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Abstract
We use results from communication complexity, both new and old ones, to prove lower bounds for
unambiguous finite automata (UFAs). We show three results.
1. Complement: There is a language L recognised by an n-state UFA such that the complement

language L requires NFAs with nΩ̃(log n) states. This improves on a lower bound by Raskin.
2. Union: There are languages L1, L2 recognised by n-state UFAs such that the union L1 ∪ L2

requires UFAs with nΩ̃(log n) states.
3. Separation: There is a language L such that both L and L are recognised by n-state NFAs but

such that L requires UFAs with nΩ(log n) states. This refutes a conjecture by Colcombet.
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1 Introduction

Given two finite automata recognising languages L1, L2 ⊆ Σ∗ a basic question is to determine
the state complexity of various language operations. How many states are needed in an
automaton that recognises the union L1 ∪ L2? How about the intersection L1 ∩ L2? The
complement L1 := Σ∗ \ L1? The answer depends on the type of automaton considered, such
as deterministic (DFA), nondeterministic (NFA), or unambiguous (UFA). Recall that a UFA
is an NFA that has at most one accepting computation on any input.

State complexities have been extensively studied for various types of automata and
language operations; see, e.g., [9, 15] and their references, or the excellent compendium on
Wikipedia [22]. For example, complementing an NFA with n states may require 2n states [3],
even for automata with binary alphabet [14]. Surprisingly, several extremely basic questions
about UFAs remain open. For example, it was shown only in 2018 by Raskin [20] that the
state complexity for UFA complementation is not polynomial: for any n ∈ N there exists a
language L recognised by an n-state UFA such that any UFA (or even NFA) that recognises L

has at least n(log log log n)Ω(1) states. This superpolynomial blowup refuted a conjecture that
it may be possible to complement UFAs with a polynomial blowup [5].

In this paper, as our main results, we prove three new blowup theorems.

▶ Theorem 1 (Complement). For every n ∈ N there is a language L ⊆ {0, 1}∗ recognised by
an n-state UFA such that any NFA that recognises L requires nΩ̃(log n) states.

▶ Theorem 2 (Union). For every n ∈ N there are languages L1, L2 ⊆ {0, 1}∗ recognised by
n-state UFAs such that any UFA that recognises L1 ∪ L2 requires nΩ̃(log n) states.

▶ Theorem 3 (Separation). For every n ∈ N there is a language L ⊆ {0, 1}∗ such that both L

and L are recognised by n-state NFAs but any UFA that recognises L requires nΩ(log n) states.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 15 (2022)

mailto:mika.goos@epfl.ch
mailto:stefan.kiefer@cs.ox.ac.uk
mailto:weiqiang.yuan@epfl.ch


2 Lower Bounds for Unambiguous Automata via Communication Complexity

Discussion of main results. Theorem 1 upgrades Raskin’s slightly-superpolynomial
bound into a quasipolynomial bound nΩ̃(log n). (Here we use the notation Ω̃(m) to suppress
poly(log m) factors.) However, we note that Raskin’s language is unary, |Σ| = 1, while
ours is binary, |Σ| = 2, and hence the two results are incomparable in this sense. As for
positive results, it is known that the trivial 2n upper bound for UFA complementation can
be improved: the complement of any n-state UFA can be recognised by a UFA with at
most poly(n) · 2n/2 states [15, 13]. Closing the exponential gap here between the lower and
upper bounds remains a tantalising open problem. It was highlighted as one of the foremost
challenges in the recent Dagstuhl workshop Unambiguity in Automata Theory [6].

Theorem 2 establishes the first superpolynomial lower bound for the union operation.
Letting ⊔ denote disjoint union, observe that

L1 ∪ L2 = L1 ⊔ (L2 ∩ L1). (1)

Since disjoint union and intersection are polynomial for UFAs, it follows from (1) and
Theorem 2 that the same nΩ̃(log n) lower bound holds for complementing UFAs. However,
we stress that Theorem 1 has a stronger conclusion than this, since it proves a lower bound
against NFAs, not just UFAs. The observation (1) also yields the upper bound poly(n) · 2n/2

by using the complement construction from [15, 13].

Theorem 3 refutes a conjecture by Colcombet [5, Conjecture 2]. Indeed, he conjectured
that for any pair of NFAs recognising languages L1, L2 such that L1 ∩ L2 = ∅, there is
a polynomial-sized UFA that recognises some L that separates L1 and L2 in the sense
that L1 ⊆ L and L ∩ L2 = ∅. Theorem 3 refutes this even in the special case L1 = L2.
Related separability questions are classical in formal language theory and have attracted
renewed attention; see, e.g, [8] and the references therein. Separating automata have also
been used recently to elegantly describe quasipolynomial time algorithms for solving parity
games in an automata theoretic framework; see [4, Chapter 3] and [7].

1.1 Technique: Communication complexity
Our three main theorems rely on results—both new and old—in communication complexity;
see [18, 19] for the standard textbooks. In communication complexity, one studies functions of
the form F : {0, 1}n ×{0, 1}n → {0, 1} that determine the following two-party communication
problem: Alice holds x ∈ {0, 1}n, Bob holds y ∈ {0, 1}n, and their goal is to output F (x, y)
while communicating as few bits as possible between them. Communication complexity is
a classical tool to prove lower bounds for automata. Indeed, it is well known that if the
language {xy : F (x, y) = 1} is recognised by a small DFA (resp. NFA, UFA) then F admits
an efficient deterministic (resp. nondeterministic, unambiguous) protocol. We revisit this
connection in light of recent developments in communication complexity.

Theorem 1 is a relatively straightforward consequence of a recent result of Balodis
et al. [2]. They exhibited a two-party function whose co-nondeterministic communication
complexity is nearly quadratic in its unambiguous complexity (which matches an upper
bound due to Yannakakis [23]). We translate this separation into the language of automata
theory, virtually in a black-box fashion.

Theorem 2, by contrast, is our main technical contribution. We will show that it follows
from the following analogous communication result, which we prove in this paper.
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▶ Theorem 4. For every m ∈ N there exists a function F (x, y) with unambiguous com-
munication complexity at most m such that the logical-or of two copies of F , namely,
F ∨(xx′, yy′) := F (x, y) ∨ F (x′, y′), has unambiguous communication complexity Ω̃(m2).

This is a new result in communication complexity; the unambiguous complexity of F ∨ has
not been studied previously. We prove Theorem 4 using the popular query-to-communication
lifting technique that has been wildly successful in the past decade to prove communication
lower bounds (including in [2]). In this technique, one starts by proving a lower bound on
the query (aka decision tree) complexity of a boolean function f : {0, 1}n → {0, 1}. A lifting
theorem (e.g., [12]) then transforms f into an analogous communication problem F in such a
way that the communication complexity of F is characterised by the query complexity of f .
This reduces the task of proving communication lower bounds into the much easier task of
proving query lower bounds.

Interestingly, our proof of Theorem 4 formalises a kind of converse to the observation (1)
above (saying that union can be computed via a complement). Namely, we show that
unambiguously computing the union necessarily requires computing a complement, and
therefore we can rely on an existing query lower bound for complementation [11].

Theorem 3, finally, is a straightforward consequence of a classical quadratic separation
between two-sided nondeterministic communication complexity and unambiguous communic-
ation complexity due to Razborov [21].

1.2 Bonus result: Approximate nonnegative rank
Along the way to Theorem 4 we inadvertently stumbled upon another separation result that
addresses a question raised by Kol et al. [16]. They studied the ϵ-approximate nonnegative
rank rk+

ϵ (M) of a nonnegative matrix M ∈ Rn×n. Here, rk+
ϵ (M) is defined as the least

nonnegative rank rk+(N) of a matrix N ∈ Rn×n such that |Mij − Nij | ≤ ϵ for all i, j;
see Section 3 for precise definitions. In particular, Kol et al. [16] asked whether for all
error parameters 0 < ϵ < δ < 1/2 and boolean matrices M ∈ {0, 1}n×n we have the
polynomial relationship rk+

ϵ (M) ≤ O(rk+
δ (M)C) where C = C(ϵ, δ) is a constant. In short,

does approximate nonnegative rank admit efficient error reduction? (It is known that the
more usual notion, approximate rank, does [1].) We provide the following negative answer.

▶ Theorem 5 (No efficient error reduction). For every m ∈ N there exists a boolean matrix
M with rk+

1/4(M) ≤ m but such that rk+
10−5(M) ≥ mΩ̃(log m).

Previously, a negative answer was known only for partial boolean matrices M ∈ {0, 1, ∗}n×n

that allow “don’t care” entries Mij = ∗ [12]. Our Theorem 5 still leaves open the possibility
(also raised by [16]) that, for a total boolean matrix M , we can bound rk+

ϵ (M) as a polynomial
function of rk+

δ (M) + rk+
δ (M) where M is the boolean complement.

1.3 Open problems
Our quasipolynomial lower bounds for automata are not known to be tight; in all cases the
best known upper bounds are exponential. Curiously enough, the analogous communication
results are tight for communication protocols. This suggests two opportunities.

Can other techniques from communication complexity improve the lower bounds further?
Perhaps via multi-party communication complexity?
Can techniques for proving upper bounds on communication complexity be adapted to
prove upper bounds on the size of automata?
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1.4 Definitions of automata
An NFA is a quintuple A = (Q, Σ, δ, I, F ), where Q is the finite set of states, Σ is the finite
alphabet, δ ⊆ Q × Σ × Q is the transition relation, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of accepting states. We write q

a−→ r to denote that (q, a, r) ∈ δ. A finite
sequence q0

a1−→ q1
a2−→ · · · an−−→ qn is called a run; it can be summarized as q0

a1···an−−−−→ qn. The
NFA A recognizes the language L(A) := {w ∈ Σ∗ | ∃ q0 ∈ I . ∃ f ∈ F . q0

w−→ f}. The NFA A
is a DFA if |I| = 1 and for every q ∈ Q and a ∈ Σ there is exactly one q′ with q

a−→ q′. The
NFA A is a UFA if for every word w = a1 · · · an ∈ Σ∗ there is at most one accepting run
for w, i.e., a run q0

a1−→ q1
a2−→ · · · an−−→ qn with q0 ∈ I and qn ∈ F . Any DFA is a UFA.

2 UFA Complementation

In this section we prove Theorem 1.

▶ Theorem 1 (Complement). For every n ∈ N there is a language L ⊆ {0, 1}∗ recognised by
an n-state UFA such that any NFA that recognises L requires nΩ̃(log n) states.

The proof uses concepts from communication complexity, in particular a recent result
from [2] and a nondeterministic lifting theorem from [12]. We start by recalling these tools.

2.1 DNFs and nondeterministic protocols
Unambiguous DNFs. Let D = C1 ∨ · · · ∨ Cm be an n-variate boolean formula in disjunctive
normal form (DNF). DNF D has width k if every Ci is a conjunction of at most k literals. We
call such D a k-DNF. For conjunctive normal form (CNF) formulas the width and k-CNFs
are defined analogously. DNF D is said to be unambiguous if for every input x ∈ {0, 1}n

at most one of the conjunctions Ci evaluates to true, Ci(x) = 1. For any boolean function
f : {0, 1}n → {0, 1} define

C1(f) as the least k such that f can be written as a k-DNF;
C0(f) as the least k such that f can be written as a k-CNF;
UC1(f) as the least k such that f can be written as an unambiguous k-DNF.

Note that C0(f) = C1(¬f). The following recent result separates two of these measures.

▶ Theorem 6 ([2, Theorem 1]). For every k ∈ N there exists a function f : {0, 1}n → {0, 1}
where n ≤ poly(k) and such that UC1(f) ≤ k and C0(f) ≥ Ω̃(k2). ◀

In words, for every k there is an unambiguous k-DNF such that any equivalent CNF requires
width Ω̃(k2). The bound is almost tight, as every unambiguous k-DNF has an equivalent
k2-CNF; see [10, Section 3].

Nondeterministic protocols and rectangle covers. Next we recall standard notions from two-
party communication complexity; see [18, 19] for textbooks. Consider a two-party function
F : X × Y → {0, 1}. A set A × B ⊆ X × Y (with A ⊆ X and B ⊆ Y ) is called a rectangle.
Rectangles R1, . . . , Rk cover a set S ⊆ X × Y if

⋃
i Ri = S. For b ∈ {0, 1}, the cover number

Covb(F ) is the least number of rectangles that cover F −1(b). The nondeterministic (resp., co-
nondeterministic) communication complexity of F is defined as N1(F ) := log2 Cov1(F ) (resp.,
N0(F ) := log2 Cov0(F )). Note that N0(F ) = N1(¬F ). The nondeterministic communication
complexity can be interpreted as the number of bits that two parties (Alice and Bob), holding
inputs x ∈ X and y ∈ Y , respectively, need to communicate in a nondeterministic (i.e., based
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on guessing and checking) protocol in order to establish that F (x, y) = 1; see [18, Chapter 2]
for details.

Nondeterministic lifting. Next we formulate a lifting theorem, which allows us to transfer
lower bounds on the DNF width of an n-bit boolean function f to the nondeterministic
communication complexity of a related two-party function F . We first choose a small two-
party function g : {0, 1}b × {0, 1}b → {0, 1}, often called a gadget. Then we compose f with g

to construct the function F := f ◦ gn that maps {0, 1}bn × {0, 1}bn → {0, 1} where Alice gets
as input x ∈ {0, 1}bn, Bob gets as input y ∈ {0, 1}bn, and their goal is to compute

F (x, y) := f(g(x1, y1), . . . , g(xn, yn)) where xi, yj ∈ {0, 1}b.

The following is a nondeterministic lifting theorem [12, 10].

▶ Theorem 7 ([10, Theorem 4]). For any n ∈ N there is a gadget g : {0, 1}b ×{0, 1}b → {0, 1}
with b = Θ(log n) such that for any function f : {0, 1}n → {0, 1} we have, for F := f ◦ gn,

N0(F ) = Ω(C0(f) · b)

(and thus also N1(F ) = Ω(C1(f) · b)). ◀

Protocols can simulate automata. Finally, we need a simple folklore connection between
automata and protocols. To formalise this, we tacitly identify a function F : {0, 1}m1 ×
{0, 1}m2 → {0, 1} with the language F −1(1) = {xy ∈ {0, 1}m1+m2 | F (x, y) = 1}.

▶ Lemma 8. If a two-party function F : {0, 1}m1 × {0, 1}m2 → {0, 1} admits an NFA with
s states, then Cov1(F ) ≤ s (that is, N1(F ) ≤ log s).

Proof. Let A = (Q, Σ, δ, I, F ) be an NFA with L(A) = {xy ∈ {0, 1}m1+m2 | F (x, y) = 1}.
We show that F −1(1) is covered by at most |Q| rectangles. Indeed, F −1(1) equals⋃

q∈Q

({x ∈ {0, 1}m1 | ∃ q0 ∈ I . q0
x−→ q}) × ({y ∈ {0, 1}m2 | ∃ f ∈ F . q

y−→ f}) .

(Alternatively, in terms of a nondeterministic protocol, the first party, holding x ∈ {0, 1}m1 ,
produces a run for x from an initial state to a state q and then sends the name of q, which
takes log2 |Q| bits, to the other party. The other party then produces a run for y from q to
an accepting state.) ◀

2.2 Proof of Theorem 1
For k ∈ N, let f : {0, 1}n → {0, 1} be the function from Theorem 6. That is, f has an
unambiguous k-DNF with k = nΩ(1) (hence, log n = O(log k)) and C0(f) = Ω̃(k2). Let
g : {0, 1}b × {0, 1}b → {0, 1} with b = Θ(log n) and F := f ◦ gn : {0, 1}bn × {0, 1}bn → {0, 1}
be the two-party functions from the lifting theorem Theorem 7. We will show that Theorem 1
holds for the language F −1(1).

First we argue that F has an unambiguous DNF of small width. Indeed, g and ¬g have
unambiguous 2b-DNFs, which can be extracted from the deterministic decision tree of g. By
plugging these unambiguous 2b-DNFs for g and ¬g into the unambiguous k-DNF for f (and
“multiplying out”), one obtains an unambiguous 2bk-DNF, say D, for F .

Over the 2bn variables of F , there exist at most (2(2bn) + 1)2bk different conjunctions
of at most 2bk literals. So D consists of at most nO(bk) conjunctions. From D we obtain a
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UFA A that recognizes F −1(1) ⊆ {0, 1}2bn, as follows. Each initial state of A corresponds
to a conjunction in D. When reading the input x ∈ {0, 1}2bn, the UFA checks that the
corresponding assignment to the variables satisfies the conjunction represented by the initial
state. This check requires at most O(bn) states for each initial state. Thus, A has at most
nO(bk) = 2Õ(k) =: N states in total. (We use N in place of n in the statement of Theorem 1.)

On the other hand, by Theorem 7, we have N0(F ) = Ω(C0(f) · b) = Ω̃(k2). So by
Lemma 8 any NFA that recognizes F −1(0) has at least 2Ω̃(k2) states. Any NFA that recognizes
{0, 1}∗ \ L(A) can be transformed into an NFA that recognizes F −1(0) = {0, 1}2bn \ L(A) by
taking a product with a DFA that has 2bn + 2 states. It follows that any NFA that recognizes
{0, 1}∗ \ L(A) has at least 2Ω̃(k2)/(2bn + 2) = 2Ω̃(k2) = N Ω̃(log N) states. ◀

3 UFA Union

In this section, we prove Theorem 2.

▶ Theorem 2 (Union). For every n ∈ N there are languages L1, L2 ⊆ {0, 1}∗ recognised by
n-state UFAs such that any UFA that recognises L1 ∪ L2 requires nΩ̃(log n) states.

We follow the same high-level approach that we already saw in Section 2. Namely, we
will first show that computing the ∨-operation is hard for unambiguous DNFs and then lift
that hardness to unambiguous protocols, which then implies the same hardness for UFAs.
There are, however, two challenges in carrying out this plan.

1. It is an open problem to prove an unambiguous lifting theorem. That is, it is not known
whether the unambiguous communication complexity of f ◦ gn is at least Ω(UC1(f)). To
circumvent this issue, we study instead a linear relaxation of unambiguous DNFs. These
objects are called conical juntas and they do admit a lifting theorem [12, 17].

2. There is no existing result showing that the ∨-operation is hard for unambiguous DNFs
and/or conical juntas. We show a result of this type. The proof is by a reduction to the
hardness of negating conical juntas, which is a known result [11].

3.1 Conical juntas
A nonnegative function h : {0, 1}n → R≥0 is a d-junta if h depends on at most d variables.
For example, a conjunction of d literals is a d-junta. Moreover, we say f : {0, 1}n → R≥0
a conical d-junta if it can be written as a nonnegative linear combination of d-juntas.
Equivalently, f is a conical d-junta if it can be written as f =

∑
i wiCi where each Ci is a

width-d conjunction and wi ∈ R≥0 are nonnegative coefficients. For example, if f can be
written as an unambiguous d-DNF, f = C1 ∨ · · · ∨ Cm, then f =

∑
i Ci is a conical d-junta

with 0/1 coefficients. The nonnegative degree of f , denoted deg+(f), is the least d such
that f is a conical d-junta. In particular, if f is boolean-valued, then deg+(f) ≤ UC1(f).

We also need to work with approximate conical juntas that compute a given function
only to within some point-wise error ϵ > 0. This is important because the available lifting
theorems for deg+ incur some error, and hence we need to prove lower bounds that are
robust to this error. Indeed, we define the ϵ-approximate nonnegative degree of f , denoted
deg+

ϵ (f), as the least nonnegative degree of a conical junta g such that

|f(x) − g(x)| ≤ ϵ for all x ∈ {0, 1}n.
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▶ Remark. An awkward aspect of working with approximate conical juntas is that the error
parameter ϵ is not well behaved. For 0 < ϵ < δ < 1/2 we of course have deg+

δ (f) ≤ deg+
ϵ (f)

but it is not a priori clear whether the converse inequality holds with a modest loss in the
degree. In fact, in Section 5, we will end up showing that there can be a polynomial gap
between the nonnegative degrees corresponding to two different error parameters—and this
is related to our bonus result discussed in the introduction. As a consequence, our theorems
in this section have to track the error parameters with some care.

Linear programming formulation. Approximate nonnegative degree can be captured using
an LP. Write Cn

d for the set of all conjunctions of width at most d over n variables. In the
(Primal) programme below, we have a variable wC ∈ R for every C ∈ Cn

d . In the associated
(Dual) programme, we have a variable Φ(x) ∈ R for each x ∈ {0, 1}n.

min ϵ

subject to
∑

C |wCC(x) − f(x)| ≤ ϵ, ∀x ∈ {0, 1}n

wC ≥ 0, ∀C ∈ Cn
d

(Primal)

max ⟨Φ, f⟩ :=
∑

x Φ(x)f(x)
subject to ∥Φ∥ :=

∑
x |Φ(x)| ≤ 1

⟨Φ, C⟩ ≤ 0, ∀C ∈ Cn
d

(Dual)

We have that deg+
δ (f) ≤ d iff the optimal value of (Primal) is at most δ. Alternatively, by

strong LP duality, we have deg+
δ (f) > d iff there exists a feasible solution Φ to (Dual) such

that ⟨Φ, f⟩ > δ. It is typical to think of such feasible Φ: {0, 1}n → R as a dual certificate
that witnesses a lower bound on approximate nonnegative degree.

3.2 Hardness of ∨
The goal of this subsection is to prove Theorem 9 below, which states that the ∨-operation
is hard for unambiguous DNFs and even approximate conical juntas. Given an n-bit boolean
function f we define a 2n-bit function by f∨(xy) := f(x) ∨ f(y) where x, y ∈ {0, 1}n.

▶ Theorem 9 (Hardness of ∨). For every m ∈ N, there exists a boolean function f : {0, 1}n →
{0, 1} with n ≤ poly(m) such that UC1(f) ≤ m and deg+

1.5×10−5(f∨) ≥ Ω̃(m2).

We show Theorem 9 by combining two lemmas, Lemmas 10 and 11, below. The first
lemma, proved in [11], states that unambiguous DNFs are hard to negate, even by approximate
conical juntas. The second lemma, which remains for us to prove, states that, for conical
juntas, computing f∨ is at least as hard as computing the negation ¬f . Hence Theorem 9
follows immediately by combining these lemmas.

▶ Lemma 10 (Hardness of ¬ [11, Lemma 8]). For every m ∈ N, there exists a boolean function
f : {0, 1}n → {0, 1} with n ≤ poly(m) such that UC1(f) ≤ m and deg+

0.05(¬f) ≥ Ω̃(m2). ◀

▶ Lemma 11 (∨ harder than ¬). For every δ > 0 there exists an ϵ = ϵ(δ) > 0 such that for
every boolean function f , we have deg+

ϵ (f∨) ≥ Ω(deg+
δ (¬f)). Moreover, ϵ :=

( ln(1+δ)
⌈log3/4 δ⌉

)2.
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It remains to prove Lemma 11. We do it in two steps. In Claim 12 we show that the
approximate nonnegative degree of f∨ is at least that of 2 − f by exhibiting a dual certificate.
Then in Claim 13 we show that the approximate nonnegative degree of 2 − f = 1 + ¬f is at
least that of ¬f via a powering trick. The error parameter ϵ will degrade in both of these
steps. (We will later see that this degradation is, in fact, unavoidable; see Section 5.)

▷ Claim 12. We have deg+
ϵ2(f∨) ≥ deg+

ϵ (2 − f) for any boolean-valued f and error ϵ.

Proof. Let d := deg+
ϵ (2 − f) and let Ψ: {0, 1}n → {0, 1} be a dual certificate witnessing

this. That is, ⟨Φ, 2 − f⟩ > ϵ, ∥Φ∥ ≤ 1, and ⟨Φ, C⟩ ≤ 0 for all C ∈ Cn
d−1. To construct a dual

certificate Ψ∨ : {0, 1}2n → {0, 1} witnessing deg+
ϵ2(f∨) ≥ d, we consider the negated tensor

product (which was found by an educated guess)

Φ∨(x, y) := −Φ(x)Φ(y).

It remains to check that this is feasible for the dual programme and also that ⟨Φ∨, f∨⟩ > ϵ2.

1. ∥Φ∨∥ =
∑

x,y |Φ∨(x, y)| =
∑

x,y |Φ(x)Φ(y)| =
∑

x,y |Φ(x)| · |Φ(y)| = ∥Φ∥2 ≤ 1.
2. For any conjunction C ∈ C2n

d−1, we write C(x, y) = C1(x)C2(y) where C1, C2 ∈ Cn
d−1. Now

⟨Φ∨, C⟩ =
∑

x,y Φ∨(x, y)C(x, y)

=
∑

x,y −Φ(x)Φ(y) · C1(x)C2(y)

= −
[ ∑

x Φ(x)C1(x)
][ ∑

y Φ(y)C2(y)
]

= − ⟨Φ, C1⟩ ⟨Φ, C2⟩
≤ 0.

3. Observe that ⟨Φ, −f⟩ ≥ ⟨Φ, 2 − f⟩ since 1 ∈ Cn
d−1 for the constant-1 function. Thus

⟨Φ∨, f∨⟩ =
∑

x,y Φ∨(x, y)(f(x) + f(y) − f(x)f(y))

=
∑

x,y −Φ(x)Φ(y)(f(x) + f(y) − f(x)f(y))

=
∑

x,y −Φ(x)Φ(y)(2f(x) − f(x)f(y))

=
∑

x −Φ(x)f(x) ·
[ ∑

y Φ(y)(2 − f(y))
]

= ⟨Φ, −f⟩ · ⟨Φ, 2 − f⟩
≥ ⟨Φ, 2 − f⟩ · ⟨Φ, 2 − f⟩ (above observation)
> ϵ2. ◀

▷ Claim 13. For any δ > 0 define ϵ := ln(1+δ)
⌈log3/4 δ⌉ > 0. Then for any boolean-valued function f

we have deg+
ϵ (1 + f) ≥ Ω(deg+

δ (f)).

Proof. We may assume δ < 1/2 (and hence ϵ < 1/4) as otherwise the claim is trivial.
Suppose deg+

ϵ (1 + f) = d is witnessed by a conical d-junta g that ϵ-approximates 1 + f .
Define g′ := ((g + ϵ)/2)k where the exponent is k := ⌈log3/4 δ⌉. By multiplying out the terms
in this definition, we see that g′ has nonnegative degree kd = O(d). We claim that g′ is a
δ-approximation of f . Indeed, if f(x) = 0, then g′(x) ≤ (1/2 + ϵ)k ≤ (3/4)k ≤ δ. If f(x) = 1,
then 1 ≤ (g(x) + ϵ)/2 ≤ 1 + ϵ, and thus 1 ≤ g′(x) ≤ (1 + ϵ)k ≤ exp(ϵk) ≤ 1 + δ. ◀

Proof of Lemma 11. Using Claim 12 and Claim 13 (but with ¬f in place of f), we have,
for any δ > 0 and ϵ := ln(1+δ)

⌈log3/4 δ⌉ :

deg+
ϵ2(f∨) ≥ deg+

ϵ (2 − f) = deg+
ϵ (1 + ¬f) ≥ Ω(deg+

δ (¬f)). ◀



M. Göös, S. Kiefer, W. Yuan 9

3.3 Unambiguous protocols and nonnegative rank
Our goal will be to lift the hardness of the ∨-operation (Theorem 9) to communication
complexity. In this subsection, we recall the concepts that are needed for this goal, namely,
unambiguous protocols, (approximate) nonnegative rank, and a lifting theorem from nonneg-
ative degree to nonnegative rank [12, 17].

Unambiguous protocols. Recall from Section 2.1 the notions of nondeterministic protocols
and rectangle covers. For a two-party function F : X × Y → {0, 1}, the partition number
Par1(F ) is the least number of pairwise disjoint rectangles that cover F −1(1). Note that
Cov1(F ) ≤ Par1(F ). The unambiguous communication complexity of F is defined as U1(F ) :=
log2 Par1(F ). Note that N1(F ) ≤ U1(F ). Unambiguous communication complexity can be
interpreted as the least communication cost of a nondeterministic protocol that has at most
one accepting computation on every input. We also have the following folklore lemma, proved
the same way as Lemma 8, which states that UFAs are simulated by unambiguous protocols.

▶ Lemma 14. If a two-party function F : {0, 1}m1 × {0, 1}m2 → {0, 1} admits an UFA with
s states, then Par1(F ) ≤ s (that is, U1(F ) ≤ log s). ◀

Nonnegative rank. We often think of a two-party function F : X × Y → {0, 1} as a boolean
matrix F ∈ {0, 1}X×Y , sometimes called the communication matrix of F . For a nonnegative
matrix M ∈ RX×Y

≥0 we define its nonnegative rank, denoted rk+(M), as the least r such
that M can be written as a sum of r nonnegative rank-1 matrices, i.e., M =

∑r
i=1 uiv

T
i ,

where ui ∈ RX
≥0 and vi ∈ RY

≥0 are nonnegative vectors. Note that for a boolean matrix F ,

Par1(F ) ≥ rk+(F ) and thus U1(F ) ≥ log rk+(F ). (2)

Indeed, if F −1(1) can be partitioned into r rectangles, F −1(1) = R1 ⊔ · · · ⊔ Rr, then F can
be written as a sum of r nonnegative rank-1 matrices, F = M1 + · · · + Mr, where Mi is 1 on
the rectangle Ri and 0 elsewhere. As with nonnegative degree, we define an approximate
version of nonnegative rank. The ϵ-approximate nonnegative rank of M , denoted rk+

ϵ (M), is
defined as the least rk+(N) over all nonnegative matrices N that ϵ-approximate M , i.e.,

|Mij − Nij | ≤ ϵ for all i, j.

Nonnegative lifting. Finally, we formulate a theorem that lifts lower bounds on the
nonnegative degree of an n-bit boolean function f to the nonnegative rank of the composed
function F = f ◦ gn (which was defined in Section 2.1).

▶ Theorem 15 ([12, 17]). Fix constants δ > ϵ > 0. For any n ∈ N there is a gadget
g : {0, 1}b × {0, 1}b → {0, 1} with b = Θ(log n) such that for any f : {0, 1}n → {0, 1} we have

log rk+
ϵ (f ◦ gn) ≥ Ω(deg+

δ (f) · b). ◀

3.4 Proof of Theorem 2 (and also Theorem 4)
We start with the function f : {0, 1}n → {0, 1} given by Theorem 9 such that for m = poly(n),

UC1(f) ≤ m, (3)
deg+

1.5×10−5(f∨) ≥ Ω̃(m2). (4)
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We then use the gadget g on b = Θ(log n) bits from the lifting theorem Theorem 15 to
construct F := f ◦ gn. By the same argument as in Section 2.2 we see that the resulting
F : {0, 1}nb × {0, 1}nb → {0, 1} enjoys the following upper bounds, derived from (3).

F admits an unambiguous DNF of width 2bm = Õ(m).
F admits an UFA of size 2Õ(m).
F admits an unambiguous protocol of cost U1(F ) ≤ Õ(m).

On the other hand, we note that F ∨ = (f ◦ gn)∨ = f∨ ◦ gn. Hence, we may combine (2),
Theorem 15, and (4) to conclude that

U1(F ∨) ≥ log rk+
10−5(F ∨) ≥ Ω(deg+

1.5×10−5(f∨)) ≥ Ω̃(m2). (5)

This finishes the proof of Theorem 4. We proceed with the proof of Theorem 2. To this end,
we define two languages

L1 := {xx′yy′ : x, x′, y, y′ ∈ {0, 1}bn and F (x, y) = 1},

L2 := {xx′yy′ : x, x′, y, y′ ∈ {0, 1}bn and F (x′, y′) = 1}.

Both L1 and L2 admit UFAs of size poly(n) · 2Õ(m) = 2Õ(m) =: N . By contrast, we
have L1 ∪ L2 = (F ∨)−1(1), and this union language requires UFAs of size 2Ω̃(m2) = N Ω̃(log N)

by (5) and Lemma 14. This concludes the proof of Theorem 2. ◀

4 UFA Separation

In this section, we prove Theorem 3.

▶ Theorem 3 (Separation). For every n ∈ N there is a language L ⊆ {0, 1}∗ such that both L

and L are recognised by n-state NFAs but any UFA that recognises L requires nΩ(log n) states.

Loosely speaking, in our construction, we define NFAs A1, A2 that recognize (sparse) set
disjointness and its complement. For n ∈ N and k ≤ n we define

Disjn
k := {(S, T ) | S ⊆ [n], T ⊆ [n], |S| = |T | = k, S ∩ T = ∅} .

Define also ⟨Disjn
k ⟩ := {⟨S⟩⟨T ⟩ | (S, T ) ∈ Disjn

k } where ⟨S⟩ ∈ {0, 1}n is such that the ith
letter of ⟨S⟩ is 1 if and only if i ∈ S, and similarly for ⟨T ⟩. Note that ⟨S⟩, ⟨T ⟩ each contain k

times the letter 1. To prove Theorem 3 it suffices to prove the following lemma.

▶ Lemma 16. For any n ∈ N let k := ⌈log2 n⌉. There are NFAs A1, A2 with nO(1) states
such that L(A1) = ⟨Disjn

k ⟩ and L(A2) = {0, 1}∗ \ ⟨Disjn
k ⟩. Any UFA that recognizes ⟨Disjn

k ⟩
has at least nΩ(log n) states.

In the rest of the section we prove Lemma 16 by following Razborov’s analysis of sparse
set disjointness [21]. In particular, we will give a self-contained proof of the existence of
polynomial-sized NFAs for ⟨Disjn

k ⟩ and its complement, but the main argument also comes
from communication complexity.

4.1 Proof of Lemma 16
First we prove the statement on UFAs. Write

([n]
k

)
:= {S ⊆ [n] | |S| = k}. Let F :

([n]
k

)
×([n]

k

)
→ {0, 1} be the two-party function with F (S, T ) = 1 if and only if (S, T ) ∈ Disjn

k .
It is shown, e.g., in [18, Example 2.12] that the communication matrix of F has full
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rank, rk(F ) =
(

n
k

)
. Let F ′ : {0, 1}n × {0, 1}n → {0, 1} be such that F ′(x, y) = 1 if and

only if xy ∈ ⟨Disjn
k ⟩. Then F is a principal submatrix of F ′, so

(
n
k

)
≤ rk(F ′). Using (2)

and Lemma 14 it follows that any UFA, say A, that recognizes ⟨Disjn
k ⟩ has at least

(
n
k

)
≥ ( n

k )k

states. With k := ⌈log2 n⌉, it follows that A has nΩ(log n) states.
It is easy to see that there is an NFA, A2, with nO(1) states and L(A2) = {0, 1}∗ \⟨Disjn

k ⟩.
Indeed, we can assume that the input is of the form ⟨S⟩⟨T ⟩; otherwise A2 accepts. NFA A2
guesses i ∈ [n] such that i ∈ S ∩ T and then checks it.

Finally, we show that there is an NFA, A1, with nO(1) states and L(A1) = ⟨Disjn
k ⟩. We

can assume that the input is of the form ⟨S⟩⟨T ⟩; otherwise A1 rejects. NFA A1 “hard-codes”
polynomially many sets Z1, . . . , Zℓ ⊆ [n]. It guesses i ∈ [ℓ] such that S ⊆ Zi and Zi ∩ T = ∅
and then checks it. It remains to show that there exist ℓ = nO(1) sets Z1, . . . , Zℓ ⊆ [n] such
that for any (S, T ) ∈ Disjn

k there is i ∈ [ℓ] with S ⊆ Zi and Zi ∩ T = ∅. The argument uses
the probabilistic method and is due to [21]; see also [18, Example 2.12]. We reproduce it
here due to its elegance and brevity.

Fix (S, T ) ∈ Disjn
k . Say that a set Z ⊆ [n] separates (S, T ) if S ⊆ Z and Z ∩ T = ∅. A

random set Z ⊆ [n] (each i is in Z with probability 1/2) separates (S, T ) with probability 2−2k.
Thus, choosing ℓ :=

⌈
22k ln

(
n
k

)2⌉
= nO(1) random sets Z ⊆ [n] independently, the probability

that none of them separates (S, T ) is

(1 − 2−2k)ℓ < e−2−2kℓ ≤
(

n
k

)−2
.

By the union bound, since |Disjn
k | <

(
n
k

)2, the probability that there exists (S, T ) ∈ Disjn
k

such that none of ℓ random sets separates (S, T ) is less than 1. Equivalently, the probability
that for all (S, T ) ∈ Disjn

k at least one of ℓ random sets separates (S, T ) is positive. It follows
that there are Z1, . . . , Zℓ ⊆ [n] such that each (S, T ) ∈ Disjn

k is separated by some Zi. ◀

5 Bonus result: Approximate nonnegative rank

In this section, we prove Theorem 5.

▶ Theorem 5 (No efficient error reduction). For every m ∈ N there exists a boolean matrix
M with rk+

1/4(M) ≤ m but such that rk+
10−5(M) ≥ mΩ̃(log m).

We first illustrate the idea in the context of nonnegative degree. In contrast to Theorem 9
(which states that ∨ is hard to approximate to within tiny error), we show that the ∨-operation
is, in fact, easy to approximate when we allow large enough error.

▷ Claim 17. For any boolean-valued f , we have deg+
1/4(f∨) ≤ deg+(f).

Proof. Let g : {0, 1}2n → R≥0 be given by g(x, y) := (f(x) + f(y))/2 + 1/4. Then

g(x, y) =


1/4 if f(x) = f(y) = 0,

5/4 if f(x) = f(y) = 1,

3/4 otherwise.

Thus g is a 1/4-approximation to f∨. Note also that deg+(g) ≤ deg+(f), as desired. ◀

We can now repeat the same idea for nonnegative rank. In Section 3.4 we construc-
ted a boolean matrix (two-party function) F such that log rk+(F ) ≤ U1(F ) ≤ m and
log rk+

10−5(F ∨) ≥ Ω̃(m2). We claim that log rk+
1/4(F ∨) ≤ O(m), which would finish the proof

of Theorem 5. Indeed, analogously to Claim 17, we can define a nonnegative matrix by
G(xx, yy′) := (F (x, y) + F (x′, y′))/2 + 1/4. This is a 1/4-approximation to F ∨ and we have
rk+(G) ≤ 2 · rk+(F ) + 1 ≤ 2m+1 + 1, as claimed.
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