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Abstract

We prove that for some constant a > 1, for all k ≤ a,

MATIME[nk+o(1)]/1 ̸⊂ SIZE[O(nk)],

for some specific o(1) function. This is a super linear polynomial circuit lower bound.
Previously, Santhanam [San07] showed that there exists a constant c > 1 such that for all k > 1:

MATIME[nck]/1 ̸⊂ SIZE[O(nk)].

Inherently to Santhanam’s proof, c is a large constant and there is no upper bound on c. Using ideas
from Murray and Williams [MW18], one can show for all k > 1:

MATIME[n10k2

]/1 ̸⊂ SIZE[O(nk)].

To prove this result, we construct the first PCP for SPACE[n] with quasi-linear verifier time: our
PCP has a Õ(n) time verifier, Õ(n) space prover, O(log(n)) queries, and polynomial alphabet size. Prior
to this work, PCPs for SPACE[O(n)] had verifiers that run in Ω(n2) time. This PCP also proves that
NE has MIP verifiers which run in time Õ(n).
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1 Introduction

Some of the most fundamental problems in complexity theory are proving circuit lower bounds for uniform
complexity classes. One such conjecture is that NP does not have polynomial size circuits, which is a strong
version of P ̸= NP. Very little is known on such lower bounds. In particular, there are no known proofs
that NEXP does not have polynomial sized circuits! However, there are some closely related results that
could be loosely seen as relaxations.

One can strengthen NP slightly by giving the non-deterministic algorithm access to randomness, as well
as an extra bit of trusted advice. This gives the complexity class MA/1. We can weaken polynomial sized
circuits to circuits of fixed polynomial size: SIZE[nk] for constant k.

Santhanam [San07] proved that for any constant k, MA/1 ̸⊆ SIZE[nk]. The MA/1 algorithm runs in
time nck for a large c > 1. In fact, inherently to Santhanam’s proof, there is no upper bound on c (We will
explain why when we describe Santhanam’s proof in Section 1.2.1). One can use ideas from Murray and

Williams [MW18] to get, for some explicit c with 2 < c < 10, the result MATIME[nck2

]/1 ̸⊂ SIZE[nk].
The goal of this paper is to prove a fine grained separation of MA/1 from fixed polynomial size circuits,

namely,
MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk].

We believe that the gold standard for separations should be fine grained separations. Fine grained separations
are necessary for key results in complexity theory, e.g., Williams’ program (See, e.g., [Wil11]) and optimal
derandomization [Dor+20].

Some fine grained separations are known, namely, hierarchy theorems that show that giving algorithms
more time allows them to solve more problems [HS65; Coo72]. Hierarchy theorems are known for many
complexity classes. While no hierarchy theorems are known for MA, they are known for MA/1. Fort-
now, Santhanam, and Trevisan showed that MA with a small amount of advice can solve more prob-
lems when given more time [FST05]. Van Melkebeek and Pervyshev showed that for any 1 < b < d,
MATIME[nb]/1 ⊊ MATIME[nd]/1 [MP06]. In particular, they imply that even MATIME[n2k]/1 is
much larger than MATIME[nk+o(1)]/1.

1.1 Results

In this work, we give a fine grained separation for MA/1 and SIZE[nk]. We show that for at least some
k > 1, there is an MA protocol with one bit of advice whose verifier has time almost nk such that any
circuit solving the same problem also requires size nk. Formally:

Theorem 1.1.1 (Fine Grained MA Lower Bound). There exists a constant a > 1, such that for all k < a,
for some f(n) = o(1),

MATIME[O(nk+f(n))]/1 ̸⊂ SIZE[O(nk)].

We stress that we give super linear polynomial lower bounds. Our result holds for some a strictly
greater than 1, even though we don’t know which a. This result removes the large polynomial factor in the
gap between the MA/1 time and the circuit size in Santhanam’s result. It may be the case that a is small,
like a = 1.0001. But in that case, we get the following result for all k:

Theorem 1.1.2 (MA Lower Bound for Small a). If the a from Theorem 1.1.1 is finite, then for all k > 0,
for some f(n) = o(1),

MATIME[O(nak+f(n))]/1 ̸⊂ SIZE[O(nk)].

This gives us a win-win scenario: if a is large, we get a strong result for a large range of k, but if a is
small we get a similar result for all k.

When we describe our proof we will explain why we only get separations for k < a for an (unknown)
a > 1 and not for all k > 1. For now we would like to stress that: (1) under plausible complexity assumptions
the upper bound a is in fact super-constant in n; (2) even the case of a constant a > 1 as promised in our
theorem is highly interesting, since it is unknown how to prove that NP ̸⊆ SIZE[nk] for any k > 1.

Santhanam’s original proof uses an interactive protocol for PSPACE. To prove our circuit lower bound,
we replace the interactive protocol with a new, more efficient PCP. To get our fine grained results, we need
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a PCP for space S = O(n) and time T = 2O(n) algorithms, where the verifier simultaneously has Õ(n) time
and poly(log(n)) many queries. To be consistent with prior work, we will refer to the time of the verifier
as the “decision complexity” of the PCP. Further, the PCP needs a prover that can compute the proof in
Õ(n) space. Notably, we do not need any bounds on the proof length or randomness complexity.

The PCP given by Babai, Fortnow, and Lund in their proof that MIP = NEXP [BFL90] required
Ω(log(T )) queries, while we want O(log(log(T ))) queries.

Holmgren and Rothblum in their work on delegated computation [HR18] improved on the BFL PCP in
several ways that can1 be used to give a PCP with decision complexity Õ(n + log(T )). Unfortunately, it
still requires Ω(log(T )) queries.

Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [Ben+05] gave a PCP that uses a constant number
of queries, but has decision complexity poly(log(T )), while we need Õ(n+log(T )) decision complexity. Similar
results were given by subsequent work [Mei09; BV14; Ben+13].

The small space requirement for the prover is achieved by Holmgren and Rothblum [HR18]. In some
PCPs, like the PCP in Ben-Sasson, Chiesa, Genkin, and Tromer’s work on the concrete efficiency of PCPs
[Ben+13], the prover requires space Ω(T ). In contrast, our result needs prover space Õ(S + n).

A sufficiently efficient PCP was not known, so we construct a new PCP.

Theorem 1.1.3 (Verifier Efficient PCP). Let S, T = Ω(n) be functions, and L be any language computed
by a simultaneous time T and space S algorithm. Let δ ∈ (0, 1/2) be a constant. Then there is a PCP for
L with:

1. Decision complexity2 Õ(n+ log(T )).

2. Query time3 Õ(log(T )).

3. O(log(n) + polylog(log(T ))) queries.

4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).

5. Randomness O(log(T ) log(n log(T )).

6. Prover space Õ(S).

7. Perfect completeness and soundness δ.

We believe we can achieve a similar decision complexity, query time and prover space while also achieving
constant number of queries and alphabet size. We do not need these improvements for our main result, so
we only prove this simpler result.

Only our prover requires the space bound for its efficient computation. If we remove this space limitation,
we get a similar PCP for nondeterministic algorithms.

Theorem 1.1.4 (Verifier Efficient PCP for Nondeterministic Algorithms). Let T = Ω(n), δ ∈ (0, 1/2) be a
constant, and L ∈ NTIME[T ]. Then there is a PCP for L with:

1. Decision complexity Õ(n+ log(T )).

2. Query time Õ(log(T )).

3. O(log(n) + polylog(log(T ))) queries.

4. Alphabet Σ with log(|Σ|) = O(log(log(T ))).

5. Randomness O(log(T ) log(n log(T )).

1The PCP constructed by Holmgren and Rothblum was built to have no signalling soundness and has many steps that take
longer than Õ(log(T )) time to compute. Still, the basic elements of of their PCP needed for a standard PCP are computable
in Õ(n+ log(T )) time.

2We note that a prior version of this paper called decision complexity verifier time, and achieved decision complexity
Õ(n+ log(T )). This prior result has a slightly longer and less general proof than the PCP included in this result.

3In prior works, query time was referred to as verifier time. We avoid calling the query time the verifier time because the
time used by a verifier in a PCP system is related to both the query time and the decision complexity.
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6. Perfect completeness and soundness δ.

An immediate corollary of Theorem 1.1.4 is a more fine grained equivalence between MIP and NEXP.

Corollary 1.1.5 (Fine Grained Equivalence of MIP = NEXP). For any time constructible function p(n) =

Ω(n), language L ∈ NTIME[2Õ(p(n))] if and only if there is a two prover, one round MIP protocol for L
whose verifier runs in time Õ(p(n)).

Note this equivalence implies a hierarchy theorem for MIP since there are hierarchy theorems for
NTIME [Coo72; SFM78; Žá83; FS11].

A special case is MIP protocols for NE.

Corollary 1.1.6 (NE Has Quasi-linear Time Verifiers). For any language L ∈ NE, there is a two prover,
one round MIP protocol for L whose verifier runs in time Õ(n).

Note this decision complexity is nearly optimal since the verifier requires linear time to read its entire
input.

All previous PCPs fail to achieve such an efficient MIP verifier. If the original PCP makes Ω(n) queries
of size Ω(n), then it takes Ω(n2) time to send the queries even if we allow more provers. And all previous
PCPs with fewer queries require decision complexity Ω(n2) to either verify the response or compute the
queries.

1.2 Proof Idea

1.2.1 MA Lower Bounds Using PCP

We first review Santhanam’s original proof for any fixed k, that MA ̸⊂ SIZE[nk].
Santhanam’s original result uses the fact that if PSPACE ⊂ P/poly, then PSPACE = MA. This

follows from the famous result that IP = PSPACE [Sha92; Lun+92]. The idea is that if PSPACE ⊂
P/poly, then an MA protocol can guess a circuit deciding any problem in PSPACE. The prover in the
interactive protocol for PSPACE is also computable in PSPACE. So to solve any PSPACE problem in
MA, the MA protocol first guesses the circuit for a prover, then simulates the verifier using the circuit we
guessed as the prover.

Using this, Santhanam’s original proof then considered two cases: either PSPACE ⊂ P/poly, or
PSPACE ̸⊂ P/poly.

IfPSPACE ⊂ P/poly, then we already knowPSPACE = MA. Now we just need to showPSPACE ̸⊂
SIZE[nk]. There is a straightforward, space efficient algorithm that exhaustively finds a circuit of size larger
than nk that computes a function that cannot be computed by a smaller circuit. In fact, such an algorithm
only requires space Õ(nk). So PSPACE ̸⊂ SIZE[nk]. In this case, PSPACE = MA, so MA ̸⊂ SIZE[nk].

If PSPACE ̸⊂ P/poly, then we know a hard problem that is not in SIZE[nk], namely any PSPACE
complete problem. Let us take a PSPACE complete, randomly downward self reducible language, Y . Now
Y may be too hard for MA to solve, but if we give it enough padding, eventually the padded version of Y
will be computable by size nk circuits. But for this amount of padding, MA can pull the same trick it does
in the PSPACE ⊂ P/poly case. Namely, guess a circuit for Y and then simulate the IP protocol for Y .
For some PSPACE complete Y , the language itself is its proof and this works. The trick is to use just the
right amount of padding so it requires circuits of at least size nk, but not much larger. Santhanam uses the
single bit of advice in a clever way to figure out when there is just the right amount of padding.

In either case, the time of this protocol is roughly the time of the verifier in the IP protocol, plus the
size of the prover circuit times the number of times the prover is queried.

There are two reasons the MA protocol could take polynomially more time than the size of the circuits it
wants to compute in the case PSPACE ⊂ P/poly. One is that the IP from the original Santhanam result
has polynomial decision complexity and a polynomial time interaction with the prover, making the verifier
in the MA/1 protocol take polynomially longer than the circuit complexity of the problem being solved. By
using a PCP, we get better results. The other is that the prover circuit complexity could be large, depending
on the circuit size required for PSPACE (could be any polynomial when PSPACE ⊂ P/poly). This is the
reason there is no upper bound on the polynomial run time of the MA/1 protocol in Santhanam’s proof.
To avoid this issue we consider a finer case analysis.
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We break the problem into three cases. For some SPACE[O(n)] complete language, X, we have one4 of
the following:

1. X /∈ P/poly.

2. X ∈ SIZE[n1+o(1)].

3. X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1.

The original proof only used the two cases X /∈ P/poly and X ∈ P/poly. The case where X /∈ P/poly
is completely unchanged. Note that this is the plausible case, and here there is no constant upper bound a
on k.

If X ∈ P/poly, we use our efficient PCP, Theorem 1.1.3, instead of the IP Santhanam uses. With this
substitution, the case where X ∈ SIZE[n1+o(1)] is almost unchanged from the original proof. By separating
this into its own case, we get tight bounds for all k in this case.

If X ∈ SIZE[na+o(1)] \ SIZE[na−o(1)] for some a > 1, then we use the same padding technique we use if
X /∈ P/poly, just using our new PCP. In this case, we can only do this if for some k < a, we are trying to
show MATIME[nk+o(1)]/1 ̸⊂ SIZE[nk−o(1)]. This is the case where a is finite, but in this case, we can use
Santhanam’s argument using our PCP to get Theorem 1.1.2.

To see why k > a poses a difficulty, suppose SPACE[O(n)] ̸⊆ SIZE[o(n2)], but SPACE[O(n2)] ⊆
SIZE[O(n2)]. Then to get a language requiring size n3 circuits, we need to use a space n3 algorithm. But
the prover for a space n3 language is a language running on an input with length n3, and using space linear
in its input length. Thus we may need a size (n3)2 = n6 circuit for our prover. So the verifier takes time
at least n6 to even read the prover circuit, thus can’t run in time n3. See Item 2 in our open problems for
further explanation.

1.2.2 Verifier Efficient PCP

Now we explain the PCP we actually use in the MA protocol. We start with a PCP similar to [HR18] and
[BFL90] that we refer to as our base PCP. This PCP has a verifier that runs in time Õ(n + log(T )) and
uses O(log(T )) queries. To reduce the number of queries, we use PCP composition [AS98; Ben+04; DR04;
MR08; DH09].

To perform PCP composition, we need a robust PCP. Loosely, a robust PCP is a PCP so that when
x /∈ L, for any proof, most sets of queries to that proof return not only a rejected response, but a response
that is far from any accepted response. To make our base PCP robust, we use the aggregation through
curves technique [Aro+98]. Now we briefly explain how to use aggregation through curves to convert our
base PCP into a robust PCP.

An honest proof for our base PCP is a single low degree polynomial in several variables. We call the
number of variables the dimension of the PCP. Suppose our base PCP has q queries. To make our PCP
robust, we first choose the randomness for the base PCP, and another random point in the PCP proof.
Then we find the degree q curve that goes through all these points. Then we check if the proof, restricted
to this curve, is a low degree polynomial, and whether the base PCP would have accepted on this input.
Since a low degree polynomial is an error correcting code, this gives robustness.

One concern one might have with this robust PCP is that it actually requires Ω(log(T )2) queries. Since
our verifier needs to run in Õ(n + log(T )) time, the verifier cannot calculate all of these query locations.
However, since we do PCP composition, we only need to calculate the query locations actually queried by the
inner PCP of proximity, which are far fewer locations. Thus we only need to calculate any individual query
location quickly. To find these query locations requires us to compute a point on the degree q curve going
through each of our q points our base PCP queries plus a random point. In our base PCP, q = O(log(T ))
and our proof, when viewed as a polynomial, has dimension O(log(T )). So the naive way to compute this
curve is to calculate each coordinate independently, which would take time Õ(log(T )2).

To efficiently compute low degree curves through points, or to extrapolate a function going through those
points, we introduce the concept of time extrapolatable functions.

4This is a trichotomy in an asymptotic sense: for every constant a, either X ∈ SIZE[O(na)] or it is not. See Section 3.5 for
details.
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Definition 1.2.1 (Extrapolatability). For any n, q, t > 0, and field F, we call Q : [q] → Fn “t extrapolatable”
(or time t extrapolatable) if there is a time t algorithm taking any v ∈ Fq, that outputs∑

i∈[q]

viQ(i).

Equivalently, if we think ofQ as outputting the columns of a matrix, then we sayQ is time t extrapolatable
if one can multiply a vector with it in time t. An important property of extrapolatable functions is that an
extrapolation of an extrapolatable function can be computed efficiently. This is where it gets its name.

Our base PCP is just a sum check and a few point checks. Each of these are time Õ(log(T )) extrapolat-
able. Our robust PCP only queries locations easily computable given the extrapolation of our base PCP
query locations. Extrapolations of extrapolatable functions are easy to compute, so we can easily compute
the query locations of the robust PCP.

We also introduce the concept an extrapolatable PCP (ePCP) as one where an honest proof is a low
degree polynomial, and the query locations after fixing a choice of randomness are extrapolatable. We show
that any ePCP can be extended into a robust PCP where the query locations of that robust PCP can be
computed efficiently.

1.3 Generalization And Sharpness

We actually prove a stronger result than Theorem 1.1.1 that is sharp. First, our MA protocol is input
oblivious: the message from Merlin is just a program for deciding a PSPACE complete language and
doesn’t depend on the specific input, just its length. Second, the hardness is against the model used in
Merlin’s message. We described our results so far with deterministic circuits, but Merlin can also give a
randomized algorithm. By randomized algorithm, we can use probabilistic circuits or Turing machines with
a randomness tape, since they are equivalent up to a polylog factor in the time/size [Fis74; Pip77; LW12;
HS66; PF79]. The same result holds for standard RAM models of computation as well.

We define input oblivious Merlin-Arthur time, OMATIME, the same way as Fortnow, Santhanam, and
Williams [FSW09]. Input oblivious Merlin-Arthur are languages solvable with untrusted advice, where the
advice only depends on the input length. In our case, Merlin gets to send a long, untrusted message for every
input length, and Arthur also gets a single bit of trusted advice. See Definition 2.1.4. Note that Santhanam’s
original proof implicitly also uses input oblivious MA.

The main property of circuits we use is that a randomized algorithm can efficiently simulate them. We
can instead use BPTIME[nk]/nk, that is, randomized algorithms running in time nk with description
length nk. This uses the same model of computation as our verifier, allowing it to more efficiently simulate
OMATIME.

Using OMATIME instead of MATIME and BPTIME instead of SIZE, we can follow the same proof
as our main result to show:

Theorem 1.3.1 (OMATIME Lower Bound Against BPTIME). There exists constant a > 1, such that
for all k < a, for some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 ̸⊂ BPTIME[O(nk)]/O(nk).

This result is tight in the sense that for any function f(n), we have

OMATIME[f(n)]/1 ⊆ BPTIME[O(f(n))]/(f(n) + 1).

Thus only the constant a, the function f , and the one bit of advice in Theorem 1.3.1 can be improved. If one
wants to show that MATIME[na]/1 ̸⊂ SIZE[nb] for constants a < b, we need a proof technique that does
not extend to OMA and BPTIME. That is, we provably need to use nondeterminism that depends on the
input. Thus, our result is less about the power of nondeterminism, and more about the power of trusted
versus untrusted advice. Specifically: trusting advice doesn’t always buy (much) time in the randomized
setting, as long as we have some trusted advice.

The main observation needed to make the circuits randomized rather than deterministic are:
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1. Even if we allow our circuits to be randomized, for any fixed acceptable success probability, there is
still a smallest circuit that computes any given function. This allows us to talk very concretely about
what the exact circuit size for a problem is even for randomized circuits.

2. In our hard problem, we get our promise gap from our PCP system. So if x /∈ L, no algorithm, not
even a PSPACE algorithm, can make the verifier accept with high probability. And if x ∈ L then
there is a small randomized circuit to act as the prover.

In all cases of our proof, Arthur only asks Merlin for a program deciding some SPACE[O(n)] complete
problem. This advice does not depend on the specific input, only on the input size.

2 Preliminaries

We assume some familiarity with basic complexity theory. See Arora and Barak’s book for background
[AB09]. For our model of computation, we use multi-tape Turing machines. We assume the Turing machine
has a read only input tape and we say it is space S(n) if it only ever uses S(n) cells in any of its working
tapes. We assume that for any functions S(n) and T (n) used in this paper for space and time bounds that
both S and T are computable in time O(log(T )).

2.1 Complexity Classes

The most studied family of complexity classes are the time bounded Turing machines.

Definition 2.1.1 (TIME). For any function f : N → N, TIME[f(n)] is the class of languages, L, such
that there is a time f(n) deterministic Turing machine M deciding L. Similarly, NTIME[f(n)] is the class
of languages, L, such that there is a time f(n) nondeterministic Turing machine M deciding L.

A randomized algorithm is a deterministic algorithm with an extra input tape for randomness.
Now recall that MA is the complexity class of problems with polynomial sized certificates that can be

verified with bounded error by a randomized, polynomial time algorithm. This is like NP with a randomized
verifier.

Definition 2.1.2 (MATIME). For any function f : N → N, MATIME[f(n)] is the class of languages,
L, such that there is a time f(n) algorithm M taking three inputs, an input x, a random input r, and a
witness w, so that

Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such that

Pr
r
[M(x, r, w) = 1] > 2/3.

Soundness If x /∈ L, then for every w,

Pr
r
[M(x, r, w) = 1] < 1/3.

Remark (Perfect Completeness). We note that our circuit lower bounds for deterministic circuits have
perfect completeness, that is when x ∈ L we have Prr[M(x, r, w) = 1] = 1. We only define MATIME with
imperfect completeness for our randomized circuit results.

An algorithm with trusted advice is an algorithm with an extra input for advice, where the advice is
fixed for every input of a given length. Complexity class MATIME[f(n)]/1 is MATIME[f(n)] with 1 bit
of trusted advice.

Definition 2.1.3 (MATIME/1). For any function f : N → N, define MATIME[f(n)]/1 as the set of
languages, L, such that there is a function b : N → {0, 1} and a time f(n) randomized algorithm M taking
four inputs, an input x, a random input r, a witness w, and an advice bit such that
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Completeness If x ∈ L and n = |x|, then there exists w with |w| ≤ f(n) such that

Pr
r
[M(x, r, w, b(n)) = 1] > 2/3.

Soundness If x /∈ L and n = |x|, then for every w,

Pr
r
[M(x, r, w, b(n)) = 1] < 1/3.

As described in Section 1.3 section, we also define input oblivious Merlin-Arthur.

Definition 2.1.4 (OMATIME/1). For function f : N → N, define OMATIME[f(n)]/1 as the set of
languages, L, such that there is a trusted advice function b : N → {0, 1}, an untrusted advice function
w : N → {0, 1}∗ with |w(n)| ≤ f(n) and a time f(n) randomized algorithm M taking four inputs, an input
x, a random input r, untrusted advice, and a trusted advice bit such that

Completeness If x ∈ L and n = |x|, then

Pr
r
[M(x, r, w(n), b(n)) = 1] > 2/3.

Soundness If x /∈ L and n = |x|, then for every w′,

Pr
r
[M(x, r, w′, b(n)) = 1] < 1/3.

We let SIZE denote the class of languages with circuits of a given size.

Definition 2.1.5 (SIZE). For any function f : N → N, SIZE[f(n)] is the class of languages, L, where for
each input length n, there is a circuit of size f(n) with n inputs deciding L for inputs of length n.

Further, SIZE[O(f(n))] is the class of languages, L, such that for some g(n) = O(f(n)), we have
L ∈ SIZE[g(n)]. Similarly for SIZE[o(f(n))].

A useful fact about circuits is that Turing machines can be efficiently converted to circuits [HS66; PF79],
and Turing machines can efficiently simulate circuits [Fis74; Pip77] (see [LW12, Theorem 3.1]).

Lemma 2.1.6 (Turing machines Efficiently Compute Circuits). There is a Turing machine running in time
Õ(n) that takes as input a length n description of a circuit C which computes some function f : {0, 1}n →
{0, 1}n and an input x ∈ {0, 1}n and outputs f(x).

We use this fact to allow our algorithms to efficiently run the circuits provided in the MA proof.
To show that L /∈ SIZE[o(f(n))], we will show that for some constant c > 0, for infinitely many n,

language L on length n inputs requires circuits of size at least cf(n). This implies that for any g(n) = o(f(n)),
language L must have size greater than g(n) infinitely often, because eventually, g(n) must stay below cf(n).

While super linear circuit lower bounds have been hard to prove, one can easily get linear circuit lower
bounds for any language that depends on every bit in the input, for instance, the parity function.

Lemma 2.1.7 (Parity Requires Large Circuits). Let L be the language of strings with an odd number of 1s.
Then L ∈ TIME[O(n)], but L on length n inputs requires circuits of size n/2.

This lower bound comes from the fact that parity as a function depends on every input, and since each
gate only has fan in 2, we need at least n/2 gates to make the circuit a function of every input. Similarly, since
TIME[O(n)] ⊆ MATIME[O(n)], we get a similar result for MATIME. Since we can run an algorithm
that only computes parity on some specific subset of the input, we can extend this to sublinear time as well.

Corollary 2.1.8 (Sub-linear Circuit Lower Bounds Are Easy). For any time constructible S(n) ≤ n/2,
there exists a language L ∈ TIME[O(S(n))] but for every n, language L on length n inputs requires circuits
of size S(n).
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We assume a model of computation where n is provided to the algorithm in binary. Then the language
is just parity on the first 2S(n) bits. By Lemma 2.1.7, this requires a size S(n) circuit. Since S(n) is time
constructible, we can construct S(n) then run parity on the first S(n) bits in O(S(n)) time.

We use big O and little o notation extensively in this paper. We will use the result that sub-polynomial
functions remain sub-polynomial when composed with polynomials.

Lemma 2.1.9 (Composing Sub-polynomials with Polynomials gives Sub-polynomials.). If h(n) = o(1), and
for some constant k, we have D(n) = O(nk), then for some h′(n) = o(1),

D(n)h(D(n)) = O(nh′(n)).

Proof. Let G(n) = nh(n) so that G(D(n)) = D(n)h(D(n)). Then we can bound log(G(n)):

log(G(n)) = h(n) log(n) = o(log(n)).

Using that log(n) is increasing and unbounded, we can bound log(G(D(n))).

log(G(D(n))) = o(log(D(n))) = o(log(n)).

This is equivalent to, for some h′(n) = o(1),

log(G(D(n))) = h′(n) log(n).

This gives the result.
D(n)h(D(n)) = 2log(G(D(n))) = nh′(n).

2.2 Randomized Circuits

Since we give a more general result for randomized circuits in Theorem 1.3.1, and the notation for randomized
circuits are less well established, we establish notation here. First, we define unbounded error randomized
circuits, then we will define bounded error circuits as a subset.

Definition 2.2.1 (Non-Uniform, Unbounded Error Randomized Circuits). We define C to be the set of
boolean circuits such that each circuit has a pair of inputs, a regular input and a randomness input, and
outputs a boolean value. Then for C ∈ C that takes a length n regular input and a length m randomness
input, and a regular input x with |x| = n, define C(x) to be the random variable of the output of C when
given x as the regular input and a uniformly random m bit string for the randomness input.

Remark (Using RAM Algorithms Instead of Circuits). Our upper and lower bounds are stated in terms of
Turing machines, but we can extend this to RAM model of computation. One just needs to define a time
bounded size, randomized program in that model and show that similar results as this section hold. For
instance, if there is an efficient way to simulate other programs in that model, you can define C to be the
description of a very long program which is simulated for a bounded amount of time.

Since Turing machines and circuits efficiently simulate one another [Fis74; Pip77; LW12; HS66; PF79],
we also have the following.

Lemma 2.2.2 (Simulating Unbounded Error, Randomized Circuits). Given C ∈ C with input length n ≤ |C|,
and an input x with |x| = n there is a time Õ(|C|), randomized multi-tape Turing machine outputting the
random variable C(x).

This means that simulating an element C ∈ C only ever adds a polylogarithmic factor. We can also define
a subset of C with bounded error.

Definition 2.2.3 (Non-Uniform, Bounded Error Randomized Circuits). We define BPC ⊆ C to be the
set of C ∈ C such that for all x whose lengths are the input length of C, either Pr[C(x) = 1] ≥ 2

3 or
Pr[C(x) = 1] ≤ 1

3 .
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Since that notation BPTIME[f(n)]/f(n) is a bit long, we introduce more compact notation for non-
uniform, bounded error, randomized circuit size.

Definition 2.2.4 (Non-Uniform Randomized Circuit Complexity). For any function T (n), define the com-
plexity class BPSIZE[T (n)] as the set of languages L such that for every integer n there is a randomized
circuit Cn ∈ BPC with |Cn| ≤ T (n) such that for all x with |x| = n we have

Completeness: If x ∈ L, then Pr[Cn(x) accepts] ≥ 2/3.

Completeness: If x /∈ L, then Pr[Cn(x) accepts] ≤ 1/3.

The main feature we need from BPC is that there is a specific function T that is the best time for any
specific language L. In our exposition, we will refer to BPSIZE as randomized circuits. Any result you see
in this paper with OMATIME or BPSIZE also holds for MATIME or SIZE. We just state the result
in its most general form, which has randomized circuits and input oblivious advice.

Of course, to get our final stated results we need that BPTIME[f(n)]/f(n) is loosely equivalent to
BPSIZE. Indeed this is so.

Lemma 2.2.5 (Equivalence BetweenBPSIZE andBPTIME with Advice). For any function T (n) = Ω(n),
we have BPTIME[Õ(T (n))]/Õ(T (n)) = BPSIZE[Õ(T (n))].

Proof. For L ∈ BPTIME[T (n)]/T (n), this means there is a deterministic multi-tape Turing machine that
has an extra randomness tape and an extra advice tape that solves the problem. By [HS65; PF79] there
is a circuit of size Õ(T (n)) that simulates this Turing machine. After hard-coding the advice, it becomes a
randomized circuit in BPSIZE[Õ(T (n))].

For L ∈ BPSIZE[T (n)], there is a circuit that correctly decides L with high probability. By [Fis74; Pip77]
there is a multi-tape Turing machine that can run that circuit in time Õ(T (n)). Just put the description of
that circuit on the advice string, and we have an algorithm in BPTIME[Õ(T (n))]/Õ(T (n)).

To use our non-uniform randomized algorithms in our proof, we need the non-uniform hierarchy [AB09,
Theorem 6.22], but for randomized circuits. Such a result follows from the fact that a bounded error
randomized circuit gives an approximation of a function and even approximating most functions requires a
large circuit size [ACR97], but also follows from the standard counting argument by Shannon [Sha49] and
improved by Lupanov [Lup58]. See also [Weg87; FM05; SK12].

Lemma 2.2.6 (Non-Uniform, Bounded Error, Randomized Time Hierarchy). For every S(n) < 2n/n, there
is a language L in SIZE[S(n)] but not in BPSIZE[S(n)/10].

2.3 PCPs and Composition

Two notations we will need to define PCPs are projection, and multi evaluation of a function.

Definition 2.3.1 (Projection). For any set Σ, naturals n,m ∈ N, string π = (π1, . . . , πn) ∈ Σn, and
indices I = (I1, . . . Im) ∈ [n]m, we define the projection πI = (πI1 , . . . , πIm). We may also write for i ∈ [n],
π(i) = πi, and π(I) = πI .

Definition 2.3.2 (Multi-evaluation). For any integer n, alphabet Σ, and a function Q : [n] → Σ, we define
Q(·) = (Q(i))i∈[n]. Similarly if for some set Y we have that Q : Y × [n] → Σ, then for y ∈ Y we define
Q(y, ·) = (Q(y, i))i∈[n].

In this paper, we will focus on time and space efficient, non-adaptive PCPs with perfect completeness.
Because we need to pay close attention to the amount of time it takes to make a single query to the proof,
we separate the algorithm for producing queries, Q, from the algorithm for verifying the response, V .

So at a high level, a PCP system does the following:

1. Chooses a common random string, r.

2. Runs query function Q with randomness r for q(n) many times to get all query locations, Q(r, ·).

3. Looks up all query locations, Q(r, ·), into a provided proof, π, to get a proof window πQ(r,·).
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4. Runs verifier V with randomness r and proof window πQ(r,·) and outputs if V accepts.

Then if the input is in a language L, we want some proof π to always make the verifier accept. But if
an input is not in language L, we want for any proof π, the probability the verifier accepts to be small. We
also want a prover, P , that can compute any symbol of the proof using low space.

Now we formally define a PCP.

Definition 2.3.3 (PCP). We say that a language L has a non-adaptive PCP, A, with perfect completeness
if there exists verifier V , prover P , and query function Q, such that, for some alphabet Σ, δ ∈ [0, 1], and
functions r, l, q : N → N:

1. Q is an algorithm with three inputs, an input x of length n, randomness r of length r(n), and an index
j ∈ [q(n)] and outputs an element of [l(n)].

2. V is an algorithm with three inputs, an input of length n, randomness of length r(n), and q(n) symbols
from Σ, and outputs either accept or reject.

3. P is an algorithm that takes two inputs, an input of length n, and an index i ∈ [l(n)], and outputs a
symbol from Σ.

Completeness If x ∈ L and n = |x|, then there exists πx ∈ Σl(n) such that

Pr
r
[V (x, r, πx

Q(x,r,·)) = 1] = 1,

and for every i ∈ [l(n)], P (x, i) = πx
i .

Soundness If x /∈ L then for every π′,

Pr
r
[V (x, r, π′

Q(x,r,·)) = 1] ≤ δ.

Then we also say:

1. A has proof length l(n).

2. A has alphabet Σ.

3. A has soundness δ.

4. A uses q(n) queries.

5. A uses r(n) bits of randomness.

6. If V runs in time t(n), A has decision complexity t(n).

7. If V runs in space s(n), A has verifier space s(n).

8. If P runs in space s′(n), A has prover space s′(n).

9. If Q is computable in time t′(n), A has query time t′(n).

For convenience, we assume that any alphabet or field is always encoded with some canonical binary
encoding. We generally will not worry too much about encoding as we switch models of computation and
we will assume inputs are encoded in binary using a small power of two bits.

In this paper, any time we refer to a time T space S deterministic algorithm, we assume that both T
and S can be computed in time Õ(log(T )) and space O(S). This is to simplify our PCP statements since
the verifier needs to calculate these values efficiently. Importantly, the time bounds for our nonuniform
algorithms, for instance OMA with one bit of advice, may not be efficiently computable. This is a side
effect of our proof technique and we don’t know how to avoid it while keeping our results tight.
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To get our final results, we will use PCP composition of robust PCPs (rPCP) with PCPs of proximity
(PCPP)5. An rPCP is a PCP so that when x /∈ L, for any proof, most sets of queries to that proof
return not only a rejected response, but a response that is far from any accepted response. And a PCPP
of proximity is a PCP that makes few queries to part of its input, but still fails as long as that part is far
from any accepted input. These two kinds of PCPs have a very natural composition, see [Ben+04].

To formally define a robust PCPs, we need to define relative Hamming distance.

Definition 2.3.4 (Distance). For x, y ∈ Σn, define distance by the function, ∆:

∆(x, y) =

∑
i∈[n] 1xi ̸=yi

n
= Pr

i∈[n]
[xi ̸= yi].

For Y ⊆ Σn, define
∆(x, Y ) = min

y∈Y
∆(x, y).

The only difference between a PCP (see Definition 2.3.3) and an rPCP is a strengthening of the of
soundness to robust soundness. Robust soundness is that not only will x /∈ L not have any proof that makes
it accept with high probability, but when the verifier looks at the proof, with high probability what they see
will be far away from anything they would accept. Now we formally define an rPCP.

Definition 2.3.5 (Robust PCP). For language L with a non-adaptive PCP system, A, with verifier V ,
query function Q, and alphabet Σ, we say A is a robust PCP (rPCP) if:

Robust Soundness If x /∈ L then for every π′, let Yr = {σ : V (x, r, σ) = 1} be the set of (local views of
the) proofs that V would accept. Then

Pr
r
[∆(π′

Q(x,r,·), Yr) ≤ η] < δ.

Then we say A has robust soundness error δ and robustness parameter η.

Robustness is a standard property because many PCPs are sub-codes of locally testable codewords. In
particular, they are Reed-Muller codes and query locations are curves or lines.

A PCP of proximity (PCPP) [Ben+04] verifies pairs of inputs together: an explicit input, and an
implicit input.

• The explicit input is known to the verifier and contains the input x the PCP is trying to verify.

• The implicit input is not known by the verifier, it is only known by the prover. The verifier can access
bits of the implicit input, but these count as queries. You should think of the implicit input as a partial
witness for x, just one too large to read. In our application, it will be polynomially larger than x, so
our verifier does not even have time to read it all.

Then the PCPP needs to verify that, conditioned on the first input, the second input is close to a valid
implicit input. Now we define a PCPP.

Definition 2.3.6 (PCP of Proximity). Let L′ be a language containing pairs, where if the first input is
length n from alphabet Σ, the second input is m(n) symbols from alphabet Σ′. We say L′ has a PCP of
proximity (PCPP), B, if for some verifier V , prover P , query function Q, alphabet Σ, constants δ, η ≥ 0,
and functions q, r, l : N → N:

1. Q is an algorithm with 4 inputs, an input x of length n, an index i ∈ [m(n)], randomness r of length
r(n), and an index j ∈ [q(n)], and outputs an element of [m(n) + l(n)].

2. V is an algorithm that takes 4 inputs: an input of length n, randomness of length r(n), and q(n)
symbols from Σ. The algorithm V either accepts or rejects.

5A prior version of this paper uses decodable PCPs. A decodable PCP is a special case of a PCPP that decodes a random
symbol of the input to check proximity. Our PCP is a decodable PCP, but we use PCPP since it is more standard.
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3. P is an algorithm that takes three inputs, an input of length n, some m(n) symbols from Σ′, and an
index i ∈ [l(n)], and outputs a symbol from Σ.

Completeness: For any x ∈ Σn and y ∈ Σ′m(n) such that (x, y) ∈ L′, there exists a proof πx,y such that

Pr
r
[V
(
x, r, (y, πx,y)Q(x,i,r,·)

)
= 1] = 1.

Further, for every i ∈ [l(|x|)], we have P (x, y, i) = πx,y
i .

Soundness: For any x and y if for all y′ such that (x, y′) ∈ L′ we have that

∆(y, y′) > η,

then for any π′ we have that

Pr
r
[[V
(
x, r, (y, π′)Q(x,i,r,·)

)
= 1] ≤ δ.

Then we also say:

1. B has proof length l′(n).

2. B has alphabet Σ.

3. B has soundness δ.

4. B has proximity η.

5. B uses q(n) queries.

6. B uses r(n) bits of randomness.

7. If V runs in time t(n), B has decoder time t(n).

8. If P runs in space s′(n), B has encoder space s′(n).

9. If Q is computable in time t′(n), B has query time t′(n).

This is also a natural property for PCPs to have since many PCPs encode their input as part of a
Reed-Muller code, thus the implicit input can be locally decoded and compared to the provided input at
random places. In fact, many PCPs are both robust and have proximity.

Definition 2.3.7 (Robust PCP of Proximity). For language L with a non-adaptive PCPP system, A, with
verifier V , query function Q, alphabet Σ, and proximity η, we say A is a robust PCP of proximity (rPCPP)
if:

Completeness If (x, y) ∈ L, then there exists πx,y ∈ Σl(n) such that

Pr
r
[V (x, r, πx,y

Q(x,r,·)) = 1] = 1.

Robust Soundness For any x, let Yr = {σ : V (x, r, σ) = 1} be the set of (local views of the) proofs that
V would accept given explicit input x. If for some y, for all y′ such (x, y′) ∈ L we have that that
∆(y, y′) > η (where η is the proximity of A) then for every proof π′, we have that

Pr
r
[∆((y, π′)Q(x,r,·), Yr) ≤ β] < δ.

Then we say A has robust soundness error δ and robustness parameter β.

Composing an rPCP and a PCPP gives a PCP with the number of queries of the PCP proximity. In
our application, this allows us to reduce a PCP that uses O(n) queries to one that uses O(log(n)). This
composition was proven in the same paper that introduced PCPP [Ben+04].
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Theorem 2.3.8 (PCP Composition). Suppose L is a language with an rPCP, A, with verifier V , prover
P , and query function Q such that

1. Q runs in time t(n).

2. P run in space s(n).

3. V uses r(n) bits of randomness.

4. A uses alphabet Σ.

5. A has robust soundness error δ.

6. A has robustness parameter η.

7. A has perfect completeness.

Let L′ = {((x, r), y) : V (x, r, y) = 1}. Let n′ = n + r(n). Suppose L′ has a PCPP system, B, with
verifier V ′ and prover P ′ such that

1. P ′ runs in space s′(n′).

2. V ′ runs in time t′(n′).

3. B uses q′(n′) queries.

4. B has query time t∗(n′).

5. B uses alphabet Σ′.

6. B has soundness δ′.

7. B has proximity η.

8. B has perfect completeness.

9. B uses r′(n) bits of randomness.

Then L has a PCP system, C, such that

1. C has decision complexity O(t′(n′))

2. C uses O(q′(n′)) queries.

3. C has prover space O(s(n) + t(n) + s′(n′)).

4. C uses alphabet Σ′ ∪ Σ.

5. C has query time O(t(n) + t∗(n′)).

6. C has soundness δ + δ′.

7. C has perfect completeness.

8. C uses r(n) + r′(n′) bits of randomness.

Further, if A is a rPCPP with proximity η′, then so is C with the same proximity η′. Similarly, if B is
an rPCPP with robust soundness δ′ and robustness parameter β, then C also has robust soundness δ + δ′

and robustness parameter β.
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Proof. Most of these come from [Ben+04], notably the decision complexity, number of queries, randomness,
completeness, and soundness. For details on those parameters, review the original paper. The alphabet is
also very direct. New parameters we give not in the original proof include the prover space, and the query
time6. Here we briefly justify them.

Recall that the composed PCP verifier, first chooses the randomness for the outer, robust PCP, A. Let
σ be the local view of the outer proof queried for that choice of randomness. Then the verifier chooses the
randomness for the inner PCP of proximity, B, for a proof that the rPCP verifier would accept σ. The
implicit input to B is σ. Now we just show that the query locations can be computed efficiently, and the
proof can be computed space efficiently.

For query time, the query function in B either queries its implicit input, or its proof. If it queries its proof,
the query function of C only needs to evaluate the query function of B. If it chooses to query the implicit
input, we translate that to the outer proof using the query function for A. This takes time t∗(n′) + t(n).

For prover space, see that the composed prover only needs to either output a symbol from the prover for
A, or output a symbol from the prover for B. The space for a symbol from the prover for A is s(n). To
output a symbol from the prover for B, we need to simulate the prover for B. Unfortunately, the prover for
B runs on input which is the proof for A at the query locations. Thus to access the input for B, we need
the space both to compute the query locations of A, and to compute the proof in A, which requires space
s(n) + t(n) + s′(n′).

Another way to view a PCP is as a multi-prover interactive protocol (MIP). In an MIP, there is a
weak verifier that can ask questions to multiple, powerful, independent provers. In MIPs we bound the time
of the verifier, the number of provers, and the number of questions the verifier can ask per prover (called the
number of rounds). A q query PCP is equivalent to a q prover, one round MIP. By convention, an MIP
protocol needs to have a constant soundness less than 1.

Definition 2.3.9 (MIP). We say a language L has a two prover, one round MIP protocol for L with
verifier time T (n) if L has a PCP system with

1. Two queries,

2. Perfect completeness and constant soundness error 1− Ω(1).

3. For any choice of randomness, both queries and the verifier decision can be computed in time T (n).

We note that there are well known parallel repetition schemes that can boost the soundness from any
constant to any other constant with only a constant factor overhead [Raz98; Hol07; Rao08]. Thus we consider
any constant soundness sufficient.

3 Efficient PCP To Fine Grained Lower Bounds

Our analysis depends on the circuit complexity of some PSPACE complete problem. So we start by choosing
a SPACE[O(n)] complete problem. We use a version of SPACE TMSAT (on page 83 of [AB09]).

Definition 3.0.1 (Specific Problem). SPACE TMSAT is the language

{(M,x, 1n, 0∗) : Turing machine M accepts x using at most n space.}

Note: SPACE TMSAT ∈ SPACE[O(n)] and SPACE TMSAT is SPACE[O(n)] complete. The 0∗ is just
there to make it explicit the language is paddable. In particular, this means that the circuit complexity of
SPACE TMSAT is non-decreasing.

Lemma 3.0.2 (SPACE TMSAT Circuit Complexity is Non-Decreasing). If A′(n) is the size of the minimum
circuit solving SPACE TMSAT for inputs of length n, then A′(n) is non-decreasing.

Proof. Let C be the circuit of size A′(n + 1) solving SPACE TMSAT for length n + 1 inputs. Then to get a
circuit for length n inputs, use C with an extra 0 hard coded into the last input. The resulting circuit will
be at most the size of C and solve length n inputs. Thus A′(n+ 1) ≥ A′(n).

6Query time was included in the original result as part of the time of Vcomp, but with a very poor upper bound.
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Then using Theorem 1.1.3, we can get a PCP for SPACE TMSAT by setting T = 2O(n) and S = O(n).
This can be turned into a PCP with a binary alphabet by replacing every query for a symbol in Σ with
O(log(n)) queries to the individual bits of that symbol.

Corollary 3.0.3 (PCP for SPACE TMSAT). There is a PCP for SPACE TMSAT with:

1. Decision complexity Õ(n).

2. Query time Õ(n).

3. polylog(n) queries.

4. Binary alphabet.

5. Log of proof length Õ(n).

6. Prover space Õ(n).

7. Soundness 1/2 and perfect completeness.

We denote the set of languages recognized by families of size f(n) randomized circuits as BPSIZE[f(n)].
We emphasize that BPSIZE[Õ(f(n))] is equivalent to BPTIME[Õ(f(n))]/Õ(f(n)), we just use BPSIZE
since it is more convenient. For more details, see Section 2.2. Further, in this section, when we say circuit
we mean randomized circuit, and we say Merlin Arthur, we mean oblivious Merlin Arthur.

We prove three different OMATIME/1 lower bounds that are based on three different hard problems.
Different ones work better in different parameter regimes. After constructing them all, we show we always
fall into some range of parameters so that we can get the lower bounds of Theorem 1.1.1.

3.1 Implicitly Encoding Advice in Input Length

In each of our cases, we will use advice to find the size of some prover circuit. To do this, we implicitly
encode a number in the input length. If that implicitly encoded number describes the size, our advice bit
will be 1. Otherwise, the advice bit is 0.

For any input length n ∈ N, for some l ∈ N, we have n ∈ [2l, 2l+1). For such an l, there is some m ∈ N
such that n = 2l +m. This m, or equivalently this l, is our implicitly encoded number. Because we will use
this decomposition a lot, we will explicitly define some functions that perform this decomposition.

Definition 3.1.1 (Implicit Encoding In Input). For natural n ≥ 1, let l ≥ 0 be an integer so that n ∈
[2l, 2l+1), and m ≥ 0 be an integer so that n = 2l +m. Then define µ(n) = m and ρ(n) = l.

There is a simple interpretation of this m = µ(n) and l = ρ(n) in terms of the binary representation of
n. You can think of l as the length of the binary number, and m the binary number after the top bit is
removed.

3.2 SPACE TMSAT /∈ P/poly

In this case, we follow the proof in the original work [San07] where PSPACE ̸⊂ P/poly. We present the
same arguments here in more generality and with more precise parameters.

When PSPACE ̸⊂ P/poly, the circuit complexity of different input sizes for SPACE TMSAT could change
drastically and in a way that may be hard to analyze. This is an issue because the PCP for SPACE TMSAT

needs a prover with a longer input than the input being verified, thus might require a much larger circuit.
Instead, we use a randomly downward self reducible PSPACE complete language. Specifically, a lan-

guage that has a sound interactive protocol with queries the same length as its input and whose prover is
the language itself. We cite the result from Lemma 11 in [San07]:

Lemma 3.2.1 (Same Size, Self Proving PSPACE Complete Language). There is a PSPACE-complete
language Y and a probabilistic polynomial-time oracle Turing machine M such that for any input x:

1. M only asks its oracle queries of length |x|.
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2. If M is given Y as oracle and x ∈ Y , then M accepts with probability 1.

3. If x /∈ Y , then irrespective of the oracle given to M , M rejects with probability at least 1/2.

The important feature of language Y is that for an input x, the prover for x is the same language Y , and
queries to the prover have the same length as x. This means Y , and the prover for Y , have the same circuit.

Now using Lemma 3.2.1, we can get the following bound.

Lemma 3.2.2 (Bound Using Padded Y as Hard Problem). Using Y from Lemma 3.2.1, if for some g(n) =
ω(1) we have Y /∈ BPSIZE[O(ng(n))] then for any time constructible, non-decreasing, unbounded S(n) such
that S(n) = o(ng(n)), for some7 f(n) = o(1):

OMATIME[O(S(n)1+f(n))]/1 ̸⊂ BPSIZE[o(S(n/4))].

Proof. Let a > 0 be the constant so that the verifier (M in Lemma 3.2.1) for Y ’s interactive protocol runs
in time O(na).

Now we define our language, W , in OMATIME[S(n)1+o(1)]/1 but not in BPSIZE[o(S(n))]. For any
input size, n, using Definition 3.1.1, let m = µ(n) and l = ρ(n). Let our advice bit be 1 if

1. Y on length m inputs does not have circuits of size mg(m),

2. Y on length m inputs has circuits with size S(n), and

3. for all integers l′ with l′ < l and 2l
′
> m, Y on length m inputs does not have randomized circuits of

size S(2l
′
+m).

This condition requires the advice bit to only be 1 for a given m exactly once, whenever it can be used
first. This simplifies the analysis, giving us a one to one function from n where the advice bit is 1, to
m.

Then x ∈ W for some x with |x| = n if and only if the advice bit is 1 and for some y ∈ Y with |y| = m
we have x = y1n−m.

Now we will show that infinitely often the advice bit is 1 and W does not have randomized circuits with
size S(n/4).

Since Y /∈ BPSIZE[O(ng(n))], for some infinite set U ′, for m ∈ U ′, the language Y on input length m
does not have circuits of size mg(m). Since S(m) = o(mg(m)), for some n′, for all m ≥ n′, S(m) < mg(m).
So let U = U ′ ∩ [n′,∞). See that |U | = ∞.

For m ∈ U , since S(n) is non-decreasing and unbounded, for large enough l, language Y on length m
inputs has circuits of size at most S(2l+m). Then there is a smallest such l with 2l > m and for n = 2l+m,
the language Y on length m inputs has circuits of size S(n). For such n, the advice bit is 1.

Now either 2l−1 ≤ m, or 2l−1 > m.

2l−1 ≤ m Then 2m ≥ 2l, and m > n/4. Since m ∈ U , language Y on length m inputs does not have circuits
of size S(m). Since S(n) is monotone, Y on length m inputs also doesn’t have circuits of size S(n/4).

2l−1 > m Then by choice of l, Y on length m inputs does not have circuits of size S(2l−1 +m). Since by
definition of n, we have 2l−1 +m > n/2 and S(n) is monotone, Y on length m inputs does not have
circuits of size S(n/2).

So W does not have circuits with size less than S(n/4).
Since U has infinitely many elements, and for every m ∈ U , there is an n > m such that W on length n

inputs does not have circuits of size S(n/4), for infinitely many n, language W on length n inputs does not
have circuits of size S(n/4). So W /∈ BPSIZE[o(S(n/4))].

Now we define f(n). Let µ1(n) be the partial function from n where the advice bit is 1, to µ(n). We
claim µ1(n) = ω(1). This is because for any m, the advice bit can only be 1 once. Thus µ1 is one to one.

7More generally, if A(n) is the minimum circuit size for Y , the MA verifier will run in time similar to S(n) poly(A−1(S(n))).
Since A−1(n) is not simple, we avoid proving a more detailed result here.
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Any one to one function into the naturals is ω(1), since for any b, there is a max n such that for some m < b,
µ1(n) = m, and for all i > n, µ1(i) ≥ b. Then let

D(n) :=

{
µ1(n) Advice bit for n is 1

D(n− 1) Otherwise
.

Since µ1(n) = ω(1), we also have D(n) = ω(1). Then since g(n) = ω(1), we also have that for f(n) =
a/g(D(n)), we have f(n) = o(1).

Now we show that W ∈ OMATIME[O(S(n)1+f(n))]/1. If the advice bit is 0, this is true trivially.
Suppose that the advice bit is 1.

For an n where the advice bit is 1, inputs of length m = µ(n) for Y have circuits of size S(n), which can
be guessed. Then from Lemma 3.2.1, there is a time ma algorithm that can verify membership in Y with a
circuit for Y . This gives an MA protocol for Y on length m that runs in time O(S(n)ma).

Then since the advice bit is 1, there are circuits for length m instances of Y with size S(n), but not
mg(m). Thus S(n) > mg(m), so S(n)1/g(m) > m. Since we started with a randomized circuit for Y , we
only know there is a size S(n) circuit for Y that outputs Y with probability 2/3. So we actually need run
this circuit O(log(m)) times so that our randomized circuit for Y agrees with Y with probability 1 − 1

3ma ,
and simulating the circuit may add a polylog(m) overhead. So the time of the OMA verifier is at most
O(S(n) polylog(m)ma) = O(S(n)S(n)a+1/g(m)) = O(S(n)1+f(n)).

The OMA protocol is complete and sound since the protocol for Y is. That is, if x /∈ L and the
advice bit is one, by the soundness of Y the protocol will not accept with probability greater than 1/3. If
x ∈ L and the advice bit is one, then there is a randomized circuit that will compute Y with probability
1 − 1

3ma , thus will accept if all the queries to the circuit agree with Y , which happens with probability 2
3 .

So W ∈ OMATIME[O(S(n)1+f(n))]/1.
Therefore

W ∈ OMATIME[O(S(n)1+f(n))]/1 \BPSIZE[o(S(n/4))].

We show that when PSPACE ̸⊂ P/poly, there is some g(n) = ω(1) such that Y /∈ BPSIZE[ng(n)].
Thus we can apply Lemma 3.2.2.

Corollary 3.2.3 (Bound if PSPACE does not have Polynomial Sized Circuits). If SPACE TMSAT /∈ P/poly,
then for any k > 0, and some f(n) = o(1):

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

Proof. One can de randomize circuits with only a polynomial overhead. So SPACE TMSAT /∈ P/poly also
means that SPACE TMSAT also does not have randomized circuits. We want to use Lemma 3.2.2 with S(n) =
nk log(n) and some g(n) = ω(1). Let Y be the language from Lemma 3.2.1.

Since SPACE TMSAT is in PSPACE, SPACE TMSAT /∈ P/poly and Y is PSPACE complete, Y /∈ P/poly.
We will show, since Y /∈ P/poly, for some g(n) = ω(1), we have Y /∈ BPSIZE[o(ng(n))].

Let A(n) be the size of the smallest circuit deciding Y on length n inputs. Let g′(n) = log(A(n))
log(n) . Suppose

for contradiction that g′(n) was bounded above by a constant, c. Then for all n, we have g′(n) ≤ c and
A(n) = ng′(n) ≤ nc. Thus Y has polynomial sized circuits. But Y doesn’t, so g′(n) is unbounded.

Let g∗(n) = maxi∈[n] g
′(i). Since g∗(n) ≥ g′(n), we also know g∗(n) is unbounded. By definition, g∗(n)

is non-decreasing. Thus g∗(n) = ω(1).
For infinitely many n, we know g′(n) = g∗(n), since g′(n) is unbounded. So for n such that g′(n) = g∗(n),

our problem Y does not have circuits of size less than ng′(n) = A(n). So infinitely often, Y does not have
circuits of size ng∗(n)/2. Thus Y /∈ BPSIZE[o(ng∗(n))].

Now let g(n) = g∗(n)− 1. Then g(n) = ω(1) and ng(n) = o(ng∗(n)), so Y /∈ BPSIZE[O(ng(n))].
Since g(n) = ω(1), see that nk log(n) = o(ng(n)). Then using Lemma 3.2.2, we have that for some

f(n) = o(1),
OMATIME[O((nk log(n))1+f(n))]/1 ̸⊂ BPSIZE[o((n/4)k log(n/4))].
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Now to simplify this. Since k is a constant, we have that nk = o((n/4)k log(n/4)). Thus

BPSIZE[O(nk)] ⊂ BPSIZE[o((n/2)k log(n/2))].

Now for f ′(n) := kf(n) + (1 + f(n)) log(log(n))log(n) we have f ′(n) = o(1) and (nk log(n))1+f(n) = nk+f ′(n). Thus

OMATIME[O((nk log(n))1+f(n))]/1 ⊆ OMATIME[O(nk+f ′(n))]/1.

Together
OMATIME[O(nk+f ′(n))]/1 ̸⊂ BPSIZE[O(nk)].

3.3 SPACE TMSAT ∈ BPSIZE[n1+o(1)]

The idea in this case is to use a brute force, small space algorithm that finds a problem not in a fixed
polynomial size. In particular, for circuit size S(n), the brute force algorithm uses space O(S(n)) to compute
some function with minimum circuit size Θ(S(n)). Then we want to simulate the PCP from Corollary 3.0.3
to prove the output of this algorithm. Since the PCP is efficient, the prover for this algorithm does not use
much more space than the brute force algorithm itself.

If SPACE TMSAT has almost linear sized circuits, the prover doesn’t require much larger circuits than the
space of the prover. Finally, our PCP is efficient, so the time of the MA verifier isn’t much more than the
size of the prover circuit. So the MA protocol doesn’t require much more time than the size of the circuit
it proves the output of.

If SPACE TMSAT requires larger circuits, say quadratic circuits, then the size of the prover circuits would
be quadratically larger than the input length of the prover. That is, the prover circuit would be quadratically
larger than the circuit it is trying to prove. This would give quadratic overhead for the MA verifier time
over the size of the circuit it verifies. So this construction only works well enough when SPACE TMSAT has
almost linear sized circuits.

Lemma 3.3.1 (Bound From Exhaustive Search As Hard Problem). If for some non-decreasing A(n) we
have SPACE TMSAT ∈ BPSIZE[O(A(n))], then there is some non-decreasing B(n) = Θ̃(n) such that for any
time constructible, non-decreasing S(n) with S(n) < 2n

n and S(n)2n = ω(A(B(S(n)))):

OMATIME[Õ(A(B(S(n))))]/1 ̸⊂ BPSIZE[o(S(n/2))].

We will use this theorem with A(n) = n1+o(1), so one should think of A and B as being almost linear.
The B(n) in this problem comes directly from the prover space and the log of the proof length8 of our PCP
given in Corollary 3.0.3. The outer polylogarithmic factors in the MA verifier time come from the number
of queries made by the PCP, the query time, and the PCP decision complexity.

Remark (Why is There Advice?). It may be not clear on first inspection why this protocol needs advice.
Indeed, if we said SPACE TMSAT ∈ BPSIZE[n1+ϵ] for some small constant ϵ, we wouldn’t need advice at all.
We could calculate A, B, and S explicitly.

Unfortunately, we want to handle SPACE TMSAT ∈ BPSIZE[n1+o(1)], and we can’t guarantee that this
o(1) term is efficiently computible. This is also why we need advice: to tell us the circuit complexity of A.
This is also why we need to pad our input length, to encode the advice in the input length, allowing us to
reduce the number of advice bits.

Proof. One can show SPACE TMSAT requires circuits of size Ω(n) since it can compute parity and thus needs
to read most of the bits in the input, so A(n) = Ω(n). If S(n) = O(n), then we can prove the theorem
statement using parity as the hard problem as in Corollary 2.1.8. Otherwise, we can assume S(n) > 10n.

The proof proceeds in five steps, which we outline first.

1. Find a language L ∈ SPACE[Õ(S(n))] \BPSIZE[S(n)/10]. In particular, for every input length n,
language L has circuits of size S(n) but not S(n)/10.

8The log of the proof length of a PCP gives the length of a query to the prover.
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2. Reduce L to SPACE TMSAT and use Corollary 3.0.3. In particular, find a circuit, Cn, for the prover in
an MA protocol for L on length n inputs.

3. Define our advice bit to implicitly give an upper bound for the size of Cm for some m within a factor
of 2 of n. Define W to be length m elements of L, padded to length n.

Specifically, we think of m as a fixed power of 2, and the padding is the advice on how big Cm is.
Said another way, the padding length is the real advice, and the advice bit is a hack to only run the
algorithm when the advice in the padding length is right. Using a fixed m and letting n vary makes
the argument slightly easier.

4. Show that infinitely often the advice bit is 1 and W does not have small circuits.

5. Show that W has an efficient MA protocol.

With that outline in mind, let us begin the proof.

1. Find a language L ∈ SPACE[Õ(S(n))] \BPSIZE[o(S(n))].

By theorem premise S(n) < 2n/n. So from the non-uniform, randomized algorithm time hierarchy (see
Lemma 2.2.6), there is a language L ∈ BPSIZE[S(n)] \ BPSIZE[S(n)/10]. In particular, for every
n, language L on length n has circuits size S(n) but not size S(n)/10.

Consider an algorithm, M , recognizing such an L which checks all circuits of size S(n), and compares
them with every circuit of size S(n)/10 on every input, and returns the output from the first circuit of
size S(n) that disagrees with every circuit of size S(n)/10 on some input. See that this is also enough
space to check every randomness input to a circuit, so it can verify whether a circuit really is bounded
error.

Then M runs in space Õ(S(n)) (there may be some polylog factors between the size of the circuit, its
description size, and the space of the simulation) and recognizes an L /∈ BPSIZE[S(n)/10]. So we
have an L ∈ SPACE[Õ(S(n))] \BPSIZE[S(n)/10]. In particular, for every n, language L on length
n does not have circuits of size S(n)/10.

2. Reduce L to SPACE TMSAT and use Corollary 3.0.3.

Since M only uses g(n) space, for some g(n) = Õ(S(n)), we know x ∈ L if and only if (M,x, 1g(n), 0) ∈
SPACE TMSAT. We know SPACE TMSAT on length Õ(S(n)) inputs has aPCP system from Corollary 3.0.3
that uses polylog(S(n)) many length Õ(S(n)) queries to a space Õ(S(n)) prover, P , where each query
can be calculated by a time Õ(S(n)) algorithm, Q, and the results from P are verified by a time
Õ(S(n)) verifier, V .

Now we reduce the prover P to SPACE TMSAT so we can use that SPACE TMSAT ∈ BPSIZE[O(A(n))]
to get a circuit for P .

A length Õ(S(n)) query, q, to P can be converted into a length Õ(S(n)) input, q′, for SPACE TMSAT

by providing the algorithm for P and Õ(S(n)) 1s. In particular, for some B(n) = Õ(n), proof input
q′ has length B(S(n)). We can also take B(n) = Ω(n). Call the circuit for SPACE TMSAT on length |q′|
inputs Cn. Since SPACE TMSAT ∈ BPSIZE[O(A(n))], we know Cn has size O(A(B(S(n)))).

3. Define our advice bit.

Now an MA protocol can guess Cn, but we may not be able to compute how large Cn needs to be.
The function A(n) may be hard to compute. So we use advice.

Let l = ρ(n), m = 2l and t = µ(n) so that n = m + t. Observe that m and t can be inferred from n.
Then let the advice bit be 1 if

(a) Circuit Cm has size S(m)2t.

(b) For any natural t′ less than t, circuit Cm does not have size S(m)2t
′
.

This condition allows us to use the smallest t possible for a given m.
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Now define language W so that x ∈ W for some x with |x| = n if and only if the advice bit is 1 and
for some y ∈ SPACE TMSAT with |y| = m we have x = y1n−m.

4. Show W does not have small circuits.

First we show that for every large enough l, for m = 2l, there will be one t such that this advice bit is
1. To show this, we will show that for some t, Cm has size S(m)2t. Then for the minimum such t, the
advice bit will be one.

For t = m− 1, by premise of the theorem, we have

S(m)2t = S(m)2m/2 = ω(A(B(S(m)))).

This is eventually larger than Cm since Cm has size O(A(B(S(m)))). Then for large enough l with
m = 2l, there will be a smallest t so that Cm has size S(m)2t circuits, since it will for t = m− 1. The
advice bit for such an n = m+ t must be 1. So infinitely often, the advice bit will be 1.

When the advice bit is 1, the language W on length n = m + t inputs is equal to L on length m
inputs. Language L on length m inputs does not have circuits of size S(m)/10. See by choice of m
that 2m > n, and S(n) is monotone, so S(m)/10 > S(n/2)/10. Thus infinitely often, W does not have
size S(n/2)/10 circuits. Thus W /∈ BPSIZE[o(S(n/2))].

5. Show W has an efficient MA protocol.

If the advice bit is 0, this is trivially true. For n = 2l + t so that the advice bit is 1 and m = 2l, either

t = 0: Then Cm has size S(m). Since A(n) = Ω(n) and B(n) = Ω(n), we know Cm has size
O(A(B(S(m)))).

t ≥ 1: Then Cm has size S(m)2t but not S(m)2t−1. Since Cm does have circuits of size O(A(B(S(m)))):

S(m)2t =O(A(B(S(m)))).

In either case, an MA protocol can guess Cm with a circuit with size O(A(B(S(m)))).

Then an MA protocol for x = y1n−m and an advice bit of 1 can verify if y ∈ L by first guessing a
circuit for Cm, then using it as the prover in the PCP system from Corollary 3.0.3. Unfortunately,
Cm may fail with probability 1/3 on each query, so instead of running Cm directly on each query, we
run it O(log(log(S(m)))) times and take a majority vote so it fails on any of the polylog(S(m)) queries
with probability at most 1/3.

The MA verifier needs to calculate polylog(S(m)) queries with Q, run Cm for O(log(log(S))) many
times on each of those queries, and run V on those results. Since Cm has size O(A(B(S(m)))), and
Q and V run in time Õ(S(m)), calculating all query locations, running Cm on each of those locations,
and V on those outputs takes time

polylog(S(m))(Õ(S(m)) + Õ(A(B(S(m))))) + Õ(S(m))

=Õ(A(B(S(m))) + S(m))

=Õ(A(B(S(m)))).

The last equality comes from the fact A(n) = Ω(n) and B(n) = Ω(n). Finally, since A, B and S are
non-decreasing and m < n, the MA verifier runs in time Õ(A(B(S(n)))).

The MA protocol is complete and sound since the PCP is. That is, if x ∈ L then the verifier
accepts as long as all queries to the amplified Cm succeed, which they do with probability 2/3, and
if x /∈ L then no prover will make the verifier accept with probability more than 1/3. Thus W ∈
OMATIME[Õ(A(B(S(n))))]/1.

Therefore
W ∈ OMATIME[Õ(A(B(S(n))))]/1 \BPSIZE[o(S(n/2))].
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And in the special case where SPACE TMSAT has almost linear sized circuits, we get:

Corollary 3.3.2 (Bound if SPACE TMSAT has Size n1+o(1)). If for some g(n) = o(1) and some non-decreasing
function A(n) = n1+g(n) we have SPACE TMSAT ∈ BPSIZE[O(A(n))], then for any k > 0, there is an
f(n) = o(1) such that:

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

Proof. We want to use Lemma 3.3.1 with S(n) = nk log(n). The size upper bound on S(n) is clear: S(n) =
o(2n/n). We need to show S(n)2n = ω(A(B(S(n)))). Well for any B(n) = Õ(n),

A(B(S(n))) =B(nk log(n))1+g(n)

=Õ(nk+kg(n))

=o(2n)

S(n)2n =ω(A(B(S(n)))).

So by Lemma 3.3.1, for some B(n) = Õ(n),

OMATIME[Õ(A(B(S(n))))]/1 ̸⊂ BPSIZE[o(S(n/2))].

See that for some f(n) = o(1),

Õ(A(B(S(n)))) = Õ(nk+kg(n)) = O(nk+f(n)).

Similarly nk = o(S(n/2)), so we also have

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

3.4 SPACE TMSAT ∈ BPSIZE[na+o(1)] \BPSIZE[na−o(1)] for a > 1

This is the “bad” case, where we can’t prove the result for every constant k, only for k < a. This is the most
complicated case, requiring us to both pad the input to get the correct problem difficulty, and use advice to
get the size of the circuits for the prover.

Lemma 3.4.1 (Bound from SPACE TMSAT as Hard Problem). If for some non-decreasing A(n) we have
SPACE TMSAT ∈ BPSIZE[O(A(n))] \ BPSIZE[o(A(n))], then there is some non-decreasing B(n) = Θ̃(n)
and D(n) = O(n) such that if for some time constructible, non-decreasing S(n) with S(2n) = o(A(n)) and
S(n)2n = ω(A(B(n))), then we have:

OMATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 ̸⊂ BPSIZE[o(S(n/4))].

We will use this problem with A(n) being close to nk for some constant k so the A(B(D(n)))
A(D(n)/2) term is no(1).

Before we give the proof, we explain the parameters in this result. In this problem, you can think of D(n)
as being similar to A−1(S(n)), though to simplify the analysis, we use a more trivial bound of D(n) = O(n).
The B(n) comes from the prover space and log of the proof length of Corollary 3.0.3. Then this fraction
term in the MA verifier time, loosely, accounts for the increase in circuit size for SPACE TMSAT on length n
inputs versus length B(n) inputs.

If SPACE TMSAT ∈ P/poly, the difference between the size of circuits for SPACE TMSAT on length n inputs
and length B(n) inputs will be small (at least for n where SPACE TMSAT requires circuits with size near the
polynomial that upper bounds the size of SPACE TMSAT). But if SPACE TMSAT requires larger than polynomial
sized circuits, then the difference in circuit size between length n inputs and length B(n) may become large.
This is why we only use this argument in the case that SPACE TMSAT ∈ P/poly, and we use a different
PSPACE complete language with a interactive different protocol when SPACE TMSAT /∈ P/poly.

So the idea is to solve SPACE TMSAT on a padded version of the input using our PCP. So we need the
advice to tell us three things:
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1. Some m so that SPACE TMSAT on length m inputs requires circuits of size S(n/4).

2. Further, we need SPACE TMSAT on length m inputs to require circuits of size near A(m/2). This keeps
the prover from requiring circuits too much larger than SPACE TMSAT on length m inputs does.

3. How big the circuit for the prover in Corollary 3.0.3 needs to be.

Similar to the previous cases, this advice will come implicitly from the input length, and the single advice
bit will be 1 if and only if the input length encodes valid advice. Since the input length needs to encode three
things, the problem input length, the amount of padding, and the prover circuit size, we need to decompose
the input length into three components this time, not just two.

Proof. If S(n) = O(n), then we use Corollary 2.1.8. Otherwise, we want to solve a smaller instance of
SPACE TMSAT that requires circuits of size S(n/4), and we also need advice to tell us the size of circuits
needed to prove SPACE TMSAT. The advice for this will come implicitly from the input length.

For input x of length n, (using ρ and µ from Definition 3.1.1) let l = ρ(n), l′ = ρ(µ(n)), and t = µ(µ(n)) so
that n = 2l+2l

′
+ t. We want to solve SPACE TMSAT on length 2l

′
inputs, so we let m := 2l

′
. Let D(n) := m.

Then we can write n as n = 2l +m+ t and our language will solve length m inputs for SPACE TMSAT using
prover circuits of size S(2l)2t. Then the advice bit will only be 1 only when this advice is good.

So then m is the input length to SPACE TMSAT we want to solve, 2l is how much padding is needed to
make length m problems the right difficulty, and S(2l)2t is the size of the circuits needed for our PCP
prover.

The proof proceeds in 4 steps.

1. Define circuits Cm that prove SPACE TMSAT for length m inputs using our PCP and our theorem
assumptions on circuits for SPACE TMSAT.

2. Define when the advice bit should be 1.

3. Show infinitely often the advice bit is 1 and W /∈ BPSIZE[o(S(n/4))].

4. Show that

W ∈ OMATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

Now following this outline:

1. Define circuits Cm that prove SPACE TMSAT for length m inputs.

We know SPACE TMSAT on length m inputs has a PCP system with decision complexity Õ(m), log of
proof length Õ(m), and prover space Õ(m). Then for some strictly increasing B(m) = Õ(m), the prover
for SPACE TMSAT on length m inputs can be reduced to a circuit for SPACE TMSAT with length B(m)
inputs. Then SPACE TMSAT on length B(m) inputs has a circuit, Cm, of size at most O(A(B(m))). We
can also take B(m) = Ω(m) so that B(m) = Θ̃(m).

2. Define when the advice bit should be 1.

Since SPACE TMSAT /∈ BPSIZE[o(A(n))], for some c1 > 0, for some infinite set, U ′, for all n′ ∈ U ′,
language SPACE TMSAT on length n′ inputs does not have circuits with size c1A(n′).

Let the advice bit be 1 if and only if each of the following hold:

(a) SPACE TMSAT on length m inputs does not have circuits with size at most c1A(m/2).

This restricts us to m where the circuits for SPACE TMSAT require size near our upper bound. This
limits how much bigger Cm needs to be than the circuits for SPACE TMSAT on length m inputs.

(b) SPACE TMSAT on lengthm inputs does not have a circuit with size S(2l−1). Note S(2l−1) ≥ S(n/4).

(c) SPACE TMSAT on length m inputs does have a circuit with size S(2l) .

(d) Circuit Cm has size at most S(2l)2t.

(e) Either t = 0, or Cm has size at least S(2l)2t−1.
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Then x ∈ W for some x with |x| = n if and only the advice bit is 1 and for some y ∈ SPACE TMSAT

with |y| = m we have x = y1n−m.

3. Now we will argue that infinitely often the advice bit is 1 and W does not have circuits with size
S(n/4). We do this in a few steps:

• First restrict our focus to m large enough and where SPACE TMSAT on length m inputs has size
near A(m/2). This will be the set of input lengths, U , which is the power of 2 integers m where
m is large enough and SPACE TMSAT does not have circuits of size S(m) or c1A(m/2). Now we
show such a U exists and is infinite.

Recall that U ′ is the set of n′ such that language SPACE TMSAT on length n′ inputs does not
have circuits with size c1A(n′). Since, by theorem premise, S(2n) = o(A(n)), for some n2, for all
n′ > n2 : S(2n′) < c1A(n′).

Since, by theorem premise, S(n)2n = ω(A(B(n))), and Cn has size at most O(A(B(n))), we have
|Cn| = o(S(n)2n). So for some n3, for all n

′ > n3, circuit Cn′ has size at most S(n′)2n
′−1.

Take U∗ to be the n′ ∈ U ′ larger than max{n1, n2, n3}. See that U∗ is still an infinite set. For
each length n′ ∈ U∗, we will find a length n > n′ so the advice bit is 1.

For n′ ∈ U∗, let m = 2l
′
be the smallest power of 2 greater than n′. That is, m > n′, but 2n′ ≥ m.

By choice of U∗ ⊆ U ′, language SPACE TMSAT on length n′ inputs does not have circuits of size
c1A(n′). Recall that the min circuit length for SPACE TMSAT is monotone (see Lemma 3.0.2), so
since m > n′, language SPACE TMSAT on length m inputs does not have circuits of size c1A(n′).

Since A is monotone and m ≤ 2n′, we know c1A(m/2) ≤ c1A(n′). Since n′ > n2, we know
S(2n′) < c1A(n′). Since S is monotone and m ≤ 2n′, we have S(m) ≤ S(2n′). So we know
S(m) ≤ c1A(n′). Then since SPACE TMSAT on length m inputs does not have circuits of size
c1A(n′), we also have SPACE TMSAT on length m inputs does not have circuits of size S(m).
Similarly, since n′ ≥ m/2 and A is monotone, SPACE TMSAT on length m inputs does not have
circuits of size c1A(m/2).

Let U be the set of m from each n′ ∈ U∗. See that U is an infinite set since for each n′ ∈ U∗, there
is an m ∈ U greater than n′, and U∗ is an infinite set. Then for m ∈ U , language SPACE TMSAT

on length m inputs does not have circuits of size S(m) or c1A(m/2) and m > max{n1, n2, n3}.
• For each m ∈ U , find appropriate l and t (that is, show they exist as previously defined). Here,
think of m as being fixed, and we are looking for l and t to define the corresponding n.

Take the smallest l so that SPACE TMSAT on length m inputs does have a circuit of size S(2l).
Note that l > l′ = log(m), since SPACE TMSAT on length m inputs does not have circuits with size
S(m).

Let t be the smallest t such that Cm has size S(2l)2t. Since m > n3, we know Cm has size at
most S(m)2m−1 < S(2l)2m−1. Thus t ≤ m− 1 < m.

Finally, see that since m is a power of two, 2l is a power of two bigger than m and t is less than
m, we have that these are the proper l,m, t for n = 2l +m+ t.

• Now for n = 2l+m+ t, we show the advice bit is 1 and language SPACE TMSAT on length n inputs
does not have circuits with size S(n/4).

First, see that t < m, so m + t < 2l
′+1. As noted before, l′ < l, so 2l

′+1 ≤ 2l. Thus 2l > m + t
and ρ(n) = l. Similarly l′ = ρ(µ(n)), m = 2l

′
, and t = µ(µ(n)). Then

(a) By choice of U , language SPACE TMSAT on length m inputs does not have circuits of size
c1A(m/2).

(b,c) SPACE TMSAT on length m inputs does not have a circuit with size S(2l−1), since we chose
the smallest l so that SPACE TMSAT on length m inputs has a circuit with size S(2l).

(d) By choice of t, circuit Cm has size S(2l)2t.

(e) Specifically, t is the smallest such that Cm has size S(2l)2t. So either t = 0, or Cm does not
have size S(2l)2t−1.
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So for that n, the advice bit is 1.

Since for every m ∈ U for some n > m the advice bit is 1, and since U is an infinite set, the
advice bit is one infinitely often. For input lengths where the advice bit is 1, SPACE TMSAT does
not have circuits of size S(2l−1) ≥ S(n/4). So SPACE TMSAT does not have circuits of size S(n/4)
infinitely often. Therefore

W /∈ BPSIZE[o(S(n/4))].

4. Show that

W ∈ OMATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

If the advice bit is 0, this is trivial. Otherwise, assume for n the advice bit is 1.

When the advice bit is 1, we know Cm has size at most S(2l)2t and either

t = 0: Then Cm has size S(2l) = O(S(n)) since S is monotone and 2l < n.

t ≥ 1: Then Cm does not have size S(2l)2t−1 by choice of t. Circuit Cm has size A(B(m)). Thus

S(2l)2t−1 < A(B(m)).

Further, SPACE TMSAT on length m inputs does not have circuits of size c1A(m/2) since the
advice bit is 1, but it does have circuits of size S(2l). We emphasize that this is the circuit size
of SPACE TMSAT, not Cm. We specifically chose l and m so this would be true, see Item 2a and
Item 2c. Thus

c1A(m/2) < S(2l).

Together

S(2l)2t−1 <A(B(m))

c1A(m/2)2t−1 <A(B(m))

2t <
2

c1

A(B(m))

A(m/2)
.

Thus Cm has size

S(2l)2t = O

(
S(n)

A(B(D(n)))

A(D(n)/2)

)
.

Similar to the other results, each query needs to use O(log(log(m))) queries to the circuit Cm to simulate
one call to the prover with high probability. Thus, the verifier for SPACE TMSAT can be simulated in
time Õ(m), and the polylog(m) queries to the prover can be simulated in time

poly(log(m))S(2l)2t = Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)
.

This gives a total MA time of Õ
(
S(n)A(B(D(n)))

A(D(n)/2)

)
for W . Thus

W ∈ OMATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1.

Therefore

W ∈ OMATIME

[
Õ

(
S(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 \BPSIZE[o(S(n/4))].

Now for the special case where SPACE TMSAT almost has some fixed polynomial size.
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Corollary 3.4.2 (Bound if SPACE TMSAT has size na+o(1)). Suppose for some function h(n) with |h(n)| = o(1)
and for some constant a > 1, for some function A(n) we have A(n) = na+h(n). Then if A(n) is non-
decreasing and we have SPACE TMSAT ∈ BPSIZE[O(A(n))] \ BPSIZE[o(A(n))], then for any k < a, for
some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

Proof. If k < 1, we use Corollary 2.1.8. Otherwise, let S(n) = nk log(n). Since k < a, we have S(2n) =
o(A(n)).

To apply Lemma 3.4.1, we need to show that for any B(n) = Θ̃(n), we have S(n)2n = ω(A(B(n))). But
since A(n) and B(n) are both polynomials, they are smaller than 2n. That is

A(B(n)) =o(B(n)k+1/2)

=o(2n)

=o(S(n)2n).

This is equivalent to S(n)2n = ω(A(B(n))).
Now we can apply Lemma 3.4.1 to get a language W such that

W ∈ OMATIME

[
Õ

(
nk log(n)

A(B(D(n)))

A(D(n)/2)

)]
/1 \BPSIZE[o(nk log(n))].

Now let’s simplify this a bit. Since W /∈ BPSIZE[o(nk log(n))] and nk = o(nk log(n)), we have W /∈
BPSIZE[O(nk)].

Now we want to bound that fraction:

A(B(D(n)))

A(D(n)/2)
=
(B(D(n)))a+h(B(D(n)))

(D(n)/2)a+h(D(n)/2)
.

We start by letting D(n) = m and bounding this in terms of m first. Then

A(B(D(n)))

A(D(n)/2)
=
(B(m))a+h(B(m))

(m/2)a+h(m/2)

=Õ

(
ma+h(B(m))

ma+h(m/2)

)
=Õ

(
mh(B(m))−h(m/2)

)
.

Since B(m) = ω(1), and |h(m)| = o(1), we know |h(B(m))| = o(1). So for some h∗(m) with |h∗(m)| = o(1),
we have

A(B(D(n)))

A(D(n)/2)
=O(mh∗(m))

=O(D(n)h
∗(D(n))).

Note that since A and B are both non-decreasing, this fraction is at least 1. So in particular h∗(n) ≥ 0, and
h∗(n) = o(1).

Now using Lemma 2.1.9, since D(n) = O(n), for some h′(n) = o(1), we have

A(B(D(n)))

A(D(n)/2)
= O(nh′(n)).

Thus for some f(n) = o(1), we have

Õ

(
nk log(n)

A(B(D(n)))

A(D(n)/2)

)
=Õ

(
nknh′(n)

)
=O(nk+f(n)).

So W ∈ BPSIZE[O(nk+f(n))]. Thus we conclude:

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].
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3.5 Altogether

Altogether, these three cases imply Theorem 1.1.1 and the following generalization.

Theorem 1.3.1 (OMATIME Lower Bound Against BPTIME). There exists constant a > 1, such that
for all k < a, for some f(n) = o(1),

OMATIME[O(nk+f(n))]/1 ̸⊂ BPTIME[O(nk)]/O(nk).

Proof. First, we will find the best polynomial approximation of the circuit complexity of SPACE TMSAT. So
define set

S = {a ∈ R : SPACE TMSAT ∈ BPSIZE[O(na)]}.
If S = ∅, then there is no constant a such that SPACE TMSAT ∈ BPSIZE[O(na)]. Then SPACE TMSAT /∈

P/poly, so we use Corollary 3.2.3. Then Corollary 3.2.3 gives: for any k > 0, and some f(n) = o(1):

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

So suppose S ̸= ∅. Now see that SPACE TMSAT requires circuits of size Ω(n) since we can reduce parity
to it and parity requires circuits of size Ω(n) (see Lemma 2.1.7). Thus for any a < 1, we know that
SPACE TMSAT /∈ BPSIZE[O(na)], that is a /∈ S. So 1 is a lower bound for S.

Then the set S is nonempty and has a lower bound. So S has an infimum, a, so that for any constant
ϵ > 0, we have SPACE TMSAT ∈ BPSIZE[O(na+ϵ)], but SPACE TMSAT /∈ BPSIZE[O(na−ϵ)].

Before we use Corollary 3.3.2 and Corollary 3.4.2, we need to find an A(n) such that for some h(n), we
have A(n) = na+h(n) and

1. A(n) is non-decreasing.

2. SPACE TMSAT ∈ BPSIZE[O(A(n))] \BPSIZE[o(A(n))].

3. |h(n)| = o(1).

Let A′(n) be the minimum circuit size of SPACE TMSAT on length n inputs. One might hope A′(n) would
work for A(n), but the difficulty of SPACE TMSAT may not increase smoothly. It may remain near linear for
many consecutive n, and only occasionally increase near na. So instead, we want a smoother function for
A(n) that never drops too far below na, but infinitely often is equal to A′(n).

So the idea is just to have A(n) be the maximum of A′(n) and some polynomial just smaller than na,
say na−ϵ. Then A(n) won’t get far away from na if A′(n) becomes small. But we can’t use a constant ϵ, or
we could get |h(n)| = Ω(1). So instead, we make ϵ smaller each time A′(n) is larger than na−ϵ.

Define m(n) so that m(0) = 0 and

m(n+ 1) =

{
m(n) + 1 A′(n) ≥ na−2−m(n)

m(n) otherwise
.

Then ϵ(n) = 2−m(n).

Now we define A(n) = max{A′(n), na−ϵ(n)}. Then for h(n) = log(A(n))
log(n) − a, we have A(n) = na+h(n).

Now we show the three conditions.

1. A(n) is non-decreasing.

A(n) is the maximum of two non-decreasing sequences: A′(n) and na−ϵ(n), so is also non-decreasing.

2. SPACE TMSAT ∈ BPSIZE[O(A(n))] \BPSIZE[o(A(n))].

By choice of A(n), for all n, A(n) ≥ A′(n), the minimum circuit size of SPACE TMSAT, so SPACE TMSAT ∈
BPSIZE[O(A(n))].

Now we will argue that infinitely often, A(n) = A′(n). Otherwise, for some n′, for all n ≥ n′,
A′(n) < na−ϵ(n). If this were true, then for any n ≥ n′, m(n) = m(n′) since for none of these n will
m(n) increase. Thus for all n > n′, A′(n) < na−ϵ(n′). Then SPACE TMSAT ∈ BPSIZE[O(na−ϵ(n′))]. But
since ϵ(n′) > 0, by choice of a, this cannot happen. Contradiction. So infinitely often, A(n) = A′(n).

Since infinitely often, SPACE TMSAT requires circuits of size A(n), SPACE TMSAT /∈ BPSIZE[o(A(n))].
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3. |h(n)| = o(1).

From the last section, infinitely often, A′(n) ≥ na−ϵ(n), so m(n) → ∞, and for h1(n) = ϵ(n) = o(1),
we have a lower bound on A(n) of A(n) ≥ na−h1(n).

Let h2(n) = max{0, log(A′(n))
log(n) − a}. See that na+h2(n) is always at least na−ϵ(n) and A′(n), so A(n) ≤

na+h2(n). Next we show that h2(n) = o(1).

Suppose otherwise. Then for some c > 0, for infinitely many n, we have h2(n) > c. But for such n, we

have h2(n) =
log(A′(n))

log(n) − a, so

A′(n) = na+h2(n) > na+c.

Then infinitely often, SPACE TMSAT does not have size na+c circuits. This means SPACE TMSAT /∈
BPSIZE[o(na+c)]. Specifically, for c/2 > 0, we have SPACE TMSAT /∈ BPSIZE[O(na+c/2)]. But choice
of a, this cannot happen. Contradiction. So h2(n) = o(1).

Thus

na−h1(n) ≤ A(n) ≤ na+h2(n)

a− h1(n) ≤
log(A(n))

log(n)
≤ a+ h2(n)

−h1(n) ≤ h(n) ≤ h2(n)

|h(n)| ≤ max{h1(n), h2(n)}
= o(1).

If a = 1, we use Corollary 3.3.2. See that |h(n)| = o(1) and SPACE TMSAT ∈ BPSIZE[O(n1+|h(n)|)].
Thus for any k, for some f(n) = o(1), we have

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

If a > 1, we use Corollary 3.4.2. See that A was specifically constructed to satisfy the theorem require-
ments. Then for any k < a, for some f(n) = o(1), we have

OMATIME[O(nk+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

Now to turn this into a statement about about BPTIME, we use Lemma 2.2.5.

Next we prove a generalization of Theorem 1.1.2. We use the case of a > 1 in the proof of Theorem 1.3.1
and apply Lemma 3.3.1 similar to Corollary 3.3.2.

Theorem 3.5.1 (MA Lower Bound for Small a). If the a from Theorem 1.3.1 is finite, then for all k > 0,
for some f(n) = o(1),

OMATIME[O(nak+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

Proof. We want to use Lemma 3.3.1 with S(n) = nk log(n), A(n) = na+h(n) from the proof of Theorem 1.3.1,
and B(n) = Θ̃(n) from Lemma 3.3.1.

The size upper bound on S(n) is clear: S(n) = o(2n/n). We need to show S(n)2n = ω(A(B(S(n)))).
Well for any B(n) = Õ(n),

A(B(S(n))) =B(nk log(n))a+h(n)

=Õ(nak+kh(n))

=o(2n)

S(n)2n =ω(A(B(S(n)))).

So by Lemma 3.3.1, for some B(n) = Õ(n),

OMATIME[Õ(A(B(S(n))))]/1 ̸⊂ BPSIZE[o(S(n/2))].
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See that for some f(n) = o(1),

Õ(A(B(S(n)))) = Õ(nak+kh(n)) = O(nak+f(n)).

Similarly nk = o(S(n/2)), so we also have

OMATIME[O(nak+f(n))]/1 ̸⊂ BPSIZE[O(nk)].

4 Extrapolatable PCPs

To get our efficient PCPs, we use a technique called PCP composition to compose a robust outer PCP
(rPCP) with an inner PCP of proximity (PCPP). See Section 2.3 for more information. We introduce
extrapolatable PCPs (ePCPs) as an intermediate PCP in constructing an efficient rPCP and PCPP.
We will later use rPCPs in PCP composition to reduce the number of queries. Before defining an ePCP,
we start by introducing several useful properties about extrapolatability.

We emphasize that many prior PCP constructions were extrapolatable, they only lacked analysis to show
that they are. Similarly, our PCP construction is not new. Indeed, it is a standard instantiation of the BFL
PCP [BFL90] made robust via an aggregation through curves argument [Aro+98] composed with itself. The
composition soundness comes from a PCP of proximity type argument [Ben+04]. The main innovation here
is that the query time can be significantly less than previously shown leading to a more time efficient verifier
and a more space efficient prover. ePCP is just a convenient primitive for analysis, and in particular the
BFL PCP is an ePCP.

4.1 Extrapolatable Functions

We introduce extrapolatable functions as a tool to efficiently compute low degree extrapolations. For any
Q : [q] → Fn, we say its low degree extrapolation is the unique degree q − 1 function that agrees with Q
on its first q values. Any Q computable in time n polylog(|F|), we can compute the extrapolation of Q in
time qn polylog(|F|). But we want to compute the extrapolation of Q in time (q + n) polylog(|F|). Recall the
definition of an extrapolatable function.

Definition 1.2.1 (Extrapolatability). For any n, q, t > 0, and field F, we call Q : [q] → Fn “t extrapolatable”
(or time t extrapolatable) if there is a time t algorithm taking any v ∈ Fq, that outputs∑

i∈[q]

viQ(i).

Remark (Embedding in F). Here, we embed [q] in F in any convenient way. For our results, it does not
matter as long as the embedding is efficiently computable.

We will use Q where t ≤ (q + n) polylog(|F|).
Various basic combinations of extrapolatable functions give extrapolatable functions. The function that

outputs one extrapolatable function for its first m inputs, and then a second extrapolatable function for its
last m′ inputs is also extrapolatable.

Lemma 4.1.1 (Extrapolatability Combination 1). For integers n, q, q′, t, t′ > 0, and field F, if p : [q] → Fn

is t extrapolatable, and p′ : [q′] → Fn is t′ extrapolatable, then g : [q + q′] → Fn is O(t + t′ + n log(F))
extrapolatable where

g(i) =

{
p(i) i ≤ q

p′(i− q) i > q
.

Proof. To prove g(i) is extrapolatable, we need an algorithm that takes v ∈ Fq+q′ and outputs∑
i∈[q+q′]

vig(i).
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We can write this sum as ∑
i∈[q+q′]

vig(i) =
∑
i∈[q]

vig(i) +
∑
i∈[q′]

vq+ig(q + i)

=
∑
i∈[q]

vip(i) +
∑
i∈[q′]

vq+ip
′(i).

Then use extrapolatability of p to calculate ∑
i∈[q]

vip(i)

in time t, and use extrapolatability of p′ to calculate∑
i∈[q′]

vq+ip
′(i)

in time t′. Then their sum is the answer, and addition takes time O(n log(F)).

Similarly, a function that outputs pairs of values from extrapolatable functions is extrapolatable.

Lemma 4.1.2 (Extrapolatability Combination 2). For integers n, n′, q, t, t′ > 0, and field F, if p : [q] → Fn

is t extrapolatable, and p′ : [q] → Fn′
is t′ extrapolatable, then g : [q] → Fn+n′

is O(t + t′) extrapolatable
where

g(i) = (p(i), p′(i)).

Proof. Given v ∈ Fq, we need to calculate∑
i∈[q]

vig(i) =
∑
i∈[q]

vi(p(i), p
′(i))

=

∑
i∈[q]

vip(i),
∑
i∈[q]

vip
′(i)

 .

We use extrapolatability of p to calculate ∑
i∈[q]

vip(i)

in time t, then use extrapolatability of p′ to calculate∑
i∈[q]

vip
′(i)

in time t′. Then concatenate the results.

As an example of extrapolatable functions, see that any function outputting an arithmetic progression is
extrapolatable.

Lemma 4.1.3 (Arithmetic Progressions are Extrapolatable). For integers n, q > 0, and field F, for any
x ∈ Fn and y ∈ Fn, the function f : [q] → Fn defined by

f(i) = x+ iy

is time O((n+ q) polylog(|F|)) extrapolatable.
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Proof. Given v ∈ Fq, we need to calculate∑
i∈[q]

vif(i) =
∑
i∈[q]

vi(x+ iy)

=

∑
i∈[q]

vi

x+

∑
i∈[q]

vii

 y.

Then one can calculate α =
∑

i∈[q] vi using just q field additions, which takes time O(q log(|F|)). Similarly,

one can calculate β =
∑

i∈[q] vii using q multiplications and additions, which takes time O(q polylog(|F|)).
Now we need to calculate αx + βy. Since x ∈ Fn, it only n field operations to multiply x by α, so αx

only takes time O(n polylog(|F|)) to calculate. Similar for βy and the sum of of αx with βy.
So altogether, this algorithm only takes time O((q + n) polylog(|F|) to compute

∑
i∈[q] vif(i).

Now we show that we can efficiently extrapolate (compute the low degree extrapolation of) an extrapo-
latable function.

Lemma 4.1.4 (Efficient Polynomials From Extrapolatability). For any n, q, t > 0, field F where |F| > q,
and t extrapolatable Q : [q] → Fn, let g be the degree q − 1 polynomial such that for all i ∈ [q], g(i) = Q(i).
Then there is a time

O(t+ q polylog(|F|))

algorithm computing taking any x ∈ F and outputting g(x),

Proof. We use Lagrange interpolation. For a given q, and i ∈ [q], the ith Lagrange basis polynomial is:

lqi (x) =
∏

j∈[q]\{i}

x− j

i− j
.

This is the degree q − 1 polynomial that is 1 at x = i, but 0 for all other x ∈ [q] \ {i}.
Then we can easily write our desired g in terms of the Lagrange basis polynomials:

g(x) =
∑
i∈[q]

lqi (x)Q(i).

A naive, straightforward evaluation of this sum takes time O(nq polylog(|F|)). But since Q is t extrapolatable,
if we can calculate lq1(x), . . . , l

q
q(x), we can use these to calculate g in time t.

For a fixed x, and i, we can define

αi =
∏

j∈[i−1]

(x− j)

α′
i =

∏
j∈[q]\[i]

(x− j)

βi =
∏

j∈[i−1]

j

β′
i =

∏
j∈[q−i]

(−j)

so that

lqi (x) =
∏

j∈[q]\{i}

x− j

i− j

=
αiα

′
i

βiβ′
i

.
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Each one of these sequences (α, α′, β, β′) can be entirely computed in time O(q polylog(|F|)). For instance,
see that for i < q, αi+1 = (x− i)αi, which can be computed with two field operations. So all q of the αi can
be computed in time O(q polylog(|F|)). Similarly for α′, β, and β′.

Now given each of α, α′, β, and β′ have already been calculated, we can calculate lqi (x) in four field
operations. Thus, every lq1(x), . . . , l

q
q(x) can be calculated in time O(q polylog(|F|)).

Finally, since Q is time t extrapolatable, we can calculate g(x) in time t, giving a total time of O(t +
q polylog(|F|)).

4.2 Low Degree Testing

Low degree testing checks if there is a global low degree polynomial a proof is close to. This will be important
for making ourPCP robust. We start with the “line versus point” low degree test. For a function f : Fm → F,
the line versus point test chooses a random line through Fm and a claimed polynomial of what f should be
on that line. Then it checks f at a random point on that line against the polynomial. The line versus point
test has been extensively studied [PS94; FS95; AS97; Har+24]. We will use this to show that the test of
checking if a random line is low degree is a robust low degree test, similar to [Ben+04].

Definition 4.2.1 (Line versus Point test). Let F be a field, f be a function f : Fm → F, and degree d be an
integer. For each line given by l : F → Fm, let there be a degree d polynomial gl : F → F.

The degree d line vs point test uniformly samples a line given by, l : F → Fm and a uniform t ∈ F then
accepts if and only if

f(l(t)) = gl(t).

We say that f passes the degree d line vs point test with probability ϵ if there is some set of functions g
such that f and g pass the test with probability ϵ.

The failure probability of the line versus point test is related to the distance of f to a low degree
polynomial [PS94; FS95; AS97]. To make our robust PCP as simple and efficient as possible, we will use a
more recent, high error regime low degree test by Harsha, Kumar, Saptharishi, and Sudan [Har+24].

Lemma 4.2.2 (Line vs Point Test Measures Distance to Degree). There exists some τ ∈ (0, 1/3] such that
for any finite field F, integer m, and d, the following holds.

Suppose some function f : Fm → F passes the degree d line vs point test with probability µ+
(

d
|F|

)τ
. Then

there is a degree d polynomial p : Fm → F that agrees with f on µ fraction of points. That is:

Pr
x∈Fm

[f(x) = p(x)] ≥ µ.

The line versus point test was used by [Ben+04] to create a robust line versus point test in order to
construct their PCP. Here we give an even more robust version of this low degree test using the new line
versus point test in combination with the sampling properties of lines. The result of [Ben+04] only gives
robustness with large robust soundness error, while we give robustness with very small robust soundness
error.

Lemma 4.2.3 (Robust Line vs Point Test). Take any field F, integer dimension m, integer degree d, and

constant β ≥
(

d
|F|

)τ
where τ is the constant from Definition 4.2.1. Take any f : Fm → F whose relative

distance to the nearest polynomial is at least β +
(

d
|F|

)τ
. Then for a random line ℓ we have

Pr
ℓ
[The relative distance of f ◦ ℓ to the closest degree d polynomial ≤ β] ≤

β + 3
(

d
|F|

)τ
1− β

.

Proof. There are two cases. Either f is far from all low degree polynomials, then we can use Lemma 4.2.2 to
conclude the line versus point test fails often, and can get our result through a Markov inequality. Otherwise,
we can use that lines are good samplers to say that with high probability, we will sample both the nearest
polynomial and symbols that are not the nearest polynomial with high probability. Either many of the
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symbols close to the near polynomial will need to be changed to get a different polynomial, or the ones far
will need to be changed to get a nearby polynomial.

So let p : Fm → F be nearest degree d polynomial to f . Define the set of points they agree as A = {x ∈
Fm : p(x) = f(x)}, how much they agree as µ = |A|

|Fm| . Since the distance of f to p is at least β +
(

d
|F|

)τ
, we

have µ ≤ 1− β −
(

d
|F|

)τ
.

Let α =
√

1
|F|β . Since β ≥

(
1
|F|

)τ
and τ ≤ 1/3, we can bound α as

α ≤

√
|F|τ
|F|

≤ 1

|F|τ
≤
(

d

|F|

)τ

.

Thus µ ≤ 1− β − α. Now we handle two cases.

µ ≤ β + α+ d
|F| : Then we know that the degree d line vs point test must pass with probability at most

β + α+ d
|F| +

(
d
|F|

)τ
, otherwise by Lemma 4.2.2, µ would be larger than this case. Thus the expected

agreement between a line the nearest degree d polynomial is at most β + α + d
|F| +

(
d
|F|

)τ
. So by a

Markov inequality, the probability that the agreement is more than 1− β is at most

β + α+ d
|F| +

(
d
|F|

)τ
1− β

.

See that d
|F| ≤

(
d
|F|

)τ
. So we can bound the probability we are closer than β by

β+3( d
|F| )

τ

1−β .

β + α+ d
|F| ≤ µ ≤ 1− β − α: One can use pairwise independence of the points in random lines and Cheby-

shev bounds to show that

Pr
ℓ
[|Ex∈F[ℓ(x) ∈ A]− µ| ≥ α] ≤ 1

α2|F|
.

See that if ℓ intersects with A on more than β + d
|F| fraction of symbols, then f ◦ ℓ must have distance

β from any other degree d polynomials. If ℓ intersects with A on less than 1−β fraction of inputs than
f ◦ ℓ has distance β from p ◦ ℓ. Thus with probability at all but 1

α2|F| = β, both of these hold and so

f ◦ ℓ is β away from any degree d polynomial.

Remark (Strength of this Robust Line vs Point Test). We note that this line vs point test is better than
one gets by the standard reduction. The standard reduction says that if the function is about ϵ away from a
polynomial, then the line versus point test fails with probability about ϵ, so there must be about ϵ/2 fraction
of lines that fail with distance at least ϵ/2. This comes by a simple averaging argument. But we show that
about 1− ϵ fraction of lines have distance about ϵ. We get this by exploiting the sampling property of lines.

4.3 Extrapolatable PCPs

The purpose of an ePCP is to give an easy, efficient way to construct a robust PCP (rPCP). Since we
will construct a robust PCP of proximity (rPCPP), we describe our ePCP with an implicit input as well.
An ePCP is a PCP where:

1. An honest PCP proof is a low degree polynomial: π : Fm → F. This allows us to make the PCP
robust using an aggregation through curves type technique.

2. We relax soundness to only be against low degree proofs. This makes proving soundness of ePCPs
easier.
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3. The query function is extrapolatable (see Definition 1.2.1). This makes individual query locations of
the robust PCP efficient to compute.

4. The implicit input must be contained in the proof. Ideally, it would be literal direct symbols in the
proof, but sometimes the alphabet of the implicit input may be larger than that of the proof. In this
case, we allow several symbols of the proof together to correspond to a symbol of the implicit input.

Now we formally define an extrapolatable PCP (see standard PCP, Definition 2.3.3, for reference).

Definition 4.3.1 (Extrapolatable PCP). We say a non-adaptive PCP, A, for a pair language L with
verifier V , prover P , and query function Q is an extrapolatable PCP (ePCP) if for some m and d (both
functions of n):

1. For some field F, A uses alphabet F.

2. The proof length is |F|m. That is a proof π together can be viewed as a function π : Fm → F.

Low Degree Completeness: If (x, y) ∈ L, then there exists a proof πx,y such that πx,y : Fm → F is a
polynomial of degree at most d such that

Pr
r
[V (x, r, πx,y

Q(x,r,·)) = 1] = 1,

and for every i ∈ [l(n)], we have P (x, y, i) = πx,y
i .

Decoding: Suppose that the implicit input to L has alphabet Σ and length n′. Then for some integer ρ
where |Σ| ≤ |Fρ|, there is a O(mρ polylog(|F|)) time, O(mρ log(|F|)) space algorithm taking an index
of i ∈ [n′] and outputting ρ indexes ji1, . . . , j

i
ρ ∈ Fm such that there is a time ρ polylog(|F|) and space

O(ρ log(|F|)) computable bijection f between a subset of Fρ and Σ such that for any (x, y) ∈ L we have
f(πx,y

ji1,...,j
i
ρ
) = yi. Further, if one is given any of ji1, . . . , j

i
ρ, then in the same time and space one can

determine the corresponding i.

We say that π encodes implicit input y if for all i ∈ [n′] the corresponding ji1, . . . , j
i
ρ has f(πji1,...,j

i
ρ
) = yi.

Here, we allow y to contain symbols ⊥/∈ Σ so that f is always defined.

Low Degree Soundness: For any (x, y) /∈ L and any degree at most d polynomial proof π′ : Fn → F that
encodes y we have

Pr
r
[V (x, r, π′

Q(x,r,·)) = 1] ≤ δ.

Further, we say A has:

1. Extrapolation time t(n) if for any x, r, the function Qx,r(i) = Q(x, r, i) is time t(n) extrapolatable.

2. Degree d and m variables.

3. Low degree soundness δ.

4. Perfect low degree completeness.

5. ρ proof symbols per implicit symbol.

To make our rPCP from an ePCP, the idea is to take an ePCP, and instead of querying points, query
all the points along a curve that goes through those points. Since low degree functions are an error correcting
code, restricting low degree proofs to a low degree curve gives an error correcting code. So by querying entire
curves, we can make the set of accepted query values for our PCP verifier an error correcting code.

Querying along a line and checking if it is low degree performs a low degree test. A low degree test only
succeeds with high probability if a proof is close to a global, low degree polynomial. Then since low degree
polynomials are error correcting codes, if the query values are close to both the global low degree polynomial
and an accepted proof, the accepted proof is the global low degree polynomial. If the query values for a
proof are close to being accepted often, we show a global low degree proof for the original ePCP succeeds
often.
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Then the idea of the protocol is to choose the randomness for the ePCP, take a curve through all the
query points of the ePCP, query all the locations along this curve and check if the the curve is low degree,
and the ePCP accepts the proof on this curve. This is almost what the rPCP does, with a few caveats:

1. We also perform a robust line versus point test. This gives our line versus point test robustness since
low degree polynomials are an error correcting code.

2. To guarantee the curve is consistent with the global low degree polynomial with high probability, we
need a random point on the curve to be approximately uniform over Fm. So we also choose another
random point in the proof, and use a curve that goes through the ePCP queries and that point.

From Lemma 4.1.1, the function going through all these points is still extrapolatable, and so by
Lemma 4.1.4 we can efficiently compute the curve going through them.

We can also give any ePCP proximity by adding extra queries to the implicit input. Since ePCPs only
have to handle soundness against low degree polynomials, to change a symbol in the implicit input requires
changing most of the proof. Thus checking random points in the implicit input input is enough to verify the
implicit input is (close to) the input used in the proof. The same techniques for making an ePCP a robust
PCP also make this ePCP of proximity a robust PCP of proximity (rPCPP).

We note that this is a standard technique, the only extra precaution is that we need to keep the verifier
space, and query time low. Keeping verifier space low requires a space efficient low degree test. This space
efficient low degree test requires time |F|3 polylog(|F|), whereas a standard less space efficient low degree
test requires time |F| polylog(|F|). This increases the decision complexity somewhat, but we will do PCP
composition to reduce decision complexity so it is not a problem. Keeping query time low is handled by the
fact that ePCP queries are extrapolatable.

Theorem 4.3.2 (ePCP gives efficient rPCPP). For any pair language L with an ePCP, A, with

1. Decision complexity t(n).

2. Verifier space s(n).

3. Extrapolation time t′(n).

4. Randomness r(n).

5. Degree d(n) and m(n) variables.

6. q(n) queries.

7. Alphabet F.

8. Prover P .

9. Low degree soundness δ1.

10. Perfect low degree completeness.

11. Degree d.

12. ρ implicit symbols per proof symbol.

Take any positive η, β such that |F| > 10d(n)
(
q(n) + ⌈ 10ρ log(1/δ1)

η ⌉
)
, and 3

(
d
|F|

)τ
≤ β ≤ min{η

2 ,
1
10} holds

(where τ is the universal constant from Lemma 4.2.2). Then the language L has an rPCPP, B, with

1. Decision complexity O(t(n) + |F|3ρ polylog(|F|)).

2. Verifier space O(s(n) + ρ log(|F|)).

3. Randomness r(n) +O
(

m(n) log(1/δ1)
η log(|F|)

)
.
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4. Query time O
(
t′(n) +

(
q(n) + m(n)ρ log(1/δ1)

η

)
polylog(|F|)

)
.

5. O(|F|) queries.

6. Prover P , alphabet F ∪ Σ, and perfect completeness.

7. Proximity η.

8. Robust soundness error at most δ1 + 3β.

9. Robustness parameter β/3.

Remark (Efficiency of the Prover). We emphasize that the prover of the rPCPP is the same as that of the
ePCP. So if the prover of the ePCP is efficient, so is the prover of the rPCPP.

Proof. Let V be the verifier, Q the query function, and P the prover from ePCP, A. We construct a new
rPCPP, B, that expects the same low degree polynomial as proof as A. Our new verifier will be V ′ and
our new query function Q′. We will start by describing our protocol from a high level, pointing out which
parts are done by a new query function Q′ and V ′ later.

First, on explicit input x, implicit input y, and proof π, our rPCPP system B will choose the randomness
for A, call it r. This determines the query points for A, which are Q(x, r, ·). By assumption, Qx,r(i) =
Q(x, r, i) is time t′(n) extrapolatable.

Let c = ⌈ 10 log(1/δ1)
η ⌉. Then B chooses c random indexes in the implicit input to check. These correspond

to c′ = cρ locations in the low degree polynomial, w1, . . . , wc′ ∈ Fm that we will use to check the implicit
input. We also choose some random index into the whole proof, wc′+1 ∈ Fm. The function w : [c′+1] → Fm

that takes i and outputs wi is time O(c′m polylog(|F|)) extrapolatable. Let g : F → Fm be the degree
q(n) + c′ function such that, for each t ∈ [q(n)], we have g(t) = Q(x, r, t), and for every i ∈ [c′ + 1] we have
g(q(n) + i) = wi.

Then π ◦ g is a degree d′ = d(q+ c′) polynomial if π is actually a degree d polynomial. Our new rPCPP
verifier V ′ will check every point along π ◦ g and verify it is a degree d′ polynomial that would cause our
ePCP verifier V to accept.

Next the verifier chooses a random z ∈ Fm to run a robust line versus point test with the line ℓ defined
by ℓ(i) = wc+1 + i · z. Altogether, B uses randomness r(n) + (c + 2)m(n) log(|F|). Let r′ be the choice of
randomness. Then the query function Q′ : [2|F|] → Fm is defined by

Q′(x, r′, i) =

{
g(i) i ≤ |F|
ℓ(i− |F|) i > |F|

(where we define g(|F|) = g(0) and ℓ(|F|) = l(0)) with one exception. When Q would query one of the inputs
corresponding to y, it queries y instead. This is efficient because ePCPs have efficient decoding.

We call the first |F| queries the curve queries and the rest of the queries the line queries. Similarly, we
call π evaluated on the first F queries the curve values and π on the rest of the queries the line values.

Finally, as an accounting trick, we then repeat the queries into y, (which would be the locations at
w1, . . . , wc′ , except the verifier knows these actually come from y so it queries y instead) until we also query
indexes in y approximately |F| times and make sure the values don’t change. Call these the y queries. This is
just to make sure distance on these indexes cost more when calculating robustness. Equivalently, one could
also use a more fine grained notion of robustness that measured distance on π and y differently.

The verifier V ′ first checks if the ePCP would accept the curve values, that is, if V (x, r, πQ(x,r,·)) = 1.
It can do this since the first q queries of Q′ are the same as Q. Then the verifier checks if the curve values
are a degree d′ polynomial. Finally, it checks if the proof restricted to the line is a degree d polynomial. Our
new verifier V ′ accepts only if all of these checks pass.

Now to keep verifier space down, we need to be a little careful how we implement our low degree test, so
we describe that first. Let f := π ◦ g so that f is a function outputting the curve values. Using the degree
d′ interpolating polynomials,

ld
′

i (x) =
∏

j∈[d′]\{i}

x− j

i− j
,
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we can write a degree d′ polynomial, h:

h(x) =
∑
i∈[d′]

ld
′

i (x)f(i).

If f is a degree d′ polynomial, then f = h. To see if f = h, we calculate h at each point and compare to f .
Each ld

′

i can be computed directly by simply looping through each terms in the sums and products,
calculating them from the definition, and reusing the space each time. Notably, we do NOT calculate
the interpolating polynomials the same way we computed them in Lemma 4.1.4. That version uses more
memory, but less time, and in this case we need less memory but allow for more time. Instead, we use the
naive algorithm following the definition directly. We do a similar thing for the line versus point test.

Now to argue we achieve the stated performance.

1. Now we show the decision complexity is O(t(n) + (|F|3 + |F|ρ) polylog(|F|)).
The decision complexity is just the time to simulate V , which is t(n), plus the time it takes to perform
the low degree tests. To test the low degree of f takes O(|F|) calculations of h(x). Each h(x) only
takes O(d′) calculations of ld

′

i (x). Each ld
′

i (x) only takes time O(d′ polylog(|F|)). Thus the total time
for the low degree test of f is

O(|F|d′ polylog(|F|)) = O(|F|3 polylog(|F|)).

There is an additional ρ polylog(|F|) time from decoding the ePCP which we do at most |F|3 times.
The check takes at most this long, so the overall time is

O(t(n) + |F|3ρ polylog(|F|)).

2. Now we show the verifier space is O(s(n) + ρ log(|F|)).
Calculating a single ld

′

i only requires keeping track of a constant number of field elements and a pointer
for j. Then given that, h(x) only needs the additional space for another counter for i and another field
element. Finally, comparing all of the h(x) to the f(x) only takes space for another pointer for the x
and another field element. So it only requires a constant number of pointers and field elements. The
line tests are similar.

So the total space of V ′ is the space used to run V plus O(log(|F|)), plus a ρ log(|F|) overhead to
decode. So the total space is O(s(n) + ρ log(|F|)).

3. As already shown, B uses randomness r(n) + (2 + c)m(n) log(|F|).

4. Next, we show the query time of the robust PCP.

By assumption, the query locations of Q are time t′(n) extrapolatable. And by Lemma 4.1.1, adding
w gives a O(t′ + c′m log(|F|)) extrapolatable function. And g is the low degree extrapolation of this
sequence.

By Lemma 4.1.4, we can calculate g in time O(t′(n) + (c′m+ q) polylog(|F|)). This handles the curve
queries, as these are just evaluations of g.

The line queries just return a point in ℓ(i) = wc′+1+ i · z. These can be calculated in O(m polylog(|F|))
time. To check if any of the query locations need to index into the implicit input y only takes an
additional mρ polylog(|F|) time from decoding of the ePCP.

In either case, we calculate Q′ in time

O(t′(n) + ((c′ + ρ)m+ q) polylog(|F|)).

5. The number of queries are at most 3|F| = O(|F|).

6. These hold by construction, and since the ePCP has perfect completeness.
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7,8,9. Now we need to show proximity η, robust soundness error δ1+3β, and robustness parameter β/3. Let
δ2 = 3β.

Suppose that x, y is such that for all y′ with (x, y′) ∈ L we have that ∆(y, y′) ≥ η. Take any proof
π. Let π′ be the degree d polynomial closest to π and let y′ be the implicit input that π′ encodes.
Suppose the relative distance between π and π′ is ϵ. We divide the proof into two cases depending on
the size of ϵ.

ϵ < 9δ2
10 : In this case, the proof is basically a low degree polynomial. Since 1− (q + c)/|F| ≥ 1− d′/|F|
fraction of the curve queries are uniformly random, the probability we choose more than 1− β −
d′/|F| fraction of curve query locations that π and π′ differ is at most ϵ

1−β ≤ 10ϵ
9 ≤ δ2. Notice the

relative distance of a degree d′ polynomial over F is at least 1− d′

|F| .

We further break this case down into whether y′ is close to y.

∆(y, y′) < η: Then (x, y′) is not in L and we know that the verifier only accepts π′ with probability
at most δ1. If for a choice of randomness the ePCP verifier would reject π′ and on the curve
queries π′ and π disagree on at most 1−β−d′/|F| fraction of places, then the relative distance
of the assignments on the curve queries to one the prover would accept is at least β. Thus
the probability that the proof is within β/3 of an accepting proof is at most δ1 + δ2.

∆(y, y′) ≥ η: In this case, y and y′ disagree on many locations, so the y queries should find this.
In particular, the probability a particular query to y is where y and y′ disagree is at least 1

η .

So by a Chernoff bound the probability we don’t make an η
2 ≥ β fraction of queries where

they disagree is at most δ1.
If for a choice of randomness the curve queries on π′ and π disagree on at most 1−β− d′/|F|
fraction of places, and this includes locations where y and y′ differ, then to make the verifier
accept, one either needs to change the y queries to make them agree with y′, or change a β
fraction of the curve queries to make it a different low degree polynomial. If y and y′ differ
on β fraction of y queries, than the distance to an accepting proof is at least β/3. Thus the
probability of being within β/3 of an accepting proof is at most δ1 + δ2.

9δ2
10 ≤ ϵ: Then ϵ ≥ 9·3β

10 > 2β ≥ β +
(

d
|F|

)τ
. So by Lemma 4.2.3,

Pr
ℓ
[The relative distance of f ◦ ℓ to the closest degree d polynomial ≤ β] ≤

β + 3
(

d
|F|

)τ
1− β

≤2β10

9
<δ2.

Thus the probability that the line queries are within β relative distance of a degree d polynomial
is δ2. Thus the probability of all of the queries being within β/3 of being accepted is at most δ2.

Remark (Better ePCP to rPCP Reduction). We note that this PCP reduction is not optimized and the
specific parameters were chosen for convenience. Other constructions achieve better parameters in many
regards, but not necessarily verifier space (which translates into prover space after composition) and query
time. Prover space and query time will not improve under composition, so these parameters are important
to optimize in our application. Our contribution is showing these parameters can be kept small.

5 Constructing our ePCP

We use a BFL style basePCP. This is one of the earliest and most common kinds ofPCPs. Our contribution
is showing that this PCP is an ePCP which in particular means it has very small query time. The ePCP
can be thought of as having three parts. The first part is a multilinear extension of the computation history.
The second is a low degree polynomial that is some consistency check of the computation history. And the
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final part is a series of low degree polynomials that are proofs that the consistency check pass. Finally, we
add another variable to package all of these parts into a single low degree polynomial. More explicitly, the
proof the checks the verifier perform are the following.

1. The verifier makes sure the computation history starts at a valid start state. We can do this by com-
puting the multilinear extension of the input at a random point and comparing it to the corresponding
symbol in what should be a multilinear extension of the computation history.

The computation history is just the work tape of the Turing machine at every time step (with an
indicator of whether the work head is on that cell). One subtle issue is that the Turing machine is not
a single tape Turing machine, it is a two tape Turing machine where the work tape is much shorter
than the input tape. It is well known that we can convert a two tape Turing machine to a single
tape Turing machine, but we need to further show that the prover can space efficiently compute the
computation history of this single tape Turing machine.

2. Since Turing machines are local, the local check formula of whether the computation history is correct is
a constant degree polynomial of computation history. This can be used to give a low degree polynomial
that is zero at the binary index of a cell if that cell is derived through the rules of Turing machine from
the previous time step. The prover can compute this space efficiently if it can compute the computation
history itself efficiently. The verifier can check if this consistency polynomial is from the computation
history by just computing it at a random point.

3. Finally, a sum check [Lun+92] is used to verify that consistency polynomial is zero on all binary inputs
(these inputs correspond to checking if the entries in the computation history are all consistent).

We emphasize that all of these steps are standard, except that:

1. We need to show computing this computation history can be done space efficiently. Since this is not
standard, we need to explain what the computation history is and how we simulate it efficiently in
more detail.

2. We need to show that the locations the verifier queries are efficiently extrapolatable.

5.1 Arithmetization

This paper frequently uses arithmetizations of boolean functions. We say that a function f : Fn → F is
consistent with a boolean function g : {0, 1}n → {0, 1} if f agrees with g when restricted to boolean inputs.
If further f is a low degree polynomial, f is often called an arithmetization of g.

An example of an arithmetization is the multilinear extension of a boolean function. That is just the
unique multilinear function, f , that agrees with g on boolean inputs. These can often be constructed very
efficiently. For instance, the multilinear extension of the equality function has a simple and efficient to
evaluate description.

Definition 5.1.1 (Equality Arithmetization). For field F, and l ≥ 1, define equ : Fl × Fl → F as:

equ(u, v) =
∏
i∈[l]

ui · vi + (1− ui) · (1− vi).

Observe that equ is the multilinear extension of the Boolean equality function.

But even for boolean functions whose multilinear extensions can’t be computed time efficiently, there is
a space efficient, brute force way to compute it.

Lemma 5.1.2 (Multilinear Extensions Can Be Calculated in Low Space). Suppose function G : {0, 1}n →
{0, 1} is computable in space S and time T . Then the multilinear function g consistent with G on Boolean
inputs is computable in space O(n+ log(|F|) + S) and time 2n(T + polylog(|F|)).
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Proof. This follows from the fact g can be written as

g(x) =
∑

y∈{0,1}n

G(y)equ(y, x).

Then this can be evaluated using only a pointer for y, a small amount of space for equ, O(n) field elements,
and the space to evaluate G.

Thus if we can compute the computation history space efficiently, we can compute its multilinear extension
space efficiently.

5.2 Space Efficient Simulation of Single Tape Simulation

First, we need to translate from the two tape Turing machine model to the single tape Turing machine
model. This is important because a single tape Turing machine has better locality than a two tape Turing
machine, which we need when arithmetizing the local consistency checks. But since our prover is low space,
it cannot directly simulate the single tape Turing machine, as this would require at least as much space as
the input, which is much longer than the working space. So we also need to describe how a small space
algorithm can still output what would be in this single tape Turing machine at any step. Ultimately, this
is just the Cook-Levin reduction, but with more attention on how space efficient this reduction is for the
prover.

Everything in this result is standard, except the final note that the one tape TM also has an efficient
simulation by a two tape TM, although it is not a difficult result.

Lemma 5.2.1 (Two Tape TMs Have Simple One Tape TMs). Let A be a two tape nondeterministic Turing
maching recognizing L, running in time T (where T = Ω(S)) with a space S (where S = Ω(log(n)) read/write
worktape, and a length n read-only input tape.

Then there is a 1 tape TM B such that:

1. B runs in time T ′ = poly(T, n), and space S′ = O(n+ S).

2. B has a constant size alphabet, Σ, where for some k, we have |Σ| = 22
k

. That is, Σ is represented by a
power of 2 number of bits. Further, the alphabet Σ includes whether the head is currently on that cell
in the work tape.

3. For any input x for A, there is a corresponding input for B, wx, of length S′. Specifically we have that
wx = (w1, w2

x, w
3) where

(a) w1 has length O(log(S′)) and is independent of the specific x, only the length of x, and w1 is
computable in time O(|w1|).

(b) w2
x is exactly n symbols where for some f : {0, 1} → Σ, for each i ∈ [n], (w2

x)i = f(xi), where f
is computable in constant time.

(c) w3 is exactly S copies of a specific symbol in Σ.

4. Not all transitions for B will be defined. In particular, the transition from a reject state will be undefined
(so no valid transitions) and a transition from an accept state will be a self loop. Thus A accepts on x
if and only if after time T ′ starting on wx, B reaches a steady state. Similarly, A rejects on x if and
only if there is no sequence of T ′ valid transitions in B starting from wx.

5. If B has a starting state that is (w1, z) for any z that is not (w2
x, w

3) for some x ∈ L, then B will not
have T ′ valid transitions.

If A is a deterministic, then B is deterministic and the following holds. Let x ∈ L be an input for A,
with transformed input for B, wx. Given a time t ∈ [T ′] and a memory location s ∈ [S′], there is a two tape
TM C that can compute the symbol in cell s at time t in B’s computation history on yx in time O(poly(T ))
given read only access to x and a work tape of size O(S).
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Remark (Specific Input Format). The exact structure of the transformed input may seem overly specific,
but we need this extra structure to get proximity. In particular, our PCPP will need to know which cells
encode a known, explicit, first input, and which cells encode an unknown, implicit, second input.

Remark (Two Tape TM vs RAM algorithm). The uniform circuit model (which is equivalent to one di-
mensional Turing machine) and RAM model of computation are two common models of computation. RAM
algorithms can simulate Turing machines with very little time and space overhead. Turing machines can
simulate RAM algorithms with a polynomial time and very little space overhead. Thus a similar theorem to
Lemma 5.2.1 holds for both RAM algorithms and Turing machine algorithms.

We state the reduction for two tape Turing machines since that is the standard model and to keep it
clear that our PCP verifiers are also Turing machines. However, our actual proof Lemma A.0.1 shows the
reduction for more general RAM algorithms, and the two tape Turing machine case is a corollary.

Standard two tape to one tape TM reductions satisfy all these requirements. The only trick to this
analysis is realizing that there is a direct correspondence between the states of the two tap Turing machines,
and the state of one tape Turing at regular intervals. Between the regular intervals, the state of the one tape
Turing Machine changes very little, and those changes are simple and predictable. More details are given in
Appendix A.

For the purpose of analyses, it will be useful to look at a multilinear extension associated with a low
degree polynomial. So we define the following purely to simplify the analysis of our PCP.

Definition 5.2.2 (Multilinear Extension of Binarized function (MLB)). For any function f : Fn → F, there
is a unique, multilinear function, g : Fn → F, such that for all binary x ∈ {0, 1}n,

g(x) =

{
0 f(x) = 0

1 f(x) ̸= 0
.

Then we say MLB(f) = g.

We can construct our inconsistency check from a claimed multilinear extension of a computation history.
This comes from arithmetizing the transition rules of a Turing machine. The construction is straightforward,
but details can be found in Appendix A.

Lemma 5.2.3 (Inconsistency Function). Let k be a constant, s, t be integers, and F be a field. Let B be a

Turing machine with 22
k

different states per cell running in S = 2s cells, and time T = 2t. Then there is a

function ΓB taking any function X : Fs × Fk × Ft → F and returning a function Y : F3s+2t+4(2k) → F such
that:

1. If X is Boolean on Boolean inputs, Y is Boolean on Boolean inputs.

2. If X is Boolean on Boolean inputs, then Y is 0 on all Boolean inputs if and only if X on Boolean
inputs encodes a valid computation history for B. That is, X describes a sequence of T different states
of B and they are each derived by a valid transition rule.

3. If X is degree d, then Y is degree O(s + t + d). If X is degree d in every variable individually, Y is
degree O(d) in every variable individually.

4. Given oracle access to X, Y can be computed in time O((t+ s) polylog(|F|)) with a constant number of
calls to X.

5. If Y = ΓB(X) is 0 on all Boolean inputs, then ΓB(MLB(X)) is also 0 on all Boolean inputs.

5.3 Sum Check Protocols

Our PCP uses a variation (similar to those used in [Ben+04; KRR21; HR18]) of the sum check protocol
[Lun+92]. We assume some familiarity with the protocol. The sum check is a standard element of PCPs,
and all we add is a small bit of analysis that sum check is extrapolatable. We use sum check in the PCP or
MIP setting where the prover can only depend on the current query. We use V as the verifier (the “decision”
part of the verifier), Q as the query locations, f as the prover, and g as the low degree polynomial we want
to check the sum of. Our only new contribution is showing that Q is extrapolatable.
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Lemma 5.3.1 (Sum Check Protocol). Let n, d ∈ N, and F be a field with |F| > (d + 1)n. Then there is
some protocol, A, so that for any f : Fn × F → F:

1. For some m = O(nd) and R = 2n, there is a verifier V : Fm → {0, 1} and query function Q :
FR × [m] → Fn × F so that

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

2. V runs in time O(nd polylog(|F|)) and space O(nd log(|F|)).

3. For any r ∈ FR, for Qr(i) = Q(r, i), Qr is time O(nd polylog(|F|)) extrapolatable.

4. For any r ∈ FR, the last coordinate of Q is always an element of9 [n + 1]. That is, for all i ∈ [m],
Q(r, i)n+1 ∈ [n+ 1]

Further, the last coordinate of Q is only equal to n+ 1 at most O(d) times.

Completeness For any g : Fn → F where g has max degree d in any individual variable, if for all x ∈
{0, 1}n, g(x) = 0, then there is some f : Fn × F → F so that:

• For all x ∈ Fn we have g(x) = f(x, n+ 1).

• Sum check succeeds on f :
Pr
r
[A(f, r) = 1] = 1.

• Function f has degree at most d in each of its first n variables.

• If function g is computable in space S, then function f is computable in space O(n log(|F|) + S).

Soundness for any g : Fn → F where g has max individual degree d′, if there exists x ∈ {0, 1}n such that
g(x) ̸= 0, then for any f : Fn × F → F so that for all x ∈ Fn, g(x) = f(x, n+ 1), sum check fails with
high probability:

Pr
r
[A(f, r) = 1] ≤ (d′ + 1)n

|F|
.

To prove extrapolatability, we first formally define the sum check algorithm. We note that we use a
variation of the standard sum check protocol. In the standard sum check protocol, you verify the value of a
sum where the sum is performed in a finite field. If the field is of a small characteristic (less than 2n), then
this sum may be zero even if there is a non-zero value in the sum. To get around this, our protocol verifies a
related multilinear extension of a boolean function is zero at a random point. A similar variation has been
used in multiple places [Ben+04; HR18; KRR21].

We will prove just the extrapolatable property in the body of this paper. For completeness, we prove the
rest of the properties in Appendix B.

Definition 5.3.2 (Sum Check Protocol Definition). Let n, d ∈ N, and F be a field with |F| > max{d, n}+1.
Suppose f : Fn ×F → F. Then the degree d Sum Check Protocol on f is the following randomized algorithm.

1. Get 2n random field elements, R = (r1, . . . , rn and r′1, . . . , r
′
n).

2. Reject if f((r1, . . . , rn), 1) ̸= 0.

3. For i from 1 to n:

(a) For j ∈ [d+ 1], query
aji = f((r′1, . . . , r

′
i−1, j, ri+1, . . . rn), i+ 1).

Using these, let gi : F → F be the degree d polynomial so that for all j ∈ [d+ 1], gi(j) = aji .

9Any reasonable embedding of [n+ 1] in F works, just as in the definition of extrapolatability from Section 4.1.
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(b) If
f((r′1, . . . , r

′
i−1, ri, . . . rn), i) ̸= (1− ri)gi(0) + rigi(1)

reject.

(c) If
f((r′1, . . . , r

′
i, ri+1, . . . rn), i+ 1) ̸= gi(r

′
i)

reject.

4. If all checks pass, accept.

Remark (Randomness Efficiency). The sum check protocol as defined here has soundness even in interactive
proofs where there is a single prover that can remember prior queries. However, if one only requires soundness
in multi-interactive proofs or PCPs, then one can reduce the amount of randomness to just n field elements.
This uses the same protocol, except that r′i = ri for all i. Thus even the more randomness efficient protocol
is extrapolatable.

Note one can actually skip querying the points in (a) and (b). Where we query f in (b) in one iteration
is where we queried f in (c) during the last iteration. We can skip (c) as well by assuming equality holds.
Then step (b) just compares gi−1 to gi. We use the test as described because it is easier to describe.

At a high level, this protocol expects a sequence of polynomials where fi(x) = f(x, i). Think of fn+1

as some degree d arithmetization of a boolean function and f1 as the multilinear extension of a boolean
function. Each fi reduces the degree of fi+1 in one of the variables from d to 1. Step 2 of the sum check
verifies that f1 is the zero function. Step 3 (b) verifies that fi is linear in variable i and relates correctly to
fi+1. Step 3 (c) is to make sure fi+1 is of degree d in variable i.

The correctness of this protocol is standard. Here, we only show that this protocol is extrapolatable.

Lemma 5.3.3 (Sum Check Queries Are Extrapolatable). For n, d ∈ N, field F with |F| > max{d, n} + 1,
and r = (r1, . . . , rn, r

′
1, . . . r

′
n) ∈ F2n, the degree d sum check query locations, Qr, used in Definition 5.3.2,

are O(nd polylog(|F|)) extrapolatable.

Proof. First we define the degree d sum check query location function, Qr : [(d+3)n] → Fn ×F. We will do
this by indicating what is queried for each i in the loop of step 3. For any i ∈ [n] in the loop the next d+ 3
queries are defined by, for l ∈ [d+ 3]:

Qr((d+ 3)(i− 1) + l) =



(
(r′1, . . . , r

′
i−1, ri, ri+1, . . . rn), i

)
l = 1(

(r′1, . . . , r
′
i−1, 1, ri+1, . . . rn), i+ 1

)
l = 2

...(
(r′1, . . . , r

′
i−1, d+ 1, ri+1, . . . rn), i+ 1

)
l = d+ 2(

(r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . rn), i+ 1

)
l = d+ 3

.

These are the queries made to f by the sum check protocol for randomness r = (r1, . . . , rn, r
′
1, . . . , r

′
n).

For each i, the first query is to sample the point used in step (b) of Definition 5.3.2. The next d+ 1 queries
are to calculate gi in step (a). And the last query is made to get the point in step (c). We give them in
this order because it makes the extrapolation formula simpler. And note that the test in step 2 also queries
((r1, . . . , rn), 1), which is the same location as Qr(1).

To show Qr is extrapolatable, take v1, . . . , v(d+3)n. We need a time O(nd polylog(|F|)) algorithm comput-
ing

u =
∑

i∈[(d+3)n]

viQr(i).

Note u is an n + 1 component vector. See that component j of Q is fixed to rj until we get to query
(d+ 3)(j − 1) + 1. Then after that query (d+ 3)j component j is fixed to r′j . Thus for any give j ∈ [n],

uj =

(d+3)(j−1)+1∑
i=1

virj

+

(
d+1∑
i=1

iv((d+3)(j−1)+1+i)

)
+

 (d+3)n∑
i=(d+3)j

vir
′
j

 .
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We will handle un+1 at the end.
First, look at the first and last terms. For j ∈ [n], let

αj =

(d+3)(j−1)+1∑
i=1

vi

βj =

(d+3)n∑
i=(d+3)j

vi.

Then we can rewrite uj as

uj = αjrj +

(
d+1∑
i=1

iv((d+3)(j−1)+1+i)

)
+ βjr

′
j .

Then an iterative algorithm can calculate every αj and βj in O(nd polylog(|F|)) time, since there are
only O(nd) terms in each sum and the only difference between αj and αj+1 is d + 3 more terms in the
sum. Similarly for βj+1 and βj . The middle sum only has d+ 1 terms in it, which we can calculate in time
d polylog(|F|). So given αj and βj , uj can be calculated in O(d polylog(|F|)) time. So all uj for j ∈ [n] can
be calculated in O(nd polylog(|F|)) time.

Now un+1, as a single component, can just straightforwardly be evaluated in time O(nd polylog(|F|)) from
the definition. Thus u can be calculated in O(nd polylog(|F|)) time.

For completeness, we prove the rest of Lemma 5.3.1 in Appendix B.

5.4 Constructing our ePCP

The idea of the PCP is to ask the prover for the function that takes a time t and a bit of memory s and
returns the value of cell s at time t in the Turing machine. Of course, we need this to be error corrected, so
we ask for the multilinear extension of this function. We check if this is consistent with the input. Then,
given this function, we can compute an arithmetization of whether cell s at time t has an improper transition.
Finally, we run a sum check on this arithmetization to see if it is 0 on all Boolean inputs.

This PCP is actually an ePCP, which can be converted into an rPCPP.

Lemma 5.4.1 (BFL style ePCP). Let L be any pair language with alphabet Σ where log(|Σ|) is a power of
2, first input length n and second input length n′. Let time T = Ω((n+n′) log(|Σ|)) and space S = Ω(log(T ))
be such that L is decided by a simultaneous time T and space S nondeterministic algorithm, A.

Take any field F. Then we have an ePCP with:

1. Decision complexity O((log(T ) + n) polylog(|F|)).

2. Verifier space O(log(T ) log(|F|)).

3. Randomness O(log(T ) log(|F|)).

4. O(log(T )) queries.

5. Alphabet F.

6. Extrapolation time O(log(T ) polylog(|F|)).

7. Degree O(log(T )) and O(log(T )) variables.

8. Perfect completeness.

9. Low degree soundness O
(

log(T )2

|F|

)
.

10. Log of proof length O(log(T ) log(|F|)).

11. ρ = O(log(|Σ|)) proof symbols per implicit symbol.
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Further, if A is deterministic, then the prover space is O(log(T ) log(|F|) + S).

Proof. First make sure the language is paddable. Since it will not effect the result, we assume we start with
such a language, L, and such an explicit input x. Suppose L is decided by a two tape TM A running in time
T and space S. By Lemma 5.2.1, A has a simulation by a one tape TM B with time T ′ polynomial in T
and space S′ linear in S.

Let x be our length n explicit input, let y be our implicit input, and w be (x, y) encoded for B. Recall
that w can be written in three parts, w1, w2

x,y, w
3. Here w1 is O(log(n)) bits that don’t depend on the

specific input, just its length, w2
x,y is the actual encoding of x, y, and w3 is the working space. Since w2

x,y is
a simple encoding, we can further separate w2

x,y into w2
x and w2

y. Now pad x until |(w1, w2
x)| is a power of

two. We will need this so we can separate x into its own sub code. Now we will describe an honest prover
for (x, y) ∈ L.

Let K = 2k be a constant power of two such that the states in B are encoded in {0, 1}K . Let s and t be
the smallest integers so that S′ ≤ 2s and T ′ ≤ 2t. And note that if A is deterministic, then there is also a
RAM algorithm C that can compute the bits of the computation history of B in time O(T ) and space O(S).

If (x, y) ∈ L, then let X ′ : {0, 1}s × {0, 1}k × {0, 1}t → {0, 1} be the function that outputs a valid
computation history of B with the starting input being w. Then by Lemma 5.1.2 the multilinear extension
of X ′, X, can be computed in space O(log(T ) log(|F|) + S).

Then by Lemma 5.2.3, using X, we can compute Y = ΓB(X) that is constant degree, d = O(1), in each
variable individually, uses constantly many queries to X, and Y is 0 on all binary inputs (as well as the other
properties listed in Lemma 5.2.3, which we later use to prove soundness). Let m = 3s+2t+4K. Then Y is
a function Fm → F. Abusing notation slightly, let X : Fm → F be X applied to the first s+ k + t variables.

Then by the completeness case of Lemma 5.3.1, if A is deterministic, then in space O(log(T ) log(|F|)+S)
the prover can compute the proof, f , for the sum check for Y . Let fi(x) = f(x, i).

For all j ∈ [m+ 2], let lm+2
j : F → F be the unique m+ 1 degree polynomial that is 1 at j, and 0 for all

other i ∈ [m+ 2]. Then the proof for our PCP is supposed to be π : Fm × F → F where

π(z, i) =

 ∑
j∈[m+1]

lm+2
j (i)fj(z)

+ lm+2
m+2(i)X(z).

See that restricting i ∈ [m+ 1] gives fi, and for i = m+ 2 gives X.
Then we already showed how to compute X and f in space O(log(T ) log(|F|) + S). Then we only

need additional space to store a pointer to j (which requires only O(log(T )) space), and to compute the
interpolating polynomial lm+2

j . Recall that

lm+2
j (i) =

∏
h∈[m+2]\{j}

i− h

j − h
.

Which can be straightforwardly computed with space for a constant number of field elements. So any symbol
in π is computable in space O(log(T ) log(|F|) + S).

Finally, π has constant degree in each of the first m variables, since X and each of the fi do. And π has
degree O(m) in the last variable since each lm+2

j has degree O(m). This gives π a final degree of d = O(m).
Now we describe the verifier. For a provided proof, π, we will infer the provided X, and f in the obvious

way. The verifier runs a few checks for input x.

1. Sum check of f .

Follow the verifier in the sum check protocol in Lemma 5.3.1.

2. Consistency of X with fm+1.

Let W be the set of w so that the sum check queries f(w,m′+1). Sum check will only query constantly
many of such w, since the degree of Y in individual variables is constant. So W has constant size.

Then for w ∈ W , use Lemma 5.2.3 to calculate Y (w) = ΓB(X)(w). Then check if f(w,m′+1) = Y (w).
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3. Consistency of X with x.

For input (x, y), it has transformed input w = (w1, w2
x, w

2
y, w

3) as described in Lemma 5.2.1. As
previously described, we padded x such that |w1| + |w2

x| is a power of two. Now we realize that the
multilinear extension of (w1, w2

x) (as a truth table) is a subset of X (as a truth table). So just compute
the multilinear extension of (w1, w2

x) at a random point and compare it to X.

Now we show this has the desired properties. For reference, recall that m = O(s+ t+K) = O(log(T )).

1. Decision complexity O((log(T ) + n) polylog(|F|)) and verifier space O(log(T ) log(|F|)).
The sum check protocol runs in time O(md polylog(|F|)) = O(log(T ) polylog(|F|)) and uses space
O(md log(|F|)) = O(log(T ) log(|F|)) since the individual degree of the correct proof is d = O(1).

Checking consistency of X with fm+1 is only constantly many calculations of Y , which only takes time
O(polylog(|F|)) and space O(log(|F|)).
When checking the consistency of X with the input, we need to calculate the multilinear extension of
(w1, w2

x). These can be thought of as a function from {0, 1}O(log(n) to {0, 1} that is very efficiently
computable. By Lemma 5.1.2 this can be done in time O(n polylog(|F|)) and space O(log(n)+log(|F|)).

2. Randomness O(log(T ) log(|F|)).
The verifier needs to use O(log(T ) log(|F|)) bits to run the sum check, and to choose v.

3. O(log(T )) queries.

The sum check only takes O(log(T )) queries, and there are only constantly many other queries.

4. Alphabet F.
From how we defined our ePCP.

5. Extrapolation time O(log(T ) polylog(|F|)).
From Lemma 5.3.1, the sum check is time O(log(T ) polylog(|F|)) extrapolatable. There are only
constantly many other queries, so all the other queries are trivially time O(log(T ) polylog(|F|)) ex-
trapolatable. Since the query locations are just constantly many extrapolatable query locations, by
Lemma 4.1.1, all together they are time O(log(T ) polylog(|F|)) extrapolatable.

6. Degree O(log(T )) and O(log(T )) variables. We already showed when describing an honest prover that
we have degree O(m) which is O(log(T )) and by definition of the proof, it has O(log(T )) variables.

7. Perfect completeness.

Follows for (x, y) ∈ L with an honest prover. Since (x, y) ∈ L, the prover provides the X that is the
multilinear extension of the computation history from the proper w, so consistency with input passes.
Similarly, f is honestly given to be consistent with Y . So the consistency between X,Y , and f passes.
Finally, since X is a valid computation history, Y is 0 on all Boolean inputs, and degree d = O(1) in
each individual variable, so the sum check succeeds.

8. Low degree soundness O(log(T )2)
|F| .

Suppose (x, y) /∈ L and we are given a proof, π, such that π encodes y and is a polynomial with max
total degree d′ = O(log(T )) . Then X is a degree d function, and y is implicitly encoded in whatever
w2

y is provided by the computation history.

Now let X̂ = MLB(X), and X ′ be X̂ restricted to binary inputs. Since (x, y) /∈ L, either X ′ is an
invalid computation history, or it does not start with state w1, w2

x,y, w
3.

If X ′ does not start with state (w1, w2
x, z) for some z, then X̂ restricted to time 0 and 0 for everything

but the first N spaces is not the multilinear extension of (w1, w2
x). Thus neither is X. Then the

probability they agree on a random point is at most d
|F| . So the ePCP accepts with probability only

d
|F| .
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If X ′ does start with state (w1, w2
x, z

′), see that it must either actually start with (w1, w2
x,y, z) for some

z since y is implicitly defined by w2
y or z′ does not start with a valid encoding of w2

y′ for any y′. If z′

does not start with a valid encoding of any w2
y′ , or if z ̸= w3, then X ′ must be an invalid computation

history, by Lemma 5.2.1. On the other hand, if z = w3, the computation history must be invalid since
(x, y) /∈ L. So then all we have left is the case that X ′ is not a valid computation history.

Suppose X ′ is an invalid computation history. Then ΓB(X̂) must not be 0 on all Boolean inputs. Then
from Lemma 5.2.3, by contrapositive, ΓB(X) must not be 0 on all binary inputs.

Then by the soundness in Lemma 5.3.1, the sum check for ΓB(X) passes with probability at most

(d′ + 1)m

|F|
= O

(
log(T )2

|F|

)
.

So with probability at most O
(

log(T )2

|F|

)
do we accept.

9. Log of proof length O(log(T ) log(|F|)).
This comes from the fact that the proof is a function with domain Fm+1, and

log(|Fm+1|) = (m+ 1) log(|F|) = O(log(T ) log(|F|)).

10. Proof symbols per implicit symbol.

See that the individual bits representing y are in w2
y. This is simply because the symbol encoded for a

bit of y must be different whether it is a 0 or a 1.

6 PCP of Proximity and Composition

Our PCP uses the standard technique of PCP composition [AS98; Ben+04; DR04; MR08; DH09] to reduce
the number of queries. Recall that in PCP composition, we start with an outer PCP that is efficient, but
makes too many queries. Now instead of running these queries and verifying them, we want a short proof
that the outer PCP would accept those queries, using a proof that itself requires even fewer queries. That
is, we want an “inner” PCP to prove we would accept the outer PCP without actually running the outer
PCP. This is PCP composition is. In particular, we use composition between a “robust” outer PCP and
an inner PCP of “proximity”. See the preliminaries, Section 2.3, for details.

First, we use our ePCP to construct a rPCPP.

Corollary 6.0.1 (Our Robust PCP of Proximity). Let L be any pair language with alphabet Σ where
log(|Σ|) is a power of 2, first input length n and second input length n′. Let time T = Ω((n + n′) log(|Σ|))
and space S = Ω(log(T )) be such that L is decided by a simultaneous time T and space S nondeterministic
algorithm, A.

For any constant robust soundness δ ≤ 1
3 , proximity η, and robustness parameter β ≤ min{ δ

10 ,
η
6} there

is an rPCPP for L with

1. Decision complexity Õ(n+ poly(log(T |Σ|)/β)).

2. Verifier space O
(
(log(T |Σ|)) log

(
log(T |Σ|)

β

))
.

3. Randomness O
(

log(T ) log(1/δ)
η log

(
log(T |Σ|)

β

))
.

4. Query time Õ
(

log(T )
η polylog(log(|Σ|)/β)

)
.

5. O
(

log(T ) log(T |Σ|)
βO(1)

)
queries.
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6. Alphabet F ∪ Σ with |F| = O
(

log(T ) log(T |Σ|)
βO(1)

)
.

7. Perfect completeness.

8. Proximity η.

9. Robust soundness error at most δ.

10. Robustness parameter β.

Further, if A is deterministic then the prover space is O
(
S + log(T ) log

(
log(T |Σ|)

β

))
.

Proof. Let τ be the constant from Lemma 4.2.2. Let c be a sufficiently large constant. Then choose some
field F so that

|F| ≥ max c{ log(T )
δ

(
log(T ) + ⌈ log(1/δ) log(|Σ|)

η
⌉
)
, log(T )β−1/τ}

and |F| = O
(

log(T ) log(T |Σ|)
βO(1)

)
(in particular then log(|F|) = O

(
log
(

log(T |Σ|)
β

))
.)

Then by Lemma 5.4.1 there is an ePCP with

1. Decision complexity t = O((log(T ) + n) polylog(|F|)).

2. Verifier space s = O(log(T ) log(|F|)).

3. Randomness r = O(log(T ) log(|F|)).

4. q = O(log(T )) queries.

5. Alphabet F.

6. Extrapolation time t′ = O(log(T ) polylog(|F|)).

7. Degree d = O(log(T )) and m = O(log(T )) variables.

8. Perfect completeness.

9. Low degree soundness δ1 = O
(

log(T )2

|F|

)
≤ δ

10 .

10. Log of proof length O(log(T ) log(|F|)).

11. ρ = O(log(|Σ|)) proof symbols per implicit input symbol.

Further, if A is deterministic, then the prover space is O(log(T ) log(|F|) + S).
Then by Theorem 4.3.2, setting (setting the β in Theorem 4.3.2 to 3β), there is an rPCPP for L with

1. Decision complexity O(t+ |F|3ρ polylog(|F|)) = Õ(n+ poly(log(T |Σ|)/β)).

2. Verifier space O(s+ ρ log(|F|)) = O
(
(log(T |Σ|)) log

(
log(T |Σ|)

β

))
.

3. Randomness r +O
(

m log(1/δ1)
η log(|F|)

)
= O

(
log(T ) log(1/δ)

η log
(

log(T |Σ|)
β

))
.

4. Query time O
(
t′ +

(
q + m log(1/δ1)

η

)
polylog(|F|)

)
= Õ

(
log(T )

η polylog(log(|Σ|)/β)
)
.

5. O(|F|) = O
(

log(T ) log(T |Σ|)
βO(1)

)
queries.

6. Alphabet F, and perfect completeness.

7. Proximity η.

8. Robust soundness error at most δ1 + 9β ≤ δ.
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9. Robustness parameter β.

Further the prover is the same as the prover for the ePCP, so if A is deterministic then the prover space is

O
(
S + log(T ) log

(
log(T |Σ|)

β

))
.

Now we just compose our PCP with itself to get our main theorem.

Theorem 6.0.2 (Verifier Time Efficient rPCPP). Let L be any pair language with alphabet Σ where log(|Σ|)
is a power of 2, first input length n and second input length n∗. Let time T = Ω((n+n∗) log(|Σ|)) and space
S = Ω(log(T )) be such that L is decided by a simultaneous time T and space S nondeterministic algorithm,
A.

For any constant robust soundness δ ≤ 2
3 , proximity η, and robustness parameter β ≤ min{ δ

120 ,
η
36} there

is an rPCPP for L with

1. decision complexity Õ
(
n+ log(T ) log(1/δ) poly

(
log(|Σ|)

β

))
.

2. O
(

log(n log(T )|Σ|)2
βO(1)

)
queries.

3. alphabet size O
(

log(T |Σ|)2
βO(1) + |Σ|

)
.

4. query time Õ
(

log(T )
β polylog(log(|Σ|)/β)

)
.

5. robust soundness δ.

6. perfect completeness.

7. uses O
(

log(T ) log(log(T )) log(1/δ)
β polylog

(
log(|Σ|)

β

))
bits of randomness.

8. has proximity η.

9. robustness parameter β.

Further, if A is deterministic, the rPCPP has prover space Õ
(
S + log(T )

η polylog(log(|Σ|)/β)
)
.

Proof. By Corollary 6.0.1, using δ as δ/2, β as 6β and η as η, there is an rPCPP for L, call it C1, with

1. Decision complexity Õ(n+ poly(log(T |Σ|)/β)).

2. Verifier space O
(
(log(T |Σ|)) log

(
log(T |Σ|)

β

))
.

3. Randomness r = O
(

log(T ) log(1/δ)
η log

(
log(T |Σ|)

β

))
.

4. Query time t = Õ
(

log(T )
η polylog(log(|Σ|)/β)

)
.

5. O
(

log(T ) log(T |Σ|)
βO(1)

)
queries.

6. Alphabet Σ′ = Σ ∪ F with |F| = O
(

log(T ) log(T |Σ|)
βO(1)

)
.

7. Perfect completeness.

8. Proximity η.

9. Robust soundness error at most δ/2.

10. Robustness parameter 6β.
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Further, if A is deterministic then the prover space is s = O
(
S + log(T ) log

(
log(T |Σ|)

β

))
.

Let L2 be the pair language recognized by the verifier of C1. See that the explicit input length
for L2 is the length of the initial input, plus the length of the randomness, which is n′ = n + r =

O
(
n+ log(T ) log(1/δ)

η log
(

log(T |Σ|)
β

))
. The implicit input length is the number of queries. Finally the

algorithm recognizing L2 is the verifier, which runs in time T ′ = Õ(n + poly(log(T |Σ|)/β)) and space

O
(
(log(T |Σ|)) log

(
log(T |Σ|)

β

))
. See we can also bound the log of the time to recognize L2 as log(T ′) =

O
(
log
(
n log(T |Σ|)

β

))
, and the log of the alphabet size of L2 as log(|Σ′|) = O(log(|Σ|) + log(log(T |Σ|)/β)) =

O(log(|Σ|) + log(T ′)).
By Corollary 6.0.1, using δ as δ/4, β as β and η as 6β, there is an rPCPP for L2, call it C2 with

1. Decision complexity

t′ =Õ(n′ + poly(log(T ′|Σ′|)/β))

=Õ

(
n+

log(T ) log(1/δ)

η
log

(
log(T |Σ|)

β

)
+ poly

(
log(n log(T ) log(|Σ|)|Σ|/β)

β

))
=Õ

(
n+ log(T ) log(1/δ) poly

(
log(|Σ|)

β

))
.

2. Verifier space

O

(
(log(T ′|Σ′|)) log

(
log(T ′|Σ′|)

β

))
=O

((
log

(
n
log (T )

β
|Σ|
))

log

(
log

(
n
log (T )

β
|Σ|
)))

.

3. Randomness

r′ =O

(
log(T ′) log(1/δ)

η
log

(
log(T ′|Σ′|)

β

))
=O

(
log(1/δ)

β
log

(
n
log (T )

β

)
log

(
log

(
n
log (T )

β
|Σ|
)))

=O

(
log(1/δ) log(T )

β
polylog

(
log(|Σ|)

β

))
.

4. Query time

t∗ =Õ

(
log(T ′)

η
polylog(log(|Σ′|)/β)

)
=Õ

(
log(n log(T ))

β
polylog(log(|Σ|))

)
.

5.

q′ =O

(
log(T ′) log(T ′|Σ′|)

βO(1)

)
=O

(
log(n log(T ) log(|Σ|)) log(n log(T )|Σ|)

βO(1)

)
=O

(
log(n log(T )|Σ|)2

βO(1)

)
queries.
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6. Alphabet Σ ∪ F′ with

|F′| =O

(
log(T ′) log(T ′|Σ′|)

βO(1)

)
=O

(
log(n log(T ) log(|Σ|)) log(n log(T )|Σ|)

βO(1)

)
=O

(
log(n log(T )|Σ|)2

βO(1)

)
.

7. Perfect completeness.

8. Proximity 6β.

9. Robust soundness error at most δ/2.

10. Robustness parameter β.

Further, since the verifier for C1 is deterministic the prover space of C2 is

s′ =O

(
(log(T ′|Σ′|)) log

(
log(T ′|Σ′|)

β

))
+

O

(
log

(
n log(T )|Σ|

β

)
log

(
log(n log(T ) log(|Σ|)/β) log(|Σ|)

β

))
=O

(
log(nT ) log

(
log(nT )

β

)
+ polylog(|Σ|/β)

)
.

Then by Theorem 2.3.8 L has an rPCPP system for L, call it C3, such that C3 has:

1. the decision complexity of C2: O(t′) = Õ
(
n+ log(T ) log(1/δ) poly

(
log(|Σ|)

β

))
.

2. the number of queries as C2: O(q′) = O
(

log(n log(T )|Σ|)2
βO(1)

)
.

3. the alphabet size of C2, C1, and Σ:

O

(
log(T ) log(T |Σ|)

βO(1)
+

log(n log(T )|Σ|)2

βO(1)
+ |Σ|

)
=O

(
log(T |Σ|)2

βO(1)
+ |Σ|

)
.

4. the query time of C1 plus C2:

t+ t∗ =Õ

(
log(T )

η
polylog(log(|Σ|)/β)

)
+ Õ

(
log(n log(T ))

β
polylog(log(|Σ|))

)
=Õ

(
log(T )

β
polylog(log(|Σ|)/β)

)
.

5. the robust soundness of C1 plus C2: δ/2 + δ/2 = δ.

6. perfect completeness.

7. the number of bits of randomness as C1 plus C2:

r + r′ =O

(
log(T ) log(1/δ)

η
log

(
log(T ) log(|Σ|)

β

))
+O

(
log(1/δ) log(T )

β
polylog

(
log(|Σ|)

β

))
=O

(
log(T ) log(log(T )) log(1/δ)

β
polylog

(
log(|Σ|)

β

))
.
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8. the proximity of C1: η.

9. the robustness parameter of C2: β.

Further, if A is deterministic, then C3 has prover space of C1 plus query time of C1 plus prover space of C2:

s+ t+ s′ =O

(
S + log(T ) log

(
log(T |Σ|)

β

))
+

Õ

(
log(T )

η
polylog(log(|Σ|)/β)

)
+

O

(
log(nT ) log

(
log(nT )

β

)
+ polylog(|Σ|/β)

)
=Õ

(
S +

log(T )

η
polylog(log(|Σ|)/β)

)
.

Then our main PCP results, Theorem 1.1.3 and Theorem 1.1.4, come as special cases where η = 1, β is
small constant, and the implicit input is empty (thus its alphabet is constant).

Remark (Better PCPs and More Composition). We believe other PCPs, such as those of [Ben+04; DR04;
MR08; DH09], could also be given tighter analysis and modified slightly to be similarly efficient. We used
the simplest PCP that could achieve our parameters. One could also achieve even fewer queries by doing
more rounds of composition, but one needs a more fine grained analysis of the decision complexity.

A prior version of this paper achieved fewer queries than this version. This is due to it using different
constructions for the PCP of proximity and robust PCP. In particular the PCP of proximity had a non
robust construction that allowed it to be more time and query efficient. However, to make the paper simpler,
this version of the paper uses a single PCP construction.

6.1 Fine Grained MIP = NEXP

For completeness, we also prove our fine grained equivalence between MIP and NEXP: Corollary 1.1.5.
A two prover, one round MIP is equivalent to a two query PCP. The main difference is the conventional
parameter regime. For PCPs one is often concerned about proof length and alphabet size, and for MIPs
one is often concerned about verifier time or prover time.

There is a standard way to convert a robust PCP to a two prover, one round MIP. That is to choose
the randomness for the PCP, ask one prover for everywhere the proof would be queried on that choice of
randomness, and the other prover for a single, random location the proof would be queried.

Corollary 1.1.5 (Fine Grained Equivalence of MIP = NEXP). For any time constructible function p(n) =

Ω(n), language L ∈ NTIME[2Õ(p(n))] if and only if there is a two prover, one round MIP protocol for L
whose verifier runs in time Õ(p(n)).

Proof. First, there is a simple nondeterministic algorithm for a language with an MIP protocol: nondeter-
ministically guess the entire prover strategy, then run the verifier for every choice of randomness on that
strategy. So any language L with an MIP protocol with a time Õ(p(n)) verifier has a nondeterministic

algorithm running in time 2Õ(p(n)).

For a language L ∈ NTIME[2Õ(p(n))], we want to use Theorem 6.0.2, so we first convert L to a pair
language where we just force the second input to be a single 0 (just so we can apply the theorem). Then set
δ = 2

3 and η = 1 and β = 1
180 . Then by Theorem 6.0.2, we get a PCP for L with

• decision complexity Õ(n+ polylog(p(n))) = Õ(p(n)).

• O(log(p(n))) queries.

• Query time Õ(p(n)).
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• Robust Soundness δ = 2
3 and robustness parameter β = 1

180 .

• Perfect completeness.

• Õ(p(n)) bits of randomness.

Instead of running this PCP, our verifier in our MIP protocol chooses the randomness, r, for the PCP
and sends r to the first prover. The MIP verifier expects the prover to send what the PCP prover would
send for all queries from r. The MIP verifier then checks that the PCP verifier would accept what it was
sent. Next the MIP verifier chooses a random one of the queries the PCP verifier would have made for
randomness r and sends that query to the second prover. Then the MIP verifier checks if the second prover
gave a symbol that agrees with the first prover. The MIP verifier accepts if both tests pass.

The completeness is clear by construction. For soundness, see that there must be some optimal strategy
for player 2, and that strategy corresponds to some proof. Suppose that x /∈ L. Then by robustness, with
probability 1

3 , the verifier will choose a randomness that either the first prover’s proof will be rejected or
the second provers proof will fail with probability 1

180 . Thus the verifier will reject with probability at least
1
3

1
180 = 1

540 . So the MIP has constant soundness 539
540 < 1.

The verifier only needs time Õ(p(n)) to choose randomness and send it to the first prover, time Õ(p(n))
to decide if the proof is valid, and Õ(p(n)) time to make the query to the second prover. Thus this MIP
verifier runs in time Õ(p(n)).

Unfortunately, our PCP has only a small constant robustness, so this protocol alone has a soundness
error close to one. However we note that to improve the soundness error, one can use a technique from
MIPs called parallel repetitions [Raz98; Hol07; Rao08].

7 Open Problems

There are several ways we would like to improve the circuit lower bounds.

1. Remove the advice bit.

We still had to use advice, a limitation from the original Santhanam result. It would be nice if we
could get lower bounds on MA with no non-uniformity.

2. Prove tight bounds for all k.

Another limitation of our circuit lower bound is that it does not prove this tight bound for all k > 1,
just for some k.

The major barrier is in the case that SPACE[n] algorithms may require super linear, but polynomial,
sized circuits. Then the circuit size required for any given space may change in a strange way. For
example, suppose for some a > 1

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)].

What we would like, but this does not obviously imply, is that for all b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

While a padding argument gives SPACE[nb] ⊆ SIZE[O(nab)], it does not give SPACE[nb] ̸⊆
SIZE[o(nab)]. We may even have something weird, like

SPACE[na] ⊆ SIZE[O(na)] \ SIZE[o(na)].

That is, even if space n algorithms require circuit size na, we may not need larger circuits until our
algorithms use more space than na.

In this case, to get circuit lower bounds greater than na, we need to use an algorithm with space
greater than na. Unfortunately, our verifier uses queries to the prover of the same length as the space
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of the algorithm being verified. It seems like the prover needs to use the space of the original problem,
na, which is linear in its input length, na. Now since the prover has a longer, length na input, it may
require size (na)a = na2

circuits.

One way to try to solve this problem is to show that if

SPACE[n] ⊆ SIZE[O(na)] \ SIZE[o(na)]

for some a > 1, then for all b > 1:

SPACE[nb] ⊆ SIZE[O(nab)] \ SIZE[o(nab)].

This seems plausible, but hard to prove.

Another direction is to find an efficient PCP for SPACE[nb] with prover queries shorter than nb (or

equivalently, proof length less than 2n
b

). But this seems hard as shorter PCP proofs imply more
efficient algorithms.

For instance, for constant c, if L has a PCP with polynomial time verifier and proof length 2n
c

, then
L ∈ MATIME[O(2n

c

)] just by guessing the whole proof string, and verifying it. So if every language

in NTIME[O(2n
b

)] had a PCP with proof length O(2n
c

), then we would have

NTIME[O(2n
b

)] ⊆ MATIME[O(2n
c

)].

If c < b, this would contradict a derandomization conjecture that

MATIME[f(n)] ⊆ NTIME[poly(f(n))].

Thus any more efficient PCP either must not apply to nondeterministic algorithms (ours does), or MA
cannot be efficiently derandomized. This does not rule out this approach, but is a major challenge.

3. Make lower bound more frequent.

Another direction is improving the infinitely often separation to a more frequently often separation.
Murray and Williams [MW18] gave a refinement of the Santhanam circuit lower bounds that is incom-
parable to ours. In it they proved that for some L ∈ MA/O(log(n)) and constant c, for almost every
n, either L on length n inputs wouldn’t have circuits with size nk, or L on length nck inputs wouldn’t
have circuits with size nc2k2

. One might want to strengthen their results.

We conjecture that there exists some constant k > 1, function f(n) = o(1), gap function g(n) = poly(n),
and language L′ ∈ MATIME[O(nk+f(n))]/O(log(n)) such that for all n there is some m ∈ [n, g(n)]
such that language L′ on length m inputs does not have circuits of size mk.

The Murray and Williams result produces a language L that for every input length n will either be
the downward self reducible language from Santhanam’s result (Y in Lemma 3.2.1), or a circuit found
with exhaustive search (like in Lemma 3.3.1). If the prover circuit for the exhaustive search is small
enough, then L is exhaustive search. Otherwise, L is (possibly padded) Y .

The idea is that if exhaustive search on length n inputs doesn’t have small prover circuits, then for the
input length of the prover circuits, we have a hard problem (specifically, Y ). Unfortunately, provers
have input length about nck for some constant c. For that prover to be hard enough for our circuit
lower bound, length nck inputs must require size nck2

circuits. So to make sure the provers are hard
enough, length n inputs for exhaustive search may have to use prover circuits as large as nck2

!

Our PCP can improve the constant c in the Murray and Williams result, but improving the approxi-
mately nk2

verifier time to near nk requires new ideas.

4. Prove exponential lower bounds for MAEXP.

A similar problem is to prove exponential circuit lower bounds for the exponential version of MA,
known as MAEXP. The best circuit lower bounds known for MAEXP are “half-exponential” by
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Miltersen, Vinodchandran, and Watanabe [MVW99]. Loosely, a function is half exponential if that
function composed with itself is exponential.

The bottleneck to proving such a lower bound is not a better PCP. This is a similar problem to
proving tight bounds for all k, but pushed beyond polynomials. The issue is related to the win-win
argument used in these results. Either PSPACE has less then half exponential sized circuits, then
we can use those circuits in MA protocols as provers for PCPs of half exponential space algorithms.
Or PSPACE does not have half exponential sized circuits, and exponential time protocols can solve
these problems thus also don’t have half exponential sized circuits. It isn’t clear how to use a similar
argument to get better circuit lower bounds.

One potential approach is to use an iterated win-win argument. Such an approach was used by Chen,
Li, and Liang [CLL24] to show better circuit lower bounds for a related, more powerful complexity
class: AMEXP/2n

ϵ

. Still, improving the circuit lower bounds for MAEXP remains open.

One could also look to improve our PCP. In particular, one could try to replicate other existing results
while maintaining the Õ(n + log(T )) runtime. Standard techniques can reduce the number of queries, or
improve the soundness. We suspect these techniques can be used to give poly(T ) proof length. Can we
construct PCPs with length Õ(T ) proofs while having a Õ(n+log(T )) verifier runtime? Known PCPs with
proof length Õ(T ) have decision complexity Ω(n+ log(T )2).

In particular, we suspect ideas from theorem 2.6 in [Ben+05]10 (which extends the results of [Ben+04]
from NP to NEXP) may give a PCP with decision complexity near Õ(n+ log(T )) while giving a proof of
length T 1+o(1). But it would not have proof length Õ(T ) = T polylog(T ). We stress that such an analysis
has not been performed, and the PCP of [Ben+05] is much more complex than ours.
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A Automata Proofs

In this section, we show how to construct the single tape TM for an algorithm, how to arithmetize a formula
for its rules, and how to simulate it efficiently. To do this we solve the problem for a more general RAM
algorithm. The result for a two tape TM, Lemma 5.2.1 is a straightforward corollary.

Here, we will use the word RAM model for a RAM algorithm. This model, for a time T algorithm, has a
constant number of O(log(T )) bit registers and a uniform instruction set on those registers, and a constant
sized program that it runs. At any time step, the program can carry out one instruction, including reading
or writing the value of one register to the location in memory of another register, standard register to register
operations (like addition, setting a register to one or zero, bit shifting, etc), and perform basic checks on
the data in registers to control the flow of the program (if statements). However, our RAM algorithm is not
allowed to write to the read only portion of memory, or read from the write only portion of memory. We
note that the exact instructions of the RAM algorithm are unimportant as long as they can be performed
by a uniform Turing machine.
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It is well known that a RAM algorithm can both time and space efficiently simulate a Turing machine (in
the obvious way). Similarly, a multi-tape Turing machine can space efficiently simulate a RAM algorithm
(with a polynomial overhead in the time). Further, there is a single tape Turing machine simulating RAM
algorithms, however, this single tape Turing machine is not space efficient. We show that even though the
single tape Turing machine is inefficient, it is predictable so a RAM algorithm running in a similar space to
the initial RAM algorithm can print the computation history of the single tape simulation.

Lemma A.0.1 (RAM algorithms have simple Turing machines). Let A be a nondeterministic RAM algo-
rithm recognizing L, running in time T and space S where S = Ω(log(n)) and T = Ω(S). Further, A uses
input coming from a read only space of n bits.

Then there is a one tape, one dimensional Turing machine, B, simulating A, such that

1. B runs in time T ′ = poly(T, n), and space S′ = O(n+ S).

2. B has a constant size alphabet, Σ, where for some k, we have |Σ| = 22
k

. That is, Σ is represented by a
power of 2 number of bits. Further, the alphabet Σ includes whether the head is currently on that cell
in the work tape.

3. For any input x for A, there is a corresponding input for B, yx, of length S′. And we also have that
yx = (y1, y2x, y

3) where

(a) y1 has length O(log(S′)) and is independent of the specific x, only the length of x, and y1 is
computable in time O(|y1|).

(b) y2x is exactly n symbols where for some f : {0, 1} → Σ, for each i ∈ [n], (y2x)i = f(xi), where f is
computable in constant time.

(c) y3 is exactly S copies of a specific symbol in Σ.

4. Not all transitions for B will be defined, and A accepts on x if and only if after time T ′ starting on
yx, B reaches a steady state. Similarly, A rejects on x if and only if there is no sequence of T ′ valid
transitions in B starting from yx.

5. If B has a starting state that is (y1, z) for any z that is not (y2x, y
3) for some x ∈ L, then B will not

have T ′ valid transitions.

If A is a deterministic, then B is deterministic and the following holds. Let x ∈ L be an input for A,
with transformed input for B, yx. Given a time t ∈ [T ′] and a memory location s ∈ [S′], there is a RAM
algorithm C that can compute the symbol in cell s at time t in B’s computation history on yx in time O(T )
and space O(S) given read only access to x.

Proof. The idea is as follows. First convert the RAM machine into an input oblivious, single tape Turing
machine, B′, where there is O(log(S + n)) space for the registers, n space for the read only input, followed
by S working space reserved on the tape. Notably, this input oblivious Turing machine may temporarily
modify the contents of this read only space. In fact, it needs to. But these will always be temporary since
we are simulating a RAM machine where these are read only. On accepting, the state will remain constant.
On rejecting, there will just be an undefined transition. This makes accepting equivalent to the existence of
a valid computation history.

For more details, first, we take our input RAM algorithm A, and make a new RAM algorithm A′ that
does the same thing, but starts by making sure its working space is all 0.

Turing machine B′ can be made from A′ by first adding O(log(S′)) bits before the first bit to hold
the current memory configuration of the registers. Then the Turing machine starts at the beginning, goes
through the motions it would need to do on any register to register operation and any state change. Then
it goes from the beginning forward, looking for the index it wants to operate on for any register memory
operation.

Each time it moves, it copies the bit in front of the head behind it, and shifts all its registers 1 forward.
At each potential bit, it moves the tape head as if it was going to do every operation, but doesn’t actually
do it unless the indexes match for a register memory operation. Once it gets to the far side, it returns the
registers to the start.

60



This Turing machine runs in time T ′ = O(T (S + n) log(S′)2) and only needs size S′ = O(S + n) to hold
bits of the computation, and the registers. In particular, at time 0, it has O(log(S + n)) space reserved for
the registers, exactly n cells reserved for the read only input, and S cells reserved for the working space.
Then y1 will contain the register states, y2x will be the read-only input, and y3 will be the working space.

We need to do one more thing to B′ to get B. Before we start, we want to verify the format. B will
do this by sweeping from the beginning to the end and back, making sure each symbol is of the appropriate
format. This will tell us that the provided y2x and y3 encode binary inputs. Such a procedure will work if
y1 is correct, specifically that it contains the correct starting head for B′. Then after that, the simulation of
A′ will further make sure y3 actually encodes all 0.

Turing machine B does this by having a special sweeping state that sweeps from left to right that makes
sure it only encounters binary inputs, and then sweeps back to the beginning where it turns into the head
for the Turing machine B′ simulating A′.

For a time t and a space s, the state of cell s in the history of B at time t can be computed by an
algorithm C which does the following:

1. If the time t is in the preprocessing part of B before B′ starts, we can just return the bit from yx
directly, if it is after the head, the head if it is on the head, or the bit from yx activated if it is before.

If t is not in the time for preprocessing, just subtract the amount of time to do the preprocessing from
t and move on.

2. A time t in B is part of the simulation of some step at some time t′ in A′. Since the Turing machine is
input oblivious, we know exactly how many operations a step in A′ is in B and can calculate t′. Run
A up to time t′.

3. Calculate the current cell the Turing machine should be visiting at time t′. We can straightforwardly
calculate how long it takes to simulate all the register operations, and then each cell takes the same
amount of time.

(a) If we are in the middle of a register register operation: If s is in a register, simulate B on the
registers till time t, and then directly output it. If s is not a register, output that cell’s value from
the previous time, as nothing happened.

(b) If we are looking at another cell: If s is a cell before the register’s location during this operation,
then just return the value of this cell at the time step after this. If s is a cell inside the register,
then simulate B on this register and this one bit right up till time t, then output s at time t.
Otherwise, output the value of this cell now. It hasn’t been modified yet by this step in the RAM
algorithm.

This can easily be done since the algorithm is input oblivious, we know exactly how many steps in B one
step in A will take. There is a direct, simple way to translate from a state in A to a state in B. And each
step from one bit in memory to the next as it seeks the appropriate index takes the same amount of time,
so we can skip right to the correct one. Thus we can easily compute if the sought index is before, or after
the one being checked and change the state appropriately.

Since RAM algorithms can space efficiently simulate two tape Turing machines, and two tape Turing
machines can space efficiently simulate RAM algorithms, we get Lemma 5.2.1.

This gives us a version of the original RAM algorithm with a locally checkable computation history, since
the single tape Turing machine is a local model of computation. Remember that we are assuming the states
are in some convenient binary encoding.

Lemma A.0.2 (Turing machines have Constant Size Consistency Checks). For any single tape Turing
machine with S bounded cells in memory, for any i ∈ [S] there is a constant size Boolean function on the
states of the i − 1, i, and i + 1 cell, and a new proposed value for cell i that outputs whether that would be
the new state of cell i after a time step.

We want to use the multilinear extension of the computation history of the B in Lemma A.0.1 to get an
arithmetization of Lemma A.0.2. As part of this, we need another arithmetization.
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Lemma A.0.3 (Successor Arithmetization). For field F, l ≥ 1, there is a O(l polylog(|F|)) time algorithm
computing the multilinear extension of u+ 1 = v for l bit numbers, u and v.

Proof. For this proof, we will assume that u and v have their high order bits first, so v1 is the bit with the
largest magnitude, and vl is the bit with the smallest magnitude. For all l ≥ 1, define fl : Fl × Fl → F
inductively by

1. If l = 1, fl(u, v) = (1− u1) · v1,

2. If l > 1, fl(u, v) = (1− ul) · vl · equ(u[l−1], v[l−1]) + ul · (1− vl)fl−1(u[l−1], v[l−1]).

Then by induction, each fl is multilinear and consistent with the check that v = u+ 1.
We can calculate every equ term together with O(l) field operations, by starting with equ(u1, v1), then

multiplying it by equ(u2, v2) to get equ(u[2], v[2]), and so on. Then using each of these, f can be calculated
inductively in a straightforward way using only O(l) field operations.

Now we can construct the inconsistency function actually used in our PCP. The idea is to take 2
times, 3 spaces, and a claimed computation history, and output if the cells at these times and spaces violate
Lemma A.0.2. For technical reasons, we will further ask for the states of those spaces at that time in the
input, and only do the check if these states agree with the computation history. Of course, we will actually
get an arithmetization of such a boolean function.

So now we can prove Lemma 5.2.3.

Lemma 5.2.3 (Inconsistency Function). Let k be a constant, s, t be integers, and F be a field. Let B be a

Turing machine with 22
k

different states per cell running in S = 2s cells, and time T = 2t. Then there is a

function ΓB taking any function X : Fs × Fk × Ft → F and returning a function Y : F3s+2t+4(2k) → F such
that:

1. If X is Boolean on Boolean inputs, Y is Boolean on Boolean inputs.

2. If X is Boolean on Boolean inputs, then Y is 0 on all Boolean inputs if and only if X on Boolean
inputs encodes a valid computation history for B. That is, X describes a sequence of T different states
of B and they are each derived by a valid transition rule.

3. If X is degree d, then Y is degree O(s + t + d). If X is degree d in every variable individually, Y is
degree O(d) in every variable individually.

4. Given oracle access to X, Y can be computed in time O((t+ s) polylog(|F|)) with a constant number of
calls to X.

5. If Y = ΓB(X) is 0 on all Boolean inputs, then ΓB(MLB(X)) is also 0 on all Boolean inputs.

Proof. From Lemma A.0.2, there is a function, ϕ : {0, 1}4(2k) → {0, 1}, which takes a0, a1, a2, a
′
1 ∈ {0, 1}2k

and outputs ϕ(a0, a1, a2, a
′
1) = 0 if in the Turing machine with a0, a1, a2 adjacent, in that order, in the Turing

machine at one time, replaces a1 with a′1 in the next time, and outputs 1 otherwise.

Let ϕ̂ be the multilinear extension of ϕ. Since ϕ has constant size, ϕ̂ is a constant size arithmetic
expression that can be computed in time O(polylog(|F|)).

Let θ : {0, 1}3s × {0, 1}2t → {0, 1} be the function that takes s0, s1, s2 ∈ {0, 1}s and t0, t1 ∈ {0, 1}t
and outputs 1 if s0 + 1 = s1, s1 + 1 = s2 and t0 + 1 = t1, and 0 otherwise. By Lemma A.0.3, in time
O((t+ s) polylog(|F|)) we can compute a function θ̃ : F3s×F2t → F that has constant degree in each variable
and is consistent with θ on boolean values.

For s0, s1, s2 ∈ Fs, t0, t1 ∈ Ft, a0, a1, a2, a
′
1 ∈ F2k , define Y by:

Y (s0, s1, s2, t0, t1, a0, a1, a2, a
′
1) =θ̃(s0, s1, s2, t0, t1)·

ϕ̂(a0, a1, a2, a
′
1)·∏

j∈{0,1,2}

∏
i∈{0,1}k

equ(X(sj , i, t0), (aj)i)·

∏
i∈{0,1}k

equ(X(s1, i, t1), (a
′
1)i).
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1. If X is binary on binary inputs, Y is binary on binary inputs since it is just a product of functions
that are binary on binary inputs.

2. If X is binary on binary inputs, then for binary inputs, Y is 1 if and only if s0, s1, s2 are adjacent
states, a0, a1, a2 are the states of s0, s1, s2 at time t0, a

′
1 is the state of s1 at time t1, and the transition

from a1 to a′1, given neighbors a0 and a2 is invalid.

Thus, if X on binary inputs is a valid computation history, no constraints are ever violated, and Y is 0
on binary inputs. If X is not a valid computation history, it has an improper transition at some point,
and at that point, Y would be 1.

3. Y is the product of only constantly many terms (since k is constant), all of which, but potentially X,
have degree at most O(s + t), and the X has degree d. Products only add degrees, and we only take
constantly many products. So we have degree O(s+ t+ d).

For individual variable degree, the input to each of the constantly many X all have degree 1 in distinct
variables. So if X has degree d in every variable individually, each call to X is degree at most d in each
variable individually. Y is only a product of constantly many calls to X times functions with constant
degree. So Y has degree O(d) in each variable individually.

4. Function θ̃ runs in time O((s+ t) polylog(|F|)), and function ϕ̂ runs in time O(polylog(|F|)), and each
of the constantly many equ only take O(polylog(|F|)) time with constantly many calls to X. So we
only take O((s+ t) polylog(|F|)) time overall with constantly many oracle calls to X.

5. Suppose Y is 0 on all boolean inputs. Let Y ′ = ΓA(MLB(X)).

In particular, suppose for some boolean values for s0, s1, s2, t0, t1, a0, a1, a2, and a′1, function Y is 0.
This happens if and only if one of the products making up Y is 0.

θ̃ = 0 or ϕ̃ = 0: Neither of these terms involve X, so they are still 0 no matter what we switch X to.

equ(X(sj , i, t0), (aj)i) for some i, j: We know (aj)i is binary, so by the definition of equ, this expres-
sion simplifies to either X(sj , i, t0) = 0, or X(sj , i, t0) = 1. In either case, this implies X(sj , i, t0)
is binary. Thus on this input, MLB(X) = X, and this term is still 0 in ΓA(MLB(X)).

equ(X(s1, i, t1), (a
′
1)i) for some i: Same as above.

B Sum Check Proofs

Here we prove that sum check works: Lemma 5.3.1. For reference, here is how we defined our sum check
protocol:

Definition 5.3.2 (Sum Check Protocol Definition). Let n, d ∈ N, and F be a field with |F| > max{d, n}+1.
Suppose f : Fn ×F → F. Then the degree d Sum Check Protocol on f is the following randomized algorithm.

1. Get 2n random field elements, R = (r1, . . . , rn and r′1, . . . , r
′
n).

2. Reject if f((r1, . . . , rn), 1) ̸= 0.

3. For i from 1 to n:

(a) For j ∈ [d+ 1], query
aji = f((r′1, . . . , r

′
i−1, j, ri+1, . . . rn), i+ 1).

Using these, let gi : F → F be the degree d polynomial so that for all j ∈ [d+ 1], gi(j) = aji .

(b) If
f((r′1, . . . , r

′
i−1, ri, . . . rn), i) ̸= (1− ri)gi(0) + rigi(1)

reject.
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(c) If
f((r′1, . . . , r

′
i, ri+1, . . . rn), i+ 1) ̸= gi(r

′
i)

reject.

4. If all checks pass, accept.

We often refer to the ability of some function g : Fn → F to pass a sum check. The sum check on function
f checks whether g(x) = f(x, n+ 1) on binary inputs is the constant 0 function. It can be useful to refer to
the probability of g passing the sum check, assuming the rest of f is defined optimally.

Definition B.0.1 (Passing A Sum Check). Let n, d ∈ N, F be a field with |F| > max{n, d + 1}, δ ∈ [0, 1],
and g : Fn → F. Then we say g passes the degree d sum check with probability δ if there exists some function
f : Fn × F → F so that for all x ∈ F, g(x) = f(x, n+ 1), and f passes the degree d sum check protocol with
probability δ.

If g is low degree, then the sum check does a good job checking if g is 0 on all binary inputs.

Lemma B.0.2 (Sum Check Of Low Degree Polynomial). Let n, d ∈ N, F be a field with |F| > n(d + 1),
δ ∈ [0, 1], and g : Fn → F. Then:

1. If for all x ∈ {0, 1}n we have g(x) = 0 and the max degree of g in any variable is at most d, then g
passes the degree d sum check with probability 1.

2. If there exists x ∈ {0, 1}n such that g(x) ̸= 0 and the max degree of g in any variable is at most d′,

then g passes the degree d sum check with probability at most (d′+1)n
|F| .

Proof. First we define f in the format a sum check expects (whether or not the multilinear extension of g
actually is 0).

fn+1((x1, . . . , xn), n+ 1) =g(x1, . . . , xn)

f((x1, . . . , xn), i) =(1− xi)f((x1, . . . , xi−1, 0, xi+1, . . . , xn), i+ 1)

+ xif((x1, . . . , xi−1, 1, xi+1, . . . , xn), i+ 1)

fi(x) =f(x, i).

For i /∈ [n + 1], how we define f(x, i) is arbitrary since it is never queried. By induction, see that for
n ≥ j ≥ i ≥ 1, then fi is linear in variable j. In particular, f1 is multilinear. Further, each fi agree on
boolean inputs.

1. Suppose for all x ∈ {0, 1}n we have g(x) = 0 and the max degree of g in any variable is at most d.
Then by induction, for i ∈ [n+ 1] and j ∈ [n], function fi has degree at most d in variable j.

Then choose randomness, R = (r1, . . . , rn and r′1, . . . , r
′
n). See that f1 is multilinear, and 0 on all

binary inputs, so it must be the 0 function. Thus f((r1, . . . , rn), 1) = 0.

For every i ∈ [n], by definition

f((r′1, . . . , r
′
i−1, ri, ri+1, . . . , rn), i)

=(1− ri)f((r
′
1, . . . , r

′
i−1, 0, ri+1, . . . , rn), i+ 1)

+ rif((r
′
1, . . . , r

′
i−1, 1, ri+1, . . . , rn), i+ 1).

Since fi+1 is degree at most d in variable i, function gi in the sum check is a degree at most d polynomial,
and gi agrees with fi+1 on d+ 1 points, then fi+1 = gi as a function of variable i. So

f((r′1, . . . , r
′
i−1, r

′
i, ri+1, . . . , rn), i+ 1) = gi(r

′
i)

and
f((r′1, . . . , r

′
i−1, ri, ri+1, . . . , rn), i) = (1− ri)gi(0) + rigi(1).

So all tests pass.
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2. Suppose there exists x ∈ {0, 1}n such that g(x) ̸= 0 and the max degree of g in any variable is at most
d′. Then by induction, for i ∈ [n+1] and j ∈ [n], function fi has degree at most d′ in variable j. Now
take any candidate function, f ′ : Fn × F → F, so that f ′(x, n+ 1) = g(x). Define f ′

i(x) = f(x, i).

Our goal is to show that if f ′
1 is not equal to f1, then with low probability will f ′ be able to change to

f on the values we are evaluating without the sum check catching it. Since f ′ must be f at the last
step, due to how we defined them, function f ′ must fail the sum check with high probability.

Since f1(x) ̸= 0, function f1 is not the constant 0 function. Since f1 is multilinear, f1 has degree at
most n. Thus the probability that f1(r1, . . . , rn) = 0 is at most n

|F| by Schwartz-Zippel.

Suppose f1(r1, . . . , rn) ̸= 0. Then either f ′
1(r1, . . . , rn) = f1(r1, . . . , rn) or not. If they are equal, sum

check will fail. Now we will perform induction.

Suppose for i ≤ n, with probability at most n+d′(i−1)
|F| has f ′ not failed the sum check by step i and

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) = f ′

i(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

So suppose
fi(r

′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) ̸= f ′

i(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

Define degree d′ function g∗i and degree d function g′i so that for j∗ ∈ [d′ + 1] and j′ ∈ [d+ 1] we have

g∗i (j
∗) =fi+1(r

′
1, . . . , r

′
i−1, j

∗, ri+1, . . . , rn)

g′i(j
′) =f ′

i+1(r
′
1, . . . , r

′
i−1, j

′, ri+1, . . . , rn).

Since fi+1 is degree d′ in variable i and agrees with g∗i on d′ + 1 places, for any r′i we have

fi+1(r
′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn) =g∗i (r

′
i)

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) =(1− r1)g

∗
i (0) + rig

∗
i (1).

If g∗i = g′i, then the sum check fails because

fi(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn) ̸= f ′

i(r
′
1, . . . , r

′
i−1, ri, ri+1, . . . , rn).

So suppose g∗i ̸= g′i. By Schwartz-Zippel, the probability g∗i (r
′
i) = g′i(r

′
i) is at most d′

|F| .

So suppose g∗i (r
′
i) ̸= g′i(r

′
i). Then if

f ′
i+1(r

′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn) ̸= g′i(r

′
i)

the sum check fails. So suppose they are equal. Then we have

f ′
i+1(r

′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn) =g′i(r

′
i)

̸=g∗i (r
′
i)

=fi+1(r
′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn).

So by a union bound, the probability that we haven’t failed by step i+ 1 and

fi+1(r
′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn) = f ′

i+1(r
′
1, . . . , r

′
i−1, r

′
i, ri+1, . . . , rn)

is at most n+d′i
|F| .

Finally, for i = n+1, we know f ′
n+1 = fn+1, since they are equal to function g. So with probability at

most n(d′+1)
|F| has the sum check not failed.

Now we need a prover to actually carry out this protocol in small space. But this can be done following
the expected definition for f in the obvious way.
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Lemma B.0.3 (Sum Check Proofs Require Low Space). Suppose g : Fn → F has degree d in each variable
and can be computed in space S and is 0 on Boolean inputs. Then for some f : Fn × F → F so that for all
x ∈ F, g(x) = f(x, n+1) and f passes the degree d sum check protocol with probability 1, f can be calculated
in space O(n log(|F|) + S).

Further, if g has degree d in variable i, so does f .

Proof. First, we define f inductively in the usual way:

f((x1, . . . , xn), n+ 1) =g(x1, . . . , xn)

f((x1, . . . , xn), i) =(1− xi)f((x1, . . . , xi−1, 0, xi+1, . . . , xn), i+ 1)

+ xif((x1, . . . , xi−1, 1, xi+1, . . . , xn), i+ 1)

fi(x) = f(x, i).

Now one may observe that we didn’t define f for i /∈ [n+1]. We can just assume they are all 0 for now, this
will be addressed in our ePCP. Note this is the same f used in Lemma B.0.2, so passes the sum check.

We can then rewrite each fi in a more convenient format of

fi(x1, . . . , xn) =
∑

y∈{0,1}n+1−i

g(x1, . . . , xi−1, y1, . . . , yn+1−i)·

∏
j∈[n+1−i]

equ(yj , xi−1+j).

This can be shown to be correct by induction. Then this can be calculated for any fi in a straightfor-
ward way keeping track of a constant number of field elements, and a pointer for y and j, requiring only
O(n log(|F|)) bits.

Given all of these, Lemma 5.3.1 follows.

Lemma 5.3.1 (Sum Check Protocol). Let n, d ∈ N, and F be a field with |F| > (d + 1)n. Then there is
some protocol, A, so that for any f : Fn × F → F:

1. For some m = O(nd) and R = 2n, there is a verifier V : Fm → {0, 1} and query function Q :
FR × [m] → Fn × F so that

A(f, r) = V (f(Q(r, 1)), f(Q(r, 2)), . . . , f(Q(r,m))).

2. V runs in time O(nd polylog(|F|)) and space O(nd log(|F|)).

3. For any r ∈ FR, for Qr(i) = Q(r, i), Qr is time O(nd polylog(|F|)) extrapolatable.

4. For any r ∈ FR, the last coordinate of Q is always an element of11 [n + 1]. That is, for all i ∈ [m],
Q(r, i)n+1 ∈ [n+ 1]

Further, the last coordinate of Q is only equal to n+ 1 at most O(d) times.

Completeness For any g : Fn → F where g has max degree d in any individual variable, if for all x ∈
{0, 1}n, g(x) = 0, then there is some f : Fn × F → F so that:

• For all x ∈ Fn we have g(x) = f(x, n+ 1).

• Sum check succeeds on f :
Pr
r
[A(f, r) = 1] = 1.

• Function f has degree at most d in each of its first n variables.

• If function g is computable in space S, then function f is computable in space O(n log(|F|) + S).

11Any reasonable embedding of [n+ 1] in F works, just as in the definition of extrapolatability from Section 4.1.
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Soundness for any g : Fn → F where g has max individual degree d′, if there exists x ∈ {0, 1}n such that
g(x) ̸= 0, then for any f : Fn × F → F so that for all x ∈ Fn, g(x) = f(x, n+ 1), sum check fails with
high probability:

Pr
r
[A(f, r) = 1] ≤ (d′ + 1)n

|F|
.

Proof. The verifier and query function are implicit in Definition 5.3.2. As are the verifier runtime, and
where the queries are made. Extrapolatability of the queries is shown in Lemma 5.3.3. Completeness and
soundness is shown in Lemma B.0.2. The low space in the completeness case is shown in Lemma B.0.3.
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