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Abstract

We study the error resilience of transitive linear codes over F2. We give tight
bounds on the weight distribution of every such code C, and we show how these
bounds can be used to infer bounds on the error rates that C can tolerate on the
binary symmetric channel. Using this connection, we show that every transitive
code can be list-decoded from random errors. As an application, our results
imply list-decoding bounds for Reed-Muller codes even when the rate exceeds the
channel capacity.

1 Introduction

In his seminal 1948 paper, Shannon laid out the bases of coding theory and introduced
the concept of channel capacity, which is the maximal rate at which information can
be transmitted over a communication channel [Sha48]. This initiated a decades-long
search for capacity-achieving codes, i.e. codes that achieve these optimal rates. The
two channels that have received the most attention are the Binary Symmetric Channel
(BSC), where each bit is independently flipped with some probability ε, and the Binary
Erasure Channel (BEC), where each bit is independently replaced by an erasure symbol
with some probability ε.

The binary code that is arguably the cleanest explicit candidate to achieving capacity
over both the BSC and the BEC is the family of Reed-Muller codes. The codewords of
the Reed-Muller code RM(n, d) are the evaluation vectors (over all points in Fn2 ) of all
multivariate polynomials of degree d in n variables. There has recently been significant
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progress in understanding the performance of Reed-Muller codes over various channels,
and one key realization has been that some of these results hold for all doubly transitive
linear codes. A code is transitive if for every two coordinates i, j, there is a permutation
π with π(i) = π(j), and permuting the coordinates of each of the codewords using π
does not change the code. Similarly, a code is doubly transitive if for i 6= k, j 6= w,
there is a permutation as above with π(i) = j, π(k) = w. Reed-Muller codes are doubly
transitive because applying an affine transformation to the input preserves the degree
of polynomials over F2.

Combining double transitivity with fundamental results about the influences of
boolean functions [KKL88, Tal94, BK97] has led to a very successful line of work, with
[KKM+16] showing that Reed-Muller codes achieve capacity over the BEC and [HSS21]
showing that they are polynomially close to achieving capacity over the BSC.

In this paper, we show that even the weaker property of transitivity is fairly useful
for binary codes. We first prove the following bound on the weight distribution of any
transitive code (see section 6):

Theorem 1. Let C ⊆ FN2 be a transitive linear code. Then for any α ∈ (0, 1) we have

Pr
c∼D(C)

[
|c| = αN

]
≤ 2−(1−h(α))dim C ,

where D(C) is the uniform distribution over all codewords in C.

Here h(α) denotes the binary entropy function. We note that the bound above
is stronger than many previously proved weight distribution bounds for Reed-Muller
codes, even though the only feature of the code that we use is transitivity.

We also develop a new approach for proving decoding results over the BSC, i.e. the
communication channel whose errors z ∈ FN2 are sampled from the ε-noisy distribution

Pε(z) = ε|z|(1− ε)N−|z|

for some ε ∈ (0, 1). Our approach is based on Fourier analysis, although unlike
[KKM+16] and [HSS21], the ideas we use do not rely on bounds on influences. A strong
enough bound on the weight distribution would lead to results about unique decoding
using our approach, however our weight distribution bounds are not strong enough
to imply unique decoding for Reed-Muller codes. Still, our methods, combined with
the above weight distribution bound for transitive codes, and the weight distribution
bounds proved by [HSS21] for Reed-Muller codes, are enough to give list decoding
results for these codes, which we present in Theorems 2 and 3 (see sections 7 and 8).

Theorem 2. Fix some ε ∈ (0, 1
2
), η ∈ (0, 1), and N >

(
5
ε

)20
. Then for any transitive

linear code C ⊆ FN2 of dimension dim C = ηN , there exists a function T mapping every
x ∈ FN2 to a subset T (x) ⊆ C of size

|T (x)| = N7 · 2(εN+N3/4) log e4

1−η ,
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with the property that for every codeword c ∈ C we have

Pr
ρ∼Pε

[
c /∈ T (c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
,

where Pε is the ε-noisy distribution.

Theorem 3. Fix some ε ∈ (0, 1
2
), η ∈ (0, 1) and N >

(
5
ε

)20
, and consider the Reed-

Muller code RM(n, d) of dimension
(
n
≤d

)
= η2n = ηN. There exists a function T mapping

every x ∈ FN2 to a subset T (x) ⊆ RM(n, d) of size

|T (x)| = N7 · 28N7/8 log 1
1−η ·

(
24εN + 2

(ε log ε
(1−η)2

+4ε+(1−η)2)N
)
,

with the property that for every codeword c ∈ RM(n, d) we have

Pr
ρ∼Pε

[
c /∈ L(c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
.

Although our lists have exponential size, for codes of dimension smaller than
(1− 1000ε)N the list size is non-trivial, in the sense that it is much smaller than the
number of noise vectors or the number of codewords in the code. We present the
following two corollaries as explicit examples of the bounds one gets from Theorems 2
and 3.

Corollary 4. Let ε ∈ (0, 1
2
) and N >

(
5
ε

)20
be arbitrary, and let C ⊆ FN2 be a transitive

linear code of dimension dim C < (1− ε0.99)N . Then there exists a function T mapping
every x ∈ FN2 to a subset T (x) ⊆ C of size

|T (x)| = 2(0.99h(ε)+5ε)N ,

with the property that for every codeword c ∈ C we have

Pr
ρ∼Pε

[
c /∈ T (c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
.

Corollary 5. Let ε ∈ (0, 1
2
) and N >

(
5
ε

)20
be arbitrary, and consider any Reed-Muller

code RM(n, d) of dimension
(
n
≤d

)
< (1− 10ε)2n = (1− 10ε)N. There exists a function

T mapping every x ∈ FN2 to a subset T (x) ⊆ RM(n, d) of size

|T (x)| = 2(h(ε)−3ε+100ε2)N ,

with the property that for every codeword c ∈ RM(n, d) we have

Pr
ρ∼Pε

[
c /∈ L(c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
.

3



It can be shown that random codes C ⊆ FN2 can successfully return a list of size L
under errors of probability ε with

log |C| ≈ (1− h(ε))N + logL.

Our bound in Corollary 5 shows that Reed-Muller codes achieve similar parameters for
exponentially large L.

An important part of our analysis, which is of interest in its own right, is to
understand the Fourier coefficients of the level function

LS(x) =

{
1 |x| ∈ S
0 otherwise,

where S is some subset of {0, ..., N}. One can also view the Fourier coefficient L̂{εN}(1δN )
as the renormalized coefficient of a Krawtchouk polynomial, or as the renormalized
expectation of the parity of |X ∩Y |, where X ⊆ {0, ..., N} is a uniformly random subset
of size εN and Y ⊆ {0, ..., N} is a uniformly random subset of size δN . Using techniques
from complex analysis (see for e.g. [FS09], chapter 8), we obtain the following bounds
on L̂{εN}(1δN) (see section 9):

Theorem 6. For any ε, δ ∈ (0, 1) and any integer N , we have

|L̂{εN}(1δN)| ≤

2−N/2 ·
(

(1/2−δ)·e2
ε

)εN
if (1− 2δ)2 − 4ε(1− ε) ≥ 0,

2(h(ε)−h(δ))N/2 otherwise.

1.1 Techniques

Our weight distribution bound for transitive linear codes (Theorem 1) is based on a
simple calculation. We show that the entropy of a uniformly random codeword of
weight αN is small. To do this, we analyze the entropy of the coordinates corresponding
to linearly independent rows of the generator matrix. Transitivity implies that every
coordinate in the code has the same entropy, and subadditivity of entropy can then be
used to bound the entropy of the entire distribution.

To obtain our list decoding results, we make use of a connection between the
decoding of a codeword and the `2 norm of a certain distribution. To explain the
intuition, we start by assuming that exactly εN of the coordinates in the codeword are
flipped, although our results actually hold over the BSC as well. Let z be the vector in
FN2 that represents the errors introduced by the channel, and let H be the parity check
matrix of the code. Then by standard arguments, if z can be recovered from Hzᵀ with
high probability, the code can be decoded. In the case that z is uniformly distributed
on vectors of weight εN , this amounts to showing that for most pairs z, w of weight
εN , Hzᵀ and Hwᵀ are distinct. This can be understood by computing the norm

‖f‖22 =
∑
y

f(y)2 =
∑
y

Pr[Hzᵀ = yᵀ]2,
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where f(y) = Pr[Hzᵀ = yᵀ]. The norm above is always at least
(
N
εN

)−1
, and if

(
N
εN

)
‖f‖22

is close to 1 then the code can be decoded with high probability. If
(
N
εN

)
‖f‖22 is larger

than 1, then we show that the code can be list-decoded with high probability, where
the size of the list is related to

(
N
εN

)
‖f‖22 (see Theorem 16 for the exact statement).

Thus, to understand decoding, we need to understand ‖f‖22. Using Fourier analysis,
we express this quantity as

‖f‖22 = 2N ·
N∑
j=0

Pr[|c⊥| = j] · L̂εN(1j)
2,

where c⊥ is a random codeword in the dual code, and LεN is the indicator function for
strings of weight εN . This explains the connection between the Fourier coefficients of
the level functions LεN , the weight distribution of the code, and the probability of a
decoding failure.

Our bounds on the Fourier coefficients of LεN (Theorem 6) are proven using ideas
from complex analysis. For any y ∈ FN2 , we express L̂εN(y) as the coefficient of zεN

in the polynomial (1 − z)|y|(1 + z)N−|y|. Cauchy’s residue theorem then allows us to
rewrite L̂εN(y) in terms of a contour integral around the origin of the complex plane.
By choosing a well-behaved curve, we evaluate and bound this integral.

Our list-decoding results (Theorems 2 and 3) are then obtained by using the weight
distribution bounds for transitive or Reed-Muller codes in conjunction with our bounds
on the Fourier coefficients of the level function.

1.2 Related work

It has been shown that LDPC codes achieve capacity over Binary Memoryless Symmetric
Channels (BMS) [LMS+97, KRU13], which includes both the BSC and the BEC. These
constructions are not deterministic, and it is only with the advent of polar codes [Ari09]
that we obtained capacity-achieving codes with both a deterministic constructions and
efficient encoding and decoding algorithms.

Polar codes are closely related to Reed-Muller codes, in the sense that they also
consist of subspaces that correspond to polynomials over F2. In [Ari09] it was shown
that Polar codes achieve capacity over the BSC, and algorithms were given to both
encode and decode them.

It has long been believed that Reed-Muller codes achieve capacity, and significant
progress has been made in that direction over the last few years (see [ASY21] for a
discussion on the subject, as well as a thorough exposition to Reed-Muller codes).
Abbe, Shpilka and Wigderson first showed that Reed-Muller codes achieve capacity over
the BSC and the BEC for sub-constant and super-constant rates [ASW15]. Kudekar,
Kumar, Mondelli, Pfister, Sasoglu and Urbanke then proved that in the constant rate
regime, Reed-Muller codes achieve capacity over the BEC channel [KKM+16]. Abbe and
Ye showed that the Reed-Muller transform polarizes the conditional mutual information,
and proved that some non-explicit variant of the Reed-Muller code achieves capacity
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(they conjecture that this variant is in fact the Reed-Muller code itself) [AY19]. Hazla,
Samorodnitsky and Sberlo then proved that Reed-Muller codes of constant rates can
decode a constant fraction of errors on the BSC [HSS21] (this had previously been
shown for Almost-Reed-Muller codes in [AHN20]). Most recently, Reeves and Pfister
showed that Reed-Muller codes achieve capacity over all BMS channels under bit-MAP
decoding [RP21], i.e. that one can with high probability recover any single bit of the
original codeword (but not with high enough probability that one could take a union
bound). Despite these breakthroughs, the conjecture that Reed-Muller codes achieve
capacity over all BMS channels under block-MAP decoding (i.e. recover the whole
codeword with high probability) is ultimately still open.

Several past works have proved bounds on the weight distribution of Reed-Muller
codes. Kaufman, Lovett and Porat gave asymptotically tight bounds on the weight
distribution of Reed-Muller codes of constant degree [KLP12]. Abbe, Shpilka and
Wigderson then built on these techniques to obtain bounds for all degrees smaller
than n

4
[ASW15], before Sberlo and Shpilka again improved the approach and obtained

bounds for all degrees [SS20]. Most recently, Samorodnitsky used completely different
ideas to obtain the following bound, which is stronger for weights that are linear in N
[Sam20]:

Theorem 7. Let
(
n
≤d

)
= η2n = ηN for some η ∈ (0, 1), and denote by D(n, d) the

uniform distribution over all codewords in RM(n, d). Then for any α ∈ (0, 1
2

we have

Pr
c∼D(n,d)

[|c| ≤ αN ] ≤ 2o(N)

(
1

1− η

)2 ln 2·αN

2−ηN .

These bounds are strong when α � 1/2. For α close to 1/2, results have been
obtained by [BHL12, SS20], but perhaps the strongest one for Reed-Muller codes of
constant rates is again due to Samorodnitsky [Sam20]:

Theorem 8. Let
(
n
≤d

)
= η2n = ηN for some η ∈ (0, 1), and denote by D(n, d) the

uniform distribution over all codewords in RM(n, d). Defining A = {1−η2 ln 2

2
, ..., 1

2
}, we

have that for any α ∈ (0, 1
2
),

Pr
c∼D(n,d)

[|c| ≤ αN ] ≤ 2o(N) ·

{
( N
αN)
2N

if α ∈ A,
1

(1−η2 ln 2)αN (1+η2 ln 2)(1−α)N
otherwise.

List decoding was proposed by Elias in 1957 as an alternative to unique decoding
[Eli57]. In the list decoding framework, the receiver of a corrupted codeword is asked
to output a list of potential codewords, with the guarantee that with high probability
one of these codewords is the original one. This of course allows for a greater fraction
of errors to be tolerated.

The list decoding community has largely focused on proving results for the adversarial
noise model, and many codes are now known to achieve list-decoding capacity. For
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example uniformly random codes achieve capacity, as do uniformly random linear codes
[GHSZ02, LW18, GHK11]. Folded Reed-Solomon codes were the first explicit codes
to provably achieve list-decoding capacity [GR08], followed by several others a few
years later [GX12, Kop15, HRW17, MRR+20]. For the rest of this paper however,
we will exclusively work in the model where the errors are stochastic. In this model,
the strongest known list decoding bound for the code RM(n, d) with

(
n
≤d

)
= ηN >

N −N log(1 + 2
√
ε(1− ε)) is, to our knowledge, that one can output a list T of size

|T | = 2

(
ε log ε

(1−η)4 ln 2+ε log(2−2ε)
)
N

(1)

and succeed with high probability in decoding ε-errors. This result, although not
explicitly stated in [Sam20], can be obtained from their weight bound of Theorem 7 by
bounding the expected number of codewords that end up closer to the received string
than the original codeword, and then applying Markov’s inequality. We note that for

η >> 1 − ε 1
4 ln 2 and ε ∈ (0, 1) small enough, (1) behaves like 2

εN log ε

(1−η)4 ln 2 . But for

η >> 1−
√
ε the list-decoding bound given by our Theorem 3 behaves like 2

εN log ε
(1−η)2 ,

so in that regime our Theorem 3 improves (1) by an exponential factor.

2 Notation, Conventions and Preliminaries

For the sake of conciseness, we will use the notation(
n

≤ d

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
,

and will use the notation

{a± l} = {a− l, ..., a+ l}.

Let N = 2n. We will be working with the vector spaces Fn2 and FN2 . For convenience,
we associate Fn2 with the set [N ] = {1, 2, . . . , N}, by ordering the elements of Fn2
lexicographically. For x ∈ FN2 , we write |x| = |{j ∈ [N ], xj = 1}| to denote the weight
of x. For x ∈ FN2 and S ⊆ {0, ...N}, we define the level function

LS(x) =

{
1 |x| ∈ S,

0 otherwise.

2.1 Linear Codes

An N -bit code is a subset C ⊆ FN2 . Whenever C is a subspace of FN2 , we say that C is a
linear code. Any linear code C ⊆ FN2 can be represented by its generator matrix, which
is a dim C×N matrix G whose rows form a basis for C. The matrix G generates all
codewords of C in the sense that

C = {vG : v ∈ Fdim C
2 }.
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Another useful way to describe a linear code C ⊆ FN2 is via its parity-check matrix,
which is an (N − dim C)×N matrix H whose rows span the orthogonal complement
of C. The linear code C can then be expressed as

C = {c ∈ FN2 : Hcᵀ = 0}.

One property that will play an important role is transitivity, which we define below:

Definition 1. A set C ⊆ FN2 is transitive if for every i, j ∈ [N ] there exists a permuta-
tion π : [N ]→ [N ] such that

(i) π(i) = j

(ii) For every element v = (v1, ..., vN) ∈ C we have (vπ(1), ...vπ(N)) ∈ C

We note that the dual code of a transitive code is also transitive (see appendix A.1
for the proof).

Claim 9. The dual code C⊥ of a transitive code C ⊆ FN2 is transitive.

2.2 Reed-Muller Codes

We will denote by RM(n, d) the Reed-Muller code with n variables and degree d.
Throughout this section, we let M be the generator matrix of RM(n, d); this is an(
n
≤d

)
×N matrix whose rows correspond to sets of size at most d, ordered lexicographically,

and whose columns correspond to elements of Fn2 . For S ⊆ [n], |S| ≤ d and x ∈ Fn2 , the
corresponding entry is MS,x =

∏
j∈S xj. If S is empty, this entry is set to 1.

If v ∈ F( n
≤d)

2 is a row vector, v can be thought of as describing the coefficients of a
multilinear polynomial in F2[X1, . . . , Xn] of degree at most d. The row vector vM is
then the evaluations of this polynomial on all inputs from Fn2 . It is well known that M
has full rank,

(
n
≤d

)
. In fact we have the following standard fact (see appendix A.2 for

the proof):

Fact 10. The columns of M that correspond to the points x ∈ Fn2 with |x| ≤ d are
linearly independent.

The parity-check matrix of the Reed-Muller code is known to be the same as the
generator matrix of a different Reed-Muller code. Namely, let H be the

(
n

≤n−d−1

)
×N

generator matrix for the code RM(n, n− d− 1). Then H has full rank, and MHᵀ = 0.
So, the rows of H are a basis for the orthogonal complement of the span of the rows of
M . Reed-Muller codes also have useful algebraic features, notably transitivity:

Fact 11. For all n and all d ≤ n, the Reed-Muller code RM(n, d) is transitive.

See appendix A.2 for the proof.
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2.3 Entropy

The binary entropy function h : [0, 1]→ R is defined to be

h(ε) = ε · log
1

ε
+ (1− ε) · log

1

1− ε
.

The following fact allows us to approximate binomial coefficients using the entropy
function:

Fact 12. For n/2 ≥ d ≥ 1,
√

8π
e4n
· 2h(d/n)·n ≤

(
n
d

)
≤
(
n
≤d

)
≤ 2h(d/n)·n.

The leftmost inequality is a consequence of Stirling’s approximation for the binomial
coefficients, and the rightmost is a consequence of the sub-additivity of entropy.

The following lemma, which is essentially a 2-way version of Pinsker’s inequality,
gives a useful way to control the entropy function near 1/2.

Lemma 13. For any µ ∈ (0, 1), we have

µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2.

See appendix A.3 for the proof.

2.4 Probability Distributions

There are two types of probability distributions that we will use frequently. The first
one is the ε-Bernoulli distribution over FN2 , which we will denote by

Pε(z) = ε|z|(1− ε)N−|z|.

The second one is the uniformly random distribution over some set T , which we will
denote by

D(T )(z) =

{
1
|T | if z ∈ T ,

0 otherwise.
.

There are two particular cases for the uniform distribution that will occur often enough
that we attribute them their own notation. The first one is the uniform distribution
over Ft2, which we will denote by

µt = D(Ft2).

The second one is the uniform distribution over all vectors z ∈ FN2 of weight |z| ∈ S,
for some S ⊆ {0, ..., N}. We will denote this probability distribution by

λS = D({z ∈ FN2 : |z| ∈ S}).
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2.5 Fourier Analysis

The Fourier basis is a useful basis for the space of functions mapping FN2 to the real
numbers. For f, g ∈ FN2 → R, define the inner product

〈f, g〉 =
∑
x∈FN2

f(x)g(x).

For every x, y ∈ FN2 , define the (normalized) character

χy(x) =
(−1)〈x,y〉

2N/2
=

(−1)
∑N
j=1 xjyj

2N/2
.

These functions form an orthonormal basis, namely for y, y′ ∈ FN2 ,

〈χy, χy′〉 =

{
1 if y = y′,

0 otherwise.

We define the Fourier coefficients f̂(y) = 〈f, χy〉. Then for f, g : FN2 → R, we have

〈f, g〉 =
∑
y∈FN2

f̂(y) · ĝ(y).

In particular,

‖f‖22 = 〈f, f〉 =
∑
y

f̂(y)2.

3 Outline of the Paper

The main question we will be looking into is whether or not a family of list-decoding
codes {CN}, with CN ⊆ FN2 , is asymptotically resistant to independent errors of
probability ε. Formally, we are given a list size k = k(N) and want to know if there

exists a family of decoding functions {dN}, with dN : FN2 →
(
FN2
)⊗k

, such that for every
sequence of codewords {cN} we have

lim
N→∞

Pr
ρN∼Pε

[
cN /∈ dN(cN + ρN)

]
= 0.

We note that the unique decoding problem can be seen as setting k = 1 in the above
set-up. Our general approach will be based on trying to identify the error string ρ ∈ FN2
from its image Hρᵀ. In particular, we will be interested in the max-likelihood decoder

Dk(x) = argmax
{z1,...,zk}⊆FN2
Hzi

ᵀ=x for all i

{Pε(z1) + ...+ Pε(zk)}

= argmin
{z1,...,zk}⊆FN2
Hzᵀi =x for all i

{|z1|+ ...+ |zk|}. (2)
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We show in the following lemma that if the max-likelihood decoder is able to identify
the error string ρ, then it is possible to recover the original codeword.

Lemma 14. Let H be the t × N parity-check matrix of the linear code C, and let

D : Ft2 →
(
FN2
)⊗k

be an arbitrary function. Then there exists a decoding function

d : FN2 →
(
FN2
)⊗k

such that for every c ∈ C we have

Pr
ρ∼Pε

[c /∈ d(c+ ρ)] ≤ Pr
ρ∼Pε

[ρ /∈ D(Hρᵀ)].

Proof. Given D : Ft2 →
(
FN2
)⊗k

, define d : FN2 →
(
FN2
)⊗k

to be

d(z) = {z + y : y ∈ D(Hzᵀ)}.

We will show that whenever ρ satisfies ρ ∈ D(Hρᵀ), ρ also satisfies c ∈ d(c + ρ) for
every c ∈ C. Suppose ρ ∈ D(Hρᵀ). Note that since H is the parity-check matrix of
C, every c ∈ C satisfies Hcᵀ = 0. So for every c ∈ C, any ρ that satisfies ρ ∈ D(Hρᵀ)
must also satisfy ρ ∈ D(H(cᵀ + ρᵀ)). It then follows by definition of d(c+ ρ) that

c = c+ ρ+ ρ ∈ d(c+ ρ).

From this point onward, our goal will thus be to prove that the max-likelihood
decoder in (2) succeeds in recovering ρ with high probability. In section 4, we relate the
decoding error probability of the max-likelihood decoder Dk to the collision probability∑

x∈Ft2

Pr[Hzᵀ = x]2.

In section 5, we build on this result to obtain a bound on the performance of Dk in
terms of the weight distribution of the dual code. We then present new bounds on the
weight distribution of transitive codes in section 6. These bounds are interesting in
their own right, and we show that they are essentially tight. In section 7, we combine
these bounds with our results from section 5 to obtain list-decoding results for transitive
linear codes. We then repeat this argument with Samorodnitsky’s Theorem 7 in section
8 to obtain a stronger list-decoding bound for Reed-Muller codes. Our arguments make
use of some upper bounds on the Fourier coefficients of the level function, which we
derive in section 9.
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4 Collisions vs Decoding

Recall that we denote by Pε the ε-Bernoulli distribution over FN2 , i.e. the distribution

Pε(z) = ε|z|(1− ε)N−|z|.

Recall also that for any subset S ⊆ {0, ..., N}, we denote by λS the uniform distribution
over all strings z ∈ FN2 of weight |z| ∈ S, i.e.

λS(z) =

{
1∑

j∈S (Nj )
if |z| ∈ S,

0 otherwise.

The goal of this section will be to analyze the relationship between the decoding of
an error string ρ ∈ FN2 and the collision probability of strings z ∈ FN2 within the map
z 7→ Hzᵀ. Intuitively, the more collisions there are within this mapping, the harder it is
for our decoder to correctly identify the error string ρ ∈ FN2 upon seeing only its image
Hρᵀ ∈ Ft2. However, certain error strings might be unlikely enough to occur that our
decoder can safely ignore them. For example, if we are interested in an ε-noisy error
string ρ, then ρ is unlikely to have weight |ρ| far away from εN . We could thus choose
to ignore all strings whose weights do not lie in the set S = {εN ± l}, for some integer
l. In order to analyze the collisions that occur when strings are required to have weight
z ∈ S, we define for every z ∈ FN2 and every S ⊆ {0, ..., N} the set of S-colliders of z,
i.e. the set of strings y that collide with z and have weight |y| ∈ S:

Definition 2. For any z ∈ FN2 and any subset S ⊆ {0, ..., N}, define

ΩS
z =

{
y ∈ FN2 : |y| ∈ S and Hyᵀ = Hzᵀ

}
.

This definition captures a natural parameter for how large of a list we need before we
can confidently claim that it contains the error string: if we are given Hρᵀ and are told
that with high probability the error string ρ has weight |ρ| ∈ S, then we should output
the list ΩS

ρ . For unique decoding we want to argue that |ΩS
ρ | = 1 with high probability,

whereas for list decoding we want to argue that |ΩS
ρ | ≤ k with high probability, for

some integer k > 1. The quantity we will use to analyze the probability of |ΩS
ρ | being

large is the ”collision count” CollH(S):

Definition 3. For any subset S ⊆ {0, .., N} and any N × t matrix H, define

CollH(S) =

(
N

S

)∑
x∈Ft2

Pr
z∼λS

[Hzᵀ = x]2,

where we recall the definition
(
N
S

)
=
∑

j∈S
(
N
j

)
.

12



The collision count of S can be seen as a measure of injectivity for the map z 7→ Hzᵀ

over the domain {z ∈ FN2 : |z| ∈ S}. When this map is injective, we have CollH(S) = 1.
When the map is not injective, we have CollH(S) > 1, and CollH(S) increases as the
number of collisions increase (i.e. it is larger when the map z 7→ Hzᵀ is ”further away”
from being injective). For a uniformly random error string ρ of weight |ρ| ∈ S, we get
the following relationship between the collision count CollH(S) and the list size |ΩS

ρ |:

Lemma 15. For any subset S ⊆ {0, ..., N}, any matrix H with N columns, and any
integer k > 1, we have

Pr
ρ∼λS

[|ΩS
ρ | > k] ≤

√
CollH(S)

k
.

Proof. Fix any N × t matrix H, and for any x ∈ Ft2 define

Ax = |{z ∈ FN2 : |z| ∈ S,Hzᵀ = x}|.

Note that this definition is closely linked to our definition of S-colliders, since AHzᵀ =
|ΩS

z | for every z ∈ FN2 . We can thus rewrite our quantity of interest as

Pr
ρ∼λS

[
|ΩS

ρ | > k
]

= Pr
ρ∼λS

[
AHρᵀ > k

]
=

∑
x∈Ft2:Ax>k

Pr
ρ∼λS

[Hρᵀ = x]

=
∑

x∈Ft2:Ax>k

Ax(
N
S

) .
By Cauchy-Schwartz’s inequality, we get

Pr
ρ∼λS

[
|ΩS

ρ | > k
]

=

(
N

S

)−1 ∑
x∈Ft2:Ax>k

Ax

≤

√√√√ ∑
x∈Ft2:Ax>k

(
N

S

)−2
A2
x ·
√ ∑

x∈Ft2:Ax>k

1.

For the first term of the product, we note that by definition Prρ[Hρ
ᵀ = x] =

(
N
S

)−1
Ax.

For the second term, we note that there can be at most
(NS)
k

vectors x ∈ Ft2 with Ax > k.

13



We can then bound the right-hand side of the previous expression by

Pr
ρ∼λS

[Xρ > k] ≤
√ ∑

x∈Ft2:Ax>k

Pr
ρ∼λS

[Hρᵀ = x]2 ·

√(
N
S

)
k

≤

√√√√(NS)
k

∑
x∈Ft2

Pr
ρ∼λS

[Hρᵀ = x]2

=

√
CollH(S)

k
.

In order to obtain a list decoding result from Lemma 15, we will simply consider
all weight levels near εN ; this is done in Theorem 16. We recall that upon receiving a

corrupted message x ∈ FN2 , the decoder Dk : FN2 →
(
FN2
)⊗k

is the function that outputs
the k closest codewords to x (see definition 2).

Theorem 16. Fix ε < 1
2

and l ≤ (1
2
− ε)N , and let H be a matrix with N columns.

For any k > 1, we have

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

l2

3εN + max
w∈{εN±l}

{√
(2l + 1) · CollH({w})

k

}
.

Proof. We will show that a slightly less performant decoding function Dk,l : Ft2 → FN2
satisfies the desired probability bound. We define Dk,l as follows: upon receiving
input x ∈ Ft2, Dk,l outputs k

2l+1
strings from {z ∈ FN2 : Hz = x, |z| = w}, for each

w ∈ {εN ± l}. If there are fewer than k
2l+1

strings in some level w, the decoder returns
all of them. It is clear that for any l we have

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ Pr

ρ∼Pε
[ρ /∈ Dk,l(Hρ

ᵀ)],

since Dk returns the k most likely strings while Dk,l returns at most k strings. We thus
turn to proving the desired bound for Dk,l. We first bound the probability that the
error string |ρ| be far away from its mean. Letting

B =
{
z ∈ FN2 :

∣∣|z| − εN ∣∣ > l
}
,

we have, by Chernoff’s bound, that

Pr
ρ∼Pε

[ρ /∈ Dk,l(Hρ
ᵀ)] ≤ Pr

ρ∼Pε
[ρ ∈ B] + Pr

ρ∼Pε
[ρ /∈ Dk,l(Hρ

ᵀ)
∣∣ρ /∈ B]

≤ e−
l2

3εN + max
w∈{εN±l}

Pr
ρ∼Pε

[ρ /∈ Dk,l(Hρ
ᵀ)
∣∣|ρ| = w].

14



Since the distribution Pε gives the same probability to any two strings of equal weights,
we get

Pr
ρ∼Pε

[ρ /∈ Dk,l(Hρ
ᵀ)] ≤ e−

l2

3εN + max
w∈{εN±l}

Pr
ρ∼λ{w}

[ρ /∈ Dk,l(Hρ
ᵀ)]

≤ e−
l2

3εN + max
w∈{εN±l}

Pr
ρ∼λ{w}

[|Ω{w}ρ | >
k

2l + 1
].

The theorem statement then follows from Lemma 15.

5 Weight Bounds and Decoding

In this section, we show that strong enough bounds on the weight distribution of a dual
code C⊥ imply that the original linear code C is resistant to bitwise-independent errors.
Our goal will be to relate the collision count CollH(S) of C’s parity-check matrix H to
the weight distribution of C⊥, for any subset S ⊆ {0, ..., N}. Once we have a bound on
CollH(S), we can then use Theorem 16 to bound the decoding error probability of the
max-likelihood decoder.

The function we will need to make the link between CollH(S) and the weight
distribution of C⊥ is the level function of S, which as we recall is defined as

LS(z) =

{
1 if |z| ∈ S,

0 otherwise
.

In the following theorem, we use basic Fourier analysis tools to rewrite the collision count
CollH(S) in terms of the Fourier coefficients {L̂S(1j)} and of the weight distribution of
C⊥. Recall that we use µt to denote the uniform distribution over all vectors in Ft2.

Theorem 17. Fix ε ∈ (0, 1
2
), and let H be a N × t matrix with entries in F2. Then for

any S ⊆ {1, ..., N}, we have

CollH(S) =
2N(
N
S

) · N∑
j=0

Pr
v∼µt

[|vH| = j] · L̂S(1j)
2.

Proof. The main tool we will use is Parseval’s Identity, which relates the evaluations
f(x) of a function f : Ft2 → R to its Fourier coefficients f̂(y) by∑

x∈Ft2

f(x)2 =
∑
y∈Ft2

f̂(y)2.

15



Letting f(x) = Prz∼λS [Hzᵀ = x], we get

CollH(S) =

(
N

S

)∑
x∈Ft2

Pr
z∼λS

[Hzᵀ = x]2

=

(
N

S

)∑
x∈Ft2

f(x)2

=

(
N

S

)∑
y∈Ft2

f̂(y)2.

But by definition we have f̂(y) := 2−t/2
∑

x∈Ft2
f(x) · (−1)y·x

ᵀ
, so the last equation can

be rewritten as

CollH(S) =

(
N

S

)
· 2−t

∑
y∈Ft2

(∑
x∈Ft2

f(x) · (−1)y·x
ᵀ
)2
. (3)

Now recall that by definition, a string z ∈ FN2 satisfies |z| ∈ S if and only if LS(z) = 1.
We can thus express f(x) as

f(x) = Pr
z∼λS

[Hzᵀ = x] =
1(
N
S

) ∑
z∈FN2
Hzᵀ=x

LS(z). (4)

Combining expressions (3) and (4) and applying the definition of the Fourier transform,
we get

CollH(S) =

(
N

S

)
· 2−t

∑
y∈Ft2

( ∑
z∈FN2

LS(z)(
N
S

) · (−1)yHz
ᵀ
)2

=
2N−t(
N
S

) ∑
y∈Ft2

L̂S(yH)2.

Now since LS(z) only depends on |z|, by definition of the Fourier transform we must have
that L̂S(u) is also a function of |u| only. We can then rewrite the previous expression as

CollH(S) =
2N−t(
N
S

) N∑
j=0

2t · Pr
v∼µt

[|vH| = j] · L̂S(1j)
2

=
2N(
N
S

) · N∑
j=0

Pr
v∼µt

[|vH| = j] · L̂S(1j)
2.
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The following corollary will be very useful, as it gives an implicit bound on the
Fourier coefficients L̂S(1j) of the level function:

Corollary 18. For any N and any S ⊆ {1, ..., N}, we have

1(
N
S

) N∑
j=0

(
N

j

)
· L̂S(1j)

2 = 1.

Proof. Letting the matrix H in Theorem 17 be the N ×N identity matrix I, we get(
N

S

)−1
=
∑
x∈FN2

Pr
z∼λS

[Iz = x]2

=
1(
N
S

)CollI(S)

=
2N(
N
S

)2 · N∑
j=0

Pr[|vᵀI| = j] · L̂S(1j)
2

=
1(
N
S

)2 N∑
j=0

(
N

j

)
· L̂S(1j)

2.

Given any weight distribution for a dual code C⊥, we will now combine Theorems
16 and 17 to obtain an upper bound on the list size needed to decode codewords from
C. For this we will need the bounds of Theorem 6 on the Fourier coefficients of the
level function (see section 9 for the proof of Theorem 6).

Theorem 19. Fix any ε ∈ (0, 1
2
), define ε̃ = ε+N−

1
4 and let B = {βN, ..., (1− β)N}

for β = 1
2

(
1− 2

√
ε̃(1− ε̃)

)
. Then for all N >

(
5
ε

)20
and any integer k > 1, we have

that any N × t matrix H with entries in F2 satisfies

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +

√
3N3/4

k
·max
j∈B

{√
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+

√
3

k
· 24N4/5 ·

√
N7/4(
N
ε̃N

) (e2
ε̃

)ε̃N
max
j /∈B

{√
Pr
v∼µt

[|vH| = j]
(1

2
− j

N

)2ε̃N}
.

Proof. Our general approach will be to use Theorem 16 to bound the decoding error
probability in terms of the collision count CollH(S), and then use Theorem 17 to
express CollH(S) in terms of the Fourier coefficients L̂S(1j) and the probability factors
Prv∼µt

[
|vH| = j

]
. Some of these factors will then be bounded by applying Corollary

17



18, and some will be bounded by applying Theorem 6. We proceed with the proof;
letting l = N3/4 in Theorem 16 and applying Theorem 17, we get

Pr
ρ∼Pε

[Dk(Hρ
ᵀ) 6= ρ]

≤ e−
√
N

3ε + max
w∈{εN±N3/4}

{√
(2N3/4 + 1) · CollH({w})

k

}

≤ e−
√
N

3ε +

√
3N3/4

k
·

√√√√ max
w∈{εN±N3/4}

{
2N(
N
w

) · N∑
j=0

Pr
v∼µt

[|vH| = j] · L̂{w}(1j)2
}
. (5)

We will start by bounding the central terms j ∈ B in the summation above. Applying
Corollary 18, we get that for any w ∈ {εN ±N3/4}} the Fourier coefficients L̂{w}(1j)
satisfy

2N(
N
w

)∑
j∈B

Pr
v∼µt

[
|vH| = j

]
L̂{w}(1j)

2 ≤ 2N(
N
w

) max
j∈B

{
Pr
v∼µt

[|vH| = j] · 1(
N
j

)}∑
j∈B

(
N

j

)
· L̂{w}(1j)2

≤ 2N ·max
j∈B

{
Pr
v∼µt

[|vH| = j] · 1(
N
j

)} . (6)

It remains to bound the contribution of the faraway terms j /∈ B to the summation in
equation (5). For this, we use our bound on the Fourier coefficients proven in Theorem
6 to get

max
w∈{εN±N

3
4 }

 2N(
N
w

)∑
j /∈B

Pr
v∼µt

[
|vH| = j

]
L̂{w}(1j)

2


≤ N( N

εN−N
3
4

) max
w∈{εN±N

3
4 }

j /∈B

{
Pr
v∼µt

[|vH| = j]
((1

2
− j

N
)e2

w
N

)2w}
. (7)

Now note that by definition, if j /∈ B then |1
2
− j

N
| ≥

√
ε(1− ε) > ε ≥ ε−N− 1

4 . Thus

the quotient in (7) can be bounded by
∣∣∣ 1

2
− j
N

ε−N−
1
4

∣∣∣ · e2 > e2 > 1, which then implies that(
( 1
2
− j
N
)e2

ε−N−
1
4

)2w
is maximized at the largest possible w. We thus get

(7) ≤ N( N

εN−N
3
4

) max
j /∈B

{
Pr
v∼µt

[|vH| = j]
((1

2
− j

N
)e2

ε−N− 1
4

)2(εN+N
3
4 )
}
.

Combining this bound for the faraway terms with our bound (6) for the central terms
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of the summation, we bound the right-hand side of equation (5) by

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)]

≤ e−
√
N

3ε +

√
3N3/4

k
·max
j∈B

{√
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+

√
3N3/4

k
·

√√√√ N( N

εN−N
3
4

) max
j /∈B

{
Pr
v∼µt

[|vH| = j]
((1

2
− j

N
)e2

ε−N− 1
4

)2ε̃N}
, (8)

where we have defined ε̃ = ε+N−
1
4 . Now we note that(

N

εN −N3/4

)−1
=

(
N

εN +N3/4

)−1
· (N − εN +N3/4) · ... · (N − εN −N3/4 + 1)

(εN +N3/4) · ... · (εN −N3/4 + 1)

≤
(

2

ε

)2N3/4 (
N

ε̃N

)−1
,

and that (
ε−N−

1
4

)−2ε̃N
=

(
1

ε̃

)2ε̃N
(
ε+N−

1
4

ε−N− 1
4

)2ε̃N

≤

(
1 +

4N−
1
4

ε

)2ε̃N (
1

ε̃

)2ε̃N

≤ 2
8

ln 2
(1+N

− 1
4

ε
)N3/4

(
1

ε̃

)2ε̃N

.

For N >
(
5
ε

)20
, equation (8) can then be bounded by

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +

√
3N3/4

k
·max
j∈B

{√
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+

√
3

k
· 24N4/5 ·

√
N7/4(
N
ε̃N

) (e2
ε̃

)ε̃N
max
j /∈B

{√
Pr
v∼µt

[|vH| = j]
(1

2
− j

N

)2ε̃N}
.

6 The Weight Distribution of Transitive Linear Codes

We will now prove Theorem 1. We note that the bound we get is essentially tight, since
for any η ∈ (0, 1) the repetition code

C =
{

(z, ..., z) ∈ FN2 : z ∈ FηN2
}
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is transitive, has dimension ηN , and has weight distribution

Pr
c∼D(C)

[
|c| = αN

]
= 2−ηN

(
ηN

αηN

)
≥
√

8π

e4ηN
· 2−(1−h(α))dim C

for all α ∈ (0, 1). We recall and prove our Theorem 1 below:

Theorem. Let C ⊆ FN2 be a transitive linear code. Then for any α ∈ (0, 1) we have

Pr
c∼D(C)

[
|c| = αN

]
≤ 2−(1−h(α))dim C .

Proof. Let M be the t × N generator matrix of C, and let r = rank M = dim C.
Without loss of generality, suppose that the first r columns of M span the column-space
of M . Define

C(α) = {c ∈ C : |c| = αN},
and let Z = (Z1, ..., ZN ) be a uniformly random codeword in C(α). Now C is transitive,
so for every j, k ∈ [N ] the random variables Zj and Zk are identically distributed. By
linearity of expectation and by definition of C(α), we thus have that for every j ∈ [N ]

Pr
Z∼D(C(α))

[Zj = 1] = α,

or equivalently that the entropy of Zj is

H
Z∼D(C(α))

(Zj) = h(α). (9)

We will now show that H(Zj|Z1, ..., Zj−1) = 0 for every j > r. To this end, fix some
j > r. Recall that the columns {M1, ...,Mr} span the column-space of M , so we
can write the column Mj as Mj =

∑r
k=1 βkMk for some β1, ..., βr ∈ {0, 1}. But any

codeword c ∈ C can be expressed as v(c)M for some v(c) ∈ Ft2, so any codeword c ∈ C
satisfies

cj = v(c)Mj =
r∑

k=1

βkv
(c)Mk =

r∑
k=1

βkck.

The random variable Zj is thus determined by {Z1, ..., Zr}, and so we indeed have

H
Z∼D(C(α))

(Zj|Z1, ..., Zj−1) = 0

for every j > r. Applying (9) and the chain rule for entropy then gives

H(Z) = H(Z1) +
N∑
i=2

H(Zi|Z1, ..., Zi−1)

≤
r∑
i=1

H(Zi)

= r · h(α).
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Now Z is sampled uniformly from C(α), so H(Z) = log
(
|C(α)|

)
. We thus have

Pr
c∼D(C)

[
|c| = αN

]
=

∣∣C(α)
∣∣

2r

= 2H(Z)−r

≤ 2−(1−h(α))·r.

For Reed-Muller codes, we will abuse notation and denote by D(n, d) the uniform
distribution over all codewords in RM(n, d).

Corollary 20. For any n, d < n, and α ∈ (0, 1), the Reed-Muller code RM(n, d) satisfies

Pr
c∼D(n,d)

[
|c| = αN

]
≤ 2−(1−h(α))·(

n
≤d).

Proof. This follows immediately from Theorem 1, Fact 11, and Fact 10.

7 List Decoding for Transitive Codes

We now turn to proving Theorem 2. Recall that in section 5 we bounded the minimum
size for the decoding list of a linear code in terms of the weight distribution of its dual
code. But as we mentioned in the preliminaries, the dual code of a transitive code is
also transitive. For any transitive linear code C, we can thus apply our Theorem 1 for
the weight distribution of C⊥ to get an exponential bound on the size of the decoding
list for C. We restate and prove Theorem 2 below:

Theorem. Fix some ε ∈ (0, 1
2
), η ∈ (0, 1), and N >

(
5
ε

)20
. Then for any transitive

linear code C ⊆ FN2 of dimension dim C = ηN , there exists a function T mapping every
x ∈ FN2 to a subset T (x) ⊆ C of size

|T (x)| = N7 · 2(εN+N3/4) log e4

1−η ,

with the property that for every codeword c ∈ C we have

Pr
ρ∼Pε

[
c /∈ T (c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
.

Proof. Let H denote the parity-check matrix of C. By Lemma 14, it is sufficient to

show that for any N >
(
5
ε

)20
and any k > 1 we have

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +N3 ·

√
2(εN+N3/4) log e4

1−η

k
. (10)
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We will thus prove (10). Recall that Theorem 19 yields the following bound on the
left-hand side of (10):

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)]

≤ e−
√
N

3ε +

√
3N3/4

k
·max
j∈B

{√
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+

√
3

k
· 24N4/5 ·

√
N7/4(
N
ε̃N

) (e2
ε̃

)ε̃N
max
j /∈B

{√
Pr
v∼µt

[|vH| = j]
(1

2
− j

N

)2ε̃N}
, (11)

where ε̃ = ε+N3/4 and B = {βN, ..., (1− β)N} for β = 1
2
−
√
ε̃(1− ε̃). Our goal will

be to bound both the central terms j ∈ B and the faraway terms j /∈ B by using our
bounds on the weight distribution of transitive codes. As we’ve seen in section 2, the
dual code C⊥ is a transitive linear code of dimension N − dim C. We thus have by
Theorem 1 that for all j ∈ {0, ..., N},

Pr
v∼µt

[
|vH| = j

]
≤ 2−(1−h(

j
N
))(1−η)N . (12)

We recall also that for any j ∈ N and α such that
∣∣1
2
− j

N

∣∣ =
√
αε̃(1− ε̃), we have by

Lemma 13 that

2αε̃(1− ε̃)
ln 2

< 1− h(j/N) < 4αε̃(1− ε̃). (13)

We will use equations (12) and (13) to bound every term in (11). We start with the
central terms. Fixing any j ∈ B, we have by Fact 12 and equation (12) that

Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

) ≤ 2−(1−h(j/N))(1−η)N · 2N√
8π
e4N
· 2h(j/N)N

=

√
e4N

8π
· 2(1−h(j/N))ηN .

But for j ∈ B we have β < j
N
< 1− β, so the right-hand side is maximized at j = βN .

Combining this with (13), we get that

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤√e4N

8π
· 2(1−h(β))ηN

≤
√
e4N

8π
· 24ε̃(1−ε̃)ηN . (14)
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We now turn to the faraway terms. Fix j /∈ B and define α > 1 such that
∣∣1
2
− j

N

∣∣ =√
αε̃(1− ε̃). By equations (12) and (13), we then have

Pr
v∼µt

[
|vH| = j

]
·
(1

2
− j

N

)2ε̃N ≤ 2−(1−h(j/N))(1−η)N ·
(
αε̃(1− ε̃)

)ε̃N
≤ 2−

2α
ln 2

ε̃(1−ε̃)(1−η)N · 2ε̃N logα ·
(
ε̃(1− ε̃)

)ε̃N
= 2ε̃N

(
logα− 2ε̃(1−ε̃)(1−η)N

ε̃N ln 2
·α
)
·
(
ε̃(1− ε̃)

)ε̃N
.

For any positive constant c, the derivative of log(α)− cα is 1
α·ln 2

− c, and the second
derivative is always negative. Thus, the above expression achieves its maximum when
α = ε̃N

2ε̃(1−ε̃)(1−η)N . We then get

max
j /∈B

{
Pr
v∼µt

[
|vH| = j

]
·
(1

2
− j

N

)2ε̃N} ≤ 2ε̃N
(
log ε̃N

2ε̃(1−ε̃)(1−η)N−
1

ln 2

)
·
(
ε̃(1− ε̃)

)ε̃N
=

(
ε̃N

2ε̃(1− ε̃)(1− η)N

)ε̃N (
1

e

)ε̃N (
ε̃(1− ε̃)

)ε̃N
=

(
ε̃

2e(1− η)

)ε̃N
. (15)

We now use equations (14) and (15) to bound the central and faraway terms of (11)
respectively. This gives

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +

√
3N3/4

k
·
(e4N

8π

)1/2
· 24ε̃(1−ε̃)ηN

+

√
1

k
·

√
3N7/4 · 28N4/5(

N
ε̃N

) ·
(e2
ε̃

)2ε̃N ( ε̃

2e(1− η)

)ε̃N
.

Using Fact 12 to bound
(
N
ε̃N

)
≥
√

8π
e4N
· 2h(ε̃)N ≥

√
8π
e4N
·
(
1
ε̃

)ε̃N
, we get

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +N2

√24ε̃ηN

k
+

√
2ε̃N log e3

2(1−η)+8N4/5

k

 .

Now for N >
(
5
ε̃

)20
we have 8N4/5 < 0.1 · ε̃N log e3

2
. Using this and the fact that√

a+
√
b ≤ 2

√
a+ b for any a, b, we get

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε + 2N2 ·

√
20.9ε̃N log e

3

2
+ε̃N log 1

1−η + 24ε̃ηN

k

≤ e−
√
N

3ε +N3 ·

√
2ε̃N log e4

1−η

k
.

We have shown (10), and so we are done.
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8 List Decoding for Reed-Muller Codes

We will now turn to proving our Theorem 3. The dual code of the Reed-Muller code
RM(n, d) is the code RM(n, n− d− 1), so we can apply Samorodnitsky’s Theorem 7 to
our list-decoding Theorem 19. We note without proof that for η < 1− 2

√
ε(1− ε) this

would yield a 2o(N) bound on the list size, as long as one uses the exact form for the
Fourier coefficients of the level function. This result is however strictly weaker than
that of [HSS21], who proved that Reed-Muller codes of rate η < 1− log(1 + 2

√
ε(1− ε))

can uniquely decode error messages of rate ε. For η > 1− log(1 + 2
√
ε(1− ε)) however,

we get the following new exponential bounds on the list size of Reed-Muller codes:

Theorem. Fix some ε ∈ (0, 1
2
), η ∈ (0, 1) and N >

(
5
ε

)20
, and consider the Reed-Muller

code RM(n, d) with
(
n
≤d

)
= η2n = ηN. There exists a function T mapping every x ∈ FN2

to a subset T (x) ⊆ RM(n, d) of size

|T (x)| = N7 · 28N7/8 log 1
1−η ·

(
24εN + 2

(ε log ε
(1−η)2

+4ε+(1−η)2)N
)
,

with the property that for every codeword c ∈ RM(n, d) we have

Pr
ρ∼Pε

[
c /∈ T (c+ ρ)

]
≤ e−

√
N

3ε +
1√
N
.

Proof. Let H denote the parity-check matrix of RM(n, d). By Lemma 14, it is sufficient

to show that for any N >
(
5
ε

)20
and any k > 1 we have

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +N3

√
28N7/8 log 1

1−η · 24εN + 2
(ε log ε

(1−η)2
+4ε+(1−η)2)N

k
. (16)

We will thus prove (16). We define ε̃ = ε+N−
1
4 , and we recall that Theorem 19 yields

the following bound on the left-hand side of (16):

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)]

≤ e−
√
N

3ε +

√
3N3/4

k
·max
j∈B

{√
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)}

+

√
3

k
· 24N4/5 ·

√
N7/4(
N
ε̃N

) (e2
ε̃

)ε̃N
max
j /∈B

{√
Pr
v∼µt

[|vH| = j]
(1

2
− j

N

)2ε̃N}
, (17)

where B = {βN, ..., (1− β)N} for β = 1
2
−
√
ε̃(1− ε̃). Our goal is to bound every term

in these sums by using the weight distribution bounds given in Theorems 1 and 7. We
bound the central terms in exactly the same way as in Theorem 2: by Corollary 20 we
know that the weight distribution of the Reed-Muller code satisfies

Pr
v∼µt

[
|vH| = j

]
≤ 2−(1−h(

j
N
))(1−η)N ,
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so by Fact 12 we have

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤ max
j∈B

2−(1−h(j/N))γN · 2N√
8π
e4N
· 2h(j/N)N


= max

j∈B

{√
e4N

8π
· 2(1−h(j/N))ηN

}
.

But B = {βN, ..., (1− β)N}, so by Lemma 13 we have

max
j∈B

{
Pr
v∼µt

[
|vH| = j

]
· 2N(

N
j

)} ≤√e4N

8π
· 2(1−h(β))ηN

≤
√
e4N

8π
· 24ε̃(1−ε̃)ηN . (18)

For the faraway terms, we use the weight bound from Theorem 7. By symmetry, we
have that

max
j /∈B

{
Pr
v∼µt

[|vH| = j] ·
(1

2
− j

N

)2ε̃N}
≤ 2o(N) ·max

j≤N
2

{
2−(1−η)N

(
1

η

)2j ln 2 (1

2
− j

N

)2ε̃N}
= 2o(N)2−(1−η)N max

j≤N
2

{
2−2j ln 2·log(η)+2ε̃N log( 1

2
− j
N
)
}
.

(19)

Now the function

g(j) = −2j ln 2 · log(η) + 2ε̃N log(
1

2
− j

N
)

has first derivative
dg

dj
= −2 ln 2 · log(η)− 2ε̃

ln 2 · (1
2
− j

N
)
,

and second derivative
dg2

d2j
= − 2ε̃

ln 2 ·N(1
2
− j

N
)2
< 0.

Thus g(j) achieves its maximum at j = N
2

+ ε̃N
(ln 2)2 log(η)

, and we can bound the right

side of equation (19) by

max
j /∈B

{
Pr
v∼µt

[|vH| = j] ·
(1

2
− j

N

)2ε̃N}
≤ 2o(N)2

(
−(1−η)−ln 2·log(η)− 2ε̃

ln 2
+2ε̃ log(− ε̃

(ln 2)2 log(η)
)
)
N
.

Letting γ = 1− η and using the fact that log(1− x) ∈ [−x+x2

ln 2
,− x

ln 2
] for all x ∈ [0, 1

2
],

we get

max
j /∈B

{
Pr
v∼µt

[|vH| = j] ·
(1

2
− j

N

)2ε̃N}
≤ 2−γN · 2

γ+γ2

ln 2
·N ln 2 · 2−

2ε̃N
ln 2 · 22ε̃N log( ε̃

γ ln 2)

≤ 2

(
γ2− 2ε̃

ln 2
+2ε̃ log ε̃+2ε̃ log 1

ln 2
+2ε̃ log 1

γ

)
N . (20)
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Using inequalities (18) and (20) and Lemma 13, we bound the right-hand side of (17)
by

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +

√
3N3/4

k
·
(
e4N

8π

)1/2

· 24ε̃(1−ε̃)ηN

+

√
3

k
· 24N4/5 ·

√
N7/4(
N
ε̃N

) (e2
ε̃

)2ε̃N
2

(
(1−η)2− 2ε̃

ln 2
+2ε̃ log ε̃+2ε̃ log 1

ln 2
+2ε̃ log 1

1−η

)
N .

Now by Fact 12 we know that
(
N
ε̃N

)
≥
√

8π
e4N
· 2h(ε̃)N , so we get

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)]

≤ e−
√
N

3ε +

√
3N3/4

k
·
(
e4N

8π

)1/2

· 24ε̃(1−ε̃)ηN

+

√
3

k
· 24N4/5 ·

√
N7/4 ·

(
e4N

8π

)1/2

· 2−h(ε̃)N · 2 2ε̃
ln 2 · 2

(
(1−η)2+2ε̃ log 1

ln 2
+2ε̃ log 1

1−η

)
N

≤ e−
√
N

3ε +N2

√24ε̃(1−ε̃)ηN

k
+

√
2(−h(ε̃)+2ε̃ log 1

1−η+4ε̃+(1−η)2)N

k


But ε̃ ≤ (1 +N−

1
8 )ε for all N >

(
5
ε

)20
and
√
a+
√
b ≤ 2

√
a+ b for all a, b > 0, so we

get

Pr
ρ∼Pε

[ρ /∈ Dk(Hρ
ᵀ)] ≤ e−

√
N

3ε +N3

√
28N7/8 log 1

1−η · 24εN + 2
(ε log ε

(1−η)2
+4ε+(1−η)2)N

k
.

We have shown (16), and so we are done.

9 Fourier Coefficients of the Level Function

In this section, we compute bounds on the Fourier coefficients of the level function. For
x ∈ FN2 and S ⊆ {0, ...N}, we recall the definition of the level function LS(x),

LS(x) =

{
1 |x| ∈ S,

0 otherwise.

By definition, for any y ∈ FN2 the Fourier coefficient L̂S(y) is then

L̂S(y) = 2−N/2
∑
x∈FN2

LS(x)(−1)〈x,y〉

=

(
N
S

)
2N/2

E
x∼λS

(−1)〈x,y〉, (21)
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where we recall the definition
(
N
S

)
=
∑

j∈S
(
N
j

)
. We observe from (21) that the Fourier

coefficients of the level function are symmetric in multiple ways. First, |L̂S(y)| =
|L̂S(y′)| for any S ⊆ {0, ..., N} and any y, y′ ∈ FN2 such that |y| = |y′|. Second,
since 〈a, b〉 + 〈a, b + 1〉 = |a| for any a, b ∈ FN2 , we have |L̂{j}(y)| = |L̂{j}(y + 1)| and

|L̂{j}(y)| = |L̂{N−j}(y)| for any y ∈ FN2 and any j ∈ {0, ..., N}. When computing bounds

on the Fourier coefficients L̂{j}(y), it will thus suffice to restrict our attention to the
case where j ≤ N

2
and y is of the form y = 1w for some w ≤ N

2
(we recall that 1w ∈ FN2

is the vector with ones in the first w indices and zeroes in the last N −w indices). Our
first bound on the Fourier coefficients of the level function is an immediate consequence
of Corollary 18:

Theorem 21. For any S ⊆ {0, ..., N} and w ∈ {0, ..., N}, we have

|L̂S(1w)| ≤

√(
N
S

)(
N
w

) .
Proof. Recall from Corollary 18 that we have

1(
N
S

) N∑
j=0

(
N

j

)
· L̂S(1j)

2 = 1.

In particular, for every w ∈ {0, ..., N} we must have

L̂S(1w)2 ≤
(
N
S

)(
N
w

) .

For our purposes, we will be most interested in the case |S| = 1, i.e. we will
want to estimate Fourier coefficients of the form L̂{εN}(1δN), with ε, δ ∈ (0, 1). In

the rest of this section, we show that the bounds given on L̂{εN}(1δN) by Theorem 21

can be significantly improved whenever |1
2
− δ| ≥

√
ε(1− ε). The main tool we will

need is a simple case of the residue theorem, which states that for any Laurent series
f(z) =

∑∞
j=−∞ ajz

j and any integer m, we have

am =
1

2πi
·
∮
γ

f(z)

zm+1
dz, (22)

where γ is any closed curve around the origin of the complex plane. To evaluate the
explicit integral we obtain in the complex plane, we will use the so-called saddlepoint
method (see for e.g. [FS09], chapter 8 for some exposition). We note that the only
bounds needed in our paper concern the case |1

2
− δ| ≥

√
ε(1− ε), but that for

completeness we prove bounds for all regimes. We now state and prove the following
strengthened version of Theorem 6:
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Theorem. For any ε, δ ∈ (0, 1
2
), we have

|L̂{εN}(1δN)| ≤ 2−N/2 ·
∣∣∣(1− s)δ(1 + s)(1−δ)

sε

∣∣∣N ,
where

s =


(1−2δ)−

√
(1−2δ)2−4ε(1−ε)
2(1−ε) if δ < 1

2
−
√
ε(1− ε),

(1−2δ)+i
√

4ε(1−ε)−(1−2δ)2
2(1−ε) otherwise.

Moreover, we have

|L̂{εN}(1δN)| ≤

2−N/2 ·
(

(1/2−δ)·e2
ε

)εN
if δ < 1

2
−
√
ε(1− ε),

2(h(ε)−h(δ))N/2 otherwise.

Proof. By definition of the Fourier transform, we have

L̂{εN}(1δN) = 2−N/2
∑
x∈FN2
|x|=εN

δN∏
j=1

(−1)xj

= 2−N/2 · coefficient of zεN in (1− z)δN(1 + z)(1−δ)N .

Applying the residue theorem (22), we then get that

L̂{εN}(1δN) =
2−N/2

2πi
·
∮
γ

(1− z)δN(1 + z)(1−δ)N

zεN+1
dz (23)

for any curve γ around the origin of the complex plane. We now define the polar
coordinates r, t to be such that s = reit, where s is the complex number defined in the
theorem statement. Letting the contour γ in equation (23) be the circle of radius r
around the origin (i.e. γ(θ) = reiθ), we get

L̂{εN}(1δN) =
2−N/2

2π
·
∫ π

−π

(1− reiθ)δN(1 + reiθ)(1−δ)N

(reiθ)εN
dθ. (24)

Our approach will be to bound the integrand in (24) by its maximal value over the
interval θ ∈ [−π, π]. For this, we define the magnitude

τ(θ) =
∣∣(1− reiθ)δN(1 + reiθ)(1−δ)N

∣∣2
= (1− r cos θ − ir sin θ)δN(1− r cos θ + ir sin θ)δN

· (1 + r cos θ + ir sin θ)(1−δ)N(1 + r cos θ − ir sin θ)(1−δ)N

= (1− 2r cos θ + r2)δN(1 + 2r cos θ + r2)(1−δ)N .
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The derivative of τ(θ) is then

τ ′(θ) = 2rδN sin θ · (1− 2r cos θ + r2)δN−1(1 + 2r cos θ + r2)(1−δ)N

− 2r(1− δ)N sin θ · (1− 2r cos θ + r2)δN(1 + 2r cos θ + r2)(1−δ)N−1

= 2Nr sin θ · (1− 2r cos θ + r2)δN−1(1 + 2r cos θ + r2)(1−δ)N−1

·
(
2r cos θ − (1− 2δ)(1 + r2)

)
.

We note that 1− 2r cos(θ) + r2 ≥ (1− r)2 > 0 for all θ ∈ [−π, π]. For the same reason,
we have 1 + 2r cos(θ) + r2 > 0. Thus for all θ ∈ [−π, π], we have

sgn(τ ′(θ)) = sgn(sin θ) · sgn(2r cos θ − (1− 2δ)(1 + r2)). (25)

Case 1: δ < 1
2
−
√
ε(1− ε)

We will rely on the following two facts, which are proven in claim 22:

(1− 2δ)r2 − 2r + 1− 2δ > 0, (26)

and

r = ω · 2ε

1− 2δ
(27)

for some ω ∈ [1
2
, 1]. It follows from (25) and (26) that for every θ we have

sgn(τ ′(θ)) = −sgn(sin θ),

which implies that τ(θ) is increasing over [−π, 0] and decreasing over [0, π]. By equation
(24) and since s = r when δ <

√
ε(1− ε), we then have

|L̂{εN}(1δN)| ≤ 2−N/2 · max
θ∈[−π,π]

∣∣∣∣(1− reiθ)δN(1 + reiθ)(1−δ)N

(reiθ)εN

∣∣∣∣
= 2−N/2 ·

∣∣∣∣(1− s)δN(1 + s)(1−δ)N

sεN

∣∣∣∣ .
This proves our theorem’s first inequality. To obtain the more explicit second inequality,
we use (27) and the inequality 1 + x ≤ ex to bound

L̂{εN}(1δN) ≤ 2−N/2 · e
(1−2δ)rN

rεN

= 2−N/2 ·
(

(1− 2δ)e2ω

2ωε

)εN
,

for some ω ∈ [1
2
, 1]. Now the function ν(ω) := e2ω

ω
has first derivative dν

dω
= e2ω(2ω−1)

ω2

and second derivative d2ν
dω2 = 2e2ω(2ω2−2ω+1)

ω3 > 0, so ν(ω) achieves its global minimum at
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ω = 1
2

and is increasing over the interval ω ∈ [1
2
, 1]. We can then bound our previous

equation by

L̂{εN}(1δN) ≤ 2−N/2 ·
(

(1− 2δ)e2

2ε

)εN
.

Case 2: δ ≥ 1
2
−
√
ε(1− ε)

In this case, by definition we have

r =

√
ε

1− ε
and s = reit =

√
ε

1− ε

(
1− 2δ

2
√
ε(1− ε)

+

√
4ε(1− ε)− (1− 2δ)2

2
√
ε(1− ε)

· i

)
.

It then follows that

cos t =
1− 2δ

2
√
ε(1− ε)

. (28)

But from equation (25) we know that

sgn(τ ′(θ)) =

{
sgn(sin θ) if cos θ > (1−2δ)(1+r2)

2r

−sgn(sin θ) cos θ < (1−2δ)(1+r2)
2r

,

and so since r =
√

ε
1−ε we have

sgn(τ ′(θ)) =

sgn(sin θ) if cos θ > 1−2δ
2
√
ε(1−ε)

,

−sgn(sin θ) if cos θ < 1−2δ
2
√
ε(1−ε)

.
(29)

It follows from (28) and (29) that τ(θ) is increasing over [−π,−t], decreasing over
[−t, 0], increasing over [0, t], and decreasing over [t, π]. But τ(θ) is clearly symmetric,
so we know that τ(−t) = τ(t). Thus τ(θ) is maximized at θ = t, and so by equation
(24) we have

|L̂{εN}(1δN)| ≤ 2−N/2 · max
θ∈[−π,π]

∣∣∣∣(1− reiθ)δN(1 + reiθ)(1−δ)N

(reiθ)εN

∣∣∣∣
= 2−N/2 ·

∣∣∣∣(1− s)δN(1 + s)(1−δ)N

sεN

∣∣∣∣ . (30)

This proves our theorem’s first inequality. To obtain the more explicit second inequality,

we define α = (1−2δ)2
4ε(1−ε) < 1 and note that we can rewrite s as s =

√
ε

1−ε · (
√
α+ i

√
1− α).

We then compute

|s|2 =
ε

1− ε
.
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We also compute

|1− s|2 = 1 +
αε

1− ε
− 2

√
αε

1− ε
+

(1− α)ε

1− ε

=
1

1− ε
· (1− ε+ ε−

√
4αε(1− ε))

=
2δ

1− ε
,

and we compute

|1 + s|2 = 1 +
αε

1− ε
+ 2

√
αε

1− ε
+

(1− α)ε

1− ε

=
1

1− ε
· (1− ε+ ε+

√
4αε(1− ε))

=
2(1− δ)

1− ε
.

From equation (30), we then have

|L̂wS | ≤ 2−N/2 ·

(
2δ
1−ε

) δN
2

(
2(1−δ)
1−ε

) (1−δ)N
2

(
ε

1−ε

) εN
2

= 2−N/2 ·
(2δδ(1− δ)1−δ

εε(1− ε)1−ε
)N/2

= 2(−h(δ)+h(ε))N/2.

Claim 22. For any ε ∈ (0, 1
2
) and δ < 1

2
−
√
ε(1− ε), define r =

(1−2δ)−
√

(1−2δ)2−4ε(1−ε)
2(1−ε) .

Then the following two claims hold:

(1− 2δ)r2 − 2r + 1− 2δ > 0, (31)

r = ω · 2ε

1− 2δ
(32)

for some ω ∈ [1
2
, 1].

Proof. We note that since 1 − x ≤
√

1− x ≤ 1 − x
2

for all x ∈ [0, 1], we can write
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√
1− 4ε(1−ε)

(1−2δ)2 = 1− 4ε(1−ε)
(1−2δ)2 · ω for some ω ∈ [1

2
, 1]. We then have

r =
(1− 2δ)− (1− 2δ)

√
1− 4ε(1−ε)

(1−2δ)2

2(1− ε)

=
1− 2δ

2(1− ε)

(
1−

√
1− 4ε(1− ε)

(1− 2δ)2

)
= ω · 2ε

1− 2δ
(33)

for some ω ∈ [1
2
, 1], which proves the first claim. Now that we have (33), in order to

prove the second claim it will suffice to show that for all ω ∈ [1
2
, 1], we have

η(ω) :=
4ω2ε2

1− 2δ
− 4ωε

1− 2δ
+ 1− 2δ > 0.

But dη
dω

= 1
1−2δ (8ωε

2−4ε) and d2η
dω2 is always positive, so η(ω) achieves its global minimum

at ω = 1
2ε
> 1 and is decreasing over the interval [1

2
, 1]. Thus for any ω ∈ [1

2
, 1] we have

η(ω) ≥ η(1) =
1

1− 2δ
((1− 2δ)2 − 4ε(1− ε)) > 0.
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A Proofs for section 2

A.1 Duals of Transitive Codes - Proof of Fact 9

Claim. The dual code C⊥ of a transitive code C ⊆ FN2 is transitive.

Proof. Let i, j ∈ [N ] be arbitrary. Since C is transitive, we know there exists a
permutation π : [N ] → [N ] such that π(j) = i and that for any c = (c1, ..., cN) ∈ C,
we have cπ := (cπ(1),...,π(N)) ∈ C . Clearly π−1 satisfies π−1(i) = j, and we claim that
it also satisfies that vπ−1 ∈ C⊥ for all v ∈ C⊥. For this we note that since cπ ∈ C for
every c ∈ C, we have by definition that every v ∈ C⊥ satisfies∑

k

vkcπ(k) = 0 for all c ∈ C.
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We thus have

v ∈ C⊥ =⇒
∑
k

vkcπ(k) = 0 for all c ∈ C

=⇒
∑
k

vπ−1(k)ck = 0 for all c ∈ C

=⇒ vπ−1 ∈ C⊥.

A.2 Basic Properties of Reed-Muller Codes - Proof of Facts
10 and 11

Fact. Let M be the
(
n
≤d

)
×N generator matrix of the Reed-Muller code. The columns

of M that correspond to the points x ∈ Fn2 with |x| ≤ d are linearly independent.

Proof. Let M ′ be the submatrix of M whose columns correspond to the points v ∈ Fn2
with |v| ≤ d. It suffices to show that when you order the columns M ′

v of M ′ in increasing
order of |v|, every column is linearly independent from the preceding ones. But this is
clearly the case, as for the monomial m =

∏
i:vi=1 xi we have Mm,v = 1 and Mm,v′ = 0

for all v′ preceding v.

Fact. For all n and all d < n, the Reed-Muller code RM(n, d) ⊆ FN2 is transitive.

Proof. Recall that we view each coordinate i ∈ [N ] as a point vi ∈ Fn2 , and that every
codeword in RM(n, d) is the evaluation vector

(
f(v1), ..., f(vN)

)
of a polynomial f of

degree ≤ d in n variables.
Now fix two points vi, vj ∈ Fn2 . We want to show that there is a permutation

π : Fn2 → Fn2 such that

(i) π(vi) = vj

(ii) If
(
zv1 , ..., zvN

)
∈ RM(n, d) then

(
zπ(v1), ..., zπ(vN )

)
∈ RM(n, d)

To this end, we choose the permutation π(x) = x+ vi + vj. Then:

(i) π(vi) = vi + vi + vj = vj.

(ii) If
(
zv1 , ..., zvN

)
is a codeword, it can be written as

(
zv1 , ..., zvN

)
=
(
f(v1), ..., f(vN )

)
for some polynomial f of degree ≤ d. But then the polynomial

g(x) = f(x + vi + vj) satisfies deg(g) = deg(f) ≤ d, so
(
g(v1), ..., g(vN)

)
must be a codeword. Then since g(x) = f ◦ π(x) by definition, we have that(
zπ(v1), ..., zπ(vN )

)
=
(
f ◦ π(v1), ..., f ◦ π(vN)

)
=
(
g(v1), ..., g(vN)

)
∈ RM(n, d).
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A.3 A version of Pinsker’s inequality - Proof of Lemma 13

Lemma. For any µ ∈ (0, 1), we have

µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2

Proof.

1− h(
1− µ

2
) = 1 +

1− µ
2

log

(
1− µ

2

)
+

1 + µ

2
log

(
1 + µ

2

)
=

1− µ
2

log (1− µ) +
1 + µ

2
log (1 + µ)

=
1

2 ln 2

[
−(1− µ)

∞∑
i=1

µi

i
− (1 + µ)

∞∑
i=1

(−1)i
µi

i

]

=
1

2 ln 2

[
2µ

∞∑
i=1

µ2i−1

2i− 1
− 2

∞∑
i=1

µ2i

2i

]

=
1

ln 2

∞∑
i=1

µ2i

(
1

2i− 1
− 1

2i

)
=

1

2 ln 2

∞∑
i=1

µ2i

i(2i− 1)

Thus 1− h(1−µ
2

) ≥ µ2

2 ln 2
and 1− h(1−µ

2
) ≤ 1

2 ln 2

∑∞
i=1

µ2

i(2i−1) = 1
2 ln 2
· 2 ln 2 · µ2 = µ2.
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