
Tighter MA/1 Circuit Lower Bounds From

Verifier Efficient PCPs for PSPACE

Joshua Cook∗ Dana Moshkovitz†

September 8, 2022

Abstract

We prove that for some constant a > 1, for all k ≤ a,

MATIME[nk+o(1)]/1 6⊂ SIZE[O(nk)],

for some specific o(1) function. Previously, Santhanam [San07] showed
that there exists a constant c > 1 such that for all k > 1:

MATIME[nck]/1 6⊂ SIZE[O(nk)].

Inherently to Santhanam’s proof, c is a large constant and there is no
upper bound on c. Using ideas from Murray and Williams [MW18], for
all k > 1:

MATIME[n10k2

]/1 6⊂ SIZE[O(nk)].

Our proof uses a new, very efficient PCP for PSPACE. We con-
struct a PCP for SPACE[O(n)] that has a Õ(n) time verifier, Õ(n)
space prover, O(log(n)) queries, and polynomial alphabet size. Prior to
this work, PCPs for SPACE[O(n)] either used Ω(n) queries or had ver-
ifiers that run in Ω(n2) time.

∗jac22855@utexas.edu. Department of Computer Science, UT Austin. This material is
based upon work supported by the National Science Foundation under grant number 1705028.

†danama@cs.utexas.edu. Department of Computer Science, UT Austin. This material is
based upon work supported by the National Science Foundation under grant number 1705028.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 14 (2022)

Contents

1 Introduction 3
1.1 Results . 3
1.2 Proof Idea . 5

1.2.1 MA Lower Bounds Using PCP 5
1.2.2 Verifier Efficient PCP . 6

1.3 Generalization And Sharpness . 8

2 Preliminaries 9

3 Efficient PCP To Fine Grained Lower Bounds 14
3.1 Implicitly Encoding Advice in Input Length 15
3.2 SPACE TMSAT /∈ P/poly . 15
3.3 SPACE TMSAT ∈ SIZE[n1+o(1)] . 18
3.4 SPACE TMSAT ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for a > 1 22
3.5 Altogether . 28

4 Extrapolatable PCPs 31
4.1 Extrapolatable Functions . 31
4.2 Robust PCPs and Extrapolatable PCPs 34
4.3 Low Degree Testing . 36
4.4 Extrapolatable PCPs to Robust PCPs 37

5 Constructing our ePCP 44
5.1 Arithmetization . 44
5.2 Simulating With Automata . 45
5.3 Sum Check Protocols . 47
5.4 Our Base PCP . 50

6 Decodable PCP and Composition 54
6.1 Decodable PCPs . 55
6.2 More Low Degree Gadgets . 58
6.3 Decoding With Our PCP . 62
6.4 Constructing our Efficient PCP 67

7 Open Problems 70

A PCP Composition Proof 75

B Automata Proofs 78

C Sum Check Proofs 83

2

1 Introduction

Some of the most fundamental problems in complexity theory are proving circuit
lower bounds for uniform complexity classes. One such conjecture is that NP
does not have polynomial size circuits, which is a strong version of P 6= NP.
Very little is known on such lower bounds. In particular, there are no known
proofs that NEXP does not have polynomial sized circuits! However, there are
some closely related results that could be loosely seen as relaxations.

One can strengthen NP slightly by giving the non-deterministic algorithm
access to randomness, as well as an extra bit of trusted advice. This gives the
complexity class MA/1. We can weaken polynomial sized circuits to circuits of
fixed polynomial size: SIZE[nk] for constant k.

Santhanam [San07] proved that for any constant k, MA/1 6⊆ SIZE[nk].
The MA/1 algorithm runs in time nck for a large c > 1. In fact, inherently to
Santhanam’s proof, there is no upper bound on c (We will explain why when we
describe Santhanam’s proof in Section 1.2.1). One can use ideas from Murray

and Williams [MW18] to get for some c < 10, MATIME[nck
2

]/1 6⊂ SIZE[nk].
The goal of this paper is to prove a fine grained separation of MA/1 from

fixed polynomial size circuits, namely,

MATIME[nk+o(1)]/1 6⊂ SIZE[nk].

We believe that the gold standard for separations should be fine grained sep-
arations. Fine grained separations are necessary for key results in complexity
theory, e.g., Williams’ program (See, e.g., [Wil11]) and optimal derandomiza-
tion [Dor+20]. Some fine grained separations are known, namely, hierarchy
theorems that show that giving algorithms more time allows them to solve
more problems [HS65; Coo72]. Hierarchy theorems are known for many com-
plexity classes. Fortnow, Santhanam, and Trevisan showed that MATIME
with a small amount of advice can solve more problems when given more time
[FST05]. Van Melkebeek and Pervyshev showed that for any 1 < c < d,
MATIME[nc]/1 (MATIME[nd]/1 [MP06].

1.1 Results

In this work, we give a fine grained separation for MA/1 and SIZE[nk]. We
show that for at least some k > 1, there is an MA protocol with one bit of
advice whose verifier1 has time almost nk such that any circuit solving the same
problem also requires size almost nk. Formally:

Theorem 1.1.1 (Fine Grained MA Lower Bound). There exists a constant
a > 1, such that for all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

1Our verifier is a RAM machine, not a Turing Machine, to avoid overhead in simulating
circuits.

3

This result removes the large polynomial factor in the gap between the
MA/1 time and the circuit size in Santhanam’s result.

When we describe our proof we will explain why we only get separations for
k < a for an (unknown) a > 1 and not for all k > 1. For now we would like to
stress that: (1) under plausible complexity assumptions the upper bound a is
in fact super-constant in n; (2) even the case of a constant a > 1 as promised
in our theorem is highly interesting, since it is unknown how to prove that
NP 6⊆ SIZE[nk] for any k > 1.

Santhanam’s original proof uses an interactive protocol for PSPACE. To
prove our circuit lower bound, we replace the interactive protocol with a new,
more efficient PCP. To get our fine grained results, we need a PCP for space
S = O(n) and time T = 2O(n) algorithms, where the verifier simultaneously has
Õ(n) time and poly(log(n)) many queries. Further, the PCP needs a prover
that can compute any bit of the proof in Õ(n) space. Notably, we do not need
any bounds on the proof length.

The PCP given by Babai, Fortnow, and Lund in their proof that MIP =
NEXP [BFL90] gave a PCP that required Ω(log(T)) queries, while we want
O(log(log(T))) queries.

Holmgren and Rothblum in their work on delegated computation [HR18] im-
proved on the BFL PCP in several ways that can2 be used to give a PCP with
verifier time Õ(n+ log(T)). Unfortunately, it still requires Ω(log(T)) queries.

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [Ben+05] gave a PCP
that uses a constant number of queries, but has verifier time poly(log(T)), while
we need Õ(n + log(T)) verifier time. Similar results were given by subsequent
work [Mei09; BV14; Ben+13].

The small space requirement for the prover is achieved by Holmgren and
Rothblum [HR18]. In some PCPs, like the PCP in Ben-Sasson, Chiesa, Genkin,
and Tromer’s work on the concrete efficiency of PCPs [Ben+13], the prover
requires space Ω(T). In contrast, our result needs prover space Õ(S + n).

A sufficiently efficient PCP was not known, so we construct a new PCP.

Theorem 1.1.2 (Verifier Efficient PCP). Let S, T = Ω(n) be functions, and
L be any language computed by a simultaneous time T and space S algorithm.
Let δ ∈ (0, 1/2) be a constant. Then there is a PCP for L with:

1. Verifier time Õ(n+ log(T)).

2. Query time Õ(log(T)).

3. O(log(n) + log(log(T))) queries.

4. Alphabet Σ with log(|Σ|) = O(log(log(T))).

5. Log of proof length Õ(log(T)).

2The PCP constructed by Holmgren and Rothblum was built to have no signalling sound-
ness and has many steps that take longer than Õ(log(T)) time to compute. Still, the basic
elements of of their PCP needed for a standard PCP are computable in Õ(n+ log(T)) time.

4

6. Prover space Õ(S).

7. Perfect completeness and soundness δ.

We believe we can achieve a similar verifier time, query time and prover space
while also achieving proof length poly(T) and constant number of queries. We
do not need these improvements for our main result, so we only prove this
simpler result.

1.2 Proof Idea

1.2.1 MA Lower Bounds Using PCP

We first review Santhanam’s original proof.
Santhanam’s original result uses the fact that if PSPACE ⊂ P/poly, then

PSPACE = MA. This follows from the famous result that IP = PSPACE
[Sha92; Lun+92]. The idea is that if PSPACE ⊂ P/poly, then an MA
protocol can guess a circuit computing any problem in PSPACE. The prover
in the interactive protocol for PSPACE is also computable in PSPACE. So
to solve any PSPACE problem in MA, the MA protocol first guesses the
circuit for a prover, then simulates the verifier using the circuit we guessed as
the prover.

Using this, Santhanam’s original proof then considered two cases: either
PSPACE ⊂ P/poly, or PSPACE 6⊂ P/poly.

If PSPACE ⊂ P/poly, then we already know PSPACE = MA. Now
we just need a problem not computable by a size nk circuit. But there is a
straightforward algorithm that exhaustively finds a circuit of size larger than
nk that computes a function that cannot be computed by a smaller circuit. In
fact, such an algorithm only requires space Õ(nk). So PSPACE 6⊂ SIZE[nk].
In this case, PSPACE = MA, so MA 6⊂ SIZE[nk].

If PSPACE 6⊂ P/poly, then we know a hard problem that is not in
SIZE[nk], namely any PSPACE complete problem. Let us take a PSPACE
complete, downward self reducible language, Y . Now Y may be too hard for
MA to solve, but if we give it enough padding, eventually the padded version of
Y will be computable by size nk circuits. But for this amount of padding, MA
can pull the same trick it does in the PSPACE ⊂ P/poly case. Namely, guess
a circuit for Y and then simulate the IP protocol for Y . For some PSPACE
complete Y , the language itself is its proof and this works. The trick is to use
just the right amount of padding so it requires circuits of at least size nk, but
not much larger. Santhanam uses the single bit of advice in a clever way to
figure out when there is just the right amount of padding.

In either case, the time of this protocol is roughly the time of the verifier in
the IP protocol, plus the size of the prover circuit times the number of times
the prover is queried.

There are two reasons the MA protocol could take polynomially more time
than the size of the circuits it wants to compute in the case PSPACE ⊂
P/poly. One is that the IP from the original Santhanam result has polynomial

5

verifier time and a polynomial time interaction with the prover, making the ver-
ifier in the MA/1 protocol take polynomially longer than the circuit complexity
of the problem being solved. By using a PCP, we get better results. The other
is that the prover circuit complexity could be large, depending on the circuit size
required for PSPACE (could be any polynomial when PSPACE ⊂ P/poly).
This is the reason there is no upper bound on the polynomial run time of the
MA/1 protocol in Santhanam’s proof. To avoid this issue we consider a finer
case analysis.

We break the problem into three cases. For some SPACE[O(n)] complete
language, X, we have one3 of the following:

1. X /∈ P/poly.

2. X ∈ SIZE[n1+o(1)].

3. X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1.

The original proof only used the two cases X /∈ P/poly and X ∈ P/poly.
The case where X /∈ P/poly is completely unchanged. Note that this is the
plausible case, and here there is no constant upper bound a on k.

If X ∈ P/poly, we use our efficient PCP, Theorem 1.1.2, instead of the IP
Santhanam uses. With this substitution, the case where X ∈ SIZE[n1+o(1)] is
almost unchanged from the original proof.

If X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1, then we use the
same padding technique we use if X /∈ P/poly, just using our new PCP.
In this case, we can only do this if for some k < a, we are trying to show
MATIME[nk+o(1)]/1 6⊂ SIZE[nk−o(1)].

To see why k > a poses a difficulty, suppose that SPACE[O(n)] 6⊆ SIZE[o(n2)],
but SPACE[O(n2)] ⊆ SIZE[O(n2)]. Then to get a language requiring size n3

circuits, we need to use a space n3 algorithm. But the prover for a space n3

language is a language running on an input with length n3, and using space
linear in its input length. Thus we may need a size (n3)2 = n6 circuit for our
prover. So the verifier takes time at least n6 to even read the prover circuit, thus
can’t run in time n3. See Item 2 in our open problems for further explanation.

1.2.2 Verifier Efficient PCP

Now we explain the PCP we actually use in the MA protocol. We start with
a PCP similar to [HR18] and [BFL90] that we refer to as our base PCP. This
PCP has a verifier that runs in time Õ(n+ log(T)) and uses O(log(T)) queries.
To reduce the number of queries, we use PCP composition [AS98; BS+04;
DR04; MR08; DH09].

To perform PCP composition, we need a robust PCP. Loosely, a robust
PCP is a PCP so that when x /∈ L, for any proof, most sets of queries to
that proof return not only a rejected response, but a response that is far from

3This is a trichotomy in an asymptotic sense: for every constant a, either X ∈ SIZE[O(na)]
or it is not. See Section 3.5 for details.

6

any accepted response. To make our base PCP robust, we use the aggrega-
tion through curves technique [Aro+98]. Now we briefly explain how to use
aggregation through curves to convert our base PCP into a robust PCP.

An honest proof for our base PCP is a single low degree polynomial. Sup-
pose our base PCP has q queries. To make our PCP robust, we first choose
the randomness for the base PCP, and another random point in the PCP
proof. Then we find the degree q curve that goes through all these points. Then
we check if the proof, restricted to this curve, is a low degree polynomial, and
whether the base PCP would have accepted on this input. Since a low degree
polynomial is an error correcting code, this gives robustness.

One concern one might have with this robust PCP is that it actually re-
quires Ω(log(T)2) queries. We don’t need to actually calculate all of these query
locations. Since we reduce the actual number of queries with PCP composition,
we only need to be able to calculate any individual query location quickly. To
find these query locations requires us to compute a point on the degree q curve
going through each of our q points our base PCP queries plus a random point.
In our base PCP, q = O(log(T)) and our proof has dimension O(log(T)). So the
naive way to compute this curve is to calculate each coordinate independently,
which would take time Õ(log(T)2).

To efficiently compute low degree curves through points, or to extrapolate a
function going through those points, we introduce the concept of time extrapo-
latable functions.

Definition 1.2.1 (Extrapolatability). For any n, q, t > 0, and field F, we call
Q : [q] → Fn “t extrapolatable” (or time t extrapolatable) if there is a time t
algorithm taking any v ∈ Fq, that outputs∑

i∈[q]

viQ(i).

Equivalently, if we think of Q as outputting the columns of a matrix, then
we say Q is time t extrapolatable if one can multiply a vector with it in time t.
An important property of extrapolatable functions is that an extrapolation of
an extrapolatable function can be computed efficiently. This is where it gets its
name.

Our base PCP is just a sum check and a few point checks. Each of these
are time Õ(log(T)) extrapolatable. Our robust PCP only queries locations
easily computable given the extrapolation of our base PCP query locations.
Extrapolations of extrapolatable functions are easy to compute, so we can easily
compute the query locations of the robust PCP.

We also introduce the concept an extrapolatable PCP (ePCP) as one where
an honest proof is a low degree polynomial, and the query locations after fixing
a choice of randomness are extrapolatable. We show that any ePCP can be
extended into a robust PCP where the query locations of that robust PCP can
be computed efficiently.

7

1.3 Generalization And Sharpness

We actually prove a stronger result than Theorem 1.1.1 that is sharp. First, our
MA protocol is input oblivious: the message from Merlin is just a program for
computing a PSPACE complete language and doesn’t depend on the specific
input, just its length. Second, the hardness is against the model used in Merlin’s
message. We used circuits, but we can describe a randomized algorithm directly
to save some polynomial factors.

We define input oblivious Merlin-Arthur time, OMATIME, the same way
as Fortnow, Santhanam, and Williams [FSW09]. Input oblivious Merlin-Arthur
are languages solvable with untrusted advice, where the advice only depends on
the input length. In our case, Merlin gets to send a long, untrusted message
for every input length, and Arthur also gets a single bit of trusted advice. See
Definition 2.0.3. Note that Santhanam’s original proof implicitly also uses input
oblivious MA.

The main property of circuits we use is that a randomized algorithm can ef-
ficiently simulate it. We can instead use BPTIME[nk]/nk, that is, randomized
algorithms running in time nk with description length nk. This uses the same
model of computation as our verifier, allowing it to more efficiently simulate
OMATIME.

Using OMATIME instead of MATIME and BPTIME instead of SIZE,
we can follow the same proof as our main result to show:

Theorem 1.3.1 (OMATIME Lower Bound Against BPTIME). There exists
constant a > 1, such that for all k < a, for some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 6⊂ BPTIME[O(nk)]/O(nk).

This result is tight in the sense that for any function f(n), we have

OMATIME[f(n)]/1 ⊆ BPTIME[O(f(n))]/(f(n) + 1).

To get stronger results, we need to use nondeterminism that depends on the
input. So one could say our result is less about the power of nondeterminism,
and more about the power of trusted versus untrusted advice. Specifically:
trusting advice doesn’t always buy (much) time in the randomized setting, as
long as we have SOME trusted advice.

Let us briefly outline what would need to change in our main proof to prove
Theorem 1.3.1, and justify why those changes would work.

First we need to make a class of randomized programs that act more like
circuits. Consider the class of programs, C, that contain randomized algorithms
that work only a specific input length. For any C ∈ C, we say C(x) is the
random variable that simulates C on input x for time |C|, and outputs what C
does if C terminates in time |C|, and outputs 0 otherwise. See that C behaves
like circuits in the following important ways:

1. Given a program C ∈ C, a randomized algorithm can calculate the random
variable C(x) in time O(|C|).

8

2. For any function f(n) and language L ∈ BPTIME[f(n)]/f(n), for every
n, there is a Cn ∈ C such that |Cn| = O(f(n)) and with high probability
Cn(x) = 1x∈L.

A few notes on using C in our proof, as opposed to circuits.

1. First, see that SPACE[O(nk)] 6⊆ BPTIME[o(nk)]/o(nk). This follows
using the same exhaustive search type algorithm used for SIZE[o(nk)].

For any polynomial nk, there is a deterministic program, A, with length
O(nk) running in time O(nk), but is not computable with high probability
by any program C ∈ C with length o(nk). This follows from a simple
counting argument: length nk deterministic programs contain more than

2αn
k

functions for some constant α (just use some lookup table), while

there are only 2αn
k

length αnk programs.

Such an A can still be found by exhaustive search in space O(nk), since
given C ∈ C, we can space efficiently check every choice of randomness
and calculate majority. This gives us that

SPACE[O(nk)] 6⊆ BPTIME[o(nk)]/o(nk).

2. Given that L ∈ BPTIME[f(n)]/f(n), then for any n, there is some advice
(notably, a program Cn ∈ C with size |Cn| ≤ f(n)) such that a randomized
algorithm given that advice can compute whether x ∈ L with probability
1− ε in time O(f(n) log(1

ε)).

This allows our verifier to efficiently compute a SPACE[O(n)] complete
problem, L, in time nearly f(n) if L ∈ BPTIME[f(n)]/f(n), given cor-
rect advice.

3. We also note that for some programs C ∈ C, for some inputs x, our
program C evaluated on x may answer one or zero with very close to half
probability. That is, the syntax of C does not only give bounded error
randomized algorithms, just a randomized algorithm.

This is not an issue, because in the completeness case, there will be a
program C that does have bounded error the prover should provide. And
in the soundness case, the soundness of our PCP holds against any multi-
prover strategy, even a randomized strategy. So no program provided will
convince the verifier with high probability.

Finally, see that in all cases of our proof, Arthur only asks Merlin for a
program computing some SPACE[O(n)] complete problem. This advice does
not depend on the specific input, only on the input size.

2 Preliminaries

We assume some familiarity with basic complexity theory. See Arora and
Barak’s book for background [AB09]. In this paper, by algorithm, we mean

9

algorithm on a RAM machine, and by circuit, we mean a fan in 2 circuit with
unbounded depth. A randomized algorithm is a deterministic algorithm with
an extra input for randomness. We will assume in this paper that all time and
space bounds for algorithms are sufficiently easily computable.

Now recall that MA is the complexity class of problems with polynomial
sized certificates that can be verified with bounded error by a randomized,
polynomial time algorithm. This is like NP with a randomized verifier.

Then we define MATIME in an analogous way to NTIME. Our results
have perfect completeness, so we only define MATIME with perfect complete-
ness.

Definition 2.0.1 (MATIME). For any function f : N→ N, MATIME[f(n)]
is the class of languages, L, such that there is a time f(n) algorithm M taking
three inputs, an input x, a random input r, and a witness w, so that

Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such
that

Pr
r

[M(x, r, w) = 1] = 1.

Soundness If x /∈ L, then for every w,

Pr
r

[M(x, r, w) = 1] < 1/2.

An algorithm with trusted advice is an algorithm with an extra input for
advice, where the advice is fixed for every input of a given length. Complexity
class MATIME[f(n)]/1 is MATIME[f(n)] with 1 bit of trusted advice.

Definition 2.0.2 (MATIME/1). For any function f : N → N, complexity
class MATIME[f(n)]/1 is the set of languages, L, such that there is a function
b : N→ {0, 1} and a time f(n) randomized algorithm M taking four inputs, an
input x, a random input r, a witness w, and an advice bit such that

Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such
that

Pr
r

[M(x, r, w, b(n)) = 1] = 1.

Soundness If x /∈ L and n = |x|, then for every w,

Pr
r

[M(x, r, w, b(n)) = 1] < 1/2.

As described in the results section, we also define input oblvious Merlin-
Arthur. Note that in our sharper results of Section 1.3, our advice only has
bounded error, so we define OMATIME with imperfect completeness.

Definition 2.0.3 (OMATIME/1). For any function f : N → N, complexity
class OMATIME[f(n)]/1 is the set of languages, L, such that there is a trusted
advice function b : N → {0, 1}, an untrusted advice function w : N → {0, 1}∗
with |w(n)| ≤ f(n) and a time f(n) randomized algorithm M taking four inputs,
an input x, a random input r, untrusted advice, and a trusted advice bit such
that

10

Completeness If x ∈ L and n = |x|, then

Pr
r

[M(x, r, w(n), b(n)) = 1] > 2/3.

Soundness If x /∈ L and n = |x|, then for every w′,

Pr
r

[M(x, r, w′, b(n)) = 1] < 1/3.

We let SIZE denote the class of languages with circuits of a given size.

Definition 2.0.4 (SIZE). For any function f : N → N, SIZE[f(n)] is the
class of languages, L, where for each input length n, there is a circuit of size
f(n) with n inputs computing L for inputs of length n.

Further, SIZE[O(f(n))] is the class of languages, L, such that for some
g(n) = O(f(n)), we have L ∈ SIZE[g(n)]. Similarly for SIZE[o(f(n))].

To show that L /∈ SIZE[o(f(n))], we will show that for some constant c > 0,
for infinitely many n, language L on length n inputs requires circuits of size at
least cf(n). This implies that for any g(n) = o(f(n)), language L must have
size greater than g(n) infinitely often, because eventually, g(n) must stay below
cf(n).

While super linear circuit lower bounds have been hard to prove, one can
easily get linear circuit lower bounds for any language that depends on every
bit in the input, for instance, the parity function.

Lemma 2.0.5 (Parity Requires Large Circuits). Let L be the language of strings
with an odd number of 1s. Then L ∈ TIME[O(n)], but L on length n inputs
requires circuits of size n/2.

This lower bound comes from the fact that parity as a function depends on
every input, and since each gate only has fan in 2, we need at least n/2 gates
to make the circuit a function of every input. Similarly, since TIME[O(n)] ⊆
MATIME[O(n)], we get a similar result for MATIME. Since we can run an
algorithm that only computes parity on some specific subset of the input, we
can extend this to sublinear time as well.

Corollary 2.0.6 (Sub-linear Circuit Lower Bounds Are Easy). For any time
constructible S(n) ≤ n/2, there exists a language L ∈ TIME[O(S(n))] but for
every n, language L on length n inputs requires circuits of size S(n).

We assume a model of computation where n is provided to the algorithm in
binary. Then the language is just parity on the first 2S(n) bits. By Lemma 2.0.5,
this requires a size S(n) circuit. Since S(n) is time constructable, we can con-
struct S(n) then run parity on the first S(n) bits in O(S(n)) time.

We will occasionally need to look at projections of a string onto some indexes.

Definition 2.0.7 (Projection). For any set Σ, naturals n,m ∈ N, string π =
(π1, . . . , πn) ∈ Σn, and indices I = (I1, . . . Im) ∈ [n]m, we define the projection
πI = (πI1 , . . . , πIm). We may also write for i ∈ [n], π(i) = πi, and π(I) = πI .

11

In this paper, we will focus on time and space efficient, non-adaptive PCPs
with perfect completeness. Because we need to pay close attention to the amount
of time it takes to make a single query to the proof, we separate the algorithm
for producing queries, Q, from the algorithm for verifying the response, V .
We also separate the function that gives all the query locations for a choice
of randomness, I, from the algorithm that gives a single one of those query
locations, Q.

So at a high level, a PCP protocol does the following:

1. Chooses a common random string, r.

2. Runs query function Q with randomness r for q(n) many times to get all
query locations, I.

3. Looks up all query locations, I, into a provided proof, π, to get proof
window πI .

4. Runs verifier V with randomness r and proof window πI and outputs if
V accepts.

Then if the input is in a language L, we want some proof π to always make
the verifier accept. But if an input is not in language L, we want for any proof
π, the probability the verifier accepts to be small. We also want a prover, P ,
that can compute any symbol of the proof using low space.

Now we formally define a PCP.

Definition 2.0.8 (PCP). We say that a language L has a non-adaptive PCP,
A, with perfect completeness if there exists verifier V , prover P , index function
I, and query function Q, such that, for some alphabet Σ, δ ∈ [0, 1], and functions
r, l, q : N→ N:

1. I takes 2 inputs, an input of length n and randomness of length r(n),
and outputs an element of [l(n)]q(n). That is, I outputs q(n) indexes in a
length l(n) string,

2. Q is an algorithm with three inputs, an input x of length n, randomness
r of length r(n), and an index i ∈ [q(n)] and outputs an element of [l(n)]
such that Q(x, r, i) = I(x, r)i.

3. V is an algorithm with three inputs, an input of length n, randomness of
length r(n), and q(n) symbols from Σ, and outputs either accept or reject.

4. P is an algorithm that takes two inputs, an input of length n, and an index
i ∈ [l(n)], and outputs a symbol from Σ.

Completeness If x ∈ L and n = |x|, then there exists πx ∈ Σl(n) such that

Pr
r

[V (x, r, πxI(x,r)) = 1] = 1,

and for every i ∈ [l(n)], P (x, i) = πxi .

12

Soundness If x /∈ L then for every π′,

Pr
r

[V (x, r, π′I(x,r)) = 1] ≤ δ.

Then we also say:

1. A has proof length l(n).

2. A has alphabet Σ.

3. A has soundness δ.

4. A uses q(n) queries.

5. A uses r(n) bits of randomness.

6. If V runs in time t(n), A has verifier time t(n).

7. If V runs in space s(n), A has verifier space s(n).

8. If P runs in space s′(n), A has prover space s′(n).

9. If Q is computable in time t′(n), A has query time t′(n).

For convenience, we assume that any alphabet or field is always encoded
with some canonical binary encoding. We generally will not worry too much
about encoding as we switch from models of computation and we will assume
inputs are encoded in binary using a small power of two bits.

We use big O and little o notation extensively in this paper. We will use
the result that sub-polynomial functions remain sub-polynomial when composed
with polynomials.

Lemma 2.0.9 (Composing Sub-polynomials with Polynomials gives Sub-poly-
nomials.). If h(n) = o(1), and for some constant k, we have D(n) = O(nk),
then for some h′(n) = o(1),

D(n)h(D(n)) = O(nh
′(n)).

Proof. Let G(n) = nh(n) so that G(D(n)) = D(n)h(D(n)). Then we can bound
log(G(n)):

log(G(n)) = h(n) log(n) = o(log(n)).

Using that log(n) is increasing and unbounded, we can bound log(G(D(n))).

log(G(D(n))) = o(log(D(n))) = o(log(n)).

This is equivalent to, for some h′(n) = o(1),

log(G(D(n))) = h′(n) log(n).

This gives the result.

D(n)h(D(n)) = 2log(G(D(n))) = nh
′(n).

13

3 Efficient PCP To Fine Grained Lower Bounds

Our analysis depends on the circuit complexity of some PSPACE complete
problem. So we start by choosing a SPACE[O(n)] complete problem. We use
a version of SPACE TMSAT (on page 83 of [AB09]).

Definition 3.0.1 (Specific Problem). SPACE TMSAT is the language

{(M,x, 1n, 0∗) : Turing machine M accepts x using at most n space.}

Note: SPACE TMSAT ∈ SPACE[O(n)] and SPACE TMSAT is SPACE[O(n)]
complete. The 0∗ is just there to make it explicit the language is paddable.
In particular, this means that the circuit complexity of SPACE TMSAT is non-
decreasing.

Lemma 3.0.2 (SPACE TMSAT Circuit Complexity is Non-Decreasing). If A′(n)
is the size of the minimum circuit solving SPACE TMSAT for inputs of length n,
then A′(n) is non-decreasing.

Proof. Let C be the circuit of size A′(n + 1) solving SPACE TMSAT for length
n + 1 inputs. Then to get a circuit for length n inputs, use C with an extra 0
hard coded into the last input. The resulting circuit will be at most the size of
C and solve length n inputs. Thus A′(n+ 1) ≥ A′(n).

Then using Theorem 1.1.2, we can get a PCP for SPACE TMSAT by setting
T = 2O(n) and S = O(n). This can be turned into a PCP with a binary
alphabet by replacing every query for a symbol in Σ with O(log(n)) queries to
the individual bits of that symbol.

Corollary 3.0.3 (PCP for SPACE TMSAT). There is a PCP for SPACE TMSAT

with:

1. Verifier time Õ(n).

2. Query time Õ(n).

3. poly(log(n)) queries.

4. Binary alphabet.

5. Log of proof length Õ(n).

6. Prover space Õ(n).

7. Soundness 1/2 and perfect completeness.

We prove three different MATIME/1 lower bounds that are based on
three different hard problems. Different ones work better in different parameter
regimes. After constructing them all, we show we always fall into some range
of parameters so that we can get the lower bounds of Theorem 1.1.1.

14

3.1 Implicitly Encoding Advice in Input Length

In each of our cases, we will use advice to find the size of some prover circuit.
To do this, we implicitly encode a number in the input length. If that implicitly
encoded number describes the size, our advice bit will be 1. Otherwise, the
advice bit is 0.

For any input length n ∈ N, for some l ∈ N, we have n ∈ [2l, 2l+1). For such
an l, there is some m ∈ N such that n = 2l + m. This m, or equivalently this
l, is our implicitly encoded number. Because we will use this decomposition a
lot, we will explicitly define some functions that perform this decomposition.

Definition 3.1.1 (Implicit Encoding In Input). For natural n ≥ 1, let l ≥ 0 be
an integer so that n ∈ [2l, 2l+1), and m ≥ 0 be an integer so that n = 2l + m.
Then define µ(n) = m and ρ(n) = l.

There is a simple interpretation of this m = µ(n) and l = ρ(n) in terms of
the binary representation of n. You can think of l as the length of the binary
number, and m the binary number after the top bit is removed.

3.2 SPACE TMSAT /∈ P/poly

In this case, we follow the proof in the original work [San07] where PSPACE 6⊂
P/poly. We present the same arguments here in more generality and with more
precise parameters.

When PSPACE 6⊂ P/poly, the circuit complexity of different input sizes
for SPACE TMSAT could change drastically and in a way that may be hard to
analyze. This is an issue because the PCP for SPACE TMSAT needs a prover
with a longer input than the input being verified, thus might require a much
larger circuit.

Instead, we use a downward self reducible PSPACE complete language.
Specifically, a language that has a sound interactive protocol with queries the
same length as its input and whose prover is the language itself. We cite the
result from Lemma 11 in [San07]:

Lemma 3.2.1 (Same Size, Self Proving PSPACE Complete Language). There
is a PSPACE-complete language Y and a probabilistic polynomial-time oracle
Turing machine M such that for any input x:

1. M only asks its oracle queries of length |x|.

2. If M is given Y as oracle and x ∈ Y , then M accepts with probability 1.

3. If x /∈ Y , then irrespective of the oracle given to M , M rejects with prob-
ability at least 1/2.

The important feature of language Y is that for an input x, the prover for
x is the same language Y , and queries to the prover have the same length as x.
This means Y , and the prover for Y , have the same circuit.

Now using Lemma 3.2.1, we can get the following bound.

15

Lemma 3.2.2 (Bound Using Padded Y as Hard Problem). Using Y from
Lemma 3.2.1, if for some g(n) = ω(1) we have Y /∈ SIZE[O(ng(n))] then for any
time constructable, non-decreasing, unbounded S(n) such that S(n) = o(ng(n)),
for some4 f(n) = o(1):

MATIME[O(S(n)1+f(n))]/1 6⊂ SIZE[o(S(n/4))].

Proof. Let a > 0 be the constant so that the verifier (M in Lemma 3.2.1) for
Y ’s interactive protocol runs in time O(na).

Now we define our language, W , in MATIME[S(n)1+o(1)]/1 but not in
SIZE[o(S(n))]. For any input size, n, using Definition 3.1.1, let m = µ(n) and
l = ρ(n). Let our advice bit be 1 if

1. Y on length m inputs does not have circuits of size mg(m),

2. Y on length m inputs has circuits with size S(n), and

3. for all integers l′ with l′ < l and 2l
′
> m, Y on length m inputs does not

have circuits of size S(2l
′
+m).

This condition requires the advice bit to only be 1 for a given m exactly
once, whenever it can be used first. This simplifies the analysis, giving us
a one to one function from n where the advice bit is 1, to m.

Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and
for some y ∈ Y with |y| = m we have x = y1n−m.

Now we will show that infinitely often the advice bit is 1 and W does not
have circuits with size S(n/4).

Since Y /∈ SIZE[O(ng(n))], for some infinite set U ′, for m ∈ U ′, the language
Y on input length m does not have circuits of size mg(m). Since S(m) =
o(mg(m)), for some n′, for all m ≥ n′, S(m) < mg(m). So let U = U ′ ∩ [n′,∞).
See that |U | =∞.

For m ∈ U , since S(n) is non-decreasing and unbounded, for large enough
l, language Y on length m inputs has circuits of size at most S(2l +m). Then
there is a smallest such l with 2l > m and for n = 2l + m, the language Y on
length m inputs has circuits of size S(n). For such n, the advice bit is 1.

Now either 2l−1 ≤ m, or 2l−1 > m.

2l−1 ≤ m Then 2m ≥ 2l, and m > n/4. Since m ∈ U , language Y on length m
inputs does not have circuits of size S(m). Since S(n) is monotone, Y on
length m inputs also doesn’t have circuits of size S(n/4).

2l−1 > m Then by choice of l, Y on length m inputs does not have circuits of
size S(2l−1 + m). Since by definition of n, we have 2l−1 + m > n/2 and
S(n) is monotone, Y on length m inputs does not have circuits of size
S(n/2).

4More generally, if A(n) is the minimum circuit size for Y , the MA verifier will run in
time similar to S(n)poly(A−1(S(n))). Since A−1(n) is not simple, we avoid proving a more
detailed result here.

16

So W does not have circuits with size less than S(n/4).
Since U has infinitely many elements, and for every m ∈ U , there is an

n > m such that W on length n inputs does not have circuits of size S(n/4),
for infinitely many n, language W on length n inputs does not have circuits of
size S(n/4). So W /∈ SIZE[o(S(n/4))].

Now we define f(n). Let µ1(n) be the partial function from n where the
advice bit is 1, to µ(n). We claim µ1(n) = ω(1). This is because for any m, the
advice bit can only be 1 once. Thus µ1 is one to one. Any one to one function
into the naturals is ω(1), since for any b, there is a max n such that for some
m < b, µ1(n) = m, and for all i > n, µ1(i) ≥ b. Then let

D(n) :=

{
µ1(n) Advice bit for n is 1

D(n− 1) Otherwise
.

Since µ1(n) = ω(1), we also have D(n) = ω(1). Then since g(n) = ω(1), we also
have that for f(n) = a/g(D(n)), we have f(n) = o(1).

Now we show that W ∈ MATIME[O(S(n)1+f(n))]/1. If the advice bit is
0, this is true trivially. Suppose that the advice bit is 1.

For an n where the advice bit is 1, inputs of length m = µ(n) for Y have
circuits of size S(n), which can be guessed. Then from Lemma 3.2.1, there is a
time ma algorithm that can verify membership in Y with a circuit for Y . This
gives an MA protocol for Y on length m that runs in time O(S(n)ma).

Then since the advice bit is 1, there are circuits for length m instances of
Y with size S(n), but not mg(m). Thus S(n) > mg(m), so S(n)1/g(m) > m.
So the time of the MA verifier is at most O(S(n)ma) = O(S(n)S(n)a/g(m)) =
O(S(n)1+f(n)). The MA protocol is complete and sound since the protocol for
Y is. So W ∈MATIME[O(S(n)1+f(n))]/1.

Therefore

W ∈MATIME[O(S(n)1+f(n))]/1 \ SIZE[o(S(n/4))].

We show that when PSPACE 6⊂ P/poly, there is some g(n) = ω(1) such
that Y /∈ SIZE[ng(n)]. Thus we can apply Lemma 3.2.2.

Corollary 3.2.3 (Bound if PSPACE does not have Polynomial Sized Circuits).
If SPACE TMSAT /∈ P/poly, then for any k > 0, and some f(n) = o(1):

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

Proof. We want to use Lemma 3.2.2 with S(n) = nk log(n) and some g(n) =
ω(1). Let Y be the langauge from Lemma 3.2.1.

Since SPACE TMSAT is in PSPACE, SPACE TMSAT /∈ P/poly and Y is
PSPACE complete, Y /∈ P/poly. We will show, since Y /∈ P/poly, for
some g(n) = ω(1), we have Y /∈ SIZE[o(ng(n))].

Let A(n) be the size of the smallest circuit computing Y on length n inputs.

Let g′(n) = log(A(n))
log(n) . Suppose for contradiction that g′(n) was bounded above

17

by a constant, c. Then for all n, we have g′(n) ≤ c and A(n) = ng
′(n) ≤ nc.

Thus Y has polynomial sized circuits. But Y doesn’t, so g′(n) is unbounded.
Let g∗(n) = maxi∈[n] g

′(i). Since g∗(n) ≥ g′(n), we also know g∗(n) is
unbounded. By definition, g∗(n) is non-decreasing. Thus g∗(n) = ω(1).

For infinitely many n, we know g′(n) = g∗(n), since g′(n) is unbounded. So
for n such that g′(n) = g∗(n), our problem Y does not have circuits of size less
than ng

′(n) = A(n). So infinitely often, Y does not have circuits of size ng
∗(n)/2.

Thus Y /∈ SIZE[o(ng
∗(n))].

Now let g(n) = g∗(n) − 1. Then g(n) = ω(1) and ng(n) = o(ng
∗(n)), so

Y /∈ SIZE[O(ng(n))].
Since g(n) = ω(1), see that nk log(n) = o(ng(n)). Then using Lemma 3.2.2,

we have that for some f(n) = o(1),

MATIME[O((nk log(n))1+f(n))]/1 6⊂ SIZE[o((n/4)k log(n/4))].

Now to simplify this. Since k is a constant, we have that nk = o((n/4)k log(n/4)).
Thus

SIZE[O(nk)] ⊂ SIZE[o((n/2)k log(n/2))].

Now for f ′(n) := kf(n) + (1 + f(n)) log(log(n))
log(n) we have f ′(n) = o(1) and

(nk log(n))1+f(n) = nk+f
′(n). Thus

MATIME[O((nk log(n))1+f(n))]/1 ⊆MATIME[O(nk+f
′(n))]/1.

Together
MATIME[O(nk+f

′(n))]/1 6⊂ SIZE[O(nk)].

3.3 SPACE TMSAT ∈ SIZE[n1+o(1)]

The idea in this case is to use a brute force, small space algorithm that finds
a problem not in a fixed polynomial size. In particular, for circuit size S(n),
the brute force algorithm uses space O(S(n)) to compute some function with
minimum circuit size Θ(S(n)). Then we want to simulate the PCP from Corol-
lary 3.0.3 to prove the output of this algorithm. Since the PCP is efficient, the
prover for this algorithm does not use much more space than the brute force
algorithm itself.

If SPACE TMSAT has almost linear sized circuits, the prover doesn’t require
much larger circuits than the space of the prover. Finally, our PCP is efficient,
so the time of the MA verifier isn’t much more than the size of the prover
circuit. So the MA protocol doesn’t require much more time then the size of
the circuit it proves the output of.

If SPACE TMSAT requires larger circuits, say quadratic circuits, then the size
of the prover circuits would be quadratically larger than the input length of the
prover. That is, the prover circuit would be quadratically larger than the circuit
it is trying to prove. This would give quadratic overhead for the MA verifier
time over the size of the circuit it verifies. So this construction only works well
enough when SPACE TMSAT has almost linear sized circuits.

18

Lemma 3.3.1 (Bound From Exhaustive Search As Hard Problem). If for some
non-decreasing A(n) we have SPACE TMSAT ∈ SIZE[O(A(n))], then there is
some non-decreasing B(n) = Θ̃(n) such that for any time constructable, non-
decreasing S(n) with S(n) < 2n

n and S(n)2n = ω(A(B(S(n)))):

MATIME[Õ(A(B(S(n))))]/1 6⊂ SIZE[o(S(n/2))].

The B(n) in this problem comes directly from the prover space and the log
of the proof length5 of our PCP given in Corollary 3.0.3. The outer polyloga-
rithmic factors in the MA verifier time come from the number of queries made
by the PCP, the query time, and the PCP verifier time.

Proof. One can show SPACE TMSAT requires circuits of size Ω(n) since it can
compute parity and thus needs to read most of the bits in the input, so A(n) =
Ω(n). If S(n) = O(n), then use Corollary 2.0.6. Otherwise, we can assume
S(n) > 10n.

The proof proceeds in five steps.

1. Find a language L ∈ SPACE[Õ(S(n))] \ SIZE[S(n)/10]. In particular,
for every input length n, language L has circuits of size S(n) but not
S(n)/10.

2. Reduce L to SPACE TMSAT and use Corollary 3.0.3. In particular, find a
circuit, Cn, for the prover in an MA protocol for L on length n inputs.

3. Define our advice bit to implicitly give an upper bound for the size of Cm
for some m within a factor of 2 of n. Then we define W to be length m
elements of L, padded to length n.

4. Show that infinitely often the advice bit is 1 and W does not have small
circuits.

5. Show that W has an efficient MA protocol.

With that outline in mind, let us begin the proof.

1. Find a language L ∈ SPACE[Õ(S(n))] \ SIZE[o(S(n))].

By theorem premise S(n) < 2n/n. So from the non-uniform hierarchy
(see Theorem 6.22 in Arora and Barak [AB09]), there is a language L ∈
SIZE[S(n)] \ SIZE[S(n)/10]. In particular, for every n, language L on
length n has circuits size S(n) but not size S(n)/10.

Consider an algorithm, M , recognizing such an L which checks all circuits
of size S(n), and compares them with every circuit of size S(n)/10 on
every input, and returns the output from the first circuit of size S(n) that
disagrees with every circuit of size S(n)/10 on some input.

5The log of the proof length of a PCP gives the length of a query to the prover.

19

Then M runs in space Õ(S(n)) (there may be a logarithmic overhead
between the size of a circuit, and the size of its description) and recog-
nizes an L /∈ SIZE[S(n)/10]. So we have an L ∈ SPACE[Õ(S(n))] \
SIZE[S(n)/10]. In particular, for every n, language L on length n does
not have circuits of size S(n)/10.

2. Reduce L to SPACE TMSAT and use Corollary 3.0.3.

Since M only uses Õ(S(n)) space, for some g(n) = Õ(S(n)), we know x ∈
L if and only if (M,x, 1g(n), 0) ∈ SPACE TMSAT. We know SPACE TMSAT on
length Õ(S(n)) inputs has a PCP protocol from Corollary 3.0.3 that uses
poly(log(S(n))) many length Õ(S(n)) queries to a space Õ(S(n)) prover,
P , where each query can be calculated by a time Õ(S(n)) algorithm, Q,
and the results from P are verified by a time Õ(S(n)) verifier, V .

Now we reduce the prover P to SPACE TMSAT so we can use the premise
that SPACE TMSAT ∈ SIZE[O(A(n))] to get a circuit for P .

A length Õ(S(n)) query, q, to P can be converted into a length Õ(S(n)) in-
put, q′, for SPACE TMSAT by providing the algorithm for P and Õ(S(n)) 1s.
In particular, for some B(n) = Õ(n), proof input q′ has length B(S(n)).
We can also take B(n) = Ω(n). Call the circuit for SPACE TMSAT on length
|q′| inputs Cn. Since SPACE TMSAT ∈ SIZE[O(A(n))], we know Cn has size
O(A(B(S(n)))).

3. Define our advice bit.

Now an MA protocol can guess Cn, but we may not be able to compute
how large Cn needs to be. The function A(n) may be hard to compute.
So we use advice.

Let l = ρ(n), m = 2l and t = µ(n) so that n = m+ t. Then let the advice
bit be 1 if

(a) Circuit Cm has size S(m)2t.

(b) For any natural t′ less than t, circuit Cm does not have size S(m)2t
′
.

This condition allows us to use the smallest t possible for a given m.

Then x ∈W for some x with |x| = n if and only if the advice bit is 1 and
for some y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

4. Show W does not have small circuits.

First we show that for every large enough l, for m = 2l, there will be one
t such that this advice bit is 1. To show this, we will show that for some
t, Cm has size S(m)2t. Then for the minimum such t, the advice bit will
be one.

For t = m− 1, by premise of the theorem, we have

S(m)2t = S(m)2m/2 = ω(A(B(S(m)))).

20

This is eventually larger than Cm since Cm has size O(A(B(S(m)))). Then
for large enough l with m = 2l, there will be a smallest t so that Cm has
size S(m)2t circuits, since it will for t = m − 1. The advice bit for such
an n = m+ t must be 1. So infinitely often, the advice bit will be 1.

When the advice bit is 1, the language W on length n = m + t inputs is
equal to L on length m inputs. Language L on length m inputs does not
have circuits of size S(m)/10. See by choice of m that 2m > n, and S(n)
is monotone, so S(m)/10 > S(n/2)/10. Thus infinitely often, W does not
have size S(n/2)/10 circuits. Thus W /∈ SIZE[o(S(n/2))].

5. Show W has an efficient MA protocol.

If the advice bit is 0, this is trivially true. For n = 2l+t so that the advice
bit is 1 and m = 2l, either

t = 0 Then Cm has size S(m). Since A(n) = Ω(n) and B(n) = Ω(n), we
know Cm has size O(A(B(S(m)))).

t ≥ 1 Then Cm has size S(m)2t but not S(m)2t−1. Since Cm does have
circuits of size O(A(B(S(m)))):

S(m)2t−1 =O(A(B(S(m))))

S(m)2t =O(A(B(S(m)))).

In either case, an MA protocol can guess Cm with a circuit with size
O(A(B(S(m)))).

Then an MA protocol for x = y1n−m and an advice bit of 1 can verify if
y ∈ L by first guessing a circuit for Cm, then using it as the prover in the
PCP protocol from Corollary 3.0.3.

The MA verifier needs to calculate poly(log(S(m))) queries with Q, run
Cm on each of those queries, and run V on those results. Since Cm has
size O(A(B(S(m)))), and Q and V run in time Õ(S(m)), calculating all
query locations, running Cn on each of those locations, and V on those
outputs takes time

poly(log(S(m)))(Õ(S(m)) +O(A(B(S(m))))) + Õ(S(m))

=Õ(A(B(S(m))) + S(m))

=Õ(A(B(S(m)))).

The last equality comes from the fact A(n) = Ω(n) and B(n) = Ω(n).
Finally, since A, B and S are non-decreasing and m < n, the MA verifier
runs in time Õ(A(B(S(n)))).

The MA protocol is complete and sound since the PCP is. Thus W ∈
MATIME[Õ(A(B(S(n))))]/1.

21

Therefore

W ∈MATIME[Õ(A(B(S(n))))]/1 \ SIZE[o(S(n/2))].

And in the special case where SPACE TMSAT has almost linear sized circuits,
we get:

Corollary 3.3.2 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) =
o(1) and some non-decreasing function A(n) = n1+g(n) we have SPACE TMSAT ∈
SIZE[O(A(n))], then for any k > 0, there is an f(n) = o(1) such that:

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

Proof. We want to use Lemma 3.3.1 with S(n) = nk log(n). The size up-
per bound on S(n) is clear: S(n) = o(2n/n). We need to show S(n)2n =
ω(A(B(S(n)))). Well for any B(n) = Õ(n),

A(B(S(n))) =B(nk log(n))1+g(n)

=Õ(nk+kg(n))

=o(2n)

S(n)2n =ω(A(B(S(n)))).

So by Lemma 3.3.1, for some B(n) = Õ(n),

MATIME[Õ(A(B(S(n))))]/1 6⊂ SIZE[o(S(n/2))].

See that for some f(n) = o(1),

Õ(A(B(S(n)))) = Õ(nk+kg(n)) = O(nk+f(n)).

Similarly nk = o(S(n/2)), so we also have

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

3.4 SPACE TMSAT ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for a > 1

This is the “bad” case, where we can’t prove the result for every constant k,
only for k < a. This is the most complicated case, requiring us to both pad the
input to get the correct problem difficulty, and use advice to get the size of the
circuits for the prover.

Lemma 3.4.1 (Bound from SPACE TMSAT as Hard Problem). If for some non-
decreasing A(n) we have SPACE TMSAT ∈ SIZE[O(A(n))] \SIZE[o(A(n))], then
there is some non-decreasing B(n) = Θ̃(n) and D(n) = O(n) such that if
for some time constructable, non-decreasing S(n) with S(2n) = o(A(n)) and
S(n)2n = ω(A(B(n))), we have:

MATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 6⊂ SIZE[o(S(n/4))].

22

Before we give the proof, we explain the parameters in this result. In this
problem, you can think of D(n) as being similar to A−1(S(n)), though to sim-
plify the analysis, we use a more trivial bound of D(n) = O(n). The B(n) comes
from the prover space and log of the proof length of Corollary 3.0.3. Then this
fraction term in the MA verifier time, loosely, accounts for the increase in circuit
size for SPACE TMSAT on length n inputs versus length B(n) inputs.

If SPACE TMSAT ∈ P/poly, the difference between the size of circuits for
SPACE TMSAT on length n inputs and length B(n) inputs will be small (at least
for n where SPACE TMSAT requires circuits with size near the polynomial that
upper bounds the size of SPACE TMSAT). But if SPACE TMSAT requires larger
than polynomial sized circuits, then the difference in circuit size between length
n inputs and length B(n) may become large.

So the idea is to solve SPACE TMSAT on a padded version of the input using
our PCP. So we need the advice to tell us three things:

1. Some m so that SPACE TMSAT on length m inputs requires circuits of size
S(n/4).

2. Further, we need SPACE TMSAT on length m inputs to require circuits of
size near A(m/2). This keeps the prover from requiring circuits too much
larger than SPACE TMSAT on length m inputs does.

3. How big the circuit for the prover in Corollary 3.0.3 needs to be.

Similar to the previous cases, this advice will come implicitly from the input
length, and the single advice bit will be 1 if and only if the input length encodes
valid advice.

Proof. If S(n) = O(n), we use Corollary 2.0.6. Otherwise, we want to solve a
smaller instance of SPACE TMSAT that requires circuits of size S(n/4), and we
also need advice to tell us the size of circuits needed to prove SPACE TMSAT.
The advice for this will come implicitly from the input length.

For input x of length n, (using ρ and µ from Definition 3.1.1) let l = ρ(n),
l′ = ρ(µ(n)), and t = µ(µ(n)) so that n = 2l + 2l

′
+ t. We want to solve

SPACE TMSAT on length 2l
′

inputs, so we let m := 2l
′
. Let D(n) := m. Then

n = 2l + m + t and our language will solve length m inputs for SPACE TMSAT

using prover circuits of size S(2l)2t. Then the advice bit will only be 1 only
when this advice is good.

So then m is the input length to SPACE TMSAT we want to solve, 2l is how
much padding is needed to make length m problems the right difficulty, and
S(2l)2t is the size of the circuits needed for our PCP prover.

The proof proceeds in 4 steps.

1. Define circuits Cm that prove SPACE TMSAT for length m inputs using our
PCP and our theorem assumptions on circuits for SPACE TMSAT.

2. Define when the advice bit should be 1.

3. Show infinitely often the advice bit is 1 and W /∈ SIZE[o(S(n/4))].

23

4. Show that

W ∈MATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

Now following this outline:

1. Define circuits Cm that prove SPACE TMSAT for length m inputs.

Then SPACE TMSAT on length m inputs has a PCP protocol with verifier
time Õ(m), log of proof length Õ(m), and prover space Õ(m). Then for
some strictly increasing B(m) = Õ(m), the prover for SPACE TMSAT on
length m inputs can be reduced to a circuit for SPACE TMSAT with length
B(m) inputs. Then SPACE TMSAT on length B(m) inputs has a circuit,
Cm, of size at most O(A(B(m))). We can also take B(m) = Ω(m) so that
B(m) = Θ̃(m).

2. Define when the advice bit should be 1.

Since SPACE TMSAT /∈ SIZE[o(A(n))], for some c1 > 0, for some infinite
set, U ′, for all n′ ∈ U ′, language SPACE TMSAT on length n′ inputs does
not have circuits with size c1A(n).

Let the advice bit be 1 if and only if each of the following hold:

(a) SPACE TMSAT on length m inputs does not have circuits with size at
most c1A(m/2).

This restricts us to m where the circuits for SPACE TMSAT require size
near our upper bound. This limits how much bigger Cm needs to be
than the circuits for SPACE TMSAT on length m inputs.

(b) SPACE TMSAT on length m inputs does not have a circuit with size
S(2l−1). Note S(2l−1) ≥ S(n/4).

(c) SPACE TMSAT on length m inputs does have a circuit with size S(2l).

(d) Circuit Cm has size S(2l)2t.

(e) Either t = 0, or Cm does not have size S(2l)2t−1.

Then x ∈ W for some x with |x| = n if and only the advice bit is 1 and
for some y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

3. Now we will argue that infinitely often the advice bit is 1 and W does not
have circuits with size S(n/4). We do this in a few steps:

• First restrict our focus to m large enough and where SPACE TMSAT

on length m inputs has size near A(m/2). This will be the set of
input lengths, U .

Since, by theorem premise, S(2n) = o(A(n)), for some n2, for all
n′ > n2 : S(2n′) < c1A(n′).

24

Since, by theorem premise, S(n)2n = ω(A(B(n))), and Cn has size
at most O(A(B(n))), we have |Cn| = o(S(n)2n). So for some n3, for
all n′ > n3, circuit Cn′ has size S(n′)2n

′−1.

Take U∗ to be the n′ ∈ U ′ larger than max{n1, n2, n3}. See that U∗

is still an infinite set. For each length n′ ∈ U∗, we will find a length
n > n′ so the advice bit is 1.

For n′ ∈ U∗, let m = 2l
′

be the smallest power of 2 greater than n′.
That is, m > n′, but 2n′ ≥ m.

By choice of U∗ ⊆ U ′, language SPACE TMSAT on length n′ inputs does
not have circuits of size c1A(n′). Recall that the min circuit length
for SPACE TMSAT is monotone (see Lemma 3.0.2), so since m > n′,
language SPACE TMSAT on length m inputs does not have circuits of
size c1A(n′).

Since A is monotone and m ≤ 2n′, we know c1A(m/2) ≤ c1A(n′).
Since n′ > n2, we know S(2n′) < c1A(n′). Since S is monotone and
m ≤ 2n′, we have S(m) ≤ S(2n′). So we know S(m) ≤ c1A(n′).
Then since SPACE TMSAT on length m inputs does not have circuits
of size c1A(n′), we also have SPACE TMSAT on length m inputs does
not have circuits of size S(m). Similarly, since n′ ≥ m/2 and A is
monotone, SPACE TMSAT on length m inputs does not have circuits
of size c1A(m/2).

Let U be the set of m from each n′ ∈ U∗. See that U is an infinite
set since for each n′ ∈ U∗, there is an m ∈ U greater than n′, and
U∗ is an infinite set. Then for m ∈ U , language SPACE TMSAT on
length m inputs does not have circuits of size S(m) or c1A(m/2) and
m > max{n1, n2, n3}.

• For each m ∈ U , find appropriate l and t.

Take the smallest l so that SPACE TMSAT on lengthm inputs does have
a circuit of size S(2l). Note that l > l′ = log(m), since SPACE TMSAT

on length m inputs does not have circuits with size S(m).

Let t be the smallest t such that Cm has size S(m)2t. Since m > n3,
we know Cm has size at most S(m)2m−1. Thus t ≤ m− 1 < m.

• Now for n = 2l + m + t, we show the advice bit is 1 and language
SPACE TMSAT on length n inputs does not have circuits with size
S(n/4).

First, see that t < m, so m + t < 2l
′+1. As noted before, l′ < l, so

2l
′+1 ≤ 2l. Thus 2l > m + t and ρ(n) = l. Similarly l′ = ρ(µ(n)),

m = 2l
′
, and t = µ(µ(n)). Then

(a) By choice of U , language SPACE TMSAT on length m inputs does
not have circuits of size c1A(m/2).

(b) SPACE TMSAT on length m inputs does not have a circuit with
size S(2l−1), since we chose the smallest l so that SPACE TMSAT

on length m inputs has a circuit with size S(2l).

25

(c) For the same reason, SPACE TMSAT on length m inputs does have
a circuit with size S(2l),

(d) By choice of t, circuit Cm has size S(2l)2t.

(e) Specifically, t is the smallest such that Cm has size S(2l)2t. So
either t = 0, or Cm does not have size S(2l)2t−1.

So for that n, the advice bit is 1.

Since for every m ∈ U for some n > m the advice bit is 1, and U is
an infinite set, the advice bit is one infinitely often. For input lengths
where the advice bit is 1, SPACE TMSAT does not have circuits of size
S(2l−1) ≥ S(n/4). So SPACE TMSAT does not have circuits of size
S(n/4) infinitely often. Therefore

W /∈ SIZE[o(S(n/4))].

4. Show that

W ∈MATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

If the advice bit is 0, this is trivial. Otherwise, assume for n the advice
bit is 1.

When the advice bit is 1, we know Cm has size at most S(2l)2t and either

t = 0: Then Cm has size S(2l) = O(S(n)).

t ≥ 1: Then Cm does not have size S(2l)2t−1 by choice of t. Circuit Cm
has size A(B(m)). Thus

S(2l)2t−1 < A(B(m)).

Further, SPACE TMSAT on length m inputs does not have circuits with
size c1A(m/2) since the advice bit is 1, but it does have circuits with
size S(2l). Thus

c1A(m/2) < S(2l).

Together

S(2l)2t−1 <A(B(m))

c1A(m/2)2t−1 <A(B(m))

2t <
2

c1

A(B(m))

A(m/2)
.

Thus Cm has size

S(2l)2t = O

(
S(n)

A(B(D(n)))

A(D(n)/2)

)
.

26

The verifier for SPACE TMSAT can be simulated in time Õ(m), and the
poly(log(m)) queries to the prover can be simulated in time

poly(log(m))S(2l)2t = Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)
.

This gives a total MA time of Õ
(
S(n)A(B(D(n)))

A(D(n)/2)

)
for W . Thus

W ∈MATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

Therefore

W ∈MATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 \ SIZE[o(S(n/4))].

Now for the special case where SPACE TMSAT almost has some fixed polyno-
mial size.

Corollary 3.4.2 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some
function h(n) with |h(n)| = o(1) and for some constant a > 1, for some function
A(n) we have A(n) = na+h(n). Then if A(n) is non-decreasing and we have
SPACE TMSAT ∈ SIZE[O(A(n))] \ SIZE[o(A(n))], then for any k < a, for some
f(n) = o(1),

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

Proof. If k < 1, we use Corollary 2.0.6. Otherwise, let S(n) = nk log(n). Since
k < a, we have S(2n) = o(A(n)).

To apply Lemma 3.4.1, we need to show that for any B(n) = Θ̃(n), we have
S(n)2n = ω(A(B(n))). But since A(n) and B(n) are both polynomials, they
are smaller than 2n. That is

A(B(n)) =o(B(n)k+1/2)

=o(2n)

=o(S(n)2n).

This is equivalent to S(n)2n = ω(A(B(n))).
Now we can apply Lemma 3.4.1 to get a language W such that

W ∈MATIME

[
Õ

(
nk log(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 \ SIZE[o(nk log(n))].

Now let’s simplify this a bit. SinceW /∈ SIZE[o(nk log(n))] and nk = o(nk log(n)),
we have W /∈ SIZE[O(nk)].

27

Now we want to bound that fraction:

A(B(D(n)))

A(D(n)/2)
=

(B(D(n)))a+h(B(D(n)))

(D(n)/2)a+h(D(n)/2)
.

We start by letting D(n) = m and bounding this in terms of m first. Then

A(B(D(n)))

A(D(n)/2)
=

(B(m))a+h(B(m))

(m/2)a+h(m/2)

=Õ

(
ma+h(B(m))

ma+h(m/2)

)
=Õ

(
mh(B(m))−h(m/2)

)
.

Since B(m) = ω(1), and |h(m)| = o(1), we know |h(B(m))| = o(1). So for some
h∗(m) with |h∗(m)| = o(1), we have

A(B(D(n)))

A(D(n)/2)
=O(mh∗(m))

=O(D(n)h
∗(D(n))).

Note that since A and B are both non-decreasing, this fraction is at least 1. So
in particular h∗(n) ≥ 0, and h∗(n) = o(1).

Now using Lemma 2.0.9, since D(n) = O(n), for some h′(n) = o(1), we have

A(B(D(n)))

A(D(n)/2)
= O(nh

′(n)).

Thus for some f(n) = o(1), we have

Õ

(
nk log(n)

A(B(D(n)))

A(D(n)/2)

)
=Õ

(
nknh

′(n)
)

=O(nk+f(n)).

So W ∈ SIZE[O(nk+f(n))]. Thus we conclude:

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

3.5 Altogether

Altogether, these three cases imply Theorem 1.1.1.

Theorem 1.1.1 (Fine Grained MA Lower Bound). There exists a constant
a > 1, such that for all k < a, for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

28

Proof. First, we will find the best polynomial approximation of the circuit com-
plexity of SPACE TMSAT. So define set

S = {a ∈ R : SPACE TMSAT ∈ SIZE[O(na)]}.

If S = ∅, then there is no constant a such that SPACE TMSAT ∈ SIZE[O(na)].
Then SPACE TMSAT /∈ P/poly, so we use Corollary 3.2.3. Then Corollary 3.2.3
gives: for any k > 0, and some f(n) = o(1):

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

So suppose S 6= ∅. Now see that SPACE TMSAT requires circuits of size O(n)
since we can reduce parity to it and parity requires circuits of size O(n) (see
Lemma 2.0.5). Thus for any a < 1, we know that SPACE TMSAT /∈ SIZE[O(na)],
that is a /∈ S. So 1 is a lower bound for S.

Then the set S is nonempty and has a lower bound. So S has an infimum,
a, so that for any constant ε > 0, we have SPACE TMSAT ∈ SIZE[O(na+ε)], but
SPACE TMSAT /∈ SIZE[O(na−ε)].

Before we use Corollary 3.3.2 and Corollary 3.4.2, we need to find an A(n)
such that for some h(n), we have A(n) = na+h(n) and

1. A(n) is non-decreasing.

2. SPACE TMSAT ∈ SIZE[O(A(n))] \ SIZE[o(A(n))].

3. |h(n)| = o(1).

Let A′(n) be the minimum circuit size of SPACE TMSAT on length n inputs.
One might hope A′(n) would work for A(n), but the difficulty of SPACE TMSAT

may not increase smoothly. It may remain near linear for many consecutive n,
and only occasionally increase near na. So instead, we want a smoother function
for A(n) that never drops too far below na, but infinitely often is equal to A′(n).

So the idea is just to have A(n) be the maximum of A′(n) and some poly-
nomial just smaller than na, say na−ε. Then A(n) won’t get far away from
na if A′(n) becomes small. But we can’t use a constant ε, or we could get
|h(n)| = Ω(1). So instead, we make ε smaller each time A′(n) is larger than
na−ε.

Define m(n) so that m(0) = 0 and

m(n+ 1) =

{
m(n) + 1 A′(n) ≥ na−2−m(n)

m(n) otherwise
.

Then ε(n) = 2−m(n).

Now we define A(n) = max{A′(n), na−ε(n)}. Then for h(n) = log(A(n))
log(n) − a,

we have A(n) = na+h(n). Now we show the three conditions.

1. A(n) is non-decreasing.

A(n) is the maximum of two non-decreasing sequences: A′(n) and na−ε(n),
so is also non-decreasing.

29

2. SPACE TMSAT ∈ SIZE[O(A(n))] \ SIZE[o(A(n))].

By choice of A(n), for all n, A(n) ≥ A′(n), the minimum circuit size of
SPACE TMSAT, so SPACE TMSAT ∈ SIZE[O(A(n))].

Now we will argue that infinitely often, A(n) = A′(n). Otherwise, for
some n′, for all n ≥ n′, A′(n) < na−ε(n). If this were true, then for any
n ≥ n′, m(n) = m(n′) since for none of these n will m(n) increase. Thus
for all n > n′, A′(n) < na−ε(n

′). Then SPACE TMSAT ∈ SIZE[O(na−ε(n
′))].

But since ε(n′) > 0, by choice of a, this cannot happen. Contradiction.
So infinitely often, A(n) = A′(n).

Thus infinitely often, SPACE TMSAT requires circuits of size A(n), thus
SPACE TMSAT /∈ SIZE[o(A(n))].

3. |h(n)| = o(1).

From the last section, infinitely often, A′(n) ≥ na−ε(n), so m(n) → ∞,
and for h1(n) = ε(n) = o(1), we have a lower bound on A(n) of A(n) ≥
na−h1(n).

Let h2(n) = max{0, log(A
′(n))

log(n) − a}. See that na+h2(n) is always at least

na−ε(n) and A′(n), so A(n) ≤ na+h2(n). Next we show that h2(n) = o(1).

Suppose otherwise. Then for some c > 0, for infinitely many n, we have

h2(n) > c. But for such n, we have h2(n) = log(A′(n))
log(n) − a, so

A′(n) = na+h2(n) > na+c.

Then infinitely often, SPACE TMSAT does not have circuits of size na+c,
thus SPACE TMSAT /∈ SIZE[o(na+c)]. Specifically, for c/2 > 0, we have
SPACE TMSAT /∈ SIZE[O(na+c/2)]. But choice of a, this cannot happen.
Contradiction. So h2(n) = o(1).

Thus

na−h1(n) ≤ A(n) ≤ na+h2(n)

a− h1(n) ≤ log(A(n))

log(n)
≤ a+ h2(n)

−h1(n) ≤ h(n) ≤ h2(n)

|h(n)| ≤ max{h1(n), h2(n)}
= o(1).

If a = 1, we use Corollary 3.3.2. See that |h(n)| = o(1) and SPACE TMSAT ∈
SIZE[O(n1+|h(n)|)]. Thus for any k, for some f(n) = o(1), we have

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

If a > 1, we use Corollary 3.4.2. See that A was specifically constructed to
satisfy the theorem requirements. Then for any k < a, for some f(n) = o(1),
we have

MATIME[O(nk+f(n))]/1 6⊂ SIZE[O(nk)].

30

4 Extrapolatable PCPs

We introduce extrapolatable PCPs (ePCPs) as an intermediate PCP in con-
structing an efficient rPCP. We will later use rPCPs in PCP composition
to reduce the number of queries. Before defining an ePCP, rPCP or PCP
composition, we start by introducing several useful properties about extrapo-
latability.

4.1 Extrapolatable Functions

We defined extrapolatable functions to help construct functions we can com-
pute a low degree extrapolation of efficiently. For any Q : [q] → Fn, we say its
low degree extrapolation is the unique degree q − 1 function that agrees with
Q on its first q values. Any Q computable in time npolylog(|F|), we can com-
pute the extrapolation of Q in time qnpolylog(|F|). But we want to compute
the extrapolation of Q in time (q + n)polylog(|F|). Recall the definition of an
extrapolatable function.

Definition 1.2.1 (Extrapolatability). For any n, q, t > 0, and field F, we call
Q : [q] → Fn “t extrapolatable” (or time t extrapolatable) if there is a time t
algorithm taking any v ∈ Fq, that outputs∑

i∈[q]

viQ(i).

We will use Q where t ≤ (q + n)polylog(|F|).
Various basic combinations of extrapolatable functions give extrapolatable

functions.
The function that outputs one extrapolatable function for its first m in-

puts, and then a second extrapolatable function for its last m′ inputs is also
extrapolatable.

Lemma 4.1.1 (Extrapolatability Combination 1). For integers n, q, q′, t, t′ >
0, and field F, if p : [q] → Fn is t extrapolatable, and p′ : [q′] → Fn is t′

extrapolatable, then g : [q+ q′]→ Fn is O(t+ t′ + n log(F)) extrapolatable where

g(i) =

{
p(i) i ≤ q
p′(i− q) i > q

.

Proof. To prove g(i) is extrapolatable, we need an algorithm that takes v ∈
Fq+q′ and outputs ∑

i∈[q+q′]

vig(i).

31

We can write this sum as∑
i∈[q+q′]

vig(i) =
∑
i∈[q]

vig(i) +
∑
i∈[q′]

vq+ig(q + i)

=
∑
i∈[q]

vip(i) +
∑
i∈[q′]

vq+ip
′(i).

Then use extrapolatability of p to calculate∑
i∈[q]

vip(i)

in time t, and use extrapolatability of p′ to calculate∑
i∈[q′]

vq+ip
′(i)

in time t′. Then their sum is the answer, and addition takes time O(n log(F)).

Similarly, a function that outputs pairs of values from extrapolatable func-
tions is extrapolatable.

Lemma 4.1.2 (Extrapolatability Combination 2). For integers n, n′, q, t, t′ >
0, and field F, if p : [q] → Fn is t extrapolatable, and p′ : [q] → Fn′ is t′

extrapolatable, then g : [q]→ Fn+n′ is O(t+ t′) extrapolatable where

g(i) = (p(i), p′(i)).

Proof. Given v ∈ Fq, we need to calculate∑
i∈[q]

vig(i) =
∑
i∈[q]

vi(p(i), p
′(i))

=

∑
i∈[q]

vip(i),
∑
i∈[q]

vip
′(i)

 .

We use extrapolatability of p to calculate∑
i∈[q]

vip(i)

in time t, then use extrapolatability of p′ to calculate∑
i∈[q]

vip
′(i)

in time t′. Then concatenate the results.

32

As an example of extrapolatable functions, see that any function outputting
an arithmetic progression is extrapolatable.

Lemma 4.1.3 (Arithmetic Progressions are Extrapolatable). For integers n, q >
0, and field F, for any x ∈ Fn and y ∈ Fn, the function f : [q]→ Fn defined by

f(i) = x+ iy

is time O((n+ q)polylog(|F|) extrapolatable.

Proof. Given v ∈ Fq, we need to calculate∑
i∈[q]

vif(i) =
∑
i∈[q]

vi(x+ iy)

=

∑
i∈[q]

vi

x+

∑
i∈[q]

vii

 y.

Then one can calculate α =
∑
i∈[q] vi using just q field additions, which takes

time O(q log(|F|)). Similarly, one can calculate β =
∑
i∈[q] vii using only q

multiplications and additions, which takes time O(qpolylog(|F|)).
Now we need to calculate αx+βy. Since x ∈ Fn, it only n field operations to

multiply x by α, so αx only takes time O(npolylog(|F|)) to calculate. Similar
for βy and the sum of of αx with βy.

So altogether, this algorithm only takes time O((q+n)polylog(|F|) to com-
pute

∑
i∈[q] vif(i).

Now we show that we can efficiently extrapolate (compute the low degree
extrapolation of) an extrapolatable function.

Lemma 4.1.4 (Efficient Polynomials From Extrapolatability). For any n, q, t >
0, field F where |F| > q, and t extrapolatable Q : [q]→ Fn, there is a time

O(t+ qpolylog(|F|))

algorithm computing the value of a degree q − 1 polynomial, g, such that for all
i ∈ [q]

g(i) = Q(i).

Proof. We use Lagrange interpolation. For a given q, and i ∈ [q], the ith
Lagrange basis polynomial is:

lqi (x) =
∏

j∈[q]\{i}

x− j
i− j

.

This is the degree q − 1 polynomial that is 1 at x = i, but 0 for all other
x ∈ [q] \ {i}.

33

Then we can easily write our desired g in terms of the Lagrange basis poly-
nomials:

g(x) =
∑
i∈[q]

lqi (x)Q(i).

A naive, straightforward evaluation of this sum takes time O(nqpolylog(|F|)).
But since Q is t extrapolatable, if we can calculate lq1(x), . . . , lqq(x), we can use
these to calculate g in time t.

For a fixed x, and i, we can define

αi =
∏

j∈[i−1]

(x− j)

α′i =
∏

j∈[q]\[i]

(x− j)

βi =
∏

j∈[i−1]

j

β′i =
∏

j∈[q−i]

(−j)

so that

lqi (x) =
∏

j∈[q]\{i}

x− j
i− j

=
αiα

′
i

βiβ′i
.

Each one of these sequences (α, α′, β, β′) can be entirely computed in time
O(qpolylog(|F|)). For instance, see that for i < q, αi+1 = (x− i)αi, which can
be computed with two field operations. So all q of the αi can be computed in
time O(qpolylog(|F|)). Similarly for α′, β, and β′.

Now given each of α, α′, β, and β′ have already been calculated, we can calcu-
late lqi (x) in four field operations. Thus, every lq1(x), . . . , lqq(x) can be calculated
in time O(qpolylog(|F|)).

Finally, since Q is time t extrapolatable, we can calculate g(x) in time t,
giving a total time of O(t+ qpolylog(|F|)).

4.2 Robust PCPs and Extrapolatable PCPs

The purpose of an ePCP is to give an easy, efficient way to construct a robust
PCP (rPCP). This construction uses low degree testing. So before we define
ePCP and show how to convert one to a rPCP, we first define rPCP and
review low degree testing.

Loosely, a robust PCP is a PCP so that when x /∈ L, for any proof, most
sets of queries to that proof return not only a rejected response, but a response
that is far from any accepted response.

To formally define a robust PCPs, we need to define Hamming distance.

34

Definition 4.2.1 (Distance). For x, y ∈ Σn, define distance by the function,
∆:

∆(x, y) =

∑
i∈[n] 1xi 6=yi

n
= Pr
i∈[n]

[xi 6= yi].

For Y ⊂ Σn, define
∆(x, Y) = min

y∈Y
∆(x, y).

The only difference between a PCP (see Definition 2.0.8) and an rPCP is a
strengthening of the of soundness to robust soundness. Now we formally define
an rPCP.

Definition 4.2.2 (Robust PCP). For language L with a non-adaptive PCP
protocol, A, with verifier V , index function I, and alphabet Σ, we say A is a
robust PCP (rPCP) if:

Robust Soundness If x /∈ L then for every π′, for Yr = {σ : V (x, r, σ) = 1},

Er[∆(π′I(x,r), Yr)] ≥ 1− δ.

Completeness If x ∈ L and n = |x|, then there exists πx ∈ Σl(n) such that

Pr
r

[V (x, r, πxI(x,r)) = 1] = 1.

Then we say A has robust soundness δ.

Now we introduce extrapolatable PCPs (ePCPs) as an intermediate be-
tween a PCP and an rPCP. An ePCP is a PCP where:

1. An honest PCP proof is a low degree polynomial: π : Fm → F.

This allows us to make the PCP robust using an aggregation through
curves type technique.

2. We relax soundness to only be against low degree proofs.

This makes constructing ePCPs easier, since it lets us assume proofs
are low degree functions, and low degree polynomials are error correcting
codes.

3. The query function is extrapolatable (see Definition 1.2.1).

This makes the query locations of the robust PCP efficient to compute
individually.

Now we formally define an extrapolatable PCP (see standard PCPs, Defi-
nition 2.0.8, for reference).

Definition 4.2.3 (Extrapolatable PCP). We say a non-adaptive PCP, A, for
language L with verifier V , prover P , and query function Q is an extrapolatable
PCP (ePCP) if for some m and d:

35

1. For some field F, A uses alphabet F.

2. The proof length is |F|m.

That is, any proof, π, can be viewed as a function π : Fm → F.

Low Degree Completeness If x ∈ L and n = |x|, then there exists a polyno-
mial πx : Fn → F of degree at most d such that

Pr
r

[V (x, r, πx(I(x, r))) = 1] = 1,

and for every i ∈ [l(n)], we have P (x, i) = πxi .

Low Degree Soundness If x /∈ L then for every polynomial π′ : Fn → F of
degree at most d has

Pr
r

[V (x, r, π′(I(x, r))) = 1] ≤ δ.

Further, we say A has:

1. Extrapolation time t(n) if for any x, r, the function Qx,r(i) = Q(x, r, i) is
time t(n) extrapolatable.

2. Degree d and m variables.

3. Low degree soundness δ.

4. Perfect low degree completeness.

4.3 Low Degree Testing

Low degree testing checks if there is a global low degree polynomial a proof is
close to. We use this to find a low degree proof for an ePCP if a proof for our
rPCP is too often close to accepting inputs.

We use the “line versus point” low degree test. Our definition of the line ver-
sus point test has more redundancy than necessary (we allow multiple claimed
polynomials per line), but this is equivalent and simplifies our analysis.

Definition 4.3.1 (Line versus Point test). Let F be a field, f be a function
f : Fm → F, and degree d be an integer. For each line given by l : F→ Fm, let
there be a degree d polynomial gl : F→ F.

The line vs point test uniformly samples a line given by, l : F → Fm and a
uniform t ∈ F then accepts if and only if

f(l(t)) = gl(t).

Let LvPd(f) be the random variable that this test fails on function f for the
set of gl that fails with the lowest probability.

The failure probability of the line versus point test is related to the distance
to a low degree polynomial [AS97]. We will be using the result from [FS95].

36

Lemma 4.3.2 (Line vs Point Test Measures Distance to Degree). For some
constant c, for any integer d and field F with |F| ≥ cd, for any function f :
Fm → F, if

Pr[LvPd(f)] ≤ 0.12,

then there exists a degree d polynomial g so that

∆(f, g) ≤ 2 Pr[LvPd(f)].

If f is a degree d polynomial, then

Pr[LvPd(f)] = 0.

4.4 Extrapolatable PCPs to Robust PCPs

The idea is to take an ePCP, and instead of querying points, query all the
points along a curve that goes through those points. Since low degree functions
are an error correcting code, restricting low degree proofs to a low degree curve
gives an error correcting code. So by querying entire curves, we can make the
set of accepted query values for our PCP verifier an error correcting code.

Querying along a line and checking if it is low degree performs a low degree
test. A low degree test only succeeds with high probability if a proof is close to
a global, low degree polynomial. Then since low degree polynomials are error
correcting codes, if the query values are close to both the global low degree
polynomial and an accepted proof, the accepted proof is the global low degree
polynomial. If the query values for a proof are close to being accepted often, we
show a global low degree proof for the original ePCP succeeds often.

Then the idea of the protocol is to choose the randomness for the ePCP,
take a curve through all the query points of the ePCP, query all the locations
along this curve and check if the the curve is low degree, and the ePCP accepts
the proof on this curve. This is almost what the rPCP does, with a few caveats:

1. We also perform a robust line versus point test. This is just like a regular
line versus point test, except we check every point along the line. This
gives our line versus point test robustness since low degree polynomials
are an error correcting code.

2. To guarantee the curve is consistent with the global low degree polyno-
mial with high probability, we need a random point on the curve to be
approximately uniform over Fm. So we also choose another random point
in the proof, and use a curve that goes through the ePCP queries and
that point.

From Lemma 4.1.1, the function going through all these points is still
extrapolatable, and so by Lemma 4.1.4 we can efficiently compute the
curve going through them.

Theorem 4.4.1 (ePCP gives efficient rPCP). For any language L with an
ePCP, A, with

37

1. Verifier time t(n).

2. Verifier space s(n).

3. Extrapolation time t′(n).

4. Randomness r(n).

5. Degree d(n) and m(n) variables.

6. q(n) queries.

7. Alphabet F where |F| > 10q(n)d(n).

8. Prover P .

9. Low degree soundness 0.1.

10. Perfect low degree completeness.

Language L has an rPCP, B, with

1. Verifier time O(t(n) + |F|3polylog(|F|)).

2. Verifier space O(s(n) + log(|F|)).

3. Randomness r(n) +O(m(n) log(|F|)).

4. Query time O(t′(n) + (q(n) +m(n))polylog(|F|)).

5. O(|F|) queries.

6. Prover P with perfect completeness.

7. Soundness at most 0.99.

Some of these parameters are not great, like verifier time, soundness, or
number of queries, but they are good enough for our purposes. But it does
have very good query time, space, and small enough randomness, which are
important during composition.

Proof. Let V be the verifier, Q the query function, I the index function, and
P the prover from ePCP, A. We construct a new rPCP, B, that expects the
same low degree polynomial as proof as A. Our new verifier will be V ′ and our
new query function Q′. We will start by describing our protocol from a high
level, pointing out which parts are done by a new query function Q′ and V ′

later.
First, on input x, and proof π, our PCP protocol B will choose the random-

ness for A, call it r. This determines the query points for A, which are I(x, r).
By assumption, Qx,r(i) = Q(x, r, i) is time t′(n) extrapolatable.

Then B chooses some random y ∈ Fm. See that the function taking 1 to
y is time O(mpolylog(|F|)) extrapolatable. Let g : F → Fm be the degree

38

q(n) function such that, for each t ∈ [q(n)], we have g(t) = Q(x, r, t), and
g(q(n) + 1) = y.

Then π ◦ g is a degree d′ = dq polynomial if π is actually a degree d polyno-
mial. Our new rPCP verifier V ′ will check every point along π ◦ g and verify
it is a degree d′ polynomial that would cause our ePCP verifier V to accept.

Next B chooses a random z ∈ Fm to run a robust line versus point test
with line l(i) = y + i · z. Altogether, B uses randomness r′ = (r, y, z) and
|r′| = r(n) + (2m(n)) log(|F|).

Then query function Q′ : [2|F|]→ Fm is defined by

Q′(x, r′, i) =

{
g(i) i ≤ |F|
l(i− |F|) i > |F|

(where we define g(|F|) = g(0) and l(|F|) = l(0)).
We call the first |F| queries the curve queries and the second |F| queries the

line queries. Similarly, we call π evaluated on the first F queries the curve values
and π on the second F queries the line values.

The verifier V ′ first checks if the ePCP would accept the curve values, that
is, if V (x, r, πI(x,r)) = 1. It can do this since the first q queries of Q′ are the same
as Q. Then the verifier checks if the curve values are a degree d′ polynomial.
Finally, it checks if the line values are a degree d polynomial. Our new verifier
V ′ accepts only if all of these checks pass.

Now to keep verifier space down, we need to be a little careful how we
implement our low degree test, so we describe that first. Let f := π ◦ g so that
f is a function outputting the curve values. Using the degree d′ interpolating
polynomials,

ld
′

i (x) =
∏

j∈[d′]\{i}

x− j
i− j

,

we can write a degree d′ polynomial, h:

h(x) =
∑
i∈[d′]

ld
′

i (x)f(i).

If f is a degree d′ polynomial, then f = h. To see if f = h, we calculate h at
each point and compare to f .

Each ld
′

i can be computed directly by simply looping through each terms in
the sums and products, calculating them from the definition, and reusing the
space each time. Notably, we do NOT calculate the interpolating polynomials
the same way we computed them in Lemma 4.1.4. That version uses more
memory, but less time, and in this case we need less memory but allow for more
time. Instead, we use the naive algorithm following the definition directly. We
do a similar thing for the line versus point test.

Now to argue we achieve the stated performance.

1. Now we show the verifier time is O(t(n) + |F|3polylog(|F|)).

39

The verifier time is just the time to simulate V , which is t(n), plus the
time it takes to perform the low degree tests. To test the low degree of f
takes O(|F|) calculations of h(x). Each h(x) only takes O(d′) calculations
of ld

′

i (x). Each ld
′

i (x) only takes time O(d′polylog(|F|)). Thus the total
time for the low degree test of f is

O(|F|d′d′polylog(|F|)) = O(|F|3polylog(|F|)).

The line versus point checks take at most this long, so the overall time

O(t(n) + |F|3polylog(|F|).

2. Now we show the verifier space is O(s(n) + log(|F|)).
Calculating a single ld

′

i only requires keeping track of a constant number
of field elements and a pointer for j. Then given that, h(x) only needs
the additional space for another counter for i and another field element.
Finally, comparing all of the h(x) to the f(x) only takes space for another
pointer for the x and another field element. So it only requires a constant
number of pointers and field elements. Since |F| > d′, this only requires
O(log(|F|)) space.

We do a similar thing for the line versus point test.

So the total space of V ′ is the space used to run V plus O(log(|F|)). So
the total space is O(s(n) + log(|F|)).

3. As already shown, B uses randomness r(n) + (2m(n) + 1) log(|F|).

4. Next, we show the query time of the robust PCP.

By assumption, the query locations of Q are time t′(n) extrapolatable.
And by Lemma 4.1.1, adding y gives a O(t′ + m log(|F|)) extrapolatable
function. And g is the low degree extrapolation of this sequence.

By Lemma 4.1.4, we can calculate g in time O(t′(n)+(m+q)polylog(|F|)).
This handles the curve queries, as these are just evaluations of g.

The line queries just return a point in l(i) = y + i · z. These can be
calculated in O(mpolylog(|F|)) time.

In either case, we calculate Q′ in time

O(t′(n) + (m+ q)polylog(|F|)).

5. The number of queries are 2|F| = O(|F|).

6. Now we need to show the proof provided by P has perfect completeness.

This prover works, since by assumption, if x ∈ L, then P computes a
proof, πx, that V accepts and πx has degree d. Then πx ◦ g has degree
d′, and πx ◦ l has degree d, so the low degree tests will also succeed. Thus
with probability 1 will V ′ accept when given queries from πx.

40

7. Now we need to show soundness 0.99.

Let q′(n) = 2|F| be the number of queries made by our new protocol. Let
I ′(x, r) = (Q′(x, r′, i))i∈[q′(n)] be the index function of our rPCP.

We want to show that if x /∈ L, then for any proof π, the expected distance
of πI′(x,r) to any string that would make the verifier accept is more than
0.01. We prove the contrapositive.

Let Yr = {σ : V ′(x, r, σ) = 1}. Then we want to show if there exists a
proof π : Fm → F such that

Er[∆(πI′(x,r), Yr)] ≤ 0.01

then x ∈ L.

Suppose Er[∆(πI′(x,r), Yr)] < 0.01. First recall that our queries have 2
equal length parts: the curve and the line queries.

The proof idea is the following:

(a) With high probability, for randomness r, individually, the curve and
line queries agree on most points with a single proof window, σr ∈ Yr,
that is accepted on r.

(b) This implies a protocol for the line versus point test that frequently
succeeds. So π is close to low degree proof π′.

(c) Then with good probability, π on curve queries will agree with π′ at
most places.

(d) Often, π on curve queries agree with σr and π′ on most locations. So
σr and π′ are equal on the curve queries. So π′ is accepted often by
our ePCP, A.

(e) Then x ∈ L, since π′ is a low degree proof that is accepted often by
our ePCP and our ePCP has low degree soundness.

Let’s follow this outline.

(a) Let C be the set of randomness r so that for some σr ∈ Yr, the
distance between the πI(x,r) and σr is at most 0.1. We want to show
the probability r /∈ C is at most 0.1.

By definition of C, for any r /∈ C, we have ∆(πI(x,r), Yr) ≥ 0.1. Then
see that

0.01 ≥Er[∆(πI(x,r), Yr)]

≥Pr[r /∈ C]0.1

0.1 ≥Pr[r /∈ C]

Pr[r ∈ C] ≥0.9.

Notice in particular that for r ∈ C, the distance between πI(x,r) and
σr further restricted to the curve or line values is at most 0.2.

41

(b) Now our PCP encodes an implicit line versus point test that chooses
a line, and checks a random point along it. We will use this to show
that for some degree d function π′, we have ∆(π, π′) < 0.24.

For a given randomness r, let l be the line Q′ queries. Let pl be the
degree d function that agrees with the line values at the most places.
Now we show that for r ∈ C, we have pl is equal to the line values of
σr.

For r ∈ C, some σr disagrees with π on the line values on at most
0.2 fraction of places. Thus pl must also disagree with π on at most
0.2 fraction of places. Thus pl and σr agree with each other on at
least 0.6 fraction of places. So σr and pl agree on more than d points.
Since σr causes the verifier to accept, it’s line values have degree at
most d. So pl and σr on the line values are degree d polynomials that
agree on more than d places. So pl = σr on the line values.

Now, let us consider the probability that the line versus point test
fails. This is at most the probability that r /∈ C plus the probability
that r ∈ C and it fails for r. So

Pr[LvPd(π)] ≤ Pr[r ∈ C ∧ LvPd(π)] + Pr[r /∈ C].

The probability that a line versus point test fails for r ∈ C is just
the probability a random point in the point queries disagrees with pl.
But this is the same as the probability a random point in the point
queries disagrees with σr. This is at most twice times the distance
between σr and π:

Pr
r∈C

[LvPd(π)] ≤ 2Er∈C [∆(σr, πI(x,r))].

Thus

Pr[r ∈ C ∧ LvPd(π)]

= Pr[r ∈ C] Pr
r∈C

[LvPd(π)]

≤Pr[r ∈ C]2Er∈C [∆(σr, πI(x,r))]

≤2Er[∆(Yr, πI(x,r))].

So we can write

Pr[LvPd(π)] ≤Pr[r ∈ C ∧ LvPd(π)] + Pr[r /∈ C]

≤2E[∆(Yr, πI(x,r))] + Pr[r /∈ C]

≤0.02 + 0.1

≤0.12.

Thus the line versus point test fails with probability at most 0.12.
Then by Lemma 4.3.2, π is within 0.76 of a degree d polynomial, π′.
That is

∆(π, π′) < 0.24.

42

(c) Let D be the set of randomness so that on the curve queries, π has
distance at most 0.6 from π′. We want to show that Pr[r ∈ D] ≥ 0.4.

First, we show that any individual point in the curve query past the
first d′ queries is uniformly random. That is, for i ∈ [d′ + 1, |F|],
function g(i) is uniform as a function of r, or more particularly, y.

This is because each different value of y encodes a specific value of
g(i). But alternatively, we could make g(i) be any uniform value and
decide our degree q(n) polynomial that way, which would imply a
value for y. So there is a bijection between choices for y and choices
for g(i), and choices of y are uniform, so choices for g(i) must be too.

Let Ic = I ′[d′+1,|F|](x, r) be the set of curve queries for randomness r,

except the first d′, which are not uniformly distributed. By linearity
of expectation, the expected distance between π and π′ on Ic is the
expected distance between π and π′ overall, which is at most 0.24.
So then

E[∆(πIc , π
′
Ic)] = ∆(π, π′) < 0.24.

Now the distance of π on the curve queries from π′ is at most the
distance on Ic plus the fraction of curve queries not in Ic. So by a
Markov inequality,

Pr[r /∈ D] ≤Pr[∆(πIc , π
′
Ic) +

d′

|F|
≥ 0.6]

≤
E[∆(πIc , π

′
Ic

)] + 0.1

0.6

<
0.34

0.6
<0.6

(d) Now suppose r ∈ C ∩D. We want to show that our V accepts π′ on
this choice of randomness.

Since r ∈ C, for some proof σr accepted by the verifier, the distance
between σr and π on the curve queries is at most 0.2. Since r ∈ D,
the distance between π and π′ on the curve queries is at most 0.6.
So σr and π′ agree on at least 0.2 fraction of curve queries.

Since σr is accepted by the verifier, it has degree d′ on the curve
queries. Since π′ ◦ g is a composition of a degree d and q polynomial,
it has degree d′ = dq. Then both σr and π′ ◦ g on the curve queries
are degree d′ and agree on more than d′ locations. Thus σr and π′

are equal on the curve queries.

Since σr is accepted by V , so is π′ since they agree on the curve
queries. Thus for r ∈ C ∩ D, we have π′I(x,r) is accepted by the
original ePCP verifier, V .

43

(e) By a union bound, with probability at least 0.3, we have r ∈ C ∩D.
Thus with probability at least 0.3, our original ePCP protocol, A,
accepts proof π′. But this can’t be if x /∈ L since A has degree d
soundness 0.1. So x ∈ L.

Thus B has soundness 0.99.

5 Constructing our ePCP

We use a BFL style base PCP. Our ePCP verifier asks for a multilinear
extension of the computation history of an algorithm, and constructs a simple
formula that indicates an inconsistency in the computation history. Then it
does a sum check to verify that the arithmetization of this formula constructed
from the computation history is 0 on all Boolean inputs.

Then the base ePCP consists broadly of 4 parts.

1. Check consistency of input with the claimed multilinear extension of the
computation history. The multilinear extension of the input can be cal-
culated in a straightforward matter by the verifier. Then we just need to
compare our proof at the time 0 configuration to what it should actually
be at a random point

2. Check consistency of the claimed multilinear extension of the computation
history with the claimed value of an arithmetization of the inconsistency
formula. This can be done by using the claimed multilinear extension of
the computation history to calculate a random point in the arithmetization
of the inconsistency formula and checking if they are equal.

3. Run a sum check on the claimed arithmetization of the inconsistency for-
mula to verify it is constant 0 on Boolean inputs. Specifically, we check if
the multilinear function consistent with the inconsistency formula is the
constant 0 at a random point using a sum check.

5.1 Arithmetization

This paper frequently uses arithmetizations of boolean functions. We say that
a function f : Fn → F is consistent with a boolean function g : {0, 1}n → {0, 1}
if f agrees with g when restricted to boolean inputs. If further f is a low degree
polynomial, f is often called an arithmetization of g.

An example of an arithmetization is the multilinear extension of a boolean
function. That is just the unique multilinear function, f , that agrees with g on
boolean inputs. These can often be constructed very efficiently. For instance,
the multilinear extension of the equality function.

44

Definition 5.1.1 (Equality Arithmetization). For field F, and l ≥ 1, define
equ : Fl × Fl → F as:

equ(u, v) =
∏
i∈[l]

ui · vi + (1− ui) · (1− vi).

Observe that equ is the multilinear extension of the Boolean equality function.

But even for Boolean functions whose multilinear extensions can’t be com-
puted time efficiently, there is a space efficient, brute force way to compute
it.

Lemma 5.1.2 (Multilinear Extensions Require Low Space). Suppose function
G : {0, 1}n → {0, 1} is computable in space S. Then the multilinear function g
consistent with G on Boolean inputs is computable in space O(n log(|F|) + S).

Proof. This follows from the fact g can be written as

g(x) =
∑

y∈{0,1}n
G(y)equ(y, x).

Then this can be evaluated using only a pointer for y, a small amount of space
for equ, O(n) field elements, and the space to evaluate G.

5.2 Simulating With Automata

First, we need to translate from the RAM model of computation our algorithms
use to cellular automata. This is because we will be looking at an arithmetiza-
tion of a uniform, local, consistency check. It is important for us to keep the
degree of the arithmetization low, which requires very local checks.

Equivalently, one can think of this as just using the Cook-Levin reduction,
but we use the cellular automata point of view because it makes the local nature
of the computation clearer and more direct. If prover efficiency is a concern,
one can use more efficient cellular automata, as was done by [HR18].

A cell’s value in the next step of computation is only a function of it and
its neighboring cells. So a cellular automata is very local. Further, cellular
automata can simulate any RAM algorithm with only polynomial overhead in
time, and very little overhead in space.

In this lemma, think of S = O(n) and T = 2O(n). We will assume S and T
are efficiently computable. Then we have the following, direct conversion from
a RAM algorithm and an associated cellular automata.

Lemma 5.2.1 (RAM algorithms have simple cellular automata). Let A be
a RAM algorithm recognizing L, running in time T and space S where S =
Ω(log(n)) and T = Ω(S). Further, A uses input coming from a read only space
of n bits.

Then there is a 1 dimensional cellular automata, B, simulating A, such that

1. B runs in time T ′ = poly(T, n), and space S′ = O(n+ S).

45

2. B has a constant size alphabet, Σ, where for some k, we have |Σ| = 22
k

.
That is, Σ is represented by a power of 2 number of bits.

3. For any input x for A, there is a corresponding input for B, yx, of length
S′. And we also have that yx = (y1, y2x, y

3) where

(a) y1 has length O(log(S′)) and is independent of the specific x, only
the length of x, and y1 is computable in time O(|y1|).

(b) y2x is exactly n symbols where for some f : {0, 1} → Σ, for each
i ∈ [n], (y2x)i = f(xi), where f is computable in constant time.

(c) y3 is exactly S copies of a specific symbol in Σ.

4. Not all transitions for B will be defined, and A accepts on x if and only
if after time T ′ starting on yx, B reaches a steady state. Similarly, A
rejects on x if and only if there is no sequence of T ′ valid transitions in
B starting from yx.

5. If B has a starting state that is (y1, z) for any z that is not (y2x, y
3) for

some x ∈ L, then B will not have T ′ valid transitions.

6. Let x ∈ L be an input for A, with transformed input for B, yx. Given a
time t ∈ [T ′] and a memory location s ∈ [S′], there is a RAM algorithm C
that can compute the symbol in cell s at time t in B’s computation history
on yx in time O(T) and space O(S) given read only access to x.

Remark. The exact structure of the transformed input may seem overly specific,
but we need this extra structure to construct our decodable PCP. In particular,
our decodable PCP will need to know which cells encode a known, explicit, first
input, and which cells encode an unknown, implicit, second input.

We explain the translation more thoroughly in Appendix B.
For the purpose of analyses, it will be useful to look at a multilinear extension

associated with a low degree polynomial. So we define the following purely to
simplify the analysis of our PCP.

Definition 5.2.2 (Multilinear Extension of Binarized function (MLB)). For
any function f : Fn → F, there is a unique, multilinear function, g : Fn → F,
such that for all binary x ∈ {0, 1}n,

g(x) =

{
0 f(x) = 0

1 f(x) 6= 0
.

Then we say MLB(f) = g.

We can construct our inconsistency check from a claimed multilinear exten-
sion of a computation history. This comes from arithmetizing the transition
rules of a cellular automata. The construction is straightforward, but details
can be found in Appendix B.

46

Lemma 5.2.3 (Inconsistency Function). Let k be a constant, s, t be integers,

and F be a field. Let B be a cellular automata with 22
k

different states per cell
running in S = 2s cells, and time T = 2t. Then there is a function ΓB taking

any function X : Fs×Fk×Ft → F and returning a function Y : F3s+2t+4(2k) → F
such that:

1. If X is Boolean on Boolean inputs, Y is Boolean on Boolean inputs.

2. If X is Boolean on Boolean inputs, then Y is 0 on all Boolean inputs if
and only if X on Boolean inputs encodes a valid computation history for
B.

3. If X is degree d, then Y is degree O(s+ t+ d). If X is degree d in every
variable individually, Y is degree O(d) in every variable individually.

4. Given oracle access to X, Y can be computed in time O((t+s)polylog(|F|))
with a constant number of calls to X.

5. If Y = ΓB(X) is 0 on all Boolean inputs, then ΓB(MLB(X)) is also 0 on
all Boolean inputs.

5.3 Sum Check Protocols

Our PCP uses the sum check protocol. The sum check is a standard element of
PCPs, and all we add is a small bit of analysis that sum check is extrapolatable.

Lemma 5.3.1 (Sum Check Protocol). Let n, d ∈ N, and F be a field with
|F| > (d+ 1)n. Then there is some protocol, A, so that for any f : Fn × F→ F:

1. For some m = O(nd) and R = 2n, there is a verifier V : Fm → {0, 1} and
query function Q : FR × [m]→ Fn × F so that

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

2. V runs in time O(ndpolylog(|F|)) and space O(nd log(|F|)).

3. For any r ∈ FR, for Qr(i) = Q(r, i), Qr is time O(ndpolylog(|F|)) ex-
trapolatable.

4. For any r ∈ FR, the last coordinate of Q is always an element of [n+ 1].
That is, for all i ∈ [m], Q(r, i)n+1 ∈ [n+ 1]

Further, the last coordinate of Q is only equal to n+1 at most O(d) times.

Completeness For any g : Fn → F where g has max degree d in any individual
variable, if for all x ∈ {0, 1}n, g(x) = 0, then there is some f : Fn×F→ F
so that:

• For all x ∈ Fn we have g(x) = f(x, n+ 1).

47

• Sum check succeeds on f :

Pr
r

[A(f, r) = 1] = 1.

• Function f has degree at most d in each of its first n variables.

• If function g is computable in space S, then function f is computable
in space O(n log(|F|) + S).

Soundness for any g : Fn → F where g has max degree d′, if there exists
x ∈ {0, 1}n such that g(x) 6= 0, then for any f : Fn × F → F so that for
all x ∈ Fn, g(x) = f(x, n+ 1), sum check fails with high probability:

Pr
r

[A(f, r) = 1] ≤ (d′ + 1)n

|F|
.

We will prove just the extrapolatable property in the body of this paper.
For completeness, we prove the rest of the properties in Appendix C. To prove
extrapolatability, we first formally define the sum check algorithm.

Definition 5.3.2 (Sum Check Protocol Definition). Let n, d ∈ N, and F be a
field with |F| > max{d, n}+ 1. Suppose f : Fn×F→ F. Then the degree d Sum
Check Protocol on f is the following randomized algorithm.

1. Get 2n random field elements, R = (r1, . . . , rn and r′1, . . . , r
′
n).

2. Reject if f((r1, . . . , rn), 1) 6= 0.

3. For i from 1 to n:

(a) For j ∈ [d+ 1], query

aji = f((r′1, . . . , r
′
i−1, j, ri+1, . . . rn), i+ 1).

Using these, let gi : F→ F be the degree d polynomial so that for all
j ∈ [d+ 1], gi(j) = aji .

(b) If
f((r′1, . . . , r

′
i−1, ri, . . . rn), i) 6= (1− ri)gi(0) + rigi(1)

reject.

(c) If
f((r′1, . . . , r

′
i, ri+1, . . . rn), i+ 1) 6= gi(r

′
i)

reject.

4. If all checks pass, accept.

48

This should look familiar to anyone familiar with the sum check protocol.
At a high level, this protocol expects a sequence of polynomials where fi(x) =
f(x, i) such that fi is just fi+1 where the ith variable has been made degree
1 and fn+1 is degree at most d in each variable. Then sum check iteratively
checks if each polynomial is consistent with their definition.

The correctness of this protocol is standard. Here, we only show that this
protocol is extrapolatable.

Lemma 5.3.3 (Sum Check Queries Are Extrapolatable). For n, d ∈ N, field
F with |F| > max{d, n} + 1, and r = (r1, . . . , rn, r

′
1, . . . r

′
n) ∈ F2n, the degree d

sum check query locations, Qr, used in Definition 5.3.2, are O(ndpolylog(|F|))
extrapolatable.

Proof. Define the degree d sum check query location function, Qr : [(d+ 3)n]→
Fn × F, as, for any l ∈ [d+ 3] and i ∈ [n]:

Qr((d+ 3)(i− 1) + l) =



(
(r′1, . . . , r

′
i−1, ri, ri+1, . . . rn), i

)
l = 1(

(r′1, . . . , r
′
i−1, 1, ri+1, . . . rn), i+ 1

)
l = 2

...(
(r′1, . . . , r

′
i−1, d+ 1, ri+1, . . . rn), i+ 1

)
l = d+ 2(

(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . rn), i+ 1

)
l = d+ 3

.

These are the queries made to f by the sum check protocol for randomness
r = (r1, . . . , rn, r

′
1, . . . , r

′
n).

To show Qr is extrapolatable, take v1, . . . , v(d+3)n. We need an algorithm
running in time O(ndpolylog(|F|)) computing

u =
∑

i∈[(d+3)n]

viQr(i).

Note u is an n+ 1 component vector.
For any give j ∈ [n],

uj =

(d+3)(j−1)+1∑
i=1

virj

+

(
d+1∑
i=1

iv((d+3)(j−1)+1+i)

)
+

 (d+3)n∑
i=(d+3)j

vir
′
j

 .

We will handle un+1 at the end.
First, look at the first and last terms. For j ∈ [n], let

αj =

(d+3)(j−1)+1∑
i=1

vi

βj =

(d+3)n∑
i=(d+3)j

vi.

49

Then an iterative algorithm can calculate every αj and βj in O(ndpolylog(|F|))
time. Given αj and βj , uj can be calculated in O(dpolylog(|F|)) time. So all
uj for j ∈ [n] can be calculated in O(ndpolylog(|F|)) time.

Now un+1, as a single component, can just straightforwardly be evaluated
in time O(ndpolylog(|F|)) from the definition. Thus u can be calculated in
O(ndpolylog(|F|)) time.

For completeness, we prove the rest of Lemma 5.3.1 in Appendix C.

5.4 Our Base PCP

The idea of the PCP is to ask the prover for the function that takes a time t
and a bit of memory s and returns the value of cell s at time t in the cellular
automata. Of course, we need this to be error corrected, so we ask for the
multilinear extension of this function. We check if this is consistent with the
input. Then, given this function, we can compute an arithmetization of whether
cell s at time t has an improper transition. Finally, we run a sum check on this
arithmetization to see if it is 0 on all Boolean inputs.

This PCP is actually an ePCP, which can be converted into an rPCP.
Further, this PCP explicitly encodes its initial input, giving us a natural way
to extend it into a dPCP. We will give the extension to a dPCP in the next
section.

Lemma 5.4.1 (Base ePCP). Let S, T = Ω(n), and L be any language computed
by a simultaneous time T and space S algorithm.

There is some constant α > 0, so that for any field F with |F| > α log(T)2,
we have an ePCP with

1. Verifier time O((log(T) + n)polylog(|F|)) and space O(log(T) log(|F|)).

2. Randomness O(log(T) log(|F|)).

3. Prover space O(log(T) log(|F|) + S).

4. O(log(T)) queries.

5. Alphabet F.

6. Extrapolation time O(log(T)polylog(|F|)).

7. Degree O(log(T)) and O(log(T)) variables.

8. Perfect completeness.

9. Low degree soundness O
(

log(T)2

|F|

)
.

10. Log of proof length O(log(T) log(|F|)).

50

Proof. Take such a language L computed by RAM algorithm A running in time
T and space S. By Lemma 5.2.1, A has a simulation by a cellular automata B
with time T ′ polynomial in T and space S′ linear in S.

Let K = 2k be a constant power of two such that the states in B are encoded
in {0, 1}K . Let s and t be constants so that S′ ≤ 2s and T ′ ≤ 2t. There is also
a RAM algorithm C that can compute the bits of the computation history of B
in time O(T) and space O(S).

Let x be our input, and y be that input encoded for B. Now we will describe
an honest prover for x ∈ L.

If x ∈ L, then let X ′ : {0, 1}s×{0, 1}k×{0, 1}t → {0, 1} be the function that
outputs the computation history of B with the starting input being y. Then
by Lemma 5.1.2 the multilinear extension of X ′, X, can be computed in space
O(log(T) log(|F|) + S).

Then by Lemma 5.2.3, using X, we can compute Y = ΓB(X) that is constant
degree in each variable, uses constantly many queries to X, and Y is 0 on all
binary inputs (as well as the other properties listed in Lemma 5.2.3, which we
later use to prove soundness). Let m = 3s + 2t + 4K. Then Y is a function
Fm → F. Abusing notation slightly, let X : Fm → F be X applied to the first
s+ k + t variables.

Then by the completeness case of Lemma 5.3.1, in space O(log(T) log(|F|) +
S), the prover can compute the proof, f , for the sum check for Y . Let fi(x) =
f(x, i).

For all j ∈ [m+ 2], let lm+2
j : F→ F be the unique m+ 1 degree polynomial

that is 1 at j, and 0 for all other i ∈ [m + 2]. Then the proof for our PCP is
supposed to be π : Fm × F→ F where

π(z, i) =

 ∑
j∈[m+1]

lm+2
j (i)fj(z)

+ lm+2
m+2(i)X(z).

See that restricting i ∈ [m+ 1] gives fi, and for i = m+ 2 gives X.
Then we already showed how to computeX and f in spaceO(log(T) log(|F|)+

S). Then we only need additional space to store a pointer to j (which requires
only O(log(T)) space), and to compute the interpolating polynomial lmj . Recall
that

lm+2
j (i) =

∏
h∈[m+2]\{j}

i− h
j − h

.

Which can be straightforwardly computed with a constant number of field ele-
ments. So any symbol in π is computable in space O(log(T) log(|F|) + S).

Finally, π has constant degree in each of the first m variables, since X and
each of the fi do. And π has degree O(m) in the last variable since each lm+2

j

has degree O(m). This gives π a final degree of d = O(m).
Now we describe the verifier. For a provided proof, π, we will infer the

provided X, and f in the obvious way. The verifier runs a few checks for input
x.

51

1. Sum check of f .

Follow the verifier in the sum check protocol in Lemma 5.3.1. Just make
sure the F is large enough so the soundness is less than δ/4, which is true
for large enough α.

2. Consistency of X with fm+1.

Let W be the set of w so that the sum check queries f(w,m′ + 1). Sum
check will only query constantly many of such w, since the degree of Y is
constant. So W has constant size.

Then for w ∈W , use Lemma 5.2.3 to calculate Y (w) = ΓB(X)(w). Then
check if f(w,m′ + 1) = Y (w).

3. Consistency of X with y.

For input x, it has transformed input y = (y1, y2x, y
3) as described in

Lemma 5.2.1. Let n′ = O(n+ log(S)) be so that n′ ≥ (|y1|+ |y2x|)K, and
n′ is a power of 2: n′ = 2N .

Choose a random element, v ∈ FN , and compute

u(y, v) =
∑

z∈{0,1}N
equ(z, v)yz.

where we interpret z as a binary number and yz is the zth bit of y, and equ
is the multilinear extension of the equality function from Definition 5.1.1.

This is basically the multilinear extension of our first input. This should
be equal to some entry in X at time 0, with 0 for most space coordinates,
besides the first N being v. Specifically, for v′ = (0s−N+k, v, 0t), we should
have X(v′) = u(y, v).

Reject if X(v′) 6= u(y, v).

Now let us show this has the desired properties.

1. Verifier time O((log(T) + n)polylog(|F|)) and space O(log(T) log(|F|)).
The sum check protocol runs in time O(log(T)polylog(|F|)) and uses
space O(log(T) log(|F|)).
Checking consistency of X with fm+1 is only constantly many calculations
of Y , which only takes time O(mpolylog(|F|)) = O(log(T)polylog(|F|)).
When checking the consistency of X with input, we need to calculate
u(y, v). This can be done efficiently with a stack of partial calculations
of equ and enumerating through z in standard order. In expectation,
each value of z only requires a constant number of field operations, and
there are only O(n + log(S)) values for z. So it only takes time O((n +
log(T))polylog(|F|)). Further, the stack of partial calculations only needs
to hold N = O(log(n + log(S))) = O(log(T)) field elements, which only
takes O(log(T) log(|F|)) space.

52

2. Randomness O(log(T) log(|F|)).
The verifier needs to use O(log(T) log(|F|)) bits to run the sum check, and
to choose v.

3. Prover space O(log(T) log(|F|) + S).

We already went over the prover space when describing the prover.

4. O(log(T)) queries.

The sum check only takes O(log(T)) queries, and there are only constantly
many other queries.

5. Alphabet F.

From how we defined our ePCP.

6. Extrapolation time O(log(T)polylog(|F|)).
From Lemma 5.3.1, the sum check is time O(log(T)polylog(|F|)) extrap-
olatable. There are only constantly many other queries, so all the other
queries are trivially time O(log(T)polylog(|F|)) extrapolatable.

Since the query locations are just constantly many extrapolatable query lo-
cations, by Lemma 4.1.1, all together they are time O(log(T)polylog(|F|))
extrapolatable.

7. Degree O(log(T)) and O(log(T)) variables.

We already showed when describing an honest prover that we have degree
O(m) which is O(log(T)) and by definition of the proof, it has O(log(T))
variables.

8. Perfect completeness.

Follows for x ∈ L with an honest prover. Since x ∈ L, the prover provides
the X that is the multilinear extension of the computation history from
the proper y, so consistency with input passes. Similarly, f is honestly
given to be consistent with Y . So the consistency between X,Y , and
f passes. Finally, since X is a valid computation history, Y is 0 on all
Boolean inputs, so the sum check succeeds.

9. Low degree soundness O(log(T)2)
|F| .

Suppose x /∈ L and we are given a degree d = O(log(T)) proof, π. Then
X is a degree d function.

Now let X̂ = MLB(X), and X ′ be X̂ restricted to binary inputs. Since
x /∈ L, either X ′ is an invalid computation history, or it does not start
with state y.

If X ′ does not start with state (y1, y2x, z) for some z, X̂ restricted to
time 0 and 0 for everything but the first N spaces is not the multilinear
extension of the state y([n′]). Thus neither is X. Then the probability

53

that v is chosen so that X agrees with u(y, v) is at most d
|F| . So the ePCP

accepts with probability only d
|F| .

If X ′ does start with state (y1, y2x, z), and z 6= y3, then X ′ must be an
invalid computation history, since y1 is correct, by Lemma 5.2.1. Similarly,
if z = y3, the computation history must be invalid since x /∈ L. So then
all we have left is the case that X ′ is not a valid computation history.

Suppose X ′ is an invalid computation history. Then ΓB(X̂) must not be 0
on all Boolean inputs. Then from Lemma 5.2.3, by contrapositive, ΓB(X)
must not be 0 on all binary inputs.

Then by the soundness in Lemma 5.3.1, the sum check for ΓB(X) passes
with probability at most

(d+ 1)m

|F|
= O

(
log(T)2

|F|

)
.

So with probability at most O
(

log(T)2

|F|

)
do we accept.

10. Log of proof length O(log(T) log(|F|)).
This comes from the fact that the proof is a function with domain Fm+1,
and

log(|Fm+1|) = (m+ 1) log(|F|) = O(log(T) log(|F|)).

6 Decodable PCP and Composition

Our PCP uses the standard technique of PCP composition [AS98; BS+04;
DR04; MR08; DH09] to reduce the number of queries. Here we overview the
basics of PCP composition using robust and decodable PCPs [MR08; DH09],
construct our decodable PCP, and prove Theorem 1.1.2.

A decodable PCP (dPCP) is a PCP that not only verifies that a solution
to a problem exists, but also with high probability decodes a symbol from a
single6 solution.

Together, an rPCP and a dPCP give a composition theorem. The robust
“outer” PCP chooses queries to a large proof. For this set of queries, we ask a
decodable “inner” PCP to prove the outer PCP on this set of queries would
accept. Then we ask the inner, decodable PCP for a symbol that would have
been queried by the robust, outer PCP. Since the outer PCP is robust (see
Definition 4.2.2), if x /∈ L, then for many of the choices of queries, the outer
proof disagrees with any accepted queries at many places. Thus the outer proof
must often disagree with the symbol decoded by the inner PCP, since the inner
PCP decodes a symbol from a solution.

6Often, a dPCP will use list decodability, so that the dPCP can actually decode a symbol
from a small list of solutions. We only discuss unique decoding.

54

6.1 Decodable PCPs

A decodable PCP (dPCP) verifies pairs of inputs together: an explicit input,
and an implicit input.

• The explicit input is known to the verifier and contains the input x the
PCP is trying to verify.

• The implicit input is not known by the verifier, it is only known by the
prover. You should think of this as a proof for x, just one too large to
read. In our application, it will be polynomially larger than x, so our
verifier wouldn’t even have time to read it all.

Then the dPCP, in addition to verifying that this input as a pair are in a lan-
guage, needs to decode a symbol from the implicit input with high probability.

Our definition of dPCP is very similar to our definition of PCP (see Defi-
nition 2.0.8), except that

1. The implicit input has some specific, potentially non binary alphabet, Σ′,
in addition to the alphabet of the dPCP proof, Σ.

2. We renamed the verifier V to a decoder D. This is because when D accepts
it now outputs a symbol from Σ′, which it claims is a decoded symbol from
the implicit input. If it rejects, it outputs ⊥.

3. We rename the prover P to encoder E. This is because now the encoder
not only has an explicit input it must prove, but an implicit input that D
needs to decode.

In our application, our encoder E also cannot use enough space to hold
the entire implicit input. Instead, it will have to recalculate each symbol
of the implicit input every time it needs one.

Now we define a decodable PCP.

Definition 6.1.1 (Decodable PCP). Let L′ be a language containing pairs,
where if the first input is length n, the second input is m(n) symbols from alpha-
bet Σ′. We say L′ has a decodable PCP (dPCP), B, if for some decoder D,
encoder E, index function I, and query function Q, alphabet Σ, constant δ ≥ 0,
and functions q, r, l : N→ N:

1. I ′ takes 3 inputs, an input of length n, randomness r(n), and an index
in [m(n)] and outputs an element of [l(n)]q(n). That is, I outputs q(n)
indexes in a length l(n) string,

2. Q is an algorithm with 4 inputs, an input x of length n, randomness r of
length r(n), an index j ∈ [m(n)], and an index i ∈ [q(n)], and outputs an
element of [l(n)] such that Q(x, r, j, i) = I(x, r, j)i.

3. D is an algorithm that takes 4 inputs: an input of length n, randomness of
length r(n), q(n) symbols from Σ, and an index in [m(n)]. The algorithm
D outputs either an element of Σ′ or ⊥.

55

4. E is an algorithm that takes three inputs, an input of length n, some m(n)
symbols from Σ′, and an index i ∈ [l(n)], and outputs a symbol from Σ.

Completeness: For any x of length n and for any y ∈ Σ′m(n) such that (x, y) ∈
L′, there exists a proof πx,y such that

Pr
r,i

[D(x, r, πx,yI(x,r,i), i) = yi] = 1.

Further for every i ∈ [l(|x|)], we have E(x, y, i) = πx,yi .

Soundness: For any x and any π, if

Pr
r,i

[D(x, r, πI(x,r,i), i) 6=⊥] > δ,

then there is exists y such that (x, y) ∈ L′ and

Pr
r,i

[D(x, r, πI(x,r,i), i) /∈ {yi,⊥}] ≤ δ.

Then we also say:

1. B has proof length l′(n).

2. B has alphabet Σ.

3. B has soundness δ.

4. B uses q(n) queries.

5. B uses r(n) bits of randomness.

6. If D runs in time t(n), B has decoder time t(n).

7. If E runs in space s′(n), B has encoder space s′(n).

8. If Q is computable in time t′(n), B has query time t′(n).

Composing a robust and a decodable PCP gives a PCP with the number
of queries of the decodable PCP, plus one to compare the outer PCP proof
to the symbol decoded by the inner PCP. In our application, this allows us to
reduce a PCP that uses O(n) queries to one that uses O log(n)). The proof is
straightforward and included for completeness in Appendix A.

Theorem 6.1.2 (PCP Composition). Suppose L is a language with an rPCP,
A, with verifier V , prover P , query function Q, and index function I such that

1. Q runs in time t(n).

2. P run in space s(n).

3. V uses r(n) bits of randomness.

56

4. A uses alphabet Σ.

5. A has robust soundness δ.

6. A has perfect completeness.

7. A has proof length l(n).

Suppose L′ = {((x, r), y) : V (x, r, y) = 1}. Let n′ = n + r(n). Suppose L′

has a dPCP protocol, B, with decoder D and encoder E such that

1. E runs in space s′(n′).

2. D runs in time t′(n′).

3. B uses q′(n′) queries.

4. B has query time t∗(n′).

5. B uses alphabet Σ′.

6. B has soundness δ′.

7. B has perfect completeness.

8. B has proof length l′(n′).

Then there is a PCP protocol for L, C, such that

1. C has verifier time O(t′(n′))

2. C uses O(q′(n′)) queries.

3. C has prover space O(s(n) + t(n) + s′(n′)).

4. C uses alphabet Σ′ ∪ Σ.

5. C has query time O(t(n) + t∗(n′)).

6. C has soundness δ + δ′.

7. C has perfect completeness.

8. C has proof length l(n) + 2r(n)l′(n′).

57

6.2 More Low Degree Gadgets

Since our dPCP doesn’t use the reduction from ePCP to rPCP, it needs to
do low degree testing itself. Here, we mostly use local decoding properties of
low degree polynomials.

We show there is an implicit way to run the line versus point test (see
Definition 4.3.1) for a function f : Fn → F using queries to just f . We do this
by inferring gl from f(l(1)), . . . f(l(d+ 1)). This may not be the optimal gl, but
it still gives an upper bound for the probability of LvPd(f).

Lemma 6.2.1 (Implicit Line Versus Point Test). For a field F and degree d,
the implicit line versus point test is defined by the following. An index function
I, a query function Q, and a verifier V such that for any function f : Fn → F,
points x, y ∈ Fm, and t ∈ F:

1. I gives locations along a line

I(x, y, t) = (x+ 1 · y, . . . , x+ (d+ 1) · y, x+ t · y).

2. Q outputs elements from I:

Q(x, y, t, i) = I(x, y, t)i.

3. V , given t, and v ∈ Fd+2 as input, finds the degree d polynomial, g : F→ F,
such that for i ∈ [d+1], we have g(i) = vi. Then V accepts if g(t) = vd+2.

4. Then the implicit line versus point test is whether

V (t, f(I(x, y, t))) = 1.

The implicit line versus point test has the following properties:

1. V runs in time O(dpolylog(|F|)) and Q runs in time O(polylog(|F|)).

2. If x, y, and t are chosen uniformly at random, then

Pr
x,y,t

[V (t, f(I(x, y, t))) = 0] ≥ Pr[LvPd(f)].

3. If f has degree d, then

Pr
x,y,t

[V (t, f(I(x, y, t))) = 1] = 1.

Proof. Now we prove the properties.

1. To get the verifier running time, we can use Lagrange interpolation. See
Lemma 4.1.4 to see how to do Lagrange Interpolation. Function Q is just
a multiplication and an addition.

58

2. To get the probability of acceptance, first note for each i ∈ [d+ 1],

Q(x, y, t, i) = x+ i · y,

and
Q(y, x, t, d+ 2) = x+ t · y.

If x, y is chosen uniformly random, then g is just a degree d polynomial
for the line l(s) = x+ s · y. Then f(x+ t · y) = f(Q(x, y, t, d+ 2)), and

Pr[g(t) = f(x+ t · y)]

is at most the probability the probability the optimal g does, which is the
g the line versus point test uses. Thus for x, y, and t uniformly at random

Pr
x,y,t

[V (t, f(I(x, y, t))) = 0] ≥ Pr[LvPd(f)].

3. Finally, if f has degree d, then composing the line l(s) = x+ s · y with f
has degree d. So g agrees with that polynomial at d points, so is equal to
it. Then g at t is equal to it too.

We will use the implicit line versus point test several times to get high
confidence that f is actually very close to low degree.

Lemma 6.2.2 (Low degree test). There is some constant c, so that for any
integers d and n, field F with |F| ≥ cd, and constant ε ∈ (0, 15), there is some
protocol, A, so that:

1. For some m = O(d) and r = O(n), there is a verifier V : Fm → {0, 1}
and query function Q : Fr × [m]→ Fn so that for any f : Fn → F,

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

2. V runs in time O(dpolylog(|F|)) and Q runs in time O(polylog(|F|)).

Completeness If f : Fn → F is a degree d polynomial, then

Pr
r

[A(f, r) = 1] = 1.

Soundness If for f : Fn → F,

Pr
r

[A(f, r) = 1] ≥ ε,

then there exists some polynomial, h, of degree at most d so that

∆(f, h) ≤ ε.

59

Proof. Let B(f) be the random variable of the output of the implicit line versus

point test on a random input. Let k = 2 ln(1/ε)
ε . Let A be the protocol that

runs the implicit line versus point test (Lemma 6.2.1) k independent times with
uniformly random x, y, t and outputs if they all pass.

Then V runs in k times the time of the implicit line versus point test. Since
k is constant, this is time O(dpolylog(|F|)). Q is just a query from the implicit
line versus point test, which only takes time O(polylog(|F|)).

If f is a degree d polynomial, then B always succeeds, and so does A.
If Pr[LvPd(f)] ≤ Pr[B(f) = 0] = δ, then the probability of A passing is

Pr[A(f) = 1] = Pr[B(f) = 1]k

=(1− δ)k

=(1− δ)
2 ln(1/ε)

ε

≤e−δ
2 ln(1/ε)

ε .

If ε ≤ Pr[A(f) = 1], then

ε ≤e−δ
2 ln(1/ε)

ε

ln(ε) ≤− δ 2 ln(1/ε)

ε

δ
2 ln(1/ε)

ε
≤ ln(1/ε)

δ ≤ ε
2

Pr[LvPd(f)] ≤ ε
2
≤ 1/10.

Then by Lemma 4.3.2 there exists some d degree polynomial h so that

∆(f, h) ≤ ε.

We also need to do some error corrected queries to the low degree function
f is near. Essentially, we do a bunch of line versus point tests for lines going
through our point, and only output the value of f at that point if each of these
line versus point tests succeed and agree with the value at that point.

Lemma 6.2.3 (Self Correction Of Approximate Low Degree Polynomials). For
any ε > 0, integers d and n, field F with |F| > 4d, there is a protocol A such
that for any function f : Fn → F, and for any x ∈ Fn,:

1. For some m = O(d) and r(n) = O(n), there is a verifier V : Fm → F∪{⊥}
and query function Q : Fr(n) × [m]→ Fn so that

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

Here, ⊥ is some symbol outside of F indicating V rejects.

60

2. V runs in time O(dpolylog(|F|)) and Q runs in time O(polylog(|F|)).

Completeness If f is a degree d polynomial, for all r ∈ Fr(n), A(f, r) always
outputs f(x).

Soundness If for some degree d polynomial h, ∆(f, h) < 1/2, with probability
at least 1− ε over r ∈ FR, A(f, r) either rejects or outputs h(x). We call
ε the soundness.

Proof. Define algorithm B to be the conjunction (AND) of two calls of the the
implicit line versus point test where y is uniformly random, x comes from the
input, and once t = 0, and once t is a uniformly random element of F.

Explicitly, B first chooses a random y ∈ Fm and t ∈ F. Let gx,y : F → F
be the degree d function so that for i ∈ [d + 1], gx,y(i) = f(x + i · y). Then B
accepts if gx,y(0) = f(x) and gx,y(t) = f(x+ t · y).

Algorithm A runs B for k = 4 ln(1/ε) times, and if they all accept, it outputs
f(x). The query time for A is just the time for an implicit line versus point test
query. So Q runs in time O(polylog(|F|)). And V just runs O(k) instances of
the implicit line versus test verification, which takes time O(dpolylog(|F|)).

If f is degree d, then the implicit line versus point test always accepts, and
we always output f(x).

Now suppose for some degree d polynomial h, ∆(f, h) < 1/2. Then B can
only output the wrong value if f(x) 6= h(x), so suppose f(x) 6= h(x). Then B
only accepts erroneously if gx,y(0) = f(x), and gx,y(t) = f(x+ t · y).

Define the degree d polynomial hx,y(t) = h(x + t · y). Suppose for some y
we have gx,y(0) = f(x). Then gx,y 6= hx,y, since hx,y(0) = h(x) 6= f(x). Since
gx,y is a different degree d polynomial than hx,y, they agree on at most d places.
Then if t is both one of the places where f agrees with h, but h disagrees with
g, we reject.

Observe, x+ t · y is uniformly distributed over Fm. Then let C be the event
that gx,y(0) = f(x). Then by a union bound:

Pr[B = 1 ∧ h(x) 6= f(x)] ≤Pr
y,t

[C ∧ gx,y(t) = f(x+ t · y)]

≤Pr
y,t

[C ∧ (hx,y(t) 6= f(x+ t · y) ∨ hx,y(t) = gx,y(t))]

≤Pr
y,t

[h(x+ t · y) 6= f(x+ t · y)]

+ Pr
y,t

[C ∧ h(x+ t · y) = gx,y(t)]

≤1/2 + d/|F|
≤3/4.

Thus if B samples gx,y(i) at any of these at least 1/4 of the locations that it
disagrees with f , B rejects.

Each one of the k samples is independent and uniform. So the probability
that A erroneously outputs f(x) is at most (3/4)k ≤ ε. Thus with probability
1− ε, A outputs h(x), or rejects.

61

6.3 Decoding With Our PCP

Now we show how to convert our base ePCP (from Lemma 5.4.1) into a dPCP.
This requires the following changes:

1. We need to do a low degree test.

2. Queries to the multilinear extension of the input now need to be error
corrected.

3. We can’t verify the implicit input is at time 0 in the provided proof. We
can only verify the explicit input is at time 0.

4. We need to perform an extra error corrected query into the implicit input
to check a symbol from it. While we need to do O(log(|Σ|)) queries to get
a single symbol, we only need to do one error corrected query to check it.
To check it, we use a similar technique that we use for the explicit input,
except only on a single symbol.

Then we get the following dPCP:

Lemma 6.3.1 (Making our base PCP into a dPCP). Let S, T = Ω(n),
and L be a language of pairs where if the first element has n binary symbols,
the second element has m(n) = poly(n) symbols in some alphabet Σ where
log(|Σ|) = O(log(T)). Suppose L is computed by a simultaneous time T and
space S algorithm.

Then for any constant δ > 0, there is some constant α > 0, so that for any
field F with |F| > α log(T)2, we have a dPCP with

1. Decoder time O((log(T) + n)polylog(|F|)) and space O(log(T) log(|F|)).

2. Randomness O(log(T) log(|F|)).

3. Encoder space O(log(T) log(|F|) + S).

4. O(log(T)) queries.

5. Alphabet F.

6. Query time O(log(T)polylog(|F|)).

7. Soundness δ.

8. Perfect completeness.

9. Log of proof length O(log(T) log(|F|)).

Proof. Let A be the time T space S algorithm for L. Assume |Σ| = 2K where
K = 2k for some constant k.

The idea is to use the same PCP as Lemma 5.4.1, but adapted to take a pair
of inputs. Recall that our base PCP checks for a valid computation history of a
cellular automata that computes our function. Then we verify that the starting

62

state of that cellular automata is consistent with our input. We do the same
thing, except now we need to have the cellular automata also hold the second
input, and since we can’t know the second input, we can’t check it directly.

Recall the cellular automata (from Lemma 5.2.1) just simulates an algorithm
that runs in O(S) space. Then we modify our algorithm to add padding on the
explicit input. That is, we choose some n′ = 2N > max{n+O(log(S)),K} space
to store our first input and the registers. Then n′ = O(n + log(T)). Then the
second input will be stored outside that reserve region, followed by the working
space.

So for input x = (x1, x2) of length n + m(n), we will actually use an algo-
rithm, A′, that works on a padded version of this input: x′ = (x′1, x

′
2). Our

x′1 is x1 padded so that |y1| + |x′1| = n′. Note that while y1 is dependent on
the length of x′1, it is of logarithmic size in x′1 and efficiently computable, so
can easily be factored into the padding. Then x′2 can just be x2. Then we use
Lemma 5.2.1 to convert A′ into cellular automata B.

Let L′ be the language accepted by B. That is, the set of inputs so that B
eventually reaches a steady state. Let σ = {0, 1}K′ be the alphabet of B where
K ′ = 2k

′
. Then for some

s =O(log(n′ +m(n) log(|Σ|) + S)

=O(log(n) + log(S))

=O(log(T))

t =O(log(T)),

we have that B uses 2s cells of memory and runs in time 2t.
Our prover for this algorithm is the same as our base PCP. We use the same

notions of X, Y , f , and π from Lemma 5.4.1. Function X : Fs × Fk′ × Ft → F
should be the multilinear extension of the computation history of B. Function Y
should be the low degree polynomial arithmetization of an inconsistency formula
for X. Function f should be the sum check polynomial for Y , and π is a low
degree polynomial containing X, and f . Let d = s+ k′ + t = O(log(T)) be the
degree of the correct X, as well as the number of variables in X. Recall that f
can be though of as a sequence of d+ 1 functions.

For the verifier, we need to be able to find the index of a specific symbol in
the implicit input. We note each symbol in the second input after encoding into
the alphabet for B will be stored in a power of 2 bits: K ·K ′ = 2k+k

′
. Since

n′ > K and both are powers of two, for some a, we have n′ = aK. Then the ith
symbol of the implicit input is uniquely determined by the area in memory from
n′K ′ + iKK ′ = (a + i)KK ′ to (a + i + 1)KK ′ − 1. This allows the prover to
query a claimed multilinear extension of a single symbol from the second input
using one application of Lemma 6.2.3, in the same way we do for the entire first
input.

So our verifer on input x1, with padded version x′1, does:

1. A low degree test on X using Lemma 6.2.2 so that we accept with proba-
bility at most δ if X has distance 1

4 from every degree d function. Output
⊥ if the low degree test fails.

63

2. Sum check of f , same as Lemma 5.4.1. Output ⊥ if it would reject in our
base PCP.

3. Consistency of X with fd+1, same as Lemma 5.4.1, except we replace every
query to X with an error corrected query using Lemma 6.2.3. That is,
for every w so that the sum check step above makes a query to fd+1(w),
calculate Y (w) (from Lemma 5.2.3) using Lemma 6.2.3 for every call to
X.

Specifically, do the self corrected queries so that with probability at most
δ
2 will any error corrected query fail to return the degree d function closest
to the provided X. This can be done since δ, w, and the number of calls to
X used to calculate Y are constant. So the number of calls to Lemma 6.2.3
are constant.

Output ⊥ if any calls to Lemma 6.2.3 fails, or if any calculated Y (w)
disagrees with fd+1(w).

4. Consistency of X with y.

For input x′, it has transformed input y = (y1, y2x′ , y
3) as described in

Lemma 5.2.1. In particular, we can separate y2x′ into y21 as the transformed
version of x′1, and y22 as the transformed version of x′2.

We already chose n′, or rather x′, so that n′ = |y1|+ |y21 | = 2N .

Choose a random element, v ∈ FN+k′ , and compute

u(y, v) =
∑

z∈{0,1}N+k′

equ(z, v)yz.

This can be done since for these z, yz is either in y1 or y21 , which we know.
This is basically the multilinear extension of our first input. This should
be equal to some entry in X at time 0, with 0 for most space coordinates,
besides the first N + k′ being v: v′.

Then use Lemma 6.2.3 to get an error corrected query to X(v′) with
soundness δ/4. Output ⊥ if X(v′) 6= u(y, v).

5. Decode a symbol from x2.

We get an i ∈ [m(n)] for the symbol of the second input we want to query.
We make KK ′ queries to get a claimed value of what symbol i should be.
These are just the bits at time 0 at locations (a + i)KK ′, . . . , (n′ + i +
1)KK ′ − 1. These together give a claimed value for the ith symbol, call
it y′. Reject if any of these symbols are non binary.

Then choose a random b ∈ Fk+k′ . Now we want to check if the multilinear
extension of the claimed value for the ith symbol above is consistent with
the proof. We do this the same way as the primary input, except that all
the space field elements are set to the binary values for the ith index, and
the bottom k + k′ are set to b. Then we can get an error corrected query
of this one location using Lemma 6.2.3.

64

That is, we calculate

u′(y′, b) =
∑

z∈{0,1}k+k′
equ(z, b)y′z.

This should be equal to some entry of X at time 0, with the top space
coordinates being a+ i, and the bottom space coordinates being b: b′.

Then use Lemma 6.2.3 to get an error corrected query to X(b′) with
soundness δ/4. Output ⊥ if X(b′) 6= u(y′, b). Otherwise, the ith symbol
is probably what encodes to y′. Output what symbol of Σ that encodes
to y′.

Now to prove this achieves the desired results.

1. Decoder time O((log(T) + n)polylog(|F|)) and space O(log(T) log(|F|)).
Since d = O(log(T)), the low degree test runs in time O(dpolylog(|F|)) =
O(log(T)polylog(|F|)) and space O(log(T) log(|F|)). The sum check runs
in time O(log(T)polylog(|F|)) and space O(log(T) log(|F|)).
Checking consistency of X with fd+1 is only constantly many calculations
of Y , which only takes time O(dpolylog(|F|)) = O(log(T)polylog(|F|)).
Altogether, we only need to do a constant number of error correcting
queries (Lemma 6.2.3), each of which takes time O(log(T)polylog(|F|))
and space O(log(T) log(|F|)).
Like in Lemma 5.4.1, checking the consistency of X with our input only
takes time O((n+ log(T))polylog(|F|)) and space O(log(T) log(|F|)).
When decoding a symbol from the implicit input, we need to compute a
multilinear extension of a Boolean function with O(log(|Σ|)) = O(log(T))
inputs, which can be done in simultaneous time O(log(T)polylog(|F|))
and space O(log(T) log(|F|)).

2. Randomness O(log(T) log(|F|)).
The low degree test takes O(log(T) log(|F|)) bits of randomness. The sum
check, all the error corrected queries, and choosing the point to compare
X to the input also take O(log(T) log(|F|)) bits of randomness.

We need k′ + k = O(log(log(|Σ|))) = O(log(T)) random field elements to
choose b when checking the decoded symbol, which uses O(log(T) log(|F|))
bits of randomness.

3. Encoder space O(log(T) log(|F|) + S).

One can follow the proof from Lemma 5.4.1 since we are using the same
encoder as that prover. Specifically, the simulation of the cellular au-
tomata from Lemma 5.2.1 is space efficient and only depends on the space
of the RAM algorithm it simulates, not the size of it’s input.

Using oracle access to the state of the cellular automata, X is low space to
calculate by Lemma 5.1.2, and Y is low space to calculate by Lemma 5.2.3,
and so is the sum check Lemma 5.3.1.

65

4. O(log(T)) queries.

The low degree test, sum check, and error corrected queries all only re-
quire O(log(T)) queries. We need to query O(log(T)) locations to get the
claimed symbol from the implicit input.

5. Alphabet F.

By definition of the proof.

6. Query time O(log(T)polylog(|F|)).
Low degree tests and sum check have query time O(log(T)polylog(|F|)).
The queries for decoding a symbol takes time O(log(T)polylog(|F|)) to
calculate the index of the ith implicit input.

7. Soundness δ.

The soundness argument is similar to our base PCP.

Take any proposed proof, π. Let x1 be the explicit input, x′1 its padded
transformation, and y21 the encoded input of x′ = x′1 properly encoded for
B. Let L′ be the language recognized by B.

If the low degree test passes only with probability δ, then the probability
we don’t output ⊥ is only δ, and we are done. Otherwise, X is within 1/4
of a degree d polynomial, X̃.

Let X̂ = MLB(X̃), and X ′ be X̂ restricted to binary inputs.

If X ′ does not start with state (y1, y21 , z) for some z, X̂ restricted to time
0 and 0 for everything but the first NK ′ spaces is not the multilinear
extension of the state y([n′]). Thus neither is X̃. Then the probability
that v is chosen so that X̃ agrees with u(y, v) is at most d

|F| < δ/4. If they

don’t agree, with probability at most δ/4 will our sample to X̃(v) fail to
show us they disagree. So overall, we succeed with probability at most δ.

Suppose X ′ starts with state (y1, y21 , z
1, z2). If (y1, y21 , z

1, z2) /∈ L′, then
the computation history of X ′ is invalid. Then ΓB(X̂) (from Lemma 5.2.3)
is not 0 on all Boolean inputs, so ΓB(X̃) is not 0 on all boolean inputs.
The probability that any ΓB(X̃) is miscalculated is at most δ/2 since the
probability any error correcting query returns a response other than X̃ is
δ/2.

By the soundness of Lemma 5.3.1, the sum check passes with probability
at most

O((d+ 1) log(T))

‖F‖
≤ δ

2

for large enough α. So the probability the sum check succeeds or we
miscalculate ΓB(X̃) is at most δ, and one of these two has to happen to
accept. So the probability we accept is at most δ.

Suppose (y1, y21 , z
1, z2) ∈ L′. Since y1 is correct, z2 = y3, and (y21 , y

2
2)

must be some valid encoding of an elemnet in L, from Lemma 5.2.1. Since

66

y21 is a valid encoding of x′1, we have x′ = (x′1, x
′
2) for some x′2. Further,

x′2 corresponds to some unpadded x2 such that (x1, x2) ∈ L.

So we have our valid x2, now we just have to show that we decode it or
output ⊥ with high probability. For index i, let y′ be the state for cell
i from directly sampling it from the proof. If y′ = y22(i), then we either
output ⊥, or the symbol y22(i) decoded from y′, which is what we want.
So suppose y′ 6= y22(i).

Then X̃ restricted to the projection of the variables for y22 at cell i is a
different degree d = O(log(T)) polynomial than the multilinear extension
of y′. Then they agree on at most d

|F| < δ/4 locations. So the probability

we chose a location to check that they agree is at most δ/4. Finally, the
probability we fail to accurately query this location in X̃ is at most δ/4.
So the probability we don’t output ⊥ is at most δ.

8. Perfect completeness.

An honest proof has an X of degree d, so passes the low degree test. Will
have no inconsistencies, so passes the sum check and X is consistent with
Y . Since X is degree d, all error corrected queries succeed. Since X is
honest, it will be consistent with the input. Since X is honest, it will pass
the check when decoding a symbol from the implicit input.

9. Log of proof length O(log(T) log(|F|)).
Same as Lemma 5.4.1, this follows from the fact the proof is just a function
π : FO(log(T)) → F.

6.4 Constructing our Efficient PCP

Finally, we can use Lemma 5.4.1 to get an ePCP and Theorem 4.4.1 to get an
rPCP. Then we use Lemma 6.3.1 to get a dPCP that we use in Theorem 6.1.2
to get a query efficient PCP with constant soundness. Then we use repetitions
for amplification to get a PCP with a small constant soundness, which proves
Theorem 1.1.2.

Theorem 1.1.2 (Verifier Efficient PCP). Let S, T = Ω(n) be functions, and
L be any language computed by a simultaneous time T and space S algorithm.
Let δ ∈ (0, 1/2) be a constant. Then there is a PCP for L with:

1. Verifier time Õ(n+ log(T)).

2. Query time Õ(log(T)).

3. O(log(n) + log(log(T))) queries.

4. Alphabet Σ with log(|Σ|) = O(log(log(T))).

5. Log of proof length Õ(log(T)).

67

6. Prover space Õ(S).

7. Perfect completeness and soundness δ.

Proof. Let F be a field with |F| = α log(T)2 for sufficiently large α. Use
Lemma 5.4.1 to get an ePCP, A′, with:

1. Verifier time O((log(T) + n)polylog(|F|)) and space O(log(T) log(|F|)).

2. Randomness O(log(T) log(|F|)).

3. Prover space O(log(|F|) log(T) + S).

4. O(log(T)) queries.

5. Alphabet F.

6. Extrapolation time O(log(T)polylog(|F|)).

7. Degree O(log(T)) and O(log(T)) variables.

8. Perfect completeness.

9. Low degree soundness 0.1.

10. Log of proof length O(log(T) log(|F|)).

Then run Theorem 4.4.1 to get a rPCP, A with:

1. Verifier time polynomial in log(T), n, and polylog(|F|).

2. Verifier space O(log(|F|) log(T) + S).

3. Randomness r(n) = O(log(T) log(|F|)).

4. Alphabet F.

5. O(|F|) queries.

6. Query time O(log(T)polylog(|F|)).

7. It has log of proof length O(log(T) log(|F|)) since it has the same prover
as A′.

And prover space O(log(|F|) log(T) + S).

8. Perfect completeness and soundness 0.99.

Let V be the verifier for A. Now let L′ = {((x, r), p) : V (x, r, p) = 1}. Then
L′ is a pair language, where for length n′ = n + r(n) = O(n + log(T) log(|F|))
first inputs, there is a length m = O(|F|) = poly(log(T)) = poly(n′) second
input with symbols from F. Further language L′ is decided by a Turing machine
running in time poly(n′), and space O(n′ + S)

68

Note that Lemma 6.3.1 only holds for algorithms with time and space bounds
at least n. So we bound the time and space of our verifier V by poly(n′). See
that log(|F|) = O(log(log(T))) = O(log(n′)) and for any α′, for sufficiently large
α, we have |F| > α log(T)2 ≥ α′ log(n′)2.

Then by Lemma 6.3.1, there is a dPCP for L′, B, such that B has:

1. Decoder time

O((log(n′) + n′)polylog(|F|))
=O((n+ log(T) log(|F|))polylog(|F|)).

2. Randomness

O(log(n′) log(|F|)) = O(log(T) log(|F|)).

3. Encoder space

O(log(n′) log(|F|) + S) = O(log(T) log(|F|) + S).

4. O(log(n′)) = O(log(n) + log(log(T))) queries.

5. Alphabet F.

6. Query time

O(log(n′)polylog(|F|)) = O((log(n) + log(log(T)))polylog(|F|)).

7. Perfect completeness and soundness 0.005.

8. Log of proof length

O(log(n′) log(|F|)) = O((log(n) + log(log(T))) log(|F|)).

Then by Theorem 6.1.2, we have a PCP for L, C, such that C has:

1. Verifier time O((n+ log(T) log(|F|))polylog(|F|))

2. Query time O(log(T)polylog(|F|)).

3. O(log(n) + log(log(T))) queries.

4. Alphabet F.

5. Log of proof length O(log(T) log(|F|))

6. Prover space O(log(T)polylog(|F|) + S).

7. Perfect completeness and soundness 0.995.

Then, by repeating this for 200 ln(1/δ) times, we get a PCP that uses within
a constant factor the same time, space, and number of queries, and has sound-
ness δ.

69

7 Open Problems

There are several ways we would like to improve the circuit lower bounds.

1. Remove the advice bit.

We still had to use advice, a limitation from the original Santhanam re-
sult. It would be nice if we could get lower bounds on MA with no
non-uniformity.

2. Prove tight bounds for all k.

Another limitation of our circuit lower bound is that it does not prove this
tight bound for all k > 1, just for some k.

The major barrier is in the case that SPACE[n] algorithms may require
super linear, but polynomial, sized circuits. Then the circuit size required
for any given space may change in a strange way. For example, suppose
for some a > 1

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)].

What we would like, but this does not obviously imply, is that for all
b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

While a padding argument gives SPACE[nb] ⊆ SIZE[O(nab)], it does not
give SPACE[nb] 6⊆ SIZE[o(nab)]. We may even have something weird,
like

SPACE[na] ⊆ SIZE[O(na)] \ SIZE[o(na)].

That is, even if space n algorithms require circuit size na, we may not
need larger circuits until our algorithms use more space than na.

In this case, to get circuit lower bounds greater than na, we need to use
an algorithm with space greater than na. Unfortunately, our verifier uses
queries to the prover of the same length as the space of the algorithm being
verified. Then the prover needs to use linear space in its input length, and
may require size (na)a = na

2

circuits.

One way to try to solve this problem is to show that if

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)]

for some a > 1, then for all b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

This seems plausible, but hard to prove.

Another direction is to find an efficient PCP for SPACE[nb] with prover

queries shorter than nb (or equivalently, proof length less than 2n
b

). But
this seems hard as shorter PCP proofs imply more efficient algorithms.

70

For instance, for constant c, if L has a PCP with polynomial time ver-
ifier and proof length 2n

c

, then L ∈ MATIME[O(2n
c

)] just by guess-
ing the whole proof string, and verifying it. So if every language in

NTIME[O(2n
b

)] had a PCP with proof length O(2n
c

), then we would
have

NTIME[O(2n
b

)] ⊆MATIME[O(2n
c

)].

If c < b, this would contradict a derandomization conjecture that

MATIME[f(n)] ⊆ NTIME[poly(f(n))].

Thus any more efficient PCP either must not apply to nondeterministic
algorithms (ours does), or MA cannot be efficiently derandomized. This
does not rule out this approach, but is a major challenge.

3. Make lower bound more frequent.

Another direction is improving the infinitely often separation to a more
frequently often separation. Murray and Williams [MW18] gave a refine-
ment of the Santhanam circuit lower bounds that is incomparable to ours.
In it they proved that for some L ∈ MA/O(log(n)) and constant c, for
almost every n, either L on length n inputs wouldn’t have circuits with
size nk, or L on length nck inputs wouldn’t have circuits with size nc

2k2 .
One might want to strengthen their results.

Perhaps something like: for some k > 1, for some function f(n) =
o(1), language L′ ∈MATIME[O(nk+f(n))]/O(log(n)), and gap function
g(n) = poly(n), for all n, for some m ∈ [n, g(n)], language L′ on length
m inputs does not have circuits of size mk.

The Murray and Williams result produces a language L that for every
input length n will either be the downward self reducible language from
Santhanam’s result (Y in Lemma 3.2.1), or a circuit found with exhaustive
search (like in Lemma 3.3.1). If the prover circuit for the exhaustive search
is small enough, then L is exhaustive search. Otherwise, L is (possibly
padded) Y .

The idea is that if exhaustive search on length n inputs doesn’t have small
prover circuits, than for the input length of the prover circuits, we have a
hard problem (specifically, Y). Unfortunately, provers have input length
about nck for some constant c. For that prover to be hard enough for our
circuit lower bound, length nck inputs must require size nck

2

circuits. So
to make sure the provers are hard enough, length n inputs for exhaustive
search may have to use prover circuits as large as nck

2

!

Our PCP can improve the constant c in the Murray and Williams result,
but improving the approximately nk

2

verifier time to near nk requires new
ideas.

4. Prove exponential lower bounds for MAEXP.

71

A similar problem is to prove exponential circuit lower bounds for the
exponential version of MA, known as MAEXP. The best circuit lower
bounds known for MAEXP are “half-exponential” by Miltersen, Vinod-
chandran, and Watanabe [MVW99]. Loosely, a function is half exponen-
tial if that function composed with itself is exponential.

One could also look to improve our PCP. In particular, one could try to
replicate other existing results while maintaining the Õ(n + log(T)) runtime.
Standard techniques can reduce the number of queries, or improve the sound-
ness. With a little effort, we believe these techniques can be used to give poly(T)
proof length. Can we construct PCPs with length Õ(T) proofs while having a
Õ(n+ log(T)) verifier runtime?

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. 1st. USA: Cambridge University Press, 2009. isbn:
0521424267.

[AS97] Sanjeev Arora and Madhu Sudan. “Improved Low-Degree Testing
and Its Applications”. In: Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing. STOC ’97. El Paso,
Texas, USA: Association for Computing Machinery, 1997, 485–495.
isbn: 0897918886. doi: 10.1145/258533.258642. url: https:

//doi.org/10.1145/258533.258642.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs:
A New Characterization of NP”. In: J. ACM 45.1 (Jan. 1998),
70–122. issn: 0004-5411. doi: 10.1145/273865.273901. url: https:
//doi.org/10.1145/273865.273901.

[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. “Proof Verification and the Hardness of Approx-
imation Problems”. In: J. ACM 45.3 (May 1998), 501–555. issn:
0004-5411. doi: 10.1145/278298.278306. url: https://doi-

org.ezproxy.lib.utexas.edu/10.1145/278298.278306.

[BFL90] L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential
time has two-prover interactive protocols”. In: Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science. 1990,
16–25 vol.1. doi: 10.1109/FSCS.1990.89520.

[BS+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan,
and Salil Vadhan. “Robust Pcps of Proximity, Shorter Pcps and
Applications to Coding”. In: STOC ’04. Chicago, IL, USA: Associ-
ation for Computing Machinery, 2004, 1–10. isbn: 1581138520. doi:
10.1145/1007352.1007361. url: https://doi.org/10.1145/
1007352.1007361.

72

https://doi.org/10.1145/258533.258642
https://doi.org/10.1145/258533.258642
https://doi.org/10.1145/258533.258642
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/278298.278306
https://doi-org.ezproxy.lib.utexas.edu/10.1145/278298.278306
https://doi-org.ezproxy.lib.utexas.edu/10.1145/278298.278306
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1145/1007352.1007361
https://doi.org/10.1145/1007352.1007361
https://doi.org/10.1145/1007352.1007361

[BV14] Eli Ben-Sasson and Emanuele Viola. “Short PCPs with Projection
Queries”. In: Automata, Languages, and Programming - 41st In-
ternational Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I. Ed. by Javier Esparza, Pierre Fraig-
niaud, Thore Husfeldt, and Elias Koutsoupias. Vol. 8572. Lecture
Notes in Computer Science. Springer, 2014, pp. 163–173. doi: 10.
1007/978-3-662-43948-7_14. url: https://doi.org/10.
1007/978-3-662-43948-7_14.

[Ben+05] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan.
“Short PCPs verifiable in polylogarithmic time”. In: 20th Annual
IEEE Conference on Computational Complexity (CCC’05). 2005,
pp. 120–134. doi: 10.1109/CCC.2005.27.

[Ben+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer.
“On the Concrete Efficiency of Probabilistically-Checkable Proofs”.
In: STOC ’13. Palo Alto, California, USA: Association for Comput-
ing Machinery, 2013, 585–594. isbn: 9781450320290. doi: 10.1145/
2488608.2488681. url: https://doi.org/10.1145/2488608.
2488681.

[Coo72] Stephen A. Cook. “A Hierarchy for Nondeterministic Time Com-
plexity”. In: Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing. STOC ’72. Denver, Colorado, USA: Associa-
tion for Computing Machinery, 1972, 187–192. isbn: 9781450374576.
doi: 10.1145/800152.804913. url: https://doi.org/10.1145/
800152.804913.

[DH09] Irit Dinur and Prahladh Harsha. “Composition of Low-Error 2-
Query PCPs Using Decodable PCPs”. In: 2009 50th Annual IEEE
Symposium on Foundations of Computer Science. 2009, pp. 472–
481. doi: 10.1109/FOCS.2009.8.

[DR04] Irit Dinur and Omer Reingold. “Assignment testers: towards a com-
binatorial proof of the PCP-theorem”. In: 45th Annual IEEE Sym-
posium on Foundations of Computer Science. 2004, pp. 155–164.
doi: 10.1109/FOCS.2004.16.

[Dor+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman.
“Nearly Optimal Pseudorandomness From Hardness”. In: 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020. IEEE, 2020, pp. 1057–
1068.

[FS95] Katalin Friedl and Madhu Sudan. “Some Improvements to Total
Degree Tests”. In: In Proceedings of the 3rd Annual Israel Sympo-
sium on Theory of Computing and Systems. 1995, pp. 190–198.

73

https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1109/CCC.2005.27
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1145/800152.804913
https://doi.org/10.1145/800152.804913
https://doi.org/10.1145/800152.804913
https://doi.org/10.1109/FOCS.2009.8
https://doi.org/10.1109/FOCS.2004.16

[FST05] Lance Fortnow, Rahul Santhanam, and Luca Trevisan. “Hierarchies
for Semantic Classes”. In: Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing. STOC ’05. Baltimore,
MD, USA: Association for Computing Machinery, 2005, 348–355.
isbn: 1581139608. doi: 10.1145/1060590.1060642. url: https:
//doi.org/10.1145/1060590.1060642.

[FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. “Fixed-
Polynomial Size Circuit Bounds”. In: 2009 24th Annual IEEE Con-
ference on Computational Complexity. 2009, pp. 19–26. doi: 10.
1109/CCC.2009.21.

[HR18] Justin Holmgren and Ron Rothblum. “Delegating Computations
with (Almost) Minimal Time and Space Overhead”. In: 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS).
2018, pp. 124–135. doi: 10.1109/FOCS.2018.00021.

[HS65] J. Hartmanis and R. E. Stearns. “On the Computational Complex-
ity of Algorithms”. In: Transactions of the American Mathemati-
cal Society 117 (1965), pp. 285–306. issn: 00029947. url: http:

//www.jstor.org/stable/1994208.

[Lun+92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
“Algebraic Methods for Interactive Proof Systems”. In: J. ACM
39.4 (Oct. 1992), 859–868. issn: 0004-5411. doi: 10.1145/146585.
146605. url: https://doi.org/10.1145/146585.146605.

[MP06] D. van Melkebeek and K. Pervyshev. “A generic time hierarchy for
semantic models with one bit of advice”. In: 21st Annual IEEE
Conference on Computational Complexity (CCC’06). 2006, 14 pp.–
144. doi: 10.1109/CCC.2006.7.

[MR08] Dana Moshkovitz and Ran Raz. “Two Query PCP with Sub-Constant
Error”. In: 2008 49th Annual IEEE Symposium on Foundations of
Computer Science. 2008, pp. 314–323. doi: 10.1109/FOCS.2008.60.

[MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe.
“Super-Polynomial versus Half-Exponential Circuit Size in the Ex-
ponential Hierarchy”. In: Proceedings of the 5th Annual Interna-
tional Conference on Computing and Combinatorics. COCOON’99.
Tokyo, Japan: Springer-Verlag, 1999, 210–220. isbn: 3540662006.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Non-
deterministic Quasi-Polytime: An Easy Witness Lemma for NP and
NQP”. In: Proceedings of the 50th Annual ACM SIGACT Sym-
posium on Theory of Computing. STOC 2018. Los Angeles, CA,
USA: Association for Computing Machinery, 2018, 890–901. isbn:
9781450355599. doi: 10 . 1145 / 3188745 . 3188910. url: https :

//doi.org/10.1145/3188745.3188910.

74

https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1145/1060590.1060642
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1109/FOCS.2018.00021
http://www.jstor.org/stable/1994208
http://www.jstor.org/stable/1994208
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1109/CCC.2006.7
https://doi.org/10.1109/FOCS.2008.60
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910

[Mei09] Or Meir. “Combinatorial PCPs with Efficient Verifiers”. In: 2009
50th Annual IEEE Symposium on Foundations of Computer Sci-
ence. 2009, pp. 463–471. doi: 10.1109/FOCS.2009.10.

[San07] Rahul Santhanam. “Circuit Lower Bounds for Merlin-Arthur Classes”.
In: Proceedings of the Thirty-Ninth Annual ACM Symposium on
Theory of Computing. STOC ’07. San Diego, California, USA: Asso-
ciation for Computing Machinery, 2007, 275–283. isbn: 9781595936318.
doi: 10.1145/1250790.1250832. url: https://doi.org/10.

1145/1250790.1250832.

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (Oct. 1992), 869–877.
issn: 0004-5411. doi: 10.1145/146585.146609. url: https://
doi.org/10.1145/146585.146609.

[Wil11] Ryan Williams. “Non-uniform ACC Circuit Lower Bounds”. In:
2011 IEEE 26th Annual Conference on Computational Complexity.
2011, pp. 115–125. doi: 10.1109/CCC.2011.36.

A PCP Composition Proof

Here is the proof of PCP composition: Theorem 6.1.2.

Theorem 6.1.2 (PCP Composition). Suppose L is a language with an rPCP,
A, with verifier V , prover P , query function Q, and index function I such that

1. Q runs in time t(n).

2. P run in space s(n).

3. V uses r(n) bits of randomness.

4. A uses alphabet Σ.

5. A has robust soundness δ.

6. A has perfect completeness.

7. A has proof length l(n).

Suppose L′ = {((x, r), y) : V (x, r, y) = 1}. Let n′ = n + r(n). Suppose L′

has a dPCP protocol, B, with decoder D and encoder E such that

1. E runs in space s′(n′).

2. D runs in time t′(n′).

3. B uses q′(n′) queries.

4. B has query time t∗(n′).

5. B uses alphabet Σ′.

75

https://doi.org/10.1109/FOCS.2009.10
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1109/CCC.2011.36

6. B has soundness δ′.

7. B has perfect completeness.

8. B has proof length l′(n′).

Then there is a PCP protocol for L, C, such that

1. C has verifier time O(t′(n′))

2. C uses O(q′(n′)) queries.

3. C has prover space O(s(n) + t(n) + s′(n′)).

4. C uses alphabet Σ′ ∪ Σ.

5. C has query time O(t(n) + t∗(n′)).

6. C has soundness δ + δ′.

7. C has perfect completeness.

8. C has proof length l(n) + 2r(n)l′(n′).

Proof. At a high level, our new PCP will essentially use the dPCP to prove
that a query would pass the rPCP. The decoding property of the dPCP forces
the proof to almost commit to a single accepting result for these query locations.
And the robustness property of the rPCP means that on average, the proof is
far away from the accepting one the dPCP claimed. So the two will disagree
most of the time.

Suppose B uses r′(n) bits of randomness. Then our new verifier, V ′, will
expect for its randomness (r, r′, i) where r is r(n) bits of randomness for V ,
r′ is r′(n) bits of randomness for D, and i is a uniformly random element of
[q(n)] where q(n) is the number of queries for A. Then C has a proof length of
l(n) + 2r(n)l′(n) which we write, for proof π, as one substring π′ of length l(n),
and for each possible value of r, a substring πr of length l′(n).

Let I ′ be the index function for B. Then finally, our new PCP just checks
if

D((x, r), r′, πrI′((x,r),r′,i), i) = π′Q(x,r,i).

The proof is expected to have π′ as the proof for the rPCP, and then for
each r, πr should be the proof for the inner verifier that V (x, r, π′I(x,r)) = 1,
where I is the index function for A.

1. The time of the new verifier, is the time to run the dPCP decoder, t′(n′),
plus the time to compare the result to a symbol in the rPCP proof. This
comparison takes time linear in the symbol size, which since the decoder
decodes a symbol, is at most O(t′(n′)) time. Thus the composed verifier
takes time O(t′(n′)).

2. The total number of queries are just the number for the inner dPCP,
q′(n′), plus one to check consistency with the outer rPCP.

76

3. The proof only requires space s′(n′) to compute the symbols from dPCP
when given query access to symbols from the rPCP for a choice of ran-
domness.

To calculate the index in the rPCP proof of one of the symbols given to
the verifier for a choice of randomness requires time, and space, t(n).

To calculate a symbol of the proof for the rPCP only requires space
s(n). So computing the symbols from the inner dPCP only require space
O(s′(n′) + t(n) + s(n)). And of course, queries to the outer rPCP only
require space s(n).

4. The symbols for π′ are in Σ, and the symbols for πr are in Σ′, so the
alphabet is Σ′ ∪ Σ.

5. A query location for C will either be to a query location of A or B, which
can be computed in time t(n) or t∗(n′). In either case, it can be computed
in time O(t(n) + t∗(n′)).

6. For soundness, suppose x /∈ L. Then by robust soundness of A, for any
proof π′, for Yr = {y : V (x, r, y) = 1}:

Er[∆(π′I(x,r), Yr)] ≥ 1− δ.

Then for any r, for any πr, by the soundness of the dPCP, either

Pr
r′,i

[D((x, r), r′, πrI′((x,r),r′,i), i) 6=⊥] ≤ δ′,

or there is some yr where V (x, r, yr) = 1 and

Pr
r′,i

[D((x, r), r′, πrI′((x,r),r′,i), i) /∈ {y
r
i ,⊥}] ≤ δ′.

Then the probability that we accept is the probability that

D((x, r), r′, πrI′((x,r),r′,i), i) = π′Q(x,r,i).

This can happen in 3 ways. If yr doesn’t exist, then we accept only if
D((x, r), r′, πrI′((x,r),r′,i), i) 6=⊥. If yr does exist, then either yri = π′Q(x,r,i)

or D((x, r), r′, πrI′((x,r),r′,i), i) /∈ {⊥, y
r
i }.

Then we can bound the probability of acceptance by:

Pr[accept] ≤Pr
r,i

[yr exists ∧D((x, r), r′, πrI′((x,r),r′,i), i) /∈ {y
r
i ,⊥}]

+ Pr
r,i

[yr exists ∧ yri = π′I(x,r)(i)]

+ Pr
r,i

[yr doesn’t exist ∧
(
D((x, r), r′, πrI′((x,r),r′,i), i) 6=⊥

)
]

≤Pr
r,i

[yr exists]δ′ + δ + Pr
r,i

[yr doesn’t exist]δ′

≤δ′ + δ.

77

7. The protocol has completeness since if x ∈ L, there is some proof πx = π′

so that for any of the chosen r, then V (x, r, πxI(x,r)) = 1. Then from
completeness of the dPCP, there is a πr so that for any i, the inner PCP
will always return πxI(x,r)(i).

B Automata Proofs

In this section, we show how to construct the cellular automata for an algorithm,
and how to arithmetize a formula for its rules. First, let us show how to construct
the cellular automata for a RAM algorithm: Lemma 5.2.1.

Lemma 5.2.1 (RAM algorithms have simple cellular automata). Let A be
a RAM algorithm recognizing L, running in time T and space S where S =
Ω(log(n)) and T = Ω(S). Further, A uses input coming from a read only space
of n bits.

Then there is a 1 dimensional cellular automata, B, simulating A, such that

1. B runs in time T ′ = poly(T, n), and space S′ = O(n+ S).

2. B has a constant size alphabet, Σ, where for some k, we have |Σ| = 22
k

.
That is, Σ is represented by a power of 2 number of bits.

3. For any input x for A, there is a corresponding input for B, yx, of length
S′. And we also have that yx = (y1, y2x, y

3) where

(a) y1 has length O(log(S′)) and is independent of the specific x, only
the length of x, and y1 is computable in time O(|y1|).

(b) y2x is exactly n symbols where for some f : {0, 1} → Σ, for each
i ∈ [n], (y2x)i = f(xi), where f is computable in constant time.

(c) y3 is exactly S copies of a specific symbol in Σ.

4. Not all transitions for B will be defined, and A accepts on x if and only
if after time T ′ starting on yx, B reaches a steady state. Similarly, A
rejects on x if and only if there is no sequence of T ′ valid transitions in
B starting from yx.

5. If B has a starting state that is (y1, z) for any z that is not (y2x, y
3) for

some x ∈ L, then B will not have T ′ valid transitions.

6. Let x ∈ L be an input for A, with transformed input for B, yx. Given a
time t ∈ [T ′] and a memory location s ∈ [S′], there is a RAM algorithm C
that can compute the symbol in cell s at time t in B’s computation history
on yx in time O(T) and space O(S) given read only access to x.

78

Proof. The idea is simple: First convert the RAM machine into an input obliv-
ious, single tape Turing machine, B′, where there is O(log(S+n)) space for the
registers, n space for the read only input, followed by S working space reserved
on the tape. Notably, this input oblivious Turing machine may temporarily
modify the contents of this read only space. In fact, it needs to. But these will
always be temporary since we are simulating a RAM machine where these are
read only.

Then we create our cellular automata, B, by encoding this Turing machine’s
state into the cell the head is on, alongside that cell’s symbol. Then the state
transitions will come from whether the current state has the head, or a neighbor
does. On accepting, the cellular automata will just remove the head and remain
constant. On rejecting, there will just be an undefined transition. This makes
accepting equivalent to the existence of a valid computation history.

For more details, first, we take our input RAM algorithm A, and make a
new RAM algorithm A′ that does the same thing, but starts by making sure its
working space is all 0.

Turing machine B′ can be made from A′ by first adding O(log(S′)) bits
before the first bit to hold the current memory configuration of the registers.
Then the Turing Machine starts at the beginning, goes through the motions it
would need to do on any register to register operation and any state change.
Then it goes from the beginning forward, looking for the index it wants to
operate on for any register memory operation.

Each time it moves, it copies the bit in front of the head behind it, and shifts
all its registers 1 forward. At each potential bit, it moves the tape head as if it
was going to do every operation, but doesn’t actually do it unless the indexes
match for a register memory operation. Once it gets to the far side, it returns
the registers to the start.

This Turing Machine runs in time T ′ = O(T (S+n) log(S′)2) and only needs
size S′ = O(S + n) to hold bits of the computation, and the registers. In
particular, at time 0, it has O(log(S+n) space reserved for the registers, exactly
n cells reserved for the read only input, and S cells reserved for the working
space.

Then B′ can be made into a cellular automata, B∗, by expanding the alpha-
bet to be a pair of an entry from the alphabet of the Turing Machine, and an
entry of the state of the current TM or empty.

Then the rules B∗ follow from the state transitions of B′, where the cell
contents and Turing Machine state indicate how the cell contents should change,
and the state of it’s neighbors and itself indicate which Turing Machine state it
should move to next (that is, should the head move from a neighboring state to
this one).

We need to do one more thing to B∗ to get B. Before we start, we want to
verify the format. B will do this by sweeping from from the beginning to the
end and back, making sure each symbol is of the appropriate format. This will
tell us that the provided y2x and y3 encode binary inputs. Such a procedure will
work if y1 is correct. Than after that, the simulation of A′ will further make
sure y3 actually encodes all 0.

79

Automata B does this by having a special sweeping state that sweeps from
left to right that makes sure it only encounters binary inputs, that it then
changes to be activated, makes it all the way to the end, and then sweeps
back to the beginning where it turns into the head for the Turing machine B′

simulating A′.
For a time t and a space s, the state of cell s in the history of B at time t

can be computed by an algorithm C which does the following:

1. If the time t is in the preprocessing part of B before B∗ starts, we can
just return the bit from yx directly, if it is after the head, the head if it is
on the head, or the bit from yx activated if it is before.

If t is not in the time for preprocessing, just subtract the amount of time
to do the preprocessing from t and move on.

2. A time t in B is part of the simulation of some step at some time t′ in A′.
Since the Turing Machine is input oblivious, we know exactly how many
operations a step in A′ is in B and can calculate t′. Run A up to time t′.

3. Calculate the current cell the Turing machine should be visiting at time
t′. We can straightforwardly calculate how long it takes to simulate all
the register operations, and then each cell takes the same amount of time.

(a) If we are in the middle of a register register operation: If s is in
a register, simulate B on the registers till time t, and then directly
output it. If s is not a register, output that cell’s value from the
previous time, as nothing happened.

(b) If we are looking at another cell: If s is a cell before the register’s
location during this operation, then just return the value of this cell
at the time step after this. If s is a cell inside the register, then
simulate B on this register and this one bit right up till time t, then
output s at time t. Otherwise, output the value of this cell now. It
hasn’t been modified yet by this step in the RAM algorithm.

This can easily be done since the algorithm is input oblivious, we know
exactly how many steps in B one step in A will take. There is a direct, simple
way to translate from a state in A to a state in B. And each step from one bit
in memory to the next as it seeks the appropriate index takes the same amount
of time, so we can skip right to the correct one. Thus we can easily compute if
the sought index is before, or after the one being checked and change the state
appropriately.

This gives us a version of the original RAM algorithm with a locally checkable
computation history, since cellular automata is a local model of computation.
This is essentially the definition of a cellular automata. Remember that we
are assuming the states in the cellular automata are in some convenient binary
encoding.

80

Lemma B.0.1 (Cellular Automata have Constant Size Consistency Checks).
For any cellular automata with S bounded cells in memory, for any i ∈ [S] there
is a constant size Boolean function on the states of the i − 1, i, and i + 1 cell,
and a new proposed value for cell i that outputs whether that would be the new
state of cell i after a time step.

We want to use the multilinear extension of the computation history of the
B in Lemma 5.2.1 to get an arithmetization of Lemma B.0.1. As part of this,
we need another arithmetization.

Lemma B.0.2 (Successor Arithmetization). For field F, l ≥ 1, there is a
O(lpolylog(|F|)) time algorithm computing the multilinear extension of u+1 =
v for l bit numbers, u and v.

Proof. For this proof, we will assume that u and v have their high order bits
first, so v1 is the bit with the largest magnitude, and vl is the bit with the
smallest magnitude. For all l ≥ 1, define fl : Fl × Fl → F inductively by

1. If l = 1, fl(u, v) = (1− u1) · v1,

2. If l > 1,

fl(u, v) = (1− ul) · vl · equ(u[l−1], v[l−1]) + ul · (1− vl)fl−1(u[l−1], v[l−1]).

Then by induction, each fl is multilinear and consistent with the check that
v = u+ 1.

We can calculate every equ term together with O(l) field operations, by
starting with equ(u1, v1), then multiplying it by equ(u2, v2) to get equ(u[2], v[2]),
and so on. Then using each of these, f can be calculated inductively in a
straightforward way using only O(l) field operations.

Now we can construct the inconsistency function actually used in our PCP.
The idea is to take 2 times, 3 spaces, and a claimed computation history, and
output if the cells at these times and spaces violate Lemma B.0.1. For technical
reasons, we will further ask for the states of those spaces at that time in the
input, and only do the check if these states agree with the computation history.
Of course, we will actually get an arithmetization of such a boolean function.

So now we can prove Lemma 5.2.3.

Lemma 5.2.3 (Inconsistency Function). Let k be a constant, s, t be integers,

and F be a field. Let B be a cellular automata with 22
k

different states per cell
running in S = 2s cells, and time T = 2t. Then there is a function ΓB taking

any function X : Fs×Fk×Ft → F and returning a function Y : F3s+2t+4(2k) → F
such that:

1. If X is Boolean on Boolean inputs, Y is Boolean on Boolean inputs.

2. If X is Boolean on Boolean inputs, then Y is 0 on all Boolean inputs if
and only if X on Boolean inputs encodes a valid computation history for
B.

81

3. If X is degree d, then Y is degree O(s+ t+ d). If X is degree d in every
variable individually, Y is degree O(d) in every variable individually.

4. Given oracle access to X, Y can be computed in time O((t+s)polylog(|F|))
with a constant number of calls to X.

5. If Y = ΓB(X) is 0 on all Boolean inputs, then ΓB(MLB(X)) is also 0 on
all Boolean inputs.

Proof. From Lemma B.0.1, there is a function, φ : {0, 1}4(2k) → {0, 1}, which

takes a0, a1, a2, a
′
1 ∈ {0, 1}2

k

and outputs φ(a0, a1, a2, a
′
1) = 0 if in the cellular

automata with a0, a1, a2 adjacent, in that order, in the cellular automata at one
time, replaces a1 with a′1 in the next time, and outputs 1 otherwise.

Let φ̂ be the multilinear extension of φ. Since φ has constant size, φ̂ is a con-
stant size arithmetic expression that can be computed in time O(polylog(|F|)).

Let θ : {0, 1}3s × {0, 1}2t → {0, 1} be the function that takes s0, s1, s2 ∈
{0, 1}s and t0, t1 ∈ {0, 1}t and outputs 1 if s0 + 1 = s1, s1 + 1 = s2 and
t0 + 1 = t1, and 0 otherwise. By Lemma B.0.2, in time O((t+ s)polylog(|F|))
we can compute a function θ̃ : F3s × F2t → F that has constant degree in each
variable and is consistent with θ on boolean values.

For s0, s1, s2 ∈ Fs, t0, t1 ∈ Ft, a0, a1, a2, a′1 ∈ F2k , define Y by:

Y (s0, s1, s2, t0, t1, a0, a1, a2, a
′
1) =θ̃(s0, s1, s2, t0, t1)·

φ̂(a0, a1, a2, a
′
1)·∏

j∈{0,1,2}

∏
i∈{0,1}k

equ(X(sj , i, t0), (aj)i)·

∏
i∈{0,1}k

equ(X(s1, i, t1), (a′1)i).

1. If X is binary on binary inputs, Y is binary on binary inputs since it is
just a product of functions that are binary on binary inputs.

2. If X is binary on binary inputs, then for binary inputs, Y is 1 if and only
if s0, s1, s2 are adjacent states, a0, a1, a2 are the states of s0, s1, s2 at time
t0, a′1 is the state of s1 at time t1, and the transition from a1 to a′1, given
neighbors a0 and a2 is invalid.

Thus, if X on binary inputs is a valid computation history, no constraints
are ever violated, and Y is 0 on binary inputs. If X is not a valid com-
putation history, it has an improper transition at some point, and at that
point, Y would be 1.

3. Y is the product of only constantly many terms (since k is constant), all
of which, but potentially X, have degree at most O(s+ t), and the X has
degree d. Products only add degrees, and we only take constantly many
products. So we have degree O(s+ t+ d).

82

For individual variable degree, the input to each of the constantly many
X all have degree 1 in distinct variables. So if X has degree d in every
variable individually, each call to X is degree at most d in each variable
individually. Y is only a product of constantly many calls to X times
functions with constant degree. So Y has degree O(d) in each variable
individually.

4. Function θ̃ runs in time O((s + t)polylog(|F|)), and function φ̂ runs in
time O(polylog(|F|)), and each of the constantly many equ only take
O(polylog(|F|)) time with constantly many calls to X. So we only take
O((s + t)polylog(|F|)) time overall with constantly many oracle calls to
X.

5. Suppose Y is 0 on all boolean inputs. Let Y ′ = ΓA(MLB(X)).

In particular, suppose for some boolean values for s0, s1, s2, t0, t1, a0, a1, a2,
and a′1, function Y is 0. This happens if and only if one of the products
making up Y is 0.

θ̃ = 0 or φ̃ = 0: Neither of these terms involve X, so they are still 0 no
matter what we switch X to.

equ(X(sj , i, t0), (aj)i) for some i, j: We know (aj)i is binary, so by the
definition of equ, this expression simplifies to either X(sj , i, t0) = 0,
or X(sj , i, t0) = 1. In either case, this implies X(sj , i, t0) is bi-
nary. Thus on this input, MLB(X) = X, and this term is still 0
in ΓA(MLB(X)).

equ(X(s1, i, t1), (a′1)i) for some i: Same as above.

C Sum Check Proofs

Here we prove that sum check works: Lemma 5.3.1. For reference, here is how
we defined our sum check protocol:

Definition 5.3.2 (Sum Check Protocol Definition). Let n, d ∈ N, and F be a
field with |F| > max{d, n}+ 1. Suppose f : Fn×F→ F. Then the degree d Sum
Check Protocol on f is the following randomized algorithm.

1. Get 2n random field elements, R = (r1, . . . , rn and r′1, . . . , r
′
n).

2. Reject if f((r1, . . . , rn), 1) 6= 0.

3. For i from 1 to n:

(a) For j ∈ [d+ 1], query

aji = f((r′1, . . . , r
′
i−1, j, ri+1, . . . rn), i+ 1).

Using these, let gi : F→ F be the degree d polynomial so that for all
j ∈ [d+ 1], gi(j) = aji .

83

(b) If
f((r′1, . . . , r

′
i−1, ri, . . . rn), i) 6= (1− ri)gi(0) + rigi(1)

reject.

(c) If
f((r′1, . . . , r

′
i, ri+1, . . . rn), i+ 1) 6= gi(r

′
i)

reject.

4. If all checks pass, accept.

We often refer to the ability of some function g : Fn → F to pass a sum check.
The sum check on function f checks whether g(x) = f(x, n+1) on binary inputs
is the constant 0 function. It can be useful to refer to the probability of g passing
the sum check, assuming the rest of f is defined optimally.

Definition C.0.1 (Passing A Sum Check). Let n, d ∈ N, F be a field with
|F| > max{n, d+1}, δ ∈ [0, 1], and g : Fn → F. Then we say g passes the degree
d sum check with probability δ if there exists some function f : Fn × F → F
so that for all x ∈ F, g(x) = f(x, n + 1), and f passes the degree d sum check
protocol with probability δ.

If g is low degree, then the sum check does a good job checking if g is 0 on
all binary inputs.

Lemma C.0.2 (Sum Check Of Low Degree Polynomial). Let n, d ∈ N, F be a
field with |F| > n(d+ 1), δ ∈ [0, 1], and g : Fn → F. Then:

1. If for all x ∈ {0, 1}n we have g(x) = 0 and the max degree of g in any
variable is at most d, then g passes the degree d sum check with probability
1.

2. If there exists x ∈ {0, 1}n such that g(x) 6= 0 and the max degree of g
in any variable is at most d′, then g passes the degree d sum check with

probability at most (d′+1)n
|F| .

Proof. First we define f in the format a sum check expects (whether or not the
multilinear extension of g actually is 0).

fn+1((x1, . . . , xn), n+ 1) =g(x1, . . . , xn)

f((x1, . . . , xn), i) =(1− xi)f((x1, . . . , xi−1, 0, xi+1, . . . , xn), i+ 1)

+ xif((x1, . . . , xi−1, 1, xi+1, . . . , xn), i+ 1)

fi(x) =f(x, i).

For i /∈ [n + 1], how we define f(x, i) is arbitrary since it is never queried.
By induction, see that for n ≥ j ≥ i ≥ 1, then fi is linear in variable j. In
particular, f1 is multilinear. Further, each fi agree on boolean inputs.

84

1. Suppose for all x ∈ {0, 1}n we have g(x) = 0 and the max degree of g in
any variable is at most d. Then by induction, for i ∈ [n + 1] and j ∈ [n],
function fi has degree at most d in variable j.

Then choose randomness, R = (r1, . . . , rn and r′1, . . . , r
′
n). See that f1 is

multilinear, and 0 on all binary inputs, so it must be the 0 function. Thus
f((r1, . . . , rn), 1) = 0.

For every i ∈ [n], by definition

f((r′1, . . . , r
′
i−1, ri, ri+1, . . . , rn), i)

=(1− ri)f((r′1, . . . , r
′
i−1, 0, ri+1, . . . , rn), i+ 1)

+ rif((r′1, . . . , r
′
i−1, 1, ri+1, . . . , rn), i+ 1).

Since fi+1 is degree at most d in variable i, function gi in the sum check
is a degree at most d polynomial, and gi agrees with fi+1 on d+ 1 points,
then fi+1 = gi as a function of variable i. So

f((r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn), i+ 1) = gi(r

′
i)

and

f((r′1, . . . , r
′
i−1, ri, ri+1, . . . , rn), i) = (1− ri)gi(0) + rigi(1).

So all tests pass.

2. Suppose there exists x ∈ {0, 1}n such that g(x) 6= 0 and the max degree
of g in any variable is at most d′. Then by induction, for i ∈ [n + 1] and
j ∈ [n], function fi has degree at most d′ in variable j. Now take any
candidate function, f ′ : Fn × F → F, so that f ′(x, n + 1) = g(x). Define
f ′i(x) = f(x, i).

Our goal is to show that if f ′1 is not equal to f1, then with low probability
will f ′ be able to change to f on the values we are evaluating without the
sum check catching it. Since f ′ must be f at the last step, due to how we
defined them, function f ′ must fail the sum check with high probability.

Since f1(x) 6= 0, function f1 is not the constant 0 function. Since f1 is mul-
tilinear, f1 has degree at most n. Thus the probability that f1(r1, . . . , rn) =
0 is at most n

|F| by Schwartz-Zippel.

Suppose f1(r1, . . . , rn) 6= 0. Then either f ′1(r1, . . . , rn) = f1(r1, . . . , rn) or
not. If they are equal, sum check will fail. Now we will perform induction.

Suppose for i ≤ n, with probability at most n+d′(i−1)
|F| has f ′ not failed the

sum check by step i and

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) = f ′i(r

′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

So suppose

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) 6= f ′i(r

′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

85

Define degree d′ function g∗i and degree d function g′i so that for j∗ ∈ [d′+1]
and j′ ∈ [d+ 1] we have

g∗i (j∗) =fi+1(r′1, . . . , r
′
i−1, j

∗, ri+1, . . . , rn)

g′i(j
′) =f ′i+1(r′1, . . . , r

′
i−1, j

′, ri+1, . . . , rn).

Since fi+1 is degree d′ in variable i and agrees with g∗i on d′ + 1 places,
for any r′i we have

fi+1(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn) =g∗i (r′i)

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) =(1− r1)g∗i (0) + rig

∗
i (1).

If g∗i = g′i, then the sum check fails because

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) 6= f ′i(r

′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

So suppose g∗i 6= g′i. By Schwartz-Zippel, the probability g∗i (r′i) = g′i(r
′
i)

is at most d′

|F| .

So suppose g∗i (r′i) 6= g′i(r
′
i). Then if

f ′i+1(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn) 6= g′i(r

′
i)

the sum check fails. So suppose they are equal. Then we have

f ′i+1(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn) =g′i(r

′
i)

6=g∗i (r′i)

=fi+1(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn).

So by a union bound, the probability that we haven’t failed by step i+ 1
and

fi+1(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn) = f ′i+1(r′1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn)

is at most n+d′i
|F| .

Finally, for i = n + 1, we know f ′n+1 = fn+1, since they are equal to

function g. So with probability at most n(d′+1)
|F| has the sum check not

failed.

Now we need a prover to actually carry out this protocol in small space. But
this can be done following the expected definition for f in the obvious way.

Lemma C.0.3 (Sum Check Proofs Require Low Space). Suppose g : Fn → F
has degree d in each variable and can be computed in space S and is 0 on Boolean
inputs. Then for some f : Fn×F→ F so that for all x ∈ F, g(x) = f(x, n+1) and
f passes the degree d sum check protocol with probability 1, f can be calculated
in space O(n log(|F|) + S).

Further, if g has degree d in variable i, so does f .

86

Proof. First, we define f inductively in the usual way:

f((x1, . . . , xn), n+ 1) =g(x1, . . . , xn)

f((x1, . . . , xn), i) =(1− xi)f((x1, . . . , xi−1, 0, xi+1, . . . , xn), i+ 1)

+ xif((x1, . . . , xi−1, 1, xi+1, . . . , xn), i+ 1)

fi(x) = f(x, i).

Now one may observe that we didn’t define f for i /∈ [n+1]. We can just assume
they are all 0 for now, this will be addressed in our ePCP. Note this is the
same f used in Lemma C.0.2, so passes the sum check.

We can then rewrite each fi in a more convenient format of

fi(x1, . . . , xn) =
∑

y∈{0,1}n+1−i

g(x1, . . . , xi−1, y1, . . . , yn+1−i)·

∏
j∈[n+1−i]

equ(yj , xi−1+j).

This can be shown to be correct by induction. Then this can be calculated
for any fi in a straightforward way keeping track of a constant number of field
elements, and a pointer for y and j, requiring only O(n log(|F|)) bits.

Given all of these, Lemma 5.3.1 follows.

Lemma 5.3.1 (Sum Check Protocol). Let n, d ∈ N, and F be a field with
|F| > (d+ 1)n. Then there is some protocol, A, so that for any f : Fn × F→ F:

1. For some m = O(nd) and R = 2n, there is a verifier V : Fm → {0, 1} and
query function Q : FR × [m]→ Fn × F so that

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

2. V runs in time O(ndpolylog(|F|)) and space O(nd log(|F|)).

3. For any r ∈ FR, for Qr(i) = Q(r, i), Qr is time O(ndpolylog(|F|)) ex-
trapolatable.

4. For any r ∈ FR, the last coordinate of Q is always an element of [n+ 1].
That is, for all i ∈ [m], Q(r, i)n+1 ∈ [n+ 1]

Further, the last coordinate of Q is only equal to n+1 at most O(d) times.

Completeness For any g : Fn → F where g has max degree d in any individual
variable, if for all x ∈ {0, 1}n, g(x) = 0, then there is some f : Fn×F→ F
so that:

• For all x ∈ Fn we have g(x) = f(x, n+ 1).

• Sum check succeeds on f :

Pr
r

[A(f, r) = 1] = 1.

87

• Function f has degree at most d in each of its first n variables.

• If function g is computable in space S, then function f is computable
in space O(n log(|F|) + S).

Soundness for any g : Fn → F where g has max degree d′, if there exists
x ∈ {0, 1}n such that g(x) 6= 0, then for any f : Fn × F → F so that for
all x ∈ Fn, g(x) = f(x, n+ 1), sum check fails with high probability:

Pr
r

[A(f, r) = 1] ≤ (d′ + 1)n

|F|
.

Proof. The verifier and query function are implicit in Definition 5.3.2. As are
the verifier runtime, and where the queries are made. Extrapolatability of the
queries is shown in Lemma 5.3.3. Completeness and soundness is shown in
Lemma C.0.2. The low space in the completeness case is shown in Lemma C.0.3.

88

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

