ∥A∥∞ ≤ 1.

The following claim follows by a simple induction and the triangle inequality.

2In fact, this was already done in [AKM+20] for the standard Saks–Zhou algorithm.

5

Claim 2.2. Let ∥·∥ be a sub-multiplicative norm. Then, for any A1, . . . , Ak, B1, . . . , Bk with norm
at most 1 we have that

∥A1 · · ·Ak −B1 · · ·Bk∥ ≤
∑
i

∥Ai −Bi∥ .

In particular, if ∥A∥ , ∥B∥ ≤ 1 then
∥∥Ak −Bk

∥∥ ≤ k · ∥A−B∥.

2.2 Space-Bounded Computation

A deterministic space-bounded Turing machine has three tapes: an input tape (that is
read-only); a work tape (that is read-write) and an output tape (that is write-only and
uni-directional). The output of the TM is the content of its output tape once the machine
terminates. The space used by a TM M on input x is the rightmost work tape cell that M
visits upon its execution on x. Denoting this quantity by sM(x), the space complexity of
M is thus the function s(n) = maxx:|x|=n sM(x). For further details, see [AB09, Chapter 4]
and [Gol08, Chapter 5].

Claim 2.3 (composition of space-bounded algorithms). Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be
functions that are computable in space s1, s2 : N → N, where s1(n), s2(n) ≥ log n. Then, f1 ◦
f2 : {0, 1}⋆ → {0, 1}⋆ can be computed in space

O (s1 (ℓ2(n)) + s2(n)) ,

where ℓ2(n) is a bound on the output length of f2 on inputs of length n.

Corollary 2.4. Let f : {0, 1}⋆ → {0, 1}⋆ be computable in space s : N → N, where s(n) ≥ log n.
Then, g(x, k) = f (k)(x), where k ∈ N, can be computed in space

O

(
k−1∑
i=0

s (ℓi(n))

)

where ℓi(n) is a bound on the output length of f (i) on inputs of length n.

Next, we recall the space complexity of computing matrix powers via naı̈ve repeated
squaring. Observe that whenever two numbers are multiplied, their multiplication re-
quires more digits of precision and so we have to account for that as well.

Definition 2.5 (matrix bit complexity). Given a matrix A ∈ Rw×w, we denote its bit complexity,
i.e., the number of bits required to represent all its entries, by |A|. In particular, if we use k bits of
precision for every entry in A then |A| = O(kw2). We will always assume |A| = Ω(w2).

Claim 2.6. The matrix powering function f(A, n) = An can be computed in space O(log2 n +
log n · log |A|).

6

Proof. First, note that the product of two matrices f(A,B) = AB can be computed in space
O(log(|A|+ |B|)), where we use our assumption |A|, |B| = Ω(w2). Composing f(A,A) for
k times, we can compute A2k in space

O

(
k∑

i=1

log
(
2i |A|

))
= O

(
k2 + k log |A|

)
,

following Corollary 2.4. (Note that the number of bits needed to represent each entry
doubles at every iteration). Write n =

∑⌈logn⌉
i=0 bi2

i for bi ∈ {0, 1}. Then,

An =
∏
i:bi=1

A2i .

Accounting for the log n additional space needed to compute the product, the proof is
concluded.

2.3 Read-Once Branching Programs

We use the standard definition of layered read-once branching programs. For a length
parameter n ∈ N, a width parameter w ∈ N, and an alphabet Σ, an [n,w,Σ] BP is specified
by an initial state v0 ∈ [w], a set of accept states Vacc ⊆ [w] and a sequence of transition
functions Bi : [w] × Σ → [w] for i ∈ [n]. The BP B naturally defines a function B : Σn →
{0, 1}: Start at v0, and then for i = 1, . . . , n read the input symbol xi and transition to the
state vi = Bi(vi−1, xi). The BP accepts x, i.e., B(x) = 1, if vn ∈ Vacc, and rejects otherwise.

Given a transition Bi, and σ ∈ Σ, we identify the function Bi(·, σ) : [w] → [w] with
a Boolean stochastic matrix which we denote Bi(σ), wherein Bi(σ)[u, v] = 1 if and only
if Bi(u, σ) = v. The transition matrix of each layer corresponds to the matrix A(Bi) ≜
Eσ∈Σ [Bi(σ)]. The transition matrix of B itself is thus

A(B) ≜ A(B1) · . . . · A(Bn),

which describes a uniformly random walk on B. In particular,
∑

v∈Vacc
A(B)[v0, v] denotes

the probability that B accepts a random input. In our work we will approximate A(B) in
a strong sense that would be oblivious to the initial state and the set of accepting states,
so we will never mention them explicitly. Namely, if M is such that ∥A(B)−M∥∞ ≤ ε,
we ε-approximate the aforementioned acceptance probability for any v0 and Vacc.

Finally, when we omit the length of the BP and simply refer to B as a [w,Σ] BP, we
mean that B comprises a single transition function, and we sometimes repeat it for, say,
n times, to mimic the length-n BP in which every transition is the same as this of B. This
notion is very natural, and in fact suffices, when one wishes to approximate powers of
stochastic matrices rather than iterated matrix multiplication. Given a [w,Σ] BP B with
A(B) = A, An is thus the transition matrix of the BP with n identical transitions.

7

2.4 Richardson Iteration

Richardson iteration is a method for improving a given approximation to an inverse
of a matrix. This method is frequently used to construct a preconditioner to a Lapla-
cian system, and has recently been used in the context of space-bounded computation in
[AKM+20, PV21, CDR+21]. We describe it formally.

Definition 2.7 (Richardson iteration). Given A,B ∈ Rw×w, and k ∈ N, we define

R(A,B, k) =
k−1∑
i=0

(I − AB)i A.

Above, one can think of B as the Laplacian of some stochastic matrix, and of A as a
coarse approximation of its inverse.

Lemma 2.8. For any sub-multiplicative norm ∥·∥, let A,B ∈ Rw×w be such that ∥I − AB∥ ≤ ε
and B is invertible. Then, ∥∥R(A,B, k)−B−1

∥∥ ≤
∥∥B−1

∥∥ · εk.
The above lemma can be used to devise an algorithm that improves the accuracy of

matrix powers [AKM+20, PV21, CDR+21], as we state below. For completeness, we pro-
vide the short proof in Appendix B.

Lemma 2.9. There exists an algorithm R that gets as input a sub-stochastic matrix A ∈ Rw×w,
sub-stochastic matrices A1, . . . , An ∈ Rw×w, and k ∈ N, and satisfies the following.

• If for all i ∈ [n] we have that ∥Ai − Ai∥∞ ≤ 1
4(n+1)

, then

∥R(A1, . . . , An, A, k)− An∥∞ ≤ (n+ 1) · 2−k.

• R runs in
O
(
log2 k + log k · log(nT)

)
space, where T = max {|A| , |A1| , . . . , |An|} is the maximum bit-complexity of the given
matrices.

3 Revisiting the Nisan Generator

Nisan, in his seminal work [Nis92], constructed a family of pseudorandom generators
that ε-fool [n,w,Γ] BPs using seed of length d = O

(
log n · log nw|Γ|

ε

)
. We briefly recall the

construction and its properties.

8

Set the generator’s “working alphabet” Σ, where |Σ| = O
(

nw|Γ|
ε

)
,3 and let H ⊆ Σ → Σ

with |H| = |Σ|2 be a two-universal family of hash functions. The seed for

G = Glogn : {0, 1}d → Γn

comprises log n hash functions h = (h1, . . . , hlogn), each hi ∈ H, and a symbol σ ∈ Σ, notic-
ing that indeed d = O(log n · log |Σ|). We define Gi : Σ × {0, 1}i·2 log |Σ| → Γ(2i) recursively
as follows.

G0(σ) = σ|[1,...,log |Γ|],
Gi(σ;h1, . . . , hi) = Gi−1(σ;h1, . . . , hi−1) ◦Gi−1(hi(σ);h1, . . . , hi−1).

One can verify that the space needed to compute the output of G, given an appropriate H,
is O(log |Σ|) ≪ d. It turns out to be incredibly useful to divide the seed into an “offline”
part h ∈ {0, 1}dN which we can fix and is good with high probability, and an “online” one
σ ∈ Σ which we average over. We can summarize the properties of the Nisan generator
below, where we explicitly distinguish between accuracy and confidence (as was also done
in [Nis94] and in more recent works).

Theorem 3.1 ([Nis92]). Given n,w ∈ N, an accuracy parameter ε > 0, a confidence parameter
δ > 0, and an alphabet Γ, let G : {0, 1}dN × Σ → Σn be the above Nisan generator, where |Σ| =
O
(

nw|Γ|
εδ

)
and dN = O (log n · log |Σ|). Let B be any [n,w,Γ] BP. Then, with probability at least

1− δ over h ∈ {0, 1}dN , it holds that∥∥∥∥A(B)− E
σ∈Σ

[B(G(h, σ))]

∥∥∥∥
∞

≤ ε,

recalling that A(B) = Ez∈Γn [B(z)].4

In particular, the above says that if B is a [w,Σ] BP with a transition matrix A, we can
use Nisan generator to approximate powers of A by using the same layer.

Canonicalization of BPs. An important step in [SZ99] is to transform a given stochastic
matrix (or a sub-stochastic one) into a BP, in a canonical way. We first make this notion
explicit.

Given a w × w sub-stochastic matrix M in which every entry is represented using at
most s bits, let B = C(M) be the [w + 1,Σ = [2s]] BP constructed as follows. Given i ∈ [w]
and σ ∈ Σ, B(i, σ) = j where j is the smallest integer satisfying

∑
k≤j M [i, k] ≥ σ · 2−s if

such exists, and w + 1 otherwise. Moreover, we set B(w + 1, σ) = w + 1 for all σ ∈ Σ. The
following claim then follows easily.

3If Γ is large enough already, we can simply take Σ = Γ, but the above choice of Σ will not change the
parameters.

4We note that by “collecting instructions”, we can view the output of Nisan generator as a [w,Σ] BP B
(n)
h

whose transition matrix A(B
(n)
h) is precisely Eσ∈Σ [B(G(h, σ))].

9

Claim 3.2. For a sub-stochastic matrix M , it holds that A(C(M))[1,w] = M , where we denote by
A[a,b] the sub-matrix of A that is formed by taking the rows and columns indexed by a, . . . , b.

In our work, we will also need to work with lossy canonicalizations, in which we trans-
late a sub-stochastic matrix with a large bit-complexity into a BP over a small alphabet.
Given a sub-stochastic M and t ∈ N, we let Ct(M) be the canonicalization of M into a BP
of width w + 1 over the alphabet Σ = {0, 1}t, regardless of the representation of its ele-
ments. Namely, B = Ct(M) is defined such that B(i, σ) = j, where again, j is the smallest
integer satisfying

∑
k≤j M [i, k] ≥ σ · 2−t if such exists, and w + 1 otherwise. We also set

B(w + 1, σ) = w + 1 for all σ ∈ Σ as before.

Claim 3.3. Let M be a w×w sub-stochastic matrix M in which every entry is represented using
at most s bits, and let t ∈ N where t ≤ s. Then,∥∥A(Ct(M))[1,w] −M

∥∥
∞ ≤ w · 2−t.

Moreover, computing Ct takes O(log s+ logw) space.

An Extended Nisan Algorithm. For simplicity, let us only consider a [w,Σ] BP with a
transition matrix A rather than different transitions at each layer. Observe that the Nisan
generator, set with length parameter n, can also approximate all intermediate powers by
truncating its output accordingly. We can now summarize the parameters of the generator
as a randomized algorithm for approximating powers of matrices.

Theorem 3.4 (following [Nis92]). There exists an algorithm N that gets as input a [w,Σ] BP
B with a transition matrix A = A(B), a length parameter n, an accuracy parameter ε > 0, a
confidence parameter δ > 0, and a seed h ∈ {0, 1}dN where dN = O

(
log n · log nw|Σ|

εδ

)
. The

algorithm runs in space O
(
log nw|Σ|

εδ

)
and outputs(

M
(1)
h , . . . ,M

(n)
h

)
= Nε,δ(B, h, n),

each M
(i)
h ∈ Rw×w, and satisfies the following. With probability at least 1 − δ over h ∈ BdN , it

holds that for all i ∈ [n], ∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε.

We note that one can improve the overall dependence on δ using Armoni’s “sampler
trick” [Arm98] (see also [CL20, Appendix A]), but we will not need it.

We will often want to feed Nisan’s algorithm with stochastic (or even sub-stochastic)
matrices, rather than BPs. The following theorem extends upon Theorem 3.4 by preform-
ing a canonicalization step prior to applying Nisan’s algorithm, and even allows for a
lossy canonicalization step which would be useful toward reducing the space require-
ments. As it will be clear from context, we use N for both the algorithm that gets a BP as
input and for the one that gets a matrix as input.

10

Theorem 3.5. There exists an algorithm N that gets as input:

1. A w × w sub-stochastic matrix A in which every entry is represented using at most s bits.

2. An accuracy parameter ε > 0, a confidence parameter δ > 0, and a canonicalization param-
eter t ∈ N, where t ≤ s.

3. A seed h ∈ {0, 1}dN for dN = O
(
log n ·

(
t+ log nw

εδ

))
.

The algorithm runs in space O
(
log s+ log nw

εδ

)
and outputs(

M
(1)
h , . . . ,M

(n)
h

)
= Nε,δ(A, h, n, t),

each M
(i)
h ∈ Rw×w, and satisfies the following. With probability at least 1 − δ over h ∈ {0, 1}dN ,

it holds that for all i ∈ [n], ∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε+ nw · 2−t.

When we omit the parameter t, we implicitly set t = s, and then the error guarantee is simply ε.
Also, when we set N to output a single matrix, we take it to be M (n)

h .

Proof. We compute B = Ct(A) and apply N(B, h, n), which outputs M
(1)
h , . . . ,M

(n)
h . We

then consider only the first w rows and columns of each matrix. By Theorem 3.4, with
probability at least 1− δ over h ∈ {0, 1}dN , we are guaranteed that∥∥∥M (i)

h − A(B)i
∥∥∥
∞

≤ ε

for all i ∈ [n]. By Claim 3.3, ∥A(B)− A∥∞ ≤ w · 2−t, and thus, due to Claim 2.2,∥∥∥M (i)
h − Ai

∥∥∥
∞

≤ ε+ iw · 2−t.

The space requirements and the bound for dN readily follows from Claim 3.3 and Theo-
rem 3.4. Note that when t = s, the canonicalization is lossless.

4 The Saks–Zhou Algorithm

We revisit Saks and Zhou’s argument in a different terminology, which would allow us
to lay the groundwork for our improved algorithm given in the next section. Toward this
end, we recall the machinery of shift and truncate.

11

4.1 Shift and Truncate

Definition 4.1 (truncation). For z ∈ [0, 1] and t ∈ N, we define the truncation operator ⌊z⌋t
which truncates z after t bits. Namely,

⌊z⌋t = max
{
2−t · ⌊2tz⌋, 0

}
.

We extend it to matrices in an entry-wise manner. That is, for a sub-stochastic matrix A, the
matrix ⌊A⌋t has entries ⌊A[i, j]⌋t.

Lemma 4.2. Let y, z ∈ [0, 1] be such that |y − z| ≤ 2−2t. Then, for all ℓ < t we have that

Pr
ζ

[
⌊z − ζ2−2t⌋t ̸= ⌊y − ζ2−2t⌋t

]
≤ 2−ℓ,

where ζ is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
.

Proof. Without the loss of generality assume z < y. Note that ⌊z − ζ2−2t⌋t ̸= ⌊y − ζ2−2t⌋t
is equivalent to

∃a ∈ N, a2−t ∈
[
z − ζ2−2t, y − ζ2−2t

)
. (1)

However, by our assumption |y − z| ≤ 2−2t the following union⋃
ζ∈{0,...,2ℓ−1}

[
z − ζ2−2t, y − ζ2−2t

)
⊆
[
z − (2ℓ − 1)2−2t, y

)
= I

is disjoint and contained in the interval I which is of length at most |y− z|+(2ℓ−1)2−2t ≤
2−t. Hence, there is at most one point in I which is an integer multiple of 2−t, meaning
that there is at most one ζ satisfying Equation (1).

The preceding lemma is an important ingredient in [SZ99], that enables one to elimi-
nate dependencies between consecutive applications of Nisan’s algorithm. Think of z as
an approximation to some y obtained by a randomized algorithm that typically returns
a good approximation z ≈ y. Note that while z, y might be extremely close, their trun-
cation may differ if they are on the boundary values of the truncation operator. The idea
behind Lemma 4.2 is that if we randomly shift both y, z then their truncation is equal
with high probability. Once we fix a good shift our approximation depends only on the
input (and the fixed shift) and not on the internal randomness used to compute z. See
[TS13, HK18, HU21] for additional discussion. Extending Lemma 4.2 to matrices, a sim-
ple union-bound gives us the following corollary.

Corollary 4.3. Let M,M ′ ∈ Rw×w be such that ∥M −M ′∥max ≤ 2−2t. Then, for all ℓ < t, we
have that

Pr
ζ

[
⌊M − ζ2−2tJw⌋t ̸= ⌊M ′ − ζ2−2tJw⌋t

]
≤ w22−ℓ,

where ζ is chosen uniformly at random from
{
0, 1, 2, . . . , 2ℓ − 1

}
and Jw is the all-ones w × w

matrix.

12

4.2 The Saks–Zhou Algorithm and Its Analysis

Given a w×w stochastic matrix A, we wish to compute An, where n = 2r for some integer
r. (This can be assumed without any significant loss in parameters.) In this section we
describe Saks and Zhou’s randomized algorithm that uses only O(r3/2) random bits, and
runs in space O(r3/2). As discussed toward the end of this section, the algorithm can
then be derandomized in a straightforward manner while maintaining space complexity
O(r3/2).

Let ε > 0 be a desired accuracy parameter, and δ > 0 be the desired confidence. Write
r = r1r2 for some r1, r2 ∈ N to be chosen later on. Set δN = δ

2r2
, t = log 2nw2r2

εδ
, ℓ = t

2
,

εN = 2−2t, and

dN = O

(
r1 ·
(
t+ r1 + log

w

εNδN

))
= O

(
r21 + r1 log

nw

εδ

)
.

Without the loss of generality we may assume that the input matrix A is given to us using
t digits of precision. The algorithm gets as input A ∈ Rw×w, r = r1r2, h ∈ {0, 1}dN , and
ζ = (ζ1, . . . , ζr2) ∈

{
0, . . . , 2ℓ − 1

}r2 , and proceeds as follows.

1. Set M̃0 = A.

2. For i = 1, . . . , r2,

(a) Compute M̃
(2r1)
i−1 = NεN,δN

(
M̃i−1, h, 2

r1

)
.

(b) Set M̃i =
⌊
M̃

(2r1)
i−1 − ζi2

−2tJw

⌋
t
.

3. Output M̃r2 .

Theorem 4.4 ([SZ99]). For any w × w stochastic matrix A, and integers r1, r2 such that r1r2 =
r = log n, the above algorithm satisfies the following. With probability at least 1 − δ over h ∈
{0, 1}dN and ζ = (ζ1, . . . , ζr2) ∈

{
0, . . . , 2ℓ − 1

}r2 , the output M̃r2 = SZ(A, r1, r2, h, ζ) satisfies∥∥∥An − M̃r2

∥∥∥
∞

≤ ε.

Moreover, SZ(A, r1, r2, h, ζ) runs in space O
(
r2 · log nw

εδ

)
.

Proof. We let Mi be the “true” random rounding. That is, M0 = A, and for each i ∈ [r2],

Mi(ζ) = ⌊Mi−1(ζ)
2r1 − ζi2

−2tJw⌋t. (2)

Observe that the Mi-s do not depend on h. For brevity, we omit the dependence on h and
ζ whenever it is clear from context.

13

Next, we argue that with high probability (over h and the ζ-s), M̃i = Mi. Toward this
end, define for each fixing of ζ1, . . . , ζi,

GOODi,ζ =
{
h ∈ {0, 1}dN :

∥∥M2r1
i − NεN,δN (Mi, h, 2

r1)
∥∥
∞ ≤ εN

}
. (3)

It is important to note that whenever ζ1, . . . , ζi are fixed, the matrices M1,M2, . . . ,Mi are
fixed as well, as opposed to the matrices M̃1, . . . , M̃i, which depend on the choice of h. By
Theorem 3.5, we get that for any i ∈ [r2] and ζ1, . . . , ζi,

Pr
h∈{0,1}dN

[h ∈ GOODi,ζ] ≥ 1− δN. (4)

Claim 4.5. It holds that

Pr
h,ζ

[
∃j ∈ [r2], Mj ̸= M̃j

]
≤ r2w

22−ℓ ≤ δ.

Proof. We prove by induction on i that

Pr
h,ζ

[
∃j ≤ i, Mj ̸= M̃j

]
≤
(
δN + w22−ℓ

)
· i.

The base case i = 0 is trivial. Fix some i ≥ 1, and denote by E the “bad” set

E =
{
(h, ζ) : ∃j < i such that Mj ̸= M̃j or h ̸∈ GOODi−1,ζ

}
.5

Next, we write

Pr
h,ζ

[
∃j ≤ i,Mj ̸= M̃j

]
= Pr[E] Pr

[
∃j ≤ i,Mj ̸= M̃j

∣∣ E]+ Pr[¬E] Pr
[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr

[
∃j < i,Mj ̸= M̃j

]
+ Pr [h ̸∈ GOODi−1,ζ] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most

(
δN + w22−ℓ

)
(i − 1), and by Equa-

tion (4) the second term is at most δN, so it suffices to show that

Pr
h,ζ

[
Mi ̸= M̃i

∣∣ ∀j < i Mj = M̃j and h ∈ GOODi−1,ζ

]
≤ w22−ℓ.

In fact, we shall show that for any fixed ζ1, . . . , ζi−1 and h satisfying the above conditioning,
we have

Pr
ζi

[
Mi ̸= M̃i

]
≤ w22−ℓ.

5For brevity, we use the notation GOODi,ζ even when the ζ vector contains more than j elements, in
which case we just ignore the rest of them.

14

Since h ∈ GOODi−1,ζ , ∥∥M2r1
i−1 − NεN,δN (Mi−1, h, 2

r1)
∥∥
∞ ≤ εN.

Recall that we assumed that M̃i−1 = Mi−1, and so∥∥∥M2r1
i−1 − M̃

(2r1)
i−1

∥∥∥
∞

≤ εN = 2−2t

as well. By Corollary 4.3, with probability at least 1− w22−ℓ over ζi,⌊
M2r1

i−1 − ζi2
−2tJw

⌋
t
=
⌊
M̃

(2r1)
i−1 − ζi2

−2tJw

⌋
t
,

which simply amounts to Mi = M̃i, as desired (see Equation (2) for the definition of Mi).
This completes the inductive step.

Next, we handle the accuracy guarantee.

Claim 4.6. For all i ∈ {0, 1, . . . , r2} and all ζ it holds that

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t+1w
i−1∑
j=0

2jr1 .

In particular, ∥Mr2 − An∥∞ ≤ ε.

Proof. We prove the claim by induction on i. The base case follows since M0 = A. Fix
some i ≥ 1. By the definition of Mi we have∥∥Mi −M2r1

i−1

∥∥
max

≤ 2−t + 2−2t+ℓ ≤ 2−t+1,

and so by Claim 2.1,
∥∥Mi −M2r1

i−1

∥∥
∞ ≤ 2−t+1w. Write∥∥∥Mi − A2ir1

∥∥∥
∞

≤
∥∥Mi −M2r1

i−1

∥∥
∞ +

∥∥∥∥M2r1
i−1 −

(
A2(i−1)r1

)2r1∥∥∥∥
∞
.

By the induction’s hypothesis and Claim 2.2, the second term is at most

2r1 · 2−t+1w
i−2∑
j=0

2jr1 .

Overall, we get

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t+1w + 2r1 · 2−t+1w
i−2∑
j=0

2jr1 ≤ 2−t+1w
i−1∑
j=0

2jr1 .

This completes the induction. The “In particular” part follows from our choice of param-
eters, noting that 2−t+1w · 2r ≤ ε.

15

Claim 4.5 tells us that with probability at least 1 − δ, M̃r2 = Mr2 . By Claim 4.6 above,∥∥∥M̃r2 − An
∥∥∥ ≤ ε, so the correctness follows.

For the space complexity, by Theorem 3.5, N takes O
(
r1 + log w

εNδN

)
space and the rest

of the operations per iteration are absorbed within the latter term. This yields space com-
plexity of r2 ·O

(
r1 + log w

εNδN

)
= r2 ·O

(
log nw

εδ

)
.

Given the above theorem, one can readily obtain a deterministic algorithm for matrix
powering by averaging over all seeds, using space

O
(
r2ℓ+ dN + log

nw

εδ

)
= O

(
r2 log

nw

εδ
+ r21 + r1 log

nw

εδ

)
.

Setting r1 = r2 =
√
r =

√
log n, and δ = ε, one gets O(ε) approximation in the induced ℓ∞

norm using space
O
(√

log n · log nw

ε

)
.

We omit the details as we take a different approach for this final step in our improved
algorithm.

5 Our Improved Algorithm

In this section, and in the next one, we present our improvement upon the Saks–Zhou
algorithm to obtain better space complexity for approximating large powers of matrices,
following the outline given in Section 1.2. Toward this end, we devise a randomized
algorithm which is derandomized in Section 6.

5.1 The Randomized Algorithm

We now formally describe our algorithm. Let ε > 0 be a desired accuracy parameter, and
δ > 0 the desired confidence. Let r ∈ N, and write r = r1r2 for some r1, r2 ∈ N to be
chosen later on. Set εN = 2−2r1 , δN = δ

2r2
, ℓ = log 2w2r2

δ
, t1 = 4r1 + logw, t2 = log 16w2r2n

εδ
, and

dN = O

(
r1 ·
(
r1 + log

w

εNδN

))
= O

(
r21 + r1 log

r2w

δ

)
.

Without the loss of generality we may assume that the input matrix A is also given to us
using t2 digits of precision. Additionally,

|ζ| = r2 · ℓ = O
(
r2 · log

r2w

δ

)
.

The algorithm SZImp gets as input A ∈ Rw×w 6, r = r1r2, h ∈ {0, 1}dN , and ζ =
(ζ1, . . . , ζr2) ∈

{
0, . . . , 2ℓ − 1

}r2 , and proceeds as follows.

6We assume that each entry of A is represented using t2 bits of accuracy.

16

1. Set M̃0 = A.

2. For i = 1, . . . , r2,

(a) Compute
(
M̃

(1)
i−1, M̃

(2)
i−1, . . . , M̃

(2r1)
i−1

)
= NεN,δN

(
M̃i−1, h, 2

r1 , t1

)
.

(b) Compute M̃i =
⌊
R
(
M̃

(1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
− ζi2

−2t2Jw

⌋
t2

.7

3. Output M̃r2 .

Before delving into the analysis, let us briefly discuss our parameters.

• The truncation parameters t2 > t1: In Item 2b we truncate all but the first t2 bits of
our approximation. The parameter t2 determines the accuracy of the algorithm, and
is governed by n. The second truncation occurs implicitly in Item 2a where in the
canonicalization step we truncate all but the first t1 bits before applying the Nisan
generator. The parameter t1, which is governed by w and r1, does not affect the
accuracy due to the Richardson iteration performed right after.

• The parameters of the Nisan generator εN and δN correspondingly denote the accu-
racy and confidence parameters we apply N with. We abbreviate NεN,δN(A, h, 2

r1 , t1)
with N(A, h).

• The “shift” parameter ℓ: The amount of randomness we invest in the shifts, which
also determines the probability in which the shifts are successful. Note that we set
ℓ ≪ t2, and in particular ℓ does not depend on n and the accuracy parameter ε. In
contrast, in [SZ99], ℓ = Ω(t) (see Section 4).

We first determine our algorithm’s space complexity.

Lemma 5.1. Computing SZImp(A, r1, r2, h, ζ) takes

O

(
(log n+ r2 logw) · log log

nw

εδ
+ r2 log

1

δ
+ r2

(
log log

nw

εδ

)2)
space.

Proof. Consider the function f(M̃i) = M̃i+1 describing one iteration of Item 2. Note that
this function has the same input and output length – a w × w matrix, and that each entry
is represented by t2 bits. The function f is itself the composition of three functions:

7The Richardson iteration may output a matrix which is not sub-stochastic. This can be addressed by
first rounding all negative entries to 0 and all entries larger than 1 to 1. This step can only improve the
accuracy. Then, if the sum of entries in some row exceeds 1, decrease the largest entry in that row by the
smallest value that will result in its sum being at most 1 (note that we may not be able to get the sum to be
exactly 1 as we work with O(t2) bits of precision). In terms of accuracy, the above correction is negligible
compared to the truncation step for a good (h, ζ).

17

• The Nisan generator N: By Theorem 3.5, this takes

O

(
log t2 + r1 + log

w

εNδN

)
= O

(
log log

n

ε
+ r1 + log

w

δ

)
space.

• Richardson Iteration: By Lemma 2.9, this takes

O
(
log2 t2 + log t2 · log(2r1wt2)

)
= O

((
log log

nw

εδ

)2
+ log(2r1w) · log log nw

εδ

)
space.

• Truncation: Takes O(log t2) = O
(
log log nw

ε

)
space.

The algorithm is a composition of f on itself r2 times so by Corollary 2.4 we can sum the
above and multiply by r2, obtaining our desired overall space complexity.

Before continuing with correctness, we need to make sure our parameters satisfy the
following constraints.

• To apply Corollary 4.3, we need
ℓ < t2. (5)

• The truncation parameters satisfy

t1 < t2. (6)

• In order to apply the Richardson iteration (Lemma 2.9) we need to satisfy

εN + w · 2r1−t1 ≤ 1

4(2r1 + 1)
, 2−t2 ≤ 1

2r1 + 1
. (7)

5.2 Proof of Correctness

Throughout the analysis we shall assume that Equations (5) to (7) hold.

Theorem 5.2. For any w × w stochastic matrix A, and integers r1, r2, the above algorithm sat-
isfies the following. With probability at least 1 − δ over h ∈ {0, 1}dN and ζ = (ζ1, . . . , ζr2) ∈{
0, . . . , 2ℓ − 1

}r2 , the output M̃r2 = SZImp(A, r1, r2, h, ζ) satisfies∥∥∥An − M̃r2

∥∥∥
∞

≤ ε,

where r = r1r2 and n = 2r. Moreover, SZImp(A, r1, r2, h, ζ) runs in space

O

(
(log n+ r2 logw) · log log

nw

εδ
+ r2 log

1

δ
+ r2

(
log log

nw

εδ

)2)
.

18

Proof. We let Mi be the “true” random rounding, similar to the analysis in Section 4. That
is, M0 = A, and for each i ∈ [r2],

Mi(ζ) =
⌊
Mi−1(ζ)

2r1 − ζi2
−2t2Jw

⌋
t2
. (8)

Observe, again, that the Mi-s do not depend on h. For brevity, we omit the dependence
on h and ζ whenever it is clear from context.

Next, we argue that with high probability (over h and the ζ-s), M̃i = Mi. Toward this
end, we similarly define for each fixing of ζ ,

GOODi,ζ =
{
h ∈ {0, 1}dN : ∀j ≤ 2r1 ,

∥∥∥M j
i −M

(j)
i

∥∥∥
∞

≤ εN + w · 2r1−t1
}
, (9)

where
(
M

(1)
i , . . . ,M

(2r1)
i

)
= N(Mi, h). (Note that here we feed N with Mi and not M̃i,

similar to what we did in Section 4.) By Theorem 3.5, we get that for any i ∈ [r2] and
ζ = (ζ1, . . . , ζi),

Pr
h∈{0,1}dN

[h ∈ GOODi,ζ] ≥ 1− δN. (10)

Claim 5.3. It holds that

Pr
h,ζ

[
∃k ∈ [r2], Mk ̸= M̃k

]
≤
(
δN + w22−ℓ

)
r2 ≤ δ.

Proof. The proof is similar to the proof of Claim 4.5. We prove by induction on i that

Pr
h,ζ

[
∃k ≤ i,Mk ̸= M̃k

]
≤
(
δN + w22−ℓ

)
· i.

The base case i = 0 is trivial. Fixing some i ≥ 1, we denote by E the set

E =
{
(h, ζ) : ∃k < i such that Mk ̸= M̃k or h ̸∈ GOODi−1,ζ

}
,

and again we have

Pr
h,ζ

[
∃k ≤ i,Mk ̸= M̃k

]
= Pr[E] Pr

[
∃k ≤ i,Mk ̸= M̃k

∣∣ E]+ Pr[¬E] Pr
[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
≤ Pr

[
∃k < i,Mk ̸= M̃k

]
+ Pr [h ̸∈ GOODi−1,ζ] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most (δN + w22−ℓ) · (i− 1), and by Equa-
tion (10) the second term is at most δN. Thus, it suffices to show that

Pr
h,ζ

[
Mi ̸= M̃i

∣∣ ∀k < i, Mk = M̃k and h ∈ GOODi−1,ζ

]
≤ w22−ℓ.

19

We show that for any fixed ζ1, . . . , ζi−1 and h satisfying the conditioning, we have

Pr
ζi

[
Mi ̸= M̃i

]
≤ w22−ℓ.

Since h ∈ GOODi−1,ζ , for all j ≤ 2r1 we have that∥∥∥M j
i−1 −M

(j)
i−1

∥∥∥
∞

≤ εN + w · 2r1−t1 .

Recall that we assume that M̃i−1 = Mi−1, and so for all j ≤ 2r1 ,∥∥∥M j
i−1 − M̃

(j)
i−1

∥∥∥
∞

≤ εN + w · 2r1−t1 .

Using Lemma 2.9 and the guarantee of Equation (7), we get∥∥∥R(M̃ (1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
−M2r1

i−1

∥∥∥
∞

≤ (2r1 + 1) · 2−3t2 ≤ 2−2t2 .

Thus, by Corollary 4.3, with probability at least 1− w22−ℓ over ζi,⌊
M2r1

i−1 − ζi2
−2t2Jw

⌋
t2
=
⌊
R
(
M̃

(1)
i−1, . . . , M̃

(2r1)
i−1 , M̃i−1, 3t2

)
− ζi2

−2t2Jw

⌋
t2
,

which simply means that Mi = M̃i, recalling the definition of Mi from Equation (8). This
completes the inductive step.

For the accuracy guarantee, we have

Claim 5.4. For all i ∈ {0, 1, . . . , r2} and all ζ it holds that

∥∥∥Mi − A2ir1
∥∥∥
∞

≤ 2−t2+1w
i−1∑
j=0

2jr1 .

In particular, ∥Mr2 − An∥∞ ≤ ε.

The proof is identical to the proof of Claim 4.6, so we omit it. To conclude, note that
by Claim 5.3 we have that with probability at least 1− δ, M̃r2 = Mr2 , and by Claim 5.4 we
establish the accuracy guarantee

∥∥∥M̃r2 − An
∥∥∥ ≤ ε. The space requirement was established

in Lemma 5.1.

We note that by averaging over all seeds (namely, h and the ζ-s), taking δ = ε ≈ 1
w

, we
would get a deterministic approximation, and this was also done in [SZ99]. However, we
can get a much better accuracy, and this is the content of the next section.

20

6 A High-Accuracy Deterministic Approximation

In this section we prove our main result, Theorem 6.1, giving a high-accuracy determin-
istic algorithm for approximating An. Note that SZImp does not provide us with one good
approximation but requires a seed. In [SZ99], Saks and Zhou averaged over the outputs
of all seeds. When ε ≈ δ, this would give an O(ε)-approximation deterministic algorithm.

Recall that Richardson iteration forces us to take ε ≈ 1
n

. The dependence of Theo-
rem 5.2 on ε is only double-logarithmic, and so taking a tiny ε does not deteriorate the
space complexity by much. The dependence on δ, however, is logarithmic. Thus, to gain
any improvement we cannot afford to take δ ≈ ε as would be the case if we “mixed” the δ
fraction of bad matrices together with the accurate ones. Our key idea here is as follows:
Instead of averaging, we iterate the SZImp algorithm over all (h, ζ)-s and take the entry-
wise median of the outputs. This approach only requires us to take δ = O(1). Toward that
end, given a set of matrices {A1, . . . , Am}, we denote by mediani∈[m] Ai the matrix M for
which M [a, b] is the median of Ai[a, b] over all i ∈ [m].

Formally, the SZ+
Imp algorithm proceeds as follows. We are given a stochastic matrix

A ∈ Rw×w, n ∈ N, and a desired accuracy parameter ε > 0. Set r1 = r2 =
√
log n,

δSZImp =
1
4
, and εSZImp =

1
8w(n+1) logn

. For this choice of parameters, we get that the truncation
parameter t2 from Section 5 satisfies

t2 = log
16w2r2n

εSZImpδSZImp

= O (log nw) .

Also, note that dN in SZImp satisfies

dN = O

(
r21 + r1 · log

r2w

δSZImp

)
= O

(
log n+

√
log n · logw

)
,

and the number of bits needed to represent ζ1, . . . , ζr2 is given by

|ζ| = O

(
r2 · log

r2w

δSZImp

)
= O

(√
log n · log log n+

√
log n · logw

)
.

Then,

1. For i = 1, . . . , log n, compute

M̃2i = median
h,ζ

SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h, ζ

)
,

where we take the SZImp algorithm with accuracy εSZImp and confidence δSZImp .8

8To be completely accurate, the second and third arguments to SZImp must be integers and so are taken to
be ⌊

√
i⌋ rather than

√
i. This then yields an approximation to the 2⌊

√
i⌋2 power of A. As i−⌊

√
i⌋2 ≤ 2

√
i+1,

computing the “missing” 2O(
√
i) power can be done in an iterative manner (for ≈ log log i = log log log n

iterations), and without effecting the overall space complexity.

21

2. For j ∈ [n], we let bi,j ∈ {0, 1} be such that j =
∑⌈logn⌉

i=0 bi,j2
i is the binary representa-

tion of j. Compute
M̃j =

∏
i:bi,j=1

M̃2i .

3. Output M̃ = R
(
M̃1, . . . , M̃n, A, k

)
for k =

⌈
log n

ε
+ 1
⌉
.

Theorem 6.1. Given a w × w stochastic matrix A, the algorithm SZ+
Imp above satisfies∥∥∥An − M̃

∥∥∥
∞

≤ ε,

and runs in space

O

((
log n+

√
log n · logw

)
· log log nw +

(
log log

1

ε

)2

+ log log
1

ε
· log(nw)

)
.

In particular, for ε = 2− polylog(n), the space complexity is Õ
(
log n+

√
log n · logw

)
.

Proof. First, note that for each i,
∣∣∣M̃2i

∣∣∣ = O(w2t2), and so∣∣∣M̃j

∣∣∣ = O
(
w2 (t2 + logw) log n

)
= O(w2t2 log n).

We start by analyzing the space complexity.

• Following Theorem 5.2, the SZImp algorithm with the prescribed parameters takes

O

(
(log n+ r2 logw) log log

nw

εSZImpδSZImp

+ r2 log
1

δSZImp

+ r2

(
log log

nw

εSZImpδSZImp

)2
)

space, which is
O
((

log n+
√
log n · logw

)
· log log nw

)
,

and running it for log n times requires only an additional counter of log log n bits.

• Computing the median of m numbers a1, . . . , am each represented via t bits can be
done in O(logm+log t) space. E.g., for a fixed number aj , we can go over all ai-s and
count how many of them are smaller than aj breaking ties lexicographically, i.e.,

ai ≺ ai′ ⇐⇒ (ai < ai′) ∨ ((ai = ai′) ∧ (i < i′)).

In our case, this amount to

dN + |ζ|+O
(
log t2w

2
)
= O

(
log n+

√
log n · logw

)
.

22

• Computing the powers in Item 2 takes

O
(
log log n · log(t2w2)

)
= O (log log n · log(w log n))

space.

• Applying R takes

O

((
log log

n

ε

)2
+ log log

n

ε
· log

(
(n+ 1) · w2t2 log n

))
space, following Lemma 2.9, which is

O

((
log log

1

ε

)2

+ log log
n

ε
· log(nw)

)
.

Our algorithm is essentially a composition of the above procedures, and so the claim on
the space complexity follows from composition of space-bounded algorithms (Claim 2.3).

We now proceed with the correctness. By Theorem 5.2, for at least 3
4

of the (h, ζ)-s, we
have∥∥∥SZImp(⌊A⌋t2 ,

√
i,
√
i, h, ζ)− ⌊A⌋2it2

∥∥∥
max

≤
∥∥∥SZImp(⌊A⌋t2 ,

√
i,
√
i, h, ζ)− ⌊A⌋2it2

∥∥∥
∞

≤ εSZImp ,

and so for at least 3
4

of the (h, ζ)-s we get that for all (a, b) ∈ [w]2,∣∣∣SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h, ζ

)
[a, b]− ⌊A⌋2it2 [a, b]

∣∣∣ ≤ εSZImp .

Thus, for all (a, b) ∈ [w]2,∣∣∣∣(median
h,ζ

SZImp

(
⌊A⌋t2 ,

√
i,
√
i, h, ζ

))
[a, b]− ⌊A⌋2it2 [a, b]

∣∣∣∣ ≤ εSZImp .

This is true for all indices (a, b) and all i ∈ [log n] and so by Claim 2.1, for all i ∈ [log n],∥∥∥M̃2i − ⌊A⌋2it2
∥∥∥
∞

≤ wεSZImp .

By Claim 2.2,
∥∥Aj − ⌊A⌋jt2

∥∥
∞ ≤ jw2−t2 , and applying Claim 2.2 again for multiplication

of log n matrices, we get that for every j ≤ n,∥∥∥M̃j − Aj
∥∥∥
∞

≤
∥∥∥M̃j − ⌊A⌋jt2

∥∥∥
∞
+
∥∥⌊A⌋jt2 − Aj

∥∥
∞ ≤ εSZImpw log n+ nw2−t2 ≤ 1

4(n+ 1)
.

Using Lemma 2.9, we obtain∥∥∥R(M̃1, . . . , M̃n, A, k)− An
∥∥∥
∞

≤ (n+ 1) · 2−k ≤ ε,

which completes the proof.

23

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

[AKM+20] Amir Mahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles,
Aaron Sidford, and Salil Vadhan. High-precision estimation of random walks
in small space. In 61st Annual Symposium on Foundations of Computer Science
(FOCS 2020), pages 1295–1306. IEEE, 2020.

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In
International Workshop on Randomization and Approximation Techniques in Com-
puter Science, pages 47–59. Springer, 1998.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-
optimal error for read-once branching programs. In 50th Annual Symposium
on Theory of Computing (STOC 2018), pages 353–362. ACM, 2018.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information processing letters, 18(3):147–
150, 1984.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudoran-
dom generators for regular branching programs. SIAM Journal on Computing,
43(3):973–986, 2014.

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error
reduction for weighted PRGs against read once branching programs. In 36th
Computational Complexity Conference (CCC 2021), pages 22:1–22:17. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions
for read-once branching programs. In 35th Computational Complexity Confer-
ence (CCC 2020), pages 25:1–25:27. Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2020.

[DMR+21] Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan.
Pseudorandom generators for read-once monotone branching programs. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[Ebe89] Wayne Eberly. Very fast parallel polynomial arithmetic. SIAM Journal on Com-
puting, 18(5):955–976, 1989.

24

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[HK18] William M. Hoza and Adam R. Klivans. Preserving randomness for adap-
tive algorithms. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2018.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[HU21] William M. Hoza and Chris Umans. Targeted pseudorandom generators,
simulation advice generators, and derandomizing logspace. SIAM Journal
on Computing, pages STOC17–281, 2021.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has
subexponential size proofs unless the polynomial-time hierarchy collapses.
SIAM Journal on Computing, 31(5):1501–1526, 2002.

[MP00] Carlo Mereghetti and Beatrice Palano. Threshold circuits for iterated ma-
trix product and powering. RAIRO-Theoretical Informatics and Applications,
34(1):39–46, 2000.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators
for width-3 branching programs. In 51st Annual Symposium on Theory of Com-
puting (STOC 2019), pages 626–637. ACM, 2019.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation.
Combinatorica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. computational complexity, 4(1):1–11, 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal
of Computer and System Sciences, 52(1):43–52, 1996.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudo-
random generators. In 36th Computational Complexity Conference (CCC 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In 31st Annual Symposium on Theory of Computing
(STOC 1999), pages 159–168. ACM, 1999.

[RT92] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial com-
putation. SIAM Journal on Computing, 21(5):896–908, 1992.

25

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S2/3). Journal
of Computer and System Sciences, 58(2):376–403, 1999.

[TS13] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace.
In 45th Annual Symposium on Theory of Computing (STOC 2013), pages 881–890.
ACM, 2013.

A Spectral Algorithm for Matrix Powering

In this section we prove Theorem 1.1. The idea is to use the Cayley-Hamilton Theorem as
was done, e.g., in [MP00]. The algorithm for computing An given A ∈ Rw×w is as follows.

1. Compute the characteristic polynomial of A and denote it by p(X).

2. Compute r(X) = Xn mod p(X), where deg(r) < deg(p) = w.

3. Compute r(A).

To implement the above in a space-efficient manner, we use the following two results
from parallel computation. The first one is due to Berkowitz, who gave a parallel algo-
rithm for computing the characteristic polynomial.

Theorem A.1 ([Ber84]). There exists a logspace uniform family of NC2 circuits that computes
the characteristic polynomial of a given matrix. In terms of space complexity, on input A ∈ Rw×w

the algorithm runs in space O(log |A| · logw).

The second algorithm is for polynomial division.

Theorem A.2 ([Ebe89]). Division of polynomials over the integers can be done in logspace uni-
form NC1.

It turns out that one can even perform polynomial division, and various other poly-
nomial (and integer) arithmetic in TC0 (see, e.g., [RT92] and references therein).

Claim A.3. The above algorithm to compute An can be implemented to run in space O(log n +
logw · log |A|).

Proof. By Theorem A.1, Item 1 can be done in O(logw · log |A|) space. Item 2, following
Theorem A.2, can be done in O(log(n · |A|w2)) space, and Item 3 can be done in O(log2w+
logw · log |A|) space using Claim 2.6. The overall space complexity then follows from
composition of space-bounded functions.

The correctness of the algorithm follows from the Cayley–Hamilton Theorem which
states that if p(X) is the characteristic polynomial of a matrix A then p(A) = 0. Since

26

r(X) = Xn mod p(X) there exists a polynomial q(X) such that Xn = q(X)p(X) + r(X)
and so

An = q(A)p(A) + r(A) = r(A).

B Proof of Lemma 2.9

In this section, for completness, we prove Lemma 2.9.

Proof of Lemma 2.9. The algorithm constructs the following pair of block matrices which
consists of (n+ 1)× (n+ 1) blocks of w × w matrices. For 0 ≤ i, j ≤ n,

A[i, j] =


−A i = j + 1,

Iw i = j,

0 otherwise.
B[i, j] =


Ai−j i > j,

Iw i = j,

0 i < j.

The algorithm then outputs the matrix R(A,B, k) as given in Definition 2.7.
The space complexity of the algorithm follows by Claim 2.6. As for the correctness,

first observe that

A−1[i, j] =


Ai−j i > j,

Iw i = j,

0 i < j.

By our assumption ∥A−1[i, j]−B[i, j]∥∞ ≤ 1
4(n+1)

for every 0 ≤ i, j ≤ n, and so

∥∥A−1 −B
∥∥
∞ ≤ 1

4
.

Lastly, note that ∥A∥∞ ≤ 2 and by the sub-multiplicativity of ∥·∥∞ we get

∥I −BA∥∞ ≤
∥∥(A−1 −B)A

∥∥
∞ ≤

∥∥A−1 −B
∥∥
∞ · ∥A∥∞ ≤ 1

2
.

The correctness now follows by Lemma 2.8.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

