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Abstract

Read-once Oblivious Algebraic Branching Programs (ROABPs) compute polynomials as
products of univariate polynomials that have matrices as coefficients. In an attempt to under-
stand the landscape of algebraic complexity classes surrounding ROABPs, we study classes of
ROABPs based on the algebraic structure of these coefficient matrices. We study connections
between polynomials computed by these structured variants of ROABPs and other well-known
classes of polynomials (such as depth-three powering circuits, tensor-rank and Waring rank of
polynomials).

Our main result concerns commutative ROABPs, where all coefficient matrices commute
with each other, and diagonal ROABPs, where all the coefficient matrices are just diagonal ma-
trices. In particular, we show a somewhat surprising connection between these models and
the model of depth-three powering circuits that is related to the Waring rank of polynomials. We
show that if the dimension of partial derivatives captures Waring rank up to polynomial factors,
then the model of diagonal ROABPs efficiently simulates the seemingly more expressive model
of commutative ROABPs. Further, a commutative ROABP that cannot be efficiently simulated by
a diagonal ROABP will give an explicit polynomial that gives a super-polynomial separation
between dimension of partial derivatives and Waring rank.

Our proof of the above result builds on the results of Marinari, Möller and Mora (1993), and
Möller and Stetter (1995), that characterise rings of commuting matrices in terms of polynomi-
als that have small dimension of partial derivatives. The algebraic structure of the coefficient
matrices of these ROABPs plays a crucial role in our proofs.
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1 Introduction

The central question in algebraic complexity theory: the theory concerning computation of polyno-
mials, is to understand the most efficient way of computing a polynomial f (x1, . . . , xn) using the
basic arithmetic operations of addition and multiplication. One of the earliest works to study the
computational complexity of an explicit polynomial is perhaps the famous work of Strassen [Str69]
on matrix multiplication. However, the seminal work of Valiant [Val79] that proposed the “VP vs
VNP” question (the algebraic analogue of P vs NP) is widely regarded as the starting point of
algebraic complexity theory.

Algebraic circuits are a fundamental model for computing polynomials, and the complexity of
a polynomial is determined by the size of the smallest circuit that computes it. This definition
also coincides with the fewest number of arithmetic operations required to evaluate a polynomial.
Valiant’s above mentioned work however, uses the model of algebraic branching programs (ABPs)
to capture efficiently computable polynomials. Informally, an ABP computes a polynomial f (x) as
the (1, 1)th entry of a product of matrices, each of which has linear forms in the x variables as its
entries. While VP is the class of n-variate polynomials having poly(n) size algebraic circuits, the
class of n-variate polynomials that have an ABP of size poly(n) is called VBP. The class VBP is
known to be a subclass of VP, and at the moment it is unclear if this inclusion is strict. The VBP
vs VNP question remains a central question in algebraic complexity theory as it is captured by the
“determinant vs permanent” question (see e.g. [KV21]).

Although proving strong lower bounds against algebraic circuits seems currently unattain-
able, even proving lower bounds against ABPs remains a challenging task. In fact, even a super-
quadratic lower bound against ABPs will be a massive improvement over the state of the art
([BS83, CKSV20]). A significant amount of work in the area has therefore focused on analysing
more structured variants of ABPs which could potentially be easier to tackle. Indeed, a celebrated
result of Nisan [Nis91] gives an exact characterisation of the complexity of a non-commutative ABP
computing any non-commutative polynomial1. This characterisation yields a 2Ω(n) lower bound
against non-commutative ABPs for the determinant, which among other things, highlights the
power of commutativity.

We now turn to the protagonists of our work, Read-once Oblivious ABPs (ROABPs), which
are the commutative analogues of non-commutative ABPs. ROABPs were first introduced by
Forbes and Shpilka [FS13], in the context of polynomial identity testing: another central problem in
algebraic complexity, which we discuss in more detail in Appendix A. An ROABP is an algebraic
branching program that uses exactly n matrices, one for each variable; and the entries in the matrix
corresponding to an xi are univariate polynomials from C[xi] (formally defined in Definition 2.3).
It is easy to check that ROABPs can compute any monomial, and are closed under taking sums.
Thus, every n-variate, degree-d polynomial trivially has an ROABP of size dO(n). On the other

1A non-commutative polynomial is one in which the variables do not commute, i.e. xy 6= yx.
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hand, Nisan’s characterisation [Nis91] for non-commutative ABPs also extends to ROABPs, and
hence most of the strong lower bounds against non-commutative ABPs can be suitably translated
to ROABPs.

Since all ROABPs use n matrices, the parameter of interest is the width of an ROABP, which is
the maximum dimension of any of the underlying matrices. Furthermore, since every matrix in an
ROABP is associated with exactly one variable in {x1, . . . , xn}, one can naturally identify an order
σ ∈ Sn (permutation on {x1, . . . , xn}) in which the ROABP “reads the variables”. Indeed, there are
polynomials which are computable by poly(n)-width ROABPs in one order, but require exponen-
tial width in a different order. In fact, a straight-forward application of Nisan’s characterisation
shows that the 2n-variate polynomial (x1 + y1)(x2 + y2) · · · (xn + yn) is computable by a width-2
ROABP in the order (x1, y1, x2, y2, . . . , xn, yn); but any ROABP that reads all the x-variables before
the y-variables (e.g. in the order (x1, . . . , xn, y1, . . . , yn)) requires width 2Ω(n). The existence of such
polynomials naturally leads to the following classes of polynomials (defined in Section 2).

• ROABP[∃](n, d, w) - n-variate, individual degree d polynomials that are computable by a
width-w ROABP in some order σ ∈ Sn.

• ROABP[∀](n, d, w) - n-variate, individual degree d polynomials that are computable by a
width-w ROABP in every order.

Clearly, ROABP[∀](n, d, w) ⊆ ROABP[∃](n, d, w), and the former class requires exponential width
to simulate the latter, due to the example discussed above.

Observe that an ROABP in the order id = (x1, . . . , xn), can be written as uᵀ ·
(

∏i∈[n] Mi(xi)
)
·v,

with entries of each Mi being univariate polynomials in C[xi]. Alternatively, we can view the
same, as uᵀ

(
∏i∈[n]

(
Ai,0 + Ai,1xi + · · ·+ Ai,dxd

i
))

v, by interpreting each Mi as a univariate with
matrices as coefficients. We refer to these matrices

{
Ai,j
}

as the coefficient matrices of the ROABP.
Now based on the properties of the coefficient matrices

{
Ai,j
}

, one can define the following
models and the corresponding classes.

• Commutative ROABPs: ROABPs where all the n(d + 1) coefficient matrices commute with
each other (see Definition 2.6).
commROABP(n, d, w) - n-variate, individual degree d polynomials that are computable by a
width w commutative ROABP.

• Diagonal ROABPs: ROABPs where all the n(d + 1) coefficient matrices are diagonal matrices
(see Definition 2.7).
diagROABP(n, d, w) - n-variate, individual degree d polynomials that are computable by a
width w diagonal ROABP.

First of all, commROABP(n, d, w) ⊆ ROABP[∀](n, d, w) for any n, d, w, since the coefficient
matrices in any commutative ROABP are commutative, and one can multiply the matrices in
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any order to get the same result. Likewise, as all diagonal matrices commute with each other,
diagROABP(n, d, w) ⊆ commROABP(n, d, w). In this paper, we investigate commutative and diag-
onal ROABPs to understand if and when these two classes are the essentially (up to polynomial-
factors) equal.

While it is indeed true that even diagonal ROABPs are universal, it is reasonable to ask if there
are any interesting polynomial families that are efficiently computable by commutative and diago-
nal ROABPs. In this regard, let us begin by looking at the constructions of “all-order-ROABPs” for
two well studied polynomial families: elementary symmetric polynomials and powers of linear forms.
Incidentally, these constructions can naturally be interpreted as commutative ROABPs, and fur-
ther, they even lead to diagonal ROABPs that achieve the best known upper bounds. We believe
that these examples should serve as an additional motivation to study the models of commutative
and diagonal ROABPs.

Definition 1.1 (Elementary Symmetric Polynomials). The n-variate elementary symmetric polynomial
of degree d, denoted by ESymd

n is defined as follows.

ESymd
n(x) := ∑

S⊂[n]
|S|=d

∏
i∈S

xi (1.2)

Following is a folklore construction (with a minor tweak) of an ROABP for ESymd
n which is

provably tight owing to the characterisation result by Nisan [Nis91] (see Appendix B). We illus-
trate the construction for n = 5 and d = 3 in the Figure 1 and give the general recipe here without
a proof of correctness.

s

0

0

0

x1

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x5

t

0

0

0

Figure 1: A commutative ROABP for ESym3
5 (unlabelled edges have the label 1).

Construction 1.3. For any n, d ∈N such that d ≤ n, we have the following.

ESymd
n(x) = (M(x1)M(x2) · · ·M(xn)) [1, d + 1],
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where for all i, M(xi) is a (d + 1)× (d + 1) matrix such that M(xi)[k, k] = 1 for all 1 ≤ k ≤ (d + 1),
and M(xi)[k, k + 1] = 1 for all 1 ≤ k ≤ d; all other entries of M(xi) are zero. ♦

The matrix M(xi) can also be written as (I + Axi), where A is a matrix with 1s on its super-
diagonal and zeros everywhere else, and I is the identity matrix. This gives the expression:
ESymd

n(x) = ((I + Ax1)(I + Ax2) · · · (I + Axn))(1,d+1) = uᵀ
(

∏i∈[n](I + Axi)
)

v, for the obvious

choice of u, v ∈ C(d+1).
We can now make the following sequence of simple observations about this construction.

• All the coefficient matrices of the above ROABP: I and A, commute with each other. Thus,
it is a commutative ROABP.

• (I + Ax1)(I + Ax2) · · · (I + Axn) = ∑0≤j≤n ESym
j
n Aj = ∑0≤j≤d ESym

j
n Aj, since Aj = 0 for

all j ≥ (d + 1).

• For every 0 ≤ j ≤ d, only the jth power of A that has a 1 in the (1, 1 + j)th entry. Therefore,
the (1, d + 1)th entry of (I + Ax1)(I + Ax2) · · · (I + Axn) exactly computes the coefficient of
Ad, which is ESymd

n.

This perspective along with elementary interpolation (Lemma B.1), then leads us to the follow-
ing depth-3-multilinear circuit for ESymd

n of top fan-in (n + 1) for all values of d, that is attributed
to Ben-Or ([SW01]). This also happens to give the following nearly-optimal construction for a
diagonal ROABP computing ESymd

n.

Construction 1.4. For any n, d ∈N and distinct a0, a1, . . . , an ∈ C, there exist constants β0, β1, . . . , βn ∈
C such that

ESymd
n(x) = ∑

0≤j≤n
β j(1 + ajx1)(1 + ajx2) · · · (1 + ajxn) ♦

Just as the commutative ROABP for ESymd
n(x) leads us to Ben-or’s construction of a diagonal

ROABP, we also observe that the commutative ROABP computing dth power of an n-variate linear
form (x1 + x2 + · · · + xn)d gives us the duality trick of Saxena [Sax08] (see e.g. [Sap15, Lemma
17.13]). We shall work with (x1 + x2 + · · ·+ xn)d for simplicity; all the ideas easily generalise to
dth powers of arbitrary linear forms.

Example 1.5 (Powers of linear forms). The dth powers of n-variate linear form is the polynomial (x1 +

x2 + · · ·+ xn)d. ♦

Consider the ROABP computing (x1 + x2 + x3 + x4)
2 in Figure 2; it will be convenient to index

the vertices in each layer starting from zero. We ensure that jth vertex in the ith layer, say vi,j, has
the property that the polynomial computed between vi,j and the sink vertex t, is exactly (xi + · · ·+
xn)d−j.
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Figure 2: A commutative ROABP for (x1 + · · ·+ x4)
3 (unlabelled edges have the label 1).

The general construction can be described as follows.

Construction 1.6. For any n, d ∈N, we have the following.

(x1 + x2 + · · ·+ xn)
d = (M(x1)M(x2) · · ·M(xn)) [1, d + 1],

where for each i ∈ [n], M(xi) is a (d + 1)× (d + 1) matrix satisfying the following. For all 0 ≤ k ≤ d
and all 0 ≤ ` ≤ (d− k), M(xi)[k, k + `] = (d−k

` )x`i . ♦

Just as in Construction 1.3, we now write the matrix M(xi) as a univariate over xi with matrix
coefficients.

M(xi) = I + A1xi +
A2

2!
x2

i +
A3

3!
x3

i + · · ·+
Ad

d!
xd

i ,

where A is a (d + 1)× (d + 1) such that for all 0 ≤ i ≤ d, A[i, i + 1] = (d− i), with all other entries
set to zero.

We now make the following simple observations.

• All the coefficient matrices of the above ROABP: I and powers of A, commute with each other.
Thus, Construction 1.6 is also a commutative ROABP.

• For every 0 ≤ j ≤ d, only the jth power of A that has a 1 in the (1, 1 + j)th entry. Therefore,
the (1, d + 1)th entry of M(x1)M(x2) · · ·M(xn) computes the coefficient of Ad divided by d!.
This can be seen as follows.
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M(xi) =



(d
0) 0 0 0 · · · 0
0 (d−1

0 ) 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · (0

0)


x0

i +



0 (d
1) 0 0 · · · 0

0 0 (d−1
1 ) 0 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · 0
0 0 0 0 · · · (1

1)

0 0 0 0 · · · 0


x1

i + · · ·+



0 0 0 0 · · · (d
d)

0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0


xd

i .

∴ M(xi) = · · ·+
1
j!



0 d 0 0 · · · 0
0 0 d− 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0
0 0 0 0 · · · 1
0 0 0 0 · · · 0



j

xj
i + · · · = I + A1xi +

A2

2!
x2

i +
A3

3!
x3

i + · · ·+
Ad

d!
xd

i .

Rather surprisingly, applying interpolation now leads us to the following sum-of-products-of-
univariates for (∑i xi)

d, that exactly matches “the duality trick” shown by Saxena [Sax08]!

Construction 1.7. For any n, d ∈N and distinct a0, a1, . . . , and ∈ C, there exist β0, β1, . . . , βnd for which
the following holds.

(x1 + x2 + . . . + xn)
d = ∑

0≤j≤nd
β j ∏

i∈[n]

(
1 + ajxi +

a2
j

2!
x2

i +
a3

j

3!
x3

i + · · ·+
ad

j

d!
xd

i

)
♦

As the coefficient matrices of diagonal ROABPs are diagonal matrices it is not difficult to ob-
serve that they are exactly sums-of-products-of-univariates. Thus, from Example 1.5 (i.e. duality
trick), we observe that diagonal ROABPs can efficiently simulate diagonal depth 3 circuits (a.k.a.
depth-3 powering circuits) denoted by Σ

∧
Σ. That is, Σ

∧
Σ(n, d, s) ⊆ diagROABP(n, d, O(n, d, s)).

Also, a separation between these two classes is known due to the exponential lower bound from
[NW97] for x1 . . . xn against the model Σ

∧
Σ. In essence, we have the following containments be-

tween classes2, where each C stands for the class of n-variate, degree-d polynomials whose C-size
is poly(n, d).

Σ
∧

Σ ( diagROABP ⊆ commROABP ⊆ ROABP[∀] ( ROABP[∃]

Looking at the above hierarchy, we firstly realise that nearly optimal separations are known
at the two “extremes”, but nothing is known about the intermediate levels. Further, since the
intermediate levels are far more algebraically structured (coefficient matrices arising from special
commutative algebras), it is reasonable to expect finer separations for these classes. Unfortunately,

2We have more intricate relationships between classes concerning ROABPs. See Section 1.3
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all the lower bounds that we know for diagonal and commutative ROABPs are those that are
known for ROABP[∀].

Secondly, even though diagonal ROABPs (sum-of-products-of-univariates) may be of indepen-
dent interest as they subsume Σ

∧
Σ circuits, they are also interesting from the point of view of

polynomial identity testing. Owing to the algebraic structure of their coefficients, one can expect
efficient PIT algorithms for these classes. But again, the best PIT algorithms that we know for
diagonal and commutative ROABPs are those we know for ROABP[∀]. We discuss more about
polynomial identity testing algorithms for these classes in Appendix A.

1.1 Our Results

We now move to the central questions addressed in this article. In particular, we wish to under-
stand if the classes commROABP and diagROABP are equal up to polynomial factors; this can be
more formally stated as follows.

Question 1.8. Given an n-variate, individual degree d polynomial f (x) computable by a width w commu-
tative ROABP(i.e. f ∈ commROABP(n, d, w)), does there exist a diagonal ROABP computing f of width
poly(n, d, w)?

A measure that is often used to prove lower bounds against structured models (e.g. almost
every lower bound against Σ

∧
Σ, and more recently [LST21]) is the dimension of partial deriva-

tives, a complexity measure which was introduced by Nisan and Wigderson [NW97] (see Defi-
nition 2.10). For any polynomial f ∈ C[x], the partial derivative complexity of f (denoted by
DPD( f )) is the dimension of the space spanned by all the partial derivatives of f . Nisan and
Wigderson [NW97] observed that any n-variate, degree d polynomial f (x) that has a Σ

∧
Σ circuit

of size s has DPD( f ) ≤ s(d + 1). Therefore it is natural to ask whether the Σ
∧

Σ-size of every
polynomial f is polynomially related to its dimension of partial derivatives. We formalize this
question as follows.

Question 1.9. Does there exist a constant c such that for any n-variate, degree-d polynomial f (x) with
DPD( f ) ≤ s, we have that the smallest Σ

∧
Σ circuit that computes f (x) has size at most (nds)c?

The size of the smallest Σ
∧

Σ circuit for a polynomial is a well studied notion called the Waring
rank of f (denoted by WR( f )). Question 1.9 essentially asks if the Waring rank and the dimension
partial derivatives of a polynomial are same up to polynomial factors. Unfortunately, at the mo-
ment we do not know the answers to either Question 1.8 or Question 1.9. However, our main
result gives a rather surprising connection between Question 1.8 and Question 1.9. Specifically,
we show that an positive answer to Question 1.9 answers Question 1.8 in the affirmative!

Theorem 1.10. For any n, r ∈ N, let S(r, m) denote the smallest Σ
∧

Σ-size required to compute any
r-variate polynomial f with DPD( f ) ≤ m.
Then for all n, d, w ∈N, commROABP(n, d, w) ⊆ diagROABP

(
n, d, S(w2, w2)nw4).
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Remark 1.11. It can be inferred from our proof that a super-polynomial separation between the models of
commROABP and diagROABP will yield an explicit polynomial that witnesses a super-polynomial sepa-
ration between dimension of partial derivatives and Waring rank. We elaborate on this in Remark 4.6. ♦

A different (and perhaps equally surprising) consequence of Theorem 1.10 is that a super-
polynomial separation between commutative ROABPs and diagonal ROABP will also give a sim-
ilar separation between dimension of partial derivatives and Waring rank. Note that not only do
we not know the answers to Question 1.8 or Question 1.9, it is somewhat frustrating that we do
not even know of a candidate polynomial that could potentially separate these classes. We expect
that our analysis of these models that goes into proving the result above could help in making
some progress in either of these questions.

1.2 An overview of the proof

We start by asking when diagonal ROABPs can efficiently simulate commutative ROABPs. This
question naturally leads us to study properties of matrices that commute with each other. In
particular, we analyse commutative rings generated by matrices that commute with each other.
A very high level overview. The results of Marinari, Möller, Mora [MMM93], and Möller and
Stetter [MS95] provide a characterisation of commutative rings of w×w matrices in terms of poly-
nomials whose dimension of partial derivatives is at most poly(w). In the special case when these
matrices are all diagonal, the same polynomials happen to have Waring rank at most w. Further,
we observe that if the polynomials corresponding to a n-variate, width-w commutative ROABP
have Waring rank at most s, then it can be simulated by a diagonal ROABP of width poly(n, w, s).
This is essentially our main result. We now explain the characterisation given by [MMM93] and
[MS95] in a bit more detail.

Characterising rings of matrices Consider the ring generated by a w × w matrix A, given by
C[A] := {q(A) : q(t) ∈ C[t]}. The ring has at most w linearly independent matrices, as the charac-
teristic polynomial of A gives a way to express Aw as a linear combination of lower powers of A.
In fact, the ring C[A] is characterised by the ideal of all polynomials that are divisible by the min-
imal polynomial of A (see Fact 3.1). This characterisation has an appropriate analogue for general
matrix rings, as follows.

Suppose that A1, . . . , Ar ∈ Cw×w commute with each other, and let C[A1, . . . , Ar], defined
as {g(A1, . . . , Ar) : g(t) ∈ C[t]}, be the ring generated by them3. Analogous to the univariate
(singly-generated) case, we then consider the ideal of dependencies for the matrices A1, . . . , Ar:
J = {p(t) ∈ C[t] : p(A1, . . . , Ar) = 0}. As it turns out, C[A1, . . . , Ar] is indeed characterised by
the ideal J (see Lemma 3.4).

3Any ring of w× w matrices is generated by at most w2 matrices.
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Before delving further into the ideal of dependencies, we remark a structural property of poly-
nomials that admit a diagonal ROABP of a certain width.
Understanding diagonal ROABPs. Consider the diagonal ROABP (depth-3 multilinear circuit)
for the elementary symmetric polynomial ESymn,d that is attributed to Ben-Or (see e.g. [SW01]). One
first constructs the polynomial g(t, x) := (1 + tx1)(1 + tx2) · · · (1 + txn), and then obtains ESymn,d

as the coefficient of td in g(t, x), using interpolation. It turns out that any diagonal ROABP comput-
ing a polynomial f (x) can similarly be seen as expressing f as a linear combination of evaluations
of a low-degree g(t, x) that is a “product of univariates” (see Observation 4.1). Here, the number of
evaluations needed is equal to the width of the ROABP. Moreover the converse of this statement is
also true, thus giving us an equivalent formulation for diagonal ROABPs.

Therefore, we analyse the ideal J with the goal of expressing the corresponding commutative
ROABP as a sum of t-evaluations of some G(t, x) = G1(t, x1) · G2(t, x2) · · ·Gn(t, xn).
The ideal of dependencies. Let us first make our statement about C[A1, . . . , Ar] being charac-
terised by J a bit more precise: there is a ring-isomorphism between C[A1, . . . , Ar] and the quotient
ring C[t]/J. Therefore it is crucial to understand J (and C[t]/J) to understand the ring of matrices, in
order to move towards the above mentioned goal.

Let p(t) be the minimal polynomial of some matrix A, and consider the ideal 〈p〉. If p(t) =

(t− 5)3, then we know that any q(t) belongs to 〈p〉 if and only if the first 3 derivatives of q(t) vanish
at t = 5; i.e. q(5) = q′(5) = q′′(5) = 0. In general, for p(t) = (t − a1)

e1(t − a2)e2 · · · (t − ak)
ek ,

membership in the ideal 〈p〉 is characterised by the first ei derivatives vanishing at t = ai, for each
i = 1, 2, . . . , k. Moreover, the polynomial “q(t) mod p(t)” can be obtained by applying a linear
transformation on the evaluations of the e1, . . . , ek derivatives at the respective points a1, . . . , ak.

We now extend this understanding to the multivariate setting. We already have the correct
analogue for 〈p〉, which we call the ideal of dependencies J. Next, we need a characterisation for
“g(t) mod J” in terms of some derivatives of g(t) evaluated at some points related to J. While
these choices were quite clear in the univariate setting from p; the multivariate setting requires a
little more care. Fortunately for us, the works of Marinari, Möller, Mora [MMM93], and Möller
and Stetter [MS95] provide an adequate solution.

Firstly, observe that J has a finite variety (common zeroes of all polynomials in J). Thus the
variety V(J) is a good multivariate analogue for the set of evaluation points. The other ingredient
that we require is a compatible notion of “multiplicity of J” at a point ᾱ in its variety. For this,
[MMM93] look at the set of all partial derivative operators (see Definition 3.6) which map every poly-
nomial in J to a polynomial that vanishes at ᾱ. These operators form a vector space over C, and
the “multiplicity of J at ᾱ” is then defined as the dimension of this vector space.

In the univariate setting, the multiplicity of q at a point ai is defined as the highest number
ei such that the first ei derivatives of q vanish at the point ai. Thus, one can naturally identify a
“highest derivative”, with the other derivatives being its “down-shifted versions”. Analogously,
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the derivative operator space corresponding to J and a point v ∈ V(J) is closed under taking down-
shifts (see Definition 3.10). An ideal J with V(J) = {ᾱ1, . . . , ᾱk}, is then captured by a collection of
z vector spaces of derivative operators ∆1, ∆2, . . . , ∆k, in the following sense (see Lemma 3.13).

• For each i ∈ [k], ∆i corresponds to the point ᾱi and is down-closed.

• Dimension of the quotient ring C[t]/J is w = dim(∆1) + dim(∆2) + · · ·+ dim(∆k).

• Let {Di,1, . . . , Di,wi} be a basis of ∆i. Then there exists a map Φ : Cw → C[t]/J such that for
any polynomial q(t), Φ maps the w values:

{
Di,j(q)(vi)

}
, to the “remainder polynomial”

(q(t) mod I).

Further, Möller and Stetter [MS95] show that the map Φ stated above is just a linear transformation
(see Lemma 3.18).
Consequences for ROABPs. We now outline the proof of our main result (Theorem 1.10).

• Given a commutative ROABP f (x) = bᵀ ·∏i∈[n]
(

Ai,0 + Ai,1xi + · · ·+ Ai,dxd
i
)
· c of width w,

we define F(x) := ∏i∈[n]
(

Ai,0 + Ai,1xi + · · ·+ Ai,dxd
i
)

to be a matrix of polynomials. Then,
f (x) is just a linear combination (given by bcᵀ) of the entries of F.

• We then identify a set of matrices A1, . . . , Ar that generate the coefficient-matrix-ring; i.e.
C[A1, . . . , Ar] = C[A1,0, . . . , A1,d, . . . , An,d]. As we can always use the coefficient matrices
themselves, and because we are dealing with w× w matrices, r ≤ min(w2, n(d + 1)).

• Let J be the ideal of dependencies for A1, . . . , Ar and suppose the normal set of J (see Defi-
nition 3.16) has size, say m ≤ w2. Then each Ai,j is a polynomial in A1, . . . , Ar that has ≤ m
monomials.

• For each i, j, suppose Gi,j(t1, . . . , tr) is the polynomial such that Gi,j(A1, . . . , Ar) = Ai,j; the
entries of Ai,j are linear combinations of t-coefficients of Gi,j = (Gi,j mod J). Then we observe
that G(t, x) := ∏i∈[n]

(
Gi,0(t) + Gi,1(t)xi + · · ·+ Gi,d(t)xd

i
)
, with G(A1, . . . , Ar, x) = F(x).

This means that even f (x) is a linear combination of the t-coefficients of (G(t, x) mod J),
since it is a linear combination of the entries of F(x). We prove this in Lemma 4.3.

• Now let V(J) = {v1, . . . , vk} and for each ` ∈ [k] let
{

D`,1, . . . , D`,m`

}
be a basis for the

derivative operator space corresponding to v`. Then from the results of [MMM93, MS95] we
get that for any g(t), every t-coefficient of (g(t) mod J) is a fixed linear combination of the
m values given by (D`,∗(g))(v`).

• This brings us one step away from our goal of expressing f (x) as a linear combination of
t-evaluations of some G(t, x) which is a product of univariates. What we need is a way to
express each of (D`,∗(G))(v) as a linear combination of t-evaluations of G(t, x).

11



• It turns out that the number of evaluations of G(t, x) required to compute (D`,∗(G))(v) is
poly(deg(h`,∗), WR(h`,∗)), where h`,∗ is the polynomial corresponding to D`,∗ (see paragraph
below Definition 3.6). This is a non-trivial fact; we prove it in Lemma 4.5.

• Finally, since each space ∆` is down-closed, we have that the dimension of partial derivatives
DPD(h`,∗) ≤ dim(∆`) ≤ m for each h`,∗. Therefore, using the hypothesis that WR(h) =

poly(r, DPD(h)) for any r-variate h, we get that (D`,∗(G))(v) can be expressed as a linear
combination of poly(r, DPD(h`,∗), deg(h`,∗)) = poly(r, m) evaluations of G(t, x) for each
D`,∗.

• Combining all the above observations, we can see that the hypothesis implies that f (x) can
indeed be written as a linear combination of poly(r, m) = poly(n, d, w) evaluations of G(t, x),
thereby proving Theorem 1.10.

1.3 Landscape of ROABP classes

As mentioned earlier, although Theorem 1.10 relates Question 1.8 and Question 1.9, the answer to
both these questions remain unknown. In this regard, we would like to conjecture that the answer
to both questions is false.

Conjecture 1.12. There exists an explicit n-variate, degree-d polynomial f (x) with a commutative ROABP
of width poly(n, d), such that any diagonal ROABP computing f requires width nω(1).

Conjecture 1.13. There exists an explicit n-variate polynomial f (x) of degree d = poly(n) such that
DPD( f ) = poly(n) but WR( f ) = nω(1).

Even though many would agree that Conjecture 1.12 and Conjecture 1.13 are probably true,
we do not even know of any candidate polynomial that will witness the truth of this conjecture.
In relation to this, we remark that the following statement can be inferred from our proof of The-
orem 1.10. If there exists a commutative ROABP of width poly(n, d) computing an n-variate,
degree-d polynomial f , which requires diagonal ROABPs of super-polynomial width, then the
commutative ROABP for f gives a different explicit polynomial h that has polynomial dimension
of partial derivatives, but has super-polynomial Waring rank (see Remark 4.6 for details). As a
result, even a candidate polynomial for proving Conjecture 1.12 remains unknown.

In the context of Conjecture 1.12, we note the following connection between diagonal ROABPs
and tensor rank.

Remark 1.14. Observe that the width of a diagonal ROABP exactly captures the tensor rank of the
corresponding tensor. A tensor T : [d]n → C of order4 n can naturally be viewed as a polynomial
fT = ∑i∈[d]n T(i1, . . . , in)xi1

1 · · · x
in
n . The (tensor) rank of any T (denoted by TR(T)) is the smallest r

4Commonly used term in the literature about tensors; not be confused with the order of an ROABP.
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such that T can be expressed as sum of r elementary tensors. Thus for any tensor T, TR(T) = r if
and only if fT(x) can be expressed as sum of r many products of univariates; which immediately implies
diagROABP(n, d, w) = { fT ∈ C[x] | TR(T) ≤ w}. Obtaining strong lower bounds on the rank of ex-
plicit tensors is a major open problem in algebraic complexity theory, where the goal is to obtain an explicit
tensor T of order-n such that TR(T) = dn(1−o(1)) (see e.g. [Raz10]). ♦

Remark 1.14 tells us that proving strong width lower bounds against diagonal ROABPs could
potentially imply lower bounds on the rank of explicit tensors. While this could partially ex-
plain why there are no separations between diagonal ROABPs and commutative or “all-order”
ROABPs, it is also worth mentioning that order-n tensors for a growing parameter n are rarely stud-
ied in the context of tensor rank lower bounds.

With regard to Conjecture 1.13, we briefly discuss some known results about the problem of
computing the dimension of the partial derivative space.

Shitov [Shi16] showed that given any degree 3 polynomial f in its sparse representation, com-
puting WR( f ) is NP-hard, by reducing it to computing the tensor rank of order 3 symmetric tensors.
On the other hand, when a polynomial f is presented in its sparse representation (as sum of mono-
mials), García-Marco, Koiran, Pecatte and Thomassé [GKPT17] prove that computing the dimen-
sion of the partial derivative space is #P-hard (not known to be #P-complete). Thus, even though
computing Waring rank is a hard problem, it is not quite clear if disproving Conjecture 1.13 goes
against it. Moreover, it is possible that Waring rank is easy to approximate up to polynomial factors,
which is all that a disproof of Conjecture 1.13 would imply. On a related note, Kayal [Kay12] gave
a randomised poly(n, d)-time algorithm to compute the waring rank of an n-variate, degree-d
polynomial that is given as a blackbox (in the non-degenerate case).

Although the results in this article entirely concern Question 1.9 and Question 1.8, there are
several other interesting open questions surrounding the landscape of complexity classes involv-
ing ROABPs. We discuss these interconnections between ROABP classes now, and later illustrate
them in Figure 3.

Let us consider the class of polynomials computed by ROABPs that remain unchanged by
interchanging layers in the branching program5. We prefer to use the term layer-commutative
ROABPs (denoted by layer-commROABP(n, d, w)) to denote the class of n-variate degree d poly-
nomials computed by an ROABPs such that if f = uT M1(x1) · · ·Mn(xn)v then the matrices of
univariate polynomials M1, . . . , Mn commute. That is, Mi(xi)Mj(xj) = Mj(xj)Mi(xi) for all i, j ∈
[n]. We can immediately see that layer-commROABP(n, d, w) ⊆ ROABP[∀](n, d, w), and further
commROABP(n, d, w) ⊆ layer-commROABP(n, d, w). This then leads us to the following two open
questions whose answer seems unclear at the moment.

5The class ROABP[∀](n, d, w) has been studied in the context of PIT, and is sometimes called commutative ROABPs
in some works (e.g. [GKS17]). We use a different notation to avoid any ambiguity.
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Question 1.15. 1. Are layer-commROABP(n, d, w) and ROABP[∀](n, d, w) equivalent up to a poly-
nomial blow-up in the width w?

2. Are commROABP(n, d, w) and layer-commROABP(n, d, w) equivalent up to a polynomial blow-up
in the width w?

We hope that a better understanding the algebra associated with commutative ROABPs may
shed light on the answers to above questions.

Along with the complexity of computing polynomials exactly, another notion that is consid-
ered in algebraic complexity theory and more specifically in geometric complexity theory, is border
complexity of polynomials. Let C be a class of polynomials. We say that f is in the class C (border
of C), if f can be “arbitrarily-approximated” by a circuit in C. That is, there exists a polynomial
g(ε) ∈ C(ε) in class C such that f = limε→0 g. The border-complexity of f is then at most the size of
the circuit computing g. Clearly, C ⊆ C. Understanding whether C = C for interesting classes such
as VP and VBP are major open problems in algebraic complexity theory. Here, we are interested
in the case when C = diagROABP(n, d, w) (defined in Definition 2.11).

Question 1.16. Does the model of diagonal ROABPs require super-polynomial width to simulate the border
class diagROABP?

As diagROABP(n, d, w) = { fT ∈ C[x] | TR(T) ≤ w}, we have diagROABP(n, d, w) = { fT ∈
C[x] | TRC( f ) ≤ w}. Here, TR( f ) denotes the border rank of tensors. Border rank of tensors is
studied extensively in several contexts for instance, border rank of matrix multiplication tensor is
used to obtain bounds on the arithmetic complexity of matrix multiplication. In this setting, the
order of the tensor is usually bounded by a constant, and this setting slightly deviates from the
main theme algebraic circuit complexity.

It can be checked that just like commROABP(n, d, w), diagROABP(n, d, w) is also contained in
ROABP[∀](n, d, w) (because ROABP-complexity is characterised by rank, which is a continuous
measure). However, it is unclear if these two ways of “generalising” diagonal ROABPs have
different computational powers. This brings us to the following question.

Question 1.17. Are the classes diagROABP(n, d, w) and commROABP(n, d, w) equivalent up to polyno-
mial factors?

Note that Question 1.17 is linked to the question of understanding commROABP(n, d, w) and
ROABP[∀](n, d, w) in Question 1.15. Also, answering this question in the affirmative is similar
in spirit to the recent “de-bordering” results due to Dutta et al. [DDS21]. They proved that the
border of constant top fan-in depth three circuits is contained in the class VBP. Here, Question 1.17
is essentially asking if for the class of diagonal ROABPs (albeit with unbounded fan-in), the border
is contained in a much simpler class of commutative ROABPs? However, answering this in the
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poly-width ROABP in some order
ROABP[∃](n, d, poly(n, d))

(Definition 2.4)

poly-width ROABP in every order
ROABP[∀](n, d, poly(n, d))

(Definition 2.5)

poly-width commutative ROABP
comm-ROABP(n, d, poly(n, d))

(Definition 2.6)

poly-width diagonal ROABP
diag-ROABP(n, d, poly(n, d))

(Definition 2.7)

poly-size Σ
∧

Σ circuits
{ f ∈ C≤d[x] |WR( f ) ≤ poly(n, d)}

(Definition 2.8)

poly dimension of partial derivates
{ f ∈ C≤d[x] | DPD( f ) ≤ poly(n, d) }

(Definition 2.10)

poly-width border of diagonal ROABP
diag-ROABP(n, d, poly(n, d))

(Definition 2.11)

6=

?
=

?
=

6=

?
=

6=

?
=

?
=

⇒

Figure 3: The ROABP landscape: edges denote bottom-up inclusion, Theorem 1.10 is in red.

negative could potentially be as hard as (or even harder than) separating commutative ROABPs
from diagonal ROABPs. In fact, it is not even clear if these two classes should be comparable
(contained in one another). We believe that any answer to Question 1.17 would be an interesting
development in algebraic complexity theory.

We summarize all the models and the interconnections between the structured ROABP classes
in Figure 3.
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2 Preliminaries

In this section, we formally define the classes of polynomials and other algebraic models of com-
putation that we study in this paper. We work over the field of complex numbers C, unless men-
tioned otherwise. We begin with some basic notation and the definitions of algebraic circuits and
algebraic branching programs.

Notation

• We use the shorthand [n] to denote the set {1, 2, . . . , n}.

• We use boldface letters like x, t, A, b, to denote sets (and vectors). The individual elements
(and coordinates) are denoted by indexed versions of the same characters: A = {A1, . . . , Ar}.
Whenever the size of these sets is not clear from context, we denote them using subscripts:
x[n] = {x1, . . . , xn}.

• For a polynomial f (x), we denote support of f the set of monomials appearing in f with a
nonzero coefficient by supp( f ).

• For x = {x1, . . . , xn}, and any vector e ∈ Nn, we use the shorthand xe to denote the mono-
mial xe1

1 xe2
2 · · · x

en
n .

• For a polynomial f (x) and a monomial xe, we use ∂e f to denote the partial derivative
∂|e| f

∂xe1
1 ···∂xen

n
.

• For a matrix M, M[i, j] denotes its (i, j)th entry.

Definition 2.1 (Algebraic circuits). An algebraic circuit is specified by a directed acyclic graph, with
leaves (in-degree zero; also called inputs) labelled by field constants or variables, and internal nodes labelled
by + or ×. The nodes with out-degree zero are called the outputs of the circuit. Computation proceeds in
the natural way, where inductively each + gate computes the sum of its children and each × gate computes
the product of its children.

The size of the circuit is defined as the number of nodes in the underlying graph. ♦

Definition 2.2 (Algebraic Branching Programs). An algebraic branching program is a layered, directed
graph. There are two special vertices, source s and sink t which are the only vertices in the first and last
layers, respectively. All the edges in the graph are from one layer to the consecutive layer. Each edge is
labelled by a univariate polynomial in the underlying variables over the underlying field. Each path from
s to t computes the product of the edge labels and the ABP computes the sum of all the paths from s to t.
Then, any ABP can be viewed as a product of matrices (each matrix having univariate polynomials as its
entries) and the ABP computes the (1, 1)th entry of the matrix product. The maximum number of vertices
in a single layer (dimension of the largest matrix in the product) is called its width. The size of the ABP is
the total number of vertices in it. ♦
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We now define the various structured ROABPs and other related classes that are the main
objects of interest in our paper.

We start by defining the basic model of ROABPs.

Definition 2.3 (Read-once Oblivious ABPs). Over the field C of complex numbers, a read-once oblivi-
ous algebraic branching program or an ROABP, computes an n-variate, individual degree d polynomial
using a matrix-vector product of the following form.

R(x) = uᵀ ·M1(xσ(1)) ·M2(xσ(2)) · · ·Mn(xσ(n)) · v

where

• For each i ∈ [n], the matrix Mi(xσ(i)) has entries that are univariates of degree ≤ d in the variable
xσ(i),

• u ∈ Cw0 , M1(xσ(1)) ∈ (C[xσ(1)])
w0×w1 , . . . , Mi(xσ(i)) ∈ (C[xσ(i)])

wi×wi+1 , . . . , v ∈ Cwn ,

• the width w of the ROABP R is defined as w = max {w0, w1, . . . , wn},

• the permutation σ is called as the order of the ROABP R. ♦

The following two subclasses of polynomials then follow naturally from the definition of
ROABPs.

Definition 2.4 (ROABPs in some order). For n, d, w ∈ N, an n-variate polynomial f (x) of individual
degree d is said to have an ROABP of width w in the order σ ∈ Sn, if there exists a width w ROABP R(x)
that computes f (x) in the order σ. We denote the class of such polynomials by ROABP[σ](n, d, w).
Further, we use ROABP[∃](n, d, w) to denote the class of polynomials that have a width w ROABP in
some order. That is, ROABP[∃](n, d, w) =

⋃
σ∈Sn

ROABP[σ](n, d, w). ♦

We can then extend this definition naturally as follows.

Definition 2.5 (ROABPs in every order). For n, d, w ∈N, an n-variate polynomial f (x) of individual
degree d is said to have an ROABP of width w in every order, if for all permutations σ ∈ Sn, there exists
a width w ROABP R(σ)(x) that computes f (x) in the order σ.
We denote this class of polynomials by ROABP[∀](n, d, w). ♦

Now, based on the properties of the coefficient matrices, we define the two subclasses of ROABPs
that Theorem 1.10 talks about.

Definition 2.6 (Commutative ROABPs). An n-variate, individual degree d ROABP of width w is called
a commutative ROABP if its coefficient matrices are all w× w matrices that are (pairwise) commutative.
We refer of the class of polynomials computed by such ROABPs by commROABP(n, d, w). ♦

Definition 2.7 (Diagonal ROABPs). An n-variate, individual degree d ROABP of width w is called a di-
agonal ROABP if its coefficient matrices are w×w diagonal matrices. We refer of the class of polynomials
computed by such ROABPs by diagROABP(n, d, w). ♦
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Further, we define other concepts about polynomials like depth-3 powering circuits, Waring rank
and Tensor rank, since we talk about the connections between them and subclasses of ROABPs
defined above.

Definition 2.8 (Depth 3 powering circuits (Σ ∧ Σ)). A depth 3 powering circuit of size s, computes an
n-variate, (total) degree d polynomial as an C-linear combination of s terms, each of which is a≤ dth power
of an C-linear form in the underlying variables x1, . . . , xn.
That is, vectors a1, . . . , as ∈ Cn+1, constants β1, . . . , βs, and d1, d2, . . . , ds ∈ {0, . . . , d}, define the follow-
ing n-variate, degree-d, size s depth 3 powering circuit.

C(x) = ∑
i∈[s]

βi (a0 + a1x1 + a2x2 + · · ·+ anxn)
di ♦

Definition 2.9 (Waring rank). For an n-variate, degree-d polynomial f (x) ∈ C[x], the Waring rank of f
is defined to be the size of the smallest depth 3 powering circuit that computes it. We will denote the Waring
rank of a polynomial f by WR( f ). ♦

Definition 2.10 (Dimension of partial derivatives). For an n-variate polynomial f (x) ∈ C[x], its
dimension of partial derivatives or DPD( f ), is defined as DPD( f ) = dim

(
spanC {∂e f : e ∈Nn}

)
.

Here, ∂e f denotes the partial derivative ∂|e| f
∂xe1

1 ···∂xen
n

. ♦

Finally, we define the border of diagonal ROABPs as follows, which coincides with the defini-
tion of commonly known definition of border-tensor-rank.

Definition 2.11 (Border of diagonal ROABPs). For any polynomial f (x) ∈ C[x], f (x) is in the class
diagROABP(n, d, w) if there exists a polynomial g ∈ C(ε) in the class diagROABP(n, d, w) such that
f = lim

ε→0
g. ♦

3 Algebraic structure of commutative ROABPs

This section is aimed at equipping the reader with the algebraic-geometric concepts about rings
generated by commuting matrices, that are required to understand the results in [MMM93] and
[MS95] (Lemma 3.13 and Lemma 3.18). It is therefore largely expository, and readers who are
comfortable with these concepts may skip it.

We start by analysing rings generated by a single matrix in Section 3.1, and then extend our
observations to general rings of matrices in Section 3.2.

3.1 Rings generated by a single matrix

For any matrix A ∈ Cw×w, the commutative ring generated by A that is denoted by C[A], is the
set of all matrices that can be written as univariate polynomials in terms of A. In other words,
C[A] := {p(A) : p(t) ∈ C[t]}.
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Observe that the matrices I(= A0), A, A2, . . . , Aw satisfy the linear dependency that is given
by the characteristic polynomial of A: det(A− tI) ∈ C[t]. Thus, C[A] is a vector space (over C) of
dimension at most w.

In fact the dimension of C[A] could be even smaller, and it is captured by the degree of the
minimal polynomial of A: the smallest degree polynomial p(t) such that p(A) is the zero matrix;
and the ideal generated by p, 〈p〉 := {q(t) ∈ C[t] : q(t) is divisible by p(t)}, characterises the ring
C[A]. The following fact formalises this relationship.

Fact 3.1. Let A ∈ Cw×w and let p(t) ∈ C[t] be its minimal polynomial. Then the ring generated by A,
C[A], is isomorphic to the quotient ring C[t]/〈p〉.

Proof. Define Φ : C[t] → C[A] such that Φ(q(t)) = q(A) for any q. Then the following facts
together show that the restriction of Φ on C[t]/〈p〉 is a ring isomorphism by the first ring isomorphism
theorem (see e.g. [DF99]).

• Φ is a ring homomorphism: Φ(q1 + q2 · q3) = (q1 + q2 · q3)(A) = q1(A) + q2(A) · q3(A).

• Φ is onto: Trivially follows from the definition of C[A].

• ker Φ = 〈p〉: Suppose Φ(q) = 0. Then q(A) = 0, which implies that q(t) = p(t) · q′(t) as
p(t) is the minimal polynomial of A.

Let us now focus on the quotient ring of the ideal generated by an arbitrary polynomial p(t);
we shall later rephrase our findings in terms of matrices.

Suppose p(t) = (t− α1)
e1(t− α2)e2 · · · (t− αz)ez , of degree m = ∑u eu. Since we are working

over C, this is true without loss of generality. Let pu be the polynomial (t− αu)eu , for each u ∈ [z].
Then any polynomial q(t) is divisible by pu whenever αu is a root of q(t) and its first (eu − 1)
derivatives. In fact, q(t) is divisible by p = ∏u pu, exactly when the above condition holds for
each u ∈ [z].

Fact 3.2. A polynomial q(t) is divisible by p(t) = ∏u∈[z](t− αu)eu if and only if:

∀u ∈ [z], q(αu) =
∂q
∂t

(αu) =
∂2q
∂t2 (αu) = · · · =

∂eu−1q
∂teu−1 (αu) = 0.

In other words, the ∑u eu = m values obtained by evaluating the appropriate derivatives of q
at the corresponding roots of p, tell us whether p divides q. These evaluations of derivatives in
fact give us some more information about q with respect to the ideal 〈p〉, which we now see.
Derivatives characterise the quotient ring. For any polynomials p(t), q(t) we define the “remain-
der polynomial” q(t) mod p(t) as follows.

q(t) mod p(t) = q̃(t), such that q(t) = q′(t)p(t) + q̃(t), with deg(q̃) < deg(p)
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Suppose p(t) is a polynomial of degree m, then q̃(t) is clearly a polynomial of degree at most
m− 1. It turns out that the d evaluations of derivatives of q given in Fact 3.2 completely determine
q̃.

Fact 3.3. Suppose p(t) = ∏u∈[z](t− αu)eu has degree m, then there exist m2 constants
{

γa
u,v
}
⊂ C such

that for any polynomial q(t), we have

∀0 ≤ a ≤ m− 1, q̃a = ∑
u∈[z]
v∈[eu]

γ
(a)
u,v ·

∂vq
∂tv (αu),

where q̃(t) := ∑0≤j≤m−1 q̃jtj = q(t) mod p(t).

3.2 General commutative matrix rings

The above observations about “univariate” rings can be summarised as follows. Firstly, any ma-
trix ring is isomorphic to the quotient ring of an ideal, where this ideal contains all polynomial
dependencies that the generator matrix satisfies (Fact 3.1); thus every matrix in the ring corre-
sponds to a polynomial modulo this ideal.
Secondly, the remainder of any polynomial q with respect to this ideal is completely determined
by the evaluations of certain derivatives of q at appropriate points (Fact 3.3).

We shall now see the multivariate analogues of the above facts, which tell us about rings gen-
erated by multiple commuting matrices.

To fix some notation, suppose that we have been given the w × w matrices A1, . . . , Ar that
all commute with each other. These matrices therefore generate a commutative ring of matrices
denoted by C[A1, . . . , Ar], whose algebraic properties we shall now provide.

3.2.1 Matrix rings as quotient rings of ideals

Recall that for the ring C[A], the corresponding ideal was 〈p(t)〉, where p was the minimal poly-
nomial of A. The ideal 〈p(t)〉 precisely contains all the polynomials q(t) for which q(A) =

0. Therefore a natural choice for the multivariate ideal is the ideal of dependencies of A1, . . . , Ar,
J := {q(t1, . . . , tr) ∈ C[t] : q(A1, . . . , Ar) = 0}. Indeed, the quotient ring of J is isomorphic to
C[A1, . . . , Ar].

Lemma 3.4. Suppose A1, A2, . . . , Ar ∈ Cw×w are mutually commutative, and let J be their ideal of
dependencies inside the r-variate polynomial ring C[t]. Then C[A1, . . . , Ar] is isomorphic to C[t]/J.

Proof. Similar to the proof of Fact 3.1, we define the map Φ : C[t] → C[A1, . . . , Ar], which
maps q(t) to the matrix q(A1, . . . , Ar). This naturally defines the (restricted) map φ : C[t]/J →
C[A1, . . . , Ar], with φ(q̃) = q̃(A).
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The following facts are now easy to verify for Φ, which together prove that φ is an isomorphism
by the first ring isomorphism theorem (see e.g. [DF99]).

• Φ is a ring homomorphism: Φ(q1 + q2 · q3) = (q1 + q2 · q3)(A1, . . . , Ar) = q1(A) + q2(A) ·
q3(A) = Φ(q1) + Φ(q2) ·Φ(q3).

• Φ is onto: Trivially follows from the definition of C[A].

• ker Φ = J: Suppose Φ(q) = 0. Then q(A) = 0, which implies that q(t) ∈ J.

We note an important property of the ideal J, before moving on to the next part. Notice that
the minimal polynomials of each of the matrices A1, . . . , Ar, say p1(t1), p2(t2), . . . , pr(tr) are ele-
ments of J. This means that J contains univariate polynomials in each of its underlying variables.
Thus, the set of common zeroes of polynomials in J, also known as the variety of J(denoted by
V(J)), is finite. One way to see this is that V(J) ⊆ roots(p1)× roots(p2)× · · · × roots(pr), where
roots(pi) denotes the constants in C where pi vanishes, and× denotes the Cartesian product of sets.
Such ideals are called zero dimensional ideals, because their variety is a zero dimensional set in the
ambient space Cr.

Definition 3.5 (Zero-dimensional ideals). An ideal J ⊆ C[t] is called zero-dimensional if its variety is
finite; i.e. |V(J)| < ∞. ♦

3.2.2 Quotient rings of zero dimensional ideals

Since we are interested in zero dimensional ideals J, we shall now assume that V(J) = {v1, . . . , vz}
for some z ∈N.

Arguably, the statements we have discussed till this point are fairly well-known. But we be-
lieve that most of the ideas we shall now see are not as commonly known, especially in the theo-
retical computer science community. We remark that much of the non-trivial ideas and proofs in
this section (Section 3) belong to previous works [MMM93, MS95].

Taking a cue from Fact 3.3, for a zero-dimensional ideal J we expect the “multiplicities” of the
points in its variety V(J) to help us find the correct derivatives. In this case, the commonly used
definition of multiplicity for multivariate polynomials: multiplicity of w means all partial deriva-
tives of order < w vanish, turns out to be a little too coarse. In order to formally introduce the
suitable definition, we need the following notion of derivative operators, which are like polynomials
whose monomials are partial derivatives.

Definition 3.6 (Derivative operators). A derivative operator on C[t1, . . . , tr] is a C-linear combination
of finitely many partial derivatives of the form ∂a : C[t]→ C[t], where a ∈Nr.

The operator D = ∑a γa∂a naturally maps a polynomial q(t) ∈ C[t], to (∑a γa · ∂aq(t)) which we
denote by D(q). ♦

21



Any polynomial h(t) naturally defines a derivative operator Dh := ∑a∈supp(h) coeffh(a)∂a. Like-
wise, one can talk about the polynomial that underlies a derivative operator.

In Fact 3.3, the set of derivative-evaluations that characterise the ideal generated by a p =

(t − α)e, are evaluations at α of derivatives with respect to the monomials
{

te−1, te−2, . . . , t, 1
}

;
for multiple factors we take the union of the evaluations for each factor. In particular, there is a
“maximum” derivative ∂e/∂te, and the other derivatives are obtained by “down-shifting” it (similar
to taking all possible derivatives of the underlying monomial). This observation leads us to define
the following notion of shifts of derivatives and derivative operators.

Definition 3.7 (Shifts of derivatives and derivative operators). For a partial derivative ∂e : C[t] →
C[t] and a vector a ≥ 0̄, we define the a-shift of ∂e, denoted by σa(∂e), as follows.

σa(∂e) :=


e!

(e−a)! · ∂e−a if a ≤ e,

0 otherwise.

The definition naturally extends to a-shift of Dh, denoted by σa(Dh), as follows.

σa(Dh) := ∑
e:e≥a

coeffe(h) · σa (∂e) = ∑
e:e≥a

coeffe(h) ·
e!

(e− a)!
· ∂e−a ♦

The following observations about derivative operators and their shifts will be useful.

Observation 3.8. For any derivative operator Dh and vector a, σa(Dh) = D∂a(h).

Observation 3.9. For any derivative operator Dh and polynomials p(t), q(t), we have the following.

Dh(p · q) = ∑
a

1
a!
· ∂a(p) · σa(Dh)(q) = ∑

a

1
a!
· ∂a(p) · D∂a(h)(q)

Proof.

Dh(p · q) = ∑
e∈supp(h)

coeffe(h)∂e(p · q)

(Product rule) = ∑
e∈supp(h)

coeffe(h) ∑
a:a≤e

(
e
a

)
· ∂a(p) · ∂e−a(q)

(Rearranging) = ∑
a

∂a(p) · 1
a!
·

 ∑
e∈supp(h):e≥a

(
e!

(e− a)!
· coeffe(h)

)
∂e−a(q)


(Definition 3.7) = ∑

a

1
a!
· ∂a(p) · σa(Dh)(q)

(Observation 3.8) = ∑
a

1
a!
· ∂a(p) · D∂a(h)(q)
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In the language of shifts of derivative operators, we can say that the set of derivatives with
respect to

{
te, te−1, . . . , t, 1

}
is down-closed: closed under taking shifts. The following definitions

then follow naturally.

Definition 3.10 (Down-closed spaces of derivative operators). A C-vector space of derivative operators
∆ is said to be down-closed if for all D ∈ ∆, any shift D′ of D, also belongs to ∆. ♦

Definition 3.11 (Closure of an operator). For a polynomial h(t1, . . . , tr) ∈ C[t] and the corresponding
derivative operator Dh, we define the closure of Dh as follows.

∆(h) :=
{

D∂e(h) : e ∈Nr, ∂e(h) 6= 0
}

. ♦

Ideals with a single point in their variety and closed spaces of derivative operators have the fol-
lowing interesting connection, similar to a univariate ideal 〈(t− α)e〉.

Lemma 3.12. Let J ∈ C[t1, . . . , tr] be an ideal with V(J) = {ᾱ}, then the set ∆(J) of derivative operators
defined by ∆(J) := {D ∈ C[∂t1, . . . , ∂tr] : ∀g ∈ J, D(g)(ᾱ) = 0} a closed vector space.

Proof. Firstly, for all D1, D2, and β ∈ C, (βD1 + D2)( f )(ᾱ) = βD1( f )(ᾱ) + D2( f )(ᾱ) = 0, just by
linearity of differentiation. So ∆(J) is a vector space over C.

To see that it is closed, suppose Dh ∈ ∆(J) for a polynomial h(t), and let i ∈ [r] be such that
the partial derivative h′ := ∂h/∂ti 6= 0. Then using Observation 3.9, for any g ∈ J we have that
Dh(ti · g)(ᾱ) = (ti · Dh(g) + 1 · Dh′(g))(ᾱ) = vi · Dh(g)(ᾱ) + 1 · Dh′(g)(ᾱ). Now since J is an ideal,
g ∈ J implies that ti · g ∈ I and therefore Dh(ti · g)(ᾱ) = 0; and Dh(g)(ᾱ) = 0 because g ∈ J and
Dh ∈ ∆(J). Thus, Dh′(g)(ᾱ) = 0 for any Dh ∈ ∆(J) and i ∈ [r] such that ∂h/∂ti 6= 0. The closure
under an arbitrary shift a then follows by induction on the a.

We are now ready to state the following result which follows from the work of Marinari, Möller
and Mora [MMM93, Theorem 2.6], which is a suitable multivariate analogue for Fact 3.2.

Lemma 3.13 (Zero dimensional ideals and derivative operator spaces). Suppose an ideal J ⊆ C[t]
has variety V(J) = {ᾱ1, . . . , ᾱz} and dimC (C[t]/J) = m. Then there exist closed spaces of derivative
operators ∆1, . . . , ∆z of dimensions m1, . . . , mz with ∑u mu = m, such that for any polynomial g(t) ∈ C[t]
we have that g ∈ J, if and only if ∀u ∈ [z], ∀D ∈ ∆u : D(g)(ᾱu) = 0.

Thus, every zero-dimensional ideal is characterised by a set of closed spaces of derivative
operators, where the number of spaces is equal to the size of the variety. Next, we see how one
can obtain “g mod J” given the ∑u mu = m derivative-evaluations corresponding to the z bases of
∆1, . . . , ∆z. To that end, we first formalise what g mod J means and then state a result from [MS95]
that provides the above solution.

3.2.3 Matrices and polynomials in the quotient ring

When dealing with univariate polynomials, it is quite straightforward to define q(t) mod p(t) as
r(t), such that q(t) = q′(t)p(t) + r(t) for some polynomial q′(t) with deg(r) < deg(p). This is
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because we intuitively identify r(t) to be “less than” p(t) since it has smaller degree, and thus the
concepts of division and remainders extend naturally. However, things are a little more tricky for
multivariate polynomials: e.g. which monomial is “smaller”? x2 or y2?

We therefore need to fix a consistent way of comparing any two given monomials; we need
a monomial ordering: a total ordering on monomials that “respects” division/multiplication (see
e.g. [CLO07, Chapter 2]). We shall skip the formal definition of a monomial ordering, and just
work with the “dictionary ordering” or lexicographic ordering: ta ≺ ta′ if the smallest i ∈ [r] with
ai 6= a′i is such that ai < a′i. Using the monomial ordering ≺, we can define the leading monomial of
a polynomial, and then leading monomials of J for an ideal J.

Definition 3.14 (Leading monomials). For a polynomial g(t), a monomial ta ∈ supp(g) is said to be the
leading monomial of g, denoted by LM(g), if for all ta′ ∈ supp(g) we have that ta′ ≺ ta.

Similarly, we define LM(J) := {LM(g) : g ∈ J} for an ideal J. ♦

We can then define the remainder of a polynomial with respect to an ideal J.

Definition 3.15 (Remainder modulo an ideal). For a polynomial g(t) and an ideal J ⊂ C[t], we say that
g(t) mod J = g̃(t), if there exist polynomials gJ(t) ∈ J and g̃(t) such that g(t) = gJ(t) + g̃(t), where
LM(g̃) does not belong to the ideal 〈LM(J)〉. ♦

Observe that if LM(g̃) 6∈ 〈LM(J)〉, then in fact no monomial in supp(g̃) belongs to the ideal
〈LM(J)〉. And thus supp(g̃) is contained in the “complement of 〈LM(J)〉”: the normal set of J.

Definition 3.16 (Normal set of an ideal). For an ideal J ∈ C[t1, . . . , tr], the normal set of J is defined
as NS(J) := {ta : a ∈Nr, ta 6∈ 〈LM(J)〉}.

We sometimes overload notation to denote NS(J) as the set of exponent vectors. That is, NS(J) =

{a1, . . . , am} means NS(J) = {ta1 , . . . , tam}. ♦

Here are some important properties of the normal set of an ideal (see e.g. [MMM93]).

Fact 3.17. For any ideal J, its normal set NS(J) has the following properties.

• For any g(t), the polynomial g mod J is a linear combination of monomials in NS(J), and further,
|NS(J)| = dimC (C[t]/J).

• NS(J) is closed under divisions. That is, if ta ∈ NS(J) and ta′ |ta, then ta′ ∈ NS(J). In particular,
1 ∈ NJ for all ideals J.

We can now state the result of Möller and Stetter [MS95] that gives a more explicit version of
the correspondence in Lemma 3.13. The following is a multivariate analogue of Fact 3.3.

Lemma 3.18 (Consequence of [MS95, Theorem 1]). Suppose J ⊂ C[t1, . . . , tr] is an ideal with variety
V(J) = {ᾱ1, . . . , ᾱz} and normal set NJ := NS(J) = {a1, . . . , aw}. Let ∆1, . . . , ∆z be the characterising
derivative operator spaces, with each ∆u spanned by {Du,1, . . . , Du,mu}, such that |NJ | = m = ∑u mu.

Then there exists a set of m2 constants
{

γ
(a)
u,v

}
⊂ C, such that for any polynomial g(t) ∈ C[t] and

g̃(t) := (g(t) mod J), we have coeffa(g̃) = ∑u,v γ
(a)
u,v(Du,v(g))(ᾱu) for all a ∈ NJ .
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4 Proof of the main theorem

We start with an observation about diagonal ROABPs that gives an equivalent alternate view of the
model, which will be useful for our results.

Observation 4.1 (Alternate view of diagonal ROABPs). If f (x1, . . . , xn) has a diagonal ROABP of
width w, then there is a polynomial g(t, x) with degt(g) ≤ nw, such that f (x) = ∑j∈[w] g(j, x).

Proof. Suppose f (x) = ∑j∈[w] ∏i∈[n] f j,i(xi). Then we define polynomials L1(t), . . . , Lw(t) such that
for each j, k ∈ [w], Lj(k) = 1 if j = k and Lj(k) = 0 otherwise. Such polynomials always exist, and
are called Lagrange basis polynomials.

For each i ∈ [n], define gi(t, xi) := ∑j∈[w] Lj · f j,i(xi), and let g(t, x) = ∏i∈[n] gi(t, xi). Then
g(t = j, x) = ∏i∈[n] f j,i(xi), and hence f (x) = ∑j∈[w] g(j, x) as required.

4.1 An alternate view of commutative ROABPs

Definition 4.2. For an ideal J ⊂ C[t], and a G ∈ C[t, x] given by G = ∑e coeffxe(G)(t) · xe, we define
the polynomial G̃ = (G mod J) as follows.

G̃ := ∑
e
(coeffxe(G)(t) mod J) · xe

Here (g(t) mod J) for any g(t) is defined as per Definition 3.15. ♦

Using the above definition, given any commutative ROABP, we can come up with a product
of univariates over xs that is related to it in the following sense.

Lemma 4.3. Suppose f (x) = bᵀ
(

∏i∈[n]
(

Ai,0 + Ai,1xi + · · ·+ Ai,dxd
i
))

c, is a commutative-ROABP of
width w computing f (x).

Then there exists an ideal J ⊂ C[t1, . . . , tr] with a finite variety, and G(t, x) := ∏i Gi(t, xi), such that
for G̃(t, x) := G(t, x) mod J, f (x) can be expressed as a linear combination of the t-coefficients of G̃.

Furthermore, |t| = r ≤ min
{

w2, n(d + 1)
}

and the t-degree of each Gi is at most w2.

Proof. Let F(x) denote the w × w matrix with entries in C[x], so that f (x) = bᵀF(x)c. Let A =

{A1, . . . , Ar} be such that the ring C[A1, . . . , Ar] is the same as that generated by the coefficient
matrices

{
Ai,j
}

. It is easy to see that r ≤ min
{

w2, n(d + 1)
}

.
We define the ideal J as follows: J = {g(t) ∈ C[t] : g(A1, . . . , Ar) = 0}. Let NJ = {ta1 , . . . , tam}

be the normal set of J; then |NJ | = m ≤ w2, as the quotient ring of J is isomorphic to C[A] ⊂ Cw×w

(see Lemma 3.4). For each i, j let Gi,j(t) be the polynomial with monomials from NJ such that
Gi,j(A) = Ai,j. We define Gi(t, xi) = ∑j Gi,0(t)xj

i for each i ∈ [n]. Since NJ is closed under divisions,
the degree of any ta ∈ NJ is at most w2, and hence degt(Gi) = deg(Gi,j) ≤ w2 for all i.
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Let G̃ := (G mod J) = ∑a∈NJ
g̃a(x)ta for some g̃a(x)s, which we call the “t-coefficients of G”.

f (x) = ∑
k,`∈[w]

bkc` · F(x)[k, `]

(By definition of G) = ∑
k,`∈[w]

bkc` · (G(A, x)) [k, `]

(By definition of J) = ∑
k,`∈[w]

bkc` ·
(
G̃(A, x)

)
[k, `]

(Expanding G̃) = ∑
k,`∈[w]

bkc` ·
(

∑
a∈NJ

g̃a(x)Aa

)
[k, `]

(For Aa = Aa) = ∑
a∈NJ

(
∑

k,`∈[w]

bkc`Aa[k, `]

)
g̃a(x) = ∑

a∈NJ

βa g̃a(x)

In the last line, Aa is a w× w matrix that is equal to the “monomial” Aa.

4.2 Evaluating derivatives of polynomials

We now show that for any polynomials g(t), h(t), and any point ᾱ ∈ Cr, the value (Dh(g))(ᾱ)
can be obtained as a linear combination of O(d′, WR(h)) evaluations of the polynomial g, where
d′ = max{deg(g), deg(h)}. This is a known fact(see e.g. [Pra19]).
We start with a fact about the “symmetry” between Dh(g)(0̄) and Dg(h)(0̄) that we will need.

Fact 4.4. For any g, h ∈ C[t1, . . . , tr], Dg(h)(0̄) = Dh(g)(0̄) = ∑e∈Nr e!gehe.

Lemma 4.5 (Functionals and Waring rank). Let g, h ∈ C[t1, . . . , tr] be polynomials of degree at most
d′, and suppose WR(h) ≤ s. Then there exist W = O(s · d′) points y1, . . . , yW such that Dh(g)(0̄) =

Dg(h)(0̄) can be expressed as a linear combination of g(y1), . . . , g(yW).

Proof. Let us start by expressing both g and h as the sum of their homogeneous components as
g = ∑0≤j≤d′ gj and h = ∑0≤j≤d′ hj. We can therefore simplify Dh(g)(0̄) as follows.

Dh(g)(0̄) = ∑
0≤j≤d′

∑
0≤j′≤d′

Dhj(gj′)(0̄)(
if j′ < j, then Dhj(gj′) = 0

)
= ∑

0≤j≤d′
∑

j≤j′≤d′
Dhj(gj′)(0̄)(

if j′ > j, then Dhj(gj′)(0̄) = 0
)
= ∑

0≤j≤d′
Dhj(gj)(0̄) = ∑

0≤j≤d′
Dgj(hj)(0̄)

Now suppose that h = ∑k∈[s](〈ck, t〉 + bk)
dk is the Waring decomposition of h, and let gj =

∑e coeffe(gj) · te, for each j. We then have the following.
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Dgj(hj)(0̄) = Dgj

(
∑

k∈[s]
(〈ck, t〉+ bk)

dk

)
(
binomial expansion to extract hj

)
= Dgj

(
∑

k∈[s]

(
dk

j

)
bdk−j

k 〈ck, t〉j
)

(linearity of differentiation) = ∑
k∈[s]

(
dk

j

)
bdk−j

k · Dgj

(
〈ck, t〉j

)
(0̄)

(
expanding gj

)
= ∑

k∈[s]

(
dk

j

)
bdk−j

k ∑
e∈Nr

coeffe(gj) · ∂e

(
〈ck, t〉j

)
(0̄)

(
since ∂e

(
〈ck, t〉j

)
= j!ce

k

)
= ∑

k∈[s]

(
dk

j

)
bdk−j

k ∑
e∈Nr

coeffe(gj) · j! · ce
k(

for γj,k =

(
dk

j

)
bdk−j

k · j!
)
= ∑

k∈[s]
γj,k · gj(ck)

Using previous calculations we then get that Dh(g)(0̄) = ∑0≤j≤d′ ∑k∈[s] γj,k · gj(ck). However,
this is not quite a linear combination of evaluations of g, because we need to “scale” the evalu-
ations of gj differently for each 0 ≤ j ≤ d′. This can be easily handled using interpolation (see
Lemma B.1) as follows, thus finishing the proof.

Dh(g)(0̄) = ∑
0≤j≤d′

∑
k∈[s]

γj,k · gj(ck)

(using Corollary B.2) = ∑
0≤j≤d′

∑
k∈[s]

γj,k ·
(

∑
0≤`≤d′

β j,` · g(µ`ck)

)

(rearranging) = ∑
k∈[s]

∑
0≤`≤d′

(
∑

0≤j≤d′
γj,k · β j,`

)
g(µ`ck)(

for the appropriate δj,`s
)
= ∑

k∈[s]
∑

0≤`≤d′
δj,` · g(µ`ck)

4.3 The proof

We now have all the pieces required to prove the main theorem, which we first restate.

Theorem 1.10. For any n, r ∈ N, let S(r, m) denote the smallest Σ
∧

Σ-size required to compute any
r-variate polynomial f with DPD( f ) ≤ m.
Then for all n, d, w ∈N, commROABP(n, d, w) ⊆ diagROABP

(
n, d, S(w2, w2)nw4).

Proof. Let F(x) = ∏n
i=1

(
∑d

j=0 Ai,jx
j
i

)
, and let f (x) = bᵀF(x)c be the corresponding commutative

ROABP of width w.

27



Moving to the polynomial world: From Lemma 4.3, there is a G(t, x) = ∏i∈[n] Gi(t, xi) such that
f (x) is a linear combination of the t-coefficients of G̃ := G mod J, where J is the ideal of
dependencies of the coefficient matrices

{
Ai,j
}

.

Let r = |t|, V(J) = {ᾱ1, . . . , ᾱz}, and NJ = NS(J) with m = |NJ |. Then r, m ≤ w2 and
degt(Gi) ≤ w2 for all i ∈ [n], and there exist βa’s and g̃a(x)’s such that

f (x) = ∑
a∈NJ

βa g̃a(x).

Coefficients from derivatives: Next, the results from [MMM93, MS95] (Lemma 3.18) imply that
there exist m polynomials {hu,v(t)} such that:

• DPD(hu,v) ≤ m for all hu,v, and

• For any a ∈ NJ , coeffa(G̃) = ∑u,v γa
u,v(Dhu,v(G))(ᾱu), for some

{
γa

u,v
}
⊂ C.

Derivatives using evaluations: Then, using Lemma 4.5 we see that for any polynomial h with
s := WR(h) and for any polynomial G with deg(g), deg(h) ≤ d′, there exist at most s · d′

points y1, . . . , ysd′ ∈ Cr and constants λ1, . . . , λsd′ ∈ C such that :

(Dh(G))(ᾱ) =
sd′

∑
q=1

λqG(yq).

Thus, for all u, v, O(WR(hu,v) ·max
{

degt(G), deg(hu,v)
}
) = O(S(r, m) · nw2) evaluations of

G are enough to obtain (Dhu,v(G))(ᾱu).

Putting everything together: Combining all the steps, we get the following.

f (x) = ∑
a∈NJ

βa g̃a(x)

= ∑
a∈NJ

βa ∑
u,v

γa
u,v(Dhu,v(G))(ᾱu)

(Rearranging) = ∑
u,v

(
∑

a∈NJ

βaγa
u,v

)
(Dhu,v(G))(ᾱu)

(For appropriate β′s) = ∑
u,v

β′u,v(Dhu,v(G))(ᾱu)

(
DPD(hu,v) ≤ m, deg(G) ≤ nw2) = ∑

u,v
β′u,v

S(r,m)·nw2

∑
q=1

λqG(yq, x)

∴ f (x) =
m·S(r,m)·nw2

∑
q′=1

µq′ ∏
i∈[n]

Gi(yq, xi)
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Thus, as m, r ≤ w2, we get a diagonal ROABP for f (x) of width O(w2 · S(w2, w2) · nw2) =

O(S(w2, w2) · nw4).

Remark 4.6. Suppose there exists an explicit polynomial f that is computable by a commutative ROABP
of polynomial width but any diagonal ROABP computing f requires width super-polynomial in n. Let w
be the width of the commutative ROABP, and let J be the ideal of dependencies of its coefficient matrices.
By Lemma 3.18 there exist polynomials {hu,v(t)} with |t| ≤ w2, such that DPD(hu,v) ≤ w2. But if
WR(hu,v) = poly(w) for each u, v, then we should get a diagonal ROABP of width poly(w), which is
a contradiction. Thus, a separation between commutative and diagonal ROABPs also leads to an explicit
polynomial that witnesses the separation dimension of partial derivatives and Waring rank. ♦

5 Open questions

Owing to the connections of subclasses of ROABPs with other well-studied models, we believe
that resolving any of the questions stated in Section 1 in any direction would be very interesting to
the algebraic complexity community, and might even lead to new approaches for PIT of ROABPs
and depth 3 powering circuits.

A specific follow-up question to our main theorem(Theorem 1.10) is that of finding an appro-
priate converse. For example, is it true that if diagonal ROABPs can efficiently simulate commu-
tative ROABPs, then dimension of partial derivatives essentially captures the Waring rank of any
polynomial? It is not clear how one would go about proving the above statement directly. For
proving the contrapositive, the main technical challenge seems to be to arrive at a candidate com-
mutative ROABP using a polynomial that would witness the separation between dimension of
partial derivatives and Waring rank.
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A PIT algorithms for ROABP classes

A dual question to that of proving strong lower bounds against a class C of polynomials, is the
algorithmic task of polynomial identity testing (PIT) for C, which is as follows.

Given access to a polynomial f ∈ C, determine whether f is identically zero.

A PIT algorithm is said to be blackbox if it is only allowed to evaluate f at certain points
and it is called whitebox when the algorithm is allowed to examine how f is computed in the
class C (e.g. all the entries in the matrices used by an ABP). Note that the Polynomial Identity
Lemma [Ore22, DL78, Zip79, Sch80] (also called “Schwartz-Zippel lemma”) immediately gives an
efficient randomised blackbox PIT for all n-variate polynomials of degree poly(n). Thus, designing
efficient, deterministic PITs is the interesting task here, which remains a long-standing open prob-
lem. In fact, finding efficient deterministic PITs for well-studied classes of polynomials like VBP,
VP, etc., is a central problem in algebraic complexity theory.

Obtaining efficient deterministic PITs even for very structured classes of polynomials turns out
to be a non-trivial task. In this section, we focus on structured ROABP classes. Recall the following
hierarchy of polynomials (where C denotes C(n, d, poly(n, d))).

Σ
∧

Σ ( diagROABP ⊆ commROABP ⊆ ROABP[∀] ( ROABP[∃]

Although, we have made considerable progress towards obtaining PIT algorithms, it is impor-
tant to note that we do not know polynomial time deterministic blackbox PIT algorithms for any
of the classes in the hierarchy mentioned above.

Firstly, for non-commutative ABPs, an efficient whitebox PIT is known due to Raz and Sh-
pilka [RS05], which also extends to ROABPs. Furthermore, a work of Forbes and Shpilka [FS13]
provides a quasipolynomial time blackbox PIT for ROABPs in known order, which subsumes black-
box PIT for non-commutative ABPs. Their algorithm requires the knowledge of the order in which
the ROABP reads the variables; this setting is sometimes called grey-box. This immediately gives
a quasipolynomial time blackbox PIT for ROABP[∀](n, d, w).

However, fully blackbox quasipolynomial time PITs for ROABPs were provided by Forbes,
Saptharishi and Shpilka [FSS14] ((ndw)O(log2 n)) and later by Agrawal, Gurjar, Korwar and Sax-
ena [AGKS15] ((ndw)O(log n)). By “fully blackbox”, we mean that their algorithms work for the
class ROABP[∃](n, d, w) as opposed to those of [FS13] which only worked for ROABP[∀](n, d, w).
A work of Gurjar, Korwar and Saxena [GKS17] gives a blackbox PIT for ROABP[∀](n, d, w) that
runs in time nO(log w), which is efficient when the width w is a constant. For the general case, the
state of the art is a blackbox PIT given by Guo and Gurjar [GG20] which achieves the parameters
of [AGKS15] and improves upon them in some special cases.

Despite having an exact characterisation due to Nisan[Nis91] that leads to nearly optimal
lower bounds, obtaining efficient blackbox PITs for ROABPs remains widely open. That said,
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perhaps the simplest model for which we know of nearly optimal exponential lower bounds, but
have no efficient blackbox PITs, is that of depth 3 powering circuits. The work of Saxena [Sax08]
shows that Σ

∧
Σ circuits efficiently reduce to ROABPs (in fact diagROABP), which immediately

gives an efficient whitebox PIT using [RS05]. In the blackbox setting, while the previously men-
tioned works [FS13, AGKS15] trivially extend to Σ

∧
Σ, the best known blackbox PIT is due to

Forbes, Saptharishi and Shpilka [FSS14], that runs in time nO(log log n) for circuits of size and de-
gree poly(n). In the special case of Σ

∧
Σ circuits of size and degree s, that depend on O(log s)

variables, a recent work of Forbes, Ghosh and Saxena [FGS18] gives a blackbox PIT that runs in
time poly(s).

Interestingly, the above mentioned ideas from [FSS14] (alongwith the duality trick of [Sax08]
and the low-variate PIT by [FGS18]) is known to reduce the blackbox PIT of n-variate, degree d,
size s Σ

∧
Σ circuits to the blackbox PIT of a diagonal ROABP of size and degree poly(n, d, s) that

depend on just O(log(sd)) variables! Rather annoyingly, even then obtaining efficient blackbox
PIT for Σ

∧
Σ circuits remains open. We give the exact statement here for completeness.

Theorem A.1 (See e.g. [BS21, Lemma 2.12]). Let P be an n-variate polynomial of degree d computable
by a size s Σ

∧
Σ circuit. Then there exists a polynomial P′ on O(log sd) variables of degree and size

poly(n, d, s) computable by a diagonal ROABP such that P ≡ 0 if and only if P′ ≡ 0.

B Formal statements of some useful facts

Lemma B.1 (Univariate interpolation (Folklore)). Let µ0, . . . , µD ∈ C be distinct. Then there exist
constants

{
β j,k
}

0≤j,k≤D such that for any polynomial p(v) ∈ C[v] of degree at most D, we have that
coeffvj(p(v)) = ∑0≤k≤D β j,k · p(µk) for all 0 ≤ j ≤ D.

Corollary B.2 (Interpolating homogeneous components). For any polynomial f (x) ∈ C[x] and any
0 ≤ j ≤ deg( f ), the degree j homogeneous component of f denoted by f j can be expressed as a linear
combination of f (µ0 · x), . . . , f (µD · x) for any distinct µ0, . . . , µD.

Proof. Note that f j(x) = coeffvj( f (v · x1, . . . , v · xn)), and apply Lemma B.1.

It is useful to note Nisan’s characterisation for Read-once Oblivious ABPs. Nisan [Nis91]
showed that the width of a non-commutative ABP is exactly characterized by the rank of par-
tial derivative matrices that we now define. Since ROABPs are commutative analogues of non-
commutative ABPs, the same characterisation extends to ROABPs, as follows.

Let f ∈ C[x] be an n-variate polynomial of individual degree < d, and suppose we wish to
compute f using an ROABP in the “sorted” order (x1, x2, . . . , xn). For any i ∈ [n] we then define
the di × dn−i matrix M( f )

i as follows. The rows of M( f )
i are indexed by monomials in the first i

variables ({x1, . . . , xi}), and its columns are indexed by monomials in the other n − i variables;
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the entry M( f )
i [m, m′] is the coefficient of the monomial m ·m′ in f . As the entries of M f

i are in C,
rank(M f

i ) is well-defined. We now state the version of Nisan’s result that exactly characterises the
size of the smallest ROABP computing f .

Lemma B.3 (Nisan’s characterization for ROABPs). For any n-variate polynomial f of degree d, the
smallest ROABP that computes f in the order (x1, x2, . . . , xn) must have size exactly rank(M( f )

1 ) + · · ·+
rank(M( f )

n−1).
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